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We carry out direct numerical simulations (DNS) of flow in a turbulent square duct by
focusing on heat transfer effects, considering the case of unit Prandtl number. Reynolds
numbers up to Reτ ≈ 2000 are considered that are much higher than in previous studies,
and that yield clear scale separation between inner- and outer-layer dynamics. Close
similarity between the behaviour of the temperature and the streamwise velocity fields
is confirmed as in previous studies related to plane channels and pipes. Just like the mean
velocity, the mean temperature is found to exhibit logarithmic layers as a function of the
nearest wall, but with a different slope. The most important practical implication is the
validity of the traditional hydraulic diameter as the correct reference length for reporting
heat transfer data, as we show rigorously here. Temperature and velocity fluctuations
also have similar behaviour, but apparently logarithmic growth of their inner-scaled peak
variances is not observed here, unlike in canonical wall-bounded flows. Analysis of the
split contributions to the heat transfer coefficient shows that mean cross-stream convection
associated with secondary motions is responsible for about 5 % of the total. Finally, we use
the DNS database to highlight shortcomings of traditional linear closures for the turbulent
heat flux, and show that substantial modelling improvement in principle may be obtained
by retaining at least the three terms in the vector polynomial integrity basis expansion.
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1. Introduction

Heat transfer in internal flows is a subject of utmost relevance in mechanical and aerospace
engineering applications. A large amount of experimental and numerical studies have
been carried out in the past, and a variety of analytical and semi-empirical prediction
tools have been developed, which are reported extensively in classical textbooks (Kays
& Crawford 1993; Rohsenow, Hartnett & Cho 1998). Most studies have been carried out
for the canonical case of ducts with circular cross-section or planar channels, whereas
much less is known about the case of ducts with more complex geometry, which also have
great practical relevance, for instance in water draining or ventilation systems, nuclear
reactors, heat exchangers, space rockets and turbomachinery. In that case, the typical
engineering approach is to use the same correlations established for the case of circular
pipes, by replacing the pipe diameter with the hydraulic diameter of the duct (Kays &
Crawford 1993; White & Majdalani 2006). Although this approach is found to be rather
successful in practice, it lacks solid theoretical foundations. Furthermore, the large scatter
in experimental data makes it difficult to quantify the actual accuracy of semi-empirical
prediction formulas, which are reported to have ±9 % uncertainty for smooth ducts with
uniform heating (Shah & Sekulib 1998).

Heat transfer in square ducts was first studied experimentally by Brundrett & Burroughs
(1967), who considered air flow at bulk Reynolds number Reb = Hub/ν (where H = 2h is
duct side length and also duct hydraulic diameter, ub is the bulk velocity, and ν is the fluid
kinematic viscosity) values 33 000 and 67 000. Close similarity between the wall shear
stress and the heat flux distributions was shown (with quoted discrepancy ±2 %), which
the authors connected with similar mixing action of the secondary currents on momentum
and temperature. As a result, they observed that the ratio of the average friction and heat
transfer coefficients for a square duct is approximately the same as for a circular pipe.
Measurements of the wall-normal temperature profiles highlighted close universality when
the local wall heat flux is used for normalization, and the presence of a sizeable logarithmic
layer, with extrapolated value of the scalar Kármán constant κθ ≈ 0.51. Those findings
were supported qualitatively from later experiments by Hirota et al. (1997), who also
analysed temperature fluctuations and velocity/temperature fluctuations correlations, and
found significant distortions over the cross-section associated with the secondary motions.
In that study, the inferred scalar von Kármán constant was κθ ≈ 0.46, hence more similar
to the values generally quoted for circular pipe flow, namely κθ ≈ 0.47 (Kader & Yaglom
1972).

Early computational studies of heat transfer in square ducts relied mostly on the
use of Reynolds-averaged Navier–Stokes models. For instance, Launder & Ying (1973)
developed a full Reynolds stress closure to predict flow and heat transfer in a square duct.
Although the global heat transfer coefficient showed general underprediction by about
10 %, the distribution of the wall heat flux reproduced qualitatively the experimental data
of Brundrett & Burroughs (1967). High-fidelity computational studies of heat transfer in
square ducts have been quite limited so far. Vázquez & Métais (2002) first studied turbulent
flow through a heated square duct by means of large-eddy simulations (LES) at moderate
Reynolds number (Reb = 6000), considering the case in which one of the walls is hotter
than the other three. Accounting for fluid viscosity variation with temperature, they found
that turbulent structures near the hot wall become larger than near the other walls, in
such a way that wall scaling is satisfied. LES with different wall thermal states, also in
the presence of duct rotation, were carried out by Pallares & Davidson (2002). Yang,
Chen & Zhu (2009) carried out under-resolved direct numerical simulations (DNS) of
turbulent flow in a square duct with uniform volumetric heating, finding good agreement
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Forced thermal convection in square ducts

with the temperature profiles measured by Hirota et al. (1997), and with predictions
of the heat transfer coefficient resulting from Gnielinski’s analogy (Gnielinski 1976).
Large-eddy simulations of space-developing turbulent flow through a heated square duct
were carried out by Schindler, Younis & Weigand (2019), at bulk Reynolds number up
to Reb = 104. As noted by Brundrett & Burroughs (1967), strong correlation of the local
wall heat flux with the wall shear stress was found. Sekimoto et al. (2011) carried out
DNS of mixed convection in square duct flow ranging from very low to unit Richardson
number. They found that modifications of the secondary flows due to buoyancy start at
Richardson number ≈0.025, and the effect of buoyancy becomes dominant at Richardson
≈0.25 and the eight cross-stream vortices are replaced by two large-scale ones. Turbulence
modelling of forced and natural thermal convection is a topic of primary interest for
industrial applications, but it has received less attention than its momentum counterpart.
Modelling approaches for the turbulent heat flux vector were reviewed by Hanjalić (2002),
who pointed out inadequacy of the turbulent Prandtl number concept in complex flows,
and advocated the use of second-moment closures or algebraic models for turbulent heat
transfer. However, the state of the art for modelling turbulent convection has not advanced
much since the time of that review article, and linear eddy diffusivity models relying on
use of the turbulent Prandtl number are routinely used.

In this paper, we study heat transfer in fully developed square duct flow with
uniform internal heating and isothermal walls, by carrying out DNS at much higher
Reynolds numbers than in previous computational studies. Although relatively simple,
this set-up includes the main complicating effects involved with non-trivial cross-sectional
geometries, and primarily associated with the formation of secondary motions of the
second kind (Prandtl 1927; Nikuradse 1930). The assumption herein made of unit
molecular Prandtl number (defined as the ratio of the kinematic viscosity to the scalar
diffusivity, Pr = ν/α) is instrumental to scrutinizing more closely differences between the
behaviour of the streamwise velocity field and of passively advected scalars. The present
study is the continuation of previous efforts (Modesti et al. 2018; Orlandi, Modesti &
Pirozzoli 2018; Pirozzoli et al. 2018) targeted to studying turbulent flows in square ducts
by means of DNS. In those studies, we found that the intensity of the secondary motions is
of the order of a few per cent of the duct bulk velocity, and despite their persistence, they
do contribute to the mean duct friction by at most a few per cent. In this study we aim to
extend our analysis to the temperature field and to quantify the effect of secondary flows
on the wall heat flux. Additionally, we assess the accuracy of the turbulent Prandtl number
concept and of constitutive relations for the turbulent heat flux vector.

2. Methodology

The numerical simulation of incompressible turbulent flow in non-circular ducts is a
more challenging task for numerical algorithms than the canonical cases of plane channel
and pipe flow. The main reason resides in the availability of only one direction of
space homogeneity, which prevents the use of efficient inversion procedures for Poisson
equations based on double trigonometric expansions (Kim & Moin 1985; Orlandi 2012).
This difficulty has been tackled using two-dimensional Poisson solvers based on cyclic
reduction (Gavrilakis 1992), using algebraic multigrid methods (Vinuesa et al. 2014;
Marin et al. 2016), or fast diagonalization (Pinelli et al. 2010), resulting in a larger
computational cost than for channel and pipe flow simulations. In the present work, we use
a fourth-order co-located finite-difference solver, previously used for DNS of compressible
turbulence, also in the low-Mach-number regime (Pirozzoli & Bernardini 2013;
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Case Reb Re∗
τ Cf × 103 Nu Nx Ny Nz �x∗ �z∗ �y∗

w Symbol

A 4410 150 9.26 18.1 512 128 128 5.6 3.0 0.55
B 7000 227 8.41 26.9 640 144 144 6.6 4.8 0.51
C 12 000 365 7.40 41.9 768 208 208 9.0 5.3 0.69
D 17 800 519 6.80 57.6 1024 256 256 9.5 6.3 0.53
E 40 000 1055 5.57 109.0 2048 512 512 9.6 6.4 0.60
F 84 000 2041 4.72 197.0 4096 1024 1024 9.3 6.0 0.67

A0 4410 154 9.66 21.1 512 128 128 5.7 3.3 0.54 —
B0 7000 231 8.58 30.0 640 144 144 6.8 4.7 0.67 —
C0 12 000 367 7.48 44.5 768 204 204 9.0 5.4 0.71 —
D0 17 800 515 6.62 59.6 1024 256 256 9.5 6.0 0.79 —

Table 1. Flow parameters for square duct DNS. Box dimensions are 6πh × 2h × 2h for all flow cases. Flow
cases denoted with the 0 suffix are carried out by suppressing the secondary motions. We denote by Reb =
2hub/ν the bulk Reynolds number, and by Re∗

τ = hu∗
τ /ν the friction Reynolds number; Cf = 2τw/(ρu2

b) is the
friction coefficient, and Nu is the Nusselt number; �x is the mesh spacing in the streamwise direction, and �z,
�yw are the maximum and minimum mesh spacings in the cross-stream direction, all given in global wall units
δ∗
v = ν/u∗

τ .

Modesti & Pirozzoli 2016; Bernardini et al. 2021). Here, the convective terms in the
Navier–Stokes equations are expanded preliminarily to quasi-skew-symmetric form, in
such a way as to preserve discretely total kinetic energy from convection (Pirozzoli 2010).
Semi-implicit time stepping is used for time advancement in order to relax the acoustic
time step limitation, thus allowing efficient operation at low Mach number, also through
the use of the entropy evolution equation rather than the total energy equation (Modesti &
Pirozzoli 2018). The streamwise momentum equation is forced in such a way as to maintain
a constant mass flow rate (the spatially uniform driving term is hereafter referred to as
Π ), periodicity is exploited in the streamwise direction, and isothermal no-slip boundary
conditions are used at the channel walls. Let h be the duct half-side; the DNS have been
carried out for a duct with [−h : h] × [−h : h] cross-section, and length 6πh.

Six DNS have been carried out at bulk Mach number Mb = ub/cw = 0.2 (where cw is
the speed of sound at the wall temperature) and bulk Reynolds number Reb = 4400–84 000
(table 1), and hereafter these are labelled with letters from A to F. In order to quantify the
effect of secondary flows we have also carried out simulations at the same bulk Reynolds
numbers, wherein secondary flows are suppressed numerically, and which are denoted
with the suffix 0. The turbulence Mach number Mt = u′/cw nowhere exceeds 0.01 for any
of the simulations, hence the present DNS may be regarded as representative of genuinely
incompressible turbulence. Issues related to the size of the computational box, mesh
resolution and statistical convergence were discussed in a previous publication (Pirozzoli
et al. 2018), which focused on the analysis of the velocity statistics. In the present study,
the Navier–Stokes equations are augmented with the transport equation for a passive scalar
field, with molecular diffusivity α = ν, in such a way that the molecular Prandtl number is
unity for all simulations. Although the study of passive scalars may be relevant in several
fluid dynamics applications, from now on we will always refer to the transported scalar
as representative of the temperature field, and the associated fluxes as representative of
heat fluxes. Similarly to the streamwise velocity field, the passive scalar equation is also
forced with a time-varying, spatially homogeneous forcing term (say Q), in such a way that
its mean value is maintained in time (Pirozzoli, Bernardini & Orlandi 2016). This forcing
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Forced thermal convection in square ducts

method corresponds to adding uniform bulk heating to balance heat losses, although other
forcing strategies are possible (e.g. Piller 2005; Abe & Antonia 2017). The most common
alternative to uniform bulk heating is enforcement of constant heat flux in time. Both
approaches have advantages and disadvantages. Uniform bulk heating is less realistic as
it is difficult to attain in experiments (Piller 2005); however, it is more efficient from a
computational point of view because of faster convergence towards a statistically stationary
state. In the present work, we opt for uniform bulk heating in light of higher computational
efficiency in DNS of high-Reynolds-number flows. We expect that this approach may yield
a slightly higher heat flux number as compared to the case of strictly constant heat flux
(Abe & Antonia 2017; Alcántara-Ávila, Hoyas & Pérez-Quiles 2021). In the following, we
use a different notation for the mean temperature in the duct,

θb = 1
Ac

∫
Ac

(Θ − θw) dAc, (2.1)

and for the bulk temperature,

θm = 1
ubAc

∫
Ac

U(Θ − θw) dAc, ub = 1
Ac

∫
Ac

U dAc, (2.2a,b)

where θw is the wall temperature, and Ac is the cross-sectional area of the duct. We use
capital letters to denote flow properties averaged in the homogeneous spatial directions and
in time, angle brackets to denote the averaging operator, and lower-case letters to denote
fluctuations from the mean. We also exploit geometrical symmetries, and average the flow
statistics over the duct quadrant or duct octant, whenever possible. The effect of quadrant
averaging was discussed in detail in our previous publication Pirozzoli et al. (2018).

The + superscript is here used to denote local wall units, namely quantities made
non-dimensional with respect to the local friction velocity uτ = (τw/ρ)1/2 (where τw =
ρν dU/dy|w is the local wall shear stress), and the local viscous length scale δv = ν/uτ .
The ∗ superscript is reserved to denote global wall units, with friction velocity based on
the perimeter-averaged wall shear stress,

u∗
τ =

(
τ ∗

w

ρ

)1/2

=
(

h 〈Π〉
2ρ

)1/2

, (2.3)

and viscous length scale δ∗
v = ν/u∗

τ . Likewise, for normalization of the temperature field,
we consider either the local friction temperature,

θτ = qw

uτ

, (2.4)

where qw = α dΘ/dy|w is the local wall heat flux, or the global friction temperature,

θ∗
τ = q∗

w

u∗
τ

= 〈Q〉 h
2u∗

τ

. (2.5)

Equations (2.3) and (2.5) make it clear that the global friction velocity and temperature are
related to the imposed forcing of the streamwise momentum and temperature equations,
rather than to the detailed distribution of wall momentum and temperature fluxes. Notably,
local and global wall units collapse in the case of canonical wall-bounded flows because
of homogeneity, but the two are distinctly different in internal flows in non-circular ducts.
DNS studies such as the present one can then be used to distinguish between the two
scalings, which is impossible in more canonical set-ups.
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(b)(a)

Figure 1. Instantaneous streamwise velocity (a) and temperature (b) fields for flow case F. Wall-parallel
planes are taken at fifteen wall units from the walls.

3. Temperature statistics

We begin by inspecting the instantaneous streamwise velocity and temperature fields
in figure 1, which shows the flow in both the cross-stream and wall-parallel planes.
The instantaneous flow structures are not different from those typical of canonical
wall-bounded flows, and the near-wall region is populated with temperature and
streamwise velocity streaks, resulting from sweep and ejections events visible in the
cross-stream plane. Large structures are also visible in the cross-stream plane, which
convey high-speed, hot flow from the duct core towards the corners, and which interact
with the smaller near-wall flow structures. Return motions of low-speed, cool fluid are
also observed to emerge from around the bisector of each side of the square duct. These
observations suggest that the secondary motions resulting from space- and time-averaging
are not just an artefact, but they are well present in the instantaneous flow realizations.
Similarity between streamwise velocity and temperature is apparent, with the main
difference that the latter reveals finer structures and sharper fronts owing to the absence of
the smoothing action of pressure (Pirozzoli et al. 2016).

Figure 2 depicts the mean temperature (contours) and velocity (isolines) fields in
the duct cross-section, along with representative cross-stream velocity vectors. This
representation brings to light the presence of a pair of counter-rotating secondary
eddies in each quarter of the domain, whose apparent role is bringing high-speed and
high-temperature fluid from the duct core towards the corners, to compensate for the
deficit. As a result, both the temperature contours and the velocity isolines bend towards
the corners, featuring a bulging first noticed by Nikuradse (1930). This effect seems
to be non-monotonic with the Reynolds number, being most evident for DNS-A and
DNS-E/F. As expected, temperature and velocity contours bear close similarity, being
nearly coincident near the wall, and retaining the same shape farther off. This analogy is
the result of the formal similarity of the controlling equations, and it is further investigated
in figure 3, where we show a scatter plot of mean velocity and temperature. In the near-wall
region (say, U∗ ≤ 10), perfect matching is recovered (namely, Θ∗ = U∗), which is not
surprising, as at unit Prandtl number, Θ+ ≡ U+ ≡ y+ in the wall vicinity. However, near
equality of the two distributions in global wall units is less trivial and is a symptom of
strong similarity between the two fields. At non-unit Prandtl number, we still expect a
linear relationship to be present like Θ∗ = Pr U∗, since in general Θ+ ≡ U+ ≡ Pr y+
in the wall vicinity (Kader 1981). Farther from walls (U∗ � 15, which corresponds to
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Figure 2. Mean streamwise temperature (Θ∗, flooded contours), mean streamwise velocity (U∗, lines), and
mean cross-stream velocity vectors (V∗, W∗) for flow cases A (a), B (b), C (c), D (d), E (e), F ( f ). For clarity,
only a subset of the velocity vectors is shown, and only a quarter of the full domain is shown. The dashed
diagonal lines indicate the corner bisector.

0 5 10 15 20 25

5

10

15

20

25

Θ∗

U∗

Figure 3. Scatter plot of mean temperature (Θ∗) versus mean velocity (U∗) for DNS data of all flow cases,
and corresponding fitting functions for the near-wall region, Θ∗ = U∗ (dashed line), and for the outer region,
Θ∗ = 2.57 + 0.84U∗ (solid line). Colours are as in table 1.

the root of the logarithmic layer in canonical wall-bounded flows), a linear imprinting
is still visible, although with larger scatter than in the near-wall region, and with slope
shallower than unity. This can be explained by recalling (Pirozzoli et al. 2016) that in
canonical flows, the distributions of both velocity and temperature are nearly logarithmic,
but with different slope. In particular, currently accepted values of the Kármán constant
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Figure 4. Mean wall-normal temperature profiles scaled in local wall units for flow cases A (a), B (b), C
(c), D (d), E (e), F ( f ). Profiles are plotted at several distances from the left wall, up to the corner bisector
(see figure 2 for reference): z∗ = 15 (diamonds), z/h = 0.1 (right triangles), z/h = 0.25 (triangles), z/h = 0.5
(circles), z/h = 1 (squares). The dashed lines denote fits of experimental data (Kader 1981) at matching Re∗

τ .

are κ ≈ 0.39 for the mean velocity, and κθ ≈ 0.46 for the mean temperature. As a matter
of fact, the scatter plot is well fitted with a linear function with slope κ/κθ ≈ 0.84. At
Pr /= 1, we thus expect a similar relationship, but with different additive constant, as a
result of the different intercept in the log law for the temperature field. This observation
is quite interesting in our opinion, as the presence of a (nearly) universal relationship
between mean velocity and temperature in a non-trivial flow in a square duct in principle
would allow us to reconstruct directly the whole temperature field based on the velocity
field.

Based on the previous observations, it is natural to study and compare the temperature
statistics expressed in local wall units (+) and in global wall units (∗). Figure 4 shows
the mean temperature profiles as a function of the wall-normal distance up to the corner
bisector (white dashed line in figure 2), in local wall units. For reference purposes,
the mean temperature profiles obtained from the experimental fitting by Kader (1981)
at matching Reτ are also reported. Excellent collapse of the locally scaled profiles is
recovered near the wall, also including the near-corner region. The distributions become
more widespread past y+ ≈ 10, with maximum scatter of about ±5 % in the ‘logarithmic’
layer. When the global friction temperature is used for normalization (see figure 5), scatter
among the temperature profiles is observed near the wall as a result of the local variation
of the wall heat flux. Perhaps unexpectedly, this normalization does yield similarly good
universality away from walls, and near coincidence with the pipe temperature profiles, at
least at high enough Reynolds numbers. This finding is probably related to the fact that
mean temperature transport away from solid walls is controlled by the imposed spatially
uniform heat source rather than by the non-uniform wall heat flux. Inspection of figure 5
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Figure 5. Mean wall-normal temperature profiles scaled in global wall units for flow cases A (a), B (b), C
(c), D (d), E (e), F ( f ). Profiles are plotted at several distances from the left wall, up to the corner bisector
(see figure 2 for reference): z∗ = 15 (diamonds), z/h = 0.1 (right triangles), z/h = 0.25 (triangles), z/h = 0.5
(circles), z/h = 1 (squares). The dashed lines denote fits of experimental data (Kader 1981) at matching Re∗

τ .

shows that transition from wall scaling to ‘global’ scaling (which is controlled by the
spatially uniform heat source) occurs at a wall distance of about 0.2h, which is also the
lower limit for the core region in canonical flows (Pope 2000). This observation seems to
support the validity of Townsend’s outer layer similarity also for the temperature field,
in that the outer flow perceives mainly the global heat flux and not its detailed local
distribution at the wall. Validity of outer-layer similarity for the temperature field was
reported for rough walls (MacDonald, Hutchins & Chung 2019), whereas we are not aware
of similar conclusions for the case of more complex geometries because most studies on
forced convection are limited to canonical wall-bounded flows, in which the wall heat flux
is spatially uniform. These results support findings reported previously for the streamwise
velocity (Pirozzoli et al. 2018), and confirm that square duct flow is a convenient testbed
for evaluating differences between local and global scaling.

The fluctuating velocity and temperature fields in the vicinity of the duct corners
are shown in figure 6 upon global inner normalizations, as well as the corresponding
correlation coefficients. To facilitate comparison across the Reynolds number range, the
horizontal coordinate is reported in inner units up to z∗ = 150, and the vertical one in outer
units. This allows simultaneous visualization of both the corner and the core region, at all
Reynolds numbers. Far from the corner, the distributions of the velocity and temperature
variances are nearly unaffected by Reynolds number variation, and feature a buffer-layer
peak at a distance of about fifteen wall units from the closer wall. The amplitude of the
peak is reduced moving towards the corner, whose effect is felt to within a distance of
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Figure 6. Streamwise velocity and temperature fluctuation intensities (in global inner units), and their
correlation coefficient, in the proximity of a duct corner for flow cases A (a–c), B (d–f ), C (g–i), D (j–l),
E (m–o), F (p–r). Note that the horizontal coordinate (z) is given in inner units, and the vertical coordinate y is
given in outer units and at a logarithmic scale.
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Figure 7. Inner-layer peak variances of axial velocity (a), and temperature (b), expressed as functions of the
local friction Reynolds number (z+). The dashed lines denote the logarithmic fit for canonical flows (Marusic,
Baars & Hutchins 2017), namely 〈u2〉+IP = 0.63 log Reτ + 3.8. Symbols as in table 1.

O(100) global wall units. The u–θ correlation coefficient shows strict similarity of velocity
and temperature fluctuations also in the instantaneous sense, with the exception of the
close neighbourhood of the corner. Correlation in the outer layer is less than near the wall,
but it tends to increase at higher Reynolds number, similar to the case of plane channel
flow (Pirozzoli et al. 2016).

A quantitative analysis of the buffer-layer peaks of the velocity and temperature
variances is reported in figure 7. Specifically, for each horizontal location (z, measured
from the corner), we show the peak variances of u and θ expressed in local wall units.
In this respect, we note that z+ can be interpreted as effective local friction Reynolds
numbers, based on the distance of the wall point from the corner bisector (see figure 2). It
is known that in canonical flows (Marusic et al. 2013), the peak velocity variances increase
logarithmically with the friction Reynolds number. Hence it is interesting to verify whether
the same trend also occurs in flows involving non-trivial cross-sections, and featuring
secondary motions. For that purpose, in both panels of figure 7 we show the logarithmic
trend predicted by Marusic et al. (2013) as benchmark. It is noteworthy that away from
the corner (say z+ � 100), local wall units yield good universality of the distributions,
and suggest an increasing trend of the variances with the local friction Reynolds number.
However, the growth rate seems to be far less than in canonical flows, possibly violating
Townsend’s attached-eddy hypothesis. We speculate that this peculiar behaviour may be
due to either disruption of the hierarchy of wall-attached eddies because of the action
of secondary motions, or perhaps impeded spanwise growth caused by the presence of
corners, both effects being absent in planar channel or pipe flow.

The distributions of the local friction and heat transfer coefficients along the duct wall
are shown in figure 8. As shown previously by Pirozzoli et al. (2018), the distribution
of the wall friction coefficients is non-monotonic, featuring a peak at the side bisector,
and a secondary peak near the corner, at a distance scaling with global wall units. As from
theoretical predictions (Spalart, Garbaruk & Stabnikov 2018), the friction tends to equalize
over the duct perimeter at higher Re. The heat transfer coefficient seems to have the same
qualitative behaviour, thus corroborating the experimental observations of Brundrett &
Burroughs (1967) and Hirota et al. (1997). Quantitative assessment is shown in figure 8(c),
where we show the Reynolds analogy factor 2St/Cf , which is expected to be unity at
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Figure 8. Distributions of local wall friction coefficient Cf = 2u2
τ /u2

b (a), local Stanton number St =
(uτ θτ )/(ubθm) (b), and Reynolds analogy factor (c), along the left part of the lower wall. Symbols as in
table 1.

Pr = 1 (White & Majdalani 2006). In fact, whereas deviations are observed at low
Reynolds numbers, the distribution corresponding to DNS-F varies between 0.98 and 1.2,
right at the corner.

The overall heat transfer performance of the duct is quantified in terms of the global
Stanton number,

St∗ = q∗
w

ubθm
= 1

u∗
bθ

∗
m

, (3.1)

or more frequently in terms of the Nusselt number,

Nu∗ = St∗ Reb Pr. (3.2)

In figure 9, we compare the distributions of the heat transfer coefficients (inverse Stanton
number and Nusselt number) obtained from the present DNS (squares) with those resulting
from DNS of circular pipe flow (circles), from previous LES (diamonds), and from
experiments (triangles) in square ducts. We note that the latter two datasets were obtained
for Pr = 0.71, hence the Nu data are rescaled by a factor 1/

√
Pr to compare with the

present ones. As a reference, we also report correlations used widely in engineering
practice, including that from Gnielinski (1976),

Nu = Pr (Cf /32)(Reb − 1000)

1 + 12.7(Cf /32)1/2(Pr2/3 − 1)
, (3.3)

and from Kays & Crawford (1993),

Nu = 0.022 Re0.8
b Pr0.5. (3.4)

Finally, direct fitting the present DNS data (at Pr = 1) with a power-law expression yields

Nu = 0.0216 Re0.805
b . (3.5)

The DNS data show good correspondence with the pipe DNS data at matching Reb,
with the exception of the lower Reynolds number case, which supports validity of the
hydraulic diameter concept as the relevant length scale for heat transfer data reduction.
Agreement with experiments and LES in square ducts is also quite good, on account of
experimental uncertainties and modelling errors in LES. It is interesting that differences
are levelled off when the popular representation in terms of the Nusselt number is used, as
in figure 9(b), hence we believe that the 1/St representation should be used when relatively

941 A16-12

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

29
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.294


Forced thermal convection in square ducts

200

300

400

500

600

10 000 100 000

1/St∗

10

100

1000

10 000 100 000
RebReb

Nu∗

(b)(a)

Figure 9. Inverse global Stanton number (a) and Nusselt number (b) as functions of bulk Reynolds number,
from the present DNS (squares), from DNS of circular pipe flow (circles, Pirozzoli et al. 2021), from previous
LES (diamonds, Pallares & Davidson 2002), and from experiments (triangles, Brundrett & Burroughs 1967).
The dashed lines denote the correlation (3.4), and the dot-dashed lines denote the correlation (3.3).

small differences must be discriminated. Classical correlations seem to suggest systematic
difference of up to 5 % in the prediction of the heat transfer coefficient. This difference may
be due partly to inaccuracy of correlations based on old experimental data, or to the fact
that those are trained mainly for the Pr = 0.71 case, whereas here Pr = 1. Discrepancies
can also be attributed partly to our heat forcing scheme, in which a spatially uniform heat
source is prescribed, which tends to slightly overpredict the heat flux as compared to other
approaches in which the total heat flux is maintained strictly constant in time (Abe &
Antonia 2017; Alcántara-Ávila et al. 2021). A slight adjustment of the Kays–Crawford
power-law formula coefficients as after (3.5) seems to yield very good representation of
the DNS data.

An issue that deserves further investigation is why use of the hydraulic diameter yields
excellent results, at least in the case of square ducts under consideration. Pirozzoli et al.
(2018) showed that universality of friction is connected with near applicability of the
logarithmic velocity law in the direction normal to the nearest wall. It is worthwhile
verifying whether this is also the case for the heat flux coefficient. As shown previously,
the temperature distributions are nearly universal away from walls, even when expressed
in global wall units. Hence, approximating the outer layer profiles with the classical log
law, namely U∗ = 1/κ log y∗ + C, Θ∗ = 1/κθ log y∗ + Cθ , and integrating over the duct
cross-section, gives the following expression for the inverse Stanton number velocity:

1/St∗ = u∗
bθ

∗
m = 8

4Re∗2
τ

∫ h

0

∫ z

0

[
1

κκθ

log y∗2 + log y∗
(

Cθ

κ
+ C

κθ

)
+ CCθ

]
dy∗ dz∗

= 1
κκθ

(
log2 Re∗

τ + 3 log Re∗
τ + 7

2

)
+
(

Cθ

κ
+ C

κθ

)(
log Re∗

τ − 3
2

)
+ CCθ .

(3.6)

Equation (3.6) should be compared with the corresponding expression for a circular duct
with diameter D,

1/St = 1
κκθ

(
log2 Reτ + 3 log Reτ + 7

2

)
+
(

Cθ

κ
+ C

κθ

)(
log Reτ − 3

2

)
+ CCθ , (3.7)
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where Reτ = Duτ /(2ν). The two expressions are identical for 2h = D, hence the Reynolds
number based on the hydraulic diameter is the same. It is interesting that (3.6) is arrived
at basically by neglecting the local wall shear stress and heat flux variation along the duct
perimeter, and disregarding the flow deceleration at corners. Apparently, these effects very
nearly cancel out upon integration.

4. Contribution of secondary flows to heat transfer

In order to quantify the effects of secondary motions on heat transfer, we derive a
generalized version of the Fukagata–Iwamoto–Kasagi (FIK) identity (Fukagata, Iwamoto
& Kasagi 2002) for the Stanton number, by following the approach of Modesti et al. (2018).
We consider the mean temperature balance equation,

α∇2Θ = ∇ · qC + ∇ · qT − 〈Q〉, (4.1)

where qC = Θ Uyz is associated with mean cross-stream convection (hence, with the
secondary motions), qT = 〈θuyz〉 is associated with turbulence convection, uyz = (v, w)

is the cross-stream velocity vector, and 〈Q〉 is the mean driving bulk heating.
Equation (4.1) may be interpreted as a Poisson equation for the mean temperature, with

source terms ∇ · qT , ∇ · qC and 〈Q〉 obtained from the DNS dataset. Hence the solution
of (4.1) may be cast formally as the superposition of three parts, namely Θ = ΘD + ΘT +
ΘC, and these temperature fields can be obtained by solving three Poisson equations,

α∇2ΘD = −〈Q〉, α∇2ΘT = ∇ · qT , α∇2ΘC = ∇ · qC, (4.2a–c)

with homogeneous boundary conditions, where ΘD, ΘT and ΘC denote the diffusion,
turbulence and convection contributions to the mean temperature field. Accordingly, the
mean temperature in the duct may be evaluated as

θb = 〈Q〉A
α

θb1 + θbT + θbC, θbX = 1
A

∫
A

ΘX dA, (4.3a,b)

where we have introduced the unitary Stokes temperature field θ1, defined as the solution
of ∇2θ1 = −1/A, which by construction is a function of only the duct geometry, and
which allows us to express the diffusion-associated temperature field as ΘD = A θ1〈Q〉/α.
For convenience, in the present analysis we use a modified form of the Stanton number,
based on the mean temperature rather than on the bulk temperature, namely

St∗b = q∗
w

ubθb
= 1

u∗
bθ

∗
b
, (4.4)

instead of (3.1), which when substituted into (4.3a,b) yields

St∗b = 1
Pr ReP θb1

(
1 − θbT

θb
− θbC

θb

)
= StD + StT + StC, (4.5)

where ReP = ubP/ν is the bulk Reynolds number based on the duct perimeter P.
Equation (4.5) shows clearly that the heat transfer coefficient may be regarded as the sum
of contributions due to diffusion, turbulence and convection (labelled as StX in (4.5)),
and it yields an expression similar to that from the classical FIK identity for the friction
coefficient.
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Case St∗D × 103 St∗T × 103 St∗C × 103 St∗ × 103 St∗D/St∗ (%) St∗T/St∗ (%) St∗C/St∗ (%)

A 0.095 0.144 0.030 0.268 35.3 53.7 11.0
B 0.060 0.176 0.009 0.245 24.4 72.0 3.6
C 0.035 0.172 0.009 0.216 16.2 79.8 4.0
D 0.024 0.170 0.007 0.201 11.7 84.7 3.6
E 0.010 0.149 0.008 0.167 6.2 89.2 4.5
F 0.005 0.123 0.010 0.138 3.6 89.4 7.0

Table 2. Contributions of diffusion, turbulence and mean convection terms to the heat transfer coefficient, as
from (4.5).

We note that this formalism has additional generality compared to the classical FIK
identity and its extensions (Peet & Sagaut 2009; Jelly, Jung & Zaki 2014), and it allows us
to isolate the effects of mean convection, turbulence and diffusion terms to the wall shear
stress distributions along the duct perimeter, resulting from

qwD = α
∂ΘD

∂y

∣∣∣∣
w

, qwT = α
∂ΘT

∂y

∣∣∣∣
w

, qwC = α
∂ΘC

∂y

∣∣∣∣
w

. (4.6a–c)

Regarding (4.6a–c), it is important to note that only qwD has non-zero mean, whereas
integration of (4.2a–c) for ΘC and ΘT shows readily that their integrated contributions
vanish, as qC and qT are both zero at walls. The contributions to the mean heat
transfer coefficients are given in table 2, both in absolute terms and as a fraction of
the total. Consistent with physical expectations, the diffusion contribution is observed
to decline at increasing Reynolds number with respect to the turbulent term. The
contribution of cross-stream convection is found to be roughly constant across the explored
Reynolds number range; however, it remains much less than the turbulence contribution.
Extrapolating the DNS data, we expect the convection contribution to exceed the diffusion
one at high enough Reynolds number. Figure 10 shows the mean temperature fields
associated with the diffusion, turbulence and convection terms. For the sake of clarity,
each contribution is normalized with the corresponding bulk value, θbX , where θbT and
θbC are both negative, thus providing an additive effect to the heat transfer (see (4.5)). The
diffusion-associated temperature field ΘV arises from the solution of a Poisson equation
with uniform right-hand side (the heat source), hence its shape is identical to the case of
laminar flow (Shah & London 2014), depending only on the duct cross-sectional geometry.
The turbulence-associated temperature field ΘT is everywhere negative and topologically
similar to the diffusion-associated field, highlighting the cooling effect of turbulence on
the bulk flow, with incurred increase of the heat transfer coefficient. The temperature field
ΘC associated with mean convection has a more complex organization. Positive values are
found near the duct corners, whereas negative values are found near the duct bisectors,
the zero crossings being located halfway in between. This finding is consistent with the
intuitive expectation that secondary motions tend to equalize temperature across the duct
cross-section, thus quantitatively corroborating claims made by early investigators (Prandtl
1927). Notably, all the distributions shown in figure 10 are not qualitatively affected by
Reynolds number variation when scaled with respect to their mean integral value, thus
showing that changing the Reynolds number changes only the relative importance of the
three terms, as quantified in table 2.
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Figure 10. Contributions of diffusion, turbulence and mean convection terms to the mean temperature field,
as determined by solving (4.2a–c), for flow cases A (a–c), B (d–f ), C (g–i), D (j–l), E (m–o), F (p–r).
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Figure 11. Contributions to mean wall heat flux (shown along half a duct side) for flow cases A (a), B (b), C
(c), D (d), E (e), F ( f ): diffusive (qwD(z), dotted), turbulent (qwT (z), dashed), diffusive + turbulent (qwD(z) +
qwT (z), circles), mean convection (qwC(z), dash-dotted), and total (qw(z), solid line).

The observations made regarding the organization of the temperature field have a direct
impact on the distribution of the local wall heat flux, shown in figure 11. The heat flux
distribution induced by diffusion terms is the same for all cases, and nearly parabolic in
shape. The turbulence terms have a complex behaviour, exhibiting multiple peaks that
change with the Reynolds number. In general, they yield heat flux increase toward the duct
bisectors, and slight attenuation at the corners (compare the lines with circles and with
dots), thus making the heat flux distributions more non-uniform. Mean convection yields
large positive peaks in the corner vicinity, whose distance from the neighbouring walls
scales in inner units (Pirozzoli et al. 2018), and negative values around the duct bisector.
As a result, the distributions of the heat flux tend to be rather flat, especially at higher
Reynolds numbers.

As an alternative to quantify the effect of secondary flows we have also considered
the approach of Modesti et al. (2018), and carried out numerical experiments at the
same bulk Reynolds numbers as the baseline cases, whereby the secondary motions are
suppressed artificially (flow cases with the 0 suffix in table 1). For that purpose, we force
the streamwise-averaged cross-stream velocity components to have zero mean by setting

v(x, y, z, t) → v(x, y, z, t) − vx( y, z, t), (4.7a)

w(x, y, z, t) → w(x, y, z, t) − wx( y, z, t), (4.7b)

at each Runge–Kutta sub-step, where (.)
x

denotes the streamwise averaging operator.
Figure 12 shows the temperature contours with superimposed streamwise velocity isolines
for flow cases A0–D0. We note that the typical bulging of velocity and temperature towards
the corners is absent for these cases, and the core region shows near axial symmetry as in
circular pipe flow. The mean velocity and temperature fields are nearly coincident at low
Reynolds numbers, whereas differences become more evident as Reb increases. Although
the mean flow fields in figure 12 obviously differ from the full DNS cases shown in
figure 2, the heat transfer is found to be barely affected. In fact, similar to what is reported
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Figure 12. Flow cases without secondary motions: mean streamwise velocity (U∗, lines), and mean
temperature (Θ∗, flooded contours), for flow cases A0 (a), B0 (b), C0 (c), D0 (d). Only a quarter of the full
domain is shown. The dashed diagonal lines indicate the corner bisector.

by Modesti et al. (2018) for frictional drag, suppressing the secondary flows yields even
higher heat transfer at low Reynolds numbers, whereas a bare 3 % decrease of the Nusselt
number is found for flow case D0; see table 1. These figures are consistent with those
suggested by the FIK identity, which actually returns about 3 % contribution of secondary
flows to global heat transfer for flow case D.

5. Modelling the turbulent heat flux

The numerical solution of the Reynolds-averaged Navier–Stokes equations is a common
approach for flows of industrial interest. Solution of the temperature field requires a
suitable closure model for the turbulent heat flux vector, q = 〈uθ〉. Such closures are
typically less sophisticated than those developed for momentum flux, and generally rely
on validity of the Reynolds analogy. The primary outcome of this school of thought is the
popularity retained over the years by the turbulent Prandtl number,

Prt = νt

αt
, (5.1)

where νt and αt are the eddy viscosity and eddy diffusivity coefficients, respectively.
These coefficients are the heart of the linear eddy-viscosity hypothesis and its heat transfer
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counterpart,

ã = −νt
(∇U + ∇UT) , q̃ = −αt∇Θ, (5.2a,b)

where ã is the modelled counterpart of the anisotropic Reynolds stress tensor (a = τ −
2/3k), and q̃ is the modelled turbulent heat flux vector, with τ = 〈uu〉 and k = 1/2 tr(τ ).
Most heat transfer models assume a uniform turbulent Prandtl number (Prt ≈ 1) to avoid
solving ad hoc transport equations for αt, although this hypothesis is not always accurate
(Pirozzoli et al. 2016; Kaller et al. 2019). Even assuming that the approximation Prt ≈ 1
holds, limitations of the linear eddy-viscosity hypothesis (5.2a,b) are evident, and reliance
on the turbulent Prandtl number concept replicates modelling inaccuracies. Pope (1975)
extended the eddy-viscosity ansatz by using a tensor polynomial to model ã. This approach
is mathematically sound because it relies on the Cayley–Hamilton theorem. In fact, it turns
out that five tensor bases are in most cases sufficient to recover an exact representation of ã
(Gatski & Speziale 1993; Jongen & Gatski 1998; Modesti 2020). The same mathematical
framework was extended to scalar flux modelling, both for heat transfer (So, Jin & Gatski
2004a; Younis, Speziale & Clark 2005; Wang et al. 2007) and for buoyancy (So, Jin &
Gatski 2004b). Similar to the original tensor polynomial expansion of Pope (1975), the
turbulent heat flux is expanded as

q̃ =
N∑

n=1

α(n)V (n), N = 1, . . . , 10, (5.3)

where the coefficients α(n) are scalar functions, and V (n) is a set of ten vector bases,

V (1) = ∇Θ, V (6) = Ω∇Θ,

V (2) = a∇Θ, V (7) = ΩΩ∇Θ,

V (3) = S∇Θ, V (8) = (SΩ + ΩS)∇Θ,

V (4) = aa∇Θ, V (9) = (aS + Sa) ∇Θ,

V (5) = SS∇Θ, V (10) = (ΩS + SΩ)∇Θ,

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(5.4)

where S = 1/2(∇U + ∇UT) and Ω = 1/2(∇U − ∇UT) are the mean strain-rate and
rotation-rate tensors, respectively. As for the Reynolds stress tensor, in most practical flow
cases, the ten bases are not independent, and an exact representation of the turbulent
heat flux (q̃ = q) is recovered for N = 3. In order to assess the accuracy of different
truncations of the polynomial expansion (5.3), we compute the coefficients α(n) following
the approach of Jongen & Gatski (1998) and Modesti (2020): namely, we take the scalar
product of (5.3) with each vector basis V (m), thus obtaining a linear system of N equations
for the unknown coefficients α(n):

q · V (m) =
N∑

n=1

α(n)V (n) · V (m), m = 1, . . . , N. (5.5)

For N = 1, this approach yields the standard definition of linear eddy diffusivity,

αt = −α(1) = − q · ∇Θ

∇Θ · ∇Θ
, (5.6)
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Figure 13. Estimated fields of linear eddy viscosity νt as after (5.7) (a), and linear eddy diffusivity αt as after
(5.6) (b), for flow case F (Reτ = 2000). Only one quadrant of the duct is shown.

in analogy with the definition of linear eddy viscosity,

νt = − {aS}
2 {SS} , (5.7)

where {AB} = AikBki. In the more general case, one can solve (5.5) to find the coefficients
α(n) for different 1 ≤ N ≤ 3, and then evaluate the modelled heat flux vector q̃ from (5.3).

In order to assess the validity of analogy between turbulent momentum and heat
transport, in figure 13 we compare the linear eddy viscosity with the linear eddy diffusivity
estimated from DNS flow case F. Visual scrutiny suggests that the assumption Prt ≈ 1 is
not valid everywhere, and in fact contours of νt and αt do not match. Furthermore, the eddy
diffusivity seems to be more affected by the presence of secondary flows as its isolines
protrude more markedly towards the corner and tend to be more parallel to the walls as
compared to νt.

The spatial distribution of νt and αt suggests that the value of the two scalars is
controlled by the closest wall, and therefore in figure 14 we report bundles of νt and
αt profiles up to the corner bisector. Besides the obvious increase of νt and αt with
the Reynolds number, the figure shows that the bundles of αt have more limited scatter
than νt, confirming that the simple picture in which square duct flow is regarded as
the superposition of two independent walls is more accurate for temperature than for
momentum transport.

This effect may be interpreted as due to the additional effective diffusivity brought
about by the non-local action of the pressure gradient term in the streamwise momentum
equation, which as previously noted tends to smoothen the velocity field. Likewise, it
appears that it also has the effect of enhancing interactions between neighbouring walls.
The red dashed lines in figure 14 show the result of the mixing length hypothesis, namely
νt/ν ≈ κy+ and αt/α ≈ κθy+, which is revealed to be only partially accurate in the overlap
layer, especially for the eddy diffusivity.

Figure 15 shows bundles of the turbulent Prandtl number (see (5.1)) for flow case E and
F, as a function of the wall distance. We also report predictions of available refined models
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Figure 14. Wall-normal distributions of linear eddy viscosity νt (a), and linear eddy diffusivity αt (b), at all z
locations, up to the corner bisector (y = z, see figure 2) for flow cases E (orange lines) and F (black lines). The
red dashed lines indicate predictions of the mixing length hypothesis κy+ (a), and κθ y+ (b).

for the turbulent Prandtl number, including that developed by Cebeci (1973),

Prt = k
κθ

(
1 − exp (−y+/A)

1 − exp (−y+/B)

)
, B = 1

Pr1/2

5∑
i=1

Ci
(
log10 Pr

)i−1
, (5.8a,b)

where A = 26, C1 = 34.96, C2 = 28.79, C3 = 33.95, C4 = 6.3, C5 = −1.186, and that
developed by Kays & Crawford (1993),

Prt =
[

1
2Prt,b

+ C Pet√
Prt,b

− (CPet)
2

(
1 − exp

(
− 1

C Pet
√

Prt,b

))]−1

, (5.9)

where Pet = Pr νt/ν is the turbulent Péclet number, Prt,b = 0.84 is the assumed bulk
turbulent Prandtl number (namely, away from walls), and C = 0.3. Figure 15 shows that
Prt is far from universal across the wall-normal stations, and large scatter of the bundles
is observed near the wall, whereas slightly better behaviour is observed at y/h � 0.5.
We further note that in the outer region, the turbulent Prandtl number attains values,
around 0.7, that are significantly lower than in plane channel flow (Pirozzoli et al. 2016).
The engineering correlations do not perform well. The model of Cebeci (1973) largely
overpredicts Prt in the duct core, and it does not reproduce the correct trend close to
the wall. Also, the model of Kays & Crawford (1993) overpredicts the turbulent Prandtl
number in the bulk flow, and it does not account accurately for spatial non-uniformities.

We assess further the validity of the nonlinear eddy diffusivity model (5.3) for
different truncations of the vector polynomial basis. Here we focus only on the q1
and q2 components of the heat flux vector because q2( y, z) = q3(z, y) after geometrical
symmetry. Several nonlinear constitutive relations can be obtained with different
combinations of the vector integrity bases (5.4), providing different accuracy for the
modelled heat flux vector. In order to quantify the error with respect to DNS, we use
the averaged correlation coefficient between qi and q̃i,

C̃i = 〈qiq̃i〉 − 〈qi〉〈q̃i〉[(〈q2
i 〉 − 〈qi〉2

) (〈q̃2
i 〉 − 〈q̃i〉2

)]1/2 , (5.10)

where the angle brackets denote average over the duct cross-section. By construction, C̃i ∈
[−1, 1], where C̃i = 1 indicates perfect correlation, and C̃i = −1 negative correlation.
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Figure 15. Wall-normal distributions of turbulent Prandtl number Pr = νt/αt, in outer coordinates (a), and
inner coordinates (b). Profiles are plotted at all z locations, up to the corner bisector (y = z, see figure 2). Flow
cases E (Reτ = 1000, orange) and F (Reτ = 2000, black) are compared to (5.8a,b) of Cebeci (1973, red dashed)
and (5.9) of Kays & Crawford (1993, blue).

Table 3 shows the correlation coefficients C̃1 and C̃2 for flow case F, where we consider
all possible base combinations that can be obtained using the first five bases, and up to
N = 3. The analysis shows that it is possible to find optimal base subsets providing the
maximum accuracy for a given N (boldface values in table 3). The linear eddy diffusivity
hypothesis (N = 1) is able to predict accurately the turbulent heat flux component q̃2,
whereas q̃1 = 0 by construction. In the case of N = 2, we find that the base combination
V (1), V (3) is the one that brings the highest accuracy on q̃1 and also a very good prediction
of q̃2, although slightly lower than the linear eddy diffusivity hypothesis. The choice
V (1), V (4) leads to the same accuracy on q̃2 as for the linear case, but it increases the error
on q̃1. We further note that V (4) contains the anisotropic Reynolds stress tensor, therefore
it is not a practical choice from the modelling point of view. Finally, we find that using
three vector bases is sufficient to recover the exact representation of the turbulent heat flux
vector if the subset V (1), V (3), V (5) is used. Notably, these vector bases do not contain the
anisotropic Reynolds stress tensor, whose presence would certainly lead to a much lower
accuracy in a practical scenario, as it also requires modelling.

Figure 16 shows scatter plots of the modelled turbulent heat flux components versus
those obtained from DNS, in which the axis bisector indicates ideal model behaviour.
Here, we limit ourselves to plotting the results for the linear eddy diffusivity hypothesis and
for the optimal base subsets highlighted in table 3. The linear eddy diffusivity hypothesis
returns an accurate prediction of q̃2, but it is not able to predict q̃1, which reminds us
of difficulties with linear eddy-viscosity models in predicting the normal Reynolds stress
components. Using two vector bases improves the prediction of q̃1, but it yields a less
accurate approximation of q̃2, which would negatively impact prediction of the turbulent
heat flux. Similar considerations apply to the anisotropic Reynolds stress tensor when
two tensor bases are used (Modesti 2020), although less evident than here. Finally, exact
representation of the heat flux vector is recovered for N = 3.

Additional information on the accuracy of nonlinear eddy diffusivity models can
be extracted from the spatial distribution of q̃1 and q̃2 for an increasing number of
tensor bases; see figure 17. When linear representation is used, q̃2 closely resembles
the DNS data, whereas q̃1 = 0. Using two vector bases improves the prediction of q̃1,
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N V(n) C̃1 C̃2

1 1 — 0.997

2 1,2 0.538 0.973
1,3 1.000 0.988
1,4 0.871 0.997
1,5 0.896 0.801

3 1,2,3 0.999 1.000
1,2,4 0.538 0.973
1,2,5 0.988 1.000
1,3,4 1.000 0.988
1,3,5 1.000 1.000
1,4,5 0.892 0.801

Table 3. Correlation coefficient C̃i (see (5.10)) between the turbulent heat flux of DNS qi and modelled
turbulent heat flux q̃i (see (5.3)) for flow case F and for different combinations of vector bases. The optimal
subset for each N is highlighted in boldface.

which becomes indistinguishable from DNS data, whereas the modelling accuracy of q̃2
substantially decreases, especially close to the side wall. For N = 3, the exact heat flux
vector is recovered. This analysis reveals that the linear eddy diffusivity hypothesis has
the potential to predict accurately 〈v′θ ′〉, and therefore the overall heat flux. However,
this good performance is likely to be hampered by the use of a constant turbulent Prandtl
number, which is far from being accurate. Slightly better prediction of q̃2 can be achieved
using a nonlinear eddy diffusivity with at least three vector bases, but improvement in the
prediction q̃2 might not justify the additional modelling complexity.

6. Conclusions

We have carried out DNS of square duct flow at the unprecedented Reynolds number
Reτ ≈ 2000, wherein Navier–Stokes equations have been augmented with the transport of
a passive scalar representing the temperature field. This configuration corresponds to the
case of forced convection in which hot fluid is pumped through the duct and cooled at the
walls. The choice of using a unity Prandtl number and homogeneous cold walls allows us
a direct comparison between heat and momentum transport. In this respect, we find that
the streamwise velocity and temperature fields are very similar, both instantaneously and
on average. Close to the walls, U and Θ are nearly identical because the fluid viscosity and
thermal diffusivity dominate, and Pr = 1, whereas in the overlap layer they both follow a
logarithmic law, although with a different slope. At low Reynolds numbers, the correlation
coefficient between u and θ is less than 1 at the duct core, but it but it approaches the unit
value as the flow becomes well mixed, restoring the similarity inherent in the underlying
equations.

The Nusselt number of square duct flow is in excellent agreement with pipe flow data at
matching Reynolds number, which supports the validity of the hydraulic diameter concept.
We explain this good match by using a simple model in which the duct flow can be
regarded as the superposition of four concurrent walls, where the flow is controlled by
the closest one. This simple cartoon is well supported by the mean temperature profiles in
a duct octant, which follow with good accuracy the canonical law-of-the-wall.

941 A16-23

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

29
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.294


D. Modesti and S. Pirozzoli

3 6 90

3

6

9

–1.0

–0.5

–0.5 0

0

q~ 2
/(
u∗ τ

θ
∗ τ
)

q~ 1
/(
u∗ τ

θ
∗ τ
)

N = 1 N = 1(a) (b)

(c) (d)

(e) ( f )

3 6 90

3

6

9

–1.0

–0.5

–0.5 0

0

q~ 2
/(
u∗ τ

θ
∗ τ
)

q~ 1
/(
u∗ τ

θ
∗ τ
)

N = 2 N = 2

3 6 90

3

6

9

–1.0

–0.5

–0.5 0

0

q~ 2
/(
u∗ τ

θ
∗ τ
)

q~ 1
/(
u∗ τ

θ
∗ τ
)

q1/(u∗τθ
∗
τ) q2/(u∗τθ

∗
τ)

N = 3 (DNS) N = 3 (DNS)

Figure 16. Scatter plots of the modelled turbulent heat flux vector components (q̃1, q̃2) versus those obtained
from DNS (q1, q2) for flow case F, for an increasing number of vector bases: N = 1 (a,b), N = 2, V (1), V (3)

(c,d), and N = 3, V (1), V (3), V (5) (e, f ). The dashed diagonal line indicates ideal model performance.

We have derived a generalized version of the popular FIK identity for the heat flux,
which confirms the common idea that secondary flows increase the heat transfer by
mixing hot fluid at the duct core with cold fluid at the corners. We have also carried
out numerical simulations whereby secondary flows have been suppressed artificially,
which also confirms the minor effect of the secondary currents on the global heat transfer.
Although the secondary flows are able to bend the isolines of the mean velocity and
temperature, their global effect on heat transfer is rather small and can be estimated to
be about 5 %.
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Figure 17. Modelled turbulent heat flux vector components (q̃1, q̃2) in a duct quadrant for flow case F and an
increasing number of vector bases: N = 1 (a,b), N = 2, V (1), V (3) (c,d), and N = 3, V (1), V (3), V (5) (e, f ).

The DNS data have been used to establish the accuracy of linear and nonlinear eddy
diffusivity closures for the turbulent heat flux. The commonly accepted hypothesis of
uniform turbulent Prandtl number is highly inaccurate in a large part of the duct, and
at the duct core Prt ≈ 0.7, which is much lower than what is found in channel and pipe
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flow (Prt ≈ 0.85). We show that an exact representation of the heat flux vector can be
recovered using a vector polynomial integrity basis expansion with at least three bases,
although this seems impractical from a modelling point of view. The linear eddy diffusivity
formulation is able to predict accurately the wall-normal turbulent heat flux, therefore it
can be a much more reliable alternative to the turbulent Prandtl number, provided that an
accurate transport equation for the eddy conductivity is available.

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2022.294.
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