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Abstract
Motivation: Partial order alignment is a widely used method for computing multiple sequence alignments, with applications in genome assem-
bly and pangenomics, among many others. Current algorithms to compute the optimal, gap-affine partial order alignment do not scale well to 
larger graphs and sequences. While heuristic approaches exist, they do not guarantee optimal alignment and sacrifice alignment accuracy.
Results: We present POASTA, a new optimal algorithm for partial order alignment that exploits long stretches of matching sequence between 
the graph and a query. We benchmarked POASTA against the state-of-the-art on several diverse bacterial gene datasets and demonstrated an 
average speed-up of 4.1× and up to 9.8×, using less memory. POASTA’s memory scaling characteristics enabled the construction of much 
larger POA graphs than previously possible, as demonstrated by megabase-length alignments of 342 Mycobacterium tuberculosis sequences.
Availability and implementation: POASTA is available on Github at https://github.com/broadinstitute/poasta.

1 Introduction
Multiple sequence alignments (MSAs) are central to compu-
tational biology. MSAs have many applications, including 
computing genetic distances, which can serve as a basis for a 
phylogeny; determining consensus sequences, e.g. to perform 
read error correction; and identifying allele frequencies, e.g. 
for sequence motif identification.

Computing the optimal MSA with the “sum of all pairs” 
(SP) score is an NP-complete problem (Wang and Jiang 1994). 
These classical exact algorithms have a runtime exponentially 
related to the number of sequences and are thus intractable for 
even modest-sized datasets. Instead, nearly all popular MSA 
tools, including MAFFT (Katoh and Standley 2013) and 
MUSCLE (Edgar 2004), compute the MSA progressively: first, 
an alignment between two sequences is computed, then addi-
tional sequences are added one by one until all sequences have 
been aligned. The runtime of these approaches is linear in the 
number of sequences instead of exponential. While MSAs 
computed this way do not necessarily find the globally optimal 
solution for the SP objective, they are still highly useful 
approximations to otherwise intractable alignment problems.

Partial order alignment (POA) is a well-known progressive 
MSA approach that pioneered using a graph to represent an 
MSA rather than a sequence profile (Lee et al. 2002). This 
improved the ability to represent indels, leading to higher- 
quality alignments. Since POA is a progressive MSA algo-
rithm, the optimal SP score is not guaranteed for the entire 

MSA. However, POA does guarantee that each individual 
sequence-to-graph alignment is optimal.

POA is relevant to many applications, including de novo 
genome assembly (e.g. read error correction and consensus 
generation) (Chin et al. 2013, Loman et al. 2015, Vaser et al. 
2017), RNA isoform inference (Lee 2003), structural variant 
(SV) characterization (Chaisson et al. 2019), and variant 
phasing (Holt et al. 2023).

POA is also essential to two recent human pangenome 
graph construction pipelines (Garrison et al. 2024, Hickey 
et al. 2024). These pipelines are pushing the limits of POA, as 
aligning long stretches of homologous sequence among input 
genomes requires substantial computing and memory resour-
ces. For example, consider the gap-affine alignment of a 500 
kbp sequence to a graph with 500k character-labeled nodes. 
Conventional POA approaches have a runtime and memory 
complexity of OðjVjmÞ, i.e. a product of the number of nodes 
in a POA graph jVj and the sequence length m. This example 
would, therefore, require about 3 TB of RAM (assuming 32- 
bit integers for storing alignment costs in three alignment 
state matrices).

Several tools, including SPOA (Vaser et al. 2017) and 
abPOA (Gao et al. 2021), have been developed to address the 
need for faster and more memory-efficient POA algorithms. 
The current state-of-the-art, SPOA, is a reimplementation of 
the original algorithm, which accelerates computing the dy-
namic programming (DP) matrix by using single-instruction- 
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multiple-data (SIMD) instructions available on modern 
CPUs. While faster, SPOA still computes the full DP matrix 
and thus does not ameliorate demands on memory usage. 
abPOA additionally improves performance by applying an 
adaptive banding strategy to partially compute the DP 
matrix. However, this sacrifices the guarantee of finding the 
optimal sequence-to-graph alignment.

Here, we present POASTA: a fast, memory-efficient, and 
optimal POA algorithm that computes many fewer alignment 
states than SPOA, thus enabling the construction of much 
larger POA graphs (Fig. 1). It is built on top of the A� algo-
rithm (Hart et al. 1968), with a new POA-specific heuristic. 
Inspired by the recently published wavefront algorithm for 
pairwise alignment (Marco-Sola et al. 2021), it also exploits 
exact matches between a query sequence and the graph. We 
additionally introduce a novel superbubble-informed 
(Onodera et al. 2013) technique for pruning the number of 
computed alignment states without sacrificing alignment op-
timality. We benchmarked POASTA against SPOA (Vaser 
et al. 2017) on diverse sets of bacterial housekeeping genes 
extracted from RefSeq and demonstrated its increased perfor-
mance. Additionally, we constructed megabase-length align-
ments of 342 Mycobacterium tuberculosis sequences, 
demonstrating its reduced memory usage and highlighting 
POASTA’s ability to align much longer sequences than previ-
ously possible.

2 Materials and methods
POA algorithms compute an MSA by iteratively computing 
the alignment of a query to a directed acyclic graph (DAG) 
representing the MSA from the previous iteration (Lee et al. 
2002). Instead of the original DP formulation (Supplementary 
Methods; Supplementary Fig. S1a), POASTA’s algorithm is 
based on an “alignment graph” (Supplementary Fig. S1b; not 
to be confused with the POA graph), enabling the use of 
common graph traversal algorithms such as the A� algorithm 
to compute alignments (Hart et al. 1968, Rautiainen and 
Marschall 2017, Ivanov et al. 2020, Jain et al. 2020). 

POASTA further accelerates alignment using three novel tech-
niques: (1) a cheap-to-compute, POA-specific heuristic for the 
A� algorithm (Fig. 2a), (2) a depth-first search (DFS) compo-
nent, greedily aligning exact matches between the query and 
the graph (Fig. 2b); and (3) a method to detect and prune 
alignment states that are not part of the optimal solution, in-
formed by the POA graph topology (Fig. 2c). Together, they 
substantially reduce the number of computed alignment states 
(Supplementary Fig. S2).

2.1 Definitions and notation
To describe the algorithm in detail, we will use the following 
notation. A POA graph G¼ ðV;EÞ is a character-labeled 
DAG, where nodes v 2 V represent the symbols in the input 
sequences, each labeled with a character from an alphabet R. 
Edges ðu;vÞ 2 E connect nodes that are adjacent in at least 
one input sequence. We additionally assume the POA graph 
has a special start node ν with outgoing edges to all nodes 
with no other incoming edges and a special termination node 
τ with incoming edges from all nodes with no other outgo-
ing edges.

The optimal alignment of a query sequence Q¼ q1q2 . . .qm 
(of length m) to G is the alignment of Q to a path 
π ¼ νv1v2. . .vnτ, spelling a sequence R that minimizes the 
alignment cost C (Supplementary Fig. S1a). Commonly used 
cost models are linear gap penalties and gap-affine penalties. 
In the former, each gap position is weighted equally, and the 
alignment cost is defined as C¼NmΔmþNxΔxþNgΔg, 
where Nm represents the number of matches, Nx is the num-
ber of mismatches, and Ng is the total length of gaps. The 
cost of each alignment operation is represented by Δm;Δx, 
and Δg, representing the cost of a match, mismatch, and a 
gap, respectively. In the case of gap-affine penalties, opening 
a new gap has a different (typically higher) cost than extend-
ing an existing gap. The total cost is defined as 
C¼NmΔmþNxΔxþNoΔoþNgΔe, with No the number of 
distinct gaps and Δo the cost of opening a new gap, and Δe 

the cost of extending a gap (Durbin et al. 1998). POASTA 
supports both the gap-linear and the gap-affine cost models, 

Figure 1. Representation of the dynamic programming matrix to compute the global alignment of a nusA gene sequence (x-axis) to a POA graph 
constructed from 50 other nusA gene sequences (y-axis). Each pixel represents a computed alignment state, and the color represents the alignment cost 
of that state. White pixels represent uncomputed states.
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though it constrains Δm to be zero and all other costs 
Δx;Δo;Δg;Δe to be ≥ 0. Additionally, in case of the gap-affine 
model, it requires that the gap open cost Δo is greater 
than the gap extension cost Δe. For clarity, we focus on the 
gap-linear cost model; the use of POASTA with the gap- 
affine cost is explained in the Supplemental Methods.

The alignment graph GA ¼ ðVA;EAÞ is a product of the 
POA graph and the query sequence, and paths through it rep-
resent possible alignments between them. Nodes hv; ii 2 VA ¼

ðV ×f0;1; . . .;mgÞ represent “alignment states” with a cursor 
pointing to a node v in the POA graph and a cursor to a 
query position i (Supplementary Fig. S1b). Edges in the align-
ment graph correspond to different alignment operations, 
such as (mis)match, insertion, or deletion, and are weighted 
with the respective alignment cost. Edges connect alignment 
states where either one (indel) or both of the cursors have 
moved ((mis)match), and the construction of edges is further 
detailed in the Supplementary Methods. The lowest-cost path 
in the alignment graph from hν;0i to alignment termination 
state hτ;mi is equivalent to the optimal alignment of Q to G.

2.2 Optimal alignment with A� using a minimum 
remaining gap cost heuristic
To compute the lowest-cost path in the alignment graph, i.e. 
the optimal alignment, POASTA uses the A� algorithm (Hart 
et al. 1968). For POASTA, we adapted the widely used gap 
cost heuristic for pairwise alignment to POA (Fig. 2a) 
(Ukkonen 1985, Hadlock 1988). This heuristic is 
“admissible”, i.e. a lower bound on the true remaining cost, 
thus guaranteeing that A� finds the lowest-cost path. The in-
tuition behind the heuristic is to prioritize alignment states in 

which the length of the unaligned query sequence is similar to 
the path lengths to the end node τ.

To compute heuristic hhv; ii, POASTA scans the POA 
graph before alignment starts and stores the shortest and lon-
gest path length to the end node τ for all nodes in the graph, 
denoted as dmin

v;τ and dmax
v;τ . This can be computed in OðVþEÞ

time by visiting the nodes in reverse topological order. 
POASTA compares these path lengths to the length of the un-
aligned query sequence lr ¼m − i and infers the minimum 
number of indel edges to traverse from hv; ii to the alignment 
termination hτ;mi state as follows:

Definition 1 (Minimum number of indel edges). 

Nmin
g ¼

lr − ðdmax
v;τ − 1Þ if dmax

v;τ − 1< lr

ðdmin
v;τ − 1Þ− lr if dmin

v;τ − 1> lr
0 otherwise

8
><

>:
(1) 

We subtract one from dmin
v;τ and dmax

v;τ to exclude the 
edge toward τ.  

Proof. See Supplemental Methods.                                        w   

Combining the computed minimum number of indel edges 
to traverse with the alignment cost model, e.g. the linear gap 
cost model, enables us to compute the heuristic.

Definition 2 (Minimum remaining gap cost heuristic). 

Figure 2. POASTA is based on the A� algorithm and accelerates alignment through three algorithmic innovations: (a) A novel heuristic for POA that 
prioritizes alignment states with a low minimum remaining gap cost (light-colored squares); i.e. states where the unaligned query sequence length is 
similar to the path lengths to the POA graph end node τ. (b) Reducing the number of computed alignment states by combining the A� algorithm with a 
depth-first search component, greedily aligning matches between the query and a path in the graph (black arrow). Adjacent insertion and deletion states 
are only queued when encountering a mismatch (squares with dashed borders). (c) Using knowledge about superbubble topology to prune states not 
part of the optimal solution. POASTA checks whether the best-case alignment paths (blue and green arrows) from a state under test (red square) can 
improve over the costs of implicitly opened gaps from prior reached bubble exits (bordered squares). All examples use the linear gap cost model 
with Δm ¼ 0;Δx ¼ 4;Δg ¼ 2.
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hhv; ii ¼ Nmin
g Δg (2) 

Lemma 1 (Admissibility). hhv; ii is admissible.  

Proof. The true remaining alignment cost, using linear gap 
penalties and assuming a match cost Δm of zero, is 
defined as Cr ¼NxΔxþNgΔg, where Nx and Ng 

represent the number of remaining mismatches and 
the total remaining gap length, respectively, Δx the 
mismatch cost, and Δg the gap cost. 
Using Definition 1, we infer that Ng ≥ Nmin

g . Since the 
mismatch cost Δx ≥ 0, we note that the NxΔx ≥ 0, and 
thus observe that 

NxΔxþNgΔg ≥ Nmin
g Δg ) Cr ≥ hhv; ii:

hhv; ii is thus a lower bound on the true remaining 
alignment cost.                                                                 w   

2.3 Depth-first alignment of exact matches between 
query and graph
To further speed-up alignment and reduce the number of 
computed alignment states, POASTA greedily aligns exact 
matches between the query and graph (Fig. 2b). This is possi-
ble because POASTA requires that the alignment cost for a 
match is zero and all other alignment costs be ≥ 0. 
Traversing a match edge hu; ii ! hv; iþ1i will always be the 
optimal choice if the latter state has not been visited yet since 
match edges have zero cost and all other paths (requiring 
indels) will have higher or equal cost (Ivanov et al. 2020, 
Marco-Sola et al. 2021). This implies that in the presence of 
an unvisited match, we can ignore insertion edge hu; ii !
hu; iþ1i and deletion edge hu; ii ! hv; ii.

To implement this, POASTA combines the regular A� algo-
rithm with a depth-first search (DFS) component. When a 
state hu; ii is popped from the A� queue, we initiate a DFS 
from this state. We assess whether a successor state 
hv; iþ1i v : ðu;vÞ 2 E is a match; if it is, we push it on the 
stack to be processed in the next DFS iteration; when there is 
a mismatch, we append it to the A� queue. In the latter case, 
we no longer can ignore the insertion and deletion edges, so 
we additionally queue insertion state hu; iþ1i, and deletion 
state hv; ii. Note that, just like regular DFS, a state is removed 
from the stack after all its successors (matches or mismatches) 
have been explored. Thus, using DFS enables greedily align-
ing long stretches of exact matches, even in the presence of 
branches in the graph.

2.4 Pruning alignment states not part of the 
optimal solution
When POASTA’s depth-first alignment finds a long stretch of 
matching sequence, the corresponding path through the POA 
graph might traverse a “superbubble” (Onodera et al. 2013). 
A superbubble (s, t) is a substructure in the POA graph with 
specific topological features (Supplementary Fig. S3): it is 
acyclic; it has a single entrance s and a single exit t; all paths 
leaving s should end in t; and no path from “outside” the 
superbubble can have an endpoint inside the bubble. The set 
of nodes U on paths from s to t is called the “interior” of a 

bubble, which can be empty. In a POA graph, superbubbles 
represent the alleles present at particular loci in the MSA.

POASTA exploits the fact that all paths through a super-
bubble have a common endpoint, its exit t. If an alignment 
state ht;pi is reached during alignment with a particular cost 
Cht;pi, POASTA can detect whether another yet-to-visit state 
hv; ii : v 2U[ fsg that is part of the same superbubble, can 
improve over this cost. This is especially effective when com-
bined with the depth-first greedy alignment described above; 
if a bubble exit is reached at a low cost because of a long 
stretch of matching sequence, we can often prune alignment 
states on alternative paths through the bubble because they 
cannot improve over the already-found path.

To quickly retrieve topological information about super-
bubbles, POASTA constructs a superbubble index before 
alignment. For every node in the POA graph, it stores the 
superbubbles in which it is contained, along with the shortest 
and longest path length to the corresponding superbubble 
exit (Fig. 3a). For example, the red node (node 5) in the ex-
ample shown in Fig. 3b has two paths to the superbubble exit 
(node 13): one path with length 2 (blue) and one path with 
length 4 (green). POASTA identifies superbubbles using the 
OðVþEÞ algorithm described by G€artner et al. (2018). The 
shortest path lengths can be computed using a backward 
breadth-first search (BFS), and the longest path lengths can 
be computed by recursively visiting nodes in postorder, both 
OðVþEÞ operations.

To test if a state hv; ii should be pruned, POASTA first uses 
the superbubble index to infer the range of states 
ht; jmini . . . ht; jmaxi reachable from hv; ii assuming the best-case 
scenario of traversing zero-cost match edges (Fig. 3c). For ex-
ample, when aligning a query CCGCTTTCGAGCCC to the 
graph in Fig. 3b, POASTA will initially find a long stretch of 
matches between the query and a path in the graph, travers-
ing the superbubble (4, 13) (Fig. 3d; grey squares). In a fol-
lowing iteration, it tests alignment state h5;5i, where node 5 
is part of the same superbubble (4, 13), which is reached with 
an alignment cost 4 (Fig. 3d; red square). It looks up the path 
lengths to the superbubble exit dmin

5;13 ¼ 2 and dmax
5;13 ¼ 4 and 

infers that we can reach h13;7i and h13;9i from h5;5i with 
the same alignment cost of four (Fig. 3d; blue and green 
arrows and dotted squares).

POASTA can now compare this best-case alignment cost, 
when reached from a state hv; ii, to the alignment costs of 
states that reached the superbubble exit prior, or an 
“implicitly opened gap” from those. Implicitly opened gap 
costs are upper bounds on the cost for yet-to-visit alignment 
states and are computed on the fly when testing to prune a 
state (Fig. 3e). For example, the green path in Fig. 3d could 
reach alignment state h13;9i with an alignment cost of four. 
However, alignment state h13;9i is also reachable from the 
prior reached bubble exit h13;8i, by opening an insertion and 
reaching it with a lower cost of two (Fig. 3e). Similarly, the 
blue path in Fig. 3d could reach alignment state h13;7i with 
an alignment cost of four. This state has not yet been reached 
and is also not reachable by opening a gap from a previously 
reached exit. However, suppose we extend the blue path, as-
suming additional traversal of zero-cost match edges. In that 
case, we reach an alignment state h14;8i which is reachable 
from a previously reached exit by opening a deletion. The 
opened deletion would reach h14;8i with a cost of two, lower 
than the cost of four when reached through the blue path. 
Since both best-case scenarios from h5;5i would result in 
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higher alignment costs compared to opened indels from a 
prior reached exit, POASTA infers h5;5i will not be part of 
the optimal solution and prunes it from further 
consideration.

In the example discussed above, the bubble exit was only 
reached once. Bubble exits, however, can be reached multiple 
times during alignment (with varying alignment costs). 
All previously reached positions should be considered when 
testing whether a state can be pruned (Supplementary 
Fig. S4). The Supplemental Methods further detail how 
POASTA prunes alignment states when the bubble exit has 
been reached multiple times.

3 Results
3.1 Benchmarking using bacterial 
housekeeping genes
To compare POASTA’s speed and memory usage to the cur-
rent state-of-the-art, we generated multiple benchmark data-
sets from bacterial housekeeping genes (dnaG, nusA, pgk, 
pyrG, and rpoB). These genes are present in nearly all bacteria 
and are commonly used to create bacterial phylogenies, requir-
ing MSA (Wu and Eisen 2008). We downloaded all 40 188 
RefSeq-complete genomes representing the breadth of bacte-
rial diversity and extracted genes of interest using the accom-
panying gene annotations. Gene sequences were deduplicated 
and coarsely clustered using single-linkage hierarchical cluster-
ing. This resulted in multiple genus-spanning clusters. For 
each gene family, we selected one or more clusters as bench-
mark datasets, choosing clusters with at least 100 sequences 
and varying pairwise ANI (Supplemental Methods). The 13 
selected benchmark sets each contained 140–2385 gene 

sequences, with mean sequence lengths of 1–4 kbp and pair-
wise ANIs of 82%–97% (Supplemental Table S1).

3.2 POASTA constructs MSAs 4× faster than other 
optimal methods
We assessed POASTA’s runtime and memory compared to 
SPOA, the only other POA algorithm that guarantees optimal 
POAs (Vaser et al. 2017). We did not benchmark against gen-
eral sequence-to-graph aligners such as Astarix (Ivanov et al. 
2020), GWFA (Zhang et al. 2022), PaSGAL (Jain et al. 
2019), and GraphAligner (Rautiainen and Marschall 2020) 
since these are unable to compute MSAs and we would be un-
able to compare total runtime. We ran POASTA and SPOA 
to compute the full MSA of the 13 selected datasets and 
recorded their total runtime and memory usage.

For 12 of 13 datasets, POASTA computed the complete 
MSA faster than SPOA, achieving an average speed-up of 
4.1×. The highest speed-up was 9.8× (Fig. 4a). The one in-
stance where SPOA was faster corresponded to the gene set 
with the lowest pairwise ANI (82.6%). POASTA’s strongest 
relative performance was in settings with ANIs of 90%– 
100% and sequences longer than 1500 bp (Fig. 4b and c). 
Furthermore, SPOA required, on average, 2.6× more mem-
ory than POASTA (Fig. 4d–f).

We also compared POASTA’s runtime and memory to 
abPOA, a popular tool for POA that does not guarantee opti-
mal alignment (Gao et al. 2021). As expected, due to its 
adaptive banding strategy, abPOA is faster than POASTA 
(3.5×; Supplementary Fig. S5a). Surprisingly, abPOA used 
more memory than POASTA across nearly all benchmark 
sets (Supplementary Fig. S5b), as it allocates memory for the 
entire matrix, even though it only computes a fraction of it. 

Figure 3. POASTA detects and prunes alignment states that are not part of the optimal solution. (a) A superbubble with entrance s and exit t. For every 
node v in the superbubble, POASTA stores the minimum and maximum path length, dmin

v ;t , and dmax
v ;t , to exit t. (b) An example POA graph with a 

superbubble (dashed rectangle) and the path lengths from the highlighted node 5 (red) to the superbubble exit (green and blue paths). (c) The path 
lengths to the superbubble exit are used during alignment to infer the range of states reachable with zero-cost match edges (black arrows) from another 
state hv ; ii. (d) An example aligning the query CCGCTTTCGAGCCC to the graph in (b). Grey squares: states aligned in a prior iteration. Red square: state 
under test. Blue and green arrows and dotted squares: best-case alignment paths from the state under test to the superbubble exit. (e) POASTA 
compares best-case alignment costs from hv ; ii (blue and green dotted squares) to implicitly opened indels from prior reached bubble exits (grey 
squares). Implicitly opened indels act as an upper bound for the alignment cost of yet-to-visit states. Examples use the linear gap cost model 
with Δm ¼ 0;Δx ¼ 4;Δg ¼ 2.
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For our dataset, we found that abPOA found the optimal 
alignment the vast majority (99.8%) of the time 
(Supplemental Methods). However, our test dataset had few 
large indels and adaptive banding strategies are known to 
miss the optimal alignment more frequently in the presence 
of indels larger than the band size (Suzuki and Kasahara 
2017). For many cases where the optimal alignment was 
missed in our test dataset, abPOA produced erroneous align-
ments that started or ended at unexpected nodes. This 
resulted in alignment costs that were lower than the global 
optimum reported by SPOA and POASTA, which should be 
impossible (see Supplemental Methods).

3.3 POASTA enables the construction of 
megabase-length POA graphs
To further test POASTA’s limits, we benchmarked its ability 
to align datasets with average sequence lengths of approxi-
mately 250 kbp, 500 kbp, and 1 Mbp. We extracted subse-
quences from all 370 RefSeq-complete whole genome 
assemblies of M. tuberculosis, covering a broad range of the 
species’ diversity (including representatives from all known 
lineages; Mash-estimated average pairwise ANI of 99.3%; 
Ondov et al. 2016). M. tuberculosis has relatively little large- 
scale structural variation, including few large inversions or 
genes translocating to different locations, which POA cannot 
model and align accurately. After orienting genomes such 
that each started with the gene dnaA, we truncated at specific 
shared genes to achieve sequences of the desired length 
(Supplemental Methods). For the 250 kbp, 500 kbp, and 
1 Mbp benchmarks, we truncated at the genes trmB, thiE, 
and gltA2, respectively. Since POA expects sequences to be 
colinear, we also excluded 28 genomes with more than 15% 
( ≥ 660kbp) of its complete genome inverted with respect to 
the canonical reference H37Rv (Supplemental Methods).

POASTA successfully computed MSAs for the 250 kbp, 
500 kbp, and 1 Mbp benchmark sets with manageable run-
times and memory (Table 1). None of these alignments could 
be completed with SPOA or abPOA, which required more 
memory than the 240 GB available in the Google Cloud VM 
used for benchmarking (Supplemental Methods). The esti-
mated memory requirements for the 250, 500, and 1000 kbp 
benchmarks would be 0.95, 3.5, and 13 TB, respectively (as-
suming 32-bit integers for storing scores).

We assessed computed alignments at a known drug resis-
tance locus to validate that the MSA correctly captured 
known variation. In M. tuberculosis, the S450L change in the 
rpoB gene is one of the most common rifampicin resistance- 
causing mutations (Munir et al. 2019, Jamieson et al. 2014). 
We first characterized codons representing the 450th amino 
acid of rpoB using just the reference genomes and accompa-
nying gene annotations. We obtained each codon using the 
start position of the rpoB gene to compute the reference locus 
representing the 450th amino acid of rpoB. In our set of 
genomes, we similarly observed that the S450L mutation is 
the most common allele present other than the reference or 
wild-type allele (Table 2; 103 genomes have the S450L muta-
tion). To check if the observed codons were correctly aligned 
in the POA graph, we extracted a small subgraph surround-
ing the 450th amino acid of rpoB in H37Rv (Fig. 5). While 
this subgraph was obtained using H37Rv coordinates, all 

Figure 4. POASTA creates multiple sequence alignments of sequences from five bacterial housekeeping genes, in all but one case faster than SPOA and 
with less memory. (a) Relative runtime of POASTA compared to SPOA for each set of gene sequences. (b) The relationship between pairwise ANI of 
each gene sequence set and POASTA’s relative runtime. (c) The relationship between mean sequence length and POASTA’s relative runtime. (d) 
Relative memory usage of POASTA compared to SPOA for each set of gene sequences. (e) The relationship between pairwise ANI of each sequence set 
and POASTA’s relative memory usage. (f) The relationship between the mean sequence length of each sequence set and POASTA’s relative 
memory usage.

Table 1. POASTA runtime and peak memory usage for three benchmark 
sets comprising 342 M. tuberculosis sequences of approximately 250, 
500, and 1000 kbp.

Sequence set (kbp) Runtime (h) Max. memory (GB)

250 5.3 63.8
500 24 120
1000 69 231
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codons listed in Table 2 were also represented as different 
paths in the graph, and the graph edge counts, indicating the 
number of genomes sharing that edge, matched the codon 
counts obtained through gene annotations. POASTA thus 
correctly captured known variation at this locus while the 
alignments were computed unaware of genes.

4 Discussion
In this work, we introduced POASTA, an optimal POA algo-
rithm supporting gap-affine penalties with increased perfor-
mance. These improvements are achieved using three 
algorithmic innovations: a minimum remaining gap cost heu-
ristic for A�, depth-first greedy alignment of matches, and 
pruning states not part of the optimal solution using 
superbubble topology. In benchmarking on short sequences 
(1–4 kbp), POASTA was, on average, 4.1× faster than the 
current state-of-the-art SPOA (Vaser et al. 2017) and used 
2.6× less memory. On longer sequences (250–1000 kbp), 
POASTA generated alignments with manageable runtime and 
memory, while SPOA failed.

POASTA includes several algorithmic innovations inspired 
by recent advances in pairwise and graph alignment. For ex-
ample, POASTA takes inspiration from the recently pub-
lished wavefront algorithm (WFA), a fast algorithm for 
pairwise alignment (Marco-Sola et al. 2021). WFA similarly 
exploits exact matches between sequences and rapidly com-
putes alignments by only considering the furthest-reaching 
points on DP matrix diagonals. However, their DP matrix 

diagonal formulation does not directly apply to graph align-
ment. In contrast to pairwise alignment, a stretch of exact 
matches between the query and the graph may span multiple 
diagonals in the DP matrix because of branches in the graph, 
complicating the definition of furthest-reaching points. While 
others have introduced variants of the WFA for graphs 
(Zhang et al. 2022, Holt et al. 2023), none support the gap- 
affine scoring model, which is preferred because it gives more 
biologically relevant alignments Durbin et al. (1998). As an 
alternative to processing only the furthest-reaching points on 
a diagonal, POASTA uses its knowledge of graph topology, 
as stored in its superbubble index, to detect and prune align-
ment states that are not part of the optimal solution, thus 
speeding up alignment.

POASTA additionally takes inspiration from the recent 
read-to-graph aligner Astarix. Like POASTA, Astarix uses 
the A� algorithm for alignment, though with a different heu-
ristic (Ivanov et al. 2020, 2022). The benefit of our minimum 
remaining gap cost A� heuristic is the simplicity of the re-
quired computation. All preprocessing can be done in 
OðVþEÞ time, and all the necessary data are stored in OðVÞ
additional memory. The fast computation of the heuristic is 
important because the POA graph is updated at each itera-
tion. Combined, these innovations can substantially reduce 
the number of computed alignment states, speeding up the 
construction of the complete MSA and enabling MSAs for 
longer sequences than was previously possible.

POASTA did not improve over SPOA in every scenario—it 
performed less well than SPOA in settings with high sequence 
diversity, where there are fewer stretches of exact matches for 
POASTA to exploit. In this situation, POASTA must explore 
more mismatch and indel states, increasing computation 
time. Though POASTA still computes fewer alignment states 
than SPOA, its runtime can become longer because the A� al-
gorithm is less predictable and CPU cache-efficient than com-
puting the full DP matrix row-by-row in a contiguous block 
of memory. Despite POASTA’s higher compute time “per 
alignment state” compared to SPOA, the reduction in com-
puted alignment states is often large enough to gain a net de-
crease in total runtime. To further develop our understanding 
of POASTA’s performance characteristics, future work could 
include determining tight upper bounds on its runtime com-
plexity, e.g. by adapting the arguments of Myers’ O(nd) 

Table 2. Diversity of codons across 342 M. tuberculosis genomes 
representing the 450th amino acid in the rpoB gene.a

Codon Amino acid Count

TCG (reference) S 232
TTG L 103
TTT F 2
TNG – 2
GCG A 1
TGG W 1
TYG – 1

a In three genomes, there was uncertainty about the second base in the 
triplet indicated by IUPAC code N (any base) or Y (C or T).

Figure 5. The POA subgraph surrounding the 450th amino acid in M. tuberculosis H37Rv rpoB (red dashed edges) captures extensive allelic diversity in 
other references (black edges). Grey squares represent nodes in the POA graph labeled with a base or an IUPAC code representing uncertainty about the 
base at that site (N: any base, Y: C or T). Edges are labeled with the number of genomes that share that edge. The bottom grey rectangles represent the 
H37Rv amino acid sequence.
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algorithm for pairwise alignment to the sequence-to-graph 
alignment problem (Myers 1986).

We envision several future improvements to the POASTA 
algorithm. POASTA could be expanded to support dual gap- 
affine penalties, enabling computing improved alignments in 
the presence of large indels (Sedlazeck et al. 2018). Bi- 
directed variants of the A� algorithm, where the search for 
the shortest path is started from both the start and the end, 
could substantially improve POASTA’s runtime with respect 
to sequence diversity (de Champeaux 1983). A more infor-
mative A� heuristic, e.g. the recently published seed-heuristic 
(Ivanov et al. 2022) or one inspired by A�PA2 (Groot 
Koerkamp 2024), could speed-up alignment by improving 
estimates of the remaining alignment cost, improving the pri-
oritization of alignment states to visit. Other strategies could 
be to utilize GPUs since massively parallel versions of A� ex-
ist (Zhou and Zeng 2015). Finally, we could combine the 
superbubble index with the Gwfa algorithm (Zhang et al. 
2022) to link diagonals across nodes and increase power to 
prune suboptimal alignment states.

5 Conclusions
We present POASTA, a novel optimal algorithm for POA. 
Through several algorithmic innovations, POASTA com-
puted the complete MSA faster than existing tools in diverse 
bacterial gene sequence sets. It further enabled the creation of 
much longer MSAs, as demonstrated by successfully con-
structing MSAs from M. tuberculosis sequence sets with aver-
age sequence lengths of up to 1 Mbp. The algorithms and 
ideas presented here will accelerate the development of scal-
able pangenome construction and analysis tools that will 
drive the coming era of genome analysis.
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