Kinetic Thin Glass Façade

A study on the feasibility of a water- and airtight kinetic façade with a bending-active thin glass element

• Transparency in buildings is an increasing trend

Hiroshi Senju Museum, Karuizawa, Japan

Chanel Amsterdam, Amsterdam, Netherlands

Apple Fifth Avenue, New York City, USA

- Transparency in buildings is an increasing trend
- Rapid development of research and production techniques

"Initially, it was not the architects who took architecture into the modern age, but rather engineers and planners from so called non-artistic disciplines"

Mirko Baum

- Transparency in buildings is an increasing trend
- Rapid development of research and production techniques
- \rightarrow alternative product: chemically strengthened (ultra) thin glass*

* Thin glass $\rightarrow t < 2 mm$ Ultra thin glass $\rightarrow t < 0.1 mm$

Possible design

Possible design

Possible design

Possible design

"How can a kinetic façade element featuring a bendable thin glass panel be designed to be water- and airtight in closed condition?"

Design Choice

Option 2: Tensile Force

Option 3: Elastic Fabric

Approach and Methodology

	design proposals
N U U	
DFSI	

04-07-2017

Approach and Methodology

Glass Laminate Configuration

Glass Laminate Configuration

- Safety Regulations
- Adding stiffness

etc.

Glass Laminate Configuration

- smallest radius that can be achieved by controlled bending (lowest stress)
- highest stability of the glass laminate against external loads (e.g. wind)
- **minimum** required **force** to achieve the radius

tı / t3 =	0.55		0.85		1.1	[mm]	
t2 =	0.38		0.76		1.52	[mm]	
P ₂ =	Eı	E2	Ез	E4	E5		
ref							

Glass Laminate Configuration

- smallest radius that can be achieved by controlled bending (lowest stress)
- highest stability of the glass laminate against external loads (e.g. wind)
- minimum required force to achieve the radius

90 possible configurations!

Evaluation of Results: Glass Thickness Effect

Evaluation of Results: Ranking

Choice No.	1st glass thickness t1 [mm]	PVB thickness t2 [mm]	2nd glass thickness t3 [mm]	PVB Type p2	final value [%]
1	0.55	0.38	0.55	E5	-43,8
2	0.55	0.38	0.55	E4	-40,6
3	0.55	0.38	0.55	E3	-40,4
4	0.55	0.38	0.55	E2	-40,35
5	0.55	0.38	0.55	E1	-40,33
6	0.85	0.38	0.55	E5	-37,4
7	0.85	0.38	0.55	E4	-34,2
8	0.85	0.38	0.55	E3	-34
9	0.85	0.38	0.55	E2	-33,95
10	0.85	0.38	0.55	E1	-33,93
11	1.1	0.38	0.55	E5	-30,9
12	1.1	0.38	0.55	E4	-27,7
13	0.55	0.76	0.55	E5	-27,6
14	1.1	0.38	0.55	E3	-27,5
15	1.1	0.38	0.55	E2	-27,45
16	1.1	0.38	0.55	E1	-27,43
17	0.55	0.76	0.55	E4	-24,4
18	0.55	0.76	0.55	E3	-24,2
19	0.55	0.76	0.55	E2	-24,15
20	0.55	0.76	0.55	E1	-24,13

3 Options under Wind Load

Option 1: Magnetic Force

Method: Wind suction on glass surface supported by magnetic force Decisive properties:

• Max. deformation under wind load

Flat glass

A: Glass Laminate

Option 1: Magnetic Force

Method: Wind suction on glass surface supported by magnetic force Decisive properties:

Max. deformation under wind load •

A: Glass Laminate Directional Deformation 2

Unit: mm

Type: Directional Deformation(Z Ax

3 Options under Wind Load

Option 1: Magnetic Force

Option 2 + 3: Tensile Force / Elastic Fabric

wind load

support reactions

Option 2+3

Method: Wind suction on curved glass supported by two shafts

Decisive properties:

• Max. deformation under wind load

 \rightarrow tensile force of **2550 N** required to keep stable!

3 Options under Wind Load

Option 1: Magnetic Force 🗸

Option 2 + 3: Tensile Force / Elastic Fabric

wind load

Approach and Methodology

Option 1: Magnet

Option 1: Magnet

Water- airtightness possibly achievable with elaboration of conceptual details

lines of defence

Option 2: Tension

 gaps in corner joints
 → would require similar solution as magnet

- gaps in corner joints
 - \rightarrow would require similar solution as magnet

- gaps in corner joints
 - \rightarrow would require similar solution as magnet

- gaps in corner joints
 - \rightarrow would require similar solution as magnet

Option 2: Tension

gaps in corner joints

 → would require similar solution
 as magnet

Further concerns:

- Large force required against wind load
- Pressure not likely to be equally distributed

Option 3: Elastic Fabric

Option 3: Elastic Fabric

• Leakage at corner joint

Option 3: Elastic Fabric

• Leakage at corner joint

Option 3: Elastic Fabric

- Leakage at corner joint
- Ventilation gap limited

Selection of Design

	Opti	ion 1	Option 2		Option 3	
	+	-	+	-	+	-
	o magnet can provide	o additional horizontal	o simple gasket detail	o unequally distributed	o bent edges permanently	o limited ventilation gap
	enough pulling force for	frames required	possible	pressure	sealed	
	water- airtightness	a abrupt opening move		a additional barizontal		o leakage at corners
practical feasibility	o magnet pulling force adjustable	ment due to magnetic holding force (only if		frames required		o possible abrasion of fabric due to over-
		permanent magnet)		o extra force required to		stretching
				keep water- and airtight		o obstruction of view
	o magnetic pulling force			o large force required to		o large force required to
	can also be used against			keep glazing shut		keep glazing shut
structural	wind suction			o applied force may result in bending of shafts		o applied force may result in bending of shafts
Suitability						o fabric may pull back edges of glazing with tendency to return to original length

Design Choice

Case Study

Expected Performance of the Proposed Design

Case Study

AGC Technovation Center, Gosselies, Belgium

- Outer skin of open double-skin façade
- No thermal and acoustic insulation
- Functions solely as sun-protective layer and for power generation
- "Show room" for company's innovative product range
- \rightarrow Alternative design: closed cavity façade

Approach and Methodology

Focuses:

- Magnet-gasket design
- Mode of operation (kinetics)
- Facade profile design
- Manufacturing, assembly

Gasket with Embedded Switchable Magnet

Mode of Operation

Façade Profile Design

• Unitised system

Schüco USC 65 unitised system

Façade Profile Design

- Unitised system
- Adjustments made to fit design

Schüco USC 65 unitised system

- Profile widened (to house rail, magnetic gasket etc.)
- Outer gasket eliminated (now single sided)
- Insulating layer eliminated (double-skin facade)

Façade Profile Design

• Gap between main frame and additional transom

Façade Profile Design

- Gap between main frame and additional transom
- \rightarrow covered with aluminium plate, edges made airtight with silicone

Answer to Main Research Question:

"How can a kinetic façade element featuring a bendable thin glass panel be designed to be water- and airtight in closed condition?"

Design involves:

- Glazing consisting of two thin glass elements (0.55 mm) laminated with acoustic interlayer (0.38 mm) with metallic strip attached
- Switchable electro-permanent magnets placed inside the gasket
- Principle of active bending (1D-linear movement to 2D-deformation)
- Bespoke facade profiles designed to acommodate requirements

- Research does not present optimal or only possibility to achieve the goal
- Meant to offer new **insights** into the field and form a **basis for further research**
- Many choices made during the process are **subjective**, although supported by numerical data and arguments from previous literature
- \rightarrow main objectives fulfilled within theoretical framework:
 - 1) Addition of a **second layer of glazing** to comply with safety regulations
 - 2) Investigation of possibilities to combine the bending of thin glass with **water- and airtightness** properties

Reflection & Recommendations

Possibilities & Limitations

- Sustainability (reduced use of raw materials, lightweight loadbearing structures)
 → increased use of aluminium for stiffness
- Cost reduction (reduced use of raw materials, lightweight loadbearing structures)
 → chemical strengthening process, necessity of bespoke elements
- New architectural impressions
 - \rightarrow large variety of new possibilities, new architectural era?

Recommendations for further research

- Investigation of **other possible uses** for thin glass in architecture
 - \rightarrow for bending: sun shading, solar power generation, structural (load reduction)
 - \rightarrow building parts/types: glass roof, greenhouse, interior glazing, single skin
- Possibility to make **insulating glass unit** (double glazing)

Thank you for your attention!