

Delft University of Technology

Fast and exact gap-affine partial order alignment with POASTA

van Dijk, Lucas R.; Manson , Abigail L.; Earl, Ashlee M.; Garimella, Kiran V.; Abeel, Thomas

DOI
10.1093/bioinformatics/btae757
Publication date
2025
Document Version
Final published version
Published in
Bioinformatics

Citation (APA)
van Dijk, L. R., Manson , A. L., Earl, A. M., Garimella, K. V., & Abeel, T. (2025). Fast and exact gap-affine
partial order alignment with POASTA. Bioinformatics, 41(1). https://doi.org/10.1093/bioinformatics/btae757

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1093/bioinformatics/btae757
https://doi.org/10.1093/bioinformatics/btae757

Genome analysis

Fast and exact gap-affine partial order alignment
with POASTA
Lucas R. van Dijk 1,2,�, Abigail L. Manson 1, Ashlee M. Earl 1, Kiran V Garimella 3,
Thomas Abeel 1,2

1Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, United States
2Delft Bioinformatics Lab, TU Delft, 2628 XE Delft, The Netherlands
3Data Sciences Platform, Broad Institute of MIT and Harvard, Cambridge, MA 02142, United States
�Corresponding author. Delft Bioinformatics Lab, TU Delft, Van Mourik Broekmanweg 6, Zuid-Holland, 2628 XE Delft, The Netherlands.
E-mail: lvandijk@broadinstitute.org
Associate Editor: Peter Robinson

Abstract
Motivation: Partial order alignment is a widely used method for computing multiple sequence alignments, with applications in genome assem-
bly and pangenomics, among many others. Current algorithms to compute the optimal, gap-affine partial order alignment do not scale well to
larger graphs and sequences. While heuristic approaches exist, they do not guarantee optimal alignment and sacrifice alignment accuracy.
Results: We present POASTA, a new optimal algorithm for partial order alignment that exploits long stretches of matching sequence between
the graph and a query. We benchmarked POASTA against the state-of-the-art on several diverse bacterial gene datasets and demonstrated an
average speed-up of 4.1× and up to 9.8×, using less memory. POASTA’s memory scaling characteristics enabled the construction of much
larger POA graphs than previously possible, as demonstrated by megabase-length alignments of 342 Mycobacterium tuberculosis sequences.
Availability and implementation: POASTA is available on Github at https://github.com/broadinstitute/poasta.

1 Introduction
Multiple sequence alignments (MSAs) are central to compu-
tational biology. MSAs have many applications, including
computing genetic distances, which can serve as a basis for a
phylogeny; determining consensus sequences, e.g. to perform
read error correction; and identifying allele frequencies, e.g.
for sequence motif identification.

Computing the optimal MSA with the “sum of all pairs”
(SP) score is an NP-complete problem (Wang and Jiang 1994).
These classical exact algorithms have a runtime exponentially
related to the number of sequences and are thus intractable for
even modest-sized datasets. Instead, nearly all popular MSA
tools, including MAFFT (Katoh and Standley 2013) and
MUSCLE (Edgar 2004), compute the MSA progressively: first,
an alignment between two sequences is computed, then addi-
tional sequences are added one by one until all sequences have
been aligned. The runtime of these approaches is linear in the
number of sequences instead of exponential. While MSAs
computed this way do not necessarily find the globally optimal
solution for the SP objective, they are still highly useful
approximations to otherwise intractable alignment problems.

Partial order alignment (POA) is a well-known progressive
MSA approach that pioneered using a graph to represent an
MSA rather than a sequence profile (Lee et al. 2002). This
improved the ability to represent indels, leading to higher-
quality alignments. Since POA is a progressive MSA algo-
rithm, the optimal SP score is not guaranteed for the entire

MSA. However, POA does guarantee that each individual
sequence-to-graph alignment is optimal.

POA is relevant to many applications, including de novo
genome assembly (e.g. read error correction and consensus
generation) (Chin et al. 2013, Loman et al. 2015, Vaser et al.
2017), RNA isoform inference (Lee 2003), structural variant
(SV) characterization (Chaisson et al. 2019), and variant
phasing (Holt et al. 2023).

POA is also essential to two recent human pangenome
graph construction pipelines (Garrison et al. 2024, Hickey
et al. 2024). These pipelines are pushing the limits of POA, as
aligning long stretches of homologous sequence among input
genomes requires substantial computing and memory resour-
ces. For example, consider the gap-affine alignment of a 500
kbp sequence to a graph with 500k character-labeled nodes.
Conventional POA approaches have a runtime and memory
complexity of OðjVjmÞ, i.e. a product of the number of nodes
in a POA graph jVj and the sequence length m. This example
would, therefore, require about 3 TB of RAM (assuming 32-
bit integers for storing alignment costs in three alignment
state matrices).

Several tools, including SPOA (Vaser et al. 2017) and
abPOA (Gao et al. 2021), have been developed to address the
need for faster and more memory-efficient POA algorithms.
The current state-of-the-art, SPOA, is a reimplementation of
the original algorithm, which accelerates computing the dy-
namic programming (DP) matrix by using single-instruction-

Received: 31 May 2024; Revised: 19 November 2024; Editorial Decision: 21 December 2024; Accepted: 2 January 2025
© The Author(s) 2025. Published by Oxford University Press. This is an Open Access article distributed under the terms of the Creative Commons Attribution
License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original
work is properly cited.

Bioinformatics, 2025, 41(1), btae757
https://doi.org/10.1093/bioinformatics/btae757
Advance Access Publication Date: 3 January 2025
Original Paper

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/41/1/btae757/7942505 by D
elft U

niversity of Technology user on 23 January 2025

https://orcid.org/0000-0002-7565-5859
https://orcid.org/0000-0002-3800-0714
https://orcid.org/0000-0001-7857-9145
https://orcid.org/0000-0002-6212-5736
https://orcid.org/0000-0002-7205-7431
https://github.com/broadinstitute/poasta

multiple-data (SIMD) instructions available on modern
CPUs. While faster, SPOA still computes the full DP matrix
and thus does not ameliorate demands on memory usage.
abPOA additionally improves performance by applying an
adaptive banding strategy to partially compute the DP
matrix. However, this sacrifices the guarantee of finding the
optimal sequence-to-graph alignment.

Here, we present POASTA: a fast, memory-efficient, and
optimal POA algorithm that computes many fewer alignment
states than SPOA, thus enabling the construction of much
larger POA graphs (Fig. 1). It is built on top of the A� algo-
rithm (Hart et al. 1968), with a new POA-specific heuristic.
Inspired by the recently published wavefront algorithm for
pairwise alignment (Marco-Sola et al. 2021), it also exploits
exact matches between a query sequence and the graph. We
additionally introduce a novel superbubble-informed
(Onodera et al. 2013) technique for pruning the number of
computed alignment states without sacrificing alignment op-
timality. We benchmarked POASTA against SPOA (Vaser
et al. 2017) on diverse sets of bacterial housekeeping genes
extracted from RefSeq and demonstrated its increased perfor-
mance. Additionally, we constructed megabase-length align-
ments of 342 Mycobacterium tuberculosis sequences,
demonstrating its reduced memory usage and highlighting
POASTA’s ability to align much longer sequences than previ-
ously possible.

2 Materials and methods
POA algorithms compute an MSA by iteratively computing
the alignment of a query to a directed acyclic graph (DAG)
representing the MSA from the previous iteration (Lee et al.
2002). Instead of the original DP formulation (Supplementary
Methods; Supplementary Fig. S1a), POASTA’s algorithm is
based on an “alignment graph” (Supplementary Fig. S1b; not
to be confused with the POA graph), enabling the use of
common graph traversal algorithms such as the A� algorithm
to compute alignments (Hart et al. 1968, Rautiainen and
Marschall 2017, Ivanov et al. 2020, Jain et al. 2020).

POASTA further accelerates alignment using three novel tech-
niques: (1) a cheap-to-compute, POA-specific heuristic for the
A� algorithm (Fig. 2a), (2) a depth-first search (DFS) compo-
nent, greedily aligning exact matches between the query and
the graph (Fig. 2b); and (3) a method to detect and prune
alignment states that are not part of the optimal solution, in-
formed by the POA graph topology (Fig. 2c). Together, they
substantially reduce the number of computed alignment states
(Supplementary Fig. S2).

2.1 Definitions and notation
To describe the algorithm in detail, we will use the following
notation. A POA graph G¼ ðV;EÞ is a character-labeled
DAG, where nodes v 2 V represent the symbols in the input
sequences, each labeled with a character from an alphabet R.
Edges ðu;vÞ 2 E connect nodes that are adjacent in at least
one input sequence. We additionally assume the POA graph
has a special start node ν with outgoing edges to all nodes
with no other incoming edges and a special termination node
τ with incoming edges from all nodes with no other outgo-
ing edges.

The optimal alignment of a query sequence Q¼ q1q2 . . .qm
(of length m) to G is the alignment of Q to a path
π ¼ νv1v2. . .vnτ, spelling a sequence R that minimizes the
alignment cost C (Supplementary Fig. S1a). Commonly used
cost models are linear gap penalties and gap-affine penalties.
In the former, each gap position is weighted equally, and the
alignment cost is defined as C¼NmΔmþNxΔxþNgΔg,
where Nm represents the number of matches, Nx is the num-
ber of mismatches, and Ng is the total length of gaps. The
cost of each alignment operation is represented by Δm;Δx,
and Δg, representing the cost of a match, mismatch, and a
gap, respectively. In the case of gap-affine penalties, opening
a new gap has a different (typically higher) cost than extend-
ing an existing gap. The total cost is defined as
C¼NmΔmþNxΔxþNoΔoþNgΔe, with No the number of
distinct gaps and Δo the cost of opening a new gap, and Δe

the cost of extending a gap (Durbin et al. 1998). POASTA
supports both the gap-linear and the gap-affine cost models,

Figure 1. Representation of the dynamic programming matrix to compute the global alignment of a nusA gene sequence (x-axis) to a POA graph
constructed from 50 other nusA gene sequences (y-axis). Each pixel represents a computed alignment state, and the color represents the alignment cost
of that state. White pixels represent uncomputed states.

2 van Dijk et al.
D

ow
nloaded from

 https://academ
ic.oup.com

/bioinform
atics/article/41/1/btae757/7942505 by D

elft U
niversity of Technology user on 23 January 2025

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btae757#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btae757#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btae757#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btae757#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btae757#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btae757#supplementary-data

though it constrains Δm to be zero and all other costs
Δx;Δo;Δg;Δe to be ≥ 0. Additionally, in case of the gap-affine
model, it requires that the gap open cost Δo is greater
than the gap extension cost Δe. For clarity, we focus on the
gap-linear cost model; the use of POASTA with the gap-
affine cost is explained in the Supplemental Methods.

The alignment graph GA ¼ ðVA;EAÞ is a product of the
POA graph and the query sequence, and paths through it rep-
resent possible alignments between them. Nodes hv; ii 2 VA ¼

ðV ×f0;1; . . .;mgÞ represent “alignment states” with a cursor
pointing to a node v in the POA graph and a cursor to a
query position i (Supplementary Fig. S1b). Edges in the align-
ment graph correspond to different alignment operations,
such as (mis)match, insertion, or deletion, and are weighted
with the respective alignment cost. Edges connect alignment
states where either one (indel) or both of the cursors have
moved ((mis)match), and the construction of edges is further
detailed in the Supplementary Methods. The lowest-cost path
in the alignment graph from hν;0i to alignment termination
state hτ;mi is equivalent to the optimal alignment of Q to G.

2.2 Optimal alignment with A� using a minimum
remaining gap cost heuristic
To compute the lowest-cost path in the alignment graph, i.e.
the optimal alignment, POASTA uses the A� algorithm (Hart
et al. 1968). For POASTA, we adapted the widely used gap
cost heuristic for pairwise alignment to POA (Fig. 2a)
(Ukkonen 1985, Hadlock 1988). This heuristic is
“admissible”, i.e. a lower bound on the true remaining cost,
thus guaranteeing that A� finds the lowest-cost path. The in-
tuition behind the heuristic is to prioritize alignment states in

which the length of the unaligned query sequence is similar to
the path lengths to the end node τ.

To compute heuristic hhv; ii, POASTA scans the POA
graph before alignment starts and stores the shortest and lon-
gest path length to the end node τ for all nodes in the graph,
denoted as dmin

v;τ and dmax
v;τ . This can be computed in OðVþEÞ

time by visiting the nodes in reverse topological order.
POASTA compares these path lengths to the length of the un-
aligned query sequence lr ¼m − i and infers the minimum
number of indel edges to traverse from hv; ii to the alignment
termination hτ;mi state as follows:

Definition 1 (Minimum number of indel edges).

Nmin
g ¼

lr − ðdmax
v;τ − 1Þ if dmax

v;τ − 1< lr

ðdmin
v;τ − 1Þ− lr if dmin

v;τ − 1> lr
0 otherwise

8
><

>:
(1)

We subtract one from dmin
v;τ and dmax

v;τ to exclude the
edge toward τ.

Proof. See Supplemental Methods. w

Combining the computed minimum number of indel edges
to traverse with the alignment cost model, e.g. the linear gap
cost model, enables us to compute the heuristic.

Definition 2 (Minimum remaining gap cost heuristic).

Figure 2. POASTA is based on the A� algorithm and accelerates alignment through three algorithmic innovations: (a) A novel heuristic for POA that
prioritizes alignment states with a low minimum remaining gap cost (light-colored squares); i.e. states where the unaligned query sequence length is
similar to the path lengths to the POA graph end node τ. (b) Reducing the number of computed alignment states by combining the A� algorithm with a
depth-first search component, greedily aligning matches between the query and a path in the graph (black arrow). Adjacent insertion and deletion states
are only queued when encountering a mismatch (squares with dashed borders). (c) Using knowledge about superbubble topology to prune states not
part of the optimal solution. POASTA checks whether the best-case alignment paths (blue and green arrows) from a state under test (red square) can
improve over the costs of implicitly opened gaps from prior reached bubble exits (bordered squares). All examples use the linear gap cost model
with Δm ¼ 0;Δx ¼ 4;Δg ¼ 2.

Fast partial order alignment with POASTA 3

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/41/1/btae757/7942505 by D
elft U

niversity of Technology user on 23 January 2025

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btae757#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btae757#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btae757#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btae757#supplementary-data

hhv; ii ¼ Nmin
g Δg (2)

Lemma 1 (Admissibility). hhv; ii is admissible.

Proof. The true remaining alignment cost, using linear gap
penalties and assuming a match cost Δm of zero, is
defined as Cr ¼NxΔxþNgΔg, where Nx and Ng

represent the number of remaining mismatches and
the total remaining gap length, respectively, Δx the
mismatch cost, and Δg the gap cost.
Using Definition 1, we infer that Ng ≥ Nmin

g . Since the
mismatch cost Δx ≥ 0, we note that the NxΔx ≥ 0, and
thus observe that

NxΔxþNgΔg ≥ Nmin
g Δg) Cr ≥ hhv; ii:

hhv; ii is thus a lower bound on the true remaining
alignment cost. w

2.3 Depth-first alignment of exact matches between
query and graph
To further speed-up alignment and reduce the number of
computed alignment states, POASTA greedily aligns exact
matches between the query and graph (Fig. 2b). This is possi-
ble because POASTA requires that the alignment cost for a
match is zero and all other alignment costs be ≥ 0.
Traversing a match edge hu; ii ! hv; iþ1i will always be the
optimal choice if the latter state has not been visited yet since
match edges have zero cost and all other paths (requiring
indels) will have higher or equal cost (Ivanov et al. 2020,
Marco-Sola et al. 2021). This implies that in the presence of
an unvisited match, we can ignore insertion edge hu; ii !
hu; iþ1i and deletion edge hu; ii ! hv; ii.

To implement this, POASTA combines the regular A� algo-
rithm with a depth-first search (DFS) component. When a
state hu; ii is popped from the A� queue, we initiate a DFS
from this state. We assess whether a successor state
hv; iþ1i v : ðu;vÞ 2 E is a match; if it is, we push it on the
stack to be processed in the next DFS iteration; when there is
a mismatch, we append it to the A� queue. In the latter case,
we no longer can ignore the insertion and deletion edges, so
we additionally queue insertion state hu; iþ1i, and deletion
state hv; ii. Note that, just like regular DFS, a state is removed
from the stack after all its successors (matches or mismatches)
have been explored. Thus, using DFS enables greedily align-
ing long stretches of exact matches, even in the presence of
branches in the graph.

2.4 Pruning alignment states not part of the
optimal solution
When POASTA’s depth-first alignment finds a long stretch of
matching sequence, the corresponding path through the POA
graph might traverse a “superbubble” (Onodera et al. 2013).
A superbubble (s, t) is a substructure in the POA graph with
specific topological features (Supplementary Fig. S3): it is
acyclic; it has a single entrance s and a single exit t; all paths
leaving s should end in t; and no path from “outside” the
superbubble can have an endpoint inside the bubble. The set
of nodes U on paths from s to t is called the “interior” of a

bubble, which can be empty. In a POA graph, superbubbles
represent the alleles present at particular loci in the MSA.

POASTA exploits the fact that all paths through a super-
bubble have a common endpoint, its exit t. If an alignment
state ht;pi is reached during alignment with a particular cost
Cht;pi, POASTA can detect whether another yet-to-visit state
hv; ii : v 2U[fsg that is part of the same superbubble, can
improve over this cost. This is especially effective when com-
bined with the depth-first greedy alignment described above;
if a bubble exit is reached at a low cost because of a long
stretch of matching sequence, we can often prune alignment
states on alternative paths through the bubble because they
cannot improve over the already-found path.

To quickly retrieve topological information about super-
bubbles, POASTA constructs a superbubble index before
alignment. For every node in the POA graph, it stores the
superbubbles in which it is contained, along with the shortest
and longest path length to the corresponding superbubble
exit (Fig. 3a). For example, the red node (node 5) in the ex-
ample shown in Fig. 3b has two paths to the superbubble exit
(node 13): one path with length 2 (blue) and one path with
length 4 (green). POASTA identifies superbubbles using the
OðVþEÞ algorithm described by G€artner et al. (2018). The
shortest path lengths can be computed using a backward
breadth-first search (BFS), and the longest path lengths can
be computed by recursively visiting nodes in postorder, both
OðVþEÞ operations.

To test if a state hv; ii should be pruned, POASTA first uses
the superbubble index to infer the range of states
ht; jmini . . . ht; jmaxi reachable from hv; ii assuming the best-case
scenario of traversing zero-cost match edges (Fig. 3c). For ex-
ample, when aligning a query CCGCTTTCGAGCCC to the
graph in Fig. 3b, POASTA will initially find a long stretch of
matches between the query and a path in the graph, travers-
ing the superbubble (4, 13) (Fig. 3d; grey squares). In a fol-
lowing iteration, it tests alignment state h5;5i, where node 5
is part of the same superbubble (4, 13), which is reached with
an alignment cost 4 (Fig. 3d; red square). It looks up the path
lengths to the superbubble exit dmin

5;13 ¼ 2 and dmax
5;13 ¼ 4 and

infers that we can reach h13;7i and h13;9i from h5;5i with
the same alignment cost of four (Fig. 3d; blue and green
arrows and dotted squares).

POASTA can now compare this best-case alignment cost,
when reached from a state hv; ii, to the alignment costs of
states that reached the superbubble exit prior, or an
“implicitly opened gap” from those. Implicitly opened gap
costs are upper bounds on the cost for yet-to-visit alignment
states and are computed on the fly when testing to prune a
state (Fig. 3e). For example, the green path in Fig. 3d could
reach alignment state h13;9i with an alignment cost of four.
However, alignment state h13;9i is also reachable from the
prior reached bubble exit h13;8i, by opening an insertion and
reaching it with a lower cost of two (Fig. 3e). Similarly, the
blue path in Fig. 3d could reach alignment state h13;7i with
an alignment cost of four. This state has not yet been reached
and is also not reachable by opening a gap from a previously
reached exit. However, suppose we extend the blue path, as-
suming additional traversal of zero-cost match edges. In that
case, we reach an alignment state h14;8i which is reachable
from a previously reached exit by opening a deletion. The
opened deletion would reach h14;8i with a cost of two, lower
than the cost of four when reached through the blue path.
Since both best-case scenarios from h5;5i would result in

4 van Dijk et al.
D

ow
nloaded from

 https://academ
ic.oup.com

/bioinform
atics/article/41/1/btae757/7942505 by D

elft U
niversity of Technology user on 23 January 2025

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btae757#supplementary-data

higher alignment costs compared to opened indels from a
prior reached exit, POASTA infers h5;5i will not be part of
the optimal solution and prunes it from further
consideration.

In the example discussed above, the bubble exit was only
reached once. Bubble exits, however, can be reached multiple
times during alignment (with varying alignment costs).
All previously reached positions should be considered when
testing whether a state can be pruned (Supplementary
Fig. S4). The Supplemental Methods further detail how
POASTA prunes alignment states when the bubble exit has
been reached multiple times.

3 Results
3.1 Benchmarking using bacterial
housekeeping genes
To compare POASTA’s speed and memory usage to the cur-
rent state-of-the-art, we generated multiple benchmark data-
sets from bacterial housekeeping genes (dnaG, nusA, pgk,
pyrG, and rpoB). These genes are present in nearly all bacteria
and are commonly used to create bacterial phylogenies, requir-
ing MSA (Wu and Eisen 2008). We downloaded all 40 188
RefSeq-complete genomes representing the breadth of bacte-
rial diversity and extracted genes of interest using the accom-
panying gene annotations. Gene sequences were deduplicated
and coarsely clustered using single-linkage hierarchical cluster-
ing. This resulted in multiple genus-spanning clusters. For
each gene family, we selected one or more clusters as bench-
mark datasets, choosing clusters with at least 100 sequences
and varying pairwise ANI (Supplemental Methods). The 13
selected benchmark sets each contained 140–2385 gene

sequences, with mean sequence lengths of 1–4 kbp and pair-
wise ANIs of 82%–97% (Supplemental Table S1).

3.2 POASTA constructs MSAs 4× faster than other
optimal methods
We assessed POASTA’s runtime and memory compared to
SPOA, the only other POA algorithm that guarantees optimal
POAs (Vaser et al. 2017). We did not benchmark against gen-
eral sequence-to-graph aligners such as Astarix (Ivanov et al.
2020), GWFA (Zhang et al. 2022), PaSGAL (Jain et al.
2019), and GraphAligner (Rautiainen and Marschall 2020)
since these are unable to compute MSAs and we would be un-
able to compare total runtime. We ran POASTA and SPOA
to compute the full MSA of the 13 selected datasets and
recorded their total runtime and memory usage.

For 12 of 13 datasets, POASTA computed the complete
MSA faster than SPOA, achieving an average speed-up of
4.1×. The highest speed-up was 9.8× (Fig. 4a). The one in-
stance where SPOA was faster corresponded to the gene set
with the lowest pairwise ANI (82.6%). POASTA’s strongest
relative performance was in settings with ANIs of 90%–
100% and sequences longer than 1500 bp (Fig. 4b and c).
Furthermore, SPOA required, on average, 2.6× more mem-
ory than POASTA (Fig. 4d–f).

We also compared POASTA’s runtime and memory to
abPOA, a popular tool for POA that does not guarantee opti-
mal alignment (Gao et al. 2021). As expected, due to its
adaptive banding strategy, abPOA is faster than POASTA
(3.5×; Supplementary Fig. S5a). Surprisingly, abPOA used
more memory than POASTA across nearly all benchmark
sets (Supplementary Fig. S5b), as it allocates memory for the
entire matrix, even though it only computes a fraction of it.

Figure 3. POASTA detects and prunes alignment states that are not part of the optimal solution. (a) A superbubble with entrance s and exit t. For every
node v in the superbubble, POASTA stores the minimum and maximum path length, dmin

v ;t , and dmax
v ;t , to exit t. (b) An example POA graph with a

superbubble (dashed rectangle) and the path lengths from the highlighted node 5 (red) to the superbubble exit (green and blue paths). (c) The path
lengths to the superbubble exit are used during alignment to infer the range of states reachable with zero-cost match edges (black arrows) from another
state hv ; ii. (d) An example aligning the query CCGCTTTCGAGCCC to the graph in (b). Grey squares: states aligned in a prior iteration. Red square: state
under test. Blue and green arrows and dotted squares: best-case alignment paths from the state under test to the superbubble exit. (e) POASTA
compares best-case alignment costs from hv ; ii (blue and green dotted squares) to implicitly opened indels from prior reached bubble exits (grey
squares). Implicitly opened indels act as an upper bound for the alignment cost of yet-to-visit states. Examples use the linear gap cost model
with Δm ¼ 0;Δx ¼ 4;Δg ¼ 2.

Fast partial order alignment with POASTA 5

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/41/1/btae757/7942505 by D
elft U

niversity of Technology user on 23 January 2025

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btae757#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btae757#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btae757#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btae757#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btae757#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btae757#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btae757#supplementary-data

For our dataset, we found that abPOA found the optimal
alignment the vast majority (99.8%) of the time
(Supplemental Methods). However, our test dataset had few
large indels and adaptive banding strategies are known to
miss the optimal alignment more frequently in the presence
of indels larger than the band size (Suzuki and Kasahara
2017). For many cases where the optimal alignment was
missed in our test dataset, abPOA produced erroneous align-
ments that started or ended at unexpected nodes. This
resulted in alignment costs that were lower than the global
optimum reported by SPOA and POASTA, which should be
impossible (see Supplemental Methods).

3.3 POASTA enables the construction of
megabase-length POA graphs
To further test POASTA’s limits, we benchmarked its ability
to align datasets with average sequence lengths of approxi-
mately 250 kbp, 500 kbp, and 1 Mbp. We extracted subse-
quences from all 370 RefSeq-complete whole genome
assemblies of M. tuberculosis, covering a broad range of the
species’ diversity (including representatives from all known
lineages; Mash-estimated average pairwise ANI of 99.3%;
Ondov et al. 2016). M. tuberculosis has relatively little large-
scale structural variation, including few large inversions or
genes translocating to different locations, which POA cannot
model and align accurately. After orienting genomes such
that each started with the gene dnaA, we truncated at specific
shared genes to achieve sequences of the desired length
(Supplemental Methods). For the 250 kbp, 500 kbp, and
1 Mbp benchmarks, we truncated at the genes trmB, thiE,
and gltA2, respectively. Since POA expects sequences to be
colinear, we also excluded 28 genomes with more than 15%
(≥ 660kbp) of its complete genome inverted with respect to
the canonical reference H37Rv (Supplemental Methods).

POASTA successfully computed MSAs for the 250 kbp,
500 kbp, and 1 Mbp benchmark sets with manageable run-
times and memory (Table 1). None of these alignments could
be completed with SPOA or abPOA, which required more
memory than the 240 GB available in the Google Cloud VM
used for benchmarking (Supplemental Methods). The esti-
mated memory requirements for the 250, 500, and 1000 kbp
benchmarks would be 0.95, 3.5, and 13 TB, respectively (as-
suming 32-bit integers for storing scores).

We assessed computed alignments at a known drug resis-
tance locus to validate that the MSA correctly captured
known variation. In M. tuberculosis, the S450L change in the
rpoB gene is one of the most common rifampicin resistance-
causing mutations (Munir et al. 2019, Jamieson et al. 2014).
We first characterized codons representing the 450th amino
acid of rpoB using just the reference genomes and accompa-
nying gene annotations. We obtained each codon using the
start position of the rpoB gene to compute the reference locus
representing the 450th amino acid of rpoB. In our set of
genomes, we similarly observed that the S450L mutation is
the most common allele present other than the reference or
wild-type allele (Table 2; 103 genomes have the S450L muta-
tion). To check if the observed codons were correctly aligned
in the POA graph, we extracted a small subgraph surround-
ing the 450th amino acid of rpoB in H37Rv (Fig. 5). While
this subgraph was obtained using H37Rv coordinates, all

Figure 4. POASTA creates multiple sequence alignments of sequences from five bacterial housekeeping genes, in all but one case faster than SPOA and
with less memory. (a) Relative runtime of POASTA compared to SPOA for each set of gene sequences. (b) The relationship between pairwise ANI of
each gene sequence set and POASTA’s relative runtime. (c) The relationship between mean sequence length and POASTA’s relative runtime. (d)
Relative memory usage of POASTA compared to SPOA for each set of gene sequences. (e) The relationship between pairwise ANI of each sequence set
and POASTA’s relative memory usage. (f) The relationship between the mean sequence length of each sequence set and POASTA’s relative
memory usage.

Table 1. POASTA runtime and peak memory usage for three benchmark
sets comprising 342 M. tuberculosis sequences of approximately 250,
500, and 1000 kbp.

Sequence set (kbp) Runtime (h) Max. memory (GB)

250 5.3 63.8
500 24 120
1000 69 231

6 van Dijk et al.
D

ow
nloaded from

 https://academ
ic.oup.com

/bioinform
atics/article/41/1/btae757/7942505 by D

elft U
niversity of Technology user on 23 January 2025

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btae757#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btae757#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btae757#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btae757#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btae757#supplementary-data

codons listed in Table 2 were also represented as different
paths in the graph, and the graph edge counts, indicating the
number of genomes sharing that edge, matched the codon
counts obtained through gene annotations. POASTA thus
correctly captured known variation at this locus while the
alignments were computed unaware of genes.

4 Discussion
In this work, we introduced POASTA, an optimal POA algo-
rithm supporting gap-affine penalties with increased perfor-
mance. These improvements are achieved using three
algorithmic innovations: a minimum remaining gap cost heu-
ristic for A�, depth-first greedy alignment of matches, and
pruning states not part of the optimal solution using
superbubble topology. In benchmarking on short sequences
(1–4 kbp), POASTA was, on average, 4.1× faster than the
current state-of-the-art SPOA (Vaser et al. 2017) and used
2.6× less memory. On longer sequences (250–1000 kbp),
POASTA generated alignments with manageable runtime and
memory, while SPOA failed.

POASTA includes several algorithmic innovations inspired
by recent advances in pairwise and graph alignment. For ex-
ample, POASTA takes inspiration from the recently pub-
lished wavefront algorithm (WFA), a fast algorithm for
pairwise alignment (Marco-Sola et al. 2021). WFA similarly
exploits exact matches between sequences and rapidly com-
putes alignments by only considering the furthest-reaching
points on DP matrix diagonals. However, their DP matrix

diagonal formulation does not directly apply to graph align-
ment. In contrast to pairwise alignment, a stretch of exact
matches between the query and the graph may span multiple
diagonals in the DP matrix because of branches in the graph,
complicating the definition of furthest-reaching points. While
others have introduced variants of the WFA for graphs
(Zhang et al. 2022, Holt et al. 2023), none support the gap-
affine scoring model, which is preferred because it gives more
biologically relevant alignments Durbin et al. (1998). As an
alternative to processing only the furthest-reaching points on
a diagonal, POASTA uses its knowledge of graph topology,
as stored in its superbubble index, to detect and prune align-
ment states that are not part of the optimal solution, thus
speeding up alignment.

POASTA additionally takes inspiration from the recent
read-to-graph aligner Astarix. Like POASTA, Astarix uses
the A� algorithm for alignment, though with a different heu-
ristic (Ivanov et al. 2020, 2022). The benefit of our minimum
remaining gap cost A� heuristic is the simplicity of the re-
quired computation. All preprocessing can be done in
OðVþEÞ time, and all the necessary data are stored in OðVÞ
additional memory. The fast computation of the heuristic is
important because the POA graph is updated at each itera-
tion. Combined, these innovations can substantially reduce
the number of computed alignment states, speeding up the
construction of the complete MSA and enabling MSAs for
longer sequences than was previously possible.

POASTA did not improve over SPOA in every scenario—it
performed less well than SPOA in settings with high sequence
diversity, where there are fewer stretches of exact matches for
POASTA to exploit. In this situation, POASTA must explore
more mismatch and indel states, increasing computation
time. Though POASTA still computes fewer alignment states
than SPOA, its runtime can become longer because the A� al-
gorithm is less predictable and CPU cache-efficient than com-
puting the full DP matrix row-by-row in a contiguous block
of memory. Despite POASTA’s higher compute time “per
alignment state” compared to SPOA, the reduction in com-
puted alignment states is often large enough to gain a net de-
crease in total runtime. To further develop our understanding
of POASTA’s performance characteristics, future work could
include determining tight upper bounds on its runtime com-
plexity, e.g. by adapting the arguments of Myers’ O(nd)

Table 2. Diversity of codons across 342 M. tuberculosis genomes
representing the 450th amino acid in the rpoB gene.a

Codon Amino acid Count

TCG (reference) S 232
TTG L 103
TTT F 2
TNG – 2
GCG A 1
TGG W 1
TYG – 1

a In three genomes, there was uncertainty about the second base in the
triplet indicated by IUPAC code N (any base) or Y (C or T).

Figure 5. The POA subgraph surrounding the 450th amino acid in M. tuberculosis H37Rv rpoB (red dashed edges) captures extensive allelic diversity in
other references (black edges). Grey squares represent nodes in the POA graph labeled with a base or an IUPAC code representing uncertainty about the
base at that site (N: any base, Y: C or T). Edges are labeled with the number of genomes that share that edge. The bottom grey rectangles represent the
H37Rv amino acid sequence.

Fast partial order alignment with POASTA 7

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/41/1/btae757/7942505 by D
elft U

niversity of Technology user on 23 January 2025

algorithm for pairwise alignment to the sequence-to-graph
alignment problem (Myers 1986).

We envision several future improvements to the POASTA
algorithm. POASTA could be expanded to support dual gap-
affine penalties, enabling computing improved alignments in
the presence of large indels (Sedlazeck et al. 2018). Bi-
directed variants of the A� algorithm, where the search for
the shortest path is started from both the start and the end,
could substantially improve POASTA’s runtime with respect
to sequence diversity (de Champeaux 1983). A more infor-
mative A� heuristic, e.g. the recently published seed-heuristic
(Ivanov et al. 2022) or one inspired by A�PA2 (Groot
Koerkamp 2024), could speed-up alignment by improving
estimates of the remaining alignment cost, improving the pri-
oritization of alignment states to visit. Other strategies could
be to utilize GPUs since massively parallel versions of A� ex-
ist (Zhou and Zeng 2015). Finally, we could combine the
superbubble index with the Gwfa algorithm (Zhang et al.
2022) to link diagonals across nodes and increase power to
prune suboptimal alignment states.

5 Conclusions
We present POASTA, a novel optimal algorithm for POA.
Through several algorithmic innovations, POASTA com-
puted the complete MSA faster than existing tools in diverse
bacterial gene sequence sets. It further enabled the creation of
much longer MSAs, as demonstrated by successfully con-
structing MSAs from M. tuberculosis sequence sets with aver-
age sequence lengths of up to 1 Mbp. The algorithms and
ideas presented here will accelerate the development of scal-
able pangenome construction and analysis tools that will
drive the coming era of genome analysis.

Acknowledgements
We would like to thank Fabio Cunial and Ryan Lorig-Roach
for their helpful discussions and their reviews of early ver-
sions of the article.

Supplementary data
Supplementary data are available at Bioinformatics online.

Conflict of interest: None declared.

Funding
This project was funded in part with federal funds from the
National Institute of Allergy and Infectious Diseases,
National Institutes of Health, Department of Health and
Human Services, under Grant Number U19AI110818 to the
Broad Institute.

Data availability
POASTA is written in Rust and available under the BSD-3-
clause license at https://github.com/broadinstitute/poasta
(DOI: 10.5281/zenodo.11153323). POASTA is available as
both a standalone utility and a Rust crate that can be in-
cluded as part of other software packages. The benchmark
suite is written in Rust and Python and is available under the
same license at https://github.com/broadinstitute/poa-bench.

The data underlying this article are included in the bench-
mark suite repository (DOI: 10.5281/zenodo.11153368).

References
Chaisson MJP, Sanders AD, Zhao X et al. Multi-platform discovery of

haplotype-resolved structural variation in human genomes. Nat
Commun 2019;10:1784. https://doi.org/10.1038/s41467-018-
08148-z

Chin C-S, Alexander DH, Marks P et al. Nonhybrid, finished
microbial genome assemblies from long-read SMRT sequencing
data. Nat Methods 2013;10:563–9. https://doi.org/10.1038/
nmeth.2474

de Champeaux D. Bidirectional heuristic search again. J ACM 1983;30:
22–32. https://doi.org/10.1145/322358.322360

Durbin R, Eddy S, Krogh A et al. Biological Sequence Analysis:
Probabilistic Models of Proteins and Nucleic Acids, 1st edn.
Cambridge, UK: Cambridge University Press, 1998. https://doi.org/
10.1017/CBO9780511790492

Edgar RC. MUSCLE: multiple sequence alignment with high accuracy
and high throughput. Nucleic Acids Res 2004;32:1792–7. https://
doi.org/10.1093/nar/gkh340

Gao Y, Liu Y, Ma Y et al. abPOA: an SIMD-based C library for fast
partial order alignment using adaptive band. Bioinformatics 2021;
37:2209–11. https://doi.org/10.1093/bioinformatics/btaa963

Garrison E, Guarracino A, Heumos S. et al. Building pangenome
graphs. Nat Methods 2024;21:2008–12. https://doi.org/10.1038/
s41592-024-02430-3

Groot Koerkamp R. A�PA2: Up to 19× Faster Exact Global Alignment.
In: 24th International Workshop on Algorithms in Bioinformatics
(WABI 2024). Leibniz International Proceedings in Informatics
(LIPIcs), Vol. 312, pp. 17:1–25, Schloss Dagstuhl – Leibniz-
Zentrum f€ur Informatik, 2024. https://doi.org/10.4230/LIPIcs.
WABI.2024.17

G€artner F, M€uller L, Stadler PF. Superbubbles revisited. Algorithms
Mol Biol 2018;13:16. https://doi.org/10.1186/s13015-018-0134-3

Hadlock F. An efficient algorithm for pattern detection and classifica-
tion. In: Proceedings of the 1st International Conference on
Industrial and Engineering Applications of Artificial Intelligence
and Expert Systems—Volume 2, IEA/AIE’88, New York, NY, USA,
June 1988. New York City, NY, USA: Association for Computing
Machinery. 1988, 645–53. https://dl.acm.org/doi/10.1145/
55674.55676

Hart PE, Nilsson NJ, Raphael B. A formal basis for the heuristic deter-
mination of minimum cost paths. IEEE Trans Syst Sci Cyber 1968;
4:100–7. https://doi.org/10.1109/TSSC.1968.300136

Hickey G, Monlong J, Ebler J, et al. Human Pangenome Reference
Consortium. Pangenome graph construction from genome align-
ments with Minigraph-Cactus. Nat Biotechnol 2024;42:663–73.
https://doi.org/10.1038/s41587-023-01793-w

Holt JM et al. HiPhase: jointly phasing small, structural, and tandem re-
peat variants from HiFi sequencing, Bioinformatics 2024;40:
btae042. https://doi.org/10.1093/bioinformatics/btae042

Ivanov P et al. AStarix: fast and optimal sequence-to-graph alignment.
In: Schwartz R (ed.), Research in Computational Molecular
Biology, Lecture Notes in Computer Science. Cham: Springer
International Publishing, 2020, 104–19. https://doi.org/10.1007/
978-3-030-45257-5_7

Ivanov P, Bichsel B, Vechev M. Fast and optimal sequence-to-graph
alignment guided by seeds. In: Pe’er I (ed), Research in
Computational Molecular Biology, Lecture Notes in Computer
Science. Cham: Springer International Publishing, 2022, 306–25.
https://doi.org/10.1007/978-3-031-04749-7_22

Jain C et al. Accelerating sequence alignment to graphs. In: 2019 IEEE
International Parallel and Distributed Processing Symposium
(IPDPS), Rio de Janeiro, Brazil, May 2019. New York City, NY,
USA: IEEE, 2019, 451–61. https://doi.org/10.1109/IPDPS.
2019.00055

8 van Dijk et al.
D

ow
nloaded from

 https://academ
ic.oup.com

/bioinform
atics/article/41/1/btae757/7942505 by D

elft U
niversity of Technology user on 23 January 2025

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btae757#supplementary-data
https://github.com/broadinstitute/poasta
https://github.com/broadinstitute/poa-bench
https://doi.org/10.1038/s41467-018-08148-z
https://doi.org/10.1038/s41467-018-08148-z
https://doi.org/10.1038/nmeth.2474
https://doi.org/10.1038/nmeth.2474
https://doi.org/10.1145/322358.322360
https://doi.org/10.1017/CBO9780511790492
https://doi.org/10.1017/CBO9780511790492
https://doi.org/10.1093/nar/gkh340
https://doi.org/10.1093/nar/gkh340
https://doi.org/10.1093/bioinformatics/btaa963
https://doi.org/10.1038/s41592-024-02430-3
https://doi.org/10.1038/s41592-024-02430-3
https://doi.org/10.4230/LIPIcs.WABI.2024.17
https://doi.org/10.4230/LIPIcs.WABI.2024.17
https://doi.org/10.1186/s13015-018-0134-3
https://dl.acm.org/doi/10.1145/55674.55676
https://dl.acm.org/doi/10.1145/55674.55676
https://doi.org/10.1109/TSSC.1968.300136
https://doi.org/10.1038/s41587-023-01793-w
https://doi.org/10.1093/bioinformatics/btae042
https://doi.org/10.1007/978-3-030-45257-5_7
https://doi.org/10.1007/978-3-030-45257-5_7
https://doi.org/10.1007/978-3-031-04749-7_22
https://doi.org/10.1109/IPDPS.2019.00055
https://doi.org/10.1109/IPDPS.2019.00055

Jain C, Zhang H, Gao Y et al. On the complexity of sequence-to-graph
alignment. J Comput Biol 2020;27:640–54. https://doi.org/10.
1089/cmb.2019.0066

Jamieson FB, Guthrie JL, Neemuchwala A et al. Profiling of rpoB muta-
tions and MICs for rifampin and rifabutin in Mycobacterium tuber-
culosis. J Clin Microbiol 2014;52:2157–62. https://doi.org/10.
1128/jcm.00691-14

Katoh K, Standley DM. MAFFT multiple sequence alignment software
version 7: improvements in performance and usability. Mol Biol
Evol 2013;30:772–80. https://doi.org/10.1093/molbev/mst010

Lee C. Generating consensus sequences from partial order multiple se-
quence alignment graphs. Bioinformatics 2003;19:999–1008.
https://doi.org/10.1093/bioinformatics/btg109

Lee C, Grasso C, Sharlow MF. Multiple sequence alignment using par-
tial order graphs. Bioinformatics 2002;18:452–64. https://doi.org/
10.1093/bioinformatics/18.3452

Loman NJ, Quick J, Simpson JT. A complete bacterial genome assem-
bled de novo using only nanopore sequencing data. Nat Methods
2015;12:733–5. https://doi.org/10.1038/nmeth.3444

Marco-Sola S, Moure JC, Moreto M et al. Fast gap-affine pairwise
alignment using the wavefront algorithm. Bioinformatics 2021;37:
456–63. https://doi.org/10.1093/bioinformatics/btaa777

Munir A, Kumar N, Ramalingam SB et al. Identification and characteri-
zation of genetic determinants of isoniazid and rifampicin resistance
in Mycobacterium tuberculosis in Southern India. Sci Rep 2019;9:
10283. https://doi.org/10.1038/s41598-019-46756-x

Myers EW. An O(ND) difference algorithm and its variations.
Algorithmica 1986;1:251–66. https://doi.org/10.1007/BF01840446

Ondov BD, Treangen TJ, Melsted P et al. Mash: fast genome and meta-
genome distance estimation using MinHash. Genome Biol 2016;17:
132. https://doi.org/10.1186/s13059-016-0997-x

Onodera T, Sadakane K, Shibuya T. Detecting superbubbles in assem-
bly graphs. In: Algorithms in Bioinformatics: 13th International

Workshop. New York City, NY, USA: Springer, 2013, 338–48.
https://doi.org/10.1007/978-3-642-40453-5_26

Rautiainen M, Marschall T. Aligning sequences to general graphs in O
(V þ mE) time. bioRxiv. https://www.biorxiv.org/content/10.1101/
216127v1, November 2017, preprint: not peer reviewed.

Rautiainen M, Marschall T. GraphAligner: rapid and versatile
sequence-to-graph alignment. Genome Biol 2020;21:253. https://
doi.org/10.1186/s13059-020-02157-2

Sedlazeck FJ, Rescheneder P, Smolka M et al. Accurate detection of
complex structural variations using single-molecule sequencing. Nat
Methods 2018;15:461–8. https://doi.org/10.1038/s41592-018-
0001-7

Suzuki H, Kasahara M. Acceleration of nucleotide semi-global align-
ment with adaptive banded dynamic programming. bioRxiv, http://
biorxiv.org/lookup/doi/10.1101/130633, April 2017, preprint: not
peer reviewed.

Ukkonen E. Finding approximate patterns in strings. J Algorithms
1985;6:132–7. https://doi.org/10.1016/0196-6774(85)90023-9

Vaser R, Sovi�c I, Nagarajan N et al. Fast and accurate de novo genome
assembly from long uncorrected reads. Genome Res 2017;27:
737–46. https://doi.org/10.1101/gr.214270.116.

Wang L, Jiang T. On the complexity of multiple sequence alignment.
J Comput Biol 1994;1:337–48. https://doi.org/10.1089/cmb.1994.
1.337

Wu M, Eisen JA. A simple, fast, and accurate method of phylogenomic
inference. Genome Biol 2008;9:R151. https://doi.org/10.1186/gb-
2008-9-10-r151

Zhang H et al. Fast sequence to graph alignment using the graph
wavefront algorithm. June 2022. http://arxiv.org/abs/2206.13574,
preprint: not peer reviewed

Zhou Y, Zeng J. Massively parallel a search on a GPU. In: Proceedings
of the AAAI Conference on Artificial Intelligence. Vol. 29.
Washington, DC, USA: AAAI Press, 2015. https://ojs.aaai.org/in
dex.php/AAAI/article/view/9367

© The Author(s) 2025. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits
unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
Bioinformatics, 2025, 41, 1–9
https://doi.org/10.1093/bioinformatics/btae757
Original Paper

Fast partial order alignment with POASTA 9

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/41/1/btae757/7942505 by D
elft U

niversity of Technology user on 23 January 2025

https://doi.org/10.1089/cmb.2019.0066
https://doi.org/10.1089/cmb.2019.0066
https://doi.org/10.1128/jcm.00691-14
https://doi.org/10.1128/jcm.00691-14
https://doi.org/10.1093/molbev/mst010
https://doi.org/10.1093/bioinformatics/btg109
https://doi.org/10.1093/bioinformatics/18.3452
https://doi.org/10.1093/bioinformatics/18.3452
https://doi.org/10.1038/nmeth.3444
https://doi.org/10.1093/bioinformatics/btaa777
https://doi.org/10.1038/s41598-019-46756-x
https://doi.org/10.1007/BF01840446
https://doi.org/10.1186/s13059-016-0997-x
https://doi.org/10.1007/978-3-642-40453-5_26
https://www.biorxiv.org/content/10.1101/216127v1
https://doi.org/10.1186/s13059-020-02157-2
https://doi.org/10.1186/s13059-020-02157-2
https://doi.org/10.1038/s41592-018-0001-7
https://doi.org/10.1038/s41592-018-0001-7
http://biorxiv.org/lookup/doi/10.1101/130633
https://doi.org/10.1016/0196-6774(85)90023-9
https://doi.org/10.1101/gr.214270.116
https://doi.org/10.1089/cmb.1994.1.337
https://doi.org/10.1089/cmb.1994.1.337
https://doi.org/10.1186/gb-2008-9-10-r151
https://doi.org/10.1186/gb-2008-9-10-r151
http://arxiv.org/abs/2206.13574
https://ojs.aaai.org/index.php/AAAI/article/view/9367
https://ojs.aaai.org/index.php/AAAI/article/view/9367

	Active Content List
	1 Introduction
	2 Materials and methods
	3 Results
	4 Discussion
	5 Conclusions
	Acknowledgements
	Supplementary data
	Funding
	Data availability
	References

