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I. ABSTRACT

In this work, we analyse a stochastic version of the primal-
dual method of multipliers (PDMM), which is a promising al-
gorithm in the field of distributed optimisation. So far, its con-
vergence has been proven for synchronous implementations of
the algorithm [1], [2]. Simulations have shown that PDMM
also converges if it is implemented asynchronously, having
the advantage that there is no need for clock synchronisation
between the nodes in a distributed network. Furthermore, a
broadcast implementation of asynchronous PDMM can be
derived, instead of the usual unicast implementation. This
broadcast implementation comes with a number of benefits.
For example, it is a lot simpler to implement and requires less
transmissions per iteration. Broadcast PDMM also lends itself
to an efficient privacy preservation method that was introduced
in [3].

In this paper, we analyse the convergence properties of
different implementations of PDMM. In order to perform
a rigorous analysis of a number of empirical findings, first
a general stochastic version of PDMM is introduced. This
gencral definition encompasses both asynchronous updating
and transmission losses. Next, a formal proof is derived for the
convergence of stochastic PDMM. This proof follows similar
steps to the ones taken in [4] and builds upon a previous
unfinished proof from [5]. The convergence proof makes use of
the fact that the sequence of auxiliary errors of PDMM forms
a non-negative supermartingale. By using Markov’s inequality
and Borel Cantelli’s lemma, stochastic PDMM can be shown
to converge almost surely to a bounded random variable that
is supported by the set of fixed points of the standard PDMM
operator. These points correspond to primal optimal points of
the optimisation problem in question. The only assumption
required for convergence is the fact that all edge variables
must have a non-zero probability of updating.

In the case of unicast PDMM, asynchronous PDMM and
PDMM with transmission losses can both be seen as specific
instances of stochastic PDMM and thus also converge almost
surely. Broadcast PDMM, however, requires each auxiliary
variable to be stored at two nodes. In the case of transmission
losses, a mismatch occurs between the two values stored for
the same variable. This mismatch causes the algorithm to reach
a fixed point that does not correspond to a primal optimal
solution. As long as the two versions of the same variable are
never mismatched, broadcast PDMM is equivalent to unicast
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PDMM. This why asynchronous broadcast PDMM does con-
verge. With unicast PDMM, each auxiliary variable is only
needed at one node, which makes unicast PDMM inherently
robust against transmission loss and thus favourable when
compared to broadcast PDMM. In Fig. 1 simulation results
are given to show the difference in convergence behaviour
between unicast and broadcast PDMM in the presence of
transmission losses.
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Fig. 1. Experimental convergence results for distributed averaging in the

presence of transmission losses. Simulations are performed for a a random
geometric network with 30 nodes and asynchronous PDMM is used as
optimisation algorithm.
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