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ABSTRACT

Do, A.T.K.; de Vries, S., and Stive, M.J.F., 2019. The estimation and evaluation of shoreline locations, shoreline-change
rates, and coastal volume changes derived from Landsat images. Journal of Coastal Research, 35(1), 56–71. Coconut
Creek (Florida), ISSN 0749-0208.

Shoreline-change data are of primary importance for understanding coastal erosion and deposition as well as for
studying coastal morphodynamics. Shoreline extraction from satellite images has been used as a low-cost alternative and
as an addition to traditional methods. In this work, satellite-derived shorelines and corresponding shoreline-change
rates and changes in volumes of coastal sediments have been estimated and evaluated for the case of the data-rich North-
Holland coast. This coast is globally unique for its long in situ monitoring record and provides a perfect case to evaluate
the potential of shoreline mapping techniques. A total of 13 Landsat images and 233 observed cross-shore profiles (from
the JAaRlijkse KUStmeting [JARKUS] database) between 1985 and 2010 have been used in this study. Satellite-derived
shorelines are found to be biased in seaward direction relative to the JARKUS-derived shorelines, with an average
ranging 8 m to 9 m over 25 years. Shoreline-change rates have been estimated using time series of satellite-derived
shorelines and applying linear regression. The satellite-derived shoreline-change rates show a high correlation
coefficient (R2 . 0.78) when compared with the JARKUS-derived shoreline-change rates over a period of 20 and 25 years.
Volume changes were calculated from the satellite-derived shoreline-change rates using assumptions defining a closure
depth. Satellite-derived volume changes also show a good agreement with JARKUS-based values. Satellite-derived
shorelines compare better with in situ data on beaches that have intertidal zone widths ranging from one- to two-pixel
sizes (30 m–60 m). The results show that the use of Landsat images for deriving shorelines, shoreline-change rates, and
volume changes have accuracies comparable to observed JARKUS-based values when considering decadal scales of
measurements. This shows the potential of applying Landsat images to monitor shoreline change and coastal volume
change over decades.

ADDITIONAL INDEX WORDS: Landsat images, shoreline-change rate, shoreline-position uncertainty, coastal volume
changes.

INTRODUCTION
Monitoring the behavior of shorelines is of considerable social

and economic importance in support of setback planning,

hazard zoning, erosion-accretion management, regional sedi-

ment budgets, and the establishment and validation of models

for coastline changes (Lawrence, 1994; Sherman and Bauer,

1993; Zuzek, Nairn, and Thieme, 2003). Shorelines are

inherently dynamic features that mark the transition zone

between land and sea. The inherent dynamics of the shoreline

span over a range of spatial and temporal scales (Gens, 2010;

Pajak and Leatherman, 2002), which makes shoreline-change

assessment very challenging. The zone around the shoreline is

highly dynamic and undergoes frequent changes caused by the

impact of both natural and human activities. Furthermore,

shoreline erosion and coastal flooding are highlighted as among

the largest effects of climate change (IPCC, 2001).

Traditional techniques for shoreline-change studies include

analyzing historic maps, in situ beach profiling, LIDAR

surveys, and aerial photography and video imagery (Chen

and Chang, 2009; Kumar and Jayappa, 2009; Miller and

Fletcher, 2003; Pianca, Holman, and Siegle, 2015; Ruggiero et

al., 2005). These techniques are inherently limited in temporal

coverage, typically being either too short to identify long-term

trends or too widely spaced in time to distinguish short-term,

seasonal changes. Also, traditional techniques are both costly

and labor intensive. For developing countries, budgets for

coastal monitoring and shoreline change are scarce. Therefore,

a cost-effective approach is required, particularly for those

places where there is concern about shoreline erosion. This is

where satellite imagery based on freely available high-quality

images such as Landsat might offer a good alternative.

Moreover, it is possible to assess coastline changes over longer

periods of time since Landsat missions have been collecting

spectral satellite imagery for over 40 years now (Guariglia et

al., 2006; Maiti and Bhattacharya, 2009).

Satellite-derived shoreline (SDS) is based on extracting

shorelines from collected satellite images based on grouping

pixels by their different spectral properties in different wave-

bands (e.g., Lu and Weng, 2007; Muttitanon and Tripathi,

2005; Phinn et al., 2000). These methods have been widely used

in recent decades for automatic and semiautomatic shoreline

detection and mapping. Some studies use a single band image

(Frazier and Page, 2000), while other studies use a band ratio
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(Guariglia et al., 2006) or a combination of different reflective

bands to improve surface water detection (Du et al., 2012). For

instance, the Normalized Difference Water Index (McFeeters,

1996) was used to enhance the difference in pixel resolution

between land and water in shoreline extraction (Bouchahma

and Yan, 2012; Grigio et al., 2005; Noernberg and Marone,

2003). Also, the Normalized Difference Moisture Index (Wilson

and Sader, 2002), the Modified Normalized Difference Water

Index (Xu, 2006), the Water Ratio Index (Shen and Li, 2010),

the Normalized Difference Vegetation Index (Rouse et al.,

1974), and the Automated Water Extraction Index (Feyisa et

al., 2014) also found wide application. Rokni et al. (2014)

applied and compared the different previous satellite-derived

indexes to extract surface water of Lake Urmia. Their results

demonstrated that the Normalized Difference Water Index

(NDWI) is superior to other indexes with the highest accuracy

results. Consequently, NDWI was selected as the method to

extract shoreline positions in this study. More recently, new

approaches for shoreline extraction have been investigated.

Foody, Muslim, and Atkinson (2003); Muslim, Foody, and

Atkinson (2006); and Pardo-Pascual et al. (2012) explore

subpixel shoreline extraction in which individual pixels could

be assigned to partly land and partly water.

Many previous studies have investigated the potential of

optical satellite images for coastal monitoring (Blodget, Taylor,

and Roark, 1991; Chen and Chang, 2009; Dinesh Kumar et al.,

2007; Ekercin, 2007; Elena, 2008; Foody, Muslim, and Atkinson

2003; Gutierres et al., 2016; Kingston, 2003; Kuleli et al., 2011;

Liu and Jezek, 2004; Mason, Davenport, and Flather, 1997;

Plant et al., 2007; Teodoro, 2016; Teodoro et al., 2018; Wang,

Zhang, and Ma, 2010; White and El-Asmar, 1999). However,

few of these studies have fully explored the accuracy of the

derived shorelines through comparison with simultaneous and

independent in situ observations because of limitations in the

availability of satellite images and in situ data.

A literature search resulted in only five recent studies related

to SDS accuracy. First, Pardo-Pascual et al. (2012) used 45

images (28 TM and 17 ETM) to assess accuracy in shoreline

position extraction applying the subpixel method with two

shoreline segments comprising seawalls in the Spanish

Mediterranean Sea. This case applies only to artificially

stabilized coastal segments that have a constant shoreline

position. Moreover, the accuracy was derived by using only one

reference image; however, on natural beaches the shoreline

positions are variable because of seasonal and episodic events.

For this reason, the accuracy assessment for seawalls is not the

same as for natural beaches. Second, Garcı́a-Rubio, Huntley,

and Russell (2015) used in situ shoreline measurements to

compare with SDS from multispectral images (SPOT) with

eight shoreline segments, including a beach and a man-made

structure at Progreso, Yucatá, México. Again, their research

used only one image to evaluate accuracy. Third, Almoncaid-

Caballer et al. (2016) used the annual mean shoreline positions

(the average shoreline position over a year) extracted from

Landsat images to quantify the mid-term beach trend during

the period of 2000–14. In their work, the annual mean Landsat

shorelines were compared with the mean annual shorelines

obtained from more accurate sources RTK-GPS and LIDAR.

The test was applied on a 9 km stretch of beach at El Saler

(Valencia, Spain) located on the beach barrier. It is shown that

the use of annual mean shorelines indicates that the same rate

of change is obtained as when using the whole set of shorelines.

Both instantaneous and mean annual shorelines appear to

show a seaward bias of about 4 or 5 m compared to those

obtained using LIDAR and RTK-GPS. Similarly, Sánchez-

Garcı́a et al. (2015) also used the same method for extraction

shoreline position, as described in Pardo-Pascual et al. (2012) to

compare an annual mean shoreline obtained from Landsat TM

/ETMþ and from high precision data, RTK-GPS. The compar-

ison was applied on a 9-km stretch of beach at El Saler

(Valencia, Spain) for two short periods (2006–07 and 2009–10).

Several statistical tests were performed to compare the grade of

similarity between Landsat and high-precision data, which

indicates that both sources of data provide similar information

regarding annual mean shoreline. Finally, Hagenaars et al.

(2018) have evaluated different drivers of inaccuracy of SDS

using very detailed measurements of morphology. Their results

contain a near perfect comparison of SDS and in situ data that

were collected simultaneously during cloud-free conditions

showing an average accuracy of about 1 m.

No previous studies have explored the potential of deriving

changes in coastal volumes using satellite data. Only Rosati,

Gravens, and Smith (1999) used 10 historical shoreline data

sets from survey maps, aerial photography, and digital rectified

scanned aerial photography to estimate volumetric-change

rates to derive a regional sediment budget for Fire Island to

Montauk Point. These authors focused on the time period from

1979 to 1995 (a 16-year time period). Their research considered

only general uncertainties in their regional sediment-budget

estimation based on the potential longshore sediment trans-

port (LST). The uncertainty was derived following Kraus and

Rosati (1998), who divided the standard deviation (SD) in the

net LST by the square root of the number of yearly averages.

This evaluation did not use any observed data for validation.

The aim of the present study is to explore the potential of

satellite images in monitoring shoreline-change rates and

changes in volumes of coastal sediments that can be applied to

beach locations where data are lacking or scarce. Specific

objectives are to provide a straightforward, quantitative, and

objective method that builds on existing methods that have

proven to be easy and widely applicable for extracting shoreline

locations using satellite images. The estimation of shoreline-

change rates follows this derivation of shoreline position and

eventually changes in coastal sediment volumes. These

processes were applied and evaluated at the Dutch coast,

which provides a data-rich site to evaluate the methodology.

Study Site
The selected study area is located at the North-Holland coast

and stretches from Wijk aan Zee to Den Helder, over a length of

approximately 60 km (Figure 1). It is bounded in the north by a

tidal inlet (the Marsdiep) and in the south by the 2.5-km long

jetties of IJmuiden. The North-Holland coast is a sandy,

microtidal, wave-dominated coast. The plan shape of the coast

is slightly concave, except near the Petten Seawall that

protrudes into the sea, giving the shoreline a local convex

curvature. The coastline orientation in the north is about 28

with respect to the north and increases up to 228 at IJmuiden.

Journal of Coastal Research, Vol. 35, No. 1, 2019

Shoreline Estimation from Landsat Images 57



The average beach slope is in the order of 1:60. The near shore

zone has an average slope of 1:60–1:150 (Knoester, 1990). The

slopes can vary significantly in longshore direction. Near Den

Helder, the influence of the channels of the Marsdiep inlet

cause steeper slopes. Near IJmuiden, the dry beach and the

near shore zone have a larger width. Most of the winds along

the Holland coast come from the North Sea. The prevailing

wind direction is SW (23%), followed by west (16%), east (13%),

and NW (12%) (Stolk, 1989). Storms that cause the largest

wind setup along the coast are coming from NW (van Rijn,

Ruessink, and Mulder, 2002). Tides are semidiurnal with a

mean tidal range between 1.4 m in the north and 1.6 m in the

south. Waves mainly approach the coast from SW and NNW

directions. The wave climate is quite homogeneous along the

whole stretch of coast (Wijnberg, 2002), with a mean annual

significant wave height of about 1.3 m.

Landsat Images
To detect SDS of the North-Holland coast, a total of 13

Landsat images were selected with the lowest cloud coverage.

All the used images are free of clouds, except Landsat TM, 2

October 1988 (10% cloud coverage), and Landsat TM, 2 June

2010 (8% cloud coverage). The availability of cloud-free images

did not allow a subset of images at regular intervals. Thirty

scenes of the Thematic Mapper (Landsat 5 TM) and Enhanced

Thematic Mapper (Landsat 7 ETMþ) sensor data were acquired

during the period from 1985 to 2010. Those were downloaded

from the U.S. Geological Survey (USGS) Earth Explorer Web

Tool. All the obtained Landsat data (Level 1 Terrain Corrected

[L1T] product) were pregeoreferenced to UTM zone 31 North

projection using WGS-84 datum. Landsat 5 TM comprises seven

spectral bands with a spatial resolution of 30 m for bands 1 to 5

and 7, and one thermal band (band 6) is 120 m that is resampled

Figure 1. Overview of The Netherlands, its three coastal systems, and the study area (modified from Actueel Hoogtebestand Nederland, 2010). (Color for this

figure is available in the online version of this article.)
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to 30-m pixels. Landsat 7 ETMþ comprises eight spectral bands

with a spatial resolution of 30 m for bands 1 to 7. The resolution

of band 8 (panchromatic) is 15 m. As reported by the National

Aeronautics and Space Administration, all the Landsat TM/

ETMþ are georeferenced with a level of precision better than

0.44 pixels (meaning 13.4 m) (Pardo-Pascual et al., 2012).

For the interpretation of the satellite dataset, it is important

to take the instantaneous water level into account. The

observed location of the waterline is influenced by the

instantaneous water level where a change of water level by 1

m will cause the waterline to shift 50 m over a 1:50 beach slope

when other factors are assumed constant. Instantaneous water

levels are measured at several locations in the study area.

Along the study area, there are three tidal stations; Den

Helder, Petten Zuid, and IJmuiden. The tide station of Den

Helder is located in the tidal inlet and is thus not necessarily

representative for tide level along the coast (Wijnberg, 2002).

The tide station of IJmuiden is located near the IJmuiden

harbor. Figure 2 indicates one tidal cycle in January 1985 at

the three tidal stations. There is a slight difference in phase

and tidal ranges between the stations. The tidal range

indicates a slight increase from Den Helder to I IJmuiden. To

identify how tides influence the SDS, a numerical model must

be applied to simulate the tidal wave propagation along the

coast, but this falls beyond the scope of this study. The Petten

Zuid station is located near the Petten seawall, in the middle of

Noord Holland. The tide measured at the Petten Zuid station

was therefore selected as representative for the study area

because it is the closest to the study area. The tidal conditions

at the time of image acquisition were estimated by the tide data

at Petten Zuid station (Live Waterbase, 2018). The tide level

corresponding to the moment of the Landsat image collection is

presented in Table 1 alongside the details of the satellite data.

JAaRlijkse KUStmeting (JARKUS) Data
To assess the accuracy of SDS, shoreline positions were

derived from the JARKUS database available for this study

(Minneboo, 1995). A yearly survey program for the Dutch

coastal area collects the JARKUS profile data since 1963. Long

fixed transects at a longshore distance of 200 m–250 m, depths,

and heights of coastal profiles are measured each year, called

JARKUS profiles. These data are primarily used to inspect and

provide the position of the momentary coastline, to record

volumes of beach profiles and to plan nourishments. Because of

the size of the JARKUS data, they are grouped into 16 regions

covering the Dutch North Sea coast from North to South. This

study used the data of region 7 (Noord-Holland), which

includes 294 transects (corresponding to the name of profile

in JARKUS data, 7000000 to 7005500) locations in total

covering the coast from Den Helder to Wijk aan Zee.

Because of its geography, the North-Holland coast was

divided into three segments for the analysis. The first segment,

termed Zone I, is located immediately south of the Marsdiep

inlet starting from transect 2 to transect 133. The second

segment, termed Zone II, includes 31 transects from transect

134 to transect 170. This segment is located at the Petten

seawall, where JARKUS profile data are available only since

1990. The third segment is Zone III, starting from transect 171

to transect 294 at the jetties of IJmuiden. Landsat-derived

shorelines along seawalls are not necessarily the same as along

natural shorelines (Almonacid-Caballer et al., 2016). On a

seawall stretch, the water depth close to the shoreline increases

sharply, whereas on natural beaches the depth drops more

gradually. As a result, the shoreline definition is different;

therefore, this study focuses only on the accuracy assessment

for natural beaches, Zone I and Zone III.

METHODS
To assess the accuracy of using satellite images in monitoring

shoreline-change rates and changes in coastal volume, the

Table 1. Details of the satellite dataset used in this study.

No Path/Row Acq. Date Acq. Time Sensor Tidal Height (cm)

1 199/23 12 February 1985 10:10:04 TM 34

2 198/23 16 June 1986 9:57:10 TM 65

3 198/23 05 July 1987 9:58:26 TM 67

4 199/23 02 October 1988 10:10:16 TM 47

5 199/23 23 May 1989 10:01:51 TM 12

6 199/23 30 March 1990 9:59:43 TM 6

7 198/23 16 May 1998 10:10:54 TM 29

8 198/23 30 July 1999 10:26:20 ETM 7

9 198/23 13 May 2000 10:25:34 ETM �24

10 198/23 08 September 2005 10:21:34 TM 50

11 198/23 11 September 2006 10:27:11 TM 69

12 198/23 19 September 2009 10:23:16 TM �31

13 198/23 02 June 2010 10:24:09 TM 58

Figure 2. The difference in the tide between the stations, Den Helder,

Petten Zuid, and IJmuiden.
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present work used the most common and easy-to-apply method

as the basic method to derive shoreline position (SDS). Then

SDR change rates (SDSCR) are calculated based on the SDS

and the volume changes (SDVC) are estimated based on the

SDSCR. Additionally, shoreline positions, shoreline-change

rates and volume changes derived from JARKUS data are used

to access accuracy by using statistical parameters.

Extracting SDSs from Landsat Images
The SDS is defined as the position of the boundary between

water and land at the time of satellite imagery acquisition. To

detect the shoreline position and to calculate the shoreline-

change rate, this study applied an algorithm, as shown in the

flow chart in Figure 3 comprising three main steps. (1)

Conversion of the digital number (DN) to spectral radiance

(Lk) and to the top of atmospheric (TOA) reflectance (qk) for

radiometric calibration according to Chander, Markham, and

Helder (2009); this step is applied for two bands: the green and

near infrared bands. (2) Extracting SDS based on classification

of the NDWI values by using unsupervised classification

techniques. (3) All shoreline positions were used to derive

shoreline-change rates.

Step 1 comprises radiometric calibration and atmospheric

correction. Data records of different remote sensors are not

directly comparable because time differences occur in image

acquisition, signal variations of exoatmostpheric solar irradi-

ance arise from spectral band distinctions, and atmospheric

effects of aerosol scattering under various weather conditions

on the image acquisition date occur (Kuleli et al., 2011).

Therefore, it is necessary to conduct radiometric calibration

and to apply atmospheric correction before extracting the

shoreline position (Chander, Markham, and Helder, 2009;

Tyagi and Bhosle, 2011). The DNs recorded by the Landsat TM

and ETMþwere transformed to TOA reflectance (qk) using the

method developed by Chander, Markham, and Helder (2009).

During radiance calibration, the DNs recorded by Landsat

images were converted to radiance values (Lk) using the bias

and gain values following Equation (1). Then these radiance

values were converted to reflectance values using Equation (2):

Lk ¼ Grescale 3 Qcal þ Brescale ð1Þ

and

qk ¼
p � Lk � d2

ESUNk � sin hSE
ð2Þ

where, Lk¼spectral radiance at the sensor’s aperture [W/(m2 sr

lm)], Qcal ¼ quantized calibrated pixel value (DN), Grescale ¼
band-specific rescaling gain factor [(W/(m2 sr lm))/DN], Brescale

¼ band-specific rescaling bias factor [(W/(m2 sr lm)/DN], qk ¼
planetary TOA reflectance (dimensionless), d ¼ earth-sun

distance [astronomical units], ESUNk¼mean exoatmospheric

solar irradiance [W/(m2 lm)], and hSE ¼ local sun-elevation

angle.

Step 2 involves extracting the SDS based on the classification

of the NDWI values. To enhance maximum distinction between

land and sea, the NDWI was used according to Equation (3)

(McFeeters, 1996):

NDWI ¼ ðqkðGreenÞ � qkðNIRÞÞ=ðqkðGreenÞ þ qkðNIRÞÞ ð3Þ

where, Green is the green band (Land sat TM/ETMþ band 2),

and NIR is the near infrared band (Land sat TM/ETMþ band

4). The NDWI is designed to (1) maximize reflectance of water

using green wave lengths, (2) minimize the low reflectance of

NIR by water features, and (3) take advantage of the high

reflectance of NIR by vegetation and soil features. As a result,

water features have positive and enhanced values, while

vegetation and soil usually have zero or negative values and

are therefore suppressed (McFeeters, 1996). Moreover, the

NDWI technology can avoid the influence of the water

content of leaves of vegetation and the influence of floating

leaved vegetation and extract the pure standing-water

content (Karsli, Guneroglu, and Dihkan, 2011). The unsu-

pervised classification by the Iterative Self-Organizing Data

Analysis Technique Algorithm (ISODATA) method was

applied to identify pixels as sea and land. This method does

not require information about the image while classification

and is therefore especially useful in data-poor cases compared

to other algorithms. The ISODATA method requires the user

to set thresholds for different classification parameters. Liu et

al. (2011) advise consideration of higher numbers of classes

for coastal areas of many different land covers and lower

classes for areas comprising only few types of land cover.

Because this paper’s study zone is a long stretch of coast and

the images’ region covers different types of land cover, 20

classes were needed to define land and water surface

appropriately. A lower and a higher number of classes

resulted in either a poor description of land and water

surface or a poor distinction because some classes can be

merged or removed. The process of the classification from the

NDWI images is including the intermediate steps mentioned

illustrated in Figure 4. The shoreline identification is based

on grouping all classified pixels from the NDWI image, from

20 classes, into two contrasting classes, water and land. The

output from the classification process is an image with pixels

grouped either as sea or land. The boundary between land

Figure 3. Flow chart of shoreline-change analysis methodology.
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and sea in the classified image is converted into a vector. The

resulting vector requires a manual edit whereby inland

features not related to the shoreline are removed. The process

of extracting the shoreline position is performed using the

ArcGIS 10.2 software suite (ESRI, 2014).

Step 3 involves the derivation of the SDSCR by using linear

regression. This method is available in the Digital Shoreline

Analysis System (DSAS) software version 4.3, an ArcGIS

extension for calculating shoreline change developed by the

USGS (Thieler et al., 2009). A baseline is constructed to serve

as a starting point for all transects derived by the DSAS

application. The transects used are at the same locations as the

JARKUS data to allow for comparison. A least-squares

regression line is fitted to all shoreline points for a particular

transect (Thieler et al., 2009). The evaluation of SDSCR are

performed over a 5-year period (1985–90), two 10-year periods

(1990–2000, 2000–10), a 20-year period (1990–2010), and a 25-

year period (1985–2010).

Observed Shoreline Position from JARKUS Profiles
To extract shorelines from JARKUS profiles, the measured

water level at Petten Zuid tidal station was used to find the

intersection point between the water level and the cross-shore

profiles corresponding to the time appearances of the Landsat

images. The water level corresponding to each Landsat image

was derived using the exact date and time of image collection.

The location of the observed shoreline position from JARKUS is

derived as the intersection between each of the 294 cross-shore

profiles and the water level at the time of Landsat image

collection.

Calculation of Profile Volumes from Satellite and
JARKUS Data

The SDVC for each transect, DVSDS (m3/y), was calculated

from the shoreline-change rates by assuming that the shoreline

is translated horizontally without changing shape over an

active depth (AD), as shown in Figure 5. This is summarized in

Equation (4) (Rosati, 2005; Rosati and Kraus, 1999):

DVSDS ¼ ADDyDx ð4Þ

where, Dy is the shoreline-change rate for each transect (m/y),

AD is the active depth for each transect (m), and Dx represents

the transect spacing (m). The active depth represents the

vertical extent of the beach profile that is eroding or accreting

during the period of consideration. It is typically defined as the

absolute sum of the berm crest or dune elevation, DB, and depth

of closure, Dc (Equation [5]):

AD ¼ DB þDc: ð5Þ

The volume change for each transect derived from the JARKUS

profiles, DVprofile (m3/y), was estimated using linear regression.

First, the volume of each transect of each year, DVprofile (m3/m),

was derived based on the JARKUS profile. The dune elevation

(DB) was used as the landward boundary, and the closure

depth, Dc, was used as the seaward limit for this volume

calculation (Figure 6). Then the volume change in (m3/m) was

estimated by multiplying with the transect distance, Dx (m) to

have the total volume change in (m3). After that, the volume

change of each transect, DVprofile (m3/y), over a period was

estimated by fitting a least squares regression line to the yearly

volume trends.

In Figure 6, the dune elevation (DB) is shown as the highest

point of the profile. The depth of closure (Dc) can be estimated

using measurements of the active beach profiles if this data is

available or by using the analytical method proposed by

Hallermeier (1978). In this study at the Dutch coast, the

closure depth parameter is taken from literature Hinton and

Nicholls (1998). Therefore, a value of the closure depth of 8 m

for the area of North-Holland is assumed. In case the measured

profiles do not extend to the 8 m depth contour, the seaward

limit is set to the most seaward measurements in that profile.

To compare the volume changes, DVSDS (m3/y) and DVprofile

(m3/y) values were derived for different periods. A 5-year period

(1985–90), two 10-year periods (1990–2000, 2000–10), a 20-

year period (1990–2010), and a 25-year period (1985–2010)

were considered.

Figure 4. Processing to extract shoreline position from Landsat (example data

of 2005). (Color for this figure is available in the online version of this article.)

Figure 5. Assumption volume calculated from SDS.
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Besides presenting the volume change per transect, the

volume change in each coastal cell is also presented. These

results provide a better description of sediment gains and/or

losses within a cell and thus of the sediment budget of a larger

coastal system. Volume changes are estimated for each coastal

cell based on similarities in morphological behavior. This study

adopts the method of van Rijn (1997) that divides the part of the

North-Holland coast in this study into eight coastal cells

(Figure 1). Zone I includes three cells, 1, 2, and 3, in which cell 1

(0 to 8.1 km) is located near the city of Den Helder; cell 2 (8.1 to

16.3 km) is located between Julianadorp and Callantsoog; and

cell 3 comprises the area between 16.3 and 20.5 km. Zone III

includes five cells, 4, 5, 6, 7, and 8. Cell 4 comprises the area

between 26 and 28 km. Cell 5 includes the area between 28 and

39 km. Cell 6 includes the area between 39 and 47 km. Then the

last two cells located near IJmuiden harbor are 7 (47 to 50 km)

and 8 (50 to 55 km). Volume changes for each coastal cell are

estimated by summing the volume changes of all transects in

each cell.

Deriving the Accuracy of SDSs, SDSCRs, and SDVCs
For assessing the accuracy of the satellite techniques, this

study assumes that the observed JARKUS shoreline provides

the ground truth. The horizontal bias of the SDS relative to the

JARKUS shoreline is taken as representative for the accuracy.

This bias has a positive value if the SDS is found seaward of the

JARKUS shoreline or negative if found landward. The test was

conducted on a set of 13 images divided into two segments, Zone

I and Zone III. Statistical parameters such as maximum

landward bias, maximum seaward bias, mean bias, SD, and

root mean square error (RMSE) are used to analyze the

accuracy in shoreline-change rate of the SDS. A correlation

coefficient (R2) was used to assess the accuracy of SDSCR. The

SDs and RMSE are also used to analyze the accuracy in SDVC.

RESULTS
This section first presents the results of the quantitative

evaluation of the SDSs. Second, the results of the quantitative

evaluation of the SDSCR are presented. Third, the results are

presented of the quantitative evaluation of the SDVCs.

Quantitative Evaluation of the SDS
Tables 2 and 3 summarize the SDS error statistics (mean

bias, SD, maximum seaward bias, maximum landward bias,

and RMSE) obtained for each period analyzed in Zones I and

III. The mean bias is obtained by spatially averaging each

transect’s bias. For Zone I, the annual mean bias between SDS

and JARKUS ranges from –3.6 m to 21.3 m, approximately one-

half to one pixel size (15 m ‚ 30 m) with a temporal average of

8.1 m over the 25-year period. For Zone III, the annual mean

bias ranges largely from –24.6 m to 27.6 m, with an average of

9.2 m over the 25-year period. In general, for the TM images,

the mean bias is positive, whereas the mean bias of the ETMþ
images (1999 and 2000) is negative. This means that the SDS

position of the TM images is generally found seaward of the

JARKUS position, while the position of Landsat ETMþ is

generally found landward. The recent studies of Pardo-Pascual

et al. (2012, 2018) also mentioned different type of images (or

different sensors) and different spectral resolutions to have

significant effects on extracting the shoreline position.

The SD is stable over time and has an average of 11.2 m and

18.5 m corresponding to Zone I and Zone III, respectively. The

Table 2. Summary of errors of all transects after the application the methodology to Landsat images in Zone I.

Year

Maximum

Landward

Bias (m)

Maximum

Seaward

Bias (m)

Mean

Bias (m)

Standard

Deviation (m) RMSE (m)

Total

Number

Transects

1985 –63.02 25.52 1.86 13.85 13.98 94

1986 –35.39 32.38 6.96 11.23 13.21 94

1987 –38.35 68.02 8.73 10.98 14.03 112

1988 –59.39 27.50 2.31 12.09 12.31 112

1989 –61.26 26.65 2.75 13.33 13.61 112

1990 –27.22 39.01 17.50 10.01 20.16 112

1998 –30.15 36.24 8.46 8.63 12.09 112

1999 –76.91 35.57 –3.61 14.81 15.24 112

2000 –33.22 40.41 4.32 12.78 13.49 112

2005 –5.56 37.27 12.78 8.57 15.39 112

2006 –6.33 49.30 21.28 8.61 22.95 112

2009 –12.48 58.47 15.84 11.37 19.50 112

2010 –14.65 27.36 6.23 8.94 10.90 112

Mean –35.69 38.75 8.11 11.17 15.14 109

Figure 6. Volume derived from JARKUS profile (transect 235 in year 1985).
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RMSE is stable over time and has an average of 15.1 m and 21.9

m, corresponding to Zone I and Zone III, respectively.

The bias of SDS varies along the length of each zone (Figures

7 and 8). The greatest variation in bias along the shoreline was

observed in Zone III, around transect 280 to transect 293 and

was found in the years 1988, 1989, 1999, and 2000. Conse-

quently, the SD for these years is higher and ranges from 25.6

m to 35.2 m.

Quantitative Evaluation of the SDSCR
The results of the SDSCR assessed at two different zones and

over five different periods averaged over all transects are given

in Figure 9 and Tables 4 and 5. The calculations were divided

into five different time spans (1985–90, 1990–2000, 2000–10,

1990–2010, and 1985–2010).

The results obtained for SDSCRs from JARKUS and SDS

data are shown in Table 4 and Figure 9. In general, both

JARKUS and SDS data show much change in shoreline

position between 1985 and 1990 with an average accretion

rate of 3.1 m/y (JARKUS) and 5.8 m/y (SDS) in Zone I and with

an average accretion rate of 3.1 m/y (JARKUS) and 8.8 m/y

(SDS) in Zone III. For the other periods, 1990–2000, and 2000–

10 the shoreline trends in both JARKUS and SDS data indicate

fewer regular changes in accretion and erosion. For the long-

term period, 25 years (1985–2010), the shoreline change shows

accretion in both datasets, JARKUS and SDS with a similar

average rate of 1.2 m/y (JARKUS) and 1.1 m/y (SDS) in Zone I

and of 1.6 m/y (JARKUS) and 1.7 m/y (SDS) in Zone III. In

general, the SDSCR show a better agreement in both Zones I

and III for the period of 25 years (1985–2010). This observation

is supported by the derived SDs and RMSE that decrease with

increasing time intervals (see Table 5). The highest SD and

RMSE are observed in a period of 5 years (1985–90), while the

lowest SD and RMSE are found in a period of 25 years (1985–

2010). Moreover, the SDSCR within the period 1990–2010 and

1985–2010 show a higher correlation coefficient (R2 . 0.77),

while a lower correlation coefficient (R2 , 0.69) is observed in

the cross-correlation of the other periods (1985–90, 1990–2000,

and 2000–10).

Quantitative Evaluation of the SDVCs
The results of SDVC along the coast are shown in Figure 10

and Tables 6 and 7. Overall, both JARKUS and SDVC show

much change in volume over the period 1985 and 1990. During

that period, the SDVC varies between –8.83103 m3/y to 180.83

103 m3/y with an average of 293103 m3/y over Zone I (Table 6).

In the period 1990 to 2000, both JARKUS and SDVC also show

irregular changes in volume along the coast in both zones.

Mean volume changes of SDVC indicate negative values (–4.03

103 m3/y [Zone I] and –8.9 3 103 m3/y [Zone III]), while mean

values of JARKUS data show positive values (5.3 3 103 m3/y

[Zone I] and 5.9 3 103 m3/y [Zone III]). In the other periods,

2000–10, 1990–2010, and 1985–2010, the mean values of

volume change in both data sets show positive values.

Table 7 summarizes the SDVC error statistics (mean error,

SD, and RMSE) obtained for each period analyzed in Zones I

and III. The largest differences in volume changes between the

JARKUS and SDVC were found over the 5-year period (1985–

90) with highest mean errors varying from 353 103 m3/y (Zone

I) and 54 3 103 m3/y (Zone III). The smallest difference in

volume changes were found over the 25-year period (1985–

2010) with mean errors varying from 0.4 3 103 m3/y (Zone I) to

5.8 3 103 m3/y (Zone III). This observation is supported by the

derived SDs and RMSE presented in Table 7. The highest SD

and RMSE were found over a 5-year period (1985–90). The

smallest SD and RMSE were observed over a 20-year period

Table 3. Summary of errors of all transects after the application the methodology to Landsat images in Zone III.

Year

Maximum

Landward

Bias (m)

Maximum

Seaward

Bias (m)

Mean

Bias (m)

Standard

Deviation (m) RMSE (m)

Total

Number

Transects

1985 –35.38 22.94 0.24 12.25 12.26 120

1986 –56.09 23.23 0.20 13.84 13.84 120

1987 –50.52 31.34 6.35 12.00 13.58 121

1988 –80.40 43.15 2.18 35.15 1.48 121

1989 –93.72 60.53 10.82 25.65 27.83 121

1990 0.95 63.01 24.52 10.84 26.81 121

1998 –14.88 67.96 18.51 17.03 25.16 121

1999 –68.69 72.20 1.92 26.68 26.75 121

2000 –114.47 13.53 –24.63 26.90 36.47 121

2005 –8.39 51.82 16.01 13.56 20.98 121

2006 –20.39 73.35 27.64 14.58 31.25 121

2009 –17.10 80.90 18.96 15.61 24.56 121

2010 –17.08 69.13 16.88 16.22 23.41 121

Mean –44.32 51.77 9.20 18.49 21.88 121

Figure 7. The bias along the shoreline through the years 1985 to 2010 in

Zone I. (Color for this figure is available in the online version of this article.)
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Figure 8. The bias along the shoreline through the years 1985 to 2010 in Zone III. (Color for this figure is available in the online version of this article.)

Table 4. Summary of results of SDSCR over different periods (1985–90, 1990–2000, 2000–10, 1990–2010, and 1985–2010).

Zone SDSCR (m/y)

1985–90 1990–2000 2000–10 1990–2010 1985–2010

JARKUS SDS JARKUS SDS JARKUS SDS JARKUS SDS JARKUS SDS

Zone I Min –2.17 –1.88 –2.77 –3.11 –4.36 –3.89 –1.14 –1.67 –0.25 –0.53

Max 13.64 17.43 5.78 2.90 6.84 6.61 3.61 3.09 2.85 2.72

Average 3.14 5.82 0.69 –0.91 1.15 0.52 0.94 0.51 1.20 1.06

Zone III Min –7.89 –0.53 –6.29 –7.20 –6.87 –4.14 –2.36 –2.60 –0.65 –0.35

Max 13.12 18.03 12.26 5.20 6.39 8.08 6.09 5.15 6.51 6.11

Average 3.15 8.80 1.67 –1.39 –0.04 2.29 0.80 0.51 1.57 1.67

Table 5. Summary of errors of SDSCR over different periods (1985–90, 1990–2000, 2000–10, 1990–2010, and 1985–2010).

Periods

Mean

Error (m/y)

Standard

Deviation (m/y) RMSE (m/y) R2

Zone I Zone III Zone I Zone III Zone I Zone III Zone I Zone III

1985–90 2.69 5.59 2.35 2.69 3.57 6.20 0.5626 0.5728

1990–2000 –1.60 –3.06 1.27 2.32 2.05 3.84 0.3807 0.5634

2000–10 –0.63 2.35 1.43 2.00 1.56 3.09 0.6417 0.5046

1990–2010 –0.43 –0.30 0.48 0.72 0.64 0.78 0.8299 0.7987

1985–2010 –0.14 0.10 0.32 0.46 0.35 0.47 0.7749 0.8968

Table 6. Summary of results of SDVC over different periods (1985–90, 1990–2000, 2000–10, 1990–2010, and 1985–2010).

Zone SDVC (103m3/y)

1985–90 1990–2000 2000–10 1990–2010 1985–2010

JARKUS SDS JARKUS SDS JARKUS SDS JARKUS SDS JARKUS SDS

Zone I Min –64.38 –8.81 –5.63 –15.75 –2.23 –17.14 –0.37 –8.28 –0.88 –2.34

Max 33.60 180.86 38.86 13.44 34.14 29.50 20.95 13.79 10.14 10.62

Average –5.45 29.12 5.27 –4.05 12.17 2.64 8.05 2.28 4.43 4.79

Zone III Min –25.67 –3.02 –53.45 –53.75 –16.09 –32.08 –6.85 –17.29 –6.22 –2.16

Max 92.71 162.83 31.50 36.37 23.10 60.55 43.33 32.63 22.28 39.15

Average 1.53 55.50 5.89 –8.92 3.68 15.61 5.86 3.38 4.55 10.38
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(1990–2010) and over a 25-year period (1985–2010). Over the

25-year period, RMSE of SDVC are ranging from 2.53103 m3/y

(Zone I) to 7.7 3 103 m3/y (Zone III).

Figure 11 shows the volume changes of each cell for both

JARKUS and SDVC for different periods. The volumes of each

cell are calculated by summing all transect values of each cell.

The blue columns indicate the volume derived from JARKUS,

while the red column indicates the volume derived from SDVC.

For the period 1985–90 (Figure 11a) and the period 1990–2000

(Figure 11b), the SDVCs show many differences in trends and

magnitudes of the volume compared with the volume derived

from JARKUS. For the other periods (2000–10 [Figure 11c] and

1990–2010 [Figure 11d]), general trends in SDVCs are quite

similar compared with volume trends of JARKUS, both

indicating that almost all coastal cells are accreting. However,

the magnitudes of the SDVC in some cells are underestimated

or overestimated compared with JARKUS. For instance, in

Figure 10c all cells in Zone I, the SDVC underestimates

volumes while the other three cells (6, 7, and 8) in Zone III

overestimate the volumes. For the period 1985–2010 (a 25-year

period), the SDVCs show a good agreement in both trends and

magnitudes, especially for the first four cells in Zone I (Figure

11e). It seems the SDVCs show a better result over long-term

periods (over 25 years) than the short-term periods (5 years to

10 years).

DISCUSSION
The comparison between satellite data and JARKUS data

over different periods provides a better understanding of the

capabilities of using satellite images in shoreline identification

Figure 9. Results of calculated shoreline changes during (a) 1985–89, (b) 1990–2000, (c) 2000–10, (d) 1990–2010, and (e) 1985–2010. The blue lines are shoreline

changes from JARKUS, and the red lines are shoreline changes from SDSCR. (Color for this figure is available in the online version of this article.)

Table 7. Summary of errors of SDVC over different periods (1985–90, 1990–2000, 2000–10, 1990–2010, and 1985–2010).

Period

Mean

Error (103 m3/y)

Standard

Deviation (103 m3/y) RMSE (103 m3/y)

Zone I Zone III Zone I Zone III Zone I Zone III

1985–90 34.57 53.97 21.73 30.56 40.84 62.02

1990–2000 –8.99 –14.81 6.51 14.90 11.11 21.01

2000–10 –9.54 11.94 6.90 16.65 11.77 20.49

1990–2010 –5.77 –2.48 3.79 7.25 6.90 7.66

1985–2010 0.37 5.84 2.44 5.03 2.47 7.71
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and shoreline-change rates as well as volume changes. The

evaluation revealed that the extracted SDSs at the North-

Holland coast have a seaward bias compared to JARKUS

measurements of 8.1 m and 9.2 m for Zone I and Zone III. This

is in line with current, be it very scarce, literature.

The seaward displacement of SDS relative to the JARKUS

shoreline could be explained by light absorption by seawater,

and it might vary depending on water transparency (Garcia-

Rubio, Huntley, and Russell, 2015). For regions having higher

turbidity, perhaps slightly higher wave conditions could

increase the seaward displacement. However, the magnitude

of these effects is still not known and needs further research.

Very recently, Pardo-Pascual et al. (2018) evaluated the

accuracy of shoreline position obtained from Landsat 7,

Landsat 8, and Sentinel-2 imagery on a natural beach and in

a port in Valencia, Spain. The results indicate variability

brightness in the terrestrial zone influences shoreline detec-

tion, brighter zones cause a small landward bias while darker

zones move them seaward.

The results of shoreline-change rates indicate a better

agreement between the JARKUS and the SDS over longer

periods (20–25 years) compared to shorter periods (5–10 years).

The smallest SD and RMSE were found over a 25-year period

(Tables 4 and 5). The SD and RMSE values increase with a

decreasing period. Moreover, the highest RMSE values were

found for Zone III in the region near IJmuiden harbour having

a large intertidal width. In terms of the correlation coefficient

(R2), the SDSCR shows a strong relationship (R2 . 0.78) over

the periods 1990–2010 and 1985–2010 (Table 5). These high

values mean that the SDSCR can be used better to quantify the

beach change trends over a 25-year period than over shorter

periods (5–10 years). The SDSCR methodology can be used to

derive shoreline-change rates comparable to those derived from

JARKUS. On the other hand, lower regression coefficients

values (R2 , 0.7) are observed in the cross-validation of SDSCR

over shorter periods (5-year period), indicating more uncer-

tainty of SDSCR over the shorter periods. Probably, the longer

periods rely on more data points and thereby averaging the

short-term variability in shoreline position leading to more

reliable results. This could explain why the SDSCR has better

results over periods of 20 years to 25 years than those results

obtained over a 5-year period. Almonacid-Caballer et al. (2016)

suggest using annual mean shoreline positions extracted from

Landsat to avoid short-term variability by averaging the

instantaneous shoreline positions registered during the same

year. Additionally, a larger time scale means larger absolute

shoreline changes and thus a larger signal-to-noise ratio. This

is clearly indicated in transect 290 (corresponding to profile

7005400 in Figure 12a); the absolute shoreline change during a

20-year period (1990–2010) is larger than that during a 5-year

period (1985–90).

The results of SDVC also indicate better results over a 20-year

to a 25-year period when compared to a 5-year period. This is

reflected by the smallest mean error, SD, and RMSE. Because

the volume changes have been calculated based on the results of

the SDSCR, similar results between SDVC and SDSCR are to be

expected. Using satellite images to observe shoreline changes

and volume changes seems to work better when considering

longer periods (over 20 years) than shorter periods. The larger

error in estimated volume-change rates over shorter time

periods could be explained by highly dynamic variations of the

profile shape on the time scale of events (Stive et al., 2002). On

timescales shorter than a year, dynamic variations of the upper

shoreface profile may exist because of seasonal variations, cyclic

behavior of bars, and episodic changes (dune erosion). On longer

timescales, Bosboom and Stive (2015) observed JARKUS

profiles over the period 1964 and 2008, where its measured

profile variations remain in a steady envelope. This observation

may explain why the results of SDVC over a long-term period

yield better results than over a short-term period.

The different trends in calculating volume changes from

satellite and JARKUS data occurring in some transects might

be explained by changes in profile shape. The SDVC from

Figure 10. Results of calculated volume changes over different periods (a)

1985–89, (b) 1990–2000, (c) 2000–10, (d) 1990–2010, and (e) 1985–2010.

(Color for this figure is available in the online version of this article.)
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Landsat assumes profiles are static and translated horizontally

in seaward and landward direction with accretion and erosion

respectively (Figure 5), whereas the JARKUS profiles (Figure

5) do not exactly follow this assumption and changes in profile

shape occur. That means that some JARKUS transects show a

positive volume change while experiencing shoreline erosion

and vice versa (see, e.g., Figure 12b).

To test the validity of the stationary profile assumption, the

volume estimated based on shoreline-change rates from the

JARKUS data (DVjarkus [m3/y]), were compared with the

volume changes that measured from profiles (DVprofile [m3/y]).

Figure 13 indicates the volume-change rates along the coast

and the correlation between the JARKUS (DVjarkus, blue line),

the SDS (DVSDS, red line), and the JARKUS profile (DVprofile,

green line) over the period 1985 and 2010. Figure 13d shows

clearly the correlation between the volume changes from the

same data but using a different methodology. One is estimated

from the shoreline-change rate using the assumption of a static

profile, while the other is estimated directly from the measured

profile. The dash line indicates the 1:1 regression line, while

the continuous line indicates the actual regression line. The

correlation analysis shows a significant positive correlation

between the DVprofile and the DVjarkus (R2 ¼ 0.7). The DVprofile

implies a general underestimation compared to the DVjarkus

with the bigger bias occurring at the higher volume changes.

Although the results indicate the correlation is acceptable the

cause of the bias could be subject of further research.

This study enables the creation of a quantitative assessment

of intertidal zone properties that causes deviation of SDS from

JARKUS data. The hypothesis is that the width of the

intertidal zone (W) is an important factor in explaining

displacement of SDS.

Figure 14 indicates the relationship between the bias

(difference between Landsat shoreline position and JARKUS

shoreline position) and W. The definition of W is the horizontal

distance between the mean high water and mean low water

and is estimated from JARKUS profiles. A relationship is

investigated between W in terms of pixel size (30 m) and the

bias. Consequently, different classes are distinguished where

W ranges between one pixel to two pixels (30 , W � 60 m); W

ranges between two pixels to three pixels (60 , W� 90 m); and

W is larger than three pixels (W . 90 m). Figure 14 indicates

that a gentle beach (W . 90 m) and a steep beach (W � 30 m)

show more variation in bias. On wide beaches, this can be

explained by the large horizontal range between wet and dry

that makes it difficult to identify between land and sea. This

observation is similar to the results of the study by Almonacid-

Caballer at al. (2016). This study has shown that a relation

exists between beach slope and the deviation between annual

mean shorelines obtained from RTK-GPS and LIDAR surveys

Figure 11. Volume changes through each cell over different periods.

Figure 12. Profile of transect 290 and profile of transect 98 in year 1985, 1990, and 2010.

Journal of Coastal Research, Vol. 35, No. 1, 2019

Shoreline Estimation from Landsat Images 67



and Landsat. Their study indicates that shorelines in flatter

beach segments are more variable during the year than in

steeper segments. For a narrow/steep beach, the classification

process between land and water is more sensitive to pixel size

in relation to the definition of the shoreline. Steep beaches

therefore have also more variation in bias.

Figure 15 also gives the distribution of the bias for different

widths (W) of the intertidal zone. The distributions of the bias

seem to follow a normal distribution, in which the smallest SD

is found in the range of W from one- to two-pixel sizes (Figure

15b). For W less than one-pixel size (Figure 15a) and larger

than two-pixel sizes (Figure 15c,d), the distribution of the bias

has a larger SD, as illustrated by the wider normal distribution

curve (the red curve in the Figure 15). Probably, the derivation

of shoreline works best on beaches having intertidal width

ranges between one pixel to two pixels (30 , W � 60 m).

CONCLUSIONS
This study used a combination of satellite remote sensing and

GIS techniques for the extraction of SDSs, SDSCR, and SDVC

from Landsat images. The accuracy of shoreline extraction was

assessed using 13 Landsat 5 TM and Landsat 7 ETMþ images

acquired between 1985 to 2010, along two coastal segments of

the North-Holland coast. Unsupervised classification was

applied using the NDWI to separate sea and land and extract

the shoreline from the images. The observed JARKUS

shoreline positions derived from the intersection between

water level and cross-shore profile at each transect were used

to evaluate the error of SDS and SDSCR. The volumes from

JARKUS profiles were used to evaluate the accuracy of SDVC.

The evaluation revealed that the extracted SDS at the North-

Holland coast has a seaward bias compared to JARKUS

Figure 13. Comparison estimated volume changes and its correlation between derived from SDS, from JARKUS profiles and from shoreline-change rates of

JARKUS shorelines. (Color for this figure is available in the online version of this article.)

Figure 14. Relationship between intertidal width and bias.

Figure 15. Histogram of errors on intertidal zone widths, with the normal

adjusted curve superimposed in black.
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measurements of 8.1 m and 9.2 m for Zone I and Zone III,

respectively. The mean SD ranges from 11.1 m to 18.5 m and

RMSE varies from 15.1 m to 21.8 m. In all cases of Landsat 5

TM, the mean errors tend to indicate a seaward bias, whereas

for two Landsat 7ETM images the mean errors are landward.

The results of shoreline-change rates obtained using regres-

sion were applied to both datasets, SDS, and JARKUS with five

different time periods: a 5-year period (e.g., 1985–90), two 10-

year periods (e.g., 1990–2000, 2000–10), a 20-year period (e.g.,

1990–2010), and a 25-year period (e.g., 1985–2010). Cross-

validation of shoreline-change rate estimations have been

performed using statistical techniques, namely, the regression

coefficient (R2) and other statistical parameters such as mean

error, SD, and RMSE.

The SDSCRs indicate a better agreement with JARKUS for

longer periods (20–25 years) than for shorter periods (5–10

years). The smallest SD and RMSE were found over a 25-year

period. The results of the R2 of the SDSCRs have higher values

(R2 . 0.78) over the 20-year and 25-year period. The lower

correlation values (R2 , 0.7) are observed in the cross-

validation of SDSCR during the shorter periods (5-year period).

The finding of smallest mean error, SD, and RMSE and the

highest R2 over the longer period (20 to 25 years) leads to the

conclusion that SDSCRs can be derived more successfully over

long-term periods than over short-term periods.

Similarly, volume changes obtained from shoreline-change

rates indicate less differences when derived from SDS and

JARKUS profiles over long-term periods (20 to 25 years) than

over short-term period (5 to 10 years).

Finally, the current study has enabled the revelation that the

intertidal width (W) influences the accuracy of SDS. The

relationship between bias and intertidal beach width indicates

that gentle beaches (W . 90 m) and steep beaches (W � 30 m)

show more variation in the SDS bias. Interestingly, for beaches

that have intertidal beach widths ranging from one- to two-

pixel sizes (30–60 m), results obtained are better than for wider

or narrower beaches.

In summary, the results obtained suggest the possibility of

using Landsat imagery as a source for monitoring shoreline-

change rates and volume-change trends over decadal periods.

For a short-term period, the results may be influenced by the

signal-to-noise ratio and the short-term variations in cross-

shore profiles.
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