
Delft Center for Systems and Control

Filtering Quasiperiodic Noise
from Biomedical Images

Máté Bakos

M
as

te
ro

fS
cie

nc
e

Th
es

is





Filtering Quasiperiodic Noise from
Biomedical Images

Master of Science Thesis

For the degree of Master of Science in Systems and Control at Delft
University of Technology

Máté Bakos

Friday 17th July, 2020

Faculty of Mechanical, Maritime and Materials Engineering (3mE) · Delft University of
Technology



Copyright c⃝ Delft Center for Systems and Control (DCSC)
All rights reserved.



Delft University of Technology
Department of

Delft Center for Systems and Control (DCSC)

The undersigned hereby certify that they have read and recommend to the Faculty
of Mechanical, Maritime and Materials Engineering (3mE) for acceptance a thesis

entitled

Filtering Quasiperiodic Noise from Biomedical Images

by

Máté Bakos

in partial fulfillment of the requirements for the degree of

Master of Science Systems and Control

Dated: Friday 17th July, 2020

Supervisor(s):
dr.ing. Raf Van de Plas

Reader(s):
dr.ing. Sander Wahls

dr. Matthias Alfeld





i

Abstract

In the field of biomedical imaging, images often report a combination of biologically in-
duced variation, usually the goal of the imaging process (e.g. outlining an anatomical
region or disease pattern), and non-biological variation, such as instrument or acquisition
method-induced noise patterns. Since some medical decisions are made based on imag-
ing, separating the biological signal from noise is of significant importance (e.g. accelerates
decision-making, reducing the chance of misdiagnosis). Some non-biological variations that
span a wide range of imaging modalities include e.g. viewport stitching artifacts, slice-to-
slice interference, aliasing, and Gibbs-phenomena. From a signal processing perspective,
many of these can be modeled as quasiperiodic patterns. Thus, removal of quasiperiodic
patterns while preserving the underlying medical information is the main focus of this
thesis.

Although in modern instruments, many forms of non-biological variation can be attenu-
ated to be invisible to the naked eye, machine learning algorithms which are often used for
classification of disease and segmentation of biological samples may be susceptible to even
minor variations and noise patterns. Development of entirely data-driven, unsupervised
denoising techniques can potentially increase the effectiveness and reliability of such algo-
rithms. Furthermore, under certain image transformations, such as different color spaces,
the Fourier and wavelet transform, and factorizations, such as principal component analy-
sis and non-negative matrix factorization, as well as combinations of these, non-biological
patterns can get amplified and become so prominent that much of the underlying biological
information is concealed. Removing these quasiperiodic patterns using current state-of-
the-art algorithms still requires manual parameter tuning and prior expert knowledge,
which is an impractical and possibly unnecessary expectation towards healthcare profes-
sionals. The goal of this M.Sc. thesis is to develop an automated, data-driven framework,
that is able to reliably identify, quantify, and eliminate quasiperiodic patterns within the
images while retaining as much biological information as possible.

In this framework, named Quasiperiodic Image Denoising (QID), two novel algorithms are
implemented, both operating in the Fourier domain. One algorithm is based on robust
principal component analysis (QID-RPCA) and the other uses the normalized median
of absolute differences (QID-MADN). The methods used to achieve unsupervised, data-
driven denoising are described in detail. This includes the use of histogram equalization
for radial binning, an automated, sparsity-based approach to choosing the optimal aggre-
gation level, and noise component attenuation based on radial frequency patterns. The
methodology is demonstrated through three case studies. First, a synthetic dataset is used
to compare the performance of the novel algorithms to the current state-of-the-art solu-
tions. Second, the performance is evaluated on two real-world datasets processed using a
number of methods, e.g. factorization and different color spaces. One of these datasets is
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ii Abstract

based on a microscopy image of a transversal section of a mouse brain and the other one
is based on a microscopy image of a coronal section of a rat kidney. Finally, a real-world,
raw dataset is denoised consisting of a set of high-resolution fluorescent microscopy images
of a human kidney. Results indicate that the novel algorithms have higher denoising per-
formance than previous approaches in the literature with notable improvements achieved
for low-frequency corruptions.
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Chapter 1

Introduction

Medical and biological imaging are areas that acquire spatial measurements from organs,
tissues, fluids, and other biological specimens. These imaging techniques are tools that can
be used to achieve a wide range of goals. The most common goal of biomedical imaging is to
conduct clinical analysis on the basis of images, including detection of disease, localization
of abnormalities, and tracking their development [66]. There are also applications focusing
on research and development, where images are used to gather knowledge on molecular
pathomechanisms. Overall, imaging techniques serve as an essential step for many of
today’s prognostics and diagnostics.

Biomedical images often report a combination of biologically induced variation and non-
biological variation, such as instrument or acquisition method-induced noise patterns [81],
[94]. Some non-biological variations that span a wide range of imaging modalities include
e.g. viewport stitching artifacts, slice-to-slice interference, aliasing, Gibbs-phenomenon,
changing intensity gradients, ripple-effect, and wraparound of the sample [27], [35], [47],
[59]. Some biological variations, such as membranes surrounding biological structures, cell
boundaries, bones, and area specific tissue patterns may resemble non-biological varia-
tion [66]. Characterization and separation of biological and non-biological variations is
often far from trivial [39], [45]. Many professionals in the life sciences, such as surgeons,
radiologists, pathologists, bioinformaticians, and biomedical engineers handle such data
day-to-day. Even though the use is wide-spread, it is common to see imaging measure-
ments that are evidently corrupted by non-biological signals [35], [59]. This is not only
bothersome, but it is also not part of the sample at hand, potentially obscuring impor-
tant biological information and making discovery difficult or in some cases impossible.
These phenomena can also be observed in research, where images containing a significant
amount of noise are sometimes published. Since some medical decisions are made based on
imaging, separating the biological signal from the non-biological variations is of significant
importance. The most important difference to most fields that require denoising of images
is that in biomedical imaging, introduction of false, artificial patterns can potentially have
detrimental effects. Such patterns can be the difference between vastly different diag-
noses. Introduced patterns have the potential to obstruct important biological structures,
thus protection of the true biological signal is of paramount importance [45]. Sometimes
preservation of the biological texture is more vital than removal of the noise.

Some of the noise sources causing the corruptions are well-understood mathematically,
which makes characterization and removal possible [64], [86]. From the signal processing
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perspective, many of these can be modeled as quasiperiodic patterns [69], [74], [77]. How-
ever, most of the popular approaches to such noise include tuning parameters that have
to be changed manually and with every use, making wide-range adoption of such methods
impractical and cumbersome without expert knowledge of the specific algorithm [32], [70],
[72], [74], [82], [84]. By taking care of non-biological corruptions posterior to the imaging
in an automatic, data-driven way, the accuracy of the results could be increased, previ-
ously invisible information could be revealed and it could enable a decrease in the chance
of misdiagnosis. There is a wide variety of denoising algorithms focused on biomedical
imaging [33], [36], [44], [46], [50], [62], [71], [76] and there is a wide variety of denoising
algorithms focused on quasiperiodic patterns [30], [49], [70], [72], [74], [77], [84], however,
the intersection of these fields is scarce.

It is important to note that in an ideal scenario these denoising approaches would be
applied right after acquisition in the acquisition computer. Expert knowledge of digital
signal processing would be encoded in the algorithms. The manual parameter setting
would be avoided with data-driven algorithm design. Descriptive statistical properties of
the biological signal and noise would be gathered automatically. No additional hardware
should be required except for a general-purpose computer, making the approach both
practical and economical.

This thesis explores what the currently applied, best-performing techniques for charac-
terization and removal of periodic noise in images are, with particular focus on medical
applications. The goal of this thesis is to develop a novel algorithmic framework that
is able to reliably identify, quantify, and eliminate quasiperiodic, non-biological patterns
within the images while retaining as much biological information as possible, in an auto-
mated, entirely data-driven fashion. An example of a biomedical image corrupted with
acquisition method-induced quasiperiodic noise is shown in Figure 1-1a. An example of
successful removal of such a quasiperiodic pattern, while preserving the underlying bio-
logical information is shown in Figure 1-1b.

The main questions this thesis focuses on are as follows. Applied on biomedical images, is
it possible to surpass the performance of current state-of-the-art quasiperiodic denoising
algorithms? Is it possible to create a reliable, data-driven framework for quasiperiodic
denoising algorithms?
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(a) Microscopy image with quasiperiodic corruption.
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(b) Denoised microscopy image with no quasiperiodic corruption.

Figure 1-1: Example of a biomedical image with and without acquisition method-induced
quasiperiodic noise.

Chapter 2 focuses on providing a background to the most common noise types in the
medical domain. Furthermore, it aims to give an overview of the most commonly and suc-
cessfully used techniques in a generic denoising pipeline with special focus on quasiperiodic
patterns. Finally, it provides a brief introduction to some of the state-of-the-art algorithms
in terms of removal of periodic and quasiperiodic corruptions and motivates the need for
further development of these algorithms.

In Chapter 3, the novel framework operating in the Fourier domain is introduced, named
Quasiperiodic Image Denoising (QID), and the steps of the two denoising algorithms
developed as a part of this thesis, QID-RPCA and QID-MADN, are demonstrated and
explained in detail. These steps build on previous developments and aim to overcome
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their shortcomings, largely focusing on high denoising performance without the need for
manual tuning of parameters. This includes the use of histogram equalization for radial
binning; an automated, sparsity-based approach to choosing the optimal aggregation level;
robustification of outlier detection through robust principal component analysis and robust
median based statistical filtering; and finally, noise component attenuation based on radial
frequency patterns.

Chapter 4 introduces three datasets and a set of experiments to demonstrate and validate
the effectiveness of the algorithms. This includes a synthetic dataset and two, real-world
microscopy datasets. Details of the datasets and noise artefacts are introduced and the
experimental setup is outlined.

Chapter 5 applies the state-of-the-art and the novel algorithms to the case study images
and discusses differences, strengths, and weaknesses of each. The methodology is demon-
strated through three case studies. First, the synthetic dataset is evaluated on a wide
range of simple periodic corruptions with a multitude of frequencies and amplitudes. Spe-
cial cases such as information loss through intensity saturation and denoising performance
close to the Nyquist-frequency are evaluated. Comparison of the denoising performance of
the novel algorithms to the current state-of-the-art is provided through a number of met-
rics. Visual examples of the algorithms are provided, artifacts, strengths, and weaknesses
are discussed in detail. Second, the performance is evaluated on two real-world datasets
processed using a number of methods, e.g. factorization and different color spaces. One
of these datasets is based on a microscopy image of a transversal section of a mouse brain
and the other one is based on a microscopy image of a coronal section of a rat kidney. Fi-
nally, a real-world, raw dataset is denoised consisting of a set of high-resolution fluorescent
microscopy images of a human kidney. Visual comparison of the denoising performance is
given. Success of the initial goals of the research is evaluated.

Finally, in Chapter 6, concluding and summarizing remarks are given, and some ideas for
further research and development are provided.
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Chapter 2

Background and Fundamentals

2-1. Medical imaging
In this study, the use of the term ’medical imaging’ is to be regarded in the broad sense
of including all techniques that acquire spatial representations of the internal aspects of
bodies, organs, and tissues, both in vitro and in vivo. The goal of these spatial repre-
sentations is often detecting disease, finding abnormalities, and developing insights about
molecular pathomechanisms, among others [28], [34], [48], [66]–[68].

In the medical imaging domain, many commonly used imaging techniques are based on the
electromagnetic energy spectrum. These techniques can be sorted by energy per photon,
as shown in Figure 2-1 [85]. At the lower end, there are radio waves used in magnetic
resonance imaging (MRI). Then, there are infrared, visible, and ultraviolet rays used for
microscopy, followed by X-ray radiation in skeletal system imaging and soft tissue disease.
At the highest end of the spectrum, Gamma-rays are used for bone scans and positron
emission tomography (PET) [81].
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Figure 2-1: Overview of the electromagnetic spectrum showing energy per photon, fre-
quency, wavelength, and their scale as well as the radiation types. Source: Reproduced
from [85], under Creative Commons Attribution-ShareAlike License.

Methods using the electromagnetic spectrum are the most prominent in the field. Other
energy sources, such as acoustic energy are used for thermoacoustic imaging [2], [24]. Ul-
trasonic energy for echocardiography [48], and electron energy used for electron microscopy
[7], [51] are also of significant importance.

2-1-1. Microscopy
Microscopy is widely used in a variety of fields, from cell biology, through pharmaceu-
ticals, to material inspections [29], [56], [63], [68], [77]. There are also numerous types
of microscopy techniques. Examples of these can be seen in Figure 2-2 [68], [83], [87],
[91].

The most common one is light microscopy [29]. Depending on the illumination and staining
of the sample, one can find different specialized techniques, which mitigate certain issues
and highlight specific sub-structures in the sample. The simplest approach is bright-field
microscopy, seen in Figure 2-2a, where sample preparation is minimal compared to many
of the more advanced methods. However, this simplicity comes at a cost, as problems with
contrast and focus arise regularly. Neglecting special sample preparation, this technique
magnifies the sample without highlighting or emphasizing any specific aspect or part of
the sample, which is excellent for general, preliminary analysis. It can frequently provide
points of interest for further analysis. A more advanced technique is dark-field microscopy
[5] in Figure 2-2b, which provides significantly improved contrast in many cases, without
staining of the sample. Another possibility is phase-contrast microscopy, seen in Figure
2-2c, where intracellular and extracellular structures become easily distinguishable due to
the differences in their refractive indices.

Raising the complexity, samples are also often stained in order to highlight specific mor-
phological structures as well as to increase the contrast between the structures. This can
also boost the effectiveness of more straightforward methods. The most popular staining
method uses hematoxylin and eosin (H&E), as seen in Figure 2-2d, where hematoxylin
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stains cell nuclei purple, eosin colors the extracellular matrix and cytoplasm with a pink
color [66]. It is important to note that there are cases where sample staining is either not
possible due to biochemical limitations or infeasible due to increased preparation time and
costs. In these cases, dark-field or phase-contrast microscopy may work well.

When separating these structures is not selective enough, more sophisticated methods
are also available, such as fluorescence microscopy in Figure 2-2e. Among others, this
permits staining with specific antibodies that are engineered to emit light with a particular
wavelength, and this helps to identify unknown bacteria or the area of effect for a specific
chemical species that the antibodies latch onto [57], [89]. Extensions to this are multi-
staining approaches that simultaneously dye multiple compounds or structures.

(a) Brightfield [68]. (b) Darkfield [68]. (c) Phase-contrast [68].

(d) H&E stained brightfield [91]. (e) Fluorescence [83]. (f) Scanning electron [87].

Figure 2-2: Examples of specialized techniques in microscopy. Source: [68], Figure 3,
under Creative Commons Attribution License 3.0. Source: [91], under Creative Commons
Attribution License 4.0. Source: [87], under Creative Commons License 1.0.

There are cases, however, where increased contrast and special staining is not enough, but
raw magnification and high resolution are required [21], [51], [54]. When this happens,
electron microscopy is a possible solution. These microscopes can achieve up to 1000-
fold magnification compared to light microscopes. The transmission electron microscope
(TEM) can be used to analyze viruses and microorganisms in the nanometer range. In
contrast, the scanning electron microscope (SEM), visible in Figure 2-2f that allows for a
three-dimensional view, but has lower resolution compared to the TEM.

A wide variety of noises can contaminate images made with these techniques. Some of
these originate from physical properties of the measurement system, including but not
limited to photon noise, which depends on the photon count, thermal noise, which is
dependent on the temperature of the appliance and the integration time, and structured
noise, which is affected by the differences in photon density inside and between viewports.
Furthermore, other noise components come from the digitization process, such as readout
noise, whose severity is sensitive to changes in the readout rate, and quantization noise,
which is susceptible to the number of bits in the analog-to-digital-converter (ADC) [81],
[94]. There are several other sources of noise in these systems as well. However, in this
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document, our focus will be on the different types and some effective removal algorithms,
rather than discussing the origins in-depth.

The sheer number of unique methods within microscopy can seem daunting, but this comes
largely from the wide range of fields and applications they are used for, each with their
own strengths and shortcomings.

2-1-2. Other imaging modalities
Even though microscopy is likely the most commonly used technique, it is almost always
used in in vitro. In contrast, many other imaging techniques are capable of in vivo imaging,
which is significantly less invasive and often a considerably quicker solution than going
through surgery and sample preparation in order to acquire samples of interest.

One such technique is Magnetic Resonance Imaging (MRI), which uses short pulses of radio
waves generated by a strong magnet [43]. When these pulses collide with different tissue
types in the patient’s body, a response wave is created. A computer is used to deconstruct
the differences between the initial and response pulse, to determine their location. This
makes it possible to create a 2-D tomographic image of the patient [81]. The principal
sources of noise for this technique are radio frequency emissions in the patient’s body due
to thermal motion, instrument noise from the coils, and other electronics in the appliance
[93].

Another important technique is Imaging Mass Spectrometry (IMS) [34], [47], which com-
bines visual, microscopy-like imaging capabilities with detailed chemical information by
measuring the mass-to-charge ratio of specific ions obtained from the sample. This tech-
nique can record the spatial distributions of a wide variety of atoms and molecules,
including lipids, peptides, metabolites, and proteins. It also enables the visualisation
of biomolecules throughout a tissue sample, e.g. protein dsitributions in tumor tissue,
biomarkers [47]. In simple terms, the sample is ablated with electrons or photons from
a laser, charging individual molecules. As a result, many of them fragment and release
charged particles before returning to a more stable molecular state. These released parti-
cles can be captured as an ion signal that is then mapped as a function of their mass-to-
charge ratio, resulting in a single mass spectrum per pixel. The measured mass spectra
can be used to determine the chemical structure and composition of the sample, as well
as for visualizing the spatial distribution of different chemical species across the sample
[47].

Note that this is a simplified description of IMS, there are several different methodolo-
gies and instrumentations that may vary greatly, in terms of ion creation, mass selection,
and detection compared to the description above. For example some methodologies are
matrix-assisted laser desorption/ionization with time-of-flight mass analyzer, spark source
mass spectrometry, thermal ionization-mass spectrometry, and accelerator mass spectrom-
etry.

While this provides very detailed chemical information as well as spatial information on the
sample, a high spatial and spectral resolution can create datasets in the range of hundreds
to thousands of gigabytes for a single sample. Manual analysis of such results becomes cum-
bersome, if not impossible. For this reason, a considerable amount of work has been done
to perform preprocessing, denoising, and analysis of these measurements in an automatic,
data-driven manner both in the commercial and open-source communities. Examples of
such tools are msIQuant [79] and Mass-Up lopez-fernandez_mass-up:_2015.
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2-2. Common noise types and removal
Noise can originate from several sources. Some of the most common ones are instrumental,
environmental, and human-introduced [23], [36], [69]. Instrumental noise, for example,
may come from the source of energy used for imaging, the spectral band captured by,
and the quality of the imaging sensor. Others sources are environmental, such as ambient
temperature of the room, temperature of the imaging sensor, and differences in background
illumination between measurements. The final type of noise source is human-introduced,
e.g. lack of proper maintenance and calibration, low-quality sample preparation, and
general negligence regarding the proper use of the appliance and knowledge of the imaging
technique. Many of these are introduced at a specific stage of imaging, most commonly
during image acquisition due to light levels and sensor temperature, or during transmission,
principally due to interference [81].

If users are not mindful of the necessary operating conditions of these imaging techniques,
noise can make interpretation of the acquired images difficult, thus hindering the possibil-
ity of a correct diagnosis. These effects include but are not limited to unrealistic edges,
vanishing or artificially added lines, corners, tiling, blurred objects, and disturbed back-
ground scenes [39], as seen in Figure 2-3. Understanding and modeling these common
types gives us tools to characterize and invert them.

(a) Signal void due to
crosstalk. The sample is not

registered in the middle.

(b) Change in intensity
gradient. Top part is

low contrast.

(c) Changing intensity,
ripple effect, aliasing.

(d) Slice-to-slice interference. (e) Wraparound. (f) Gibbs-phenomena.

Figure 2-3: Examples of various noise artefacts on a variety of biomedical images [35],
[59]. Source: [35], Figures 7,8,9,11, under Creative Commons Attribution License 4.0.
Source: [59], Figure 17,25.

Pižurica et al. [45] argues that in the case of medical images, the aim of denoising is con-
siderably different from other common domains and their applications, such as in enter-
tainment or telecommunication. While in the latter, favorable characteristics of denoising
are determined by viewing and hearing pleasure of users, for medical images, visually clean
images may still disguise clinically vital features. Degradation of a crucial feature through

Máté Bakos Master Thesis



10 Background and Fundamentals

smoothing should be avoided at all costs, as well as the creation of artificial features that
could lead to a faulty medical conclusion.

Requirements and parameters of the denoising also depend on the application. At the
same time, a radiologist may find helpful information in the "texture" of a speckle-noise
pattern upon manual examination [45]. A different type and level of denoising may be ad-
vantageous for an automatic segmentation algorithm, where performance heavily depends
on the preservation and sharpness of edges and benefits from smoother textures.

Raw and corrupted images are often preferred by medical professionals, as obstruction of
important features is always a possibility when the noise filters used are not sufficiently
refined. At the same time, the same effect can be caused by the lack of filtering as well.
Maximizing visibility and quality of features of interest is a delicate optimization problem,
and the concerns above should be taken into consideration during the design of appropriate
noise filters.

Even though other noise models, including but not limited to Rician, speckle, Rayleigh,
gamma, uniform, and anisotropic noise are important, they are not discussed further in this
chapter. More information on these can be found in literature, for example, in Gonzalez
et al. [81].

2-2-1. Gaussian noise
The Gaussian noise model is frequently used in the domain, as it describes multiple sources
of noise well and it is easy to describe and apply both spatially and in the frequency
domain. The only variables in its distribution are the mean, µ, and standard deviation, σ,
as seen in Equation 2-1 and in Figure 2-4b, which describes the corresponding probability
density function (PDF) of x, a Gaussian random variable.

p(x) = 1
σ

√
2π

e−(x−µ)2/2σ2 (2-1)

Because of this convenience, it is often used in cases where it is only borderline applicable
[81]. One such case comes from using the Gaussian model to describe noise generated
by fluctuations in the light source or high temperature of the imaging sensor. This can
cause noise to appear in the electronic circuit and sensor during scanning and digitization
[81]. As a result of discretization and counting statistics involved in modeling noise in
such electronic components, the resulting distribution can be considerably different from
a Gaussian distribution. Even though the physical phenomena are modelled well by the
Gaussian process, the digital, acquired signal is often not modeled accurately by the same
model. In the practical sense, it shows up as intensity variation in the uniform regions of
the image. For example this is seen during field emission SEM images, where the electron
emission moves to another position, resulting in a fluctuation in beam current. This can
often be minimized by choosing a scan time that is significantly shorter or longer than the
fluctuation time of the source [80].
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Original

(a) Original Lena image.

Gaussian

(b) Lena image, with added Gaussian noise, with
a mean of 0 and a variance of 0.01.

Figure 2-4: An example of the effect of Gaussian noise.

2-2-2. Impulse or salt-and-pepper noise
This type of noise is a usually the result of impulse corruption, which is often significantly
larger than the strength of the signal. In pixels of digital images, this results in randomly
appearing, saturated, white or black pixels [81]. It is often caused by ADC errors as well
as bit errors in transmission.

One possible description of impulse noise is shown in Equation 2-2, which describes the
probability density function. For an 8-bit image a = 0 and b = 255 in most cases, while for
a 16-bit image a = 0 and b = 65535, while Pa and Pb are their probability of occurrence.
When Pa and Pb occurs, the pixel intensity is replaced by a and b, respectively. On a
grayscale image, this resembles salt-and-pepper particles, which are randomly distributed
over the image. An example of this type of noise can be seen in Figure 2-5b.

p(x) =


Pa, for x = a

Pb, for x = b

0, otherwise
(2-2)
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Original

(a) Original Lena image.

Impulse

(b) Lena image, with added impulse noise, with a
probability of Pa = Pb = 0.05.

Figure 2-5: An example of the effect of impulse noise.

This particular type of noise is extensively studied, and in the majority of cases, mean-
and median-filtering is effective in removing it, thus enhancing the image quality [65].
The filter looks at the pixel and its immediate neighborhood, which is called a kernel, and
takes the mean or median of the contained values, which then become the new pixel value
in the filtered image. Small kernels are commonly preferred (3 × 3 or 5 × 5), as larger
kernels smooth out the image and degrade edges as well as fine details. Median-filters,
in particular, are significantly better at preserving edges. However, they may be less
aggressive towards the noise, thus more likely to have residuals compared to mean-filters
[53].

2-2-3. Periodic and quasiperiodic noise
Periodic functions are functions which repeat their values in set intervals. A formulation
of this concept is shown in Equation 2-3, where x(t) is a time-varying function, t is time,
and P is the period of time in which the repetition occurs. An alternative formulation
is shown in Equation 2-4. For this type of noise, the frequency domain often gives a
concise description of the signal, in the continuous case, a sine or cosine function with
a single frequency appears as a peak in the frequency domain, assuming a one-sided
transform.

x(t) = x(t + P ) ∀t ∈ R (2-3)

|x(t) − x(t + P )| = 0 ∀t ∈ R (2-4)

The theory of almost periodic functions was created by Harald Bohr, it has been extended
and further developed by multiple authors, such as Vyacheslav Stepanov, Hermann Weyl,
Abram Samoilovitch Besicovitch, and John von Neumann, among others [9], [92]. The
definition of quasiperiodicity used in this thesis is closest to Bohr’s definition of uni-
form almost periodic functions. However, existence and uniqueness theorems in particular
spaces, such as the Banach space, and general properties of the solution are not discussed,
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as it is not the primary focus of this thesis, further information on these topics can be
found in [9]. In the signal processing sense, the concept can be explained relatively easily,
but the mathematical description and its consequences are somewhat more complicated.
In principle, an quasiperiodic signal is locally virtually periodic, meaning that each pe-
riod is identical to its neighbors. However, globally, the similarity of such periods can
change. Looking at the frequency domain representation, this results in a distribution
around some peak. A mathematical formulation of this phenomena is described in Equa-
tion 2-5 and an alternative formulation in Equation 2-6. This formulation is similar to
Equation 2-3 and 2-4, except that the period is not exact, which is represented by ϵ, the
error term. This definition originates from Bohr’s definition of uniform almost periodic
functions, however, intentionally less precise. It serves as a conceptual description that
imposes no theoretical restrictions on the error term ϵ, in order to incorporate structured
noise, such as viewport-stitching, discussed in Section 2-2-4.

x(t) ≈ x(t + P ) ∀t ∈ R (2-5)

|x(t) − x(t + P )| = ε ∀t ∈ R (2-6)

In the practical sense periodic and quasiperiodic noise often appears as an additive re-
peating pattern over the image, as seen in Figure 2-6b, which appears in the form of
repetitive crests and valleys. When looking at the frequency domain representation, crisp
or distributed peaks.

Original

(a) Original Lena image.

Periodic

(b) Lena image, with added periodic-noise, sinu-
soid with an amplitude of 10% and a frequency of
0.058 cycles/pixel (or approximately 30 cycles/im-
age width).

Figure 2-6: An example of the effect of periodic noise.

The source of this noise is often electrical and electro-mechanical interference [81]. For a
specific sensor or appliance, expected parameters and the probability density function of
this noise may be given in the characterization sheet or data sheet of the sensor. However,
estimation of the parameters is also possible in case the imaging can be done on a uniform,
flat sample, which provides a good baseline for the method noise of the system [32].
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An interesting sub-phenomenon is the Moiré effect, which is an interference pattern that
occurs when multiple periodic or quasiperiodic structures are overlaid, thus creating a new
superimposed structure. An example of this can be seen in Figure 2-7. These patterns are
frequently also seen as aliasing phenomena [32].

Filtering of such corruption can be done in different domains, such as spatial [32], frequency
[70], [72], [74], [82], and the wavelet domain [84]. A detailed description and explanation
of the fundamentals of each can be found in Chapter 2-3.

(a) Superposition of two, identical, but rotated line
gratings.

(b) Enlarged segment.

Figure 2-7: Examples of Moiré patterns. Source: [86], Figure 1.1, reproduced with
permission from Springer-Verlag London Limited.

2-2-4. Structured noise
An instance of structured noise is a phenomenon called viewport-stitching. High-resolution
microscopy images, for example, are not often acquired by a single high-resolution imaging
sensor, at a single instant in time. They are often acquired by a lower-resolution sensor that
takes an image of a small part of the sample, this is what we refer to as a viewport. This
sensor is then then moved along a specific structured path, such that a lower-resolution
image is taken of each and every part of the sample. When all the areas of the sample have
been captured, the lower-resolution images or viewports are connected or stitched together,
this results in a high-resolution image. The amount of light that falls on the sample
within and across viewports is often not uniform, especially without regular calibration
and maintenance. When stitching these non-uniformly lit viewports together, a structured,
repetitive pattern emerges, which is referred to as viewport-stitching artifact or viewport
corruption [27].

As seen in Figure 2-8a, this results in a repeating pattern emerging between the adjacent
viewports and a gradual vanishing in certain directions [56]. The differences between Fig-
ure 2-8a and 2-8b include a more uniformly distributed illumination within the viewports,
a considerable change in the size of viewports as well as post-acquisition color enhance-
ment of the staining on 2-8b. It is important to note that differences across viewports are
still present even after enhancement.
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(a) Sample with considerable viewport corruption. (b) Sample with better calibration and visibly less
prominent viewport corruption.

Figure 2-8: Viewport-stitching artifact on H&E stained microscopy images. Source: [56],
Figure 5, under Creative Commons Attribution License 4.0.

2-3. Decomposition and domain transformation
In a general denoising pipeline, common steps include decomposition, noise component
identification, and filtering, followed by reconstruction. Decomposition commonly hap-
pens either through a domain transformation such as Fourier or wavelet transform or
through factorization methods. The choice of decomposition also often dictates the type
of reconstruction or inverse transformation that is required. The choice of decomposition,
identification, and filtering methods are strongly tied to the goals of the denoising and the
specific characteristics of the noise.

Periodic and quasiperiodic noise, as introduced at the end of Section 2-2-3, can be ap-
proached through a wide range of methods, both in terms of domain transformation and
factorization. In this chapter, exploration and comparison of these methods takes place
with a focus on their strengths and weaknesses with regards to decomposing corrupted
medical images.

2-3-1. Signal domains
Using transformations, signals can be represented in a different basis than the one in which
they were acquired in. For example, a real-valued time-domain signal reports how its
measured variable evolves as time progresses. Using a Fourier transform, we can obtain a
complex-valued frequency domain representation of that same signal. This representation
shows the frequencies, amplitudes, and phases of the sine and cosine waves that, when
summed, build up the original signal.

There are a large number of possible transformations available, and this section expands on
the most popular and more effective transforms that can capture periodic and quasiperi-
odic signals specifically. These methods can be categorized into spatial, Fourier, and
wavelet domain models.

2-3-1-1. Spatial-domain parametric models

In relatively simple, clearly periodic cases, it is possible to use the Fourier series expansion
and estimate the coefficients of the basis functions using flat, low variance patches of the
image, directly in the spatial domain. Such patches can be for example, a uniform patch
of grass in a photo of a football match, or a viewport outside the biological sample in a
microscopy image. In such areas, assuming that the mean of the flat, low variance patch
approximates the true, noiseless image well, the overarching pattern can be reduced to
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a system of linear algebraic equations [32]. This method can be expanded and applied
to the whole image. Even though this sounds straightforward and effective, in practice,
the useability of this approach is quite limited. Images often have no patches where the
mean approximates the noiseless image well, or the coefficients found within the patch
may not apply uniformly to all other parts of the image, which is a common observation
in quasiperiodic noise cases. Finally, the accuracy of such fitting is sensitive to the noise
that is present. As mentioned in the conclusion of Sidorov et al., where both the spatial
domain and a Fourier-based method was used, the latter tends to provide a higher quality
removal. It is important to mention that in [32] the goal was denoising in a way that is
pleasing for the human eye from a broadcasting perspective, not from the standpoint of
clinical usability, as discussed in Section 2-2.

2-3-1-2. Fourier-transform and frequency-domain analysis

Jean Baptiste Fourier published his paper on heat propagation in solid bodies in 1907 [1].
He discovered that every continuous or discontinuous function can be composed using an
infinite number of sines and cosines. The continuous Fourier-transform (CFT), however,
has a significant challenge in practice, due to the integrals, some of which cannot be
represented in a closed form, making the analytical solution unattainable in some instances.
The discrete Fourier-transform (DFT), which resolves this issue and thus is more readily
applicable in many practical cases, also begun its development around the same time
[64].

The DTF has been applied to a wide variety of problems, in virtually every scientific
and technological field, including but not limited to optics, imaging, electricity, acoustics,
communications, signal processing, biological engineering, hydrodynamics, heat propaga-
tion, mechanics, geophysics, spectroscopy, statistics, and mathematics [64]. Even after the
widespread availability of digital computers, the computational costs of the algorithm were
still a burden. This limitation was mitigated significantly by the introduction of the fast
Fourier-transform (FFT) in 1965 [8], an efficient algorithm for calculating the DFT.

Effective analysis and filtering of periodicity can typically be done more easily in the
frequency domain, which in terms of the Fourier transform means that periodic signals
can be deconstructed to a combination of specific sines and cosines. The Fourier-domain
coefficient locations are dictated by the frequencies, and their amplitude is proportional
to the magnitude and phase of these deconstructed trigonometric functions. A common
approach for fairly well-localized noise is to use a filter to capture it. The simplest of these
filters are band-reject, band-pass, and notch filters [81]. Such filters and other possibilities
are detailed in Section 2-4-2.

The 2-D discrete Fourier transform implementation we used is shown in Equation 2-7.
For an n × m matrix in the spatial domain, X, and its discrete Fourier transform Y ,
ωm = e− 2πi

m and ωn = e− 2πi
n are complex roots of unity, where i is the imaginary unit, p

and q are indices in the Fourier domain, j and k are indices in the spatial domain, p and
j are indices that run from 0 to m-1, and q and k are indices that run from 0 to n1.

Yp,r =
m−1∑
j=0

n−1∑
k=0

ωjp
m ωkq

n Xj,k (2-7)

As the DFT is a discrete and finite numerical approximation of its continuous counterpart,
some disparity is inherent. The most critical phenomena that arise from the discrete and
finite numerical approximation are sampling introduced ambiguity and the necessity of
finite windowing, which are distinct characteristics of the DFT. Both of these cause a
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certain amount of information to be lost, consequentially bringing their own artifacts
[64].

Sampling introduced ambiguity causes aliasing, which means that continuous signals with
vastly different frequencies can deliver precisely the same discrete signal after they are
sampled. An example of this is shown in Figure 2-9. In order to counteract this, the
frequencies of interest have to be at most half the sampling frequency. Above this limit,
the signal has to be band limited, meaning that the frequency components have to be zero.
This is also known as the Nyquist-Shannon sampling theorem [12]. Anti-aliasing filters
can mitigate the effects of improperly filtered and sampled signals. More information
on the topic is provided by Gonzales et al. [81]. To completely avoid this ambiguity,
a continuous signal has to be sampled frequently enough such that the captured digital
waveform is unique. In practice, the sampling frequency has to be more than twice as
large as the highest frequency of interest. As a consequence, the higher-frequency signal
shown on Figure 2-9 is sampled insufficiently, as the discrete waveform is not unique, while
the lower-frequency signal is. A broader analysis and description of the phenomenon is
presented by Amidror in Chapter 5 [64].

Figure 2-9: The sampled version of two different signals is identical. The higher-frequency
signal shown on Figure 2-9 is sampled insufficiently, as the discrete waveform is not unique,
while the lower-frequency signal is. Source: [64], Figure 5.1, reproduced with permission
from Springer-Verlag London Limited.

While the CFT is applied with an infinite range, the DFT is only able to look at a finite
window within the original range and thus assumes a spatially cyclic behavior between
the first and last elements of this range. This finite range can be seen as a signal domain
multiplication of the signal of interest with a rectangular windowing or apodization func-
tion. A windowing function can have different shapes, the simplest ones are rectangular
or triangular, but many of them follow some variation to a bell shape. Finite windowing
causes leakage, which in principle means that the Fourier-spectrum of a continuous signal
can be significantly different from its discrete counterpart. This phenomena is illustrated
on Figure 2-10, though an example described in the next paragraph. In the frequency
domain this multiplication causes side-lobes to appear, which is already an imprecise rep-
resentation of the continuous signal. In the signal domain, this multiplication can cause
discontinuities between the first and last elements of the function, which in terms of the
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18 Background and Fundamentals

frequency domain, results in leakage. This causes representations of precise peaks to be
distributed to a number of adjacent peaks. In Chapter 6 of the book by Amidror [64], this
phenomenon is described in more detail.

To illustrate leakage, an example is shown in Figure 2-11. The DFT of g(x) = cos(2πfx),
where f = 18

32 is sampled at 4 Hz, with a rectangular apodization window w(x) = rect( x
R).

Here, x is the signal domain input and R = 32, which is the sampling range length or
sample count as seen on the top axis of Figure 2-11a and the rect() function is defined
as in Equation 2-8. Next, the windowed g(x)w(x), is fed through the DFT, resulting in
G(u) ∗ W (u). Here u is the spectral domain input, ∗ is the convolution operator, g(x)
and G(u) are the signal domain and spectral domain representations of the same function.
The transformation from g(x)w(x) to G(u)∗W (u) has two significant consequences. First,
because of the rectangular window, the impulses of the original signal are changed, this
is shown on Figure 2-10b and 2-10c, this corresponds to the shape of W (u) = Rsinc(Ru),
where the sinc() function is defined as in Equation 2-9. This causes the emergence of
previously non-existent side-lobes or ripples, the comparison is shown in Figure 2-10a and
2-10c. Secondly, depending on the sampling frequency, which determines the frequency
resolution, the maximum of the impulse is only captured in case the function frequency
f is an exact multiple of the frequency step. This is not the case for Figure 2-11a and
2-11b, as f = 18

32 is 4.5 frequency step for every full cycle of g(x), which is not an exact
multiple. In most cases, several, smeared values appear around the continuous peak, as
seen in Figure 2-11b [64].

rect(x) =


1, −1

2 < x < 1
2

1
2 , x = ±1

2
0, otherwise

(2-8)

sinc(x) =
{

sin(πx)
πx , x ̸= 0

1, x = 0
(2-9)
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(a) The signal and spectral domain representation of g(x) = cos(2πfx).

(b) The signal and spectral domain representation of w(x) = rect( x
R

).

(c) The signal and spectral domain representation of g(x)w(x).

Figure 2-10: Examples of the effect of finite windowing both in the signal and frequency
domain. Source: [64], Figure 6.2, reproduced with permission from Springer-Verlag Lon-
don Limited.

(a) Signal domain signal. (b) Frequency domain representation.

Figure 2-11: Examples of leakage both in the signal and frequency domain. Source: [64],
Figure 6.3, reproduced with permission from Springer-Verlag London Limited.

2-3-1-3. Wavelet-transform

The wavelet transform follows a similar principle as the Fourier transform, as it breaks
down arbitrarily complex signals to simpler ones, although in a significantly different way
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[18]. While the Fourier transform decomposes signals to a multitude of sine and cosine
functions that are infinite by nature, the wavelet transform uses waves with a finite range,
which rise from 0, then quickly decay to 0. The difference in representation bet ween the
wavelet and Fourier transform is significant, as the wavelet transform gives a considerably
more temporal oriented description, which is better applicable to capturing behaviors of
time-varying, non-stationary signals.

The wavelet-transform deconstructs the signal into basis functions, which are expanded,
shrunken, and shifted versions of a single function, called the mother wavelet. Even
though there are no frequencies in this transform, scales capture a similar phenomenon. It
describes, in what way the mother wavelet expanded, shrunk, and shifted to represent the
signal. This gives rise to various scales with various levels of resolution [60]. The choice of
the wavelet entails that decomposition of the same signal, with different mother-wavelets,
results in different representations. Since the wavelet-transform is not used in QID, the
exact formulation of the transform is omitted. The introduction of the concept, however,
is important as it is used by a number of denoising algorithms.

It is less popular and common then the Fourier-transform. The wavelet-transform is com-
monly used in areas such as signal analysis, image processing, compression, and denoising
[18], [55]. Pižurica et al. [45] reviewed previously published applications for wavelet de-
noising of MRI and ultrasound images of brains, explicitly focusing on speckle-noise both
from the perspective of signal processing and clinical usability, as discussed in Chapter
2-1. They concluded that wavelet domain denoising could improve the human readability
of MRI images, as well as the automatic segmentation of images. However, a different set
of parameters is used for each application.

Ionita and Coanda [84] proposed a method specifically for quasiperiodic corruption removal
in microscopy images, using the wavelet-transform as an extension to their previously
proposed method using the Fourier-transform [70], [82]. Their findings show that the
wavelets handle noise-related non-stationary behavior better, and overall provide slightly
better results in terms of peak signal-to-noise ratio (PSNR). A detailed comparison of
tuning sensitivity, differences in computation times, and quantization of non-stationarity
was not included.

2-3-2. Matrix factorization methods
Matrix factorization or decomposition can be, in simple terms, the writing of a matrix as a
product of matrices with specific characteristics. For example, lower-upper decomposition
(LUD) separates a matrix into a lower and an upper triangular matrix [19]. Another
example would be the eigendecomposition of a matrix, which creates linearly independent
eigenvectors and their corresponding eigenvalues that then can be used e.g. to calculate
the inverse of that matrix.

In most cases, matrix decomposition methods capture a specific pattern or structure in
the data of the matrix, which then can be used for further computation and optimization.
In this chapter, a few of the more popular factorization methods and their applicability
to periodic noise separation are discussed.

2-3-2-1. Principal component analysis

Principal component analysis (PCA) is a technique that provides a basis for many mul-
tivariate data analysis applications. Applications range from dimensionality reduction,
variable selection and classification, to prediction, decomposition, and outlier detection
[13]. When the data is multivariate and the original variables are interrelated or corre-
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lated, finding the most impactful features and combinations that capture and summarize
the relationships between the original variables can be a complicated task. In order to
achieve this, PCA orthogonally transforms the basis of the original dataset to a new, un-
correlated set of linear combinations of the original feature space, these are called principal
components (PC) [78]. The PCs are ordered based on the total variance explained through-
out the whole dataset, which means that the original variables that are combined together
within a PC are highly correlated with each other. The first few principal components
capture the majority of all the variation present in the data. This is illustrated along two
dimensions in Figure 2-12. Internally, PCA is formulated as an eigenvalue problem and
the new set of basis vectors are the eigenvectors of the covariance matrix. Ordering them
in decreasing order of the corresponding eigenvalues, it ensures that the PCs successively
capture directions with the maximum remaining variance of the data [31].

Consider X an n × m data matrix, it contains n observations and m dimensions. W is
an m × m weight matrix, its columns are the eigenvectors of XT X, such as w1 with size
1 × m. Y is an n × m matrix containing the principal component scores.

Y = XW (2-10)

When the algorithm is used for dimensionality reduction, only the first s eigenvectors in
W are retained, resulting in Ws = [w1, ..., ws]. Ws is an m × s matrix, effectively using
only the first s principal components, as seen in Equation 2-11. This results in Ys, which
is an n × s matrix, often significantly reduced in size compared to Y , while still explaining
a significant portion of the variance. Choosing the number of PCs to retain is specific
to the task at hand, but commonly it is determined by setting a threshold in terms of
variance explained. For example, one tries to retain the smallest number of PCs that still
explain at least a set percentage of the variance for a specific dataset, commonly e.g. 90%
or 95%.

Ts = XWs (2-11)

(a) Original coordinate system. (b) Transformed coordinate system .

Figure 2-12: Two-dimensional example of coordinate system transformation using PCA.
PC1 captures the majority of variance in the dataset. While PC2 still captures some
variance, it is considerably less, compared to PC1 [90].
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2-3-2-2. Non-negative matrix factorization

Non-negative matrix factorization (NNMF) is a method where all matrices in the decom-
position are constrained to be non-negative. Its area of application is similar to PCA, as it
can be used for dimensionality reduction, decomposition, and outlier detection [26]. How-
ever, the mode of operation is fundamentally different, compared to PCA, which learns a
more holistic representation while NNMF provides a strictly additive, parts-based repre-
sentation of the data. When used on a dataset of facial images, this results e.g. in each
factor being a specific facial feature, such as eyes, eyebrows, mustache, a shadow on either
side of the nose [25].

In terms of image denoising, this parts-based representation can lead to some combination
of the factors capturing purely noise-related components.

2-3-2-3. Robust principal component analysis

Robust principal component analysis (RPCA) is an extension or modification of PCA
[78]. It assumes that the n × m data matrix, M , can be decomposed as a superposition
of a low-rank matrix, L, and a sparse component, S. In a real-world use-case, L may
represent a face in a facial recognition task, or the background in video surveillance, while
S may correspond to noise, such as a shadow on the face in a facial recognition, or a
person moving through the footage in video surveillance [78]. As PCA is sensitive only to
variance, thus it is also sensitive to outliers. An individual, heavily corrupted observation
in the dataset may render the estimation arbitrarily far from the true low-dimensional
representation [58].

RPCA can be formulated as a convex minimization problem in the form of Equation
2-12, a surprising discovery by Candes et al. [58] is that a universally correct tuning
parameter can be used, which can exactly recover the low-rank and sparse component
with high probability, the parameter setting is shown in Equation 2-13. The algorithm’s
applications include video surveillance, face recognition, latent semantic indexing, as well
as ranking and collaborative filtering [58]. This same concept may be applicable to the
separation of quasiperiodic and structured noise, from the underlying signal when used on
the Fourier spectrum of an image.

min ∥L∥∗ + λ ∥S∥1
subject to L + S = M

(2-12)

λ = 1√
max(n, m)

(2-13)

2-4. Filtering and identification
A general denoising pipeline often includes decomposition, noise component identification,
and filtering of the noise components, followed by reconstruction.

Filtering is strongly connected to the characteristics of the noise to be removed and is
highly application-specific, unlike the decomposition and factorization methods detailed
earlier. The effectiveness of identification and filtering is heavily dependent on the assump-
tions held about the clean signal or image, as well as the characteristics and distribution
of the corruption.
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2-4-1. Recognition and clustering of outliers
Once the transformational and decompositional steps are conducted, a decision has to be
made on what part of the measurement to characterize as noise and what is expected to
be the remaining signal of interest. This is an application-specific characterization, and
the decisions made are based mainly on assumptions about the characteristics of noise and
true signal.

Some tools available for recognition and labeling of outliers are explored in this section.
Statistical analysis has to deal with the outlier detection problem quite frequently, thus
some of its methods offer a broad toolkit for handling this challenge, further complemented
by thresholding methods designed for applications in specific domains.

In statistical outlier detection, a priori knowledge of the distribution of a variable or data
set often determines the range of tools that can be used. Most real data sets are corrupted
by errors and the assumed distribution may not describe the data set well. It is crucial to
determine if a measurement that is significantly different from the expected value comes
from an error or from the expected, normal variability inherent to the data. Significantly
different measurements are called outliers and naively including them in statistical analysis
can heavily influence the results, often for the worse [42]. To counteract this effect, there
are ways to detect and handle such observations. Some of the most basic and most
commonly used techniques are considered here.

2-4-1-1. Z-score and three-sigma rule

In simple terms, a normal distribution is characterized by its mean, µ, and its standard
deviation, σ. Looking at an observation xi, one can calculate the ratio zi as in Equation
2-14. The ratio zi is the z-score that is the distance between the observation and the mean,
divided by the standard deviation of the distribution. The likelihood of |zi| > 3, assuming
a normal distribution, is approximately 0.3%. This means that the absolute difference of
the observation to the mean exceeding three standard deviations is very unlikely, however,
not impossible. Accordingly, the "three-sigma rule" is a quick rule-of-thumb that suggests
when observations could be considered outliers [42].

zi = xi − µ

σ
(2-14)

In more detail, after defining a range around the mean, the probability of a sample falling
into that range can be derived based on the cumulative distribution function of the Gauss-
Laplace normal distribution, as shown by Grafarend [41]. The commonly used result of
these calculations is that in a normal distribution approximately 68% of the samples fall
within one standard deviation from the mean on either side, 95% within two and 99.7%
fall within three standard deviations.

This approach works reasonably well in practice by substituting the distribution mean
and distribution standard deviation with the sample mean and sample standard devia-
tion. However, some considerations and caveats should be recognized. Even though the
likelihood of a "three-sigma outlier" is low, it does not mean that it is impossible or that
they are incorrect observations. Large samples should contain some genuine yet unlikely
observations. Q-Q plots may be better suited for analysis of unexpected behavior in the
distribution. When using the three-sigma rule heuristic on a small sample, the mean and
standard deviation of the sample are not sufficient descriptors of the assumed distribution.
For example, in a sample of 10 observations, |zi| < 3 for every observation, independent
of the value of the observations [42].
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The z-score is widely used for hypothesis testing in empirical sciences. The significance
of observations are directly dependent on the chosen confidence level. In order to qualify
a hypothesis based on a set of observations as discovered, the confidence level required
changes in different fields of application. Within social sciences, it is commonly 95% or
two-sigma, while in particle physics, it is 99.99994% or five-sigma. It is important to
note that the chosen confidence level is one of the parameters that determine the required
sample size of the population. Furthermore, true outliers affect both the sample mean
and the sample standard deviation, and this may make the method somewhat unreliable
in cases where the normal distribution assumption is violated [42].

2-4-1-2. Modified Z-score or robust three-sigma rule

Outliers can significantly affect the sample mean and standard deviation, thus the sampled
and theoretical measures of a distribution can be significantly different. In order to have
more robust outlier detection, robust measures have to be used.

In the case when the normality assumption is held, but sensitivity to outliers should be
decreased, a simple, robust modification to the three-sigma rule is available. Instead
of using the mean, the median x̃ is used and for a dispersion measure, instead of the
standard deviation, the normalized median absolute deviation (MADN) is used, as shown
in Equation 2-15 [15]. This modification describes ti, as shown in Equation 2-16 and
outliers are identified with threshold |ti| > 3. However, Iglewicz et al. [14] suggests a
threshold of 3.5. In this normalized case, the outlier detection behaves the same way for
the theoretical normal distribution. In practical cases, it behaves very similarly to the
three sigma approach, except it is less sensitive to outliers [42].

MADN(x) = median(|xi − x̃|)
0.675

∀ i ∈ {1, ..., n} (2-15)

ti = xi − x̃

MADN(x)
∀ i ∈ {1, ..., n} (2-16)

2-4-1-3. Interquartile range

Another robust measure uses the quartiles of the sample. The first quartile of a sample
is defined as the median of the set that ranges from the smallest number in the set to the
median of the set. The third quartile is the median of the set that contains everything
from the median to the largest number. The interquartile range (IQR) is the difference
between the third and first quartile. In other words, the range where the central 50% of
the data is located [42].

For outlier detection using box plots, subtracting 1.5 IQR from the first quartile and adding
1.5 IQR to the third quartile determines the normal range of values. Any observations
lower or higher than that, respectively, are considered to be outliers. Since the quartiles
and the IQR are not sensitive to occasional, large or small values, this method is robust
to outliers. For a theoretical normal distribution, this range covers approximately 99.3%
of the area.

It is important to note that this method does not assume normality and can be used for
skewed distributions as well. The first and third quartiles are not symmetrical around
the mean or median, unlike in the case of the aforementioned methods, but are strictly
dependent on the sample distribution [42].
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2-4-1-4. Hard and soft thresholding

With domain transformations such as the Fourier or the wavelet transform, certain types
of noise and the signal of interest behave distinctly. With the Fourier transform applied,
periodic noise tends to be concentrated in a handful of coefficients, while the true signal
is usually broadly distributed throughout the spectrum. This is different in the wavelet-
transform, where the signal of interest is usually more concentrated in specific bands, while
noise is distributed among multiple bands [40].

To exploit this difference in behaviour in either case, thresholding approaches have been
developed to classify or label specific transform coefficient, components, and areas as
signal or noise using a specific set of rules. This can lead to the development of targeted
filtering approaches to remove the unwanted patterns while preserving the useful ones.
More sophisticated methods have been proposed to mitigate some of the caveats when
using the wavelet transform for noise filtering. However, hard and soft thresholding are
still one of the most effective, prevalent, and reliable techniques available [60].

According to Lagendijk et al. [40], when a signal is decomposed adequately into spatial
and temporal bands with different resolutions and orientations, the noise components are
spread out over the bands. In contrast, the true signal is concentrated in specific, individual
bands. Truncating components under a threshold to zero, while retaining the ones over
said threshold may eliminate the noise with minor degradation to the true signal.

The main difference between hard and soft thresholding functions, also called coring func-
tions, seen in Equations 2-17 and 2-18 respectively, is that the former is discontinuous
while the latter is not, as shown in Figures 2-13a and 2-13b. In terms of visual artifacts,
the soft thresholded signal or image generally appears to be smoother. However, this
may not be beneficial for all applications, specifically medical imaging, as it may hide
important details. In the mathematical sense, soft coring also entails better statistical
properties compared to its hard counterpart, detailed by Donoho et al. [16], [17]. In these
publications, they derive SureShrink, which is a soft thresholding based smoothness adap-
tive noise suppression algorithm. Some of its advantages include continuation of the rule
and simplicity of the Stein’s Unbiased Risk Estimate (SURE). Ergen [60] noted that hard
thresholding is more sensitive to small changes in the signal, thus denoising performance
may be less stable.

y(n) =
{

x(n), |x(n)| >= T

0, |x(n)| < T
(2-17)

y(n) =
{

sign(x(n))(|x(n)| − T ), |x(n)| >= T

0, |x(n)| < T
(2-18)
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(a) Hard thresholding with T = 3.
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(b) Soft thresholding with T = 3.

Figure 2-13: Wavelet thresholding methods.

2-4-2. Filtering

2-4-2-1. Adaptive thresholding

For Fourier transform based methods, periodic noise components are often identifiable
visually in the form of localized peaks, as explained in Section 2-2-3. A simple filter
would be to define a scalar magnitude threshold in the frequency domain, above which
coefficients are considered to be noise and should be erased. In practice, this may work in
simple cases, but often a more advanced thresholding algorithm is necessary to adaptively
set a threshold and consider local or global information on the signal to be able to work
in a more robust manner.

As an example Sur et al. [72], [74] used global information by segmenting the image to a
number of sub-images and calculating the mean power spectrum of these patches. They
then used the power-law distribution, which states that the power spectra of natural images
are inversely proportional to the square of the frequency, also described as 1/f2 [20]. This
means that when visualizing the power spectrum of a natural image on a logarithmic scale,
it should follow a linear trend [20]. Sur et al. [72], [74] fitted a robust linear regression
model to the power spectrum and defined a 3σ confidence interval around it to adaptively
threshold components based on their frequency. Any frequency components over the 3σ
line would be classified as noise.

A more local approach by Ionita et al. [82], [84] is to assume that the maximum of the
power spectra are expected to be monotonically decreasing as the radial distance from
the zero-frequency component increases. Their approach is to group amplitudes based on
their radial distance from the DC component and make a vector H(n) with the maximal
values at each distance, then take the monotonically decreasing, minimum envelope of
that vector as T (n), see Equation 2-19. Whenever an amplitude is over this threshold,
it is replaced by the mean of the amplitudes around the same radial distance from the
zero-frequency component.

T (i + 1) =
{

H(i), if H(i + 1) > T (i)
H(i + 1), if H(i + 1) <= T (i)

(2-19)
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It is important to mention that high-magnitude, non-noise related components are often
present in low frequencies, mostly in close proximity of the DC component. Removing
these components changes the reconstructed image drastically, as they affect the mean of
the image, but not the noise of interest. For this reason, many solutions [62], [70], [82],
[84] define a "protected area" in this region, which is then excluded from noise detection
and removal.

2-4-2-2. Frequency domain filters

Frequency filters are, often a combination of two basic filters. Namely, a low-pass filter that
leaves frequencies under a specific edge frequency untouched, while attenuating everything
beyond that edge frequency to zero. The second filter is a high-pass filter that attenuates
low-frequency components while retaining high-frequency ones. The frequency where the
change in behaviour occurs is called the cutoff frequency.

Frequency domain filters, such as the band-pass and band-reject filters are created by
combining these two basic filter types. For example, a band-pass filter is created when
a low-pass and a high-pass filter are connected in series, with the high-pass filter having
a lower cutoff-frequency compared to the low-pass filter. A band-reject filter, also called
band-stop filter is created when the band-pass filter is inverted, or by connecting a low-pass
and high-pass filter in parallel, here the cutoff-frequency of the high-pass filter is higher
than that of the low-pass filter. When looking at the frequency domain representation of
these filters in 2D, their frequency response looks like o-shaped disks representing pass or
reject areas.

Notch filters are a combination of the aforementioned filters where signals are passed or
rejected in a specific neighborhood around a central frequency, individually defined for
each dimension. This behavior results in pass-through or rejection patches, rather than
disks in the frequency domain. This filter provides excellent control over which frequency
components to keep and reject and is commonly used for post-processing images corrupted
by periodic signals. More detailed information on these filters can be found in Chapter 4
and 5 of [81].

An example of each of the described filtering methods can be seen in Figure 2-14. In
Figure 2-14c the effect of the DC component is visible, also discussed in Section 2-4-2-
1. Comparing Figure 2-14b and 2-14c, it is also apparent that edges and fine details
are kept with high-frequency components, while base colors and approximate shapes are
preserved with the low-frequency components. It is interesting to note that the low-pass
filtered image in Figure 2-14b only contains 0.03% of the original data, while Figure 2-14c
contains 98.6% of the original data in the frequency domain.

Figure 2-14d rejects a band around where the noise component is, but also filters certain
details of the image, while Figure 2-14e shows the exact band rejected. Figure 2-14f
shows the notch filter that has been tuned almost to the exact frequency of the noise, and
apart from the ringing phenomenon along the borders, it removes most of the noise while
retaining the most fundamental image details.
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(a) Original image,
corrupted with periodic noise. (b) Low-pass filtered image. (c) High-pass filtered image.

(d) Band-reject filtered image
or high-pass filtered image,

with protected DC component.
(e) Band-pass filtered image. (f) Notch-filtered image.

Figure 2-14: The effect of different basic filtering methods in the Fourier-domain.

Frequency-domain filtering is a simple, yet very effective method for the removal of noise
components, that separate out well in the frequency domain. However, it can also remove
genuine signal, that resides in the area of effect of the filters [60]. In more complicated
cases, the removal of such signal components can partially corrupt the final result signifi-
cantly, as much of the useful information may be concentrated in a handful of components.
For this reason, more sophisticated techniques have been proposed for image restoration.
For example, Sur et al. [72], [74] used a series of notch filters after classifying Fourier-
coefficients as either noise or true signal. Even though this aggressively removed some
information concealed by the noise, the results show that as long as the classification is
accurate, the information-loss is minimal and good results can still be achieved by the
denoising algorithm.

2-4-2-3. Noise component attenuation

Another option for restoration is that instead of completely removing (attenuating to
zero) components that are identified as corrupted by noise together with potentially a
portion of genuine signal, component are replaced by estimates of the expected value of
the component. This approach attempts to remove the noise component, while retaining
or at least approximating the noise-free value of the genuine signal.

This can be relatively easy and accurate in the case where the imaging can be done on
a uniform, flat characterization sample, which provides a good baseline for the method
noise of the system, as mentioned towards the end of Section 2-2-3. Unfortunately, such
characterization runs are often not available or practical, as many datasets consist of
images made on a multitude of differently calibrated machines and method-induced noise
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can change and evolve over time, as well as a result of environmental effects, such as
temperature and humidity.

Smart estimations can still be made, even though the uncertainty around the results tends
to grow. One notable application of such an approach can be found in Sidorov et al. [32],
where they suppress Moiré patterns appearing due to film-to-video conversion and apply it
to real video sequences. In their algorithm, they take the Fourier transform of the image,
then create a protective area around the DC value and its neighboring frequencies. Next,
they choose a tuning parameter and a threshold, which is the midpoint of the maximal
and minimal magnitude, above which they replace the original magnitude with the median
of the non-protected values and then recombine the altered magnitude spectrum with the
original phase and invert the Fourier transform.

Even though this algorithm removed a significant portion of the noise, there are visible
residuals and filter-introduced signals even after careful tuning of the threshold. These
residuals are likely present due to the aggressive truncation to the median that may over-
shoot the actual amount of attenuation required for a large number of coefficients closer
to the protected area. Another shortcoming of this approach is the manual tuning, which
makes it difficult and impractical to use it in an automated pipeline. Apart from the tun-
ing parameter, the threshold is dependent on the outliers, running the algorithm multiple
times in sequence with the same parameters yields different results.

The solution applied by Ionita et al. [70], [82] is to replace the identified noise compo-
nents by the mean of the non-zero, non-noisy elements at the same radial distance to the
zero-frequency component. This way the Fourier coefficients are not entirely rejected, as
it would happen with a notch filter, but the noiseless value is estimated based on the
information extracted from the image itself.

2-5. Image restoration
The primary goal of image restoration is to recover the true image from one that has
been corrupted in a certain way. Most often, this is a highly objective process, as long
as the type of corruption and the goal of the restoration are defined adequately. It is
often achieved by defining, modeling, and then inverting the degradation process [81]. In
this Chapter, we explore an approach that can mitigate the effects of artificial patterns
introduced by filtering and look at a range of image quality assesment metrics. Further-
more, a comparison of strengths and weaknesses of these metrics is provided for specific
applications found in the literature.

2-5-1. Total variation minimization
In the case of frequency domain filtering, it is possible for essential image features, such as
line segments and edges, to be parallel to the direction and frequency of the periodic cor-
ruption that needs to be removed. An illustrative example would be noise that aligns with
a mast of a ship or in the medical case, imagine a vertical leg CT, where the directionality
of noise aligns with the direction of a bone.

As explored by Sur [73], spectrum interpolation using total variation minimization aids
the mitigation of such artificially introduced ringing artifacts. It is important to note that
even though the results are promising, the effectiveness of the method heavily depends
on the regularization parameter, which has to be tuned for the specific application [22].
If this parameter is too high, the interpolation is ineffective. If it is too low, unwanted
smoothing of the spectra occurs, which may hide important features, in addition to the
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artifact at hand, which can be detrimental in the case of medical images, as explained in
Section 2-2.

2-5-2. Metrics
Comparison of different algorithms and their optimal parameter settings is far from trivial.
For example, in denoising, often one characteristic improves while another deteriorates.
Determining if one algorithm or parameter setting is better than another is heavily de-
pendent on the optimization goal. On top of that, quantifying these differences is far from
trivial and adds another layer of complexity to the problem.

With a small number of signals or images to compare, assessing quality of image restoration
and quality is often done manually by a domain expert. When the number of observations
and thus comparisons grow, a consistent, automatic quality assessment method for image
restoration is required, providing a mathematical definition of "distance" that lines up with
what the expert would use implicitly. This is the goal of defining a metric. For the com-
parison of algorithms, it is vital to use a metric that is closely tied with the optimization
goal. Otherwise, the results and perceived improvements may not be substantial. A range
of image quality assessment metrics are introduced and a comparison of the strengths and
weaknesses are provided.

2-5-2-1. Signal-to-noise ratio

In cases where the true, clean signal or image - denoted s[n], where n is the number of
elements in the signal - is available, in addition to the corrupted signal - denoted x[n]
-, the signal-to-noise ratio (SNR) is one of the metrics that can be used to measure the
effectiveness of denoising. This metric is the ratio between the signal power and the noise
power, as seen in Equation 2-20. It is commonly represented on the decibel (dB) scale.
Measuring the effectiveness of denoising can be done, by comparing the SNR score of the
unaltered, corrupt signal, x1[n], and the denoised signal, x2[n], with the same clean signal,
s[n]. It can be used to compare the effectiveness of different denoising algorithms in the
same manner. A higher SNR score is better, as it indicates a closer resemblance to the
clean signal.

SNR =
∑n

i=1 s[i]2∑n
i=1 (x[i] − s[i])2 = Psignal

Pnoise
(2-20)

2-5-2-2. Peak signal-to-noise ratio

Peak signal-to-noise ratio (PSNR) is a modification of the SNR. It is the ratio of the
peak intensity of the signal and the mean squared error, as shown in Equation 2-21. Its
use cases are more content-specific. It is more sensitive to the bandwidth and dynamic
range of the signal. Furthermore, it focuses more on the high-intensity performance of an
algorithm. These qualities make this metric great for evaluating compression algorithms.
It is also commonly applied to image denoising methods the same way as discussed in
Section 2-5-2-1.

PSNR = max(s[n])2∑n

i=1(x[i]−s[i])2

n

(2-21)
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2-5-2-3. Structural similarity index

According to Wang et al. [38], for applications where images are to be viewed or used by
humans, the only correct way of quantifying quality and denoising performance is by sub-
jective evaluation by an expert. In reality, this is expensive and time-consuming but still
leads to better results than using traditional mathematical error metrics, such as mean
squared error (MSE), SNR, or PSNR, which are often not suitable for evaluating tasks re-
volving around human perception, as in telecommunication and in medical imaging.

The structural similarity index (SSIM) is considerably different from the aforementioned
methods, as it does not measure absolute differences but compares the signals using variety
of properties derived from the human visual system [38]. This results in a perception-based,
comparison of structural information. The SSIM algorithm makes comparisons on three
different levels, namely luminance, contrast, and structure. All three of these comparisons
are part of the final similarity measure. However, they are relatively independent, as
changes in luminance, for example, do not propagate to a substantial difference in contrast
and structure. The exact definition of the metric is not reproduced here, but can be found
in [38].

2-5-2-4. Blind/Referenceless Image Spatial Quality Evaluator

In many practical cases, clean, ground truth images without corruption to compare against
are not available, either because corruption happens during acquisition (e.g. in medical
imaging techniques explored in Section 2-2), or because acquiring a clean image would
require expensive hardware and can be a cost and time-intensive process. In these cases
SNR, PSNR, and SSIM, all of which require a reference to compare against, are not
usable for comparing and ranking different denoising algorithms or different parameter
settings. Instead, Anish Mittal et al. [61] proposed a denoising performance metric, named
the Blind/Referenceless Image Spatial Quality Evaluator (BRISQUE), which functions
without the need for a clean reference image. BRISQUE is a no-reference image quality
assessment metric that does not use corruption-specific features, e.g. ringing or blur,
but instead uses natural scene statistics (NSS). Specifically, it uses locally normalized
luminance coefficients in order to quantify the deviation from "naturalness". BRISQUE
assumes that the undistorted image is a natural image, where the probability density
function of the normalized pixel intensities is close to a Gaussian distribution. They have
shown that BRISQUE is competitive with respect to present-day non-corruption-specific
no-reference Image quality assessment algorithms. The exact definition of the metric is
not reproduced here, but can be found in [61].

Even though this approach does not focus on quantifying the amount of quasiperiodic
patterns or lack thereof, it may be sufficient to quantify which denoising algorithms pro-
duce results that are closer to a natural image. It is important to mention that biomedical
images are often not natural images, as described in [20]. The expectation is, that a noise-
free image adheres to the NSS more than one corrupted by quasiperiodic patterns. If that
is the case, this would be sufficient for the relative comparison of algorithms.

2-6. State-of-the-art
This section provides a brief summary of the state-of-the-art algorithms and methodologies
available for characterizing quasiperiodic noise components and their removal, we also
discuss any assumptions made about the corruption and the underlying noise-free signal,
as well as, highlights of their most promising feats and their potential shortcomings.
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2-6-1. ARPENOS
An algorithm created by Frédéric Sur and Michel Grédaic [73], [74], ARPENOS, is a
quasiperiodic denoising algorithm that provides an automated approach to notch filter-
ing and noise component labeling based on the expected power spectrum of a natural
image.

Their most important assumption comes from the power law of natural images which
states, in simplistic terms, that the logarithm of the power spectrum as a function of
the logarithm of the radial distance from the zero-frequency component is approximately
linear. Although this assumption seems to break down for low and high-frequency com-
ponents, it remains robustly applicable for the majority of the power spectra. Further-
more, they assume that quasiperiodic corruptions are the only consistent periodic pattern
throughout the image. They segment the image into a large number of overlapping patches,
or "imagettes", and take the harmonic mean of the power spectra. Then, the peaks of the
resulting aggregate power spectra are good descriptors of the quasiperiodic corruption.
The size of the patches used determines the effective frequency bandwidth of the resulting
power spectrum, and thus the upper bound of the detection horizon of the algorithm. The
main steps of the algorithm are shown on Figure 2-15. The aggregate power spectrum
is then transformed to a one-dimensional description, as a function of the radial distance
from the central component. Robust linear regression is applied to the power spectrum on
a log-log scale. Since the linearity assumption is seriously violated for the lower frequency
range, points in the lower frequency range are excluded from the regression procedure,
commonly removing the lowest 10-20% of the power coefficients. Components are labeled
as outliers when their power is higher than the regression line plus three standard devia-
tions of the same regression line. This is effectively an outlier labeling approach based on
the z-score. The detected outliers are then projected back to their original locations in the
two-dimensional coordinate system. Based on the outlier map, notch filters are automat-
ically designed to remove the outliers. Finally, the filtered power spectrum is combined
with the original phase and the inverse Fourier transform is applied to obtain a denoised
image in the original measurement space.

Manually tunable parameters include the size of patches, the step size and overlap of
the patches, the lower and upper frequency bounds of the regression process, the lower
frequency bound for outlier detection, and the number of standard deviation multiples that
characterize an outlier. Furthermore, smoothing through total variation minimization is
also possible, which helps to reduce patterns caused by Gibbs phenomena. However, this
adds yet more parameters, such as the number of maximal iterations and epsilon, the
regularization parameter.

The ARPENOS algorithm is relatively simple, its computational costs are relatively low,
and its denoising performance is high. However, the assumptions made about the un-
derlying image limit its effectiveness significantly, especially in the low-frequency range.
Furthermore, a number of parameters have to be tuned individually for good results. These
parameters are highly image-specific, and have to be re-tuned for different images.
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(a) Corrupt image. (b) Power spectrum of the
corrupt image (log scale).

(c) Averaged power spectrum
of the patches (log scale).

(d) Regression of the
averaged power spectrum.

(e) Filtered power spectrum
of the image (log scale). (f) Denoised image.

Figure 2-15: Main steps of the ARPENOS algorithm [74]. In the one-dimensional image,
the red line indicates the regression line, its horizontal limits indicate the borders of the
linear region. The green line indicates the upper bound that is three standard deviations
over the trendline, horizontally, it shows the lower-frequency detection limit to be at 0.04
cycles/pixel. Source: [74], Figures 16,17, rights to reuse requested from the Society of
PhotoOptical Instrumentation Engineers (SPIE).
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2-6-2. ACARPENOS
An algorithm created by Frédéric Sur [72], ACARPENOS, is a quasiperiodic denoising
algorithm that provides an automated approach to notch filtering and noise component
labeling based on the idea that features of interest are not likely to be caused by a random
background process and that they can be identified based on the number of false alarms
(NFA).

This algorithm is based on ARPENOS and shares most of its steps. However, its outlier
detection is altered, compared to the previous method. The main steps are illustrated
in Figure 2-16. The labeling approach is not based on the expected power spectrum of
a natural image, but instead on a probabilistic approach to independent and identically
distributed random variables. Outliers are labeled based on the probability of occurence in
a local population. The image is segmented into a large number of overlapping patches, or
"imagettes", similar as before, where P denotes the number of patches. Then the minimum
of individual coefficients are taken from the population of P values. This serves as the
estimate of the background process. Subsequently, the power spectrum is radially binned
using a number of equidistant, concentric disks, an approach based on the power law of
natural images [20]. This power law states that the expected value of power coefficients of
natural images are dependent on frequency, such that on a log-log scale this dependence
is linear. In the ACARPENOS case, linearity is not assumed, but radial dependence
on frequency is. The distribution is empirically estimated for each ring, which serves as
the estimate of the noise-free distribution. Within a given ring, only a small number
of coefficients may belong to spikes caused by quasiperiodic noise. Then, the expected
number of high values or NFAs is calculated for each coefficient, based on the background
process and the estimated distribution. If the NFA for a certain coefficient is higher than
the set threshold, it is labeled as an outlier. The detected outliers are then extrapolated
to their original locations in the two-dimensional coordinate system. Based on the outlier
map, notch filters are automatically designed for the outliers. Finally, the filtered power
spectrum is combined with the original phase and the Fourier transform is inverted. This
results in a denoised image.

Manually tunable parameters of ACARPENOS include the size of patches, the step size
and overlap of the patches, the frequency limit that protects the zero-frequency and neigh-
boring coefficients, and the allowed threshold of the NFA. Furthermore, smoothing through
total variation minimization is also possible, which can help to reduce patterns caused by
Gibbs phenomena. However, this again adds more parameters, such as the number of
maximal iterations and epsilon, the regularization parameter.

The ACARPENOS algorithms is an interesting probabilistic approach, with increased
computational costs compared to ARPENOS, but these are still reasonable, and denoising
performance is relatively high. Furthermore, a number of parameters still have to be tuned
individually for good results. Since these parameters are highly distribution-specific, they
usually have to be tuned for different images regularly.
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(a) Corrupt image. (b) Power spectrum of the
corrupt image (log scale).

(c) Minimum power spectrum
of the patches (log scale).

(d) Outlier map
based on the NFA.

(e) Filtered power spectrum
of the image (log scale). (f) Denoised image.

Figure 2-16: Main steps of the ACARPENOS algorithm. In the outlier map yellow
indicates outliers, which are an unexpectedly high NFAs. The central area is protected
from filtering. Source: [72], Figure 1, c⃝2015 IEEE.

2-6-3. IONITA
An algorithm created by Marius G. Ionita and Henri George Coanda [70], is a quasiperi-
odic denoising algorithm that uses radial patterns in the power spectrum to label outliers,
and then attenuates them to the average of the components with the same radial dis-
tance.
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Their most important assumption is that the maximal values of the power spectra are
expected to be monotonically decreasing as the radial distance from the zero-frequency
component increases. The power spectrum is transformed to one dimension, as a function
of the radial distance from the central component. From this one-dimensional represen-
tation of the power spectrum, a vector H(n) is created with the maximal values at each
distance, where n is the radial distance to the DC component. Then the monotonically
decreasing, minimum envelope of vector H(n) is taken according to 2-22 as T (n). Each
amplitude is compared to T (n) at the respective radial distance. If the difference is larger
than a predefined threshold, the component is replaced by the mean of the components
at the same radial distance. A protection area is created around the zero-frequency com-
ponent, components within this region are excluded from attenuation. The main steps of
the algorithm are shown in Figure 2-17.

T (i + 1) =
{

H(i), if H(i + 1) > T (i)
H(i + 1), if H(i + 1) <= T (i)

(2-22)

Manually tunable parameters of IONITA include the radial frequency limit that protects
the zero-frequency and neighboring coefficients, and the threshold. Recommendations for
choosing the threshold and the exact thresholds for the example image were not provided
in the paper.

The IONITA algorithm is a straightforward approach, that seems to achieve a relatively
high denoising performance with a relatively low number of tunable parameters.
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(a) Corrupt image. (b) Power spectrum of the
corrupt image.

(c) The radial maximum vector, H(n)
and its minimum envelope (log scale).

(d) Filtered power spectrum
of the image. (e) Denoised image.

Figure 2-17: Main steps of the IONITA algorithm [70]. The specific threshold used,
the outlier map, and the scales of the power spectrum are not shown as they were not
provided in the original paper. Source: [70], Figure 2,4,6, c⃝2015 IEEE.

2-7. Summary
In this chapter, a comprehensive comparison between decomposition and domain trans-
formation methods is given in Section 2-3. The most prominent filtering and identification
methods are described in Section 2-4. Finally, a comparison of the available metrics listed
in Section 2-5 is carried out, focusing on periodic noise removal of biomedical images.
With regards to domain transformations, staying in the spatial-domain is often insuffi-
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cient in the majority of the cases, as Sidorov et al. [32] explored. Parametric modeling
may work in simple cases, but tends to perform sub-optimally compared to the Fourier
domain methods available. Fourier transform based methods are particularly suited for
periodic and quasiperiodic noise removal [62], [70], [72], [74], [82]. Most of these use adap-
tive thresholding algorithms for outlier detection, based on local or global information,
and then apply either notch filtering or noise component attenuation. While these algo-
rithms seem particularly promising, all of them assume that the noisy components are
reasonably well-localized, which is true for pure periodic noise, but often not the case for
its quasiperiodic counterpart. Another concern is that most of these algorithms use SNR
or PSNR as an evaluation metric, which may not be well suited for performance evaluation
on biomedical images [45]. Wavelet-transform based approaches may handle a wide range
of noise types and have been successfully applied to quasiperiodic noise by Ionita et al.
[84]. Because of the more temporally aware decomposition, it handles quasiperiodic noise
well. However, accurately identifying noise components in the wavelet subbands is more
complex as they are not as well localized as in the case of a Fourier domain [55].

Statistical outlier detection methods are widely used. However, standard deviation based
approaches should only be used when the underlying distribution is reasonably close to a
Gaussian normal distribution and it should be avoided for e.g. Gaussian mixture distri-
butions. Depending on the severity of the corruption, methods that are robust to outliers
should be preferred, such as modified z-score [14] or interquartile-range based methods
[42].

Wavelet-based soft and hard-thresholding methods are simple yet effective. However, they
require manual tuning for good performance. Adaptive thresholding algorithms work well
in both the Fourier and wavelet domain, particularly ones that use local information [62],
[84]. These usually require tuning parameters that are less sensitive, such as the kernel-size
in median filtering.

After proper identification and localization of noise components, basic filtering techniques,
such as band-pass and band-reject, are often too aggressive and filter out a significant por-
tion of the true signal. Successful applications of automatic notch filter design have been
shown by Sur [74]. Notch filtering combined with spectral total variation minimization
[73] was effective at mitigating the ringing effects caused by notch filtering, by smoothing
out the frequency regions affected by the filter. The performance of this combination was
only rivaled by noise component attenuation, where local or global information was used
to estimate the noise-free coefficients [62], [82].

Most quality assessment metrics require a clean, ground truth signal, which is only avail-
able in case of synthetic data. Some metrics, like SNR and PSNR, focus on signal power
while others, such as SSIM, focus on human perception. No metric was found that cor-
responds to the medical goals of denoising, without the involvement of medical experts,
although some of these considerations can be found in Pižurica et al. [45]. On the other
hand, BRISQUE, a no-reference score proposed by Mittal et al. [61] demonstrates an
algorithm that does not require a clean reference image but instead uses scene staistics,
in order to determine the "naturalness" of images. This may be used to rank different
denoising algorithms by their effectiveness.

Some of the state-of-the-art algorithms are briefly introduced, namely ARPENOS [74],
which is based on the power law of natural images and provides an automatic notch filter
design in the Fourier domain. ACARPENOS [72], which is a probability based approach
operating in the Fourier domain. It also provides an automatic notch filter design for the
removal of detected outliers. Finally, IONITA [70] expects the maximal values of the power
spectrum to be monotonically decreasing as a function of radial distance to the central
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component. Components that significantly deviate from this radial pattern are marked as
outliers and replaced by the mean of the components at the same radial distance.

To conclude, there is a wide variety of denoising algorithms, some for medical imaging,
some for periodic noise cancellation, but the intersection of these fields is relatively scarce.
The ideas, however, are very promising, domain transformation techniques such as the
Fourier and wavelet transform are the basis of most effective algorithms. Matrix decom-
position methods such as NNMF and RPCA can help reveal hidden structure in the data
and make separation and labeling of noise and signal of interest easier using adaptive
thresholding methods. In terms of filtering, noise component attenuation methods seem
to be most effective. However, if the estimate of the true value is not available, then notch
filtering together with spectral smoothing using total variation minimization is also a suit-
able solution. The metrics used should be a combination of widely used metrics that are
sensitive to different characteristics, so that their combination can mitigate their individual
shortcomings and reveal interesting patterns in the algorithms’ behaviour.

All state-of-the-art algorithms have shortcomings such as manual tuning of multiple pa-
rameters, insensitivity to low-frequency corruptions, and rather strong assumptions about
the underlying noise-free signal. We did not find an algorithm in the literature, that is
entirely data-driven and is able to reliably identify, quantify, and eliminate quasiperiodic
patterns, specifically focusing on biomedical images. The development of a new algorith-
mic framework that satisfies these goals is therefore necessary.
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Chapter 3

Methods

In this Chapter, a new framework is introduced, named Quasiperiodic Image Denoising
(QID). Within this framework, two novel denoising algorithms are implemented, both
operating in the Fourier domain. One algorithm is based on robust principal component
analysis (QID-RPCA) and the other uses the normalized median of absolute differences
(QID-MADN).

This section provides more detail on the specific steps taken in the novel algorithms,
QID-RPCA and QID-MADN, and elaborates on their usefulness towards an unsuper-
vised, fully data-driven denoising framework. The steps can be categorized into three
groups: preprocessing, quasiperiodic noise component labeling and filtering, and image
reconstruction.

Figure 3-1 presents the main steps of the framework. Figure 3-1a shows the image, that
has a visible high-frequency corruption. Figures 3-1b and 3-1c show examples of the pre-
processing steps. These preprocessing steps are e.g. transformation to the Fourier domain,
specifically the power spectrum of the image and radial binning through histrogram equal-
ization. Figures 3-1d and 3-1e show outlier detection and attenuation of these outliers.
Figure 3-1f shows the reconstructed, denoised image.

First, an overview of the pipeline is provided, where each step is introduced briefly. Then,
a flowchart is presented, which is used as a reference throughout this chapter. Each step
is explained in detail. Adjacent blocks of the flowchart are shown at the beginning of each
step.
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Figure 3-1: Examples of the most important steps of the QID denoising pipeline.
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3-1. Pipeline

Figure 3-2: Flowchart detailing the steps of each version of the algorithm.

The steps of QID can be categorized into three groups: preprocessing, quasiperiodic noise
component labeling and filtering, and image reconstruction. After a brief introduction of
the steps, a block diagram representation is presented on Figure 3-2.

The steps are as follows:

• Preprocessing:

1. Padding and apodization: padding artificially increases the number of pixels.
This can be used to artificially create a finer description of the Fourier repre-
sentation, while keeping the frequency bandwidth the same. Windowing can
smooth the ends of a period such that no abrupt jumps occur. This also modi-
fies the resulting Fourier representation and can alter the underlying biological
information. This can be used to e.g. reduce the negative effects of the Gibbs-
phenomena, if applied with consideration.

2. Fourier transform: it approximates any image domain signal as a sum of simple,
periodic functions. Periodic and quasiperiodic patterns can be characterized
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well in the frequency domain, and thus this domain transformation step is a
central part of this analysis.

3. Protection area for the zero frequency and adjacent components: changes to the
zero frequency component and some of its neighboring coefficients affects the
image mean significantly, while quasiperiodic patterns rarely affect this area.
Altering them has detrimental effects to the reconstruction, thus a protective
mask is built to exclude the zero and low-frequency components from filtering.

4. Polar coordinate system transform: Fourier coefficients of biomedical images
show a similarity in magnitude for coefficients at a similar radial distance from
the central zero frequency component. Transformation to the polar coordinate
system is needed to provide an expected value for the components identified as
noise.

5. Radial binning using histogram equalization: the Fourier coefficients are binned
to a number of radial disks. Through histogram equalization, all bins have a
similar number of coefficients contained. Histogram equalization is required
to ensure that the eventual labeling is done on a sufficiently large, but equal
population among bins, which is representative of the radial distance.

6. Angular division of disks: in the case that QID-RPCA is used, the disks are
further divided into angular bins. This is necessary for mapping polar values
to a rectangular grid.

7. Mapping polar values to a rectangular grid: in the case that QID-RPCA is
used, the components in each angular and radial bin are aggregated. This
forms a rectangular grid. This step ensures, that RPCA is able to reliably find
a sufficient low-rank and sparse representation.

8. Robust Principal Component Analysis: in the case that QID-RPCA is used,
RPCA is performed on the rectangular grid of aggregated polar values. This
separates the low-rank, or expected value for a certain bin, from the sparse, or
corrupt value.

• Noise component labeling and filtering:

1. Outlier labeling: in the case that QID-RPCA is used, labeling is done using
z-scores on the sparse matrix. If the QID-MADN variant is chosen, labeling is
done using the modified z-score. This step marks the coefficients that are most
likely to come from a noise source and not from a biological origin.

2. Outlier attenuation: in the case that QID-RPCA is used, corrupt components
are attenuated to their corresponding value in the low-rank matrix. This is
done for the Fourier components in the original coordinate system and not
in the rectangular representation of polar values. If the QID-MADN variant is
chosen, corrupt components are attenuated to the radial disk’s median. Corrupt
patterns are effectively filtered in this step and are replaced by the best estimate
of their noise-free value.

• Image reconstruction:

1. The modified magnitude components are combined with the original phase.
The inverse Fourier transform is applied, resulting in a reconstructed image in
the original domain.
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3-2. Apodization and padding

Figure 3-3: Pipeline blocks relevant to padding and apodization.

The 2-D discrete Fourier transform is focused on periodic signals. The window in which
periodicity can be captured is the full image width and height. Whenever discontinuities
occur between the horizontal or vertical pairs of edges of the image, the perfect Fourier
representation tries to capture this perceived abrupt discontinuity. Practical applications,
however, are only an approximation of this perfect periodic representation and have a
limited resolution to represent such abrupt jumps. This often results in the introduction
of artificial patterns, e.g. the Gibbs-phenomenon, near these discontinuities [64]. As a
result, when images with such discontinuities are denoised using the limited-range Fourier
transform, noise patterns may appear towards the edge of the image. An example of this
behaviour is shown for a simple one-dimensional time signal on Figure 3-4.
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Figure 3-4: An example of the Gibbs-phenomenon. It appears at discontinuities of the
time or image domain when the discrete Fourier transform approximates the theoretical
Fourier representation with a limited range.

In order to mitigate this effect, apodization or more commonly known as windowing, may
be used. Windowing smooths the differences at the edges, avoiding the introduction of
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a perceived discontinuity. However, it also alters the original signal [81]. Depending on
the affected area, it can lead to significant true signal loss, if applied without careful
consideration . In the case of biomedical image denoising, even minimal loss of true signal
can have detrimental effects, e.g. misdiagnosis.

The area of effect for windowing has to be set such that no relevant information is con-
tained near its edges. In some instances, this reduces the possible area of effect to a
very narrow frame around the true signal. However, certain windowing functions, like the
Tukey window, can restore periodicity in such a region [80]. The resulting change can still
be abrupt and artificial patterns may appear, possibly elsewhere. For a more complete
mitigation of the problem, a slow, gradual change is required. Image padding is a possible
solution to this. Equation 3-1 describes the one-dimensional Tukey window, also called
the tapered cosine function. The edges of this window function are phase shifted halves of
the cosine functions, while the central area is a rectangular window. w(x) is the window
function, where x is an N -point linearly spaced vector, r is a tunable parameter that
represents the proportion of the cosine function within the whole window. If r = 0, the
window is equivalent to the rectangular window. If r = 1, it is equal to the Hann window.
An example of denoising with an aggressive Tukey window, with r = 0.08, can be seen on
Figures 3-5a and 3-5b. Compared to Figures 3-5g and 3-5h, where no windowing is ap-
plied, the patterns around the edge of the image are attenuated. However, new, artificial
patterns are introduced as well.

w(x) =


1
2
(
1 + cos 2π

r (x − r
2), 0 ≤ x < r

2
1, r

2 ≤ x < 1 − r
2

1
2
(
1 + cos 2π

r (x − 1 + r
2), 1 − r

2 ≤ x < 1
(3-1)

Through image padding, the sides of the image are expanded with artificial values to
increase the area where no true signal is contained. A gradual transition can be made
through apodization while circumventing signal loss. Common choices for padding values
are zeros, the image mean, or the mean of a particular border around the edge of the
image. For medical imaging techniques such as in vitro microscopy, where the sample is
placed on a plate before imaging, using the border for padding can result in a transition
without any visible discontinuities. An added benefit of padding, when using the Fourier
transform, is the appearance of more frequency bins, which results in a smoother, more
detailed spectral representation. Even though the effective resolution of the spectrum does
not change, padding comes at a price, the image increases in pixel size. Depending on
the chosen padding size, computation costs can increase significantly, which is why careful
consideration of such parameters is required. An example of denoising of a mean padded
image with 50% of the width/height on each side is presented on Figures 3-5c and 3-5d.
In this specific example, since the corruption pattern has a high amplitude, and it also
affects the edges of the image, padding also introduces an abrupt discontinuity. Compared
to Figures 3-5g and 3-5h, where no padding is applied, artificial patterns are introduced
due to the abrupt change where padding starts.

Figures 3-5e and 3-5f show an example of the combined usage of padding, then Tukey
windowing. The unaltered, rectangular portion of the window starts at the edges of the
raw, non-padded image. In this case the artifacts introduced by padding are still visible,
but the windowing did not introduce artifacts into the biological signal.

One of the main goals of the QID algorithms is to minimize the introduction of artificial
patterns, while removing noise. Although Figure 3-5 portrays a heavily simplified setting,
it aims to illustrate that introduction of artificial patterns through padding and window-
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ing is relatively easy. Though certainly possible, setting such padding and windowing
parameters in a non-intrusive, data-driven fashion lies outside the scope of this document.
The exact parameter settings of both apodization and image padding can be highly spe-
cific to the image, the scene imaged, and the application at hand. For this reason, our
default setting for QID is not to pad, nor to apodize the images. Our implementation
contains padding and apodization as optional tools, but since data-driven operation is
paramount for this thesis and these options require manual parameter setting to deal with
scene-specific avoidance of introducing non-biological signals, the case studies shown in
this thesis do not use them.
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(a) Corrupt windowed image. (b) Denoised windowed image.
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(c) Corrupt padded image. (d) Denoised padded
image (cropped).
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(e) Corrupt windowed
and padded image.

(f) Denoised windowed
and padded image (cropped).
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(g) Corrupt raw image. (h) Denoised raw image.

Figure 3-5: Examples of the effects of padding and windowing. Highlighting the emer-
gence of artificial patterns.

3-3. Fourier transform
Details on the Fourier transform and analysis in the Fourier domain can be found in
Section 2-3-1-2.

The 2-D discrete Fourier transform implementation we used is shown in Equation 3-2.
For an n × m matrix in the spatial domain, X, and its discrete Fourier transform Y ,
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ωm = e− 2πi
m and ωn = e− 2πi

n are complex roots of unity, where i is the imaginary unit, p
and q are indices in the Fourier domain, j and k are indices in the spatial domain, p and j
are indices that run from 0 to m-1, and q and k are indices that run from 0 to n-1.

Yp,r =
m−1∑
j=0

n−1∑
k=0

ωjp
m ωkq

n Xj,k (3-2)

The resulting Fourier coefficients are complex numbers that can be represented by their
magnitude and phase. In Equation 3-3, ap,r and bp,ri are real and imaginary numbers,
respectively. Ap,r is the magnitude and Φp,r is the phase.

Yp,r = ap,r + bp,ri =
√

a2
p,r + b2

p,re
i arctan bp,r

ap,r = Ap,reiΦp,r (3-3)

Further analysis will be done on the power spectrum of the Fourier coefficients, which
is the square of the magnitude, as illustrated in Equation 3-4. This assists detection of
outliers, as coefficients with an already high magnitude compared to its neighbors, are
amplified even further. From this point on, coefficients of the power spectrum are used for
the computations, even when referencing "Fourier coefficients". No changes to the phase
are made. However, it is used in the final step when reconstructing the image with the
filtered power spectrum coefficients and the original phase obtained in this step. Examples
of the power and phase spectrum are shown on Figure 3-6.

Pp,r = a2
p,r + b2

p,r = A2
p,r (3-4)
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(a) Power spectrum. (b) Phase spectrum.

Figure 3-6: Examples of the Fourier transformed values of a corrupt image.
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3-4. Protection area for the zero frequency and adjacent com-
ponents

Figure 3-7: Pipeline blocks relevant to protection area masking.

The Direct-Current (DC) component represents the constant, time-invariant part of the
signal or spatially-invariant part of the image. For one-dimensional signals, the mean
amplitude of a signal can be described by the DC component, also commonly referred to
as the DC value or DC offset. When transformed to the Fourier domain, the DC component
is represented by the Fourier coefficient at 0 Hz for time-variant signals or 0 cycle/pixel
for spatial signals such as images. In the case of the discrete Fourier transform, this is
captured in the zero frequency bin, from this point on, we will use the "zero frequency
bin" and "zero frequency component" interchangeably. The DC component is present in
the time/image domain while the zero frequency component and zero frequency bin are
its corresponding representation in the Fourier domain.

In the image domain, using a grayscale image as an example, the DC component represents
the mean intensity of the image. In the 2-D Fourier transform of said image, the zero fre-
quency component is contained in the first bin, or in the quadrant shifted case, the central
bin of the Fourier domain representation. Quadrant shifting in the 2-D case separates the
matrix into four quadrants at the central index of each frequency, creating half-spaces and
swaps the half-spaces of the matrix along each dimension. This relocates the first element
of the matrix to the center. Both of these are valid ways of representing the frequency
content of an image and it is a matter of preference, throughout this document, the zero
frequency component is contained in the central bin. Any change to the zero frequency
component value directly affects the mean intensity of the image. The image mean is
not altered by purely periodic corruption, which is why it is expected to remain unaltered
during the denoising process. An example of what high and low-frequencies translate to in
the image domain has been shown earlier, on Figures 2-14b and 2-14c. Quasiperiodic cor-
ruption and corruption with incomplete periods may alter the mean, but this effect is often
negligible. However, depending on the resolution and accuracy of the Fourier representa-
tion, leakage to the neighboring coefficients may occur. Therefore, most state-of-the-art
algorithms implement some form of protected area for the zero frequency component and
its immediate surroundings. This protected area prevents alteration of these components,
even when in unprotected circumstances these low-frequency coefficients would be labeled
as outliers. Figure 3-8 shows the effect of changes made to the protection area. Figure 3-8a
shows an adequately protected mean, while Figure 3-8b filters some of the components
that affect the mean. This introduces a low-frequency pattern in all directions. Figure 3-
8c shows the effects of removing the protection area completely. The reconstructed image
without protection has approximately zero mean, while the ground truth image has not
at all.

The ARPENOS, ACARPENOS, and IONITA algorithms handle the extent of this pro-
tected area using a user-set parameter. For ARPENOS, the radius of the protected area
is usually set to cover a large area, as their linearity assumption based on the power-law
distribution is violated for low-frequencies. Hence, setting the protected area radius to a
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low value decreases ARPENOS’ performance significantly. In Sur et al.’s experiments, the
radius was often set to about 20% of the maximal possible radius [75]. Therefore, these
algorithms may be unreliable or even altogether ineffective for low-frequency quasiperiodic
corruptions.

As opposed to ARPENOS, ACARPENOS, and IONITA, the QID framework does not
assume linearity or any specific trend in the Fourier coefficients. The protection radius
can be set with considerably more flexibility. Empirical experiments suggest that a circular
protection area with a radius of five to ten coefficients or values around the zero frequency
component is sufficient for a variety of image sizes and corruptions. As a consequence, a
radius of five coefficients is used for images where the shortest image dimension is under
512 pixels and its radius linearly grows until the shortest image dimension is 1024 pixels. In
cases where leakage from the zero frequency component to the adjacent coefficients occurs,
most of the power is still contained in these components. The benefits of this becomes
apparent in Section 3-10, but, in short, as the number of pixels increase, the number of
bins often increase as well. Automatically increasing the radius of the protection area for
high-resolution images, with more and larger bins, retains the precision of the expected
value for low-frequency bins. This simple modification increases denoising performance
for high-resolution images.
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(b) Denoising with a radius of 2 frequency coefficients. (c) Denoising with no protective area.

Figure 3-8: Examples of the effect of the protection area radius.
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3-5. Cartesian to polar

Figure 3-9: Pipeline blocks relevant to polar coordinate system transformation.

The 2-D Fourier representation of an image in the Cartesian coordinate system decom-
poses the image into superpositions of both horizontal and vertical periodic functions. In
the polar coordinate system, the horizontal and vertical components, x and y are trans-
lated to radial and angular components, r and θ, respectively. The radius describes the
superimposed signal’s frequency in terms of cycles/pixels. At the same time, the angle
defines a rotation along the axes. Figure 3-10 shows an example of radial and angular co-
ordinates of a power spectrum. The angular component is wrapped to [0, π], to recognize
the central symmetry of the two-sided Fourier transform.

r =
√

x + y (3-5)

θ = tan−1 y

x
(3-6)

Amplitude components of natural images with the same radius, but a different angular
coordinate, are generally expected to be close in value, or at least in the same order of
magnitude [20]. This assumption is broken by most periodic and quasiperiodic patterns.
This phenomenon is exploited by many state-of-the-art algorithms to varying degrees [70],
[72], [73], [82]. Analysis of components in the polar coordinate system provides a more
intuitive description of what the expected value may be.
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Figure 3-10: Examples of the visual representation of the polar coordinates of a power
spectrum.
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3-6. Radial binning with histogram equalization

Figure 3-11: Pipeline blocks relevant to radial histogram equalization and binning.

The reliability of statistical outlier labeling techniques, such as the ones in Sections 2-4-
1-1 and 2-4-1-2 can be very sensitive to the sample size and consequently the sample’s
ability to describe the underlying distribution adequately. The SOTA algorithms [70],
[72], [74], described in Section 2-6, all use radial patterns in the Fourier representation as a
foundation of their outlier labeling. These algorithms also have rather strong assumptions
about the expected radial pattern, e.g. linearity on a log-log scale, or monotonously
decreasing values as the radial distance from the zero frequency coefficient grows. Our
approach attempts to use the radial information, without imposing strong assumptions
on the radial pattern and without compromising the reliability of the statistical outlier
labeling. We do this by assigning the Fourier coefficients to radial bins, consisting of a
single circular bin in the center and further bins as concentric disks around it, this retains
local radial information within the bins. However, in order to preserve the reliability of the
statistical outlier labeling within these bins in a data-driven manner, we have to ensure
that the sample size within the bins is controlled for images of arbitrary size. Histogram
equalization provides a solution to this.

Histogram equalization is useful when most of the information within the image is con-
tained in intensity values close to each other. Such images have poor contrast, and his-
togram equalization can help raise the contrast of those areas. This is done by reassigning
frequently occurring intensity values to less frequently occurring values, such that the his-
togram of intensity values is as flat and uniform as possible across the range of possible
intensities. This effect is shown on Figure 3-12. Figure 3-12a shows an image where all
the intensity values are between [0.45, 0.55], while the range of possible intensity values is
[0, 1]. Figure 3-12b shows the histogram equalized intensities, spread out as uniformly as
possible across the range of possible intensities. This raises contrast significantly. Math-
ematically this translates to the linearization of the cumulative distribution function, or
in the discrete case, the empirical distribution function. In terms of radial binning, this
increases the number of observations for bins with a low radial distance, and decreases the
number of observations for bins with a high radial distance, resulting in a close to even
distribution of observations across bins.

In the continuous case, in order to equalize the number of observations across radial bins,
as a circle and disks, the goal is to designate concentric disks with increasing radii that
cover an area equal to the initial circle. With discrete values, such as pixels of digital
images and the Fourier transforms, a possible solution to this problem is radial binning
using histogram equalization.
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(a) Original, low-contrast image.
(b) Raised contrast image

with histogram equalization
of intensity values.

Figure 3-12: An example of increasing the contrast of an image through histogram
equalization of intensity values.

Examples of equidistant and histogram equalized radial binning are shown in Figure 3-
13. With equidistant binning, visible on Figure 3-13a, bins close to the center contain a
low number of components, while bins far from the center contain an increasingly higher
number of components. The histogram equalized binning strategy, visible on Figure 3-13b,
contains an approximately equal number of coefficient values in each bin. This consistency
in the number of components within each bin is beneficial to the reliability of the statistical
approach for outlier detection, detailed in Section 3-9. Not having enough bins prohibits
accurate approximation of the expected values at a certain radial distance that can make
outlier detection unreliable. Having an unnecessarily large number of bins may result in
inaccurate aggregates within bins, see in Section 3-7, where the bins do not generalize
the underlying population, which in turn can give rise to an increased number of false
positives in the outlier labeling process.
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(a) Equidistant radial binning. (b) Histogram equalized
radial binning.

Figure 3-13: Examples of equidistant and histogram equalized radial binning from the
central coefficient. With equidistant binning, bins close to the center contain a low number
of coefficients, while bins farther from the center contain an increasingly higher number of
coefficients. The histogram equalized binning strategy, contains an approximately equal
number of coefficient values in each bin. Both figures show a zoomed-in, central section
for visual clarity. The color coding indicates the index of the radial bin that the coefficient
gets sorted into.

This is the first step where the pipelines for QID-RPCA and QID-MADN diverge. For
QID-RPCA a masking has to be applied in order to execute the next step, described
in Section 3-7. The radial bandwidth is limited for QID-RPCA because mapping polar
values to a rectangular grid constrains the algorithm to the largest common radius for
the 2-D Fourier transformed coefficients, which is directly proportional to the shorter
spatial dimension. If this constraint is not enforced, the number of angular bins for a
specific radial distance decreases, until there are only a handful of bins near the edge
of the Fourier coefficient matrix. In turn, the decreasing number of angular bins make
the outlier labeling strategy inaccurate and unreliable as it would be applied to a wildly
different sample size, potentially resulting in false positive outliers. This phenomenon
is not acceptable to our data-driven approach, thus only the Fourier coefficients within
the largest common radius are used, while the coefficients outside this limit are excluded.
This limit is equal to 128 components from the center, in the case of a 256 by 256 image.
QID-MADN is not constrained by this common radius, as it does not need to transform to
the rectangular representation of polar values. The effect of this is shown on Figure 3-14
for binning into 24 distinct bins, with and without the common radius masking.
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(a) Masking for QID-RPCA. (b) No masking for QID-MADN.

Figure 3-14: Examples of common-radius masking used for QID-RPCA and omitted for
QID-MADN. Both histogram equalized binning strategies consist of 24 distinct bins.

The formulation of histogram equalization is described with Equations 3-7 through 3-13. N
denotes the number of distinct radial bins used. The goal is to formulate a transformation
function T (r) = n, where r ∈ R is the radial distance of the coefficient from the center and
n ∈ [1, N ] is the index of the radial bin that the coefficient gets sorted into. The probability
of a coefficient having a certain radial distance, r, from the center in the original setting
is p1(r).

p1(r) = # of coefficients with radial distance r

# of all coefficients
(3-7)

The probability of being a member of a certain radial bin, n, is p2(n).

p2(n) = # of coefficients in radial bin n

# of all coefficients
(3-8)

Demonstrated for the continuous case. The relationship between p1(r) and p2(n) is as
follows.

p1(r) dr

dn
= p2(n) (3-9)

Define the transformation function that maps a radial distance r to a radial bin n, as
n = T (r).

p1(r) dr

dT (r)
= p2(T (r)) (3-10)

The transformation function defined for histogram equalization is as follows.

T (r) = N

∫ r

0
p1(q)dq (3-11)
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The derivative with respect to r.

dT (r)
dr

=
d

(
N

∫ r
0 p1(q)dq

)
dr

= (3-12a)

= N
d

( ∫ r
0 p1(q)dq

)
dr

= (3-12b)

= Np1(r) (3-12c)

Plugging this into Equation 3-9.

p2(n) = p1(r) dr

dn
= (3-13a)

= p1(r) dr

dT (r)
= (3-13b)

= p1(r) 1
Np1(r)

= (3-13c)

= 1
N

(3-13d)

In the discrete case we can approximate the integral using a summation. The notation ⌈··⌉
corresponds to the ceiling function, which rounds values up to the closest integer.

T (r) = ⌈N
r∑

w=0
p1(w)⌉ (3-14)

The implementation calculates the rounded, expected number of coefficients in each bin
based on the number of bins, N . Then sorts the array of coefficients according to radial
distance and uses a pointer to perform the bin labeling on each of the sorted coefficients,
until the required number of elements per bin has been reached. Due to the discrete nature
of this task and because the number of bins is not required to be a divisor of the number
of coefficients, the last bin can have slightly less or more coefficients than the rest. This
error can be cancelled by constraining the number of bins to be a divisor of the number of
coefficients. However, in practice, the error is marginal in most cases and does not affect
the reliability of the outlier labeling. Thus, the constraint was deemed unnecessary for
our implementations.

3-7. Mapping polar values to a rectangular grid

Figure 3-15: Pipeline blocks relevant to mapping polar values to a rectangular grid.

Note that this step is only done in the QID-RPCA variant. The next step for QID-
MADN is found in Section 3-9. The QID-RPCA algorithm uses RPCA to separate the
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Fourier coefficent matrix into two separate matrices, the low-rank matrix, which provides
an expected value for the noise-free value and a sparse matrix that is expected to capture
the components responsible for the quasiperiodic corruption, this is detailed in Section
3-8. Empirical experiments suggest, that using RPCA on the Fourier coefficients in the
original coordinate system does not reliably separate the matrix into an accurate low-rank
and sparse matrix. The goal of mapping polar values to a rectangular grid, is to highlight
the radial pattern within the data and ensure that the matrix is separated into an accurate
low-rank and sparse representation. Once the mapping to a polar coordinate system is
complete and the radial values have been histogram equalized to the chosen number of
radial bins, the matrix containing the Fourier coefficients is masked using each combination
of radial and angular bins. For each set of values within that bin, the mean of the power
is taken as the aggregate value of that bin in the rectangular grid. Figure 3-16 illustrates
this combination of radial and angular bins. Looking at Figure 3-16c, the coefficients
in each uniformly colored area are aggregated to one value in the rectangular grid, such
that each radial disk transforms to a column in the rectangular grid and each angular
slice transforms to a row in the rectangular grid. An example of this transformation of
the power spectrum is visible on Figure 3-17, the rows correspond to a specific angular
direction and the columns represent radial distances.

With a sufficient number of observations in every bin and a sufficient number of bins, it
provides an approximate probability distribution of values for that radial distance. Using
the mean value of the coefficients in a specific bin promotes the importance of high values
in the rectangular representation, such that outliers can still be captured even if the
majority of the coefficients in the original coordinate system are relatively small. This
in turn makes it possible to label suspected outliers of that distribution. These outliers
have a high probability that they are not part of the original distribution. Hence, they
are unlikely to contain biological information and are likely caused by an external source
of noise. Noise components are expected to affect only a handful of bins, meaning that
most of the angular bins for a specific radius will have a low mean value, which is taken
advantage of by RPCA, detailed in Section 3-8.
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(a) Radial binning for QID-RPCA. (b) Angular binning for QID-MADN.
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(c) Combination of radial and angular binning for QID-MADN.

Figure 3-16: Example of combining radial and angular binning for the rectangular rep-
resentation of polar values.

(a) Top-down view of
the power spectrum. (b) 3-D view of the power spectrum.

Figure 3-17: Example of the logarithm of the power spectrum, aggregated to the rect-
angular grid of polar values.
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3-8. Robust Principal Component Analysis

Figure 3-18: Pipeline blocks relevant to robust principal component analysis.

Note that this step is only done in the QID-RPCA variant. The next step for QID-MADN
is found in Section 3-9. RPCA, published by Candes et al. [58] in 2009, is a modification
to Principal Component Analysis, which aims to separate the matrix into a low-rank
component and a sparse component in the form of M = L + S, where M ∈ Rn1×n2 . This
modification and its ability to separate out sparse variation into a separate matrix, S,
from the low-rank structured matrix, L, makes it applicable to heavily corrupted data,
which PCA would be sensitive to and would fit some of the first components to noise. The
low-rank component, L, provides an expected value for that radial component, while the
corrupt components are captured in the sparse matrix, S. The optimization problem is
formulated according to Equation 3-15a.

minimize ∥L∥∗ + λ ∥S∥1 (3-15a)
subject to L + S = M. (3-15b)

∥M∥∗ :=
∑

i σi(M) denotes the nuclear norm of M, which means the sum of the singular
values of M , where the fist singular value is σi(M). ∥M∥1 :=

∑
i,j |Mi,j | denotes the l1

vector norm, in other words, the sum of absolute values. According to the recommendation
by Candes et al. the tuning parameter is set as described in Equation 3-16.

λ = 1√
max(n1, n2)

(3-16)

An example of this separation is seen on Figure 3-19.
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(a) Input of RPCA, M .

(b) Low-rank component of RPCA, L. (c) Sparse component of RPCA, S.

Figure 3-19: Examples of the input and outputs of RPCA. The logarithm of the power
spectrum in a rectangular, polar coordinate matrix M is separated into its low-rank
component, L, and sparse component, S.

3-9. Outlier detection

Figure 3-20: Pipeline blocks relevant to outlier labeling.

Based on literature [42], one of the most commonly used approaches to detecting extreme
observations, which separate well from the general patterns of the data, is through the
use of dispersion and central tendency measures. The most commonly used dispersion
measure is the standard deviation and the most commonly central tendency measure is
the sample mean, often used for outlier detection and classification through the z-score.
More details on the z-score are found in Section 2-4-1-1. Using this score, an observation
is classified as an outlier, if its absolute difference to the sample mean is larger than n
times the standard deviation of the sample, with n = 3 used by default. Even though this
heuristic is simple, it is effective in many cases. Its robustness, however, is questionable,
as the outliers themselves affect the mean and standard deviation of the sample. This
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can result in a notably different detection threshold by only changing a few observations,
while the distribution remains generally unaffected. To mitigate this effect, more robust
measures of dispersion and central tendency can be used. A simple, yet robust extension to
the three-sigma rule is through the use of normalized median absolute deviation (MADN)
instead of the standard deviation and the median instead of the mean. More detail on the
modified z-score is found in Section 2-4-1-2.

For QID-RPCA, outlier detection is done through calculating the z-score for every element
of the sparse matrix S (notation taken from Equation 3-15a) and labeling elements that
are over a z-score of three. Usage of the modified z-score is not possible in most cases
as the sparse matrix has low cardinality. Low cardinality means that it contains a low
number of unique values. In the current setting, this means that a few elements will
take high values, while the majority of elements will be zero. The modified z-score has
a breakbdown point at the 50th percentile. In cases when at least 50% of the values are
zeros within S, the median and MADN will be equal to zero. This is also called the exact
fit property, which is not specific to the MADN, but happens to all robust estimators of
scale [88]. When the exact fit property is satisfied, all elements of S that are non-zero are
marked as outliers. This behavior is unacceptable in light of the denoising goal of minimal
introduction of artificial patterns. Consequently, for QID-RPCA, the outlier detection is
carried out through Z-scoring the elements of S, the sparse matrix and labeling elements
over the z-score of three as outliers. Once outlier bins are identified, inversion of the
rectangular, polar grid is carried out, creating a mask of outliers in the original, Cartesian
coordinate system.

For QID-MADN, the rectangular binning step is omitted. This also prohibits the efficient
use of RPCA as described before. However, robust outlier detection is still possible on the
radially histogram equalized disks, by using the MADN outlier labeling approach on each
component individually. The median of a disk is used as the local, expected value for the
disk, while classifying individual coefficients as outliers if their distance to this median is
larger than three times the normalized median of absolute differences of that specific disk.
This is described in Equation 3-17, where PSk,l is the power coefficient at indices k and l
in the Cartesian coordinate system and d is the index of the disk, which PSk,l is contained
in. The function MADN() is described in Equation 2-15. Apart from computational
simplicity, this approach is advantageous compared to the rectangular binning approach
as components are evaluated individually. This way, no change occurs in a large number
of components in the region of the outliers, while with the rectangular binning approach
of QID-RPCA, every component in a specific bin is altered. Leakage of these discrete
coefficients is still possible, since the resolution of the Fourier representation is limited.
Therefore each component that is identified as an outlier in QID-MADN is dilated to
adjacent components in the outlier map, with a default radius of three coefficients. This
counteracts most of the residuals caused by leakage, while also being less invasive compared
to the QID-RPCA binning approach.

Examples of both filtering approaches are illustrated in Figure 3-21. The outlier map
of QID-RPCA is shown both in the rectangular, polar coordinate-system, as well as the
original Cartesian coordinate-system.

log(PSk,l) − median
(
log(PSd)

)
> 3 ∗ MADN

(
log(PDd)

)
(3-17)
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(a) Outliers of QID-RPCA in
the rectangular, polar grid.

(b) Outliers of QID-RPCA in
the original Cartesian coordinate-system.
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(c) Outliers of QID-MADN in
the Cartesian coordinate-system.

Figure 3-21: Examples of the outlier maps of QID-RPCA and QID-MADN. The outlier
map of QID-RPCA is shown both in the rectangular, polar coordinate-system, as well as
the original Cartesian coordinate-system.

3-10. Optimization of the binning strategy
As mentioned earlier in Sections 3-6 and 3-7, too few, as well as too many bins may
affect the performance of QID-RPCA significantly. Determining the number of radial and
angular bins that ensures the accurate labeling of outliers in a data-driven manner before
evaluating the denoised image, however, is not trivial. Until this point, no explicit criteria
have been established regarding the optimality of the binning strategy. The goal is to find
a binning strategy, which provides maximal separation between the low-rank and sparse
component in RPCA, without the loss of generality and with the minimal computational
costs possible. The sparse component, S, serves as the basis for outlier labeling, while the
low-rank component, L, serves as the expected, noise-free value of a specific component.
Hence, optimality of the binning strategy should be determined based on the sparsity of
S, as it directly impacts the detection of outliers. The automated binning strategy for
QID-MADN is found at the end of this section.

Minimal sparsity in any sample, such as the values of the sparse matrix, S, occurs when
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the values are uniformly distributed within the sample, while it is maximally sparse when
all elements are zero valued, except for one. This definition is not sufficient, it does not
control for a large number of variables, e.g. sample size. As a result, some measures of
sparsity fail to provide a precise and straightforward comparison in some instances. In
the financial field, measuring the distribution of wealth and its inequality on different
scales, across different neighborhoods, countries, and continents, is often done through
sparsity. Much of the analysis at hand stems from learnings in the financial sector, such
as Dalton’s laws [4]. Terminology such as ’rich’ and ’poor’, ’wealth’ and ’energy’ is also
borrowed for a more intuitive description of the phenomena, even though it has no direct
relevance to medical imaging. Hurley and Rickard [52] provide a detailed comparison of
sparsity measures, highlighting their strengths and weaknesses through a set of criteria.
The criteria used by Hurley et al. to determine the quality of a sparsity measure include
the following desirable characteristics. Choosing a sparsity metric that satisfies as many of
these characteristics as possible is also desirable in our case, as it may predict the outlier
detection performance of QID-RPCA.

• Robin Hood: taking from the ’rich’, coefficients with a high value, and giving to the
’poor’, coefficients with a low value, while introducing no wealth or energy to the
population, decreases sparsity.

• Scale invariance: the sparsity measure should not be sensitive to the energy contained
in the system. Absolute values of the population do not matter, only the relative
differences between the minimally and maximally sparse case.

• Rising tide: adding a constant to the energy of every member of the population
decreases sparsity.

• Cloning: the sparsity measure is invariant to population size. Two populations with
identical sparsity, when combined, result in the same sparsity.

• Bill Gates: as one member of the population increases in energy infinitely, while
the others stay constant, the sparsity measure asymptotically grows towards its
maximum value.

• Babies: adding members with zero wealth increases sparsity.

Their analysis covers a large number of vector norms, such as the absolute-value norm (L1)
or the maximum norm (L∞), as well as metrics such as the Hoyer [37] and the Gini index
[6]. Many of the measures analysed by Hurley et al. are inherently dependent on and
scaled by sample size. The number of radial and angular bins, determines the number of
elements in the sparse matrix, S, hence the sample size. This is especially critical for us, as
measuring the sparsity of different binning strategies has to account for the fact that these
strategies compare different sample sizes. Providing simple, but intuitive descriptions of
the norms in the context of the application may aid finding a reasonable measure. The
absolute-value norm, also known as the L1 norm, when applied to the power spectrum of
an image, is proportional to the total power captured by the signal. The higher the total
power, the higher the norm. The Euclidean-norm, or L2 norm, on the other hand, apart
from the total power is also sensitive to the concentration of power in a low number of
observations. Two vectors with the same total power will have a higher L2 norm if the
power is concentrated in a single observation or coefficient, compared to if it is distributed
uniformly. The ratio between these norms, L2

L1
, indicates how concentrated a single unit of

power is. When all the power is concentrated in a single observation, this measure is equal
to 1, independent of the population size. While it is monotonically decreasing until the
power is uniformly distributed among all the observations, in which case the value is 1√

N
,

where N is the population size. This measure satisfies the Robin Hood, scale invariance,
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and Bill Gates criteria, while violates the rest [52].

Hoyer utilizes min-max scaling on L2
L1

to map it between [0,1] independent of population
size, shown in Equation 3-18, where N is the number of elements in the matrix, L1 and L2
are the norms of the same matrix. With this modification, the sparsity measure satisfies
all criteria except for Cloning [52], while still indicating how concentrated a single unit
of power is. Because of its favorable properties and intuitive interpretation, the Hoyer
metric is used by us to choose the optimal binning strategy, based on the sparsity of S in
QID-RPCA.

Hoyer =
√

N − L1
L2√

N − 1
(3-18)

A range of angular and radial bin combinations are used for binning to the aggregate values
of a poalr bin to the rectangular grid, next RPCA is used, then the Hoyer sparsity metric
is calculated for each sparse matrix, S. The binning strategy resulting in the highest
Hoyer metric is chosen. Since the sparse matrix of RPCA is used for determining opti-
mality, calculating it is necessary for every binning strategy. This can be computationally
intensive. In most practical cases, the optimal strategy comes out to be approximately√

min(width, height) for both the number of radial and the number of angular bins. For
applications such as multispectral immunofluorescent microscopy, where the same biolog-
ical sample is imaged multiple times, this optimality calculation only has to be done once
and the results can be used for each separate band of the sample.

For QID-MADN, denoising performance is less sensitive to the composition of the bins. As
opposed to QID-RPCA, no aggregation and no transformation to a rectangular polar grid
is done. Furthermore, MADN filtering is applicable to relatively low sample sizes and has
a breakdown point of approximately 50%, which means that it is not sensitive to outliers
[14]. Through empirical testing, the number of bins can robustly be set to

√
n, where n is

the number of pixels. While a minimum sample size of 30 measurements is commonly rec-
ommended in order for a sample to approximate a distribution, determining the minimum
sample size depends on a number of statistical parameters and assumptions [3]. Thus,
the minimum sample size should be determined through sample-specific, statistical power
analysis. The binning strategy for QID-MADN is summarized in Equation 3-19, where N
is the number of bins and n is the number of pixels in the original image. A lower bound
of 64 coefficients per disk is set, in order to steer clear of relatively low sample sizes and
due to the unlikely nature of biomedical images under the resolution 64 × 64. An upper
bound of 1024 disks is set, as for large images the computational cost of using more bins
out-weights the potential increase in resolution and precision in attenuation.

N =


64, n < 4096
√

n, 4096 ≤ n < 262144
512, 262144 ≤ n

(3-19)
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3-11. Noise component attenuation

Figure 3-22: Pipeline blocks relevant to noise component attenuation.

Bins and elements which are classified as outliers by QID-RPCA and QID-MADN, are
attenuated to their best estimate of their noise-free value. This best estimate of what value
the labeled coefficients should take if no noise were present for QID-RPCA is captured by
the low-rank component of RPCA, L. The best estimate for QID-MADN is the median
of the respective radial disk. The advantages of noise component attenuation compared
to noise filtering is explained in more detail in Section 2-4-2-3. Examples of attenuated
power spectra for each algorithm are shown on Figure 3-23. Figure 3-21b and 3-21c show
the labeled outliers attenuated in Figure 3-23.
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(a) Power spectrum of the
original, corrupt image.
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(b) Attenuation by QID-RPCA. (c) Attenuation by QID-MADN.

Figure 3-23: Comparison of the original and attenuated power spectrums.
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3-12. Image reconstruction by inverse Fourier transform

Figure 3-24: Pipeline blocks relevant to transform inversion.

The final step of the pipeline is image reconstruction through the inverse Fourier trans-
form, resulting in a denoised image in the original domain. The complex valued Fourier
representation of the filtered image is retrieved through Equations 3-20 and 3-21, where
Pp,r is the power of a specific coefficient, Φp,r is the phase of the same coefficient, and the
phase is retained from Section 3-3. For an n × m matrix in the spectral domain, Y , and
its inverse Fourier transform X in the spatial domain. ωm = e− 2πi

m and ωn = e− 2πi
n are

complex roots of unity, where i is the imaginary unit, p and q are indices in the Fourier
domain, j and k are indices in the spatial domain, p and j are indices that run from 0 to
m-1, and q and k are indices that run from 0 to n-1. An example of the results of this
inverse transform is seen on Figure 3-25.

This step concludes the methods used in QID. For a comprehensive overview, please refer
back to Section 3-1 and Figure 3-2.

Yp,r =
√

Pp,reiΦp,r (3-20)

Xj,k = 1
m

m−1∑
p=0

1
n

n−1∑
q=0

ωpj
m ωqk

n Yp,q (3-21)
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(a) Original, corrupt image.
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(b) Denoising by QID-RPCA. (c) Denoising by QID-MADN.

Figure 3-25: Comparison of the original and denoised images.
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Chapter 4

Case studies

In order to demonstrate the applicability and usefulness of QID and compare its perfor-
mance to state-of-the-art algorithms, a series of case studies are carried out. This section is
organised around three sets of experiments on three separate datasets. Namely, a synthetic
dataset is used to paint a broad picture of the properties and specific behaviors exhibited
by the algorithms and two, real-world datasets are used to compare the approaches in
real-world scenarios. First, in each case study, the datasets are introduced, background
information on their origin is given, and motivation behind their use is described. Next,
the experiments are outlined, but also what the expected results would be and possible
shortcomings are.

The datasets used are as follows:

• a synthetic dataset based on the Shepp-Logan phantom [10],

• a set of processed images based on a brightfield microscopy image of a transversal
section of a mouse brain and a coronal section of a rat kidney,

• a set of raw, fluorescence microscopy images of a resected human kidney.

4-1. Shepp-Logan synthetic dataset
The first set of experiments use a series of artificial noise patterns, with varying parameters.
As the base image the Shepp-Logan phantom [10] is used, seen on Figure 4-1. It is an
artificial image that models a human head section by x or gamma radiation imageing [11].
It is created in order to help the development of Fourier reconstruction algorithms medical
images. It simulates different biological structures, e.g. skull, gray matter, tumors, and
hematoma.
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Figure 4-1: Modified Shepp-Logan phantom.

Choosing the established Shepp-Logan phantom has advantages. In order to properly
approximate real performance in the medical imaging domain, the image used cannot be
chosen in an arbitrary fashion, it has to possess features that are similar to those in the
medical imaging domain. Images that are too simplistic, such as a classic checkerboard
pattern include long, straight lines of sharp transitions. While this pattern would e.g.
amplify the severity of Gibbs-phenomena, such a pattern would occur infrequently in
medical images. Specific artificial patterns that are not found in real medical images
may hide important algorithmic performance issues that only become visible in more
complex cases. On the other end of the spectrum, complex natural images, commonly used
for testing of signal and image processing algorithms such as "The mandrill", "peppers",
"Lena", or "The cameraman" miss some aspects and features specific to the medical imaging
domain. Specific biological structures, such as bones, cell membranes, and tissue textures
follow patterns that are not appropriately modelled by such images. Furthermore, these
natural images do not contain buffer areas with no useful information, such as masks
areound viewports or empty viewports outside of the biological sample. Using natural
images as a basis of our synthetic experiments would risk focusing on issues not found in
the medical domain.

4-1-1. Experimental setup
Determining the denoising performance for quasiperiodic corruption accurately and reli-
ably is a complicated task by itself. In the ideal case, one knows the exact noise models
possible, with a full understanding of their parameters, such as amplitude, direction, and
distribution. Furthermore, one would have a dataset of real images containing all of these
corruptions, labeled, as well as the pure, noiseless counterparts for each. For medical im-
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ages, this is rarely, if ever, available. In most cases, obtaining an objectively pure, noiseless
sample is simply not possible.

With the experiments on this synthetic dataset, getting close to this ideal case is the
goal. Creating labeled examples of corruptions, across a wide range of parameters used
for structured comparison is essential. Furthermore, evaluation of specific phenomena,
such as information loss through saturation and added noise over the Nyquist frequency
is examined using this dataset for which the ground truth is available.

First, limits and behaviors of the algorithms are compared using this dataset employ-
ing a simple, deterministic corruption scheme. This way, it is easier to establish causal
relationships between the change in a specific variable and its effects on denoising perfor-
mance. For example, we use pure sinusoids, which are periodic functions, to determine
performance on quasiperiodic corruptions, albeit a significant simplification of quasiperi-
odic corruption in the wild. These periodic patterns, are however sufficient to determine
at least the upper and lower detection limits to corruptions in terms of frequency, as well
as the amplitude. Even though the complexity is significantly reduced with this synthetic
approach and certain variables present in the real-world examples are disregarded here,
it does allow for analysis of specific phenomena in a rather structured manner, which is
rarely a possibility with real datasets.

The experimental setup is as follows. Starting from the baseline image shown in Figure 4-1,
a single sinusoidal pattern is added, with a specific frequency and amplitude combination,
while phase is kept constant throughout. Frequencies are varied between 0.02 cycles/pixel
and 0.5 cycles/pixel, in increments of 0.02 cycles/pixel. A corruption with a frequency
of 0.02 cycles/pixel is low enough that it’s unlikely to occur in biomedical images, and a
frequency of 0.5 cycles/pixel is high enough to simulate the limit imposed by the Nyquist
frequency. Amplitudes are varied between 5% and 25% of the available pixel intensity
scale, with changes in increments of 5%. This results in a set of 125 distinct corrupted
images for which the ground truth is known, since we introduced the noise. In order to
counteract information loss through intensity saturation, the intensity range of the baseline
image is shrunk to the central 50 percentile. This means that with an intensity range of
[0,1], the clean, ground truth image will contain values in the range [0.25,0.75], while the
corrupted version with a sinusoid with amplitude of 25% if the intensity and an arbitrary
frequency will occupy the full intensity range at [0,1].

Once the dataset is generated, a high-level comparison and performance analysis of de-
noising using state-of-the-art (SOTA) algorithms, namely ARPENOS, ACARPENOS, and
IONITA, described in Section 2-6 and our QID methods are carried out. The evaluation of
denoising performance makes use of a set of metrics, namely RMSE, SSIM, SNR, PSNR,
and BRISQUE. Then, we show concrete examples, in the image domain to highlight spe-
cific artifacts and observations. The metrics listed above are sensitive to some artifacts,
while oblivious to others, as described in Section 2-5-2. Pižurica et al. [45] further argues
that for applications where the final result is to be used by humans, final evaluation by
humans is often the best and only reliable way of evaluation.

Finally, this case study also includes special cases using modified datasets, with the aim
to give an indication of how these algorithms behave in a wider range of real-world sce-
narios.

The list of special cases are as follows:

• how well they handle information loss through intensity saturation;

• how well they handle corruption patterns with frequencies over the Nyquist-frequency;
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• and how well they scale in terms of computation time.

The algorithms compared include ARPENOS and ACARPENOS by Sur et al., the algo-
rithm by Ionita et al., which is referred to as IONITA from now on, and out two approaches
described in Chapter 3, QID-RPCA and QID-MADN.

4-2. Processed mouse brain and rat kidney dataset
This dataset contains a labeled set of processed images, that originate from single mi-
croscopy images of a transversal section of a mouse brain and a coronal section of a rat
kidney. The processing includes different color spaces such as RGB, HVS, and YCbCr,
specific factors of decomposition and factorization methods such as PCA, NNMF, and
DWT, range- and median filtering, entropy- and median filtering. A set of examples can
be seen in Figure 4-2 with a custom color scale. The dataset also contains combinations
of these resulting in a vector of 905 distinct images with a varying level of noise and signal
in each. All of them originate from a single microscopy image of a transversal section of
a mouse brain and a coronal section of a rat kidney, respectively.

Figure 4-2: Processed microscopy images, on a false color scale. Processing includes
different color spaces such as RGB, HVS, and YCbCr, specific factors of techniques such
as PCA, NNMF, and DWT, range- and median filtered, entropy- and median filtered
versions.

4-2-1. Experimental setup
In this case, there is no objective, noiseless image available. As a result, it is more difficult
to give an unbiased comparison between the performance of the algorithms. However,
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a previously introduced reference-free quality metric, BRISQUE, can still be used. Even
though it will be biased towards a specific set of features, it provides a basis for comparison.
Furthermore, image domain comparisons are shown to enable human interpretation of the
denoising results, highlighting specific behaviors and artifacts.

4-3. Raw human kidney dataset
An instance of structured noise is a phenomenon called viewport-stitching. High-resolution
microscopy images, such as this dataset for example, are not often acquired by a single
high-resolution imaging sensor, at a single instant in time. They are often acquired by a
lower-resolution sensor that takes an image of a small part of the sample, this is what we
refer to as a viewport. This sensor is then then moved along a specific structured path,
such that a lower-resolution image is taken of each and every part of the sample. When
all the areas of the sample have been captured, the lower-resolution images or viewports
are connected or stitched together, this results in a high-resolution image. The amount
of light that falls on the sample within and across viewports is often not uniform, espe-
cially without regular calibration and maintenance. When stitching these non-uniformly
lit viewports together, a structured, repetitive pattern emerges, which is referred to as
viewport-stitching artifact or viewport corruption [27].

The immunofluorescence image data that is contained in this dataset was collected from a
10 µm thick cryo-section of a resected human kidney. A Zeiss Axio.Scan.Z1 slide scanner
was used to capture the image using a 10x Plan-Aprochromat/0.45 NA M27 Zeiss ob-
jective and a Hamamatsu ORCA Flash 2.0 camera with 16-bit precision. A metal-halide
Zeiss HXP-120 fluorescence lamp was used as light source with 90% intensity used for
all channels. The image contains 4 immunolabels captured through 4 fluorescent filter
channels described in Table 4-1.

Filter
name

Filter set
(Zeiss)

Item no.
(Zeiss)

Filter excitation
wavelengths (nm)

Filter emission
wavelengths (nm) Marker Structure

marked
Exposure
time (ms)

DAPI Filter Set 49 488049-9901-000 335-383 420-470 Hoescht cell nuclei 20

EGFP Filter Set 38 HE 489038-9901-000 450-490 500-550 Laminin basement
membrane 320

DsRed Filter Set 43 HE 489043-9901-000 538-562 570-640 Synaptopodin glomerular 89
Cy 5 Filter Set 50 488050-9901-000 625-655 665-715 THP thick limb 250

Table 4-1: Table of filter and immunomarker information for the human kidney im-
munofluorescence image. Each row describes one of the four band examined in this
experiment.

As an example, the raw EGFP band is shown in Figure 4-3. Figure 4-3b shows the contrast
stretched image for increased visibility of the low-intensity patterns captured by this band.
Note that over 50% of the pixels on this image do not contain biological information and
are "off tissue". The majority of these pixels are not physically measured, located around
the viewport blocks which are physically measured, to complete a rectangular image. A
smaller number of pixels are physically measured without capturing biological signal, in the
viewports at the edges of the kidney tissue and the biological information. These empty
and near-empty viewports are necessary in most cases to guarantee that every area with
biological tissue information is adequately captured. The mask of measured viewports
is clearly visible in the uniform black regions of Figure 4-3, while the viewports without
biological signal are easy to identify by their close to uniform dark purple color.
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Figure 4-3: EGFP band of the human kidney microscopy dataset. Note the grid-like
repetitive pattern resulting from viewport being stitched together, superimposed on top
of the biological pattern of the human kidney.

4-3-1. Experimental setup
Until now, all experiments have been conducted on either synthetic images with controlled
corruptions or on real-world microscopy images processed in such a way that certain pat-
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terns get amplified or attenuated. Even though, this provides valuable information on
the strengths and weaknesses of the algorithms, it does not sufficiently showcase per-
formance on the intended use-case, namely raw biomedical images. This third dataset,
however, contains unaltered real-world microscopy images, exactly as they are acquired by
the instrument. The algorithms are used without any preprocessing, knowledge of noise
characteristics or parameter tuning, making application of the QID algorithms on this
dataset a true test as envisioned at the outset of this thesis.

In this third case, there is no objective, noiseless image available. As a result, it is also
more difficult to give an unbiased comparison between the performance of the algorithms.
The previously used no-reference metric for natural images, BRISQUE, is expected to be
ineffective for quality assessment for these images because the mask and empty viewports
take up over half of the pixels in total, which render the test images far from the natural
images that BRISQUE assumes. Since no information is given to the algorithms to ignore
or handle these areas differently, modifications may be made to them, which in turn may
influence the ’naturalness’ of the images even further, even when the biological signal
is denoised. As a result, no reliable BRISQUE score can be shown to evaluate these
images. With no reference image ruling out RMSE etc. and no suitable no-reference
metric available in BRISQUE, the focus in the algorithm evaluation on this third case
study lies primarily on comparisons in the image domain with human inspection at the
forefront.
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Chapter 5

Results and Discussion

5-1. Synthetic dataset results and performance comparison
As explained in Section 4-1-1, starting from Figure 4-1, a single sinusoidal pattern is
added to mimick a quasiperiodic corruption, each with a specific frequency and amplitude
combination, while the phase is kept constant throughout. Frequencies are varied between
0.02 cycles/pixel and 0.5 cycles/pixel, in increments of 0.02 cycles/pixel. Amplitudes are
varied between 5% and 25% of the available pixel intensity scale, with change occuring
in increments of 5%. This results in a set of 125 corrupted images for which the ground
truth is known.

Once the dataset is generated, a high-level comparison and performance analysis of de-
noising are carried out. The comparison is done by using SOTA algorithms, specifically
ARPENOS, ACARPENOS, and IONITA and out newly developed approaches, QID-
MADN and QID-RPCA. Parameters for ARPENOS, ACARPENOS, and IONITA are
chosen according to the recommended values found in their respective papers [70], [72],
[74]. In certain cases, some parameters, e.g. ones that scale with image size are adjusted to
the image. Most parameters are tuned to reflect the best denoising performance possible.
However, in some instances, a more fine-tuned set of parameters may exist, despite best
efforts. Evaluation of performance is based on a set of metrics, namely RMSE, SSIM,
SNR, PSNR, and BRISQUE. RMSE, SNR, and PSNR are metrics that are widely used
in science and engineering, which quantify the signal strength and the presence of noise.
SSIM on the other hand incorporates aspects of the human visual system into its scor-
ing, and is more in-line with the human perception of quality. BRISQUE is used to test
the usefulness and applicability of a no-reference metric, which may be the best tool for
numerical quality assessment in the real-world datasets where no ground truth is avail-
able. After the numerical assessment, concrete examples are shown, in the native image
domain in order to compare specific artifacts across the algorithms. Pižurica et al. [45]
further argues that for applications where the final result is to be viewed by people, final
evaluation by people is often the best and only reliable way of evaluation. A perceptually
uniform color scale, inferno, has been used in order to promote visibility and uniformity
across the different images.
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5-1-1. Frequency domain performance comparison of QID-RPCA and QID-
MADN versus prior algorithms from the literature

In this section, a high-level comparison and performance analysis of quasiperiodic denoising
using the SOTA algorithms, specifically ARPENOS, ACARPENOS, and IONITA and
the previously described novel approaches, QID-MADN and QID-RPCA are carried out.
Evaluation of performance is based on a set of metrics, namely RMSE, SSIM, SNR, PSNR,
and BRISQUE. This means that the full table of scores consists of 125 × 5 algorithms ×
5 metrics = 3125 values. Comparing these scores and their patterns comprehensively in
a tabular format is impractical. Instead, absolute scores of QID-RPCA and QID-MADN
are shown in a graphical visualization, using a grid of frequencies and amplitudes of the
added corruption and evaluation scores indicated as color. Furthermore, comparison of
the current SOTA to both QID algorithms is executed through a similar visual format,
only the relative scores to QID-RPCA and QID-MADN are shown to clearly communicate
where the differences lie for the different algorithms. For the absolute scores depicted in
the QID visualizations, a lighter color means better denoising performance while a dark
one means worse, irrespective of the metric. For relative scores between QID and one of
the SOTA algorithms, the SOTA score is substracted from QID. A divergent color scheme
is used to highlight differences. Blue means that QID performs better, red means that
the SOTA algorithm performs better, while white means, that both algorithms perform
similarly. Note that a table of discrete quantitative metric scores could give a misleading
impression of a precise arithmetic assessment, while, colors provide a wider spectrum
that allows for a more intuitive and visual interpretation of the results exhibited by each
algorithm.

In terms of mean squared error (MSE), all the algorithms perform well on high-
frequency noise components. As seen on Figures 5-1 and 5-2, most algorithms have a
definite and quite stark low-frequency cutoff point under which denoising performance
declines significantly. For both QID algorithms, residuals and errors in denoising start
to grow considerably under 0.1 cycles/pixel. However, relative to the others, the highest
error is still approximately one order of magnitude lower, peaking at around 4.5 × 10−3.
For the SOTA algorithms this is 3.3 × 10−2. It is important to note that for QID this
limit is affected by the zero-frequency protection radius, which is a circle with a radius of
5 pixels by default, corresponding to approximately 4% of the full frequency range in this
case. For IONITA, this low-frequency limit is around 0.12 cycles/pixel, for ACARPENOS
it is 0.1 cycles/pixel, for ARPENOS the limit is 0.05 cycles/pixel.
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Figure 5-1: Differences between QID-RPCA, ARPENOS, ACARPENOS, and IONITA
in terms of MSE score.
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Figure 5-2: Differences between QID-MADN, ARPENOS, ACARPENOS, and IONITA
in terms of MSE score.

Structural similarity (SSIM) focuses more on the perceptual quality of the denoised
image, since it is more in line with the human visual system (HVS) compared to widely
used error metrics such SNR and MSE. This is why SSIM is commonly used for tasks where
aiding human interpretation is the goal, such as in the case in the current medical image
denoising problem. This metric is used as the primary metric here because perceptual
quality of the image is of the highest importance.

As seen on Figures 5-3 and 5-4, the aforementioned low-frequency limit is still visible. How-
ever, its boundaries shift for this metric. In the case of ACARPENOS and IONITA, the
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lower bound for successful denoising seems to be between 0.12 and 0.14, while ARPENOS
stays between 0.04 and 0.06 cycles/pixel, . Under this bound, both QID algorithms per-
form significantly better than the algorithms in literature. Over this bound, performance
of the QID and SOTA algorithms is similar, with minor differences.
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Figure 5-3: Differences between QID-RPCA, ARPENOS, ACARPENOS, and IONITA
in terms of SSIM score.
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Figure 5-4: Differences between QID-MADN, ARPENOS, ACARPENOS, and IONITA
in terms of SSIM score.

Signal-to-noise ratio (SNR) is a widely used metric within the signal processing com-
munity. SNR tends to highlight more minute differences compared to MSE and SSIM.
As seen on Figures 5-5 and 5-6, a low-frequency boundary is still visible between 0.12
and 0.14 for ACARPENOS and IONITA, while the stable 0.04 to 0.06 boundary is ob-
servable for ARPENOS. QID-RPCA maintains an approximately 3 dB higher score for
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high-frequency corruptions, except around 0.5 cycles/pixel, near the Nyquist frequency.
where performance declines. For high-frequency noise components ARPENOS is consis-
tently worse than QID-MADN by approximately 5-6 dB, the difference grows to 15 dB in
the low-amplitude range. In terms of SNR, IONITA outperforms QID-RPCA in the high
frequency range. The difference continuously grows for higher frequencies, and near the
Nyquist frequency it reaches a difference of approximately 6 dB. QID-MADN on the other
hand only performs marginally worse than IONITA, the highest difference being approx-
imately 3 dB, showing the first real instance of QID-MADN ourperforming QID-RPCA.
ACARPENOS preforms worse than IONITA and better than ARPENOS, but shows no
particularly interesting behavior compared to its alternatives.
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Figure 5-5: Differences between QID-RPCA, ARPENOS, ACARPENOS, and IONITA
in terms of SNR score.
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Figure 5-6: Differences between QID-MADN, ARPENOS, ACARPENOS, and IONITA
in terms of SNR score.
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Peak-signal-to-noise ratio (PSNR) is widely used for quality assessment of image
compression algorithms. PSNR scores match almost exactly the SNR scores, but with
an added offset. Their relative differences are almost negligible. No new comparative
pattern is apparent for the PSNR metric, compared to SNR. Figures 5-7 and 5-8 show the
identical patterns as discussed in Figures 5-5 and 5-6.
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Figure 5-7: Differences between QID-RPCA, ARPENOS, ACARPENOS, and IONITA
in terms of PSNR score.
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Figure 5-8: Differences between QID-MADN, ARPENOS, ACARPENOS, and IONITA
in terms of PSNR score.

Blind/Referenceless Image Spatial Quality Evaluator (BRISQUE) is a no-reference
image quality assessment metric that uses natural scene statistics (NSS). BRISQUE as-
sumes that the undistorted image is a natural image, where the probability density function
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of the normalized pixel intensities is close to a Gaussian distribution. Since the modified
Shepp-Logan head phantom image is a synthetic, non-natural image and does not follow
the aforementioned assumption, the BRISQUE results obtained in this case are not telling
and should probably be disregarded. We are providing them here for completeness sake in
Figures 5-9 and 5-10 However, when evaluating the real dataset, this no-reference metric
might be a good indicator of image quality as long as its assumptions are not profoundly
violated.
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Figure 5-9: Differences between QID-RPCA, ARPENOS, ACARPENOS, and IONITA
in terms of BRISQUE score.
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Figure 5-10: Differences between QID-MADN, ARPENOS, ACARPENOS, and IONITA
in terms of BRISQUE score.
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5-1-2. Image domain performance comparison of QID versus the state-of-
the-art algorithms from literature

In this section, we provide image examples of the denoising performance and show exam-
ples of the visual effect of the largest score differences highlighted in Section 5-1-1. This is
necessary, as the resulting images are expected to be inspected by humans. Consequently,
denoising performance can be experienced as highly subjective, depending on the specific
use-case. Evaluation of denoising performance such as "good", "bad", "better", and "worse"
is done somewhat subjectively in this section with the main aim being to show the results
so the reader can assess for themselves. Therefore, I want to note that my words here
reflect my own perception and expectations towards high-quality denoising, as opposed to
the previous section, where comparison was based on quantitative quality metrics.

Most of the following examples focus on the low-frequency performance of the algorithms,
showing the breakdown points of specific algorithms. The difference in frequency of the
introduced noise is of less importance than a specific algorithm’s response to that noise
frequency. One example will e.g. focus on the high-frequency performance differences
between the algorithms. The last example e.g. highlights the difference in performance
when the amplitude of the noise is small. This section focuses on the most prominent
differences between the algorithms, these cases are not shown. The frequencies used are
[0.06, 0.08, 0.02, 0.5, 0.04] cycles/pixel.
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(c) ARPENOS. (d) ACARPENOS. (e) IONITA.
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(f) QID-MADN. (g) QID-RPCA.

Figure 5-11: Comparison of the current state-of-the-art algorithms versus QID-RPCA
and QID-MADN. Noise frequency = 0.06 cycles/pixel, noise amplitude = 25 %.
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As seen in Figure 5-11, ACARPENOS and IONITA are almost completely ineffective for
such low-frequency corruptions. ARPENOS manages to mitigate the effects of the noise,
but a considerable amount remains. The RPCA version of QID manages to eliminate
the majority of the corruption. However, a strong artificial pattern, different from the
original corruption, is introduced. This occurs because once an RPCA bin is identified
to be an outlier, every coefficient within that bin is attenuated. For low-frequency bins,
however, coefficient magnitudes change rapidly, and thus the expected value may not be a
precise approximation for all the coefficients. Truncation to this imprecise approximation
introduces new patterns. With regards to medical imaging, the acceptability of such a
phenomena is application-specific. On the one hand, it could improve visual quality and
help making the right diagnostic decision. On the other hand, introduced patterns may
change the texture of the sample and mislead the expert, possibly resulting in misdiagnosis.
The MADN version of QID, however, clearly delivers the highest quality denoising result
in this comparison. The noise pattern is significantly reduced and there is no considerable
artificial pattern introduced in the process. This behaviour can be explained by the more
precise, individual filtering of coefficients, which only attenuates a select few coefficients
within the disk.
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(c) ARPENOS. (d) ACARPENOS. (e) IONITA.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(f) QID-MADN. (g) QID-RPCA.

Figure 5-12: Comparison of the current state-of-the-art algorithms versus QID-RPCA
and QID-MADN. Noise frequency = 0.08 cycles/pixel, noise amplitude = 25 %.

Figure 5-12 shows a similar phenomenon as previously discussed in Figure 5-11. In this
case, ARPENOS removes most of the corruption. However, it introduces an artificial
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Gibbs pattern near the edge. The RPCA version of QID suffers from the same problem
of introduced patterns for the low-frequency bins. The MADN version of QID removes
a large majority of the noise, just like ARPENOS. However, QID-MADN still retains
some residuals of the original corruption, even though introduction of artificial patterns is
minimal.
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(f) QID-MADN. (g) QID-RPCA.

Figure 5-13: Comparison of the current state-of-the-art algorithms versus QID-RPCA
and QID-MADN. Noise frequency = 0.02 cycles/pixel, noise amplitude = 25 %.

As seen on Figure 5-13, none of the SOTA algorithms are active in this frequency range.
The RPCA version of QID shows the same behaviour as discussed for Figures 5-11 and
5-12, with the main corruption pattern being eliminated, but a considerable amount of
artificial noise being created, eroding the fine details and modifying the texture. QID-
MADN, on the other hand, shows no signs of the same complications. The majority of
the corruption is removed, while fine details are still clearly visible and the textures of
uniform regions are largely unaltered compared to the ground truth image.
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(f) QID-MADN. (g) QID-RPCA.

Figure 5-14: Comparison of the current state-of-the-art algorithms versus QID-RPCA
and QID-MADN. Noise frequency = 0.14 cycles/pixel, noise amplitude = 25 %.

Figure 5-14 shows performance beyond the low-frequency limit of all the algorithms. All
algorithms perform reasonably well in this range, with high quality removal of the cor-
ruption. IONITA and both versions of QID show residual patterns, while ARPENOS and
ACARPENOS have minimal residuals. Introduction of artificial patterns is minimal, with
some Gibbs phenomena visible where as the noise pattern is parallel with some edges of
the image. However, textures and uniform areas are not affected significantly.
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Figure 5-15: Comparison of the current state-of-the-art algorithms versus QID-RPCA
and QID-MADN. Noise frequency = 0.5 cycles/pixel, noise amplitude = 25 %.

Figure 5-15 shows performance near the high-frequency limit of the algorithms, namely
the Nyquist-frequency. Performance of the algorithms holds up, and there is little vis-
ible residual or artificial pattern introduced. For frequencies over this limit, denoising
performance declines rapidly, more details are given in Section 5-1-4.

Máté Bakos Master Thesis



Synthetic dataset results and performance comparison 89

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) Ground truth. (b) Corrupted.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(c) ARPENOS. (d) ACARPENOS. (e) IONITA.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(f) QID-MADN. (g) QID-RPCA.

Figure 5-16: Comparison of the current state-of-the-art algorithms versus QID-RPCA
and QID-MADN. Noise frequency = 0.04 cycles/pixel, noise amplitude = 5 %.

Most previous examples focused on high amplitude noise components. Figure 5-16, how-
ever, shows effectiveness for low amplitude patterns. Even though labeling of low-amplitude
noise components is less straightforward, as peaks in the FFT do not stand out from neigh-
boring coefficients as remarkably, detection and mitigation of such components is still done
reasonably well by QID-MADN. The QID-RPCA version still suffers from loss of precision
and introduction of artificial patterns in the low-frequency range.

5-1-3. Information loss through saturation of the dynamic range
Using the example of an 8-bit grayscale image, where each pixel can take a value between 0
and 255, values under or over those intensity limits cannot be represented. In cases where
the added noise would result in intensity values outside of these boundaries, sensors often
truncate these values to the closest representable value, 0 or 255 in this case. This breaks
the superposition principle, the addition of noise is not linear anymore. This means that
the corrupt image is not an additive sum of the clear, uncorrupted image and the noise
pattern. This proves to be a very difficult denoising problem, as assumptions about the
noise pattern are broken, and e.g. substracting of the perfectly modelled quasiperiodic
noise components still do not retrieve the original image.

In this case saturation results in a significant amount of information loss, which the al-
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gorithms are unable to fully mend. Figures 5-17 and 5-18 portray denoising performance
with information loss through saturation of the dynamic range. In the vertical axis, am-
plitude represents the amount of maximal truncation in % of the dynamic range. Even
though it is clear, that both QID-MADN and QID-RPCA achieve low scores compared
to a case where no information loss occurs, such as Figures 5-3 and 5-4, the results of
the SOTA algorithms are comparably unsatisfactory. With the exception of the lower fre-
quency range, where both QID-RPCA and QID-MADN have an advantage. Even though
with scores so low, the difference hardly significant. Figure 5-19 shows the example where
the difference is greatest between QID denoising and the SOTA. Even in this case, a con-
siderable amount of residual patterns remain visible, with ARPENOS seemingly handling
this type of information loss the best.
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Figure 5-17: Effect of information loss through the saturation of the dynamic range of
the image measured in terms of SSIM scores.
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Figure 5-18: Effect of information loss through the saturation of the dynamic range of
the image measured in terms of SSIM scores.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) Ground truth. (b) Corrupted.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(c) ARPENOS. (d) ACARPENOS. (e) IONITA.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
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Figure 5-19: Comparison of the current State-of-the-art algorithms and QID under in-
formation loss. Noise frequency = 0.1 cycles/pixel, noise amplitude = 25 %.
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5-1-4. Performance for denoising corruptions over the Nyquist-frequency
Each of the algorithms has an effective frequency bandwidth. Figures 5-20 and 5-21 show
what occurs at and past the border of the bandwidth. Close to 0 cycles/pixel, all of
these algorithms apply some form of protection of the zero-frequency component and its
proximity. QID-MADN and QID-RPCA has it as low as 0.02 cycles/pixel, ARPENOS is
set to 0.05 by default, while ACARPENOS and IONITA have their lower limit around
0.1 and 0.12 respectively. These limits heavily affect their effectiveness for low frequency
corruptions. Most SOTA algorithms are very conservative regarding this limit, or would
break down if this boundary would be lower, such as with ARPENOS where the linearity
assumption would be heavily violated. However, QID tends to be flexible on this, while still
offering effective protection of the zero frequency coefficient and it’s neighborhood.

Looking at frequencies around and over 0.5 cycles/pixel QID-RPCA starts to get affected
by the high-frequency limit, which is the frequency bandwidth upper limit given by the
iamge’s shorter spatial dimension. The frequency bandwidth is limited for QID-RPCA
because mapping to a rectangular polar grid constrains the algorithm to the largest com-
mon radius in the 2D FFT, which is directly proportional to the shorter spatial dimension.
This limit is 0.5 cycles/pixel, which, in the case of a 256 by 256 image, is equal to 128
cycles/width. When imposing noise components close to this border or above, some com-
ponents tailing off the main spike may leak out of the detection bandwidth. Over this
limit, QID-RPCA is inactive, thus strong residuals and purely noise related patterns may
emerge.

QID-MADN and the SOTA algorithms are not constrained by this common radius, as these
algorithms do not transform to the rectangular polar representation. These algorithms are
still effective over this limit, as long as there are 2D FFT components representing the
noise, which is the case if the noise components are not parallel with the horizontal or
vertical axes, like in the synthetic dataset.

Figure 5-22 shows the performance difference between the QID and SOTA algorithms
for the highest tested frequency. While the SOTA algorithms and QID-MADN per-
form well for high-frequency corruptions, QID-RPCA has a breakdown point at 0.5 cy-
cles/pixel.

Overall, the performance of QID-RPCA declines for frequencies over its high-frequency
limit given by the shorter spatial dimension of the image. QID-MADN and the SOTA
algorithms do not suffer from the same limitation, and thus QID-MADN is equal in per-
formance with SOTA algorithms for high-frequencies and performs significantly better for
low-frequencies.
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Figure 5-20: Effect of noise frequencies over and under cutoff frequency.
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Figure 5-21: Effect of noise frequencies over and under cutoff frequency.
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Figure 5-22: Comparison of the current State-of-the-art algorithms and QID for corrup-
tion over the Nyquist-frequency. Noise frequency = 0.6 cycles/pixel, noise amplitude =
25 %.
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5-1-5. Runtime scaling
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(a) Runtime comparison of all algorithms. (b) Runtime comparison excluding
IONITA and QID-RPCA.

0.5 1 1.5 2 2.5

# of pixels 105

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

C
o

m
p

u
ta

ti
o

n
 t

im
e

 (
s
)

ARPENOS data

ARPENOS fit

(c) Runtime scaling of ARPENOS.

Figure 5-23: Plots showing computation times of each algorithm as a function of number
of pixels.

The time scaling of IONITA is O(n2), as seen on the small scale test on Figure 5-23a,
running on a two-core, 2.5 GHz processor. Extrapolating from this curve, computation
time is over 9 hours for a 2048×2048 image, and approximately 30 minutes for a 1024×1024
image, which made further testing computationally impractical. QID-RPCA in the same
scenario would take 2 hours for a 2048 × 2048 image, and approximately 9 minutes for a
1024×1024 image. This includes the optimization of the binning strategy, which effectively
runs a large part of the calculations multiple times. ACARPENOS and QID-MADN are
still best approximated by O(n2), however computation times are considerably lower (in
seconds range), which makes them more applicable and practicall for real-world use on
large biomedical images. Given the simplicity and mostly vectorized computations of
ARPENOS, it is able to maintain a low, close to O(n), scaling, which can possibly be a
very important factor if speed is of prime importance, while accuracy is secondary.

5-2. Processed dataset results and performance comparison
As described in Section 4-2, this dataset contains a labeled set of processed images that
originate from single microscopy images of a transversal section of a mouse brain and a
coronal section of a rat kidney. The processing includes different color spaces such as
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RGB, HVS, and YCbCr, specific factors of decomposition and factorization methods such
as PCA, NNMF, and DWT, range- and median filtering, entropy- and median filtering.
The dataset also contains combinations of these, resulting in a vector of 905 distinct image
bands with a varying level of noise and signal in each. A perceptually uniform color scale,
inferno, has been used in order to promote uniformity and visibility of the images.

The exact preprocessing and modifications done to the image bands, hence the cause
of the attenuation or amplification of a specific pattern is of secondary interest. This
dataset, however, allows for testing and comparison of denoising performance on real-
world images of biological origin while being corrupted by a varying range of artifacts. In
this case, there is no objective, noiseless image, and as a result it is more difficult to give
an unbiased comparison between the performance of the algorithms. However, a reference-
free quality metric, BRISQUE, can be used, see in Section 2-5-2-4. Even though it will
be biased towards a specific set of features, it provides a numerical basis for comparison.
Subsequently, direct image comparisons are shown with the goal of highlighting specific
behaviors and artifacts.

Tables 5-1 and 5-2 show the BRISQUE scores for each selected band of the mouse brain
and rat kidney dataset. A lower score is better, but as it is demonstrated in Figures 5-24,
5-25, 5-26, and 5-27, a lower BRISQUE score does not necessarily mean that the denoising
is of higher quality from the medical or human perspective. This discrepancy is partly
because of the empty off-tissue buffer area around the biological sample and partly because
clarity of biomedical images may not be modelled well by the natural scene statistics that
BRISQUE measures.

It is clear from Tables 5-1 and 5-2, that the ACARPENOS results receives the same
score as the raw image. ACARPENOS does not seem to be sensitive to corruptions of
this kind. Element-by-element comparison to the raw image reveals that there is indeed
no genuine denoising done by ACARPENOS. Based on the scores for the brain dataset,
ARPENOS, IONITA, and QID-MADN perform best on average. For the kidney dataset,
ARPENOS, QID-RPCA, and QID-MADN perform best on average. Not every band is
shown and discussed in detail here since some bands show artifacts that are very similar
to one another, both in the raw image and the denoised images.

Figure 5-24 shows the original and denoised versions of the 99th band of the processed
mouse brain dataset. ACARPENOS is not sensitive to this corruption. ARPENOS,
IONITA, and QID-RPCA remove a part of the noise pattern, but a significant residual is
visible. ARPENOS also shows a blurring artifact, while QID-RPCA introduced a new
artificial pattern. QID-MADN eliminates a large part of the original corruption and
introduces no visible, artificial pattern.

Figure 5-25 shows the original and denoised versions of the 279th band of the processed
mouse brain dataset. ACARPENOS is not sensitive to this corruption. ARPENOS,
IONITA, and QID-RPCA remove part of the noise pattern, but a significant residual is
still visible. QID-RPCA is the least effective out of these three algorithms. ARPENOS
introduces a blurring artifact. QID-MADN eliminates a large part of the original corrup-
tion and introduces no visible, artificial pattern within the sample. Some patterns are
introduced in the empty off-tissue buffer zone around the biological signal.

Figure 5-26 shows the original and denoised versions of the 99th band of the processed
rat kidney dataset. ACARPENOS is not sensitive to this corruption. ARPENOS and
QID-RPCA partially remove the noise, but residuals remain. QID-RPCA also introduced
a new artificial pattern clearly visible in the buffer zone. IONITA and QID-MADN show
high-quality denoising and introduce no visible, artificial patterns within the biological
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sample.

Figure 5-27 shows the original and denoised versions of the 309th band of the processed
rat kidney dataset. This band shows signs of intensity saturation in the low-end of the
range. Saturation occurs where black spots are visible on the image. ACARPENOS is not
sensitive to this corruption. ARPENOS and QID-RPCA partly mitigate the noise, but not
completely. QID-RPCA seems to be of higher quality than ARPENOS, but introduced
artificial patterns as well. IONITA and QID-MADN are of comparably high quality,
with minor artificial patterns visible outside of the biological sample. Furthermore, the
saturation artifact is partially ameliorated by IONITA and QID-MADN.

In summary, BRISQUE seems to be an insufficient metric for good quality assessment for
the denoising of biomedical images. QID-MADN tends to perform better or at least equally
well as the other algorithms. It was the only algorithm, that was steadily of high quality
in all examples. However, QID-MADN only received the highest score in one out of the
14 cases. Other algorithms were inconsistent with their performance, sometimes provided
a high-quality removal, but they also often introduced artificial patterns or contained a
significant amount of residuals.

Table 5-1: BRISQUE scores of selected bands from the mouse brain dataset and images
denoised by ARPENOS, ACARPENOS, IONITA, QID-RPCA, and QID-MADN.

Algorithm
Band # 99 119 210 279 489 558 693 871

None, Raw image 37.95 37.96 41.48 38.84 43.66 44.83 44.54 43.38
ARPENOS 27.62 30.97 29.51 33.79 38.46 34.42 35.99 33.92

ACARPENOS 37.95 37.96 41.48 38.84 43.66 44.83 44.54 43.38
IONITA 20.52 24.35 21.10 29.67 40.22 28.13 17.09 26.45

QID-MADN 31.40 29.25 34.94 30.36 40.49 30.60 38.21 36.48
QID-RPCA 24.99 29.46 43.42 38.59 40.00 27.43 23.85 32.37

Table 5-2: BRISQUE scores of selected bands from the rat kidney dataset and images
denoised by ARPENOS, ACARPENOS, IONITA, QID-RPCA, and QID-MADN.

Algorithm
Band # 63 99 119 127 309 690

None, Raw image 45.59 42.18 42.67 44.92 42.86 41.90
ARPENOS 22.56 17.66 20.10 27.48 39.40 45.04

ACARPENOS 45.59 42.18 42.67 44.92 42.86 41.90
IONITA 42.82 37.26 19.73 31.21 33.19 39.97

QID-MADN 30.59 15.89 19.74 43.47 39.16 39.62
QID-RPCA 36.85 24.11 26.31 36.28 33.36 32.29
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(d) IONITA. (e) QID-MADN. (f) QID-RPCA.

Figure 5-24: Noise removal of band 99 of the mouse brain dataset.
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(d) IONITA. (e) QID-MADN. (f) QID-RPCA.

Figure 5-25: Noise removal of band 279 of the mouse brain dataset.
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Figure 5-26: Noise removal of band 99 of the rat kidney dataset.
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Figure 5-27: Noise removal of band 309 of the rat kidney dataset.

5-3. Real-world microscopy dataset results and performance com-
parison

Up until this point in the thesis, all experiments have been conducted on either synthetic
images with controlled corruptions or on real-world microscopy images processed in such a
way that certain patterns get amplified or attenuated. Even though, this provides valuable
information on the strengths and weaknesses of the algorithms, it does not sufficiently
showcase performance on the intended use-case: raw biomedical images.

This section explores the denoising performance on unaltered real-world microscopy im-
ages, exactly as they are acquired by the instrument. The algorithms are used without
any preprocessing, knowledge of noise characteristics, or parameter tuning. For the SOTA
algorithms, the parameters have been adjusted to the image dimensions in line with the
recommendations in the literature. However, no further fine-tuning took place.

Details on the dataset and experimental setup can be found in Chapter 4-3. In short, a
set of raw fluorescent microscopy images with varying degrees of quasiperiodic corruption
are denoised by algorithms QID-MADN, QID-RPCA, ARPENOS, and ACARPENOS.
Denoising using IONITA is omitted, as the runtime scaling of that specific algorithm
made it impractical to use on high-resolution images, this is explained in more detail in
Section 5-1-5. Each band in this dataset is a 27626 × 42238 image. Results of these
denoising algorithms are compared and discussed in detail.

The dataset contains four separate bands, namely EGFP, DAPI, Cy5, and DsRed. Each
of the original images are shown on Figures 5-28a, 5-29a, 5-30a, and 5-31a. Each pixel of
these images is encoded as a 16-bit integer. However, the large majority of intensity values
are contained in the lower end of the dynamic range, with very few and highly concentrated
high-value pixels. As explained in Section 3-6, this reduces visibility to human eyes due
to poor contrast. For this reason, the images have been manually saturated, as seen on
Figures 5-28b, 5-29b, 5-30b, and 5-31b, in order to maximize visibility of the underlying
biological information and corruption pattern. To stay true to the experimental setup
though, this intensity saturation is only done for the visualizations, while the algorithms
are still expected to work with the low intensity images and to handle poor contrast
internally. In summary, the algorithms are used on the raw images, but saturated results
are shown in the visualizations in this section. The colorbars on the right side of Figures 5-
30b, 5-29b, 5-28b, and 5-31b indicate the exact saturation thresholds. These thresholds are
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constant for a specific band throughout the analysis. A perceptually uniform color scale,
inferno, has been used in order to promote uniformity and visibility of the images.
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(b) Microscopy image saturated for increased visibility.

Figure 5-28: EGFP band of the human kidney fluorescent microscopy dataset.
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(b) Microscopy image saturated for increased visibility.

Figure 5-29: DAPI band of the human kidney fluorescent microscopy dataset.
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(b) Microscopy image saturated for increased visibility.

Figure 5-30: Cy5 band of the human kidney fluorescent microscopy dataset.

Máté Bakos Master Thesis



104 Results and Discussion

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

10
4

(a) Raw microscopy image.

0

100

200

300

400

500

600

700

800

900

1000

(b) Microscopy image saturated for increased visibility.

Figure 5-31: DsRed band of the human kidney fluorescent microscopy dataset.

As an example, Figure 5-32 shows the denoised images for the EGFP band. EGFP and
other bands are discussed in more detail in the following sections. At first glance, there
is no visible difference between the original image, the ARPENOS, and ACARPENOS
denoised image. QID-MADN and QID-RPCA, however, visibly reduced the effects of
viewport stitching. Element-by-element comparison of the original, ARPENOS, and
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ACARPENOS denoised images confirm that they are indeed identical for each sepa-
rate band. This is likely caused by the frequency of the stitching pattern being under
the detection threshold of these algorithms and within the protection area around the
zero-frequency. Further analysis of this case study only focuses on comparisons between
the original and the QID denoised images, in order to reduce the number of redundant
images for clarity. However, the same remarks apply for the original, ARPENOS, and
ACARPENOS.
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(a) Saturated microscopy image.
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(b) Denoising by ARPENOS. (c) Denoising by ACARPENOS.
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(d) Denoising by QID-MADN. (f) Denoising by QID-RPCA.

Figure 5-32: Noise removal of EGFP band of the human kidney fluorescent microscopy
dataset.

5-3-1. EGFP band, in-depth analysis
Figure 5-33 shows the denoised images. There is no visible difference between the original
image, the ARPENOS, and ACARPENOS denoised image. QID-MADN and QID-RPCA,
however, visibly reduced the effects of viewport stitching. QID-RPCA also introduced an
unsatisfactory amount of artificial patterns similar to speckle noise.

The stitching pattern is most prevalent in the central portion of the image, even though, it
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is visible throughout the image, both within the tissue sample and in the empty recorded
off-tissue area around the sample referred to as the buffer zone. The only exception is the
mask area, where no physical measurements were acquired, which was added artificially
to make the image rectangular. The QID-MADN version of the algorithm mitigates the
viewport stitching pattern significantly, minor artificial patterns are introduced, such as
the ’halo’ effect in the empty buffer zone. Furthermore, a strong contrast around the
edge of the sample appears. It is most recognizable where the edge of the sample and the
horizontal or vertical pattern of the viewport pattern are parallel. QID-RPCA displays
the same minor patterns, yet, a strong, speckle-like, dotted pattern appears as well, which
is comparable in strength to the original viewport-stitching. This pattern reduces the
denoising performance significantly. QID-MADN, on the other hand, presents a generally
high-quality denoised result, where the reduction in noise is significant and the introduced
patterns are minor.

Figure 5-34 shows a zoomed-in section of the central portion of the EGFP band of the
image. This portion contains multiple, visually distinguishable tissue structures and bi-
ological regions. For QID-RPCA, the speckle pattern is prevalent and distinction of bio-
logical structures is problematic, as the grain size of the introduced pattern is similar to
patterns of biological origin. After denoising with QID-MADN, the tissue structures in
these regions look more uniform, while still being easily distinguishable. No visible loss
of detail is apparent and it is possibly easier to recognize irregular behaviour within these
uniform regions. A minor concern is the introduced low-intensity spots, specifically in the
vicinity of the edges of the sample where the average intensity is high.

Figure 5-35 shows the bottom-right corner of the image. Both algorithms show a significant
change in contrast around the edge of the sample, where the noise pattern is parallel to
it. The QID-RPCA introduced pattern is similar in size to the biological pattern, which
makes distinction of artificial and biological patterns problematic. QID-MADN portrays
high-quality denoising. However, there is a noticeable intensity difference between the
uniform tissue patches between the small, circular high-intensity areas. This is the result
of the minimally invasive denoising strategy. Even though it may be visible largely due
to the aggressive saturation, it is important to be cautious of the medical implications of
such patterns. Around the horizontal edge of the sample a strong presence of what seems
to be Gibbs-phenomena, which are introduced by QID-MADN.

Figure 5-36 shows a zoomed-in section of the center of the power spectrum on a logarithmic
scale, as well as the outlier mask and noise component attenuation done by QID-MADN.
The power coefficients themselves are not trivial to interpret. However, since the view-
port stitching pattern is relatively low frequency and has well defined directions along
the horizontal and vertical axes, the coefficients responsible are effectively identified and
attenuated by the algorithm. The diagonal lines likely correspond to diagonal edges of the
sample, while the individual peaks correspond to the a more overarching pattern, such as
the viewport-stitching. Note the individual peaks in the outlier map and the corresponding
spectral component along the horizontal and vertical axis.
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(b) Denoising by QID-MADN.
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(c) Denoising by QID-RPCA.

Figure 5-33: Noise removal of EGFP band of the human kidney fluorescent microscopy
dataset.
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(c) Denoising by QID-RPCA.

Figure 5-34: Zoomed-in portion of the central part of the EGFP band of the human
kidney fluorescent microscopy dataset.
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(b) Denoising by QID-MADN.
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(c) Denoising by QID-RPCA.

Figure 5-35: Zoomed-in portion of the right corner of the EGFP band of the human
kidney fluorescent microscopy dataset.
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(b) Outlier map by QID-MADN. (c) Denoised power spectrum by QID-MADN.

Figure 5-36: Zoomed-in central portion of the EGFP band of the logarithm of the raw
power spectrum, the outlier map, and the logarithm of the filtered power spectrum.

5-3-2. DAPI band, in-depth analysis
As discussed before, there is no visible difference between the original image, the ARPENOS,
and ACARPENOS denoised image, and so this comparison will be omitted here to focus
on QID. Furthermore, QID-RPCA shows the same unsatisfactory amount of artificial pat-
terns as discussed in Section 5-3-1. This is due to some false positive labeling of some
higher-frequency bins, as the outlier detection is not sufficiently robust. Since this behavior
is the same as discussed before, images of this algorithms are omitted here as well.

The comparison between the raw image and QID-MADN is shown on Figure 5-37. The de-
noising performance of QID-MADN reduces significantly for this example. The quasiperi-
odic viewport-stitching pattern is partly eliminated, but significant artificial patterns are
introduced as well. High-intensity regions are lowered, while low intensity regions are
raised in value. This behaviour may be explained by the power spectrum in Figure 5-38,
where distinct directions and peaks are hard to identify even manually. The artificial
patterns are likely caused by the components just outside of the zero-frequency protection
area. It seems that these components do not correspond to the horizontal and vertical
peaks, seen in the previous example, which causes false positive outliers and added artificial
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patterns. This bin covers the largest radius and is expected to contain the largest range of
genuine, noise-free power spectrum values. A more granular radial binning in this specific
region may alleviate some false positives. Furthermore, the viewport stitching on the non-
saturated image has very low amplitude, as seen on Figure 5-29a. This seems to be just
under the detection threshold and may only be visible because of the applied saturation,
as opposed to the EGFP band, where the pattern is more clearly distinguishable.

The DsRed band illustrates the same phenomena, and the same explanation can be given
for its sub-optimal performance. Therefore, this example is not discussed here in de-
tail.
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(a) Saturated microscopy image.
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(b) Denoising by QID-MADN.

Figure 5-37: Noise removal of DAPI band of the human kidney fluorescent microscopy
dataset.
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(a) Corrupt power spectrum.
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(b) Outlier map by QID-MADN. (c) Denoised power spectrum by QID-MADN.

Figure 5-38: Zoomed-in central portion of the DAPI band of the logarithm of the raw
power spectrum, the outlier map, and the logarithm of the filtered power spectrum.

5-3-3. Cy5 band, in-depth analysis
As discussed before, there is no visible difference between the original image, the ARPENOS,
and ACARPENOS denoised image, and so this comparison will be omitted here. Further-
more, QID-RPCA shows the same unsatisfactory amount of artificial patterns as discussed
in Section 5-3-1. This is due to some false positive labeling of some higher-frequency bins.
Since this behavior is the same as discussed before, images of this algorithm are also
omitted.

In Figure 5-41, QID-MADN portrays high-quality denoising. However, there is a noticeable
intensity increase for the uniform tissue regions between the high-intensity areas, most
visible in the bottom left of the image. Even though this may be visible largely due to
the aggressive saturation of these visualizations, it may also be explained by the outliers
closest to the zero-frequency, visible on Figure 5-42b. The power spectrum visible on
Figure 5-42a shows easily distinguishable peaks and directions of high power, which are
identified and filtered by QID-MADN.

Interestingly, the central region shown on Figure 5-40 is affected considerably less by this
pattern and is generally denoised well.
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(b) Denoising by QID-MADN.

Figure 5-39: Noise removal of Cy5 band of the human kidney fluorescent microscopy
dataset.
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(b) Denoising by QID-MADN.

Figure 5-40: Zoomed in portion of the central part of the Cy5 band of the human kidney
fluorescent microscopy dataset.
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(b) Denoising by QID-MADN.

Figure 5-41: Zoomed in portion of the right corner of the Cy5 band of the human kidney
fluorescent microscopy dataset.
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(a) Corrupt power spectrum.
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(b) Outlier map by QID-MADN. (c) Denoised power spectrum by QID-MADN.

Figure 5-42: Zoomed-in central portion of the Cy5 band of the logarithm of the raw
power spectrum, the outlier map, and the logarithm of the filtered power spectrum.

5-3-4. Summary
Overall, this fluorescent microscopy case study demonstrates that this viewport-stitching
pattern is under the detection threshold of algorithms ARPENOS and ACARPENOS,
and that both QID algorithms manage to mitigate it. Even though the initial corruption
is removed, denoising done by QID-RPCA is dissatisfactory, with the speckle pattern it
tends to introduce being considerable. Likely, the pattern appears because the binning
strategy is least precise for low-frequencies. Attenuating every component in the bins
that contain the most important noise components introduces substantialartificial pat-
terns. Furthermore, the non-robust filtering approach gives rise to higher-frequency false
positives. However, denoising done by QID-MADN is of high-quality. The initial corrup-
tion is removed and apart from minor artifacts, minimal change has been introduced into
the biological information. In cases where the corruption pattern has low amplitude and
power, some patterns may fall under the detection threshold. Furthermore, since preci-
sion is lowest right outside the border of the zero-frequency protection area, false positive
outliers may by identified, which can introduce relatively minor artificial patterns.

Section 5-1 shows that the detection limits of both QID algorithms are considerably more

Máté Bakos Master Thesis



Real-world microscopy dataset results and performance comparison 117

generous compared to the SOTA. This is especially true for low-frequency variation. Per-
formance of all the algorithms are comparable for mid-frequency corruptions. For high
frequencies, around and over 0.5 cycles/pixel, QID-MADN and SOTA are comparable in
scores, while QID-RPCA has a breakdown point exactly at 0.5 cycles/pixel. Information
loss through saturation affects all algorithms negatively. QID-MADN performs consis-
tently at the same rate, or better than the next best performing algorithm even in this
case.

Section 5-2 shows examples of processed microscopy images of a mouse brain and rat
kidney. It shows that the BRISQUE no-reference metric may be insufficient for biological
images which have a relatively large mask without biological information. ARPENOS,
ACARPENOS, IONITA, and QID-RPCA mitigated the noise, but often had considerable
residuals, especially in the lower-frequencies. QID-MADN consistently outperformed or
had an equal denoising performance as the next best algorithm.

Section 5-3 illustrates the expected behaviour on raw, high-resolution microscopy images.
The images also have low contrast. ARPENOS, ACARPENOS, and IONITA are inactive
for the type of quasiperiodic corruption that is present here and do not modify any of the
bands. QID-RPCA and QID-MADN remove a large majority of the viewport-stitching
pattern. Furthermore, QID-RPCA introduces a significant speckle-like pattern, which
is dissatisfactory. QID-MADN, however, delivers the highest quality denoising in the
comparison, with minimal introduction of artificial patterns.

In conclusion, the current SOTA algorithms and QID-RPCA are consistently outperformed
by QID-MADN. Denoising of quasiperiodic patterns in biomedical images in a data-driven
manner, without the need for manual parameter tuning or preliminary knowledge of the
noise parameters is possible and viable, and we believe QID-MADN can be an important
factor in bringing this capability into the life sciences practice.
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Chapter 6

Conclusions and future work

6-1. Conclusions
In this thesis, we developed a fully data-driven, quasiperiodic noise filtering framework for
biomedical images, QID. Quasiperiodic corruptions are repeating patterns that are of non-
biological origin, such as instrument or acquisition method-induced noise. Some of these
quasiperiodic patterns include e.g. viewport stitching artifacts, slice-to-slice interference,
aliasing, and Gibbs-phenomena. Separating the biological signal from noise is of significant
importance (e.g. for faster decision-making, reduced chance of misdiagnosis), as medical
decisions may be based on the results of biomedical imaging.

Previously developed algorithms, such as ARPENOS, ACARPENOS, and IONITA have
shortcomings such as manual tuning of multiple parameters, ineffectivity for low-frequency
corruptions, strong assumptions about the underlying noise-free signal, and high compu-
tation times especially for high-quality, high-resolution images. Our aim was to build the
novel framework on the strengths of these algorithms, and at the same time to expand it
in such a way that the aforementioned shortcomings are somewhat alleviated.

Two different algorithms were implemented within the framework, QID-RPCA and QID-
MADN. One algorithm is based on robust principal component analysis (QID-RPCA) and
the other uses the normalized median of absolute differences (QID-MADN) to determine
outlier coefficients. The methods chapter details a number of steps, including the prepro-
cessing, noise component labeling and attenuation, and image restoration. This chapter
also includes the reasoning and motivation behind the design choices that facilitate the un-
supervised, data-driven denoising algorithms. Both algorithms operate in the Fourier (or
frequency) domain, and the steps combine e.g. the use of histogram equalization for radial
binning, an automated, sparsity-based approach to choosing the optimal aggregation level,
and noise component attenuation based on radial patterns in the power spectrum.

The case study chapter introduces three datasets and outlines the set of experiments per-
formed on them. A synthetic dataset based on the Shepp-Logan phantom is corrupted by
a wide range of periodic corruptions, both in terms of frequency and amplitude. Com-
paring the denoising performance of the state-of-the-art algorithms and QID highlights
the strengths and weaknesses of the algorithms as well as the limits of their applications.
Then, the methodology is demonstrated on two real-world datasets, one based on a mi-
croscopy image of a transversal section of a mouse brain and the other one is a microscopy
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image of a coronal section of a rat kidney. Finally, the algorithms are applied on a set of
real-world, high-resolution fluorescent microscopy images of a human kidney. This dataset
illustrates the performance on raw, completely unaltered biomedical images.

In conclusion, the goal of this thesis was to improve on and, where possible to surpass
current state-of-the-art quasiperiodic denoising algorithms. This was done through the
development of an automated, entirely data-driven framework, QID, that is able to re-
liably identify, quantify, and eliminate quasiperiodic, non-biological patterns within the
images while retaining as much biological information as possible. Two novel algorithms
were implemented, QID-RPCA and QID-MADN. Results indicate that the novel algo-
rithms have higher denoising performance than previous approaches in the literature with
notable improvements achieved for low-frequency corruptions. This is achieved without
the need for manual parameter tuning, strong assumptions about the noise-free signal, or
computation times that would obstruct wide-scale applicability. One of the algorithms,
QID-MADN, consistently outperformed the other algorithms, by a considerable margin,
while the other version, QID-RPCA, is susceptible to false positives and the introduction
of artificial patterns with its current implementation. Overall, the initial goals have been
achieved and a promising framework has been implemented for removing quasiperiodic
corruptions from biomedical images in an unsupervised fashion.

6-2. Future work
This section list a few vectors for future research. Implementing these ideas can poten-
tially further improve the unsupervised denoising performance on quasiperiodic corrup-
tions.

• Automation of padding and apodization can improve denoising quality and reduce
residual patterns. However, careful modeling would be required in order to guarantee
that no artificial patterns are introduced through the process.

• Changing the QID-RPCA approach to use a more robust outlier labeling approach,
could decrease its rate of false positives, and thus reduce the amount of introduced
patterns. The current approach does not allow median based labeling as the exact
fit property is often satisfied.

• The phase component of the Fourier representation of an image encodes the location
of image features, such as lines and edges. Expanding the analysis to the phase
components, rather than focusing solely on the magnitude components as we’ve
done here, can potentially aid keeping important image features intact throughout
the denoising process.

• Expanding the preprocessing to incorporate contrast stretching or histogram equal-
ization to handle low-contrast images. Outliers in these images are more likely to
fall under the detection limit of the algorithm as the power of the components is
often indistinguishable from non-noise components within in the same radius.

• Finding the optimal binning strategy for QID-RPCA currently requires computa-
tionally costly steps to reach the sparse component. Finding a good predictor of
the quality of the binning strategy and its sparsity with a reduced computational
complexity may help the practical use of the algorithm significantly.

• For QID-MADN, a more granular binning near the central components may be
beneficial. This may increase precision for high-resolution images with low-frequency
corruptions. Furthermore, it would not increase computation times significantly as
it only affects the low-frequency region. Since median-based filtering approaches are
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less sensitive to different sample sizes, the reliability of the outlier labeling is not
expected to be affected significantly.
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