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Abstract

With the rapid development of industrial systems, the demand for stability,
reliability, and robustness has become increasingly critical. Fault detection
has emerged as a key research area, aiming to prevent unexpected failures and
performance degradation. Recent advances in feature extraction techniques
and machine learning have enabled the development of intelligent, autonomous
fault detection systems.

This thesis proposes two Transformer-based models for motor fault detec-
tion. The first is a supervised classification model that incorporates discrete
wavelet transform (DWT) to decompose time-series signals into multi-scale
components, which are then processed by Transformer-based architectures to
extract features for classification. Two structural variants are explored: one
using masked attention over concatenated coefficients, and another employing
upsampling and linear attention for efficient fusion. The second approach is
an unsupervised forecasting-based model, where only normal samples are used
for training. At inference time, samples are classified based on whether their
forecasting error exceeds a threshold determined via ROC curve analysis on a
validation set.

Experiments conducted on the JKU and CWRU datasets demonstrate
the effectiveness of both approaches. The classification-based method achieves
high accuracy in distinguishing between fault types, while the forecasting-
based method shows strong robustness to previously unseen fault categories
without retraining. The findings indicate that the models are capable of cap-
turing informative temporal patterns for fault detection, showing promise for
further exploration in real-world settings.
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Abstract

With the rapid development of industrial systems, the demand for stability, reliability,
and robustness has become increasingly critical. Fault detection has emerged as a
key research area, aiming to prevent unexpected failures and performance degradation.
Recent advances in feature extraction techniques and machine learning have enabled
the development of intelligent, autonomous fault detection systems.

This thesis proposes two Transformer-based models for motor fault detection. The
first is a supervised classification model that incorporates discrete wavelet transform
(DWT) to decompose time-series signals into multi-scale components, which are then
processed by Transformer-based architectures to extract features for classification. Two
structural variants are explored: one using masked attention over concatenated coeffi-
cients, and another employing upsampling and linear attention for efficient fusion. The
second approach is an unsupervised forecasting-based model, where only normal sam-
ples are used for training. At inference time, samples are classified based on whether
their forecasting error exceeds a threshold determined via ROC curve analysis on a
validation set.

Experiments conducted on the JKU and CWRU datasets demonstrate the effec-
tiveness of both approaches. The classification-based method achieves high accuracy
in distinguishing between fault types, while the forecasting-based method shows strong
robustness to previously unseen fault categories without retraining. The findings indi-
cate that the models are capable of capturing informative temporal patterns for fault
detection, showing promise for further exploration in real-world settings.

iii



Acknowledgments

After nine months of dedication, I have finally completed this research project. From
initial exploration to eventual proficiency, this achievement is not only the result of my
own effort and perseverance, but also owes much to the support and guidance of those
around me.

First and foremost, I would like to thank myself, for the persistence and commitment
that carried me through this journey and made this substantial work possible.

[ am deeply grateful to my parents for their unwavering support and encouragement.
Studying abroad, far from home, would not have been possible without their constant
comfort and motivation.

I would also like to express my sincere appreciation to my supervisor, Justin, and my
daily advisor, Sinian. Their insightful guidance and continuous support were instrumen-
tal in helping me navigate challenges and ultimately complete this thesis successfully.

My gratitude also goes to the member of my thesis defense committee, Prof. Qing,
whose engagement helped bring this work to its final form.

I am thankful to all the professors and fellow students in the SPS group, from whom
[ have learned so much. Special thanks also go to my roommates and friends, your daily
companionship and encouragement helped me stay positive and motivated throughout
this intense process.

This thesis is part of the R-PODID project. R-PODID is supported by the Chips
Joint Undertaking and its members, including the top-up funding by National Author-
ities of Italy, Turkey, Portugal, The Netherlands, Czech Republic, Latvia, Greece, and
Romania under grant agreement n°® 101112338.

As I look ahead, I see this thesis as a milestone marking the end of one chapter and
the beginning of another. I hope to pursue new goals and challenges with the same
determination and optimism that brought me here.

Jiarui Zhou
Delft, The Netherlands
August 21, 2025

iv



Contents

Abstract
Acknowledgments

1 Introduction

1.1 Background . . . . . ... ...
1.2 Motivation . . . . . . ...
1.3 Problem Statement . . . . . . .. ..o
1.4 Outline. . . . .. . .
Literature Review
2.1 Supervised Learning . . . . . . .. ..o
2.1.1  Support Vector Machine . . . . . . ... ... .. ... ... .
2.1.2  Long Short-Term Memory . . . . .. ... ... ... ......
2.1.3 Convolutional Neural Network . . . . .. . ... ... ... ...
2.1.4 Transformer . . . . . ..o
2.2 Unsupervised Learning . . . . . . . .. .. ... .00
2.2.1  Principal Component Analysis . . . . . . ... ... ... ....
2.2.2 K-means clustering . . . . . .. ...
2.2.3 Autoencoder . . . . . ...
2.3 Hybrid Approaches . . . . . . ...
2.3.1 Semi-supervised Learning . . . . .. ... ... ... ...
2.3.2 Pre-training and Fine-tuning Strategies . . . . . . . . . . .. ..
24 Summary .. o.o. ..o e
Dataset
3.1 CWRU Bearing Dataset . . . . .. .. .. ... ... ... .......
3.2 JKU Current Dataset . . . . . . .. .. .. ... ... ..
3.3 Summary ... oL

Classification-based Fault Detection

4.1 Baseline Models . . . . . . . . . . .
4.1.1 1D CNN Model . . . . . .. . .
4.1.2 LSTM Model . . . . . ... ... .
4.1.3 Transformer Model . . . . . . .. .. .. ... ... ... ....

4.2 Initial Proposed Model . . . . . . . . .. ...
4.2.1 DWT-based Data Preprocessing . . . . . .. ... .. .. ... ..
4.2.2 Transformer-based Feature Extraction . . . ... ... .. ...
4.2.3 Feature Fusion and Classification . . . . .. ... .. .. .. ..

4.3 Model Improvements . . . . . . . .. ...
4.3.1 Improvement On The Data Preprocessing . . . . .. .. .. ..
4.3.2 Improvement On The Multiple Encoder Layers. . . . . . . . ..



4.3.3 Improvement On The Attention Mechanism . . . .. ... ...
4.4 Final Model Architecture . . . . . . . . . . . ... ... ... ...
4.5 SUMMATY . . . . o v et e

5 Forecasting-based Fault Detection
5.1 Related Forecasting Models . . . . . . .. ... ... .. ... .....
5.2 Proposed Model . . . . . . ..
5.2.1 Framework Overview . . . . . . . . . .. ... .. ... ...,
5.2.2  PatchTST Implementation . . . . . . .. ... ... ... ... ..
5.3 Advantages and Limitations . . . . . . .. ... ... ... ... ...,
5.3.1 Advantages . . . .. ...
5.3.2 Limitations and Challenges . . . . . .. ... ... ... ... ..
5.4 Summary ... ...

6 Experiments and Results
6.1 Experiments . . . . . . ...
6.1.1 Experimental Setup . . . . . . . ... ... L.
6.1.2 Dataset Preprocessing . . . . . ... ... ... ... ...
6.1.3 Evaluation Strategy . . . . . . . . .. ... 0L
6.1.4 Metrics . . . . . .
6.2 Results. . . . . . . .
6.2.1 Classification-based Approach On The JKU Dataset . . . . . . .
6.2.2 Classification-based Approach On The CWRU Dataset . . . . .
6.2.3 Forecasting-based Approach On The JKU Dataset . . . . . . ..
6.3 Summary . . ...

7 Discussion
7.1 Classification-based Approach . . . . . . . ... ... ... ... .. ..
7.1.1 Ablation Study: Impact of Decomposition Parameters. . . . . .
7.1.2 Model Performance on JKU Dataset . . . . .. ... ... ...
7.1.3 Model Performance on CWRU Dataset . . . . . ... ... ...
7.2 Forecasting-based Approach . . . . . . .. ... ... .. ... .. ...
7.3 Summary ... ...

8 Conclusion
8.1 Conclusion . . . . . . . . ..
8.2 Future Work . . . . . . ..
8.2.1 Model-level Improvements . . . . . . ... ... ... ... ...
8.2.2 Hardware-level Implementation . . . . .. ... ... ... ...

A Extra Tables and Figures

vi



List

of Figures

2.1
2.2
2.3
24

3.1
3.2

3.3
3.4

4.1
4.2

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11

Converting 1-D signal to 2-D grayscale image [1] . . . . . ... ... .. 7
Converting 1-D signal to time-frequency image [2] . . . . . . . . . . .. 8
Transformer based fault detection architecture [3] . . . . . .. ... .. 10

PCA model of a three-dimensional data set showing @ and T? outliers [1] 11

Test stand of CWRU dataset . . . . . ... .. ... ... ... .... 16
Sample vibration signals from CWRU bearing dataset showing different

bearing conditions . . . .. ..o 17
Test stand of JKU dataset . . . . . . ... ... .. ... ... ... . 18
Sample current signals from JKU dataset showing different motor con-

ditions . . . . . . L 19
Pipeline of the initial proposed model . . . . . . . . .. ... ... ... 24
Pipeline of the final improved model with two variants . . . . . .. .. 32
Segmentation of the CWRU dataset . . . . . . ... ... .. ... ... 41
Performance on JKU dataset for different decomposition levels . . . . . 44
Performance on JKU dataset for different mother wavelets . . . . . . . 44
Performance on JKU dataset for the proposed model . . . . .. .. .. 45
Accuracy on CWRU dataset for different input lengths . . . . . . . .. 48
Precision on CWRU dataset for different input lengths . . . . . . . .. 48
Recall on CWRU dataset for different input lengths . . . . . . . . . .. 49
F1-score on CWRU dataset for different input lengths . . . . . . . . .. 49

ROC curve of the proposed forecasting-based model on the CWRU dataset 50
Forecasting-based approach on CWRU dataset for different input lengths 50
Forecasting-based approach on CWRU dataset for different prediction

horizons . . . . . . . o1

vil



List of Tables

6.1
6.2
6.3

Al
A2
A3

A4

Model Size of Different Architectures on JKU Dataset . . . . . . . . ..
Model Size of Different Architectures on CWRU Dataset . . . . . . . .
Performance of the proposed forecasting-based model on the CWRU
dataset for different input classes . . . . . . . .. ... ... ...

Performance of Different Classification Models on the JKU Dataset

Performance of Different Classification Models on the CWRU Dataset .
Performance of Forecasting Models of Different Input Lengths (Predic-
tion Horizon: 336) . . . . . . . . .. ...
Performance of Forecasting Models of Different Prediction Horizons (In-
put Length: 720) . . . . . .. . ...

viii



Introduction

1.1 Background

Following the advent of the 21st century and the progress in the realms of science
and technology, there has been a demonstrable increase in the efficiency of industrial
manufacturing systems. However, the complexity of these systems can impede the
process of troubleshooting and problem resolution when a malfunction occurs, whether
in the field of semiconductor manufacturing [5] or aircraft control [6]. Inadequate
diagnosis and maintenance may result in component failure, performance degradation
and unexpected breakdown. Such occurrences often lead to a decline in productivity
and consequent economic losses for the enterprises concerned. The high demand for
reliability, stability and robustness makes more and more researchers devote to the field
of fault detection.

Fault detection, a foundational element in system monitoring and maintenance,
functions by identifying deviations from standard system behavior through the anal-
ysis of measurable signals and parameters. The core idea is to establish a baseline
for normal operation status and monitor for anomaly behaviors that may indicate
faults. Traditional fault detection approaches can be broadly categorized into two
main types: model-based methods and signal-based methods. Model-based approaches
rely on mathematical representations of the system to generate residuals that indicate
differences between expected and actual behavior. Signal-based methods utilize statis-
tical analysis and signal processing techniques to detect patterns of faults with sensor
measurements.

However, conventional fault detection methods face some limitations in complex
industrial environments. They generally require expert domain knowledge and under-
standing of system dynamics, which demands considerable time investment from expe-
rienced engineers. For example, the development of accurate mathematical or physical
models for model-based methods requires comprehensive knowledge of system physics
under various operating conditions. Similarly, the design of effective signal processing
algorithms requires proficiency in both the fundamental signal processing techniques
and the specific application domain. This dependence on human expertise makes tradi-
tional fault detection methods not only time-consuming but also labor-intensive. The
development and validation in complex systems frequently last for a period of months
or even years.

Furthermore, modern industrial systems are becoming increasingly complex. The
establishment of accurate analytical models and reliable standard signal patterns is
more challenging. At the same time, traditional methods also face difficulties in adapt-
ing to the dynamic characteristics of complex industrial production processes. These
challenges create an urgent need for more automated, adaptive, and data-driven ap-



proaches to fault detection that can operate effectively while minimizing both time and
human costs.

1.2 Motivation

In recent years, the rapid development of machine learning and artificial intelligence
has demonstrated remarkable capabilities in feature extraction and pattern learning.
These technologies are successfully applied across diverse domains, ranging from neural
language processing to autonomous driving. Data-driven methods have significant ad-
vantages over traditional approaches, as they require minimal human intervention and
primarily rely on large volumes of historical data. In industrial environments, such data
can be obtained cost-effectively via existing sensor networks and monitoring systems.
Machine learning is an emerging method in many cutting-edge applications. However,
its usage in fault detection remains limited despite its promising potential.

The integration of machine learning techniques into fault detection systems pro-
vides an opportunity to address the fundamental limitations of conventional methods.
The ability to adapt and improve their performance over time makes machine learning
methods well-suited for dynamic industrial environments. The utilisation of data-driven
methodologies holds considerable promise for the development of more robust, efficient,
and cost-effective fault detection systems that can function with reduced human su-
pervision while maintaining high levels of accuracy and reliability. This research aims
to explore the application of machine learning techniques in fault detection, and to
develop a more reliable and efficient fault detection system.

1.3 Problem Statement

The application of machine learning techniques makes automatic 24-hour monitoring
and timely detection of faults more practical and easier to implement compared to
traditional methods. This capability is particularly crucial in industrial settings where
continuous operation is essential. In the context of industrial manufacturing systems,
motors play a pivotal role. Their unexpected failure can result in substantial production
losses and safety hazards.

This research focuses specifically on the motor fault detection domain. Motors are
widely used across industries and generate measurable signals that can be effectively
analyzed using data-driven approaches. Current signals and vibration signals repre-
sent two primary sources of information that contain valuable patterns useful in the
assessment of motor health and operation status. These signals can be continuously
monitored using standard sensors, making them ideal candidates for machine learning-
based fault detection systems.

The primary objective of this study is to develop an end-to-end machine learning
model capable of classifying motor states through the analysis of current signals or
vibration signals. It is expected that this model will be able to distinguish between
normal operation and various fault conditions. The development of such a system would
demonstrate the practical application of machine learning in industrial fault detection



while addressing the limitations of conventional approaches identified in the previous
sections.

1.4 Outline

This thesis is structured as follows. Chapter 2 provides an overview of related work in
the field of fault detection. Chapter 3 describes the two datasets utilized in this study.
Chapter 4 presents the classification-based fault detection methods, while Chapter 5
introduces the forecasting-based approaches. Chapter 6 outlines the experimental setup
and presents the results. These results are further analyzed and discussed in Chapter
7. Finally, Chapter 8 concludes the thesis and highlights potential directions for future
research.



Literature Review

Data-driven fault detection methods have emerged as a powerful approach to industrial
condition monitoring, making use of the large amounts of operational data generated
by modern systems. Unlike traditional model-based approaches, which rely on a fun-
damental understanding of system dynamics, data-driven methods extract knowledge
directly from historical and real-time data to identify patterns indicative of normal and
faulty operation. These approaches are based on the idea that sufficient data contain-
ing examples of healthy and faulty system behaviour can be used to train algorithms
to autonomously detect and classify faults.

The main idea behind data-driven motor fault detection is to use machine learning
techniques to identify patterns in signals and detect faults. There are many machine
learning techniques that can be used for this purpose. Depending on whether the
data is labelled, machine learning can be divided into two categories: supervised and
unsupervised. In this section, we also classify data-driven fault detection into these two
categories and a hybrid approach.

2.1 Supervised Learning

Supervised learning approaches rely on the existence of labelled training data, contain-
ing examples of both normal and various fault conditions. These methods are designed
to learn how to map input features to predefined fault classes, thereby enabling them to
classify new observations into specific fault categories. Common supervised techniques
include support vector machine (SVM), long short-term memory (LSTM), convolu-
tion neural network (CNN), and transformer, etc. A significant benefit of supervised
learning is its capacity to yield reasonably precise classification results. However, the
feasibility of this approach is constrained by the availability of labelled fault data, the
acquisition of which can be expensive in practice.

2.1.1 Support Vector Machine

Support Vector Machine (SVM) [7] is a supervised learning algorithm that aims to
find an optimal hyperplane that separates different classes in the feature space with
the maximum margin. The principle of SVM is to find the decision boundary that
maximizes the distance between the hyperplane and the nearest data points (support
vectors) from each class. For a linearly separable binary classification problem, the
optimal hyperplane can be expressed as:

wix+b=0 (2.1)



where w is the weight vector and b is the bias term. The optimization problem aims
to minimize:

1
SIwl? 22)

subject to the constraints:

yi(wix; +0) > 1 (2.3)

for all training samples, where y; € {—1,+1} represents the class labels. For non-
linearly separable data, SVM employs kernel functions such as the radial basis function

(RBF) kernel:

K (xi,%;) = exp(—|xi — x;/%) (2.4)

to map the input space into a higher-dimensional feature space where linear sepa-
ration becomes possible. In fault detection applications, SVM has been widely used in
the field of thermal power plant turbines [3], wind turbines [9], wireless sensor networks
[10], and induction motor bearings [11].

Multi-scale current or vibration signals are difficult to use directly as feature vectors
due to their temporal complexity. Therefore, SVM-based methods typically compute
statistical features from the signals to serve as classification inputs. These statistical
features capture the essential characteristics of the signal while keeping the dimension-
ality in a manageable level. For instance, in [11], the authors employed three statistical
features as classification criteria: root mean square (RMS), crest factor, and kurtosis.
The RMS reflects the overall energy of the signal, while the crest factor captures im-
pulsive behavior, and kurtosis quantifies deviations from a normal distribution. These
features are highly effective in distinguishing between normal and faulty operating
states.

2.1.2 Long Short-Term Memory

Long Short-Term Memory (LSTM) networks [12] are a specialized variant of recurrent
neural networks (RNNs), well-suited for modeling long-range dependencies in sequential
data. The innovation of LSTM lies in its memory cell structure, which consists of three
gating mechanisms: the forget gate, input gate, and output gate. The open and close
of these gates control the flow of information through the network and allow it to
selectively remember or forget information over time periods. The LSTM cell state
C}, hidden state h; and output state o; at time step ¢ are updated according to the
following equations:
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where o represents the sigmoid function and W and b denote weight matrices and
bias vectors respectively. The forget gate determines what information to discard from
the cell state, the input gate and candidate values decide what new information to store
in the updated cell state, and the output gate controls what parts of the cell state to
output. In fault detection applications, LSTM networks play a pivotal role given the
fact that most of the signals employed in fault detection are time series signals.

In [13], an end-to-end LSTM model is used to directly learn from raw process data
without manual feature extraction. By using batch normalization, the model achieves
faster convergence and improved stability. The result on the Tennessee Eastman Pro-
cess shows LSTM outperforms other conventional model like dynamic principal com-
ponent analysis (DPCA) + SVM and MLP in both accuracy and robustness. This
demonstrates the effectiveness of LSTM in capturing dynamic information of input
data.

2.1.3 Convolutional Neural Network

Convolutional Neural Network (CNN) is a deep learning architecture widely used in
image processing tasks. It uses the convolution operations to extract hierarchical fea-
tures from input data. The convolutional layers apply learnable filters to detect local
patterns such as edges, textures, and complex shapes. The filters are shifted across
the input data to produce feature maps, followed by pooling layers for dimensionality
reduction and fully connected layers for final classification.

However, in fault detection applications, the dataset typically consists of one-
dimensional time-series signals. To address this challenge, the variant of CNNs, one-
dimensional CNNs (1D-CNNs) are used. In 1D-CNNs, the convolution operation is
performed along the time axis using one-dimensional kernels:

y[n] = wlk] - z[n — k] +b (2.11)

where y[n] is the output feature map, w[k] represents the learnable kernel weights,
x[n] is the input signal, K is the kernel size, and b is the bias term.

In [11], the authors employed 1D-CNN for bearing fault diagnosis using raw vibra-
tion signals. The model uses multiple layers of one-dimensional convolution and pooling
and includes dropout to enhance generalization. Experiments on the CWRU dataset



show that the model achieves an average classification accuracy of 99.2% under single
load condition and 98.8% under different loads.

Although classical two-dimensional CNNs cannot be directly applied to fault detec-
tion due to the one-dimensional nature of sensor signals, several innovative approaches
have been developed to transform raw signals into image-like representations, thereby
leveraging the well-developed CNN technologies.

As shown in Figure 2.1, a representative approach involves converting time-series
signals into grayscale images through systematic data restructuring. In this method,
N? consecutive signal points are selected from the raw signal and segmented into N
equal parts. FEach data point within these segments is normalized to a range of 0 to
255. Subsequently, each segment forms either a row or column in the resulting image
matrix, creating an N x IV grayscale image that serves as an ideal input for conventional
CNN architectures. For instance, [1] employs this data preprocessing technique com-
bined with transfer learning to accelerate online training process. Their experimental
results demonstrate that the CNN-based approach significantly outperforms traditional
methods including SVM, random forest, and artificial neural networks.

N-1 N

L .—2 | <“— Signal segments——> |_ H_I

N signal segments

Normalized value of N points of raw signals

Figure 2.1: Converting 1-D signal to 2-D grayscale image [!]

Similarly, [15] adopts a similar signal-to-image conversion strategy with additional
innovations. In their approach, multiple phases of current signals are each processed
to train separate CNN models, creating a multi-model ensemble. The outputs from
these individual CNNs are subsequently integrated to form an information fusion fea-
ture matrix. The final classification decision is then made using traditional machine
learning algorithms such as SVM and multilayer perceptron operating on these newly
constructed features. This methodology effectively combines information from different



sources, resulting in enhanced reliability and robustness of the fault detection system.

Another idea applies advanced signal processing techniques to transform raw signals
into time-frequency representations. Unlike the direct signal segmentation methods
described above, these approaches utilize well-established signal analysis tools to extract
both temporal and spectral information from the original signals. [16] and [2] follow
this paradigm. Rather than utilizing spliced images derived directly from raw signals,
they employ Short-Time Fourier Transform (STFT) and Wavelet Transform (WT),
respectively, to obtain time-frequency images of the signals, which are subsequently
provided as input to the CNN networks.

Original
signal
— ) cm— C— | |
IRE #WT ‘WT
Feature

Figure 2.2: Converting 1-D signal to time-frequency image [?]

Asillustrated in Figure 2.2, the raw signal is segmented using a sliding window. Each
segment is then transformed into a time-frequency representation. This time-frequency
representation has been shown to preserve crucial fault-related information that may
be lost in purely temporal or frequency domain analysis. This makes it particularly
suitable for detecting transient fault signatures that manifest as specific patterns in the
time-frequency domain.

2.1.4 Transformer

The Transformer architecture [17] represents a significant advance in sequence modeling
by relying entirely on attention mechanisms rather than recurrent or convolutional
layers. The main innovation of the Transformer is its self-attention mechanism, which
enables the model to learn and weigh the relative importance of different parts of the
input sequence. The multi-head attention mechanism can be expressed as follows:

. QKT
Attention(Q, K, V') = softmax Vv (2.12)
Vdj,
where ), K, and V represent the query, key, and value matrices respectively, and
dy, is the dimension of the key vectors. This architecture consists of an encoder-decoder



structure with multiple layers, each containing multi-head self-attention and position-
wise feed-forward networks, followed by residual connections and layer normalization.
The Transformer model is able to capture long-range dependencies and process se-
quences in parallel, making it highly effective for handling long sequences.

Initially, the Transformer was employed for natural language processing (NLP)
tasks, where it demonstrated remarkable accelerated training speed in machine trans-
lation when compared to traditional RNN-based models. More recently, with the emer-
gence of Vision Transformer (ViT) [1&], the application scope of Transformer architec-
tures has expanded into the computer vision domain. ViT divides images into fixed-size
patches and then flattens these patches into sequences as input to the Transformer. The
success of ViT demonstrates that the self-attention mechanism can effectively capture
spatial relationships and global dependencies in visual data.

In the fault detection domain, Transformers have gained significant attention in re-
cent years, benefiting from their exceptional sequence relationship learning capabilities
and fast computation speed. This corresponds well with the fact that industrial signals
such as vibration and current are time-series data, as well as the industrial demand
for low latency processing. Recent works have successfully applied Transformer-based
models to fault detection applications. For example, [19] is one of the earliest studies
to utilise transformer in the context of fault detection. The proposed model consists
of a multi-head attention mechanism and positional encoding to capture temporal fea-
tures, and it operates directly on raw one-dimensional sensor signals. Experiments
on the CWRU dataset show that the Transformer model achieves higher classification
accuracy than CNN, LSTM, and GRU models. In [3], three-directional vibration sig-
nals are utilized, and continuous wavelet transform (CWT) is applied to each signal
to generate corresponding time-frequency spectrograms, as shown in Figure 2.3. These
spectrograms are combined into a three-channel 2D image analogous to an RGB image,
which can be directly fed into a ViT model. The experimental results show that the
proposed method achieves higher classification accuracy compared to LSTM and CNN
models. The author also compared the training time of different models, showing that
the proposed method completes training faster than both LSTM and ResNet18 models.

2.2 Unsupervised Learning

In practical applications, it is often not feasible to obtain labeled data. In such cases,
unsupervised learning methods are required to focus on learning the normal behavior
patterns of the system. These approaches detect faults by identifying deviations be-
tween actual values and the values corresponding to the learned normal operating con-
ditions. Techniques such as principal component analysis (PCA), clustering algorithms,
and autoencoders fall into this category. Although unsupervised learning methods can-
not provide specific fault classifications, they offer the advantage of detecting novel or
previously unseen fault conditions without requiring pre-existing labeled datasets.
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Figure 2.3: Transformer based fault detection architecture [3]

2.2.1 Principal Component Analysis

Principal Component Analysis (PCA) is a statistical technique that transforms high-
dimensional data into a lower-dimensional space while preserving the most important
information. The main idea of PCA is to find the directions (principal components)
that maximize the variance of the data. The first principal component is the direction
that captures the most variance in the data, the second principal component is the
direction that captures the most variance in the data that is orthogonal to the first
principal component, and so on.

In fault detection applications, two widely used statistics are employed for moni-
toring purposes: the Q-statistic (also known as the SP E-statistic) and Hotelling’s 72-

10
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Figure 2.4: PCA model of a three-dimensional data set showing @ and T2 outliers [4]

statistic (referred to as the D-statistic) [20]. As shown in Figure 2.4, the T*-statistic
captures the variability within the PCA model space, representing deviations in the
mean and covariance structure of the retained principal components. In contrast, the
(Q-statistic measures the residual variation that cannot be explained by the selected
principal components, indicating changes in the system behavior that fall outside the
normal operating space. Control limits for both statistics can be established based on
probability distribution assumptions derived from normal operating conditions, allow-
ing for the detection of abnormal behavior while maintaining an acceptable false alarm
rate.

An illustrative example is provided in [21], where Dynamic PCA (DPCA) combined
with genetic algorithm (GA) feature selection is used for fault detection. By jointly
monitoring the T2 and ( statistics, the method captures both systematic variations and
residual anomalies. Compared to traditional PCA, the DPCA approach notably im-
proves the (Q-based detection rate from 76.8% to 83.7%, demonstrating the effectiveness
of using these statistics for fault detection.

2.2.2 K-means clustering

The K-means clustering algorithm is an unsupervised learning method that divides
data into k clusters by finding the minimum within-cluster sum of squared distances.
The algorithm assigns each data point to the nearest cluster center and updates the
centers based on the mean of the assigned points in an iterative manner. The objective
function to be minimized is:

T=33 e =l (213)

i=1 zeC}
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where C; represents the i-th cluster, y; is the centroid of cluster C;, and = denotes a
data point. The algorithm converges when the centroids no longer change significantly
between iterations or when a maximum number of iterations is reached.

In the field of fault detection, [22] employs a two-stage k-means clustering approach
for bearing fault detection using frequency-domain features from vibration signals. The
first stage identifies whether a fault exists, and the second classifies it as an inner- or
outer-race fault. The proposed K-means clustering method achieves a 100% success
rate across all measurements in the three industrial cases as well as the laboratory
test case. Furthermore, it demonstrates strong robustness to the selection of initial
cluster centers. In [23], vibration data from an exhaust fan was used to evaluate
several unsupervised algorithms for early fault detection in predictive maintenance. The
author compared different types of clustering methods, including K-Means, Hierarchical
Clustering, Fuzzy C-Means, and model-based clustering. Although most algorithms
produced similar results, each one provided deeper insight into the data.

2.2.3 Autoencoder

Autoencoder is a type of unsupervised neural network that is trained to reconstruct its
input. It is composed of an encoder and a decoder. The encoder maps the input to a
latent space, and the decoder maps this back to the input space. The autoencoder is
trained to minimize the reconstruction error, typically expressed as:

1 < )
i=1

where x; is the input and z; is the reconstructed output.

In fault detection applications, autoencoders are commonly employed to learn the
latent features of normal operating conditions. When abnormal data appears during
testing, the reconstruction error becomes significantly large, thus serving as an indicator
of faults. But the fundamental assumption is that the autoencoder, trained only on
normal data, will struggle to accurately reconstruct abnormal patterns, resulting in
higher reconstruction errors that can be used for fault detection.

There are several studies that have successfully applied autoencoders to fault detec-
tion. In [24], autoencoders are used for fault detection by learning nonlinear represen-
tations of normal data and identifying faults through high reconstruction errors. The
study shows that autoencoders can detect subtle anomalies that linear PCA methods
often miss. More recently, [25] proposed an optimized stacked variational denoising
auto-encoder (OSVDAE) for bearing fault detection. This approach integrates the
strengths of variational autoencoder (VAE) and denoising autoencoder (DAE) and
adopts a seagull optimization algorithm (SOA) to adjust hyperparameters. By intro-
ducing noise to the input, the DAE component enhances the model’s generalization
and robustness, effectively mitigating overfitting. The stacked architecture, consisting
of multiple variational denoising auto-encoder (VDAE) layers, enables the extraction of
more representative and robust latent features. The SOA further improves the model’s
accuracy by automating hyperparameter selection, thus eliminating the need for manual
tuning. The experimental comparisons showed that the OSVDAE achieves over 99%
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fault classification accuracy, outperforming baseline models including VAE, SDAE, and
CNN, particularly in noisy environments.

2.3 Hybrid Approaches

While supervised and unsupervised learning methods each offer distinct advantages,
they also suffer from inherent limitations when applied independently to fault detec-
tion tasks. Supervised methods require extensive labeled data and may struggle with
novel fault types, whereas unsupervised methods cannot provide specific fault classifi-
cation and may have limited detection accuracy. To address these limitations, hybrid
approaches that combine the strengths of both methods have become a promising so-
lution for industrial fault detection.

Two typical hybrid approaches in fault detection are semi-supervised learning and
pre-training and fine-tuning strategies.

2.3.1 Semi-supervised Learning

Semi-supervised learning offers a promising hybrid solution for fault detection by com-
bining both limited labeled data and abundant unlabeled data. This is especially ad-
vantageous in industrial contexts, where acquiring labeled fault data is often costly and
time-consuming. In [20], the author proposed a semi-supervised fault diagnosis frame-
work using variational autoencoder (VAE)-based deep generative models for bearing
fault detection. The method is particularly effective in scenarios where only a small
portion of the data is labeled. In this framework, the VAE encoder and decoder are first
trained in an unsupervised manner using all available data. Subsequently, a separate
classifier is trained using the limited labeled data in a supervised fashion. Experimental
results demonstrate that this approach outperforms conventional supervised and un-
supervised methods. The study confirms that semi-supervised VAE-based generative
models can significantly enhance classification performance by effectively utilizing the
information in large volumes of unlabeled data.

2.3.2 Pre-training and Fine-tuning Strategies

Another effective hybrid approach is a two-stage training process involving unsupervised
pre-training followed by supervised fine-tuning. This strategy enables the model to
initially learn general feature representations from unlabelled data and then adapt these
features for specific fault classification tasks. An example is provided by FaultFormer
[27], where a Transformer model is first pretrained using self-supervised learning on
unlabeled bearing vibration data to capture general signal characteristics. This is
followed by supervised fine-tuning on a small amount of labeled data, which enables
the model to classify faults accurately even in conditions where there is a lack of labels.
The hybrid strategy significantly improves model adaptability and generalization across
datasets.
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2.4 Summary

This chapter presents a comprehensive overview of data-driven fault detection tech-
niques, which have emerged as effective tools for industrial fault monitoring by using
the large amounts of operational data produced by modern systems. The existing liter-
ature generally classifies these methods into three major categories, each with distinct
strengths and limitations. Supervised learning methods, including SVM, LSTM, CNN,
and Transformer, have shown impressive performance in fault classification when la-
beled training data is available. These methods can achieve high accuracy and provide
detailed fault type identification, but their effectiveness is constrained by the availabil-
ity and quality of labeled data, which can be expensive and time-consuming to acquire
in industrial environments. Unsupervised learning methods, such as PCA, clustering
algorithms, and autoencoders, address the challenge of labeled data scarcity by mod-
eling normal behavior patterns and detecting deviations from these patterns. These
techniques can identify novel or unseen fault conditions without the need for labeled
training data. Nonetheless, they typically lack the ability to provide specific fault
categorization and may underperform in terms of accuracy compared to supervised
models. Hybrid approaches, including semi-supervised learning and pre-training with
fine-tuning strategies, have been proposed as a solution to the current limitations of
supervised and unsupervised methods. These hybrid approaches offer enhanced perfor-
mance by leveraging both labeled and unlabeled data effectively.

The choice of fault detection approach is often guided by the specific requirements
of the application, the availability of data, and computational limitations. In real-
world scenarios, high-performing fault detection systems commonly integrate multiple
methodologies to enhance both accuracy and reliability. Factors such as the availability
of labeled data, the need for specific fault classification, the requirement for real-time
processing, and the complexity of the industrial system all play crucial roles in deter-
mining the optimal approach.
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Dataset

For data-driven fault detection methods, the quality and characteristics of the dataset
play an important role in determining the effectiveness of the developed models. If the
quality of the dataset is insufficient, the trained models often fail to achieve satisfactory
performance. Additionally, when the dataset is too small, the models tend to lack
generalization ability, limiting their practical applicability. Furthermore, if the dataset
is collected under laboratory conditions or ideal environments, the resulting models may
lack the robustness required for stable operation in industrial environments. Therefore,
both the quantity and quality of the dataset significantly influence the final performance
of the model.

In this project, two primary datasets are utilized: the Case Western Reserve Uni-
versity (CWRU) bearing vibration dataset and the Johannes Kepler University (JKU)
current dataset. These datasets provide complementary perspectives on fault detection,
with one focusing on vibration signals and the other on electrical current signatures.
The following sections will introduce each of these datasets in detail, including their
characteristics, data collection procedures, and relevance to the fault detection tasks
addressed in this work.

3.1 CWRU Bearing Dataset

The Case Western Reserve University (CWRU) bearing dataset is one of the most
widely used benchmark datasets in the field of bearing fault detection. This dataset
provides ball bearing test data for both normal and faulty bearing conditions, making
it an invaluable resource for developing and evaluating fault detection models.

As shown in Figure 3.1, the experimental setup consists of a 2 horsepower Reliance
Electric motor, a torque transducer/encoder, a dynamometer, and control electronics.
Single point faults were introduced to the test bearings with fault diameters of 7 mils,
14 mils, 21 mils. These faults were introduced at three critical bearing locations: the
inner raceway, the rolling element (ball), and the outer raceway. Acceleration data is
measured at multiple locations both near to and remote from the motor bearings. This
multi-point measurement approach allows for detailed analysis of vibration patterns
under various fault conditions. The actual test conditions of the motor as well as
the bearing fault status are also carefully documented for each experiment, ensuring
reliability of the dataset.

The data acquisition was performed at two different sampling rates to accommodate
various analysis requirements. The digital data was collected at 12,000 samples per
second. For drive end bearing faults, the data was also collected at 48,000 samples per
second. The data collection was performed under various operating conditions to ensure
dataset diversity. Specifically, vibration data was recorded for motor loads ranging from
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Figure 3.1: Test stand of CWRU dataset

0 to 3 horsepower, corresponding to motor speeds from 1797 to 1720 RPM. Speed and
horsepower data were collected using the torque transducer/encoder system to provide
complete operational context for each measurement. Some sample vibration signals
from the CWRU bearing dataset are shown in Figure 3.2.

The CWRU bearing dataset has become a standard benchmark in the bearing fault
detection community due to its well-documented experimental procedures, diverse fault
types, and multiple operating conditions. The dataset’s availability has facilitated
numerous research studies and enabled fair comparison between different fault detection
models.

3.2 JKU Current Dataset

The Johannes Kepler University (JKU) current dataset [28] contains three-phase electri-
cal current measurements from a block-commutated 280W machine under both normal
and faulty operating conditions. Unlike the CWRU dataset which focuses on vibration
signals, the JKU dataset provides insights into fault detection through electrical current
signature analysis.

The investigated fault condition involves misplaced hall sensors that result in com-
mutation angle errors, denoted as pa. This parameter specifies by how many electrical
degrees the rotary angle of the motor axle deviates from its nominal value, which di-
rectly affects the motor’s operating efficiency. A commutation angle error of pa = 0°¢
indicates a motor running in its nominal state (healthy condition), while oA # 0°¢ indi-
cates a faulty motor requiring maintenance attention. This type of fault typically occurs
when all three hall sensors have the same offset, such as when sensors are mounted on
a common carrier with rotational misalignment.

The dataset distinguishes three different types of signals based on their acquisition
method and fault severity:
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Figure 3.2: Sample vibration signals from CWRU bearing dataset showing different bearing

conditions

e Measurement Nominal: Real-world measurements of motors in nominal state
(pa = 0°¢), representing baseline healthy operation that is relatively easy to
acquire in practice.
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e Measurement Faulty: Real-world measurements of motors in faulty state (pa €
[—10°¢,10°°!]), which are more costly and challenging to obtain due to the need
to intentionally introduce faults or wait for natural fault occurrence.

e Simulation: Simulated experiments of motors (pa € [—20°¢, 20°¢]) that are
easy to produce and allow for controlled fault severity investigation across a wider
range of conditions.

Figure 3.3: Test stand of JKU dataset

The simulation data is generated using the SyMSpace framework, which employs
a flux-based surrogate motor model created from finite element simulations. This
approach enables transient block-commutation simulation to determine the resulting
phase currents under various fault conditions. The measurement setup consists of the
block-commutated motor, a torque sensor, a hysteresis brake, and power electronics.
In addition to the built-in hall sensors, an incremental encoder is mounted to provide
absolute angle signals. Motor control, brake operation, and data acquisition are imple-
mented using the X2C framework, with phase current measurement realized through
shunt measurement integrated into the power electronics. The simulation framework
provides the advantage of generating large amounts of training data with precise con-
trol over fault parameters, while the measurement data ensures real-world validation
of the developed models.

The data acquisition follows a systematic approach where both nominal and faulty
measurements are sampled with a fixed sample time and a fixed number of samples
(408), regardless of motor speed. The simulation experiments vary in sample count
according to motor speed and duration, ranging from 301 to 11923 samples. All ex-
periments contain at least one full electrical period to ensure comprehensive signal
characterization. Some sample current signals from the JKU dataset are shown in
Figure 3.4.

In addition to the electrical current data, the JKU dataset also contains supplemen-
tary information including motor speed, torque, and commutation angle measurements.
While these data can provide additional information for fault detection and potentially
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Figure 3.4: Sample current signals from JKU dataset showing different motor conditions

improve classification accuracy, they suffer from the acquisition challenges for practi-
cal industrial implementation. Particularly, torque data acquisition requires expensive
instrumentation and specialized sensors that increase the monitoring system cost. Fur-
thermore, most industrial control systems do not require continuous torque monitoring
for normal operation, making the integration of such sensors economically unfeasible
for many applications. Therefore, while the availability of this supplementary data
enhances the research potential of the dataset, the emphasis on current-based fault
detection remains more practically viable for widespread industrial adoption.

3.3 Summary

This chapter introduced two datasets that serve different purposes in the development
and validation of data-driven fault detection methods. The CWRU bearing dataset
provides vibration-based fault detection data with multiple fault types (inner raceway,
ball, and outer raceway faults) across various fault severities and operating conditions.
The well-controlled experimental conditions as well as the detailed documentation make
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it an excellent benchmark for fault detection model development and comparison. In
contrast, the JKU current dataset focuses on electrical current signature analysis for
detecting commutation angle errors caused by misplaced hall sensors. This dataset
incorporates both simulation and real-world measurement data, providing valuable in-
sights into practical fault detection scenarios.

With regard to the volume of data, the CWRU dataset contains a substantially
larger amount of data compared to the JKU dataset. This abundance of data makes
it especially suitable for training complex machine learning models that require large
datasets to achieve optimal performance and generalization capability.

However, the JKU dataset more closely aligned with real industrial applications.
The dataset’s focus on electrical current analysis also represents a more accessible
monitoring approach in many industrial settings, where current sensors are often readily
available and easier to implement than vibration monitoring systems.

Based on these considerations, the model development strategy in this work will
utilize the CWRU dataset for development, training, and initial validation due to its
data coverage and established benchmark status. Subsequently, the developed models
will be trained and evaluated on the JKU dataset in order to assess their practical
applicability and robustness in real-world industrial conditions. This approach guar-
antees both rigorous model development and practical validation of the proposed fault
detection methods.
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Classification-based Fault
Detection

This chapter will introduce classification-based fault detection methods, which repre-
sent a fundamental but powerful approach in the field of operational condition mon-
itoring. As the name suggests, classification-based methods utilize datasets to train
models that can provide direct classification predictions for input samples.

The core principle of classification-based fault detection lies in its ability to learn
patterns directly from labeled data and transfer these features into fault classification
predictions. By training on datasets containing both normal and faulty conditions,
these methods can develop models that map input signals to discrete fault categories.
This approach enables the development of end-to-end models, where raw signal data
can be directly fed into the system to obtain immediate classification results indicating
whether the machinery is operating normally or experiencing specific types of faults.

4.1 Baseline Models

Before introducing the proposed model, it is essential to establish several baseline mod-
els that will serve as comparative benchmarks. These baseline models are trained under
the same experimental conditions to ensure fair and consistent performance compar-
isons. Their primary role is to provide a solid reference point for assessing the effec-
tiveness of the proposed methodology.

For classification-based fault detection, three representative baseline models are im-
plemented: a one-dimensional Convolutional Neural Network (1D CNN), a Long Short-
Term Memory (LSTM) network, and a Transformer model. Each of these architectures
reflects a distinct deep learning paradigm and brings unique strengths to the task of
sequential data analysis.

The selection of these baseline models is motivated by their success in various clas-
sification tasks. The 1D CNN is particularly effective in capturing local temporal
patterns through convolutional operations. The LSTM excels at modeling long-term
dependencies in sequential data, making it well-suited for tasks with temporal dynam-
ics. The Transformer model, using self-attention mechanisms, enables the extraction
of complex, non-local dependencies without the limitations of recurrent architectures.

The following subsections will provide a detailed overview of each baseline model,
including their architectural design, implementation details, and the rationale behind
the configuration choices.

4.1.1 1D CNN Model

The 1D CNN baseline model is designed as a hierarchical feature extraction network
that processes sequential signals through multiple convolutional layers. The architec-
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ture consists of modular convolutional blocks followed by fully connected layers for final
classification.

The basic building block of this model is the convolutional blocks, which combines
a 1D convolutional layer, an activation function, and a pooling operation. Each block
performs local feature extraction through convolution, applies non-linear transforma-
tion via activation (LeakyReLU), and reduces the temporal dimension through pooling
operations. The pooling mechanism not only reduces computational complexity but
also provides translation invariance, making the model more robust to small shifts in
fault patterns.

The complete 1D CNN model employs a three-layer convolutional architecture with
progressively increasing channel dimensions. The network starts with d_model channels
in the first layer and expands to 2xd_model channels in the subsequent layers, allowing
the model to capture increasingly complex feature representations. Each convolutional
block reduces the sequence length by half through pooling, effectively creating a multi-
scale feature hierarchy.

Following the convolutional feature extraction, the model applies adaptive average
pooling to obtain a fixed-size representation regardless of input sequence length. This
global pooling operation aggregates temporal information across the entire sequence.
The extracted features are then processed through two fully connected layers with ELU
activation, where the first layer performs feature transformation and the second layer
produces the final classification logits.

This architecture leverages the strength of CNNs in capturing local temporal pat-
terns while maintaining computational efficiency through pooling operations, making
it well-suited for signal classification tasks.

4.1.2 LSTM Model

The LSTM baseline model is designed to capture long-term temporal dependencies in
sequential signal data through recurrent neural network architecture. Unlike the CNN
model that focuses on local patterns, the LSTM model excels at learning temporal
relationships across the entire sequence, making it suitable for analyzing time-series
data where historical information significantly influences current classifications.

The core component of this model is a standard LSTM layer implemented using
PyTorch’s built-in module. Each LSTM cell maintains both hidden state and cell state,
enabling the network to selectively remember and forget information across time steps.
The model extracts the final hidden state from the last LSTM layer as the sequence
representation, which encodes the accumulated temporal information from the entire
input sequence. This approach leverages the LSTM’s ability to compress sequential
information into a fixed-size vector that captures the most relevant temporal patterns
for classification.

Following the LSTM feature extraction, the model includes a batch normalization
layer that can stabilize training and improve convergence. The extracted temporal
features are then processed through a two-layer fully connected network with ELU
activation as before.

This architecture is effective for fault detection scenarios where the temporal evo-
lution of signals contains critical diagnostic information. The LSTM’s memory mecha-
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nism allows it to capture subtle changes in signal patterns over time, which may indicate
the onset or progression of mechanical faults that are not immediately apparent in local
signal segments.

4.1.3 Transformer Model

The Transformer baseline model applies the self-attention mechanism to capture com-
plex relationships across the entire input sequence without the sequential processing
limitations of recurrent networks. This architecture is good at modeling long-range de-
pendencies in time-series data, as it can directly attend to any position in the sequence
regardless of distance.

The model begins with a linear embedding layer that projects the input features
from their original dimensionality to the transformer’s model dimension. Following
the successful approach used in vision transformers and BERT, the model employs a
learnable classification token that is prepended to the sequence. This special token
serves as a global representation that aggregates information from all positions in the
sequence through the attention mechanism and is used for subsequent classification.
Positional encoding is implemented through learnable parameters rather than fixed
sinusoidal functions, allowing the model to adapt the positional representations to the
specific characteristics of signals. The positional encoder adds location information
to each token, enabling the model to understand the temporal ordering of the input
sequence. A dropout layer is applied after positional encoding to prevent overfitting
and improve generalization.

The feature extraction of the transformer architecture consists of multiple trans-
former encoder layers, each containing multi-head self-attention and feed-forward net-
works. The multi-head attention mechanism allows the model to simultaneously attend
to information from different representation subspaces, capturing various types of tem-
poral patterns and relationships. The feed-forward network in each layer provides
additional non-linear transformation capability with a hidden dimension that can be
configured independently.

After processing through the transformer layers, the model extracts the representa-
tion of the classification token. This global representation is then processed through a
two-layer fully connected network with ELU activation to produce the final classifica-
tion output.

This architecture excels at capturing both short-term and long-term temporal de-
pendencies simultaneously, making it highly effective for complex fault detection tasks
where different fault signatures may manifest at various time scales within the same
signal.

4.2 Initial Proposed Model

The proposed model introduces a novel approach that combines discrete wavelet trans-
form (DWT) preprocessing with transformer-based feature extraction for enhanced
fault detection. Unlike traditional methods that process raw time-series data directly,
this architecture takes the advantage of the multi-resolution characteristics of wavelet
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Figure 4.1: Pipeline of the initial proposed model

decomposition to capture both temporal and frequency domain information simultane-

As shown in Figure 4.1, the overall architecture consists of three main components:
(1) DWT-based data preprocessing that decomposes input signals into multiple coeffi-
cient sets at different levels, (2) parallel transformer encoder modules that process each
coefficient set independently, and (3) a fusion-based classification head that combines
representations from all coefficients for final prediction. This design enables the model
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to analyze signal characteristics across multiple temporal resolutions, thereby capturing
fault signatures that may appear in different frequency bands and time scales. A key
innovation of the proposed model lies in its parallel processing of wavelet coefficients
obtained through discrete wavelet transform (DWT) using Transformer encoders. This
strategy allows the model to learn specialized representations for each decomposition
level while preserving the capacity to integrate information across scales, enhancing its
effectiveness in fault detection.

4.2.1 DWT-based Data Preprocessing

The discrete wavelet transform serves as the foundation of the proposed preprocessing
pipeline, transforming one-dimensional time-series signals into multi-scale representa-
tions that capture both temporal and frequency characteristics. To understand the
mathematical foundation of DWT) it is essential to begin with the continuous wavelet
transform and derive the discrete form through systematic sampling.

The continuous wavelet transform (CWT) of a signal f(¢) is defined as:

wian) = [ s jmw (50)a (11)

where a is the scale parameter, b is the translation parameter, and () is the mother
wavelet. The scaled and translated wavelet function is given by:

Yas(t) = \/%'w <t — b) (4.2)

To obtain the discrete wavelet transform, the scale and translation parameters are
discretized using dyadic sampling:

a=2, b=k -2 (4.3)

where j and k are integers representing the scale and translation indices respectively.
This discretization leads to the discrete wavelet functions:

P (t) = 292 ap(2t — k) (4.4)

However, it is important to note that the wavelet functions ;(t) alone are not
sufficient for sparse decomposition. A set of orthogonal scaling functions ¢;(t) are
also required in this context. To obtain a complete and exact reconstruction of the
signal using an orthonormal wavelet basis, the function f(¢) must be decomposed into
both approximation and detail components:

f<t> = Z<f7 ¢j0, (bjo, + Z Z [ %k 1/13 k( ) (4'5>

Jj=jo k

Here, ¢j, 1(t) represents the scaling functions at a coarse resolution level jy, which
capture the low-frequency approximation of the signal, while v, ;(t) are the wavelet
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functions that capture increasingly finer detail information at higher scales j > jo. The
approximation and detail coefficients at scale j are given by the inner products:

0,1 = (F. 6y /f () dt (4.6)
M = (fiby) = / F(t) - 5 (t) dt (4.7)

In practice, the DW'T is implemented using a filter bank approach with low-pass and
high-pass filters. This implementation is grounded in Mallat’s algorithm [29], which
provides a fast and mathematically rigorous method for computing the discrete wavelet
transform based on multiresolution analysis (MRA).

The connection between the inner product formulation of wavelet coefficients and
their practical computation lies in the structure of the wavelet and scaling functions.
Recall that the approximation and detail coefficients at a given scale j are obtained via
inner products with the scaling and wavelet functions, as defined in (4.6) and (4.7). In
the discrete domain, the functions ¢;;(t) and ;4 () are localized, scaled, and shifted
versions of the scaling and wavelet functions, and can be interpreted as finite-length
convolution kernels.

Therefore, computing the inner products (f, ¢,x) and (f,;x) becomes equivalent
to filtering the signal with h[k] and g[k], respectively, followed by a downsampling
operation. This equivalence allows the DWT to be implemented efficiently through a
cascade of convolution and downsampling steps.

Formally, given a discrete signal x[n], the decomposition at level j + 1 is computed
as:

Ajan Z h[k] - Aj2n — K] (4.8)
Djian Z glk jl2n — k] (4.9)

where:
e A;[n| denotes the approximation coefficients at scale j,
e D;.1[n| denotes the detail coefficients at scale j + 1,
e hlk] and g[k] are the low-pass and high-pass filter coefficients, respectively.

These filters are derived from the scaling function ¢(t) and the wavelet function
Y(t), and satisfy the two-scale relations:

Zh ]-V2- (2t — k) (4.10)
Zg ] V2 6(2t — k) (4.11)

This structure guarantees that the filter bank implementation of the DWT is math-
ematically equivalent to projecting the signal onto an orthonormal wavelet basis, as in
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(4.5). Furthermore, the deepest approximation coefficients (i.e., the output after the
final low-pass filtering and downsampling step) correspond to the inner products with
the coarsest-scale scaling functions ¢;, (t), while the detail coefficients at each level
correspond to projections onto wavelet functions 1;(t) at different resolutions. Mal-
lat’s algorithm thus enables both fast computation and exact reconstruction, making
it a powerful tool for multiscale analysis of time-series signals.

The DWT offers several significant advantages over traditional Fourier transform
methods for fault detection applications. First, unlike the Fourier transform which
provides frequency information averaged over the entire signal duration, the DWT
provides localized frequency analysis with variable time-frequency resolution. This
characteristic is particularly valuable for detecting faults that may occur at specific
time instances. Second, the multi-resolution nature of DWT enables analysis of both
global signal trends and local anomalies, making it a powerful tool for capturing diverse
fault signatures that may hide at different scales. The choice of wavelet basis function
can be optimized for specific signal characteristics, providing additional flexibility in
feature extraction.

4.2.2 Transformer-based Feature Extraction

Following the DWT preprocessing, the proposed model employs parallel transformer
encoder modules to process different coefficients independently. This design recognizes
that different wavelet coefficients contain distinct types of information and may benefit
from specialized feature extraction mechanisms. In particular, the architecture utilizes
separate transformer modules for the approximation coefficients (cA) and each level of
detail coefficients (¢Dy, cDs, ...,cDy), where L represents the maximum decomposition
level. The transformer module is similar to the baseline model, which begins with a
linear embedding layer that projects the input coefficients to the model’s hidden dimen-
sion. A learnable classification token is added to aggregate information and positional
embeddings are added to maintain temporal ordering information. A dropout regu-
larization is applied to the input coefficients to prevent overfitting. FEach encoder fol-
lows the standard encoder architecture with multi-head self-attention and feed-forward
layers, but operates on coefficient sequences of different lengths corresponding to the
natural dimensionality reduction at each DWT level.

The multi-head self-attention mechanism within each transformer module enables
the model to capture complex relationships within each frequency band. This is im-
portant for fault detection, as mechanical faults often present as specific patterns or
correlations within particular frequency ranges. The parallel processing of different
coefficient sets allows the model to learn specialized attention patterns optimized for
each scale of analysis.

4.2.3 Feature Fusion and Classification

The final stage of the proposed architecture involves fusing representations from
all transformer modules and performing classification. After processing through
their respective transformer encoders, the classification tokens from each module
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(clsea, Clsepy, .., clsep, ) are concatenated to form a feature vector that encodes infor-
mation from all frequency bands and temporal scales. The concatenated representation
is then processed through a two-layer fully connected network with ELU activation.

Although this fusion approach is just a simple concatenation, it can leverage diverse
information from different frequency bands during training. The end-to-end nature
of the architecture allows for joint optimization of both the feature extraction and
classification components, potentially learning optimal representations for the specific
fault detection task.

4.3 Model Improvements

While the initial proposed model demonstrates the potential of combining DWT pre-
processing with transformer-based feature extraction, several practical limitations have
emerged that prevent its deployment in real-world industrial applications. These chal-
lenges are particularly relevant in resource-constrained environments with limited com-
putational capacity, where fault detection systems are frequently deployed.

Firstly, the DWT preprocessing step imposes a considerable computational bur-
den, as it can only be executed on the CPU, thus preventing GPU acceleration and
batch processing. This sequential operation introduces a processing bottleneck that
significantly reduces model throughput and real-time responsiveness. Secondly, the use
of multiple independent transformer encoders for different coefficient sets results in a
dramatic increase in the number of model parameters, leading to higher memory re-
quirements and storage costs. This parameter explosion poses a critical challenge for
deployment on resource-constrained edge devices.

In addition, the traditional scaled dot-product attention mechanism exhibits
quadratic time complexity with respect to sequence length, making it computationally
expensive for longer input sequences. These challenges highlight the need for architec-
tural improvement to reduce computational and memory overhead while preserving the
model’s strong performance in fault detection.

To address these limitations, improvements have been implemented at three key
levels: (1) data preprocessing optimization to enable GPU acceleration and parallel
computation, (2) encoder architecture refinement to reduce parameter count while pre-
serving feature extraction capabilities, and (3) attention mechanism enhancement to
achieve linear computational complexity for improved scalability.

4.3.1 Improvement On The Data Preprocessing

The computational bottleneck in the initial model’s DWT preprocessing can be ad-
dressed by approximating the wavelet decomposition process using convolutional op-
erations. The fundamental principle behind this approach lies in the mathematical
similarity between DWT filtering operations and convolutional computations.

For discrete signals, the DW'T coefficients are computed through recursive applica-
tion of analysis filters. Starting from the original signal f[n], the decomposition at level
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7 is obtained by:

cAj[k] = " cAja[n] - hln — 2K] (4.12)

eD;[k] = " cA;_i[n] - gln — 2K] (4.13)

n

where cAg[n| = f[n] represents the original signal.
By changing the summation index and applying the properties of discrete convolu-
tion, these equations can be reformulated as filtering operations followed by downsam-

pling:

Z hin 12k —n] = (h*cA;j_1)[2k] (4.14)
Zg cAj 12k —n] = (g % cA;_1)[2K] (4.15)

where h[n] and g[n| are the low-pass and high-pass analysis filters, and * denotes
convolution. This mathematical equivalence demonstrates that DW'T decomposition
can be implemented as convolution operations followed by downsampling, suggesting
that the process can be approximated using 1D convolutional layers with fixed kernel
parameters corresponding to the wavelet basis functions.

By replacing the traditional DW'T preprocessing with fixed-parameter 1D convo-
lutional layers, several significant advantages are achieved. First, the convolutional
operations can be executed on GPU with full batch processing capabilities, dramati-
cally improving computational throughput. Second, the parallel processing nature of
convolutions eliminates the sequential dependency inherent in traditional DWT com-
putation, enabling more efficient utilization of modern hardware architectures.

However, this approximation approach also introduces certain limitations. While
the mathematical foundation is sound, achieving exact equivalence to traditional DW'T
requires precise configuration of convolutional parameters including padding, stride,
and kernel initialization. In practice, the convolutional approximation serves as a close
approximation rather than an exact replacement, potentially introducing minor numer-
ical differences that may affect the decomposition quality.

4.3.2 Improvement On The Multiple Encoder Layers

The parameter explosion problem caused by multiple independent transformer encoders
demands architectural modifications to reduce model complexity while maintaining fea-
ture extraction effectiveness. Two distinct approaches have been developed to address
this challenge.

The first approach employs a unified transformer architecture with masked self-
attention to process concatenated coefficient sequences. In this design, coefficients from
different decomposition levels are concatenated in hierarchical order, and a carefully
designed attention mask ensures that each coefficient can only attend to coefficients
from the same or lower decomposition levels. Specifically, detail coefficients cD; can
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compute attention with c¢D; where ¢ < j and with themselves, while approximation
coefficients cA can attend to all coefficient types. This hierarchical attention pattern
respects the natural structure of wavelet decomposition while enabling cross-scale in-
formation exchange.

Mathematically, the masked attention can be expressed as:

KT +M
Attention(Q, K, V') = softmax (Q—+> Vv (4.16)
Vg,
where M is the mask matrix with M;; = —oo for prohibited attention connections and

M;; = 0 for allowed connections.

The second approach utilizes the structural properties of DWT decomposition by
upsampling higher-level coefficients to match the length of lower-level coefficients, en-
abling the use of a single transformer encoder for all coefficient types. This method
reduces the model parameter count significantly as only one transformer module is
required regardless of the number of decomposition levels.

The first approach offers the advantage of enabling explicit cross-scale attention
computation, helping the model to capture relationships between different frequency
bands. However, the introduction of masked attention may increase computational cost
due to the increase of the sequence length. The second approach achieves substantial
parameter reduction and computational simplification, but requires careful design of
the upsampling strategy to ensure proper alignment of information across different
frequency scales.

4.3.3 Improvement On The Attention Mechanism

The quadratic computational complexity of traditional scaled dot-product attention
poses significant challenges for processing long sequences. To mitigate this limitation,
linear attention mechanisms [30] have been introduced, reducing the computational
complexity of the attention operation from O(L?) to O(L), where L denotes the se-
quence length.

Linear attention achieves this complexity reduction by reformulating the attention
computation through kernel-based approximation. The derivation begins with the stan-
dard scaled dot-product attention mechanism:

For input z € RY*?, the query matrix @, key matrix K, and value matrix V are
computed as:

Q = JZWQ, K = ZL’WK, V = IWV (417)
where Q, K,V € RI*4. The standard attention output is:

A(z) = V' = softmax (Cf/K_;) v (4.18)

This can be generalized by replacing the softmax operation with a similarity function
sim(Qi, Kj) .

LS smQu K,
' Zjvzl sim(Qs, K;)

(4.19)
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The key insight is to replace the similarity function with a non-negative kernel func-
tion that can be decomposed using feature representations. By setting sim(Q;, K;) =
?(Q;)T¢(K;), the attention becomes:

V! = Zjil ?(Q:) T o(K;)V;
l Zjvzl o(Qi)To(K;)

The computational complexity reduction is achieved by exploiting the associative
property of matrix multiplication to reorder the operations:

v/ = H 2, :§¢(KJW’T (4.21)
¢(Q2)T 23:1 ¢(KJ)

This reformulation enables the computation to be reordered as ¢(Q)- (¢(K)*-V) in-
stead of (¢(Q)-¢(K)T)-V, where ¢(-) is a feature mapping function that projects queries
and keys to a higher-dimensional space. The terms Zjvzl o(K j)V;T and Zjvzl ¢(K;) can
be precomputed and reused for all queries, reducing the complexity from O(L?) to O(L).

The primary advantage of linear attention is the dramatic reduction in both time
and space complexity, making it feasible to process much longer sequences with lim-
ited computational resources. This improvement is particularly valuable for industrial
applications where real-time processing of extended signal sequences is required.

However, linear attention mechanisms have inherent limitations that restrict their
applicability. Most notably, linear attention cannot effectively incorporate causal masks
or complex attention patterns due to the mathematical constraints of the kernel ap-
proximation. This limitation prevents the use of linear attention in the masked atten-
tion approach described in the encoder improvements, restricting its application to the
upsampling-based architecture variant.

Despite this limitation, the computational benefits of linear attention make it an
attractive option for scenarios where the trade-off between computational efficiency
and model expressiveness is acceptable, especially in resource-constrained deployment
environments.

(4.20)

4.4 Final Model Architecture

The final model architecture integrates all the improvements discussed in the previous
sections, resulting in a computationally efficient and deployable solution for fault de-
tection while maintaining the multi-scale analysis capabilities of the original approach.
Figure 4.2 illustrates the complete pipeline of the improved model architecture.

The pipeline of the final model follows a streamlined approach that addresses the
computational bottlenecks identified in the initial design. Starting with raw signals,
the model performs the following sequence of operations:

Step 1: Convolutional Wavelet Decomposition The input time-series signal
x[n] is processed through a series of fixed-parameter 1D convolutional layers that ap-
proximate the DWT decomposition. Instead of CPU-based DWT computation, the
model employs convolutional layers with kernels initialized to correspond to wavelet
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Figure 4.2: Pipeline of the final improved model with two variants

filter coefficients. This approach enables GPU acceleration and batch processing, sig-
nificantly reducing computational cost. The decomposition produces approximation
coefficients cA and multiple levels of detail coefficients c¢D;q, cDs, ...,cDy, at different

scales.

Step 2: Coefficient Processing Depending on the specific architectural variant,
the model processes the wavelet coefficients using one of the following two approaches:

e Masked Attention Approach: All coefficient sequences are concatenated in hierar-
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chical order and processed by a single transformer encoder with carefully designed
attention masks that respect the wavelet decomposition structure.

o Upsampling Approach: Higher-level coefficients are upsampled to match the length
of the lowest-scale coefficients, enabling data processing through a single trans-
former encoder with linear attention mechanisms.

Step 3: Feature Extraction The transformer encoder processes the coefficient
sequences using either standard scaled dot-product attention (for the masked approach)
or linear attention mechanisms (for the upsampling approach). The encoder captures
intra-scale relationships within the multi-resolution signal representation. The use of
learnable positional embeddings and classification tokens enables the model to aggre-
gate global information from the entire coefficient space.

Step 4: Classification The final classification stage uses the global representa-
tion from the transformer output and processes it through a two-layer fully connected
network with ELU activation. For the upsampling approach, the classification token is
concatenated for the final classification. For the masked approach, the class token is
directly used.

The key advantages of the final architecture include: (1) GPU-accelerated prepro-
cessing through convolutional approximation of DWT, (2) reduced parameter count
through unified transformer architecture, (3) linear computational complexity for long
sequences through efficient attention mechanisms, and (4) maintained multi-scale anal-
ysis capabilities for comprehensive fault detection. This design achieves a balance be-
tween computational efficiency and model performance, making it suitable for deploy-
ment in resource-constrained industrial environments while preserving the detection
capabilities of the original multi-scale approach.

4.5 Summary

This chapter presented a detailed exploration of classification-based fault detection
methods, progressing from baseline approaches to a novel multi-scale architecture and
its improvements for practical deployment.

The chapter began with the establishment of three baseline models that repre-
sent different directions in deep learning for sequential data processing. The 1D CNN
model demonstrated the effectiveness of hierarchical feature extraction through local
convolutional operations. The LSTM model showcased the power of recurrent architec-
tures in learning long-term temporal dependencies. The Transformer model illustrated
the capabilities of attention mechanisms in capturing complex relationships across
entire sequences without the sequential processing limitations of recurrent networks.
These baseline models provided important reference points for evaluating the proposed
methodology.

The initial proposed model introduced a novel approach that combines discrete
wavelet transform preprocessing with parallel transformer-based feature extraction.
The mathematical foundation was established from continuous wavelet transform to
discrete implementation via filter banks, demonstrating how multi-resolution analysis
enables simultaneous capture of temporal and frequency domain information. This
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architecture employed separate transformer encoders for different wavelet coefficient
types, followed by feature concatenation for final classification. While this approach
showed promise in using multi-scale signal characteristics, several practical limitations
emerged regarding computational efficiency and deployment feasibility.

To address these limitations, several improvements were implemented at three crit-
ical levels. First, the data preprocessing bottleneck was resolved by approximating
DWT operations through convolutional layers with fixed wavelet-based kernels, en-
abling parallel batch processing while maintaining mathematical equivalence. Second,
the parameter explosion problem was tackled through two architectural variants: a
transformer with masked attention that follows wavelet decomposition hierarchy, and
an upsampling-based approach that processes all coefficients through a single encoder.
Third, the attention mechanism was replaced with linear attention formulations that
reduce computational complexity from quadratic to linear with respect to sequence
length, making the approach scalable for longer signal sequences.

The final model architecture integrates all improvements into a system that main-
tains the multi-scale analysis capabilities of the original approach while achieving signif-
icant computational efficiency gains. The resulting architecture is ideal for implemen-
tation in resource-constrained industrial environments to offer real-time fault detection.

The classification-based approach presented in this chapter provides a solid foun-
dation for end-to-end fault detection systems that can directly map raw sensor data
to classification decisions, serving as a significant research contribution to the field of
automated condition monitoring in mechanical and electrical systems.
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Forecasting-based Fault
Detection

While most existing models perform fault detection through direct classification, an
alternative approach that leverages time series forecasting to enhance detection per-
formance is proposed in this chapter. This methodology represents a significant dif-
ference from conventional classification-based methods, drawing inspiration from the
remarkable success of state-of-the-art time series forecasting models in learning complex
temporal dependencies and capturing complex patterns in sequential data.

The core idea of this approach is to transform the fault detection problem from
a direct classification task into a forecasting-based inference mechanism. Instead of
training a model to directly discriminate between normal and faulty states, it employs
an unsupervised (self-supervised) learning strategy, where a forecasting model is trained
solely on data from normal operating conditions. The forecasting error is then used as
an indicator for state classification. This method offers distinct advantages in scenarios
where the temporal patterns of signals differ between normal and faulty operating
conditions.

5.1 Related Forecasting Models

Recent advances in time series forecasting have produced several state-of-the-art models
that achieve outstanding performance in modeling long-term dependencies and predict-
ing subsequent values in sequential data. These models have enriched the field of time
series analysis and provide the basis for the forecasting-based fault detection approach
proposed in this chapter. Here are some of the most notable models:

Informer [31] introduces a novel ProbSparse self-attention mechanism to address
the quadratic time and memory complexity of standard Transformers in long sequence
time-series forecasting. By selecting only the top-u dominant queries based on sparsity
measurement, it reduces the attention complexity to O(L log L) while preserving long-
range dependency modeling. In addition, Informer introduces a self-attention distilling
operation that hierarchically compresses the input sequence length across layers, further
enhancing efficiency and scalability for long-term forecasting tasks.

Autoformer [32] proposes a novel decomposition architecture that explicitly sepa-
rates time series into trend and seasonal components within the Transformer framework.
The model introduces an Auto-Correlation mechanism that identifies and aggregates
similar sub-series based on periodic dependencies, enabling more accurate modeling of
long-term and repeating patterns. Its progressive decomposition across layers allows
the model to capture complex temporal dynamics with multiple seasonalities.

FEDformer [33] introduces a dual-domain forecasting framework that combines
frequency-domain attention with time-domain decomposition. It employs Fourier trans-
forms to extract dominant periodic patterns in the frequency domain while modeling
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long-term trends in the time domain. This design enables effective learning of both
global periodic structures and local variations, making the model especially relevant
for complex long-term forecasting tasks.

PatchTST [31] proposes a patch-based representation of time series inspired by
Vision Transformers, where input sequences are segmented into fixed-length patches.
This strategy preserves local temporal structures while reducing input length, leading
to better efficiency. Channel-independent Transformers are used to model each variable
separately, enabling the model to generalize well across diverse multivariate time series
forecasting tasks.

These models have been shown to succeed in handling complex temporal depen-
dencies, capturing long-range relationships, modeling complex patterns, and giving
accurate forecasts in time series data. This proves their potential for applications be-
yond traditional forecasting problems, making them ideal candidates for fault detection
applications.

5.2 Proposed Model

To integrate forecasting capabilities into fault detection, a new framework that uses the
strength of advanced forecasting architectures is proposed. This approach transforms
fault detection from a direct classification task into a forecasting error comparison
problem.

5.2.1 Framework Overview

Similar to the idea of autoencoders, the proposed framework is trained using only
normal samples from the dataset, with the objective of learning the characteristics of
normal operating conditions and predicting future measurements. During the inference
phase, test samples are fed into the model to generate future predictions. The mean
squared error (MSE) between the predicted and actual future values is then calculated
and compared against a predefined threshold. If the error is below the threshold,
the sample is classified as normal; otherwise, it is classified as faulty. This approach
assumes that the model is capable of achieving higher prediction accuracy on samples
that exhibit temporal patterns similar to those observed in the normal data.

Mathematically, for a test sample z; with corresponding future sequence 1, the
classification decision is formulated as:

y = f(x) (5.1)
1 L
_ )
MSE = Z ;(yt,i - yi) (5-2)
Class — Normal if MSE. < threshold (5.3)
Fault otherwise

where f represents the forecasting model, L is the prediction horizon length, and
denotes the predicted future sequence.
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5.2.2 PatchTST Implementation

In the implementation of this framework, PatchTST is selected as the backbone fore-
casting architecture due to its outstanding performance in time series forecasting. The
PatchTST architecture processes raw time series signals by dividing them into non-
overlapping patches of fixed length. Each patch is treated as a token and linearly
embedded into a high-dimensional representation space. The model employs a stan-
dard transformer encoder to capture dependencies between patches, followed by a linear
projection layer that generates predictions for future time steps.

For fault detection applications, the input is historical signal segments of length T,
which are divided into patches of size P. The model learns to predict the subsequent
H time steps, where H represents the forecasting horizon. The forecasting value is
predicted in a non-autoregressive manner, meaning that the output is generated at
once.

The training process follows the standard time series forecasting practice. Historical
signal segments serve as input features, while future segments constitute the prediction
targets. The models are optimized using mean squared error loss, encouraging accurate
prediction of subsequent signal values.

5.3 Advantages and Limitations

As a forecasting-based approach falls under the category of unsupervised learning, it
shares both the advantages and challenges common to other unsupervised methods.
The success of this approach also relies on several key assumptions, which must be
carefully considered when applying it to real-world fault detection scenarios.

5.3.1 Advantages

Like most unsupervised learning methods, one of the key advantages of forecasting-
based fault detection is that it does not require a large amount of accurately labeled
data. Unlike supervised approaches, where model training depends on the availability
of labeled samples, this method enables the model to learn features of the data without
the need for labels. Specifically, in the self-supervised learning framework employed
here, the model learns to predict future values based on historical patterns in the data,
and the prediction error is used as an indicator for classification. By eliminating the
reliance on class labels and utilizing the data itself along with the prediction error for
decision-making, this approach becomes particularly well-suited for industrial applica-
tions, where labeled data are often costly or difficult to obtain. The ability to perform
fault detection using only the collected data makes this method a highly attractive
solution in such practical settings.

Another notable advantage of this approach is its inherent scalability to multi-class
problems, particularly in scenarios involving previously unseen fault types. Tradi-
tional classification models are typically limited to distinguishing among the categories
encountered during training. When new fault types emerge, the model lacks prior
knowledge of their characteristics and cannot classify them accurately. From an imple-
mentation perspective, the classification head is usually fixed to a predefined number of

37



classes, meaning the appearance of new classes often necessitates retraining the model.
In contrast, the proposed forecasting-based model is largely unaffected by the emer-
gence of new fault types, as long as their features differ sufficiently from those of the
normal data. For a well-trained model, if a newly encountered sample yields a predic-
tion error exceeding the predefined threshold, it can still be classified as a fault without
requiring additional retraining. This property makes the method particularly suitable
for real-world scenarios where fault categories are uncertain or subject to change over
time.

5.3.2 Limitations and Challenges

The fundamental assumption of this approach is that normal and faulty samples can
be distinguished based on their patterns and features. This assumption is critical, as
the classification mechanism relies on comparing the prediction error to a predefined
threshold. If the temporal dynamics of normal and faulty states are similar, the pre-
diction error may not provide sufficient discriminative power for reliable classification.
Therefore, the method assumes that normal operating conditions exhibit stable and
predictable temporal patterns that can be effectively modeled using prediction tech-
niques, while faulty states introduce significant deviations from these patterns, which
occur as increased prediction errors.

At the same time, forecasting-based methods are also sensitive to distribution shifts
between datasets collected under different operating conditions. This implies that the
method may produce false alarms when encountering normal data that deviates from
the training distribution. Environmental changes, load variations, or external distur-
bances that significantly alter the signal characteristics may lead to misclassifications,
even when the system remains in a healthy state. The choice of prediction horizon H
also significantly affects performance. Short horizons may not capture sufficient infor-
mation for discrimination, while long horizons may introduce prediction uncertainty
that degrades classification accuracy.

In addition to the aforementioned limitations, the proposed method also suffers
from several challenges associated with unsupervised learning. For instance, although
it does not require accurately labeled data, training the model still demands a large
volume of historical data to effectively learn the patterns. Furthermore, despite its
improved robustness to previously unseen fault types, the model is limited to binary
classification and is therefore not suitable for applications where precise identification
of fault categories is required. Finally, in terms of classification accuracy, unsupervised
approaches typically underperform compared to supervised classification models.

Despite these limitations, the forecasting-based approach offers unique perspectives
on fault detection that can complement traditional classification approaches or serve
as a standalone solution in appropriate applications.

5.4 Summary

This chapter introduced a novel forecasting-based approach for fault detection that is
different from conventional direct classification methodologies. The approach applies
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the advanced temporal modeling capabilities of state-of-the-art time series forecasting
models to enable fault detection through forecasting accuracy comparison.

Firstly, some recent advances in time series forecasting are reviewed. Highlight
models such as Informer, Autoformer, FEDformer, and PatchTST have demonstrated
remarkable performance in capturing complex temporal dependencies. These models
provide the technical implementation for the proposed forecasting-based fault detection
framework.

The core method involves training a forecasting model on normal data, then us-
ing forecasting accuracy as a discriminative feature for classification. PatchTST was
selected as the backbone architecture due to its excellent performance in patch-based
temporal modeling and computational efficiency. The framework transforms fault de-
tection from a direct classification problem into a forecasting error comparison task.

Like most unsupervised learning models, the forecasting-based approach is more
robust to unseen classes and does not rely on the availability of labeled data. However,
it also faces limitations such as its dependence on the learnability of feature patterns,
lower classification accuracy compared to direct classification models, and its inherent
restriction to binary classification tasks.

Despite its limitations, the forecasting-based approach offers a valuable alternative
perspective for fault detection. Its effectiveness largely depends on the assumption
that there exist sufficient differences in the temporal patterns between normal and
faulty states. When this assumption holds, the forecasting-based method is expected
to provide fault detection capabilities comparable to those of traditional classification-
based approaches.
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Experiments and Results

To evaluate the effectiveness and robustness of the proposed classification-based and
forecasting-based fault detection models, a series of experiments using both a project-
specific dataset (JKU) and a publicly available benchmark dataset (CWRU) were con-
ducted. This chapter presents the experimental details and key results obtained from
both modeling approaches. The experiments are designed to first validate model perfor-
mance in the target application domain, followed by broader comparisons on a bench-
mark dataset to assess generalization ability and comparability with prior work.

6.1 Experiments

Prior to the presentation and discussion of the results, it is important to clarify the ex-
perimental details. This section presents the experimental setup, dataset preprocessing,
evaluation strategy, and metrics used in the experiments.

6.1.1 Experimental Setup

All experiments were carried out on a computer equipped with an NVIDIA RTX 3060
GPU (6GB RAM). To ensure a fair comparison between models, consistent training hy-
perparameters were used across all experiments, except where model-specific or dataset-
specific configurations were required. The number of training epochs was kept constant
throughout all experiments to maintain comparability.

For the classification-based approach, the JKU dataset was first investigated, as
it is closely related to the target application scenario of this project. This dataset
enables direct evaluation of the model’s effectiveness in the specific domain of interest.
Subsequently, we extended the training and evaluation to the CWRU dataset, which is
a widely used benchmark in fault detection research. Using this benchmark allows for
comprehensive comparisons with existing works and also serves as a means to assess the
generalization capability of the proposed model. During training, the cross-entropy loss
function was employed to optimize classification performance, and the Adam optimizer
was used to ensure stable and efficient convergence.

In contrast, the forecasting-based approach was evaluated only on the CWRU
dataset. This choice was made because the CWRU dataset contains a variety of fault
types, including categories that can be treated as previously unseen, making it well-
suited for assessing the generalization capability of the model. Such a data struc-
ture provides an ideal environment for evaluating the performance and robustness of
forecasting-based fault detection methods. For this approach, the mean squared error
(MSE) was used as the loss function, and the Adam optimizer was employed for model
training.

40



6.1.2 Dataset Preprocessing

\
| | |
Training Validation Test

Figure 6.1: Segmentation of the CWRU dataset

For the CWRU dataset, each data file contains signals recorded under a specific
fault type and load condition. Since each file includes continuous data, segmentation
was necessary. To avoid data leakage and ensure rigorous evaluation, each file was
sequentially divided into training, validation, and testing subsets according to a fixed
ratio, as shown in Figure 6.1. Each segment was created using a window length of 2048
and a stride of 2048, ensuring no overlap between adjacent samples.

In contrast, each sample in the JKU dataset is of fixed length (408) and represents
an independent observation. Thus, no segmentation was required during preprocessing.

All datasets were standardized during preprocessing. This normalization step en-
sures that the input features fall within a similar range, which facilitates faster conver-
gence during training and prevents the model from being biased toward input dimen-
sions with larger absolute values. Additionally, for the forecasting-based approach, the
datasets were normalized to the range of [—1,1] to ensure that the model focuses on
the pattern of the input signals rather than the magnitude.

6.1.3 Evaluation Strategy

To account for the randomness in machine learning training processes, such as weight
initialization, batch shuffling, dropout layers, and optimization dynamics, specific evalu-
ation strategies aimed at reducing variance and improving the reliability of experimental
results were adopted.

For experiments based on the JKU dataset, k-fold cross-validation was used. In
this strategy, the dataset is divided into k subsets (folds) with equal size. In each
experiment, one fold is chosen as the test set. The remaining k-1 folds are used for
training. This process is repeated k times to ensure that every sample in the dataset
is used exactly once as a test sample. The final performance metrics are obtained by
averaging the results across all folds, which helps to mitigate overfitting and yields a
more stable evaluation of the model’s generalization ability.

However, for experiments involving the CWRU dataset, cross-validation is not ap-
plicable due to the time-dependent structure of the data segmentation. Each file in the
CWRU dataset represents a continuous time-series signal under specific working condi-
tions, and splitting this data across folds could violate temporal consistency, potentially
resulting in data leakage between training and testing sets. To address this, the in-
stead solution was to perform multiple independent runs of the training and evaluation
process and reported the average results. This approach helps smooth out fluctuations
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caused by random initializations and provides a fair estimate of model performance on
temporally structured data.

For the prediction-based approach, the evaluation procedure differs from that of
conventional classification methods. The dataset is first divided into three parts: the
training set contains only normal samples and is used to train the prediction model,
while the validation and test sets include both normal and abnormal samples. The
trained model is first applied to the validation set to conduct receiver operating char-
acteristic (ROC) curve analysis, which evaluates the trade-off between true positive
rate and false positive rate across a range of decision thresholds. To determine the
optimal threshold, Youden’s J statistic [35] is used, defined as

J = sensitivity + specificity — 1 (6.1)

where sensitivity is the true positive rate and specificity is the true negative rate. This
aims to maximize the difference between the true positive rate and the false positive
rate. The threshold that yields the highest J value is selected as the optimal decision
point. This threshold is then applied to the test set to distinguish between normal and
faulty samples, thereby assessing the final performance of the model.

6.1.4 Metrics

To evaluate the performance of the proposed approaches, the following classification
metrics were used. These metrics provide a comprehensive understanding of model
behavior from different perspectives, especially in the presence of class imbalance or
when different types of misclassifications have different implications.

Accuracy: Accuracy measures the proportion of correctly classified samples among
the total number of samples. It is defined as:

TP+TN
TP+TN+ FP+ FN

Accuracy = (6.2)
where TP, TN, FP, and FFN denote the number of true positives, true negatives, false
positives, and false negatives, respectively. Accuracy is applicable to both binary and
multi-class classification tasks and provides an overall measure of correctness.

Precision: In binary classification, precision evaluates the proportion of true posi-
tives among all predicted positives:

TP
Precision = ————— 6.3
TP+ FP (6:3)
For multi-class classification, precision is calculated in a macro-averaged manner, where

the precision is first calculated independently for each class and then averaged:

TF

—_— 4
TP+ FF (64)

1 C
Macro-Precision = ol E
i=1

where C' is the number of classes, and T'P;, F'P; denote the true positives and false
positives for class 7.
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Recall: In binary classification, recall measures the proportion of actual positives

that are correctly identified:

TP
Recall = m—m (65)

Similarly, for multi-class classification, macro-averaged recall is defined as:

c
1 TP
M - == -t .
acro-Reca G ;:1 TP+ FN, (6.6)

F1-score: The Fl-score is the harmonic mean of precision and recall. For binary

classification: Precis; Recall
recision - Reca
Pl 5. 6.7
score Precision + Recall (67)

In the multi-class case, the macro-averaged F1-score is defined as:

Precision; - Recall;

c
1
M -F1l = — 2- 6.8
acro - ;_1 (6.8)

Precision; + Recall;

These metrics were computed for each model and dataset configuration to ensure
a consistent and comprehensive evaluation. Macro-averaging ensures that all classes
contribute equally to the final score, which is particularly important when class distri-
butions are imbalanced.

6.2 Results

This section presents the results of the classification-based and forecasting-based ap-
proaches. Results are presented separately for each dataset, providing insights into how
each method performs under different data characteristics and application scenarios.
Since the ultimate objective of these models is to be deployed on edge devices with
limited resources, the parameter size of each model will also be provided.

6.2.1 Classification-based Approach On The JKU Dataset

First, the training and evaluation of the models on the JKU dataset are described.
Since each sample in the JKU dataset has a moderate length, there is no need to divide
the time series into shorter segments. Thus, 5-fold cross-validation is employed to
evaluate model performance, providing stable and reliable assessment across different
data partitions.

Furthermore, for wavelet-based models, a series of ablation studies are conducted
to investigate the effects of different wavelet settings. The wavelet transform allows for
various choices of mother wavelets (such as Daubechies, Symlets, Coiflets, Biorthogonal,
etc.) and decomposition levels, both of which can significantly influence the ability to
capture time-frequency features. To identify the optimal configuration, experiments are
carried out by varying the mother wavelet type and decomposition depth. The best-
performing setup is selected and used in the subsequent experiments. The ablation
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study is implemented on the previous proposed initial model. The results are shown in
Figure 6.2 and Figure 6.3. From the results, it can be observed that the model achieves
the best performance when using the Daubechies 4 wavelet and a decomposition level
of 3. So these settings are used in the subsequent experiments.

db4 Wavelet - Average Performance across Decomposition Levels
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Precision
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Figure 6.2: Performance on JKU dataset for different decomposition levels

Level 3 - Average Performance across Wavelet Types
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Figure 6.3: Performance on JKU dataset for different mother wavelets

The performance of the proposed model is shown in Figure 6.4. For the exact
results, please refer to Table A.1 in the Appendix. Besides, the model size of different
architectures on the JKU dataset is shown in Table 6.1.
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Model Comparison on JKU Dataset
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Figure 6.4: Performance on JKU dataset for the proposed model

Table 6.1: Model Size of Different Architectures on JKU Dataset

Model Model size
1D CNN 324.26 KB
LSTM 86.26 KB

Transformer 315.51 KB
Linear Transformer 315.51 KB
DWT + Multi-Transformer 1739.76 KB

CNN + Masked attention Transformer 319.79 KB
CNN + Upsampling + Linear attention 313.04 KB

6.2.2 Classification-based Approach On The CWRU Dataset

Before presenting the experimental results on the CWRU dataset, it is important to
consider the nature of the data. Since the samples from the CWRU dataset are ob-
tained through segmentation of continuous time-series signals, the choice of input win-
dow length can have a significant impact on both model performance and complexity.
Shorter windows may limit the amount of fault-related information available to the
model, while longer windows may increase computational cost and potentially intro-
duce redundant information.

To investigate this effect, a series of comparative experiments were conducted for
each model using four different input lengths: 256, 512, 1024, and 2048. These experi-
ments aim to analyze the relationship between the input sequence length, the resulting
model size, and the classification accuracy. By doing so, it is possible to identify the
optimal input configuration that balances performance and efficiency for practical de-
ployment.

The results of the models on the CWRU dataset for different input lengths are
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Table 6.2: Model Size of Different Architectures on CWRU Dataset

Model Input Length  Model size
1D CNN 256 324.79 KB
1D CNN 512 324.79 KB
1D CNN 1024 324.79 KB
1D CNN 2048 324.79 KB
LSTM 256 86.29 KB

LSTM 512 86.29 KB

LSTM 1024 86.29 KB

LSTM 2048 86.29 KB

Transformer 256 202.16 KB
Transformer 512 234.16 KB
Transformer 1024 298.16 KB
Transformer 2048 426.16 KB
Linear Transformer 256 202.16 KB
Linear Transformer 512 234.16 KB
Linear Transformer 1024 298.16 KB
Linear Transformer 2048 426.16 KB
DWT + Multi-Transformer 256 1542.66 KB
DWT + Multi-Transformer 512 1574.66 KB
DWT + Multi-Transformer 1024 1638.66 KB
DWT + Multi-Transformer 2048 1766.66 KB
CNN + Masked attention Transformer 256 204.48 KB
CNN + Masked attention Transformer 512 236.48 KB
CNN + Masked attention Transformer 1024 300.48 KB
CNN + Masked attention Transformer 2048 428.48 KB
CNN + Upsampling + Linear attention 256 206.60 KB
CNN + Upsampling + Linear attention 512 222.60 KB
CNN + Upsampling + Linear attention 1024 254.60 KB
CNN + Upsampling + Linear attention 2048 318.60 KB

shown in Figure 6.5, Figure 6.6, Figure 6.7, and Figure 6.8. The original results are
shown in Table A.2 in the Appendix. The model size of different architectures on the

CWRU dataset is shown in Table 6.2.

6.2.3 Forecasting-based Approach On The JKU Dataset

The ROC curve with input length of 720 and prediction horizon of 720 is shown in
Figure 6.9. This figure reflects the trade-off between the true positive rate and the false
positive rate. The area under the ROC curve (AUC) serves as an aggregate measure of
the model’s classification performance. A larger AUC indicates better discriminative
ability between normal and faulty samples. And the optimal threshold is selected as
the point that maximizes the Youden’s J statistic.

Figure 6.10 shows the performance of the proposed forecasting-based model on the
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Table 6.3: Performance of the proposed forecasting-based model on the CWRU dataset for
different input classes

Input class Accuracy Precision Recall F1-score

2-class 0.8923 0.9309 0.8570 0.8924
3-class 0.9048 0.9457 0.8856 0.9147

CWRU dataset for different input lengths. The results of different prediction horizons
are compared in Figure 6.11. All of the original results are reported in Table A.3 and
Table A 4.

Additionally, Table 6.3 compares the performance of the forecasting-based model
when exposed to different input classes after training. It can be observed that the
model’s performance remains relatively stable even when encountering previously un-
seen data, indicating its robustness to novel fault types.

6.3 Summary

This chapter presented the experimental settings and results of the proposed
classification-based and forecasting-based approaches on the JKU and CWRU datasets.
For classification-based approach, the results include the performance of the proposed
models, the model size of different architectures, and the comparison of the proposed
models with the baseline and unimproved models on the JKU and CWRU datasets.
For forecasting-based approach, the influence of different input lengths and prediction
horizons on the performance of the proposed model is investigated. More discussions
regarding the results are provided in the next chapter.
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Figure 6.5: Accuracy on CWRU dataset for different input lengths
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Figure 6.6: Precision on CWRU dataset for different input lengths
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Figure 6.8: Fl-score on CWRU dataset for different input lengths
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Prediction Horizon Comparison on CWRU Dataset (Input Length = 720)
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Discussion

This chapter discusses the results presented in the previous experiments, with a partic-
ular focus on comparing the proposed models with baseline and unimproved models on
two datasets in terms of both performance and model size. In addition, several observed
trends and phenomena are analyzed, and possible reasons behind them are explored by
considering both the model architectures and the characteristics of the datasets.

7.1 Classification-based Approach

7.1.1 Ablation Study: Impact of Decomposition Parameters

One key factor investigated in the ablation study is the impact of wavelet decomposition
level on model performance. As shown in Figure 6.2, the overall performance improves
when increasing the decomposition level from 1 to 3, with Level 3 achieving the best
results across all evaluation metrics. Specifically, Level 3 yields the highest accuracy
(0.9739), precision (0.9908), recall (0.9564), and F1 score (0.9732), suggesting that this
level offers an optimal trade-off between temporal resolution and feature abstraction.
When the decomposition level is increased further to Level 4, a slight decline is observed.
This indicates that overly deep decomposition may lead to information loss in high-
frequency components, thereby affecting the model’s ability to detect certain fault
features. Therefore, Level 3 is considered the most balanced and effective configuration
for this task.

In addition to decomposition level, the choice of mother wavelet also plays a crucial
role in the model’s performance. Figure 6.3 summarizes the average results for four
commonly used wavelets: db4, coifl, haar, and sym4. Among them, the db4 wavelet
consistently achieves the best overall performance, with the highest accuracy (0.9739),
precision (0.9908), recall (0.9564), and F1 score (0.9732). This suggests that db4 is
particularly well-suited for capturing the underlying features of the fault signals in the
given datasets. The haar and sym4 wavelets also produce competitive results, indicating
their effectiveness in certain cases. However, coifl lags slightly behind in all four
metrics, which may be attributed to its different time-frequency localization properties
and longer filter length. Overall, the results indicate that selecting an appropriate
wavelet basis is essential, and db4 provides a favorable balance between localization
and representation capacity for this task.

The varying performance across different wavelets and decomposition levels reflects
the fact that these wavelet bases were originally designed with different signal char-
acteristics and applications in mind. Each wavelet possesses distinct time-frequency
localization properties, which can significantly affect how signal features are captured
and represented. As a result, their classification performance differs when applied to
fault detection tasks.
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Moreover, the choice of decomposition level introduces a trade-off between signal
resolution and sparsity. Deeper decomposition levels may lead to sparser coefficient
representations, which in some cases improve generalization, but may also increase
sensitivity to noise or result in the loss of discriminative details. These findings highlight
the importance of carefully selecting both the wavelet basis and decomposition depth
according to the specific nature of the dataset and task.

7.1.2 Model Performance on JKU Dataset

The comparison of different models on the JKU dataset reveals several important in-
sights. As shown in Figure 6.4, traditional sequence models such as 1D CNN and LSTM
achieve reasonable performance, with the CNN slightly outperforming the LSTM in
terms of both accuracy and F1 score. However, both models fall short in recall, espe-
cially the CNN (0.9030), indicating a tendency to miss certain fault patterns.

In contrast, Transformer-based models demonstrate consistently strong results. The
standard Transformer already achieves an accuracy of 0.9740 and perfect precision,
while the Linear Transformer performs comparably with slightly lower recall. These
results confirm the Transformer’s strong capacity for capturing long-range dependencies
in time series data.

Notably, models that incorporate domain-aware components, such as wavelet
transform or attention masking, further improve performance. The DWT + Multi-
Transformer and CNN + Masked Attention Transformer achieve the highest F1 scores
(0.9732 and 0.9759, respectively), indicating superior overall classification ability. These
improvements can be attributed to better feature localization in time-frequency space
(from wavelets) and refined attention guidance (from masking). Interestingly, the CNN
+ Upsampling + Linear Attention model, though conceptually simpler, also performs
competitively (F1: 0.9666), suggesting that upsampling and weight sharing may help
reduce the model size and retain the feature extraction ability.

The model size is also a critical factor when considering deployment in resource-
constrained environments. As summarized in Table 6.1, most of the Transformer-based
models maintain relatively compact sizes, all around 315KB. The 1D CNN is slightly
larger (324KB), while the LSTM remains the most lightweight at only 86KB, which
makes it potentially attractive for edge applications despite its lower performance. On
the other hand, the DWT + Multi-Transformer model exhibits a significantly larger
footprint of 1739KB, more than five times the size of other models. This is due to the
added complexity from the multiple transformer encoders. While this model achieves
excellent performance, the increased cost in memory may limit its applicability in real-
time or embedded settings.

The CNN 4 Masked Attention Transformer and CNN + Upsampling + Linear
Attention models strike a good balance between performance and parameter size, both
achieving high F1 scores with model sizes below 320KB. This suggests that carefully
designed architectural improvements can enhance performance without incurring a large
increase in model size.
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7.1.3 Model Performance on CWRU Dataset

Experiments on the CWRU dataset reveal several important trends. First, increasing
the input length generally improves model performance across all architectures. This
aligns with the expectation that longer sequences provide richer fault-relevant context.
Second, models equipped with DWT or CNN-based DW'T mechanisms show noticeable
advantages at all input lengths, confirming that wavelet decomposition enhances signal
representation.

However, a striking observation is that classical models like 1D CNN outperform
Transformers at some input lengths. For example, at 256-sample input, the CNN
achieves an F1 score of 0.8445, while the best Transformer model reaches 0.8423. At
1024 samples, the CNN achieves 0.9659 in F1, whereas the Transformer remains lower at
0.9529. A possible explanation is that CNNs are inherently good at capturing localized
patterns, which is an inductive bias well aligned with the structure of vibration signals
in CWRU. In contrast, Transformers are designed to model long-range dependencies,
which may not be as critical in this dataset where the most discriminative features are
local.

Moreover, the performance gap may also stem from the nature of the dataset:
CWRU’s highly structured, repetitive fault signals favor models that can exploit lo-
cal temporal features. Transformers, being more data-driven and position-invariant,
may require larger datasets or more complex regularization to match the performance
of simpler, bias-driven models like CNNs.

Overall, the results support the conclusion that combining signal processing priors
(e.g., wavelet transforms) with attention-based architectures leads to more effective
fault classification, particularly in complex datasets like JKU.

7.2 Forecasting-based Approach

The results of the forecasting-based approach on the CWRU dataset demonstrate the
effectiveness of this method, particularly in scenarios involving previously unseen fault
types. As shown in Figure 6.9, when the input length and prediction horizon are
both set to 720, the area under the curve (AUC) reaches 0.968, indicating strong
discriminative capability between normal and faulty samples. The ROC curve also
provides a visual means to select the optimal threshold, facilitating a more reliable
evaluation of the model’s final performance.

Moreover, comparative analysis across different input lengths and prediction hori-
zons reveals several trends. For instance, when the prediction horizon is fixed, in-
creasing the input length generally leads to improved classification performance. This
aligns with expectations, as longer input sequences allow the model to capture more
informative features, thereby enhancing its predictive capability.

Conversely, when the input length is held constant and the prediction horizon is var-
ied, the model performance first improves and then declines. The initial improvement
may be attributed to the fact that abnormal patterns tend to occur more frequently
in the near-future trajectories, resulting in a greater divergence in the distribution of
prediction errors between normal and faulty samples. However, when the prediction
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horizon exceeds the model’s effective prediction capacity, the proportion of anoma-
lous segments in the predicted window diminishes, and their contribution to the mean
squared error (MSE) becomes diluted. As a result, normal segments dominate the
error calculation, reducing the separability between classes and ultimately degrading
classification performance.

When the trained model was evaluated using test sets containing two and three fault
types respectively, its performance showed no significant variation. The accuracy was
0.8923 in the two-class case and 0.9048 in the three-class case, indicating that the pres-
ence of previously unseen fault types did not substantially impact the model’s predictive
ability. This observation further supports the robustness of the proposed unsupervised
learning approach, demonstrating its capability to maintain stable classification results
even in the presence of unknown fault categories.

7.3 Summary

This chapter first discusses the performance of classification-based models. On the
JKU dataset, the effects of discrete wavelet transform (DWT') decomposition levels and
wavelet basis functions were evaluated. Through comparative experiments, the opti-
mal configuration was identified as a decomposition level of 3 with the ’db4’ wavelet.
This configuration was subsequently adopted for DWT-based preprocessing in further
validation on the JKU dataset. The results showed that the CNN + Masked Attention
Transformer and CNN + Upsampling 4+ Linear Attention models achieved a favorable
balance between performance and model size, indicating that architectural optimiza-
tions can reduce the number of parameters without sacrificing model effectiveness.

The performance of classification models was then examined on the CWRU dataset.
Since the CWRU dataset requires segmentation before use, the length of the input se-
quence naturally became a focus of investigation. Across input lengths of 256, 512,
1024, and 2048, all models exhibited better performance with longer input sequences.
However, it is noteworthy that although the improved CNN + Masked Attention Trans-
former model outperformed their unmodified counterparts and the vanilla Transformer,
their accuracy remained inferior to that of the conventional CNN at some input lengths.
A possible explanation is that fault features in the CWRU dataset are highly localized,
such as sharp spikes in vibration signals. This local feature is what CNNs excel, whereas
Transformer-based models tend to emphasize global contextual features.

For the forecasting-based approach, the model also demonstrated strong perfor-
mance. The investigation into input length and prediction horizon revealed that the
optimal configuration should be determined based on the specific characteristics of the
signal. Furthermore, comparisons involving different fault categories highlighted the
robustness of the method to previously unseen fault types.
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Conclusion

The proposed classification-based and forecasting-based fault detection models both
demonstrate strong performance in the target application domain. However, there are
still some limitations and potential improvements that can be explored in future work.

8.1 Conclusion

In this work, two Transformer-based models for motor fault detection were proposed.
The first is a supervised learning model based on classification. In this model, the
input signal is first processed by a convolutional layer designed to simulate discrete
wavelet transform (DWT) decomposition. The resulting multi-level coefficients are
then concatenated and passed through a masked attention mechanism to control the
flow of information. A variant of this approach involves upsampling the coefficients
to a uniform length, after which a shared linear attention module is applied. The
final output is represented by a class token, which is used for classification. These
architectural designs aim to fully leverage the multi-scale decomposition capabilities of
DWT, while optimizing memory efficiency through structural adjustments.

The second model is an unsupervised learning approach based on forecasting. In
this framework, only normal operating data are used during training. During valida-
tion, both normal and faulty samples are introduced to identify the optimal decision
threshold using the receiver operating characteristic (ROC) curve. In the testing phase,
samples are classified based on whether the prediction error exceeds the threshold.

Experimental results demonstrate that both models perform effectively on the target
datasets, validating their potential for practical deployment in real-world fault detection
scenarios. Each approach has distinct advantages and limitations: the supervised model
offers high accuracy given sufficient labeled data, while the unsupervised model pro-
vides robustness and label-independence, making them suitable for different industrial
contexts with varying constraints on computational resources, accuracy requirements,
and real-time processing demands.

8.2 Future Work

Despite the promising performance demonstrated on the given datasets, there remain
several aspects that can be further optimized. The following section outlines poten-
tial directions for future research, focusing on both model-level improvements and
hardware-level implementation considerations.
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8.2.1 Model-level Improvements

1. Multi-scale Decomposition Alignment: In the aforementioned classification
models, the multi-level DWT coefficients are either concatenated and processed
with a masked attention mechanism or upsampled to a uniform length for subse-
quent attention-based processing. However, this approach does not fully exploit
the hierarchical frequency characteristics inherent in different coefficients. There
remains significant research potential in how these features are represented and
utilized. Similar to challenges encountered in multimodal learning where fea-
tures from different modalities must be aligned within a shared semantic space,
the fusion of multi-scale coefficients may benefit from more advanced integration
strategies. For instance, employing cross-attention mechanisms or introducing
additional encoders to align features across different frequency levels may further
enhance the model’s performance.

2. Backbone Model for Forecasting: The current forecasting-based model
adopts PatchTST as the backbone architecture. In future work, a wider range
of forecasting models could be explored. These models vary in architectural de-
sign and may offer better suitability for the specific characteristics of the current
task, enabling more effective feature extraction and more accurate predictions.
By reducing prediction errors, such models could improve the model’s sensitivity
to abnormal patterns and ultimately enhance classification accuracy.

3. Hyperparameter Tuning: In DWT-based methods, the choice of decomposi-
tion level and wavelet basis function are two critical parameters. There is a wide
range of wavelet function families, each with different time-frequency localization
properties. The selected decomposition level determines the frequency bands to
which different coefficients correspond. For different types of signals and tasks,
alternative configurations of these parameters may offer improved performance
by enabling more accurate signal decomposition and providing richer multi-scale
representations.

8.2.2 Hardware-level Implementation

1. Hardware Deployment: This work was designed with a focus on improving
model performance while minimizing the number of parameters, in consideration
of future deployment in industrial scenarios where computational resources are
limited. As such, a key direction for future research will involve adapting the
proposed models for deployment on resource-constrained devices. This includes
challenges such as translating the models into suitable programming environments
and applying model compression techniques to reduce computational and memory
overhead, ensuring practical applicability in real-world industrial settings.

2. Latency Considerations: Another important factor to consider in hardware
deployment and practical applications is latency. The model’s ability to gener-
ate predictions in a timely manner is a critical evaluation metric, particularly in
scenarios with strict real-time requirements. Future deployment efforts should
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therefore include a thorough assessment of model latency, alongside accuracy
and memory consumption, to comprehensively evaluate overall performance under
real-world constraints.
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Extra Tables and Figures

Table A.1: Performance of Different Classification Models on the JKU Dataset

Model Accuracy Precision Recall F1 Score
1D CNN 0.9378 0.9698 0.9030 0.9350
LSTM 0.9225 0.9405 0.9080 0.9235
Transformer 0.9740 1.0000 0.9480 0.9733
Linear Transformer 0.9730 1.0000 0.9460 0.9722
DWT+Multi-Transformer 0.9739 0.9908 0.9564 0.9732
CNN+Masked Attention 0.9765 1.0000 0.9530 0.9759
CNN+Upsampling+Linear Att 0.9678 1.0000 0.9355 0.9666

Table A.2: Performance of Different Classification Models on the CWRU Dataset

Model Input Length Accuracy Precision Recall Fl-score
1D CNN 256 0.8454 0.8461 0.8443 0.8445
1D CNN 512 0.9195 0.9201 0.9190 0.9193
1D CNN 1024 0.9659 0.9659 0.9660 0.9659
1D CNN 2048 0.9795 0.9802 0.9795 0.9795
LSTM 256 0.7971 0.7950 0.7953 0.7942
LSTM 512 0.8671 0.8685 0.8667 0.8660
LSTM 1024 0.9564 0.9564 0.9564 0.9562
LSTM 2048 0.9850 0.9852 0.9848 0.9850
Transformer 256 0.5407 0.5505 0.5379 0.5346
Transformer 512 0.6421 0.6448 0.6394 0.6382
Transformer 1024 0.7343 0.7400 0.7322 0.7309
Transformer 2048 0.8564 0.8658 0.8554 0.8564
Linear Transformer 256 0.5614 0.5619 0.5586 0.5577
Linear Transformer 512 0.6471 0.6468 0.6445 0.6435
Linear Transformer 1024 0.7450 0.7412 0.7432 0.7412
Linear Transformer 2048 0.8693 0.8760 0.8687 0.8700
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Model Input Length Accuracy Precision Recall Fl-score
DWT+Multi-Transformer 256 0.8114 0.8136 0.8102 0.8108
DWT+Multi-Transformer 512 0.9207 0.9229 0.9199 0.9204
DWT+Multi-Transformer 1024 0.9529 0.9559 0.9523 0.9529
DWT+Multi-Transformer 2048 0.9807 0.9810 0.9807 0.9808
CNN-+Masked Attention 256 0.8436 0.8427 0.8425 0.8423
CNN+Masked Attention 512 0.9307 0.9320 0.9301 0.9304
CNN+Masked Attention 1024 0.9500 0.9503 0.9491 0.9492
CNN+Masked Attention 2048 0.9757 0.9781 0.9753 0.9755
CNN+Upsampling+Linear Att 256 0.7907 0.7931 0.7892 0.7906
CNN+Upsampling+Linear Att 512 0.9207 0.9218 0.9197 0.9198
CNN+Upsampling+Linear Att 1024 0.9421 0.9436 0.9416 0.9421
CNN+Upsampling+Linear Att 2048 0.9671 0.9674 0.9668 0.9669

Table A.3: Performance of Forecasting Models of Different Input Lengths (Prediction Horizon:

336)

Input Length Accuracy Precision Recall F1 Score
336 0.8681 0.9915 0.7573 0.8587
512 0.8705 1.0000 0.7548 0.8602
720 0.8893 0.9554 0.8284 0.8874

Table A.4: Performance of Forecasting Models of Different Prediction Horizons (Input Length:

720)

Prediction Horizon Accuracy Precision Recall F1 Score
336 0.8893 0.9554 0.8284 0.8874
512 0.8887 0.9353 0.8464 0.8886
720 0.8923 0.9309 0.8570 0.8924
900 0.8691 1.0000 0.7487 0.8563
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