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A B S T R A C T

In emergencies, high stake decisions often have to be made under time pressure and strain. In order to support
such decisions, information from various sources needs to be collected and processed rapidly. The information
available tends to be temporally and spatially variable, uncertain, and sometimes conflicting, leading to
potential biases in decisions. Currently, there is a lack of systematic approaches for information processing
and situation assessment which meet the particular demands of emergency situations. To address this gap,
we present a Bayesian network-based method called ERIMap that is tailored to the complex information-
scape during emergencies. The method enables the systematic and rapid processing of heterogeneous and
potentially uncertain observations and draws inferences about key variables of an emergency. It thereby
reduces complexity and cognitive load for decision makers. The output of the ERIMap method is a dynamically
evolving and spatially resolved map of beliefs about key variables of an emergency that is updated each time a
new observation becomes available. The method is illustrated in a case study in which an emergency response
is triggered by an accident causing a gas leakage on a chemical plant site.
1. Introduction

Situation awareness is crucial to emergency response. To improve
the awareness of the situation, information from various sources is
collected, assessed and combined [1,2]. In emergency response, the
process of building situation awareness often has to be performed under
time pressure, even though the stakes are extremely high [3–5]. What
is more, emergencies usually are complex situations which are charac-
terised by a multitude of spatially distributed and dynamically evolving
factors. Accordingly, heterogeneous and uncertain information about
very different aspects needs to be continuously combined [6] to under-
stand the situation on the ground, and its implications for people and
livelihoods. To be sure, analysing the situation is a continuous process
that is interlaced with decision making [7]: as decision makers assess
their options, new information becomes available to which plans need
to be continuously adapted [6].

Automated or semi-automated methods to support emergency de-
cision making need to reflect this combination of complexity and
urgency [8]. We aim for a method that strikes a balance in this area of
tension and is therefore able to inform emergency responders in near
real-time during emergencies. This implies that the method must be
able to handle (i.e. classify and process) the volatile and heterogeneous
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E-mail address: moritz.schneider@dlr.de (M. Schneider).

information-scape that is available during emergencies, and it needs to
do so under considerable time pressure. These requirements are in stark
contrast to related methods for post-disruption analyses that typically
show less time-constraints (e.g. see [9,10] or [11]) and allow data to
be collated and pre-processed over a longer period of time.

1.1. Information-scape in emergency response

Emergencies have widely been described as events that challenge
conventional information processing, decision-making and coordina-
tion [12–14]. Therefore, the methods to address emergencies need to be
tailored to this context. To address the specific information-scape that is
characteristic for emergencies and to ensure that the resulting method
can be applied in a variety of emergency response contexts, we analyse
the emergency response literature and derive a set of six requirements
(R1-R6) that need to be fulfilled together. These six requirements are
geared to ensure versatile and comprehensive processing and mapping
of the information that becomes available during emergency situations.
In the following, we present the six requirements, each with a brief
justification from the literature.
https://doi.org/10.1016/j.ress.2024.110640
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In an emergency, the information available typically presents a
ragmented description of the actual situation. Especially in the initial

stages of an emergency, information is often scarce or incomplete [15,
16]. A suitable method needs to be capable of providing meaningful
nsights [17,18] based on limited or incomplete information, which

leads us to requirement R1: process incomplete information.
Further, emergencies are characterised by a plethora of informa-

ion sources, from which data needs to be rapidly combined [19].
This entails combining information about the background (such as
built environment [20], topography [21] or socio-economic informa-
ion [22,23]) as well as volatile information about damage and risk
e.g., satellite imagery [24], sensor data [25,26], reports from eye-
itnesses or social media information [27,28]). This leads us to R2:

process information from diverse sources.
At the same time, emergency information is increasingly charac-

terised by misinformation and noise [29]. When incorporating infor-
mation from diverse sources, it should be considered that not every
iece of information is unambiguous and not every information source
s 100% reliable (people make mistakes and sensors malfunction).
or the processing of information, this means that the level of un-
ertainty associated with different information sources must be taken
nto consideration [30,31], which leads us to R3: process uncertain
nformation.

Another aspect when incorporating information from multiple sou-
rces – which might differ with regard to their specific perspectives,
biases or levels of expertise [32,33] – is that different observations can
ontradict each other (source A says Yes, source B says No). A suitable
ethod should therefore incorporate a scheme for handling this type

f noisy information, leading us to R4: process conflicting information.
A characteristic aspect of assessing an emergency situation is that it

s a dynamical task that extends over the entire course of the emer-
ency – during the assessment, the situation itself as well as the
vailable information about it develop dynamically [12,34]. For a
uitable method this implies that it should be capable of dynamically
ncorporating new information – i.e., as the actual situation evolves
nd new observations trickle in, the assessment of the situation should
volve accordingly [18,35]. The dynamic information situation during
n emergency leads us to R5: process dynamic information.

A last crucial aspect of emergency situations is their spatial dimen-
sion [4,36]. A comprehensive understanding of the geographic extent
of an emergency and its impact at different locations is essential for
an effective emergency management, e.g., for prioritising response ef-
forts [12,18]. Therefore, a suitable method should allow for processing
and mapping the spatially distributed information that characterises the
emergency event. This leads us to R6: process spatial information.

To summarise, a method for processing observations in emergency
response needs to meet all of the following six requirements:

• R1: process incomplete information
• R2: process information from diverse sources
• R3: process uncertain information
• R4: process conflicting information
• R5: process dynamic information
• R6: process spatial information

1.2. Research gap and main contribution

In this paper, we present ERIMap (Emergency Response Inference
apping), a new method for supporting situation awareness that is de-

igned to take into account the specific information-scape in emergency
esponse. Because of the strength of Bayesian networks (BN) in struc-
uring and organising uncertain information flows, we selected a BN as
he core of our method. In the past, several BN-based approaches have
een put forward that fulfil some of the aforementioned requirements
see Section 2.3). However, there is currently no method that meets all

of them. This is precisely what ERIMap has to offer.
2 
With regard to the fulfilment of all requirements, it is particularly
noteworthy that, to date, there are only a few methods that consider
uncertain evidence in BNs (e.g. see [37]. This is crucial because the
onsideration of uncertain evidence is a necessary prerequisite for

treating uncertain (R3) and possibly contradictory observations (R4)
– and thus it is also required to responsibly fulfil R2 (e.g., when incor-
orating information from eye-witnesses or social media). According
o the recent work of Munk et al. [38], this lack of consideration

might be due to a lack of consensus on which type of uncertain
vidence should be applied in which case. We address this issue by

introducing a novel classification scheme (see Fig. 5) that selects the
right’ type of (uncertain) evidence for a particular observation based
n a small set of pre-defined properties describing the corresponding
bservation source. Our classification scheme is designed to allow for
 fast processing of large amounts of diverse observations, which is
rucial regarding the time pressure in emergencies and the complexity
f the corresponding situations. In this way, ERIMap supports situation

awareness by mapping inferences drawn from processing incomplete,
ncertain, and conflicting observations from diverse sources which

evolve dynamically and are spatially distributed.
In the remainder of this work, first, some background on BNs is

provided. Special emphasis is placed on the introduction of uncertain
evidence, the combination of a BN and a GIS, and relevant literature
that deals with observation processing in BNs. Second, our ERIMap
method is introduced. Third, while the method is generally applicable
in a variety of emergency scenarios, we decided to demonstrate it in
a specific case study to provide an end-to-end walk-through of the
proposed methodology. We developed the case study with practitioners
from a plant fire brigade of Henkel, a multinational marked-listed
chemical company, headquartered in Germany. In the scenario of the
case study, a chlorine gas tank leak causes a gas dispersion throughout
a chemical plant site. Fourth, the results of the case study are presented
using multiple synthetic outcomes of the scenario that include different
observation sequences. Finally, the proposed method is discussed and
future work is outlined.

2. Bayesian networks

Bayesian networks (BNs) are probabilistic graphical models consist-
ing of directed acyclic graphs [39] (see Fig. 1). They present a powerful
tool to embed knowledge and to perform belief updates about variables
given new information about other variables. In particular, they allow
to draw such inference on the basis of incomplete and uncertain ev-
dence. Bayesian networks are already used in a variety of research
ields to inform decision makers (see [40] for an overview of topics).

Several recent studies based on BNs have been published in the realm
f decision making in complex systems, such as analyses to inform
bout the resilience of a system under stress [11,41], assessments to

inform about the risks posed by accidents [42] or natural hazards [43],
methods to inform about the reliability [44,45] or safety [46,47] of an
engineering system, or methods to inform about emergency response
performance [48,49].

Bayesian networks are composed of nodes representing system vari-
bles as probability distributions and directed edges representing their
robabilistic dependencies [39]. Nodes can be either dependent (see

node Y in Fig. 1) or independent (see node X in Fig. 1). An independent
node is described by a Marginal Probability Table (MPT) (see left
table in Fig. 1). A dependent node does have at least one parent
ode and is hence described as child node. To each dependent node,
onditional Probability Tables (CPT) are assigned (see right table in

Fig. 1), containing one probability value for every possible combination
of child node and parent node states. Given evidence on node 𝑌 , e.g. 𝑌
is in state 𝑦1, the Bayes’ rule (see Eq. (1)) can be applied to infer the
probability of 𝑋 given new evidence, i.e. 𝑃 (𝑋|𝑌 = 𝑦1).

𝑃 (𝑋|𝑌 ) = 𝑃 (𝑌 |𝑋) ⋅ 𝑃 (𝑋) (1)

𝑃 (𝑌 )
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Fig. 1. Example of a BN with two nodes, one edge, and respective marginal and conditional probability tables.
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In the following, an introduction to processing various types of
vidence in BNs is presented and the procedure for connecting BNs
ith GIS is detailed. In addition, relevant methods for processing
bservations using BNs are introduced.

2.1. Evidence in Bayesian networks

Belief updates in BNs require evidential findings (or observations)
regarding the state of one or multiple nodes of the BN [50]. Evidence in
 BN can be either certain (also called hard evidence) or uncertain [51,

52]. Uncertain evidence can be of two types: soft evidence [53] or
irtual evidence [54]. Each of the three types of evidence (hard, soft,

and virtual) follows a different belief update rule [52].
Given hard evidence on a node of a BN, the exact state of this

node is known with certainty [51]. This means that an observation
hich provides hard evidence is considered to be undoubtedly true

in contrast to virtual evidence) and perfectly precise (in contrast to
oft evidence). Entering hard evidence into a BN is straightforward:
he respective node is simply set to the reported state (e.g., node 𝑌 is
n state 𝑦1) or, in terms of likelihoods, the likelihood of the reported
tate is set to 1 while the likelihood of all other states is set to 0
e.g., 𝐿(𝑌 ) = (1, 0)).
Virtual evidence reflects uncertainty about whether a reported

bservation is true. It can thus be interpreted as evidence with uncer-
ainty [52], which is represented as a likelihood ratio [54]. Examples

of virtual evidence are matters of varying veracity or accuracy, such
as information provided by an imperfect sensor [55] or information
provided by a person who has only partially observed an area [56].
Given virtual evidence on a node of a BN, an additional virtual child
node (node Obs in Fig. 2) is attached to the respective node [51]. The
initial CPT (likelihood ratio) of the binary child node represents the
presumed likelihood that the underlying observation is true (85% for
ode Obs in Fig. 2). The belief update about the originally addressed
ode in the BN (node 𝑋 in Fig. 2) is then obtained by propagating hard

evidence from the virtual child node, assuming that it is in state True
(𝑂 𝑏𝑠 = True).

Soft evidence considers the uncertainty which is included in a
eported observation. It can thus be interpreted as evidence of uncer-
ainty [52], which can be represented as a probability distribution
f one or more variables [53]. Given soft evidence on a node of a
N, one is uncertain about the precise state of the node but certain
bout its probability distribution [51]. In contrast to virtual evidence,
oft evidence can be interpreted as a new probability distribution of
 variable that arose after creation of the model [55]. To enter soft

evidence about one node into a BN, this evidence can be converted into
 virtual evidence. To this end, the likelihood ratio of the additional

virtual child node is calculated as the quotient of the probability ratio
(𝑋) and the prior probability of the addressed variable 𝑃 (𝑋) (see
q. (2)). Subsequently, 𝐿∗(𝑋) is normalised to one (see Eq. (3)). The
ollowing steps to perform belief updates in the BN are the same as for
irtual evidence in case of a single soft evidence.

𝐿∗(𝑋) = 𝛬(𝑋)
𝑃 (𝑋)

(2)

𝐿(𝑥1,… , 𝑥𝑛) =
(

𝐿(𝑥1)
∑𝑛

𝑖=1 𝐿(𝑥𝑖)
,… ,

𝐿(𝑥𝑛)
∑𝑛

𝑖=1 𝐿(𝑥𝑖)

)

(3)
3 
The conversion from probability ratio into likelihood ratio compen-
ates for the influence of the prior distribution of node 𝑋. Given the
btained virtual evidence with the likelihood ratio 𝐿(𝑋) on node 𝑋,
he posterior probability of node 𝑋 is equal to the probability ratio
(𝑋) provided by the soft evidence.

Soft evidence can be fixed or not-fixed. Fixed soft evidence is imple-
ented by assigning a new probability distribution for the respective

ariable and is considered as immutable, even in case of later observed
vidence for other nodes in the BN [55]. In case of not-fixed soft

evidence, the belief about the respective node can change in response
to evidence for other nodes in the BN [55]. It should be noted that in
this work we only consider not-fixed soft evidence and thus the term
soft evidence always refers to not-fixed soft evidence.

2.2. Bayesian networks combined with geographic information systems

Bayesian networks are increasingly used for spatial inference. The
interaction between a GIS and a BN can be bidirectional: GIS layers
can be used as input for BN nodes and inference on BN nodes can be
represented in a GIS. An example of a GIS input to and output from a
BN is shown in Dlamini [57] who presented a BN model for fire risk
mapping using GIS. Another example is shown in Wu et al. [58] who
developed a BN model with the goal of estimating the probability of a
flood disaster.

To simplify and automate the link between the BN and the GIS,
he attributes in the GIS layers must be linked to the corresponding
tates of the BN’s variables. For example, a node Landuse of a BN with
tates Forest, Industrial, and Urban can be informed by a GIS layer
hat includes a spatial mapping of these three types of landuse. To
reate the output of the GIS-informed BN, the area under consideration
ust be divided into subset areas in the GIS, e.g. with a tessellation

pproach [59]. These subset areas determine the resolution of the
subsequent analysis. A subset area should show attributes that are as
homogeneous as possible. In each of these areas, inference in the BN
is performed using the layer attributes of the respective area in the
GIS. The results of the inference in the BN for a key variable, such as
Risk of Fire in [57], can be displayed using a heat map that colours
the respective areas, depending on the probability of the risk for the
espective area (e.g. see [58,60]).

2.3. Bayesian networks for observation processing

Although, to the best of our knowledge, no one has yet presented a
BN-based method that fulfils all six requirements (see Section 1.1), sev-
eral authors have addressed subsets of them (see Table 1) – note that, at
this point, we refer to the field of BNs in general, not specifically to ap-
plications for emergency management. First of all, drawing inferences
on the states of some nodes based on incomplete information regarding
ther nodes of the network is one of the core features of a BN (see R1 in

Table 1). Integrating multiple sources to inform the BN is feasible since
Ns generally allow for the incorporation of different types of input

data (R2). For instance, Valtorta et al. [53] and Mrad et al. [56] pre-
sented examples of uncertain evidence that illustrate the consideration
f evidence from multiple potential observation sources. To account for
ncertainties associated with different observation sources, both works
ade use of uncertain evidence (see R3 in Table 1). In addition, Chan

and Darwiche [61] dealt with the question on how to capture informal
statements as uncertain evidence in a BN. The use of uncertain evidence
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Fig. 2. Illustrative example of a BN with two initial nodes and one virtual node.
Table 1
Summary of main references in regard to six properties of an observation.

(R1) (R2) (R3) (R4) (R5) (R6)
Reference Incomplete Diverse sources Uncertain Conflicting Dynamic Spatial

Chan and Darwiche [61] ✓ ✗ ✓ ✗ ✗ ✗

Mrad et al. [56] ✓ ✓ ✓ ✗ ✗ ✗

Giordano et al. [37] ✓ ✗ ✓ ✗ ✗ ✓

Wu et al. [58] ✓ ✗ ✗ ✗ ✗ ✓

Johnson et al. [63] ✓ ✗ ✗ ✗ ✗ ✓

Peng et al. [52] ✓ ✗ ✓ ✓ ✗ ✗

Radianti et al. [62] ✓ ✗ ✗ ✗ ✓ ✓

Valtorta et al. [53] ✓ ✓ ✓ ✗ ✗ ✗

ERIMap method ✓ ✓ ✓ ✓ ✓ ✓
a
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also enables dealing with inconsistent or contradictory observations, as
has been practised by Peng et al. [52] (R4). Displaying the dynamic
rogression of key variables of a situation given new observations can
lso be achieved using a BN (R5). For instance, Radianti et al. [62]
escribed a spatio-temporal model based on a dynamic BN with the

intent of supporting real-time evacuation planning. And finally, by
ombining a BN with a geographic information system (GIS), the spatial
imension of an emergency can be considered (R6). The combination
f BN and GIS has been practised several times [63], e.g., by Giordano

et al. [37] to support conflict analysis for groundwater protection or
by Wu et al. [58] to enable spatial analysis of flood disaster risk.

Table 1 clearly shows that no reference addresses all six require-
ents for observation processing in emergency response. However,

the table also shows that BNs are generally suitable for the creation
f a method which meets all six requirements, i.e. a method that is
apable of processing observations that are incomplete (R1), come from
iverse sources (R2), are uncertain (R3), conflicting (R4), dynamic (R5)
nd spatially distributed (R6). In this paper, we make us of BNs to create
RIMap, a method that covers all six requirements for information
rocessing in emergency response.

3. ERIMap method: Emergency response inference mapping

The goal of the ERIMap method, is to draw inferences by processing
observations from multiple sources, which may be incomplete, uncertain,
conflicting, dynamic and spatially distributed. The application of the
method is divided into two phases: the preparation phase which takes
place before an event (see left side of Fig. 3) and the operation phase

hich describes the application of the method during an emergency
see right side of Fig. 3).

3.1. Preparation phase

3.1.1. Bayesian network construction
The first step of the preparation phase is the construction of a BN

odel for the intended area of application. The BN should include
ll variables that are key for decision making in a specific emergency

(e.g. a flood or a forest fire scenario) as well as variables that directly
or indirectly influence (the belief about) these key variables [58]. To
4 
make sure that the ERIMap method meets the demands of the users,
ll considered variables and the relationships between them should be
dentified in cooperation with decision makers in emergency response.
urthermore, additional sources can be incorporated to determine the
robability tables of the BN (MPT and CPT), e.g., historical data or
xpert knowledge [64].

3.1.2. Area specification
In the second step of the preparation phase, the spatial resolution

or the emergency consideration is specified – i.e., areas are specified
which are to be assessed individually (see Fig. 4). Depending on the
ase, these areas can, for instance, correspond to districts, buildings,
r specific point locations. To allow independent inference in the BN
or each area, a duplicate of the initially constructed BN is assigned to

each area (white nodes in Fig. 4). These initially identical BNs start
to diverge as soon as they are fed with area-specific evidence – a
rocess which is particularly impressive for uncertain evidence: Given
ncertain evidence for a specific area, a virtual child node is added to
he respective BN (orange nodes in Fig. 4); while BNs in other areas
emain unchanged. Layers in the GIS that should serve as observation
ources for the BN have to be linked to the attributes of the respective

BN node states, i.e. they are used as inputs for BN nodes [63]. Besides
using the GIS to inform the BN, the GIS serves to spatially display the
esults obtained from the BNs.

3.2. Operation phase

3.2.1. Observation requirements
One of the core features of the proposed method is a procedure for

translating different types of observations into evidence that can be
considered in the BN. A necessary requirement for this transfer is that
an observation contains five pieces of information:

(1) The time at which the observation has been conducted is used
to display the temporal progression of the belief about variables in
the BN. For example, it is important to know if an observation stating
that people are in a building has been conducted before or after an
evacuation of that building.

(2) The location of the observation must be specified to enable the
assignment of the observation to the respective area-specific BN(s).
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Fig. 3. Overview of the structure of the method and division of the following sections. The preparation phase includes the construction of the BN and specification of areas or
locations. During the emergency operation phase, observations are collected and processed.
Fig. 4. Illustration of one initial BN (white filled nodes) duplicated for four different
reas. For each area, different virtual nodes (orange filled) are added.

(3) The node about which the observation provides evidence. This
information is required to assign the observation to the respective node
in the BN.

(4) The reliability of the observation source. A source can be fully
reliable or not. The classification of reliability is important to avoid
excessive influence of observations from unreliable sources.
5 
(5) The observed state(s) of the node. Corresponding information
can originate from (I) an unambiguous statement (e.g. ‘‘there is fire’’)
or (II) an uncertain statement (e.g. ‘‘I think I saw a fire’’).

For (I) – an unambiguous statement – hard or uncertain evidence
can be considered, depending on the presumed reliability of the
information source. For instance, a unambiguous observation
(e.g., ‘‘there are no people in building A’’) provided by an
emergency response team may be considered as ‘confirmed’
(hard evidence) while social media reports may be considered
as ’not fully reliable’ (uncertain evidence). In the latter case, the
method introduced in Section 3.2.3 is applied.
For (II) – an uncertain statement – virtual evidence needs to be
distinguished from soft evidence. In case of virtual evidence,
the corresponding likelihood ratio is integrated by adding an
additional virtual child node which influences the state of the
respective parent node (see Section 2.1). For example, given
a node called Fire, which is used to infer the probability of
a fire occurring, a potential indication child node could be
a node Smoke Alarm that is linked to a smoke detector. The
likelihood values for false-positive and false-negative observa-
tions of the smoke detector constitute the likelihood ratio of
the node Smoke Alarm. By performing hard evidence on node
Smoke Alarm, 𝑃 (𝐹 𝑖𝑟𝑒|𝑆 𝑚𝑜𝑘𝑒𝐴𝑙 𝑎𝑟𝑚) is inferred using Eq. (1). In
case of soft evidence, the obtained probability ratio describes
a new probability distribution of a particular node and thus
replaces the prior probability distribution following the routine
outlined in Section 2.1. An example is a node Building Use that
has initially been set up and trained for a whole city in which
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80% of the buildings are apartment buildings and 20% are used
for commercial purposes. If the same BN would now be used for
a district in this city where commercial use of buildings is much
more probable (e.g. 90%), this new probability ratio shows a
higher accuracy than the prior probability of the node Building
Use and is thus implemented using soft evidence.

3.2.2. Observation processing
In the operation phase, new observations are processed and fed into

the area-specific BNs according to a specific workflow (see Fig. 5).
Given a new observation, it is first assigned to the respective area-
specific BN(s) and then to the node which is addressed in this observa-
tion. Afterwards, the method classifies the type of evidence (hard, soft,
or virtual) based on the reliability score of the observation source and
on the reported node state(s). For an unambiguous observation provided
by a source that shows a small or medium reliability (𝑅𝑆1 and 𝑅𝑆2), the
method introduced in Section 3.2.3 is applied and a virtual child node
is added to the respective node in the BNs. In case of an observation
provided by a source that shows a high reliability (𝑅𝑆3), three cases
re distinguished: (1) an unambiguous observation without uncertainty
hat results in computing hard evidence, (2) a probability ratio, which

shows a higher accuracy than the prior distribution and thus replaces
t (soft evidence), and (3) a likelihood ratio that provides evidence

with uncertainty (virtual evidence). In case (2) and (3) a virtual child
node is added (see Section 2.1). Subsequently to this classification, a
elief update for all key variables in the BNs of the respective areas

is performed. The operation phase stops when all key variables are
confirmed.

3.2.3. Processing unambiguous observations
To account for uncertainty related to observations from unreliable

sources, these observations are translated into virtual evidence [65]. An
observation source can be classified as unreliable for several reasons,
e.g. (1) it is not known whether the person who provides an observation
had access to all areas; (2) a person is not sure about an observation;
(3) unreliable sensors.

To translate an unambiguous observation from an unreliable source
nto virtual evidence, two pieces of information are used in this method:
he reliability score (RS) of the observation source and the criticality of
he reported node state. For the RS, using predefined scores supports a
uick classification during an emergency situation. We therefore define

three example RSs which describe different degrees of reliability:
𝑅𝑆1: Small Reliability
𝑅𝑆2: Medium Reliability
𝑅𝑆3: High Reliability
A likelihood is assigned to each 𝑅𝑆𝑖 that quantifies the certainty

f the observation. This likelihood, which can be interpreted as the
hance that the observation is correct [61], is used to fill in the CPT of

the respective virtual child node. Note that in case of a BN composed
of only binary nodes, virtual evidence with a likelihood ratio of (0.5,
0.5) will show no effect on the respective posterior probability of the
node. The likelihood values for the respective RSs should be selected
n collaboration with potential users to reflect their preferences. The
eneral case of a node 𝑋 with 𝑁 states, i.e. 𝑋 = {𝑥1, 𝑥2,… , 𝑥𝑁}, the
ikelihood ratio given an unambiguous observation stating node 𝑋 is in
tate 𝑥1 is:

𝐿(𝑋) =
(

𝐿(𝑅𝑆𝑖),
1 − 𝐿(𝑅𝑆𝑖)

𝑁 − 1 ,… ,
1 − 𝐿(𝑅𝑆𝑖)

𝑁 − 1
)

In this way, the posterior probability of state 𝑥1 is increased (when
performing hard evidence on the respective virtual child node) and at
he same time the posterior probabilities of the other node states are
ecreased, while the ratio between the other node states remains the
ame.

In a next step, a regret function is introduced to better deal with con-
flicting observations. Using the example of a node People in Building, one
observation could state that people are in the building while another
6 
observation could state the opposite. In order to avoid that the two
observations cancel each other out (assuming both sources share the
same RS), the precautionary principle is applied: emphasise is placed
on the node state that is more critical (i.e. people are in the building).
This is achieved by increasing the likelihood of the critical node state
by a certain percentage 𝛩. The derived generalised likelihood ratio thus
becomes:

𝐿∗(𝑋) =
(

(𝐿(𝑅𝑆𝑖) + 𝛩),
1 − (𝐿(𝑅𝑆𝑖) + 𝛩)

𝑁 − 1 ,… ,
1 − (𝐿(𝑅𝑆𝑖) + 𝛩)

𝑁 − 1
)

,

for 𝑥1 being the observed critical node state. Note that the regret
function is only applied to nodes whose states exhibit different levels
of criticality.

4. Case study

In this section, our ERIMap method is applied to a case study which
as been developed in cooperation with the plant fire brigade of the
erman chemical company Henkel. A chemical plant site inspired by
ne of Henkel’s sites is used as geographical setup (Fig. 6). The scenario
s triggered by an accident between a truck and a tank wagon on a

railway at a junction on the northern edge of the site (see top right of
Fig. 6). The accident results in a gas leak, and potentially dangerous gas
is dispersed throughout the site. In such an emergency, various sources
of observations are to be expected. Geographic information systems,
or example, support the simulation of gas dispersion, sensors are used
o detect critical gas doses, and emergency responders inspect the
uildings. Thus, in this case study, a dynamically evolving and spatially
eterogeneous emergency situation whose evaluation can benefit from
iverse observation sources is considered.

In the following, first, the preparation phase (according to Sec-
tion 3.1) of the case study is outlined including the development of
the BN and the simulation of the gas dispersion. Second, the operation
phase (according to Section 3.2) is detailed including the results for a
single building as well as for all buildings in two individual scenarios.

4.1. Preparation phase

The application of our method is designed to support the situation
wareness of the plant fire brigade by helping them assess the risk that
ffected people are in a particular building. To this end, each building
f the plant site is considered as an area to be assessed individually,
.e., each building receives a separate BN. Three types of building use
re considered and randomly assigned (see Fig. 6). The case study is

implemented in Python based on the libraries pgmpy [66] for Bayesian
etworks and GeoPandas [67] for geospatial data manipulation.

4.1.1. Bayesian network and observation sources
The BN of the case study is composed of six variables and five

edges representing their probabilistic dependencies (see Fig. 7). The
target node of the BN is the variable People in Building Affected, since
this node is crucial for decision making and allocating rescue teams
to buildings. Information about the presence of people in a building
as well as the probability of a critical gas dose inside the building
represent the parent nodes of People in Building Affected. An additional
ode (Critical Gas Dose around Building) is the parent node of Critical
Gas Dose in Building. This parent node is introduced to account for the
uncertainty of gas dispersion from the surroundings of a building into
the building itself. The presence of People in Building can be inferred by
its two parent nodes Building Type and Time of Day. Three building types
are distinguished: office buildings (11 buildings), production buildings
(8 buildings), and mixed use buildings (8 buildings). Time of Day shows
two states: 6am - 6pm (day shift) and 6pm - 6am (night shift). In
this case study, it is assumed that the presence of people in an office
building during the night shift is less probable than in a production
building. In a mixed-use building, the probability of human presence in



M. Schneider et al.

t

s

s
u
a
d

Reliability Engineering and System Safety 255 (2025) 110640 
Fig. 5. Summary of the ERIMap method in the operation phase. Rectangles with rounded corners describe processes, gray rectangles describe the class of information. Decision
nodes are diamond-shaped. Start and stop of the process are highlighted with green fill.
t

the building is between that of office and production buildings. During
he day shift, the probability of people being in a building is high for

all building types. All other nodes are binary with state names True and
False. The probability values used to fill in the MPT and CPT of the BN
are selected by the authors.

Table 2 shows all considered information sources including the
node(s) about which each source can provide observations and the re-
pective reliability score(s). Additionally, it is stated whether the source

provides an unambiguous observation or several uncertain states. Gas
ensors and the simulation in GIS are the sources that do not provide
nambiguous observations. The gas sensor is assumed to operate with
 known accuracy. Therefore, this source is classified with 𝑅𝑆3, but
oes not provide an exact statement – it provides virtual evidence (see

Fig. 5). For the simulation of the gas dispersion, the prior probability
of node Critical Gas Dose around Building is (𝑇 𝑟𝑢𝑒 = 0.01, 𝐹 𝑎𝑙 𝑠𝑒 = 0.99)
due to the fact that a critical gas dose is not expected without further
indication. Given a simulation of the critical gas dose around the build-
ings (see Section 4.1.2), this observation provides a new probability
distribution that shows a higher value than the prior probability and is
7 
thus considered as soft evidence. The other observation sources provide
unambiguous statements but are of different reliability scores. The
likelihood values for the RSs used in this case study are: 70% certainty
for 𝑅𝑆1, 80% for 𝑅𝑆2, and 𝑅𝑆3 is considered as hard evidence (100%
certainty). Thus, for a binary node 𝑉 and an observation of 𝑅𝑆2 stating
𝑉 is in state 𝑣1, the corresponding likelihood ratio for the CPT of the
virtual child node of 𝑉 is (0.8, 0.2). The 𝛩 value used for the regret
function is assumed to be 10%.

4.1.2. Gas dispersion hazard
The gas dispersion caused by a leakage in the tank wagon carrying

chlorine is simulated using the Areal Location of Hazardous Atmo-
sphere (ALOHA) software, a widely used tool for chemical emergencies.
ALOHA provides a simplified but quick steady-state simulation of a gas
dispersion of various chemicals under surrounding conditions using a
Gaussian plume model [68]. The software provides three threat zones
hat are characterised by a steady-state gas concentration in these

areas. These zones represent an equilibrium of gas concentrations in
the atmosphere given constant surrounding conditions and gas leakage.
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Fig. 6. Map of the chemical plant. The map shows building types, building numbers, roads, railways and the critical junction. The chemical plant is located on a greenfield site,
i.e. there are no surrounding buildings.
Fig. 7. Bayesian network of the case study including seven variables, five edges, and the corresponding marginal and conditional probability tables.
In the case study, the accident of the tank wagon with a truck caused
an opening in the tank wagon with a diameter of 5 inches. The tank
wagon is fully loaded with a volume of 100 𝑚3. Wind is coming from
north east. Fig. 8 shows the three threat zones (600 ppm, 400 ppm, and
8 
200 ppm) on the chemical plant site emerging from the crossing at the
northern edge of the site.

In order to calculate a probability distribution for node Critical Gas
Dose around Building, the concentration of gas in the atmosphere is
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Table 2
Information on the observation sources considered in the case study.

Source class Source name Node(s) State(s) 𝑅𝑆𝑖

Person Emergency Responder People in Building, People Affected unambiguous 𝑅𝑆3
Civilian People in Building, People Affected unambiguous 𝑅𝑆1, 𝑅𝑆2

Sensor Clock Time of Day unambiguous 𝑅𝑆3
Gas Sensor Critical Gas Dose in Building uncertain 𝑅𝑆3

GIS Simulation Critical Gas Dose around Building uncertain 𝑅𝑆3
Buildings Layer Building Type unambiguous 𝑅𝑆3
Fig. 8. Simulation of the gas dispersion emerging from the critical junction including three threat levels characterised by different steady-state gas concentrations.
a
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converted into a probability of a critical gas dose using a probability
nit function (see Eq. (4) and (5)). Probability unit (probit) functions

are used to formulate a relationship between the criticality for a human
being to the exposure of toxic substances [69,70]. In addition to the
concentration of gas, the time of exposure t is required. The variables
a, b, and n are fitted constants, each specific for one type of toxic
substance. For chlorine, 𝑎 = −8.29, 𝑏 = 0.92, and 𝑛 = 2. The probit
value 𝑌 can be transferred into a probability of criticality using probit
ables [70].

𝑌 = 𝑎 + 𝑏 ln(𝐷 𝑜𝑠𝑒) (4)

Dose is considered as integrated concentration of chemical exposure
t a given point over a specific time [70].

𝐷 𝑜𝑠𝑒 = ∫

𝑡

0
𝐶𝑛𝑑 𝑡 (5)

Applying the probit function for a chlorine exposure with e.g. 𝑡 =
25𝑚𝑖𝑛 and 𝐶1 = 600ppm, 𝐶2 = 400ppm, and 𝐶3 = 200ppm results in a
probability of criticality of 90% for 𝐶1, 80% for 𝐶2, and 70% for 𝐶3.

4.2. Operation phase

4.2.1. Single building
First, the application of our ERIMap method in the operation phase

s illustrated for a single building on the chemical plant site (building 17
n Fig. 6). For this building, the associated BN is updated in accordance

with an example sequence of observations (see Table 3). Based on the
dynamically updated BN, the method helps to assess the probability
9 
that affected people are present in the building at each point in time
(Fig. 9).

The time of day (12:00am) and building use (production building)
re known instantly and are considered as hard evidence. Processing
hese observations results in a high probability for the presence of
eople (90%) and a lower probability for people being affected (13%).

The probability of the dispersion of gas into the building is unaffected
by this observation, i.e. it shows the prior probability (6%). Next,
the simulation of gas dispersion around the buildings is available
(12:05am). Once the gas dispersion layer in the GIS shows an overlap
with a building in the building layer, the observation obtained from the
simulation is considered for that building and node Critical Gas Dosis
around Building (abbreviated as C.G.D. ar. Building). If a building shows
an overlap with several gas dispersion layers, the one with the highest
gas concentration is considered. Since building 17 shows an overlap
with all three gas dispersion layers (see Fig. 8), a gas concentration of
600ppm is assumed in the observation. In order to apply Eq. (5), an
exposure time of 15 min is used under the assumption that the gas dis-
persion started at 11:50pm. Processing the observation obtained from
this simulation, the probability of people in this building being affected
jumps to 56% while the probability of node Gas in Building reaches
61%. Next, an observation provided by a civilian of 𝑅𝑆1 is available
(12:08am) stating that no people are in the building, followed by an
observation by a second civilian (12:12am) of the same 𝑅𝑆1 stating the
pposite. Due to the implementation of the regret function introduced
n Section 3.2.3, the observation stating that people are present in the

building is considered with a higher weight. After processing these
contradictory observations, the probability of the presence of people
is 94%. At 12:14am, an observation by a gas sensor in the building
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Table 3
Example sequence of observations for building 17.

(1) Node (2) State(s) (3) Source (RS) (4) Building(s) (5) Time

Time of Day 6am-6pm Clock (𝑅𝑆3) 17 12:00 am
Building Type Production GIS Layer (𝑅𝑆3) 17 12:00 am
C.G.D. ar. Building 𝑃 (0.8, 0.2) Simulation (𝑅𝑆3) 17 12:05 am
People in Building False Civilian (𝑅𝑆1) 17 12:08 am
People in Building True Civilian (𝑅𝑆1) 17 12:12 am
C.G.D. in Building 𝐿(0.9, 0.1) Gas Sensor (𝑅𝑆3) 17 12:14 am
C.G.D. in Building 𝐿(0.9, 0.1) Gas Sensor (𝑅𝑆3) 17 12:15 am
b
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Fig. 9. Probability of nodes People in Building Affected, People in Building, and Gas in
Building being in state True for multiple time steps listed in Table 3.

is available, that provides evidence with an accuracy of 90%. One
minute later, a second gas sensor with the same accuracy provides an
additional observation. Processing these two observations results in a
probability of 99% for node Gas in Building and 89% for node People in
Building Affected.

4.2.2. Results for all buildings
In order to compute the results for all buildings, two scenarios are

designed that share the same gas dispersion at the chemical plant (see
Fig. 8), but differ in the time of day and outcome of the situation.

he two scenarios are constructed to highlight different aspects of the
proposed method. The results show the probability of node People in
Building Affected being in state True for each individual building at
different time steps (four time steps in scenario 1 and six time steps
in scenario 2). At each time step, new observations are available for
multiple buildings. In the following, for each scenario, a brief summary
s introduced, a table that includes the sequences of observations is

provided, and results are outlined.
Scenario 1 takes place during the night shift. At the initial time

step 𝑡0, the time of day and building types obtained from the GIS
are available as observations. The results of 𝑡0 show the resulting
probability that differs between 4% (for office building), 8% (for mixed
use buildings), and 12% (for production buildings) (see Fig. 10). At
the next time step 𝑡1, the observations by the gas dispersion simulation
(see Fig. 8) become available. Here again, a gas exposure of 15 min
is assumed as a first estimate resulting in the probability distributions
for soft evidence for node Critical Gas Dose Around Building shown in
Table 4. The results show that given these observations, production
buildings being located in the area of the simulated highest gas con-
centration (e.g. building 17) show the highest probability with 50%
see Fig. 10). In the next time step (𝑡2), virtual evidence provided by
ndividuals of 𝑅𝑆2 becomes available, stating that there are people

in some buildings and that there are no people in another group of
 t

10 
buildings. As displayed in Fig. 10 at time step 𝑡2, buildings 9, 13, and
17 show the highest probability with over 50%. At the last time step
𝑡3, virtual evidence for node Critical Gas Dose in Building provided by
gas sensors with an accuracy of 90% becomes available for multiple
uildings. After processing these observations, building 17 shows the
ighest probability (84%), followed by building 9 (81%) and 6 (72%).
Scenario 2 takes place during the day shift. At 𝑡0, the time of day

and building types obtained from the GIS are available as observa-
tions. The probability differs between 14% (for office and mixed use
uildings) and 15% (for production buildings) (see Fig. 11). At 𝑡1, the

observations provided by the gas dispersion simulation (see Fig. 8)
becomes available (same as in scenario 1). Illustrated in Fig. 11 at
𝑡1, the probability for the respective buildings varies between 14%
e.g. building 1) and 61% (e.g. building 7). At the next time step 𝑡2, hard
vidence provided by officials, i.e. humans of 𝑅𝑆3, becomes available
tating that multiple buildings are evacuated, i.e. node People in Building
s in state False. Additionally, observations by other individuals of 𝑅𝑆2
ecome available also stating that no people are in multiple other
uildings. Buildings that are evacuated show a maximum probability
f 3% (e.g. building 8) and thus stand out clearly in Fig. 11 at 𝑡2.

At 𝑡3, sensor information from gas sensors with an accuracy of 90%
becomes available, providing observations that include virtual evidence
or multiple buildings. At the same time step, more buildings are
vacuated and thus observations by officials of 𝑅𝑆3 become available.

Buildings that are not yet evacuated can quickly be identified (see
Fig. 11). After this time step, building 7 shows the highest probability
of node People in Building Affected being in state True with a probability
of 89%. At 𝑡4, again, more buildings are officially evacuated and two
observations become available each stating that no people are affected
in building 7 and 17. These observations are provided by humans of
𝑅𝑆1 resulting in a decrease of probability for those two buildings. At the
last time step 𝑡5, more buildings are evacuated, an observation becomes
available stating that affected people have been sighted in building 17,
and an additional observation is provided by a human of 𝑅𝑆2 stating
that no people are in building 13. At this time step, only building 13
and 17 are not yet evacuated with building 17 having a significantly
higher probability of affected people compared to building 13.

5. Discussion

In this paper, we introduced ERIMap, a novel Bayesian network-
based method for supporting situation awareness tailored to the specific
information-scape in emergency response. This specific information-
scape can well be expressed via six requirements which have served
as guiding principles for the design of the ERIMap method. In ac-
ordance with these requirements, the ERIMap method is capable of

deriving insights about an ongoing situation by processing information
which is incomplete (R1: process incomplete information), which poten-
tially stems from diverse sources (R2: process information from diverse
sources), which contains uncertainty (R3: process uncertain information)
and potentially contradictory observations (R4: process contradictory
information), which evolves dynamically in time (R5: process dynamic
information) and which is spatially distributed (R6: process spatial
nformation).

Regarding the first requirement (R1: process incomplete informa-
ion), using a BN as the core of the method allows to incorporate
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Table 4
Sequence of observations of scenario 1.

(1) Node (2) State(s) (3) Source (RS) (4) Buildings (5) Time

Time of Day 6pm-6am Clock (𝑅𝑆3) all 𝑡0
Building Type Office GIS Layer (𝑅𝑆3) 2, 3, 5, 7, 8, 11, 12, 18, 25, 26, 27 𝑡0
Building Type Production GIS Layer (𝑅𝑆3) 4, 6, 10, 13, 16, 17, 21, 23 𝑡0
Building Type Mixed GIS Layer (𝑅𝑆3) 1, 9, 14, 15, 19, 20, 22, 24 𝑡0
C.G.D. ar. Building 𝑃 (0.3, 0.7) Simulation (𝑅𝑆3) 15, 20, 22, 23, 25 𝑡1
C.G.D. ar. Building 𝑃 (0.6, 0.4) Simulation (𝑅𝑆3) 4, 12, 19, 21, 24 𝑡1
C.G.D. ar. Building 𝑃 (0.8, 0.2) Simulation (𝑅𝑆3) 6, 7, 8, 9, 10, 11, 13, 14, 16, 17, 26 𝑡1
People in Building True Human (𝑅𝑆2) 9, 13, 17, 21 𝑡2
People in Building False Human (𝑅𝑆2) 4, 10, 16, 19 𝑡2
Gas in Building L(0.9, 0.1) Gas Sensor (𝑅𝑆3) 6, 8, 9, 17, 26 𝑡3
Fig. 10. Probability of node People in Building Affected being in state True for each building at four time steps of scenario 1 (see Table 4).
Table 5
Sequence of observations of scenario 2.

(1) Node (2) State(s) (3) Source (RS) (4) Buildings (5) Time

Time of Day 6pm-6am Clock (𝑅𝑆3) all 𝑡0
Building Type Office GIS Layer (𝑅𝑆3) 2, 3, 5, 7, 8, 11, 12, 18, 25, 26, 27 𝑡0
Building Type Production GIS Layer (𝑅𝑆3) 4, 6, 10, 13, 16, 17, 21, 23 𝑡0
Building Type Mixed GIS Layer (𝑅𝑆3) 1, 9, 14, 15, 19, 20, 22, 24 𝑡0
C.G.D. ar. Building 𝑃 (0.3, 0.7) Simulation (𝑅𝑆3) 15, 20, 22, 23, 25 𝑡1
C.G.D. ar. Building 𝑃 (0.6, 0.4) Simulation (𝑅𝑆3) 4, 12, 19, 21, 24 𝑡1
C.G.D. ar. Building 𝑃 (0.8, 0.2) Simulation (𝑅𝑆3) 6, 7, 8, 9, 10, 11, 13, 14, 16, 17, 26 𝑡1
People in Building False Human (𝑅𝑆3) 4, 8, 11, 16, 21, 22, 23, 26 𝑡2
People in Building False Human (𝑅𝑆2) 10, 14, 20, 24 𝑡2
Gas in Building L(0.9, 0.1) Gas Sensor (𝑅𝑆3) 6, 7, 14, 17 𝑡3
People in Building False Human (𝑅𝑆3) 1, 2, 3, 24, 25, 27, 10, 18 𝑡3
People in Building False Human (𝑅𝑆3) 5, 6, 9, 15, 20 𝑡4
People Affected False Human (𝑅𝑆1) 7, 17 𝑡4
People Affected True Human (𝑅𝑆2) 17 𝑡5
People in Building False Human (𝑅𝑆3) 7, 12, 14, 19 𝑡5
People in Building False Human (𝑅𝑆2) 13 𝑡5
11 
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Fig. 11. Probability of node People in Building Affected being in state True for each building at six time steps of scenario 2 (see Table 5).
pre-existing knowledge about important system variables and their
interrelations into the assessment of an actual emergency situation
(e.g. see [71]). In this way, the method can draw inferences about
an ongoing emergency situation based on incomplete information. For
instance, already in the initial stages of the case study, the ERIMap
method provides an estimation on where the presence of affected
people can be expected, based solely on information regarding the
building types, the time of day, and the estimated gas dispersion.

Regarding the second requirement (R2: process information from
diverse sources), we have demonstrated how observations provided
by different individuals, different sensors, GIS layers and simulations
inform the ERIMap method. Considering multiple sources increases the
amount of information which can be utilised in the assessment of the
situation, but without creating cognitive overload that is typically ham-
pering emergency management [72]. The ERIMap method condenses
and combines all single pieces of information into a single output; in
the case study, the probability of affected people being in a building.

In emergencies many observations contain a certain degree of un-
certainty (R3: process uncertain information). However, in the liter-
ature, there are only few papers that apply uncertain evidence in
BNs (e.g., [37]). According to Munk et al. [38], this might be due
to a lack of consensus on which type of uncertain evidence should
be applied in which case. A core feature of our ERIMap method is a
classification scheme which selects the ‘right’ type of evidence based on
the reliability of the observation source (quantified by reliability scores)
and the precision of the reported observation (a specific indication or
a likelihood). Every piece of information can then be fed into the BN,
taking into account the degree and type of uncertainty associated with
it. In short, the ERIMap method provides an evidence-specific protocol
for hard, for soft and for virtual evidence.

The utilisation of uncertain evidence is also important for address-
ing the fourth requirement (R4: process conflicting information). Our
ERIMap method contains two tools for dealing with conflicting obser-
vations, both of which rely on the utilisation of uncertain evidence:
(1) reliability scores which favour observation sources which are con-
sidered more trustworthy and (2) a regret function which favours
12 
observations which report critical states (‘‘there are people in building
A’’) over observations which report non-critical states (‘‘there are no
people in building A’’). While reliability scores and regret functions
cannot dissolve the issue of conflicting observations, they can still
provide a structured way for dealing with this type of noisy input.
In particular, they allow to shift considerations on how to deal with
conflicting information from the time-critical operation phase (during
the emergency) to the non-time-critical preparation phase (prior to the
emergency).

In the case study, we have demonstrated that the ERIMap method
is capable of providing a dynamically evolving (R5: process dynamic
information) and spatially resolved (R6: process spatial information)
picture of the current state of belief about an emergency situation.
Due to the established protocol for translating observations into ev-
idence, every new observation can directly be utilised to update the
BN-based assessment of the current situation. Furthermore, the use of
area-specific BNs in our ERIMap method allows to cover the spatial
dimension of emergencies. The implementation of the area specification
is kept quite simple. It is realised by initially assigning duplicates of the
same BN to every subarea within the study site. The area-specific output
is then obtained by feeding each BN with area-specific evidence. While
we assume that this simple approach is sufficient for many applications,
it should be noted that it can easily be adapted to more complex
demands, for instance, one could use different BNs for indoor and
outdoor areas or for different types of buildings. In the same manner,
the spatial resolution of the ERIMap can be adjusted according to the
demands of the addressed emergency response team.

Besides fulfilling all requirements, a final advantage of BNs is that,
due to their graphical structure, they represent explainable models
whose dynamics are comprehensible, even for people who are not
familiar with their technical details [73]. Using an explainable model
facilitates engaging experts and potential users in the development and
validation of the model. In this way, the model can be established even
if the data situation is not satisfactory. In addition, the graphical nature
of the model facilitates adjustments to the preferences of emergency
responders. What is more, keeping the process of drawing inferences
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from observations transparent enhances the acceptance by potential
sers – an aspect that is crucial in emergency response [74]. Especially
n domains where decisions have a direct impact on people – such as

in emergency response – there is a certain reluctance to trust black box
odels [75] and ease of interpretation is vital [76].

A main limitation of the ERIMap method is that, for setting up
the BN at its core, the method relies on structural knowledge about
the emergency in question which exists prior to the actual emergency
situation which it should help to assess. Importantly, the value which
the method adds to this assessment ultimately depends on the quality of
this pre-existing knowledge. This implies that eliciting this knowledge
during the preparation phase is of utmost importance for the successful
application of the ERIMap method. While we have highlighted the
importance of engaging users in this process, we have not covered
how their knowledge can best be elicited for the use in the ERIMap
method. While this is an aspect that has already been addressed for
BNs (e.g. [77] or [78]), it will nevertheless be important to establish
a corresponding procedure which is specific to the ERIMap method.
Another implication is that the method is particularly well suited for
ather common or expectable types of emergencies in well-known (and
tructured) territories. The ERIMap method thus seems promising for
upporting the operation of emergency response teams in emergencies
hich are considered particularly relevant in specific facilities, for

instance, for gas leakages on chemical plant sites (our case study), for
fires in office buildings or airports, or for floods in cities situated near
rivers or coasts. To what extent the ERIMap method can also contribute
to assessing important variables of an unexpected or unforeseen emer-
gency situation is less clear and should be further explored in future
tudies.

A technical aspect which has not yet been covered in the ERIMap
method are mechanisms for performing belief updates in the BNs which
are not directly tied to newly available observations but which rely
on presumably predictable inner system dynamics. For instance, in
future work, it could be insightful to consider the movement of people
e.g., evacuation of buildings), the dispersion of hazardous material
like gas or smoke) or the increasing criticality of being exposed to such
aterial using dynamic Bayesian networks [79] and spatially inter-

linked area-specific BNs. However, in how far belief updates based on
resumed dynamics can and should be utilised to assess real emergency

situations needs to be evaluated in dialogue with potential users.
One limitation of this paper is that we still need to empirically

est the impact of the ERIMap on situation awareness. First feedback
rom potential users (e.g., members of the Henkel fire brigade) is
horoughly positive. However, in order to verify its positive impact on
ituation awareness, future work should include empirical testing and
alidation of the method in practice. To this end, the method should be
stablished in a real setting and then be evaluated in training exercises
ith responsible practitioners. This evaluation procedure should at best
e performed for multiple case studies that include different types
f emergency scenarios. The method can be applied for all types of
mergencies that require a fast processing of large amounts of diverse
bservations under time pressure – conditions that are present in a
ariety of emergency situations. For the further development of the ER-
Map method this implies that future work should focus on facilitating
he transfer of the ERIMap method into practice focusing on appli-
ability in multiple types of scenarios. In particular, future research
hould focus on (1) how expert knowledge can best be compiled in the
reparation of the ERIMap method; on (2) developing a user interface,
.e. an application on a mobile device, which facilitates a quick and
traightforward injection of observations (including the five pieces of
nformation, e.g., the reliability score) and which displays the results in
n interactive map; on (3) how the method can be effectively integrated
nto existing emergency response protocols, such as determining who
s responsible for injecting new observations and who will receive the
esulting information, i.e. the dynamically evolving map.; and on (4)
mpirical and experimental testing and measuring the impact of the
RIMap on situation awareness, e.g., in training sessions or serious

ames.

13 
6. Conclusion

In this work, we introduced a novel method called ERIMap (Emer-
gency Response Inference Mapping) that can support the situation
awareness of emergency responders by processing diverse observations
gathered during an ongoing emergency and summarising the belief
bout key aspects in a dynamically evolving emergency map. The
ethod is tailored to the specific information-scape in emergency

esponse that we defined by six key requirements: information can
e incomplete, come from diverse sources, be uncertain, conflicting,
ynamic, and spatially distributed. To obtain a method that fulfils
ll six requirements, we combined a BN-based model, capable of per-
orming inferences based on diverse observations, with a GIS used to
onsider the spatial aspects of an emergency. Given a small set of
bservation properties, the method classifies the included evidence in

terms of its uncertainty, and performs area-specific inference on the
key variables for decision makers. The result is a dynamically evolving
map displaying the belief about key variables of the emergency scene.
Illustrated in a case study of an emergency response triggered by a gas
leakage at a chemical plant site, the results show that the methods
reduces information complexity by condensing all observations into
a concise picture of the situation. In this way, the cognitive load on
decision-makers in emergency response can be reduced thus supporting
them in taking high stake decisions.
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