

Delft University of Technology

Area of Simulation
Mechanism and Architecture for Multi-Avatar Virtual Environments
Shen, Siqi; Iosup, Alexandru; Epema, Dick; Hu, Shun-Yun

DOI
10.1145/2764463
Publication date
2015
Document Version
Accepted author manuscript
Published in
ACM Transactions on Multimedia Computing, Communications, and Applications

Citation (APA)
Shen, S., Iosup, A., Epema, D., & Hu, S.-Y. (2015). Area of Simulation: Mechanism and Architecture for
Multi-Avatar Virtual Environments. ACM Transactions on Multimedia Computing, Communications, and
Applications, 12(1), 1-29. https://doi.org/10.1145/2764463

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1145/2764463
https://doi.org/10.1145/2764463

1

Area of Simulation: Mechanism and Architecture for Multi-Avatar
Virtual Environments

SIQI SHEN, ALEXANDRU IOSUP, DICK EPEMA, Delft University of Technology, The
Netherlands
SHUN-YUN HU, Academia Sinica, Taiwan, R.O.C.

Although Multi-Avatar Distributed Virtual Environments (MAVEs) such as Real-Time Strategy (RTS)

games entertain daily hundreds of millions of online players, their current designs do not scale. For example,
even popular RTS games such as the StarCraft series support in a single game instance only up to 16 players

and only a few hundreds of avatars loosely controlled by these players, which is a consequence of the Event-

Based Lockstep Simulation (EBLS) scalability mechanism they employ. Through empirical analysis, we
show that a single Area of Interest (AoI), which is a scalability mechanism that is sufficient for single-avatar

virtual environments (such as Role-Playing Games), also cannot meet the scalability demands of MAVEs.

To enable scalable MAVEs, in this work we propose Area of Simulation (AoS), a new scalability mechanism,
which combines and extends the mechanisms of AoI and EBLS. Unlike traditional AoI approaches, which

employ only update-based operational models, our AoS mechanism uses both event-based and update-

based operational models to manage not single, but multiple areas of interest. Unlike EBLS, which is
traditionally used to synchronize the entire virtual world, our AoS mechanism synchronizes only selected

areas of the virtual world. We further design an AoS-based architecture, which is able to use both our

AoS and traditional AoI mechanisms simultaneously, dynamically trading-off consistency guarantees for
scalability. We implement and deploy this architecture and we demonstrate that it can operate with an

order of magnitude more avatars and a larger virtual world without exceeding the resource capacity of
players’ computers.

Categories and Subject Descriptors: C.2.4 [Computer-Communication Networks]: Distributed Sys-
tems—Client/server; C.5.1 [Information Interfaces and Presentation]: Multimedia Information Sys-
tems—Artificial, augmented, and virtual realities

Additional Key Words and Phrases: Distributed Virtual Environments, Area of Interest, Real Time Strategy
Games

1. INTRODUCTION
Multi-Avatar Virtual Environments (MAVEs), such as Real-Time Strategy (RTS) [Buro
and Churchill 2012] games, have a large market, with millions of users [ESA 2012].
Contrary to the trend of Internet-based applications of allowing massive numbers of
users to interact, the current generation of MAVEs design technology is not scalable.
As a typical example, the StarCraft series limits the number of concurrent players
in any gaming instance to 16; although hundreds of thousands of instances may run
concurrently, they are essentially not communicating. This significant scalability limit
stems from the difficulty of managing more than the hundreds of avatars that even
this small number of players control in each game instance. Much previous work
has focused on the scalability of Distributed Virtual Environments (DVEs) [Gilmore
and Engelbrecht 2012; Liu et al. 2012; Yahyavi and Kemme 2013], leading to mech-
anisms such as Event-Based Lockstep Simulation (EBLS) [Terrano and Bettner
2001][Fiedler 2010] used in RTS games and military simulations, and the Area of
Interest (AoI) [Ahmed and Shirmohammadi 2009] used in Single-Avatar Virtual En-
vironments (SAVEs). However, as we show in this work, these mechanisms cannot be
used to scale current MAVEs far beyond their current limits. To address the problem of
scaling MAVEs, we propose the Area of Simulation scalability mechanism, we design
an architecture around it, and we implement and deploy this architecture to demon-
strate its scalability.

In MAVEs, users can have and control simultaneously multiple avatars which are
their virtual world representations. We focus in this work on an important type of

ACM Journal Name, Vol. 1, No. 1, Article 1, Publication date: January 201x.

1:2 S. Shen, S.-Y. Hu, A. Iosup, and D. Epema

MAVEs: RTS games, such as Blizzard’s StarCraft and Microsoft’s Age of Empires se-
ries, are essentially Internet-based real-time world simulations in which players con-
trol avatars to gather resources, to construct buildings, to train combat avatars, to
explore unknown territories, to trade, and to conquer.

Two main problems prevent MAVEs from scaling. First, the resource capabilities of
individual players may be exceeded: the bandwidth can become insufficient for trans-
mitting messages, the computers of the players can become overloaded in trying to
update the local copies of the game world status, etc. Second, MAVEs require strong
consistency among the players for important areas of the virtual world: deciding which
vehicle to move, where to build an important warehouse are decisions of precise loca-
tion. Providing a consistent view to all players is challenging. When the scalability
requirements are not met, the consequences for the game operators can be significant:
players may quit en masse.

Two of the most commonly used scalability mechanisms: EBLS and AoI, do not work
for MAVEs. EBLS [Gilmore and Engelbrecht 2012; Terrano and Bettner 2001; Fiedler
2010], the predominant event-based operational model for RTS games, uses lockstep
simulation [Baughman and Levine 2001] to ensure a globally consistent execution or-
der of events. EBLS trades off computation for bandwidth, by transmitting only events
and by having every player recompute the state from the received events. EBLS con-
sumes lots of computational power, and it cannot scale to hundreds of players on com-
modity computers, as we have previously shown in our evaluation of RTS games [Shen
et al. 2011]. AoI uses an update-based operational model in which clients do not per-
form simulation of game states, but receive state-updates for objects in close in-game
proximity. AoI-based approaches can scale to hundreds of concurrent avatars for single
AoI. In this work, we analyze a large number of game traces and show that single-AoI
approaches are not suitable for RTS games, which exhibit multiple, often-changing
AoIs.

We propose, in this work, the Area of Simulation (AoS) scalability mechanism, which
combines and extends the EBLS and AoI mechanisms. The AoS mechanism allows
different areas of the virtual world to employ different operation models, from event-
based to update-based, depending on the recent interest shown by the player. The AoS
mechanism is the first mechanism to combine the event-based and the update-based
operational models for managing the areas that a player is interested in.

We further design a system architecture for MAVEs with as its main feature the
support of multiple, dynamic AoIs managed using the AoS mechanism. This archi-
tecture also includes two message dissemination mechanisms to reduce bandwidth
consumption. We demonstrate the viability of our architecture through realistic simu-
lations and through real-world experiments with a prototype game. By implementing
and deploying a working system, we show that for a prototype yet realistic game, our
architecture enables an order of magnitude more users than the state-of-the-art while
satisfying the overall requirements of MAVEs.

In summary, our main contribution is five-fold:

(1) We show that most MAVEs users have multiple areas of interest, which can change
often during gameplay. Thus, traditional approaches with a single AoI work poorly
(Section 3);

(2) We propose a new scalability mechanism for MAVEs, the Area of Simulation (Sec-
tion 4).

(3) We propose a system architecture for MAVEs based on Area of Simulation that
can scale to hundreds of concurrent players with tens of thousands of avatars (Sec-
tion 5).

ACM Journal Name, Vol. 1, No. 1, Article 1, Publication date: January 201x.

Area of Simulation: Mechanism and Architecture for Multi-Avatar Virtual Environments 1:3
turn

tick tick
sort, send events

and advance turn
tick tick

T = 100ms

25ms 25ms 25ms 25ms

Fig. 1. Turn and tick.

(4) We implement this architecture and evaluate the architecture in simulation (Sec-
tion 6) and with a real-world prototype RTS game (Section 7).

(5) We compare our work with a large body of related approaches, both quantitatively
(Section 6 and 7) and qualitatively (Section 8).

2. CHARACTERISTICS AND SYSTEM MODEL
2.1. Characteristics and requirements of MAVEs
MAVEs such as RTS games have unique characteristics and requirements among
DVEs [Claypool 2005]. Unlike other DVEs, such as First-Person Shooter (FPS) and
Role-Playing Games (RPG), in which the player controls one avatar and may encounter
at any time at most a few tens of other avatars (often not human-controlled charac-
ters), in RTS games the players often need to control many tens or even hundreds of
avatars and in-game buildings, etc.

The control in RTS games combines long-term strategic decisions, including macro-
management of resources such as buildings and large groups of avatars; short-term
strategic decisions, including management of small groups of avatars; and quick tacti-
cal decisions, including micro-management of individual units. Usually, players expect
the latencies not to exceed several seconds until the commands they issue are executed,
or even less [Claypool 2005; Miller 2011]. Moreover, even if individual commands take
long to be executed, the overall responsiveness of the game should not be compro-
mised: players expect to see their game visuals updated at a rate of over 24 frames per
second [Gregory 2009].

2.2. A System Model for MAVEs
In MAVEs, each user can have multiple avatars and in-game buildings. Each avatar
has a pre-defined speed and range of vision. Typically each MAVE user has a base to
produce/train the user’s avatars.

Many RTS games, such as StarCraft, Age of Empires, 0 A.D, OpenTTD, and Zero-k,
are EBLS-based systems [Fiedler 2010; Terrano and Bettner 2001], for which events
can be triggered not only by user input (commands) but also by the (discrete) passage
of time. Events are spatial and temporal, that is, they have a well-defined area and
duration of effect. In this work, we use the terms “command” and “event” interchange-
ably.

In EBLS, the virtual world simulation is temporally divided into multiple simulation
turns. Each turn has a pre-defined real world length T ms; after T ms, a turn is cutoff
and a new turn is started. A turn is further divided into multiple simulation ticks.
During each tick, the virtual world will perform simulation logic and render virtual-
world objects’ updates. In Figure 1, a turn’s duration is set to 100ms, and the turn
is divided into 4 ticks, with each tick’s duration equal to 25ms. During a turn, each
client will send events to a server. At the end of a turn, the clients send turn advance
messages to the server. Upon receiving the turn advance messages, the server will
sort all the events received and send the sorted events to all clients, for execution.
According to [Terrano and Bettner 2001] and our own experience, the time spent for
sorting and sending (non-blocking) events is negligible. A tick can be rendered using
one or multiple frames; in this article, a tick is equivalent to one frame and we use the
terms “frame” and “tick” interchangeably.

ACM Journal Name, Vol. 1, No. 1, Article 1, Publication date: January 201x.

1:4 S. Shen, S.-Y. Hu, A. Iosup, and D. Epema

3. PROBLEM STATEMENT

In this section, we identify and discuss, in turn, three main challenges in fulfilling
the per-command and overall latency requirements of MAVEs (Section 3.1). We also
show that the traditional AoI mechanism, which is widely used to scale DVEs, is not
efficient for MAVEs (Section 3.2). Thus, a new scalability mechanism and an accompa-
nying architecture are needed to scale MAVEs.

3.1. Challenges in fulfilling MAVEs latency requirements
Resource challenge: Scaling MAVEs under tight latency requirements can be lim-
ited by the lack of sufficient computational and networking resources. Although the
average upload-bandwidth required by RTS games is 2-8 KB/s for 8 players, it in-
creases quadratically with the number of players [Claypool 2005], and for 100 players
it can easily exceed 1 MB/s. We have also shown in our previous evaluation of RTS
games [Shen et al. 2011] that, as the number of players increases, the computational
resources required to update the game world can exceed the local computing power of
modern commodity computers.

Game-design scalability challenge: We have also shown [Shen et al. 2011] that to
deliver good gameplay experience when the number of players increases, a propor-
tional increase in the size of the virtual world needs to occur, making the simulation
of the virtual world even more computationally demanding than in today’s commercial
games.

Consistency challenge: Current and future RTS games require good consistency
among players, especially for important areas of the game map (e.g, places of inter-
est). It has been noted [Claypool 2005] that RTS games do not require location con-
sistency as accurate as for FPS and RPG games, where the accuracy may make the
difference between a player dying or living in the virtual world. However, avatar micro-
management, which has recently become very popular due to the release of games such
as StarCraft and to the growth of global competition networks [Miller 2011], requires
game-state consistency on-par with FPS and RPG games among the players simul-
taneously moving avatars in tight areas. For example, a trooper may be saved from
disappearing by moving it in time just outside the fire range of an opponent’s tank.

3.2. Presence of Areas of Interest in MAVEs
In this section, we show that the AoI mechanism cannot support MAVEs well. The AoI
mechanism, adopted by many DVEs, exploits the interest shown by users to specific
avatars or map areas, to reduce the traffic needed for progressing to the next simula-
tion tick. However, previous approaches use only a single AoI per user, the location of
which is defined as the area surrounding the virtual world location around the user’s
single avatar1. To study the potential use of AoI in MAVEs, we analyze the real use
of StarCraft II (SC), one of the most popular RTS games, as a representative MAVE.
Through the analysis of about 6,000 logs of SC matches, we show that most MAVEs
users have each not a single but multiple AoIs in game, and that players switch quickly
among their set of AoIs.

We collect 5,796 replays of SC from sc2rep.net, a popular repository of community-
rated game replays. The replays have been created and uploaded to the website, for
review by other players, by over 1,000 users. The replays are played between July 2010
and November 2010, and the average duration of the replays is about 13 minutes. We

1Some SAVE games such as World of Warcraft, allow players to level-up multiple avatars, but the avatars
cannot be controlled simultaneously in the same game instance

ACM Journal Name, Vol. 1, No. 1, Article 1, Publication date: January 201x.

Area of Simulation: Mechanism and Architecture for Multi-Avatar Virtual Environments 1:5

0 1 2 3 4 5 6 7 8 9 10
0

20

40

60

80

100

Number of high−interest areas

C
um

ul
at

iv
e

D
is

tr
ib

ut
io

n
F

un
ct

io
n

[%
]

h=2
h=3
h=4

0 50 100 150 200 250
0

1

2

3

4

5

6

Distance threshold [tile]

N
um

be
r

of
 c

om
m

an
ds

Fig. 2. The presence of multiple, changing AoI in MAVEs: number of high-interest areas per user (left) and
dynamics of interest (right).
use the publicly available tool SC2Gear to extract from each replay the complete set of
timestamped, location-aware commands.

The size of SC maps ranges from 64 × 64 to 256 × 256 tiles. The speed of the fastest
moving unit is about 7.5 tiles/s and the broadest range of vision of in-game units is
14 tiles. The actual size of the map area that is viewable on-screen depends on the
aspect ratio of the user’s monitor, but we conservatively estimate that each screen
can display map areas of about 25 × 25 tiles. Thus, we divide for each replay the map
into areas of 25 × 25 tiles and count the commands issued in each area. Because we
are looking for areas of much higher than average interest, which correspond to the
intuition behind AoI, we define a high-interest area as the area for which the number
of issued commands is h times higher than the average number of commands issued
per area.

Most users have multiple AoIs. Figure 2 (left) depicts the distribution of the number
of high-interest areas per player when setting h = 2, 3, 4. As the figure shows, for h = 2,
only less than 5% of the players have one high-interest area and about 90% of the
players have more than two high-interest areas. The maximal number of high-interest
areas of a player is 16. For h = 3, only 10% of the players have one high-interest areas
and about 80% of the players have more than two high-interest areas. For h = 4, over
40% of the users have 2 or more high-interest areas. Overall, we conclude that most
of the players have 2–6 high-interest areas. This can be explained by observing that
advanced players employ a mix of macro- and micro-management (see Section 2.1) in
different areas of the game map.

Users switch among their AoIs in the virtual world, often with high frequencies. We
look at the distance between the virtual world location of commands issued over short
periods of time. For each replay, we split the duration in a series of 10-second time peri-
ods, and analyze the commands issued in each period. We consider a distance threshold
x, in turn, from 25 (the screen size) to 225 (the maximum map size minus the screen
size), in increments of 25. For each distance threshold and each period, we count the
number of commands issued further than the threshold from the location of the first
command in the period; such a command would require an AoI switch. Figure 2 (right)
depicts the mean command-counts for various distance thresholds; the error-bar de-
picts the standard error. A point (x, y) on the figure should be read as “users issued,
on average, y commands whose distance from the first command is larger than x over
each 10-second period”. Values y ≥ 1 indicate that it is likely that users need an AoI
switch every 10-second period. The results indicate that players often issue commands
that switch the current screen (the current focus area), effectively switching their AoI.

This new phenomenon, of the presence of multiple, frequently changing AoIs per
MAVE user, is an important motivation for the mechanism and system architecture
we will introduce later. If we adopt the traditional AoI approach, which maintains
only single AoI per player, choosing the size of AoI as the size of the screen will lead to
significant AoI switching management overhead, and late delivery of states. Alterna-
tively, the size of the single-AoI area could be very large, to cover all the possible areas
of interest, thus leading to inefficient resource usage. We further show the inefficiency
of the single-AoI approach via simulation in Section 6.2.

ACM Journal Name, Vol. 1, No. 1, Article 1, Publication date: January 201x.

1:6 S. Shen, S.-Y. Hu, A. Iosup, and D. Epema
state

A

state & commands

A1

SAUA

A 43

virtual world

A1

B

A4

2

A2

shared-zone

Servers

avatar of B

avatar of A

4

rww

Fig. 3. A game map and overlapping simulation areas (SA) and update areas (UA). w is the width of the
shared-zone.

4. AREA OF SIMULATION
In this section, we introduce a new scalability mechanism, the Area of Simulation
(AoS). The key characteristic of our mechanism is the combined use of the EBLS and
AoI, to efficiently maintain the areas of interest of each player.

The AoS mechanism adopts a distributed server architecture in which the virtual
world (map) is divided into non-overlapping sub-maps. Each sub-map is simulated by
one server and can also be simulated by clients. The AoS mechanism contains three
parts: the partitioning of the virtual world into different types of areas, the mapping
of areas, and the simulation of areas. We describe these three parts in the following, in
turn.

4.1. Partitioning the Virtual World
From the user’s point of view, the virtual world is partitioned into a number of areas.
These areas can be areas of interest (AoI) or areas of non-interest (AoN). For each
area of interest, depending on the operational model adopted, an area can be either a
simulation area (SA) or an update area (UA).

For each SA, the game client receives events of that area, and then performs the
simulation of that area (akin to EBLS-based operation). For virtual world objects and
avatars in SAs, users have the most up-to-date and precise information. Currently,
each sub-map can be operated as an SA. For each UA, the game client receives mes-
sages about the state-updates of that area, and updates the state of that area accord-
ingly (akin to AoI-based operation). The visible area of a player’s avatar can be a UA.
For each player, a UA can overlap with the other UAs but not any SA. Users may re-
ceive different frequencies and precisions of the state-updates. Thus, for UAs, the user
may have less up-to-date and lower-fidelity game-states than for SAs. For AoNs, the
user will not receive any messages.
4.2. Mapping of In-game Areas to Real-World Resources
The mapping of an area, to either SA, UA, or AoN, depends on the user’s interest,
application logic, and resource availability. When the game client decides, based on
measured or predicted interest, that the user should receive the most up-to-date infor-
mation of an area, it classifies it as an SA. Similarly, areas of little or no interest are
classified as UA and AoN, respectively. The lack of sufficient resources to manage SA
or UA may force the game client to re-classify an area to a lower class.

An example of the AoS is illustrated in Figure 3. The virtual world contains sub-
maps 1, 3, 4, and the other submaps. Player A has many avatars located in sub-maps
1 and 4, which are therefore classified as player A’s SAs (A1 and A4). Player A also
has an avatar exploring sub-map 3, the area visible to that avatar is a UA of user A
(A2). UA A2 of user A is a special situation: although user A is highly interested in
this area, user A already has two other SAs and, due to a lack of computational power,
cannot afford to fully simulate another SA; instead, player A will use excess bandwidth

ACM Journal Name, Vol. 1, No. 1, Article 1, Publication date: January 201x.

Area of Simulation: Mechanism and Architecture for Multi-Avatar Virtual Environments 1:7

ALGORITHM 1: Operation of the AoS mechanism.
1: while not end-of-game do
2: increment game tick;
3: receive last turn’s events issued in SAs;
4: receive last turn’s events issued in shared-zones surrounding SAs;
5: receive last turn’s states from shared-zones;
6: receive summary of state updates of UAs;
7: update game states according to DVEs logic by applying events to states of SAs;
8: interpolate game states, display current states, and receive user’s commands;
9: advance simulation turn and send turn advance message, if all the events of a turn have

been received;
10: end while

to get updates from the server responsible for area 2. We will further describe the
management of areas in Section 5.2.

4.3. Simulation of In-game Areas
Because the virtual world is partitioned, events that can affect multiple areas raise
a data replication problem for the AoS mechanism. Processing such a shared-event
may require access to state information from all the areas the event affects. To provide
users with the illusion of a seamless un-partitioned virtual world, the AoS adopts a
shared-zone technique to manage data replication of areas. Areas that can be affected
by shared-events maintain shared-zones that overlap with other areas. As Figure 3
shows, the shared-zones are the gray areas around each SA. We choose the width w
of the shared-zone to be larger than the maximum effect range (MER) of the shared
event. The MER can be pre-determined by application designers according to game
logic. In all MAVEs we have surveyed, the MER is relative small comparing to the
on-screen view (the maximal vision range of avatars in StarCraft is 14 tiles, while
the screen width is 25 tiles). Each server will exchange with the others the states of
shared-zones it manages for processing shared-events.

The state of the virtual world may be changed with the passage of time, and by dif-
ferent events and by distributed clients multiple times, even inside a simulation tick.
Thus, knowing what the correct state is after the update has been made is the prob-
lem we are facing. The CAP theorem [Brewer 2012] states that Consistency, Avail-
ability, and Partition-tolerance cannot be simultaneously guaranteed in a distributed
system. In AoS, different parts (partitions) of the virtual world are hosted in the Inter-
net where temporary partitions of the network caused by latency or message loss are
bounded to happen. During the period when the network is partitioned, we can either
cancel the players’ operations and thus decrease availability, or process the players’
commands but with the risk of inconsistency. Similar to some previous work [Bernier
2001; Bharambe et al. 2008; McGee 2011] which treat consistency as a non-first re-
quirement, we believe that the availability of DVEs (players receive responses for their
operations in time) is more important than the consistency of DVEs. Thus, we do not
ensure strong consistency as EBLS does. In AoS, we choose to partition the virtual
world for scalability but at the cost of some inconsistency. In other words, we trade
off consistency for scalability by allowing some game states to become inconsistent. By
adopting this approach, we allow by design that the states of some parts of the parti-
tioned virtual world may be different than the states that would have resulted from
the same sequence of player commands executed in an un-partitioned virtual world.

The simulation operation of the AoS mechanism is described in Algorithm 1. For
each simulation tick, each client receives the commands from the servers of SAs (line

ACM Journal Name, Vol. 1, No. 1, Article 1, Publication date: January 201x.

1:8 S. Shen, S.-Y. Hu, A. Iosup, and D. Epema

Table I. Summary of mechanisms used in the AoS architecture.
Problem Mechanism Novelty

Change of users’ interest dynamic area management (Section 5.2) new
Bandwidth consumption of UAs forwarding pool and level of detail (Section 5.3) adapted

Bandwidth consumption of shared-zones delta encoding (Section 5.4) re-used

3); additionally, the client receives all the commands issued in the shared-zones of the
SAs (line 4). Each client also receives the states of the shared-zones (line 5), which
enables processing the events that require information from the neighboring areas.
For UAs, each client receives a summary of state-updates from the server managing
each UA (line 6); depending on the resource availability of the server and on the game
logic, the client may receive updates of various details and with various frequencies.
After receiving all the needed information, the client will perform simulation to update
its local view of the virtual world (line 7–8). During each tick, the server needs to read
events from clients, read events and states of shared-zones from the other servers, sort
the events, perform the simulation, and send the events and states to the clients.

For the simulation operation, as we trade off consistency for scalability, some in-
consistency may happen compared to the un-partitioned simulation. We rely on the
application developer to use additional techniques to mitigate this drawback [Chen
and Verbrugge 2010; Bernier 2001]. For example, two avatars from different areas
may collide unexpectedly. Application-specific logic, such as using distributed collision
detection [Chen and Verbrugge 2010], allowing the bounding boxes used for collision
detection to be slightly bigger than the actual size of the avatars, can be used. In this
work, we simply disable collision detection following the practice of World of Warcraft
(WoW) [McGee 2011]. In Section 6.3, we will show that the AoS mechanism does not
introduce much inconsistency: most of the time, the inconsistency is unnoticeable.

5. AOS-BASED SYSTEM ARCHITECTURE
In this section, we integrate the AoS mechanism into an MAVE architecture. Table I
summarizes the problems and the mechanisms (Section 5.2 to 5.4) adopted to solve
them. Last we discuss the implications and limitations of our mechanisms in Sec-
tion 5.5.

5.1. Architecture Overview
To operate the entire virtual world, our architecture comprises three types of logical
nodes: the registration server, the clients, and the area servers. The registration server
is responsible for the registration of the other types of logical nodes and to reply to
queries to locate an area server. We describe the functions of the clients and of the
area servers in the following.

Each client is responsible for managing the virtual world for a player. Clients can
connect to multiple area servers. If a client has an SA which is managed by an area
server, the client is a Simulation Area Client (SAC) for that area server. Similarly, if
a client has a UA which is managed by an area server, the client is an Update Area
Client (UAC) for that area server.

Each area server is responsible for managing an area and for communicating with
clients. Each area server is an SAC for itself. It is responsible for receiving the com-
mands issued by players in its area, for forwarding the commands in its area and the
shared-zones’ states to all its SACs, for forwarding its states to all its UACs, and for
forwarding the selected state of its shared-zones and commands to neighboring area
servers. An area server is neighboring to another area server only if the areas they
manage are spatial neighbors in the virtual world.

ACM Journal Name, Vol. 1, No. 1, Article 1, Publication date: January 201x.

Area of Simulation: Mechanism and Architecture for Multi-Avatar Virtual Environments 1:9

5.2. Dynamic Area-Management Mechanism
Users may change their interest at run time. We propose a dynamic area manage-
ment mechanism to adapt to the change of users’ interest. The mechanism allows each
user to have up to n SAs concurrently, where n can be predefined by the application
developers according to application logic. To select the SAs and UAs for each player,
our mechanism relies on a dynamic and automatic ranking of areas, using the level-
of-attention (interest) shown recently by the player. The top-ranked n sub-map candi-
dates are marked to become SAs, and the avatars’ visible areas which are outside the
selected SAs are marked to be UAs. In this work, the level-of-attention of a sub-map v
is calculated as:

v = w1 ×
∑
i

(
si
st

) + w2 ×
ta
t

0 ≤ si ≤ st 0 ≤ ta ≤ t

which consists of two terms: the spatial value (left term) and the temporal value
(right term). w1 and w2 is the relative weight for the spatial value and the temporal
value, respectively (0 ≤ w1, w2 ≤ 1, w1 + w2 = 1). For the spatial value (left term), si is
the score of the user owning an avatar with id i that is located in the sub-map, and st
is the total score of all the avatars owned by the user. The intuition is that the more
avatars gather in an area, the higher the player’s interest in that area. The score si of
avatar i can be assigned by MAVE designers according to MAVE logic. For example,
in Age of Empires, a swordsman needs to be trained using a certain amount of in-
game resources (e.g., 50 units of food, 20 units of gold), hence the score of a swordsman
can be assigned as 70 (50+20). For the temporal value (right term), a player’s interest
in a sub-map is measured by the accumulated time ta that the player has seen the
sub-map rendered on-screen, at each time window t (i.e., 30). The intuition is that the
more time a player has seen a sub-map, the higher the player’s interest in that area.
MAVE designers can tune the relative weights w1 and w2 according to their designs,
for example, by setting w2 higher, the MAVE can respond to players recent activities
faster. In our system there are two types of players, human and artificial-intelligence
(AI) players. For AI players, the temporal term is not taken into account (ta = t). This
mechanism is executed every t seconds (i.e., 30). To avoid the frequent changing of the
level-of-attention ranking, a sub-map is an SA candidate, only if its level-of-attention
is higher than a threshold th (i.e., 0.1).

There could be many ways to calculate the level-of-attention values by using spatial,
temporal, social, and machine-performance metrics. For example, spatial metrics can
include the location of the player’s base, or the number of avatars present in the area,
or the total amount of in-game resources invested by the user in that area. Tempo-
ral metrics can include the number of recently issued commands, or interaction his-
tory. Social metrics can include a summation of the interest shown by in-game allies.
Machine-performance metrics can include a dynamic assessment of the computing and
network capabilities of the player’s machine. For example, a resource monitor can be
integrated into each player’s machine, once a machine cannot maintain the minimal
simulation speed of a sub-map, the level-of-attention of the sub-map can be calculated
as zero, which leads to the demotion of the sub-map to a UA. We leave further explo-
ration of the calculation of level-of-attention as future work.

The dynamic ranking of areas allows for the creation and destruction of areas for
each player. For example, in RTS games it is customary to build temporary bases with
tens of mobile and immobile avatars; such temporary bases can lead to a temporary
SA being created. As areas may be promoted to SA status, or demoted to UA or AoN
status by the area management module, the MAVE operator can provision and allocate
resources adapted to the player’s needs, thus maintaining the quality of service.

ACM Journal Name, Vol. 1, No. 1, Article 1, Publication date: January 201x.

1:10 S. Shen, S.-Y. Hu, A. Iosup, and D. Epema

For a client, upon losing interest in an SA, the area becomes first UA(s); further
neglect leads to the conversion into an AoN, which makes the area server stop com-
municating with the client. Conversely, if the level-of-attention ranking of an area
increases, a new SA needs to be created from an existing UA. First, the area server
pauses the simulation procedure of the sub-map that contains the UA, and serializes
the data for that sub-map. Then, the area server sends to the client all the needed
state information and pending commands from the current simulation turn. Finally,
the area server resumes the simulation and the gaming procedure is as usual. During
this procedure, the area server needs to inform the neighboring area servers that the
simulation of this sub-map is paused and the other neighbor area servers will not need
to wait for the states sent by this sub-map. For interested readers, please refer to Ap-
pendix A for how the live-migration technique [Clark et al. 2005] is adapted into the
AoS system to smoothen the UA-to-SA transitions.

When UA-to-SA or SA-to-UA transitions occur, depending on the current counts and
limits concerning each area type, other areas may be demoted to or promoted from
the status of SA and/or UA. To avoid possible cascading occurrence of transitions of
UA-to-SA or SA-to-UA which may negatively impact the performance of the system,
at each sub-map i, at most ai (i.e., 50) UA-to-SA transitions and at most bi (i.e., 50)
SA-to-UA transitions are allowed by the server of the sub-map within t (i.e., 30) sec-
onds. Obtaining a satisfactory setting of t, ai, and bi to avoid cascading occurrence of
transitions may require experiment-tuning with a deployed DVE used by many users,
which is out of the scope of this work.

5.3. UA State Dissemination Mechanisms
During the process of simulation, an area server needs to send state-updates to all con-
nected clients, with high frequency. If an area is popular, the bandwidth consumption
may exceed the capacity of the server managing this area. To alleviate this situation,
we build a forwarding pool (FP) mechanism, in which the area server makes use of
the idle upload bandwidth of the SACs. By making use of a unique property of the AoS
mechanism, that all the SACs of an area have the same data as the area server, our
FP can use some of the resource-rich SACs to help disseminating the states. In our
current design, all the SACs (including the area server) of that area run a round-robin
algorithm to select, in turn, an SAC to send state-updates to one UAC.

By using the FP mechanism, the upload-bandwidth consumption of servers can be
greatly reduced. However, if there is no SAC or the aggregate upload bandwidth of the
SACs cannot meet the demand of all the UACs, some form of state-reduction technique
is needed, leading to less up-to-date states. We design a state-reduction mechanism,
level of detail (LoD), which effectively reduces network consumption by sending state-
updates of different avatars at different frequencies, instead of a single fixed frequency.
Each avatar i is assigned a score si which can be determined by the game designers
according to the game logic (e.g., total amount of in-game resource used to train the
avatar). Firstly, the avatars are sorted according to their scores in decreasing order,
the state-updates of the top p% (e.g., 10) avatars will be sent every tick. Secondly,
for the other (100 − p)% avatars, each avatar i has its own update frequency fi (e.g.,
0.025). Thirdly, when a user issues a command to an avatar whose id is k, the states
of the avatars that surround avatar k will be sent to the user at every tick. After tLoD

(e.g., 150) ticks, if there are no further commands from the user which affect avatar
k, the update frequencies of avatars around avatar k are restored to their normal up-
date frequencies. p, fi, and tLoD can be assigned by application designers according to
game logic. For example, the higher si is, the higher fi would be. To obtain the optimal
parameter setting of the LoD mechanism, we recommend that for complex games, a
combination between game designer expertise and experimental tuning is needed. For

ACM Journal Name, Vol. 1, No. 1, Article 1, Publication date: January 201x.

Area of Simulation: Mechanism and Architecture for Multi-Avatar Virtual Environments 1:11

all the avatars whose state updates are not sent every simulation tick, our mechanism
relies on techniques such as dead-reckoning [Bharambe et al. 2008; Bernier 2001] to
interpolate/extrapolate the avatars’ positions. The LoD mechanism promises to reduce
the network consumption significantly, without reducing the accuracy of information
about the avatars that the player is paying attention to.

5.4. Shared-zone State Dissemination Mechanism
The area servers of the AoS mechanism need to send states of their shared-zones to all
their SACs. As we will show later in Section 6.2, the states can consume more than 20%
of the server upload bandwidth. Thus, we use a delta-encoding technique [RFC3284
2002] to reduce the bandwidth consumption. Delta-encoding technique sends the dif-
ference of data instead of sending original data to client. When sending the shared-
zones’ state to clients, the area server will first get the difference of data, and then
transfer only the difference of data to clients. If the states of shared-zones only changed
slightly since the last state transfer, this technique can significantly reduce the band-
width needed for sending states of shared-zones.

5.5. Implications and Limitations
The AoS mechanism gives DVE designers the ability to tune the system by configur-
ing the trade-off between the high-fidelity, compute-intensive SAs and the relatively
low-fidelity, network-intensive UAs. In this way, the AoS mechanism addresses for
MAVEs the resource challenges in Section 5.5.1, and the consistency challenges in
Section 5.5.2. We also discuss some limitations to the AoS mechanism in Section 5.5.3.

5.5.1. Resource Challenges. The AoS mechanism has good scalability, because only a
few areas catch the interest of each player (see Section 3.2), so each client simulates
only a few, high-interest areas,. In contrast to the EBLS mechanism, the AoS mech-
anism does not simulate the entire virtual world. Different from the traditional AoI
mechanism, the AoS mechanism reduces the network consumption by transferring
both commands and state-updates.

5.5.2. Consistency Challenges. Compared to update-based DVEs, such as WoW, which
have server-side sequential consistency and client-side eventual consistency , the AoS
mechanism provides sequential consistency for SAs, and eventual consistency for UAs
and shared-zones, both on server- and client-side. Thus, the AoS mechanism can satisfy
the requirement that the areas in which players show interest have high consistency
guarantees.

5.5.3. Limitations. The AoS mechanism adds some complexity into the design of MAVE
servers. A DVE designed traditionally for the single-server architecture, may need to
be re-designed to adapt to the distributed-server architecture of the AoS mechanism.
Moreover, the DVE designers may need to conduct experiments, to determine the area
management parameter (n) needed to achieve optimal scalability for a specific DVE.
However, as we will show in Section 6, even by setting n = 1, the AoS mechanism
is more scalable than the other traditional models. Moreover, the distributed-server
architecture is already the de facto standard in commercial game development.

The AoS mechanism guarantees only eventual (instead of sequential) consistency
in shared-zones and UAs. This may dissatisfy users who frequently control avatars in
such ares. Game designers can change the design of their DVEs, by reducing or limit-
ing the chance that users are controlling avatars in the shared-zones (e.g., the border
of each sub-map can be designed to be uninteresting to players). Moveover, game de-
signers can adopt multiple levels of consistency-control protocols for different scenar-
ios [Krammer et al. 2012; Zhang and Kemme 2011]. For example, strong consistency

ACM Journal Name, Vol. 1, No. 1, Article 1, Publication date: January 201x.

1:12 S. Shen, S.-Y. Hu, A. Iosup, and D. Epema

Table II. Overview of experiments in Section 6.
Experiment Evaluation target

Comparison with alternatives
(Section 6.2.1)

Whether AoS scales
under different scenarios

Comparison of Area Management
mechanisms (Section 6.2.2)

Whether the dynamic
management mechanism works

Forwarding pool and
level-of-detail (Section 6.2.3)

The message reduction of
these mechanisms

Consistency evaluation
(Section 6.3)

Measuring the consistency
tradeoff of AoS

Table III. Default experiment parameters.
Name Meaning Values
w × h virtual world size 1280 × 512 tiles
N number of users [10 to 400]
c frequency of user’s input 1 command per 10 ticks
K number of avatars per user 50
n maximum number of SAs per user 1
v avatar speed 1 tile per tick
r avatar vision range 10 tiles
w width of shared-zone w = r 10 tiles
tps number of ticks per second 40 ticks
nt number of ticks per turn 2 ticks
sl simulation length 10,000 ticks

w1, w2, si level of attention parameters w1 = w2 = 0.5, si = 1

protocols can be used for important scenarios, such as trading, which require strong
consistency, whereas weak consistency protocols can be used for less important scenar-
ios, such as avatar movement. We discuss next two possible solutions, the two-phase
commit protocol and dead-reckoning.

The two-phase commit (2PC) protocol is a strong consistency protocol that can be
used for important events of concurrent reading or writing on multiple servers. For
the in-game trading example, assuming that an avatar needs to trade an item with
another item located on another server, the 2PC protocol can be used to ensure the
correctness of the trading operation. In our architecture, by using the 2PC protocol,
the player’s command would be delayed for an additional two round-trip times, and the
number of messages required by the protocol would increase linearly with the number
of nodes involved [Najaran et al. 2014]. Thus, the overhead of using the 2PC protocol
would be acceptable for important events, which normally occur much less frequently
than other events.

Dead-reckoning (DR) is a weak consistency protocol that can be used to hide, for
avatar movement, the inconsistency due to the late-arrival of state-updates. DR in-
terpolates and extrapolates the positions of an avatar, based on the avatar’s location
history and velocity. By interpolating, the movement path of an avatar between the
two positions can be smoothed. By extrapolating, the position of an avatar can be pre-
dicted. Moreover, DR can be used to predict collisions [Chen and Verbrugge 2010]. The
overhead of DR depends on the interpolation and extrapolation methods used [Yahyavi
et al. 2012; Bharambe et al. 2008], such as linear kinetics based on Newton’s second
law, but is low in general. Thus, DR could be used as a weak consistency protocol in
our architecture, with low overhead.

6. SIMULATION RESULTS
In this section, we evaluate AoS and four alternatives experimentally in a simulated
environment. We present results obtained in a real-world environment in Section 7.
Overall, our results indicate that AoS is more scalable than the alternatives.

We describe the experimental setup in Section 6.1. In Section 6.2, we compare AoS
against four alternatives. The results show that AoS can achieve much lower network
consumption than the pure update-based model (e.g., AoI), due to using the idle CPU
resources on the client’s side, and AoS can achieve much lower CPU consumption than
the pure event-based model (e.g., EBLS), due to simulating only parts of a virtual
world. In Section 6.3, we show that AoS achieves scalability without sacrificing too
much consistency: 99.5% of the drift distance [Diot and Gautier 1999] of avatars can
converge within about 0.3 seconds (a limit that is acceptable even for advanced users,
see Section 2.1). Table II summarizes the experiments conducted in this section.

6.1. Experimental Setup
The default experiment parameters are shown in Table III. The simulation is running
on a 1280 × 512 tile map, partitioned into 5 × 2 sub-maps of 256 × 256 tile each. The
simulated virtual world map is 10 times larger than the largest game of StarCraft II.

ACM Journal Name, Vol. 1, No. 1, Article 1, Publication date: January 201x.

Area of Simulation: Mechanism and Architecture for Multi-Avatar Virtual Environments 1:13

This map size is consistent with our goal to scale this exemplary game and with the
game-design scalability challenge (Section 3.1). As determining the maximum number
of SAs that each user’s machine can support is orthogonal to our work, we assume that
each user can have up to n SAs.

Each player is assigned a base, uniformly, randomly distributed across the virtual
world, with 50 avatars distributed around it. Each player will set the sub-map where
the base locates in as an SA, and keep the area as an SA until the end of the simu-
lation. The simulator is configured to update with a frequency of 40 ticks per second.
Each avatar’s vision is a square, centered on the avatar, with a range r = 10 tiles. The
movement speed of the avatars is 1 tile per tick. The vision range and movement speed
is similar to the setup of StarCraft II.

We run the simulation for 10,000 ticks (we have run some experiments with 50,000
ticks, and the results are similar). Unless otherwise specified, all the simulations are
conducted with 60 users (about 4 times larger than the maximum number of players
in one game of StarCraft II, which is 16) in a simulated LAN environment with no
latency. Following the design of the very popular RTS game Age of Empires [Terrano
and Bettner 2001], all the commands are scheduled to run 2 turns later.

Workload models: Modern MAVEs such as RTS games do not support more than 32
players in a game instance, so we are not able to obtain real-world workload traces
with many users. Instead, based on our experience with popular RTS games [Terrano
and Bettner 2001] and the code of a modern open-source RTS game engine [0 A.D.
team 2014], we evaluate AoS against four different workload models. Each workload
model is a combination of a command model and a mobility model. For the command
model, each player is restricted to issue 1 command per 10 ticks, which is equivalent to
4 commands per second. This mimics player behavior during intense operations [Ter-
rano and Bettner 2001]. Each command will order a randomly selected avatar to go
to a position according to a mobility model. The mobility models are Weighted random
Walk (WW), Weighted random walk Inside sub-map (WI), Weighted random walk with
Distance (WD), and SAMOVAR. In WW, we partition the virtual world into multiple
non-overlapping 16× 16 tile areas, and randomly assign a weight w between 1 to 10 to
each area. Each user is assigned i high-interest sub-maps, where i is sampled from the
number of high-interest areas per user (with h = 4, see Figure 2 (left)). In WW, when a
user commands an avatar to go to a new destination, the avatar selects a high-interest
sub-map randomly. Then the avatar has a higher probability to go to a grid of the se-
lected sub-map with higher weight, and it will go to a random position inside that grid.
WI is similar to WW, but i is fixed to 1. In WD, the probability p to go to a grid is defined
as p = w

d2 , where w is the weight (1 to 10) assigned to that grid, and d is the distance
between the centroid of that grid and the player’s base. For a player, this will make
many avatars move in close proximity of the base, with only a few of the avatars going
to some (valuable) spots away from the base. SAMOVAR is developed based on [Shen
and Iosup 2014]. SAMOVAR acts similarly to WW, except that each user has a limited
amount of grids to visit, and each user has different personal weights to visit those
grids. Albeit we do not evaluate our system using real-users, the spatial AoI changes
are higher in the 4 workloads than in StarCraft (see Appendix B.1), this suggests that
the scalability results achieved by AoS will be better for the real-users than for the 4
workload models. Unless otherwise specified, WD is the default workload.

Metrics: We look at four metrics: the network bandwidth consumption (upload and
download), the compute unit, and the drift distance which we define as follows. We
count the number of messages sent/received as network bandwidth consumption. The
compute unit is a reference value to estimate the CPU consumption. We calculate the
compute unit, at each tick, as the number of avatars simulated at each client/server.
We do not count the computation used for updating objects and for processing events

ACM Journal Name, Vol. 1, No. 1, Article 1, Publication date: January 201x.

1:14 S. Shen, S.-Y. Hu, A. Iosup, and D. Epema

10 20 30 40 50 60 80 100 200 400

10
1

10
2

10
3

10
4

Number of usersS
er

ve
r

m
es

sa
ge

s
se

nt
 p

er
 ti

ck

SAoI Proxy MAoI EBLS AoS

10 20 30 40 50 60 80 100 200 400

10
2

10
3

10
4

Number of usersS
er

ve
r

m
es

sa
ge

s
se

nt
 p

er
 ti

ck

SAoI Proxy MAoI EBLS AoS

Fig. 4. Network upload: (left) the WI workload;
(right) the WD workload. (Logarithmic scale on
vertical axes)

10 20 30 40 50 60 80 100 200 400

10
1

10
2

10
3

10
4

Number of usersS
er

ve
r

m
es

sa
ge

s
se

nt
 p

er
 ti

ck

SAoI Proxy MAoI EBLS AoS

10 20 30 40 50 60 80 100 200 400

10
1

10
2

10
3

10
4

Number of usersS
er

ve
r

m
es

sa
ge

s
se

nt
 p

er
 ti

ck

SAoI Proxy MAoI EBLS AoS

Fig. 5. Network upload: (left) the WW work-
load; (right) the SAMOVAR workload. (Logarith-
mic scale on vertical axes)

(according to our measurement in the prototype implementation, the time required to
perform the simulation of an avatar is about 200 times higher than the time required
to process state-updates/events). The drift distance [Diot and Gautier 1999] is used to
evaluate the difference of avatar positions between the partitioned (AoS) and the un-
partitioned (EBLS) models. We issue the same commands at the exact simulation time
in AoS and EBLS and compare the distances of each avatar’s position obtained through
AoS and EBLS. For each experiment, we report the 99.5 percentile of drift distance.
Each experiment is repeated 10 times, and the metrics shown are the average values.

6.2. Scalability Evaluation: Proposed Mechanisms
In this section, we evaluate AoS under a variety of scenarios. Our main findings are
that (i) AoS consumes at least 30% less bandwidth than all the other alternatives for
all the workload models; (ii) AoS requires an order of magnitude less computation
than EBLS, for the server; (iii) the improved AoS (that is, AoS for which we enable the
mechanisms introduced in Section 5) can further reduce bandwidth consumption by
up to 60%.

6.2.1. Comparison with alternatives. We evaluate the computation and network consump-
tion of AoS against four alternatives: single-AoI (SAoI), multiple-AoI (MAoI), proxy-
server (Proxy), and EBLS explained in the following. SAoI, MAoI, and Proxy are pure
update-based models, while EBLS is a pure event-based model. For each pure update-
based model, a distributed server architecture is adopted, for which each server is
responsible for simulating a sub-map of the virtual world. SAoI adopts a single, static
area-of-interest approach, whose area is the whole map. In MAoI, each player can have
multiple area-of-interest, and each area is the visible area around the player’s avatars.
MAoI represents an extension of current AoI techniques, but, unlike our AoS, lacks the
areas with event-based updates (the SAs). MAoI can be also viewed as AoS without any
SAs. Proxy [Müller et al. 2005] acts similarly to MAoI, but each server needs to send
the states that it simulates to the other servers, for synchronization (the original Proxy
uses one AoI per player).

Figure 4 shows the upload bandwidth consumption of the server for SAoI, MAoI,
Proxy, EBLS, and AoS under WI and WD, in turn for various user counts. For ease
of reading the figure, we truncate the results of SAoI when the number of users is
larger than 100. SAoI consumes significantly more bandwidth than the other models;
this result complements the analysis in Section 3.2 that a single static AoI does not
work well for MAVEs. Proxy consumes the second-most bandwidth compared to AoI,
as Proxy needs to send additional messages to the other servers. It needs about 2 times
and 1.5 times higher bandwidth than MAoI under WI and WD, respectively. AoS re-
quires 30% up to 80% less upload bandwidth than EBLS, because the AoS servers only
transfer messages that are relevant to the players instead of every message. Compared
to MAoI, AoS consumes 40% up to 80% less bandwidth. This is because the AoS servers
transfer commands besides state-updates to players, by making use of the players’ idle

ACM Journal Name, Vol. 1, No. 1, Article 1, Publication date: January 201x.

Area of Simulation: Mechanism and Architecture for Multi-Avatar Virtual Environments 1:15

Fig. 6. Network upload, 60 users: (left) server;
(right) client. (For the servers’ upload of AoS and
AoI, each bar is divided into 3 parts, from top to
bottom (dark, gray, and light): number of commands
sent, number of shared-zones’ states sent, number
of state-updates sent. Servers of EBLS only send
commands, thus the bars for EBLS are not parti-
tioned.)

Fig. 7. Compute Unit under 4 workloads, 60 users:
(left) server; (right) client.

CPU resources to perform simulation of the virtual world. Figure 5 shows the upload
bandwidth consumption for WW and SAMOVAR. The results are similar to the results
for WI and WD: SAoI and Proxy consume the most bandwidth, and AoS consumes the
least bandwidth. The bandwidth consumption of AoS under WW and SAMOVAR is a
bit more than that of under WI and WD, but AoS still consumes about 30% to 50% less
than EBLS. As SAoI and Proxy consume much more bandwidth than the other models,
we only consider EBLS, AoS, and MAoI in the rest of our experiments.

Dissecting upload messages: Figure 6 (left) shows the upload bandwidth consump-
tion of the servers for EBLS, AoS, and MAoI from left to right, grouped by four work-
loads with 60 users. The servers of EBLS only send commands, while for AoS and
MAoI, commands consume less than 5% of the network bandwidth, and the state-
updates consume most of the bandwidth. For AoS, a large portion (more than 20%) of
the bandwidth is used for sending the states of shared-zones. For MAoI, most (≥ 95%)
of its upload bandwidth is used for state-updates. Figure 6 (right) shows the upload of
clients. The client upload is very low with less than 1 message per tick.

Computational overhead: Figure 7 shows the compute unit on the server-side (left)
and client-side (right). On the server-side, as Figure 7 (left) shows, AoS and MAoI
consume the same amount of compute unit, and EBLS consumes about 10 times more.
The compute unit depends only on the number of avatars simulated. For AoS and
MAoI, each server only needs to simulate a sub-map, on average, each server simulate
10% of the avatars, while for EBLS, the server needs to simulate all the avatars. Thus,
the compute unit of AoS and MAoI are only 10% that of EBLS. On the client-size,
as Figure 7 (right) shows, EBLS clients consume the same compute unit as the EBLS
server. This is because EBLS needs to perform the same simulation of the whole virtual
world both on the client-side and on the server-side. In AoS, each client is an SA client
of a sub-map. The client performs the same simulation as the server of the sub-map.
Thus, on average, AoS clients have the same amount of compute unit as that of AoS
servers, that is, AoS clients consume about 10% of the computer unit of the EBLS
clients. The computer unit of MAoI clients is 0, as MAoI clients do not perform any
simulations.

6.2.2. Area management mechanisms and different numbers (n) of SAs. The previous experi-
ments have shown that AoS with n = 1 is more scalable than the others. We show that
by increasing n and adopting the dynamic area management mechanism proposed in
Section 5.2, AoS can achieve much lower bandwidth consumption. We evaluate the im-
pact of the area management mechanism, and the impact of the number of SAs per
user by changing n from 1 to 4.

ACM Journal Name, Vol. 1, No. 1, Article 1, Publication date: January 201x.

1:16 S. Shen, S.-Y. Hu, A. Iosup, and D. Epema

Fig. 8. Server messages sent (left) without and
(right) with dynamic management. (each bar is di-
vided into 3 parts, from top to bottom (dark, gray,
and light): number of commands sent, number of
shared-zones’ states sent, number of state-updates
sent.)

Fig. 9. Dynamic area management mechanism
with increasing n: (left) client compute unit and
(right) number of UA-to-SA transitions

Figure 8 (left) shows the results of using a static mechanism which randomly and
statically sets SAs for each user. In contrast, Figure 8 (right) shows the results of
using the dynamic area management mechanism (described in Section 5.2). In general,
the number of state-updates sent for UAs (light bars in the figure) decreases with
the increasing number (n) of SAs, while the number of commands sent (dark bars)
increases.

As Figure 8 (left) shows, increasing n using the static mechanism slightly increases
the bandwidth consumption for WD, WW, and SAMOVAR. This is because the number
of shared-zone states that needs to be transferred increases with the increasing n,
which decreases the bandwidth reduction through the use of more SAs.

As Figure 8 (right) shows, the dynamic mechanism achieves significant bandwidth
reduction with increasing n. The amounts of shared-zones’ states and state-updates
sent by servers are both significantly reduced. For shared-zones’ states, when a client
has multiple neighboring SAs, the servers do not need to send the states of shared-
zones of those neighboring SAs to the clients (the client itself has the master-copy of
the states of shared-zones). The probability that a player will have multiple neigh-
boring SAs is much higher when using the dynamic mechanism than when using the
static mechanism, as the dynamic mechanism sets the top n sub-maps which contain
more avatars of the player as SAs instead of randomly. For the state-updates, as most
avatars are located in SAs for the dynamic mechanism, the servers send much fewer
state-updates to clients than that of the static mechanism.

Increasing n using the dynamic mechanism does bring some overheads. The com-
pute units used by servers do not increase, as each server only needs to simulate one
sub-map regardless of n. For the clients, as Figure 9 (left) shows, the compute units
increase with n. This is because with increasing n, each client has more SAs, which
leads to increased simulation overheads. Figure 9 (right) shows the number of UA-to-
SA transitions per sub-map. For WI, the number is zero, because the avatars of each
player only move inside one sub-map, thus only one sub-map can be an SA for each
player regardless of n. For the other workloads, on average, each player will experi-
ence about 4 UA-to-SA transitions per sub-map, that is, less than 1 transitions per
sub-map per minute.

6.2.3. State dissemination mechanisms. To see whether the state disseminations we pro-
pose in Section 5.3 are efficient, we compare AoS (by default without any state dissem-
ination mechanisms), with its variations that use state dissemination mechanisms:
using forwarding pool (FP), using level of detail (LoD), and using both forwarding pool
and level of detail (FP+LoD). When evaluating LoD and FP+LoD, for simplicity, we
randomly pick p = 10% of the avatars whose state-updates are sent every tick, the
others’ state-updates are sent every 40 ticks (fi = 0.025), and tLoD = 150.

ACM Journal Name, Vol. 1, No. 1, Article 1, Publication date: January 201x.

Area of Simulation: Mechanism and Architecture for Multi-Avatar Virtual Environments 1:17

Fig. 10. Network consumption for AoS when us-
ing state dissemination mechanisms to distribute
states: (left) server; (right) client.

10 20 30 40 50 60
0

2

4

6

8

10

12

14

16

18

20

Number of users

99
.5

 P
er

ce
nt

ile
 o

f d
rif

t d
is

ta
nc

e

WI
WD
WW
SAMOVAR

10 20 30 40 50 60
0

5

10

15

20

25

30

35

40

45

50

Number of users

99
.5

 P
er

ce
nt

ile
 o

f d
rif

t d
is

ta
nc

e

Speed = 1
Speed = 2
Speed = 4

Fig. 11. Drift distance of AoS with: (left) different
workloads and (right) WD workload and different
movement speeds.

Figure 10 (left) shows that the server upload bandwidth consumption can be sig-
nificantly reduced by using these state dissemination mechanisms. Using FP can
lead to about 50% to 60% lower upload bandwidth consumption under WD, WW and
SAMOVAR, because FP makes use of the idle clients’ upload bandwidth to transfer
the states of UAs. Using LoD can lead to about 15% to 30% lower bandwidth consump-
tion for the server, but at the cost that some avatars’ state-updates are less frequently
transferred (less accurate). By using FP and LoD together, the server upload can be
further reduced by about 20% to 50%, compared to using FP only.

FP increases the clients’ upload bandwidth consumption, as Figure 10 (right) shows,
the clients’ upload bandwidth consumption for FP and FP+LoD increases from less
than 1 message per tick to about 30 to 40 for WD, WW, and SAMOVAR. Because LoD
transfers fewer states, the clients’ upload bandwidth consumption for FP+LoD is lower
than that for FP. We conduct experiments on LoD with varying p, fi and tLoD. We find
that higher p, higher fi, and higher tLoD lead to higher bandwidth consumption.

6.3. Consistency Evaluation
In Sections 6.3.1 and 6.3.2, we evaluate the consistency tradeoffs of AoS using a ref-
erence metric: the drift distance of avatars (measured in tiles). In Section 6.3.3, we
evaluate the percentage of collisions between sub-maps. Overall, we find that AoS in-
troduces negligible inconsistency and that resolving collision-generated inconsistency
has low overhead.

The source of drift distance is the distributed architecture. When an avatar is cross-
ing the border of a sub-map, it needs to first send a command to the area-server of the
sub-map where it will arrive. Then, the avatar will be moved to the future position, but
in the neighboring sub-map. As a consequence, the avatar’s position may be slightly
different if the position is updated using AoS, when compared to EBLS. Because the
median value of the drift distance across all the experiments in this section is zero (no
drift distance experienced by 50% of the avatars), we analyze in the remainder of this
section the presence of drift distance for extreme cases, by showing the 99.5 percentile
of drift distance (extreme drift distance).

6.3.1. Workloads and speed. Figure 11 (left) shows the results for the 4 workloads. The
extreme drift distance is small for these workloads. The extreme drift distance for WI
with varying number of users is zero, because in this case avatars do not cross any bor-
der. The extreme drift distance for WW with varying number of users is about 8 tiles,
but, because the movement speed of avatars is 1 tile per tick, this distance will even-
tually converge to zero within 8 ticks or approximately 0.25 seconds. Figure 11 (right)
shows the impact of movement speed on the extreme drift distance: the higher the
movement speed, the larger the extreme drift distance, but the extreme drift distance
still converges to zero within 0.2 seconds.

ACM Journal Name, Vol. 1, No. 1, Article 1, Publication date: January 201x.

1:18 S. Shen, S.-Y. Hu, A. Iosup, and D. Epema

6.3.2. Partition. We measure the extreme drift distance when partitioning the virtual
world into finer sub-maps, from 64× 64 to 256× 256 tiles. The extreme drift distance is
about 5 tiles for 256 × 256 sub-maps, but can increase to 20 tiles for 64 × 64 sub-maps.
Partitions that increase the probability of avatars crossing the sub-map borders can
lead to a significant increase of the extreme drift distance.

6.3.3. Collisions. We evaluate the overhead of imprecise collision detection, by mea-
suring the percentage of collisions between sub-maps. We calculate this percentage by
dividing the number of collisions between sub-maps by the total number of collisions.
For each of the workloads, the percentage is low (≤ 1%). The computational overhead
needed to resolve imprecise collision detection depends on the method chosen to mit-
igate them, but in general it is low [Yahyavi and Kemme 2013]. For example, [Chen
and Verbrugge 2010] use simple linear functions to predict and resolve collisions, a
method whose computational overhead is low. Given the low chance of collisions be-
tween sub-maps and the low overhead of collision-detection protocols, we conclude that
the overhead of resolving imprecise collision detection is low.

7. REAL-WORLD EXPERIMENTAL RESULTS
To demonstrate the applicability of AoS, we implement the architecture described in
the previous sections and deploy the working system in a real-world environment. We
evaluate the working system with a prototype RTS game, which represents the large-
scale multi-player extension of an open-source, single-player RTS game [Granberg
2006]. This prototype game features many common elements of RTS game: training
avatars, constructing buildings, fog-of-war, battles, etc.

We conduct real-world experiments an order of magnitude larger load than the cur-
rent state-of-the-art, up to 100 users (instead of 16 users in StarCraft II) and 5,000
avatars involved in a large virtual world. The results show strong evidence that our
AoS-based system is scalable.

7.1. Experimental Setup
Implementation: our system implementation1 has about 25,000 lines of C++ code,
which add to the about 7,000 lines of C++ code of the original RTS game. The AoS
mechanism needs about 3,000 lines of code, while the other 15,000 lines of code are
used to implement the multi-user part for the original single-player game. Our net-
work module follows a similar design as 0 A.D [0 A.D. team 2014] and uses the reliable
UDP library ENet2. We use the delta-encoding library xdelta3 to encode the shared-
zones’ state to only transfer the difference of data, and Zlib for data compression.
Without compression, the size of messages range from 40 bytes to 80 bytes. On av-
erage, the size of a command is 40 bytes, while the size of a state is 75. The size of
messages lies within that of modern commercial RTS games [Claypool 2005].

Experimental environment: The experiments are conducted on the Amazon EC2
cloud. For our experiments, we use the “medium” instances of virtual machine (VM),
each installed with Windows Server Datacenter edition 2008. Unless otherwise spec-
ified, we run 10 nodes (i.e., players) in each VM. All the other experimental config-
urations are the same as the default setup used in Section 6. Due to time and cost
limitation, we use WI as the workload. As we focus on computing and networking re-
sources, we disable the graphical output of the game.

Performance Metrics: We measure and report the ticks per second of each experi-
ment, the bandwidth consumption of the payloads of network messages sent by the
server and number of messages sent. As the number of messages sent by servers

1http://www.pds.ewi.tudelft.nl/∼siqi/AoS.htm, 2http://enet.bespin.org/, 3http://xdelta.org/

ACM Journal Name, Vol. 1, No. 1, Article 1, Publication date: January 201x.

Area of Simulation: Mechanism and Architecture for Multi-Avatar Virtual Environments 1:19

10 20 40 60 80 100
0

5

10

15

20

Number of users

S
er

ve
r

up
lo

ad
 p

er
 ti

ck
 [K

B
]

no compression
delta encoding
delta encoding & zlib

10 20 40 60 80 100
0

5

10

15

20

30

35

40

Number of users

Smooth experience

24

T
ic

ks
 p

er
 s

ec
on

d

Fig. 12. Upload bandwidth (left) and tick per sec-
ond (right).

AoS EBLS
0

1

2

3

4

5

6

7

S
er

ve
r

up
lo

ad
 p

er
 ti

ck
 [K

B
]

AoS EBLS
0

10

20

30

40

24

Smooth experience

T
ic

ks
 p

er
 s

ec
on

d

Fig. 13. Comparison between AoS and EBLS: up-
load (left) and tick per second (right).

matches well with the simulation results in Section 6, we only show the results for
server upload bandwidth consumption and ticks per second (TPS). Each experiment is
repeated 10 times, and the metrics shown are the average values.

7.2. Scalability Results
The bandwidth consumption of AoS scales linearly with the number of players. Fig-
ure 12 (left) depicts the upload bandwidth consumption of the server as a function
of the number of users, for different methods of compressing the transferred data:
AoS without compression, AoS with delta encoding, and AoS with delta encoding and
zlib. Using the delta-encoding mechanism (proposed in Section 5.4) can reduce the
bandwidth consumption significantly (about 80%), by only transferring the differences
between the states of the shared-zones. Using zlib can further reduce the upload band-
width consumption, by about 10%. Using both delta-encoding and zlib, AoS consumes
about 2.1 KB per tick, when the number of players is 100. As the simulation speed is
about 20-30 ticks per second, AoS consumes less than 75 KB per second.

Figure 12 (right) shows TPS as a function of the number of players. With an increas-
ing number of players, the simulation overhead increases, which leads to lower TPS.
When the number of players is 100, the TPS drops to 26. However, for all our experi-
ments the TPS achieved in practice remains above the threshold required to deliver a
smooth virtual experience (24 frames per second).

We compare AoS with EBLS using 40-node experiments. Because EBLS requires
more memory and CPU resources than AoS, we run 5 (instead of 10) nodes per VM
when running the prototype using EBLS. Figure 13 (left) shows the network consump-
tion for these two mechanisms. The upload bandwidth consumed by the server is about
13 times lower for AoS than for EBLS; the message count for the server is similar,
with the count for AoS about 15 times lower. This happens because, in the prototype, a
state-update transfers more than an event. Figure 13 (right) shows the TPS results for
the two mechanisms. Using AoS, the prototype can achieve a simulation speed of 36
TPS, whereas EBLS can only achieve 18 TPS. The 18 TPS is lower than the minimal
TPS (24) required to achieve smooth virtual world experience, so the user experience
will suffer when using an EBLS-based approach. In summary, compared to EBLS, AoS
can consume lower network bandwidth and achieve lower computation consumption,
while still fulfilling all the requirements of MAVEs.

8. RELATED WORK
Distributed Virtual Environments (DVEs) aim to generate a virtual world in which
geographically distributed users can interact with others. There are two major op-
erational models to update the DVEs in the clients’ view: update-based and event-
based. For the update-based model, the clients receive state-updates from the servers
and then update their local view using the received information. For the event-based
model, clients receive commands/events from a server and perform simulation, using
the events to update the local game replicas. In our work, the DVE clients need to

ACM Journal Name, Vol. 1, No. 1, Article 1, Publication date: January 201x.

1:20 S. Shen, S.-Y. Hu, A. Iosup, and D. Epema

receive state-updates and may perform simulation, which is different from cloud gam-
ing techniques such as [Huang et al. 2013], where the DVE clients only receive video
streams from a server. In this section, we compare AoS with the research on scalability
in Section 8.1 and consistency in Section 8.2.

8.1. Scalability Techniques
Much recent research explores scalable DVEs. We identify four main approaches: zone-
based, object-based, server replication, and interest management.

8.1.1. Zone-based. The virtual world is partitioned spatially into multiple non-
overlapping zones; each zone is assigned to a separate server [Rosedale and Ondrejka
2003; Knutsson et al. 2004; Hu and Chen 2011]. Our AoS, SimMud [Knutsson et al.
2004], DSG [Lake et al. 2010], and MOPAR [Yu and Vuong 2005] partition the virtual
world statically. In contrast, VSO [Hu and Chen 2011], Solipsis2 [Frey et al. 2008],
Cell [Deng and Lau 2014], and [Lui and Chan 2002] partition the virtual world dynam-
ically. As an example of zone-based DVEs, SimMud [Knutsson et al. 2004] partitions
the game world into static zones and uses a peer-to-peer multicast channel to send
game updates to clients. Many previous studies focus on scalable messaging, and do
not consider game-logic processing. For the studies that do, the operational model is
mostly update-based.

8.1.2. Object-based. The virtual world objects are load-balanced across servers [Mo-
rillo et al. 2007; Lu et al. 2006; Waldo 2008]. Each server is responsible for the sim-
ulation of a subset of objects (often called active objects), while the remaining ones
(often called shadow objects), which are active in the other participating servers, are
synchronized across servers. Proxy server [Müller et al. 2005] used for comparison in
Section 6.2.1 belongs to this category.

8.1.3. Server replication. The virtual world states are fully-replicated at each server;
clients connect usually to the closest server. The event-based model is usually adopted
to reduce the network bandwidth. In this model, the events are transferred to some
servers or broadcasted to all the servers, and the server performs the simulation based
on events. EBLS is one of the most widely used server replication techniques adopted
by DVEs such as [Zhang and Tang 2011][Cronin et al. 2004], and RTS games. As the
states are fully-replicated, maintaining the state for a large virtual world is problem-
atic for most servers.

8.1.4. Interest management (IM). IM determines information that is interesting and
should be received by players [Yahyavi and Kemme 2013]. IM can be class-based or
space-based. For class-based IM, users only receive specific types of information that
are predefined per class, while space-based IM is based on proximity. AoI is a form
of space-based IM in which a player only receives the information close to the loca-
tion of the avatar(s) of the player. Usually, when an avatar moves, the AoI moves
with the avatar. An AoI can be a zone [Knutsson et al. 2004], a geometry area in-
side a zone [Boulanger et al. 2006], or intersects with multiple zones [Yu and Vuong
2005]. The shape of an AoI can be: tile-based [Boulanger et al. 2006], circular [Ahmed
and Shirmohammadi 2009], and free format [Bharambe et al. 2008]. The size of an
AoI can be static [Hu and Chen 2011] or dynamic [Keller and Simon 2003]. Donny-
brook [Bharambe et al. 2008] proposes an estimation of FPS players’ interest based on
distance between avatars, the aiming of the player’s weapon, and interaction history.
They classify avatars (based on interest) into two sets. Up-to-date states of the avatars
in one set are received every frame while the states of the others are received every
second. Different from previous work, we consider each player having multiple AoIs
instead of one, and each AoI is operated using event-based or update-based model.

ACM Journal Name, Vol. 1, No. 1, Article 1, Publication date: January 201x.

Area of Simulation: Mechanism and Architecture for Multi-Avatar Virtual Environments 1:21

AoS is the first approach that combines zone-base partition, event-based and update-
based models to support large-scale MAVEs, especially for RTS games.

8.2. Consistency Control
Pessimistic and Optimistic methods are two major classes of consistency control meth-
ods. Pessimistic methods anticipate inconsistency between data replicas when perform-
ing local actions. In contrast, optimistic methods assume no inconsistency exists and
perform local actions instantaneously.

8.2.1. Pessimistic methods. The local-lag [Mauve et al. 2004] mechanism delays the ex-
ecution of operations to reduce the probability of the occurrence of inconsistency. It
usually delays commands according to a system-level delay value. The local-lag mech-
anism works efficiently when the value is larger than the largest network latency. Dis-
tributed transaction techniques such as two-phase commit (2PC) protocol are used in
DVE. For example, [Najaran et al. 2014] adopt the 2PC method to manage distributed
data by synchronizing events that span multiple servers.

8.2.2. Optimistic methods. AoS can be classified as an optimistic method which allows
that inconsistency exists in shared-zones. There are two major classes of optimistic
methods: time warp (TW) and dead reckoning (DR). In TW, all replicas are allowed
to execute update optimistically, and the method needs to record old states and roll
back when inconsistency happens. Although there are improved versions of TW such
as trailing state synchronization [Cronin et al. 2004] and [Ferretti 2008], TW requires
roll-backs, which may dissatisfy players; thus, we do not adopt this approach. DR,
widely applied in DVEs such as [Bharambe et al. 2008], is a technique to reduce the
network consumption for position updates. DR can be used in the AoS architecture to
reduce the network consumption of UAs.

Other approaches exist. [Lupei et al. 2010] use the software transaction memory
technique (STM) to build an FPS game which runs in a multi-core machine. STM may
have high overheads and transaction abort rates; thus, fine tuning of transactions and
even redesign of game logic are needed. [Zhang and Kemme 2011] and [Krammer et al.
2012] use different consistency protocols for different events. [Tang and Zhou 2010] use
multiple update frequencies for avatars to improve time-space consistency. Their work
can be used in ours to resolve the inconsistencies and reduce network consumption.

9. CONCLUSION AND FUTURE WORK
Multi-Avatar Virtual Environments (MAVEs) such as RTS games entertain millions
of people in small-scale, non-communicating game instances of only 8–16 players. To
enable a future generation of MAVEs, in this paper we investigate a new mechanism
and a system architecture built around it, which are scalable and have many desirable
properties.

Our main contribution is five-fold. Firstly, we conduct the first empirical investiga-
tion into the presence of areas of interest in MAVEs. We find that, unlike the other
virtual environments such as RPG and FPS games, in MAVEs users have multiple
areas of high interest and that interest location changes quickly. Secondly, our AoS
mechanism is novel in its use of update-based and event-based operation for areas
of interest and provides a versatile scalability-consistency trade-off. For the latter, the
AoS mechanism ensures that only areas of high interest are fully simulated, that areas
of limited interest only receive infrequent updates, and that areas of no interest do not
consume either computational or network resources. Thirdly, we propose an AoS-based
system architecture for scalable MAVEs, which supports the dynamic management of
multiple areas of interest and several more common, scalability-related techniques.
Fourthly, we implement this architecture as a real-world system, which is able to run

ACM Journal Name, Vol. 1, No. 1, Article 1, Publication date: January 201x.

1:22 S. Shen, S.-Y. Hu, A. Iosup, and D. Epema

RTS games up to 100 users and 5,000 avatars in the same virtual world. Fifthly, we
compare qualitatively and quantitatively our approach with various state-of-the-art
approaches, and show strong evidence that AoS-based approaches offer superior per-
formance and more flexibility for MAVEs.

For the future, we plan to investigate automatic tuning and balancing AoS-based
systems, and integrate the AoS architecture with cloud computing techniques.

References
0 A.D. team. 2014. A free, open-source game of ancient warfare. http://wildfiregames.com/0ad/. (2014).
D. Ahmed and S. Shirmohammadi. 2009. Zoning Issues and Area of Interest Management in Massively

Multiplayer Online Games. In Handbook of Multimedia for Digital Entertainment and Arts.
N. E. Baughman and B. N. Levine. 2001. Cheat-proof Playout for Centralized and Distributed Online Games.

In IEEE Conference on Computer Communications. 104–113.
Y. W. Bernier. 2001. Latency compensating methods in client/server in-game protocol design and optimiza-

tion. In Game Developers Conference.
A. R. Bharambe, J. R. Douceur, J. R. Lorch, T. Moscibroda, J. Pang, S. Seshan, and X. Zhuang. 2008. Donny-

brook: enabling large-scale, high-speed, peer-to-peer games. In ACM Conference on Applications, Tech-
nologies, Architectures, and Protocols for Computer Communications. 389–400.

J.-S. Boulanger, J. Kienzle, and C. Verbrugge. 2006. Comparing interest management algorithms for mas-
sively multiplayer games. In Workshop on Network and Systems Support for Games. 1–6.

E. Brewer. 2012. CAP Twelve Years Later: How the ”Rules” Have Changed. Computer 45, 2 (Feb. 2012),
23–29.

M. Buro and D. Churchill. 2012. Real-Time Strategy Game Competitions. AI Magazine 33, 3 (Sept. 2012),
106–108.

T. Chen and C. Verbrugge. 2010. A protocol for distributed collision detection. In Annual Workshop on Net-
work and Systems Support for Games. 1–6.

C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul, C. Limpach, I. Pratt, and A. Warfield. 2005. Live Migration
of Virtual Machines. In Symposium on Networked Systems Design & Implementation. 273–286.

M. Claypool. 2005. The effect of latency on user performance in Real-Time Strategy games. Computer Net-
works 49, 1 (Sept. 2005), 52–70.

E. Cronin, A. R. Kurc, B. Filstrup, and S. Jamin. 2004. An Efficient Synchronization Mechanism for Mirrored
Game Architectures. Multimedia Tools Appl. 23, 1 (May 2004), 7–30.

Y. Deng and R. W. H. Lau. 2014. Dynamic Load Balancing in Distributed Virtual Environments Using Heat
Diffusion. ACM Trans. Multimedia Comput. Commun. Appl. 10, 2 (Feb. 2014), 16:1–16:19.

C. Diot and L. Gautier. 1999. A distributed architecture for multiplayer interactive applications on the
Internet. IEEE Network 13, 4 (Aug. 1999), 6–15.

ESA. 2012. Essential Facts About the Computer and Video Game Industry: Sales, Demographics, and Usage
Data. (Jul 2012).

S. Ferretti. 2008. A synchronization protocol for supporting peer-to-peer multiplayer online games in overlay
networks. In International conference on Distributed event-based systems. 83–94.

G. Fiedler. 2010. What every programmer needs to know about game networking. (2010). http://bit.ly/7jSZl5.
D. Frey, J. Royan, R. Piegay, A. Kermarrec, F. Le Fessant, and E. Anceaume. 2008. Solipsis: A decentralized

architecture for virtual environments. In Workshop on Massively Multiuser Virtual Environments. 29–
33.

J. S. Gilmore and H. A. Engelbrecht. 2012. A Survey of State Persistency in Peer-to-Peer Massively Multi-
player Online Games. IEEE Trans. Parallel Distrib. Syst. 23, 5 (April 2012), 818–834.

C. Granberg. 2006. Programming an RTS Game With Direct3d. Charles River Media, Hingham, MA.
J. Gregory. 2009. Game Engine Architecture. A K Peters, Ltd., Natick, MA.
S.-Y. Hu and K.-T. Chen. 2011. VSO: Self-organizing Spatial Publish Subscribe. In Self-Adaptive and Self-

Organizing Systems. 21–30.
C.-Y. Huang, C.-H. Hsu, Y.-C. Chang, and K.-T. Chen. 2013. GamingAnywhere: an open cloud gaming system.

In ACM Multimedia Systems Conference. 36–47.
J. Keller and G. Simon. 2003. Solipsis: A Massively Multi-Participant Virtual World. In International Con-

ference on Parallel and Distributed Processing Techniques and Applications. 262–268.
B. Knutsson, H. Lu, W. Xu, and B. Hopkins. 2004. Peer-to-peer support for massively multiplayer games. In

IEEE Conference on Computer Communications. 96–107.

ACM Journal Name, Vol. 1, No. 1, Article 1, Publication date: January 201x.

Area of Simulation: Mechanism and Architecture for Multi-Avatar Virtual Environments 1:23

L. Krammer, G. Schiele, D. Koch, and C. Becker. 2012. Quality of Experience-Aware Event Synchronization
for Distributed Virtual Worlds. In IEEE International Conference on Parallel and Distributed Systems.
604–611.

D. Lake, M. Bowman, and H. Liu. 2010. Distributed scene graph to enable thousands of interacting users in
a virtual environment. In Workshop on Network and Systems Support for Games. 1–6.

H. Liu, M. Bowman, and F. Chang. 2012. Survey of state melding in virtual worlds. ACM Comput. Surv. 44,
4 (Aug. 2012), 21:1–21:25.

F. Lu, S. Parkin, and G. Morgan. 2006. Load Balancing for Massively Multiplayer Online Games. In Work-
shop on Network and Systems Support for Games. 1–6.

J. C. S. Lui and M. F. Chan. 2002. An Efficient Partitioning Algorithm for Distributed Virtual Environment
Systems. IEEE Trans. Parallel Distrib. Syst. 13, 3 (March 2002), 193–211.

D. Lupei, B. Simion, D. Pinto, M. Misler, M. Burcea, W. Krick, and C. Amza. 2010. Transactional memory
support for scalable and transparent parallelization of multiplayer games. In European Conference on
Computer Systems. 41–54.

M. Mauve, J. Vogel, V. Hilt, and W. Effelsberg. 2004. Local-lag and timewarp: providing consistency for
replicated continuous applications. IEEE Trans. Multimedia 6, 1 (Feb. 2004), 47 – 57.

J. McGee. 2011. The pros and cons of collision detection. http://wow.joystiq.com/2011/07/10/
breakfast-topic-the-pros-and-cons-of-collision-detection/. (2011).

P. Miller. 2011. Professional Gamers: A Day in the Life. PCWorld online article. http://www.pcworld.com/
article/221388/professional gamers a day in the life.html. (2011).

P. Morillo, S. Rueda, J. M. Orduña, and J. Duato. 2007. A Latency-Aware Partitioning Method for Distributed
Virtual Environment Systems. IEEE Trans. Parallel Distrib. Syst. 18, 9 (Sept. 2007), 1215–1226.

J. Müller, J. H. Metzen, A. Ploss, M. Schellmann, and S. Gorlatch. 2005. Rokkatan: scaling an RTS game
design to the massively multiplayer realm. In International Conference on Advances in computer enter-
tainment technology. 125–132.

M. T. Najaran, S.-Y. Hu, and N. C. Hutchinson. 2014. SPEX: Scalable Spatial Publish/Subscribe for Dis-
tributed Virtual Worlds Without Borders. In ACM Multimedia Systems Conference. 127–138.

RFC3284. 2002. RFC3284: The VCDIFF Generic Differencing and Compression Data Format. (2002).
http://tools.ietf.org/html/rfc3284.

P. Rosedale and C. Ondrejka. 2003. Enabling Player-Created Online Worlds with Grid Computing and
Streaming. Gamasutra Resource Guide. (2003).

S. Shen and A. Iosup. 2014. Modeling Avatar Mobility of Networked Virtual Environments. In Workshop on
Massively Multiuser Virtual Environments. 1–6.

S. Shen, O. Visser, and A. Iosup. 2011. RTSenv: An experimental environment for real-time strategy games.
In Workshop on Network and Systems Support for Games. 1–6.

X. Tang and S. Zhou. 2010. Update Scheduling for Improving Consistency in Distributed Virtual Environ-
ments. IEEE Trans. Parallel Distrib. Syst. 21, 6 (June 2010), 765–777.

M. Terrano and P. Bettner. 2001. 1500 Archers on a 28.8: Network Programming in Age of Empires and
Beyond. (2001). Game Developer Conference.

J. Waldo. 2008. Scaling in games & virtual worlds. ACM Queue 51, 8 (Aug. 2008), 38–44.
A. Yahyavi, K. Huguenin, and B. Kemme. 2012. Interest modeling in games: the case of dead reckoning.

Multimedia Systems 16, 3 (June 2012), 255–270.
A. Yahyavi and B. Kemme. 2013. Peer-to-Peer Architectures for Massively Multiplayer Online Games: A

Survey. ACM Comput. Surv. 44, 4 (Sept. 2013), 21:1–21:25.
A. Yu and S. T. Vuong. 2005. MOPAR: a mobile peer-to-peer overlay architecture for interest management of

massively multiplayer online games. In ACM Workshop on Network and Operating Systems Support for
Digital Audio and Video. 99–104.

K. Zhang and B. Kemme. 2011. Transaction Models for Massively Multiplayer Online Games. In IEEE
Symposium on Reliable Distributed Systems. 31–40.

L. Zhang and X. Tang. 2011. The Client Assignment Problem for Continuous Distributed Interactive Appli-
cations. In International Conference on Distributed Computing Systems. 203–214.

ACM Journal Name, Vol. 1, No. 1, Article 1, Publication date: January 201x.

Online Appendix to:
Area of Simulation: Mechanism and Architecture for Multi-Avatar
Virtual Environments

SIQI SHEN, ALEXANDRU IOSUP, DICK EPEMA, Delft University of Technology, The
Netherlands
SHUN-YUN HU, Academia Sinica, Taiwan, R.O.C.

In this appendix, we discuss in Section A how to integrate a live-migration technique
to make the UA-to-SA transitions smooth, present in Section B more experimental
results, and discuss in Section C how to alleviate the impact of Internet latency.

A. UA-TO-SA TRANSITION
We adapt the live migration technique proposed in [Clark et al. 2005], to make the
UA-to-SA transitions smooth from the perspective of the player. The procedure, which
we depict in Figure 14, consists of the following rounds:

(1) The SA server takes a snapshot of the sub-map it manages. The snapshot is trans-
ferred to the client. (round 1)

(2) While the snapshot is transferred to the client, the state of the sub-map may
change. If this happens, the difference between the previous snapshot and the cur-
rent game state is recorded, then, transferred to the client. (round 2)

(3) While the snapshot differences are transferred to the client, the sub-map may be
changed again; the new difference will be recorded, but re-transferred only when
needed. We limit the number of re-transfers to at most n (in our experiments, n = 3
delivers good results with low overhead) and only if the size of the information to
be exchanged exceeds a threshold t (i.e., 20KB). (round 3).

(4) The server stops the simulation, transfers the final difference of the sub-map to the
client, waits for the client’s acknowledgement, and, last, resumes the simulation.
The client becomes an SA client from this moment on (round 4).

As is depicted in Figure 14, the total time used for a UA-to-SA transition includes the
time needed to transfer the snapshot, plus the times needed to transfer the differences
of the snapshot. In round 4, the final round, the server will be stalled (paused). The
stall time is the time to transfer the final difference of the sub-map, plus one round-
trip time between the server and the client. Round 2 and each repetition of Round 3
are used to transfer the differences during the time of their either last round or last
repetition. In Round 2 and in each repetition of Round 3, the size of the differences will
be smaller than its last round or last repetition. Through these rounds, the size of the
final difference of the sub-map becomes smaller, and thus, the stall time is shorter2.

To evaluate the performance of the UA-to-SA transition, we conduct experiments in
simulation and with the prototype. For simulation, the default snapshot size is config-
ured as 1 MB, the default snapshot changing rate is 1 KB/s, and the one-way latency
between the server and the client is 50 ms. These simulation parameters are realistic,
within the range of modern RTS games. For comparison, we setup an Age of Empires
HD (AoE) game (released in 2013), with 6 players each with 50 avatars3. The first

2It is possible that the sub-map dramatically changes during the transition, which increases the size of the
differences for the next data transmission, but this is rare (or even impossible for typical DVE designs).
3in Section 6 and 7, on average, each sub-map has 6 player with 50 avatars each, by default.

c© 201x ACM 0000-0000/201x/01-ART1 $15.00
DOI:http://dx.doi.org/10.1145/0000000.0000000

ACM Journal Name, Vol. 1, No. 1, Article 1, Publication date: January 201x.

App–2 S. Shen, S.-Y. Hu, A. Iosup, and D. Epema
SA Server SA Client

round 3

differences

round 1

snapshot

 round 2

difference

round 4

stop and

then start

Total

transition

time

Stall time

Fig. 14. Live UA-to-SA transition.

1 5 10 15 20 25 30 35
0

50

100

150

Sub−map snapshot size [MB]

S
ta

ll
tim

e
[m

s]

4Mb 8Mb 16Mb 32Mb

1 5 10 15 20 25 30 35
0

5

10

15

20

25

30

35

40

45

50

Sub−map snapshot size [MB]

T
ot

al
 tr

an
si

tio
n

tim
e

[s
]

4Mb 8Mb 16Mb 32Mb

Fig. 15. UA to SA transitions with different sub-
map sizes: (left) stall time and (right) total transi-
tion time.

1 5 10 15 20 25 30 35
0

50

100

150

Sub−map changing rate [KB/s]

S
ta

ll
tim

e
[m

s]

4Mb 8Mb 16Mb 32Mb

1 5 10 15 20 25 30 35
0

0.5

1

1.5

2

2.5

3

Sub−map changing rate [KB/s]

T
ot

al
 tr

an
si

tio
n

tim
e

[s
]

4Mb 8Mb 16Mb 32Mb

Fig. 16. UA to SA transitions with different sub-
map changing rates: (left) stall time and (right) to-
tal transition time.

snapshot of the game is 0.62 MB. The snapshot of the game slightly increases during
the game, and one hour later, the size of the snapshot reaches 0.98 MB. Assuming that
the snapshot increase linearly over time, the snapshot changing rate of AoE is less
than 1 KB per second. For our prototype with the same setup, the snapshot size is
lower than 100 KB and its changing rate is about 1 KB per second.

The simulation results show that the stall time of the live UA-to-SA transition is
very low, less than 140 ms. That is, a command given by a player to an avatar located
within the sub-map may under the most unfavorable conditions be delayed for an ad-
ditional 140 ms, which is acceptable latency for RTS games [Claypool 2005]. Figure 15
shows the stall time and the total transition time as functions of the snapshot size,
for different client download bandwidth, ranging from 4 Mbit/s to 32 Mbit/s. Figure 15
(left) shows that the stall time is very small (≤ 140 ms) for all the realistic sub-map
snapshot sizes we have tried. Figure 15 (right) shows the total transition time, which
increases with the increasing snapshot size. Figure 16 shows the stall time and the
total transition time as functions of the sub-map changing rate. As indicated by Fig-
ure 16 (left), the stall time remains small (≤ 140 ms) for all the realistic changing rates
we have tried. The total transition time, as is displayed in Figure 16 (right), increases
only slightly, when the sub-map changing rate increases; overall, the transition time
remains low (≤ 2.5 s) for all changing rates we have tried. For experiments with the
prototype, the server and the client are located on the same computer, the bandwidth
between them is capped at 16 Mbit/s, and the latency between the server and the client
is artificially set to 50 ms. The results show that the stall time is under 110 ms and
that the total transition time is under 215 ms. We also conduct experiments with vary-
ing n and t, and find that they do not have a significant impact on the performance of
the UA-to-SA transitions.

B. SCALABILITY EVALUATION
We evaluate in Section B.1 how frequently players change their AoIs, and in Sec-
tion B.2 the impact of 2 workloads on network performance.

ACM Journal Name, Vol. 1, No. 1, Article 1, Publication date: January 201x.

Area of Simulation: Mechanism and Architecture for Multi-Avatar Virtual Environments App–3

0 50 100 150 200 250
0

10

20

30

40

50

60

Distance threshold [tile]

N
um

be
r

of
 c

om
m

an
ds

WI
WD
WW
SAMOVAR
StarCraft II

Fig. 17. Dynamics of interest.

10 20 30 40 50 60 80 100 200 400

10
2

10
3

10
4

Number of usersS
er

ve
r

m
es

sa
ge

s
se

nt
 p

er
 ti

ck

SAoI Proxy MAoI EBLS AoS

10 20 30 40 50 60 80 100 200 400

10
2

10
3

10
4

Number of usersS
er

ve
r

m
es

sa
ge

s
se

nt
 p

er
 ti

ck

SAoI Proxy MAoI EBLS AoS

Fig. 18. Network upload: (left) the WW 50% workload; (right)
the WWG workload. (Logarithmic scale on vertical axes)

B.1. AoI changes
The performance of AoS can be affected by how frequently the players change their
AoIs. In this section, we study how frequently the AoI changes for the 4 workloads
used throughout this work: WI, WD, WW, and SAMOVAR. We apply the same analysis
as we have used in Section 3.2, Figure 2 (right). The analysis divides each player’s
command history into 10-second-windows, and identifies in each window the first com-
mand (if it exists). It then counts for each 10-second-window, the number of commands
whose distance to the first command is longer than certain threshold (e.g., 25 tiles,
which means about one full screen). The higher the number of commands far from the
first command, the more the AoI changes spatially. The results for the 4 workloads
and for the StarCraft trace, are depicted in Figure 17. On average, WI, WD, WW, and
SAMOVAR have 40 to 55 commands over the distance threshold of 25 tiles, whereas
the value for StarCraft is less than 4. This indicates that the AoI changes of the 4
workloads are much higher than that of the StarCraft trace, which gives a strong indi-
cation that, with real-human players, the scalability results of AoS will be even better
than the results suggested by experiments with the 4 workloads.

B.2. Workloads
We further investigate the impact of the workload on network performance. To this
end, we consider two variations of WW: WW-50 and WWG. These two workloads differ
in the preference of avatars of visiting high-interest areas. For WW-50, about 50%
of the destinations of the avatars will be located inside the high-interest sub-maps of
each player. For WWG, each avatar will go to any grid of the map according to the grid’s
weight. WWG is an extreme case, in which the players do not have any high-interest
areas. Figure 18 (left) shows the results for WW-50, for WW-50, AoS consumes less
network bandwidth than the others, except EBLS. AoS consumes about 20% to 40%
less bandwidth than MAoI. Compared to WW (shown in Figure 5 (left)), AoS consumes
more network bandwidth under WW-50. This is because, with more avatars moving
outside the SAs of players, more state-updates need to be sent. Figure 18 (right) shows
the results for WWG. Similarly to WW-50, AoS consumes the least bandwidth, except
EBLS. AoS consumes about 5% to 20% less bandwidth than MAoI. Under WWG, the
benefit of message reduction brought by AoS is lower than in other cases. This happens
because the avatars do not have any preference to visit the high-interest sub-maps,
thus, AoS does not significantly reduce the network consumption.

C. INTERNET LATENCY
In this section, we propose a mechanism, Dynamic Delay-Execution (DDE), to alleviate
the impact of Internet latency, and we show that the DDE mechanism can keep both
the response time and the stall time low, and thus can fulfill the technical requirements
for good user experience.

ACM Journal Name, Vol. 1, No. 1, Article 1, Publication date: January 201x.

App–4 S. Shen, S.-Y. Hu, A. Iosup, and D. Epema

101100 103102 105104 121120...

is executed 2 turns later, at tick 104

1 turn = 2 ticks

is executed 10 turns later, at tick 121

Fig. 19. Dynamic delay-execution.

10 20 30 40 50 60
0

5

10

15

20

25

30

35

40

45

Number of users

S
ta

ll
tim

e
pe

r
tic

k
[m

s]

EBLS
static−2
static−max
dynamic−0
dynamic−2

10 20 30 40 50 60
0

50

100

150

200

250

300

350

Number of users

M
ea

n
re

sp
on

se
 ti

m
e

[m
s]

EBLS
static−2
static−max
dynamic−0
dynamic−2

Fig. 20. Performance of EBLS and AoS with
different delay-execution mechanisms: (left) Stall
time and (right) Response time.

C.1. Dynamic Delay-Execution Mechanism
To be certain of having obtained all the needed information, both the server and the
clients need to wait until the end of the current turn. Because messages are sent
through the Internet, the update of the virtual world is slowed down by the slowest
Internet connection. To alleviate the delays introduced by the Internet, we propose the
DDE mechanism, which overlaps the communication with the simulation updates, by
delaying commands issued during the current simulation turn to be executed not in
the next turn, but after x more turns.

The DDE mechanism allows each client to have a different execution delay (ED)
for each of the area servers. The DDE is an improvement of the traditional delay-
execution mechanism [Terrano and Bettner 2001], which sets a single system-level de-
lay for all clients. For the traditional delay-execution mechanism, larger delays ensure
better tolerance to Internet latency, but make the game less responsive and slow down
the advancement of virtual clock. The DDE can make the advancement of the virtual
clock without any slowdown, and ensures the responsiveness of users’ commands. The
schematic plot of the dynamic-delay execution mechanism is depicted in Figure 19. As
shown, cmd1001 issued at tick 100 by user 1 will be executed at tick 104, and cmd1012
issued by user 2 at tick 101 will be executed 20 ticks later after it is issued.

We describe how to calculate the ED. The commands issued from each client need to
arrive at the server. Then the server sorts all received commands and sends the sorted
commands back to clients. The time period between the moment when the commands
are issued and when they are executed is at least the round-trip time. Thus, the ED
xci,sj between client i and server j is calculated by xci,sj = dlci,sj × 2÷ T e, where lci,sj
is the one-way latency between client i and server j, T is the simulation turn duration,
and de is the ceiling function.

As commands issued during the same virtual tick may be scheduled to be run in
different ticks, the commands from clients with low latency may be executed faster.
For fairness, the area server imposes a fairness constraint F , to limit the advantage
gained by faster Internet connection, and defined as the maximal gap between the
smallest and the largest ED of all the clients of an area server. Thus the execution
orders of commands issued by all clients of an area will diverge by at most F turns. For
example, by setting F = 5, cmd1001 in Figure 19 will be executed 5 turns later instead
of 2, while cmd1012 remains the same. By default, we set F = 0. Any event/state-update
that is issued in one area server and needs also to be processed by a neighbouring area
server, will also be delayed. The ED of events/state-updates exchanged between server
s1 and s2, xs1,s2 , can be calculated as d(a + b) ÷ T e, where a is the largest clients to
servers latency (one-way), b is the inter-server latency between s1 and s2, and T is the
simulation turn duration.

The one-way latency between two nodes is estimated using the mean value of multi-
ple round-trip times divided by two. It may happen that some nodes experience tempo-
rary high jitter. For nodes experiencing high jitter (e.g., the jitter is higher than 0.2 of
mean round-trip time), the latency is calculated as the latest largest measured value

ACM Journal Name, Vol. 1, No. 1, Article 1, Publication date: January 201x.

Area of Simulation: Mechanism and Architecture for Multi-Avatar Virtual Environments App–5

instead of the mean value. The DDE mechanism runs periodically (e.g., every 30 sec-
onds) to reflect the change of Internet latency. Each server needs to measure its latency
between clients and determine the ED for each client.

Using the DDE mechanism, the players with lower latency still have unfair advan-
tages to execute their operations. However, with the DDE mechanism, users from dif-
ferent parts of the world can join the DVEs and play with some fairness guarantee,
instead of simply kicking a player if the players connection is laggy (as in the game
OpenTTD), or no guarantee (as in WoW).

C.2. Experiments using Internet latency traces
We evaluate the impact of latency on stall time and response time, for AoS with dif-
ferent delay-execution mechanisms, and for EBLS, under the WD workload. We show
that the DDE mechanism can achieve negligible stall time and keep the response time
low. Thus, AoS can work well in an Internet-based environment. As MAoI used for com-
parison has the same command processing module as AoS in the server-side, all the
metrics shown in this section are the same for MAoI and for AoS.

We compare AoS with the DDE mechanism to AoS with two static delay-execution
mechanisms: static-2 and static-max. Static-2 delays all the commands for 2 turns (the
default AoS setting in LAN), while static-max mechanism delays all the commands by
a duration which is the largest round-trip latency divided by the turn duration. For the
DDE mechanism, we use two configurations by setting the fairness parameter F = 0:
dynamic-0 and F = 2: dynamic-2.

The simulation environment is the same as Section 6. To simulate latency, we use
the King dataset4, an end-to-end host latency dataset measured using King’s method.
As the King dataset contains only average latency values, we use the PingER5 trace to
simulate jitter, we use a one-day ping data set from PingER, which contains 50 pairs
of end-to-end ping history for European hosts. From the 56,856 values in the PingER
dataset, we create a distribution of jitter (additional latency) observed between pairs of
host. Then, we use in our simulation latencies calculated as l + ∆l, where l is sampled
from the King dataset, and ∆l is sampled from the jitter distribution.

We look at two metrics: the response time and the stall time, which we define as
follows. The response time is defined as the time gap between the moment when a
command is issued and the moment when it is executed/perceived on the players’ com-
puter. The stall time is the time for a client/server to wait to advance the game, the
lower value the better. Each experiment is repeated 10 times, and the metrics shown
are the average values.

Figure 20 (left) shows the stall time of EBLS and AoS with all the mechanisms.
Dynamic delay-execution (dynamic-0 and dynamic-2) and static-max mechanisms can
keep the stall time negligible, while the others cause the gaming operation to slow
down significantly. Compared to AoS with dynamic delay-execution, EBLS has much
higher stall time per tick, because in EBLS the tick advancement depends on the slow-
est clients. For all the mechanisms that exhibit high stall time, the quality of experi-
ence of players will suffer. In contrast, the result indicates that the dynamic delay-
execution performs well under Internet conditions.

Figure 20 (right) shows the response time. The static-max mechanism has the high-
est response time, while the dynamic-2 achieves the lowest response time. EBLS has
higher response time than dynamic-2 and slightly lower response time than dynamic-
0. Figure 20 (right) also shows that by setting F higher (increased unfairness between
players with fast and slow Internet connections), the response time is lower.

4https://pdos.csail.mit.edu/p2psim/kingdata/, 5http://www-iepm.slac.stanford.edu/pinger/

ACM Journal Name, Vol. 1, No. 1, Article 1, Publication date: January 201x.

