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A. R o b i n s o n , M . S c , P h . D . , A . F . R . A e . S . 
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The field of flow due to a shock wave or 

ex'oansion wave undergoes a considerable modification 

in the neighbourhood of a rigid wall. It has been 

suggested that the resulting propagation of the 

disturbance upstream is largely due to the fact 

that the main flow in the boundary layer is sub­

sonic. Simple models were produced by Howarth, 

and Tsien and Finston, to test this suggestion, 

assuming the co-existence of layers of uniform 

supersonic and subsonic main stream velocities. 

The analysis developed in the present paper is de­

signed to cope vîith any arbitrary continuous 

velocity profile which varies from zero at the 

wall to a constant supersonic velocity in the main 

stream. Numerical examples are calculated and it 

is concluded that a simple inviscid theory is in­

capable of giving an adequate theoretical account 

of the phenomenon. The analysis includes a 

detailed discussion of the process of continuous 

¥/ave reflection in a supersonic shear layer. 
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^ . Introduction and Discussion of Results. 

It has been known for some time that the 

field of flov/ due to a shock wave or expansion wave 

undergoes a considerable modification in the neigh­

bourhood of a solid vî all, in addition to the actual 

reflection at the wall. A characteristic feature 

of the process is that as the wave impinges on the 

wall the disturbance is propagated upstream in the 

boundary layer (see Ref. 1 for detailed experimental 

evidence). To construct a simple theoretical model 

of this effect, Howarth (Ref. 2) considered the 

propagation of small disturbances in a uniform 

supersonic stream bounded by a parallel uniform 

subsonic stream. Since no linear dimension is 

associated Yirith the main field of flow it is diffi­

cult to compare the scale of the effect calculated 

in this v/ay vîith the scale of the experimental 

phenomenon. The model was improved by Tsien and 

ï'inston (Ref. 3) who considered the propagation of 

a disturbance in a uniform supersonic stream bounded 

on one side by a subsonic stream which in turn is 

bounded by a rigid wall. In the present paper we 

attempt to make our basic assumptions even more 

realistic by assuming that the main stream velocity 

varies continuously from 0 at the wall up to a 

supersonic speed at some distance from the wall. 

The case of a continuously varying main stream 

velocity profile in a purely supersonic region 

which is bounded on one side by a wall, has been 

considered by Liepmann and his associates (Ref. I4), 
The simplifying assumptions of linearisation etc., 

made in the present work, are basically the same 

as in the earlier papers mentioned, more particular­

ly in Ref. 1^, except that our method permits us to 
take into account the wave reflection in the super­

sonic region completely, v/hereas the treatment in 

Ref. I4. is only approximate. • 

A completely different approach has been 

used by Lees (Ref. 5). It is based on detailed 

semi-empirical assumptions on the nature of the 

flow in the boundary layer. 

/Numerical . . . . 
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Numerical examples have been calculated 

for a typical laminar velocity profile. Pigs. 3 

and I4. show the total reflected disturbance due to 

a simple incident compression (or expansion) v/ave 

at Mach numbers 1-25 and 1-75 respectively. It 

will be seen that the disturbance is propagated 

upstream only a few multiples of the thickness of 

the boundary layer. On the other hand experimental 

evidence (Ref. 1) shows that the resulting dis­

turbances may be clearly distinguishable at points 

which are fifty or sixty times the boundary layer 

thickness upstream of the incoming wave. In 

trying to account for the discrepancy we note 

that the basic assumptions of our analysis may be 

inadequate in three respects, (i) they neglect 

viscosity, (ii) they neglect vorticity, and (iii) 

they involve linearisation. By an extension of 

the present method it may be possible to include 

viscosity and vorticity while still accepting the 

linearisation of the problem. There appears to 

be some justification for putting our result on 

recordj although v/ith some diffidence, since it 

is at variance with the conclusion reached by 

Tsien and Pinston in Ref. 3-

I am indebted to Mr. A. D. Young for a 

number of valuable discussions on the subject of 

the present paper,* and to Dr. S. Kirkby and Mr. 

A.YL Babister for assistance in the calculation 

of the numerical examples. 

/2. Basic . . . . 
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2, Basic Analysis. 

We consider two-dimensional flow in a semi-

infinite expanse of fluid bounded by a v?all which is 

parallel to the x - axis, at y = y . The main 

stream, supposed (approximately) parallel to the 

X - axis, will be assumed to be given by a function 

V = V(y), y 2.y ,, v/here V(y) is continuous and 

differentiable, and vanishes at the wall. Also, 

V(y) shall be constant for sufficiently large y, 

V(y) = V f or y i y , say. We v/rite iM(y) = V(y)/a 

for the local main stream Mach number, vthere a = a(y) 

is the velocity of sound appropriate to that ordinate, 

a(y) = a ^ V for ŷ , y . It is irrelevant to the 

subsequent analysis whether or not we assume as a 
further simplification that a is constant through­

out the medium. 

Let u,v be the velocity components of a 

small, steady disturbance imposed on the main stream. 

With the usual approximations we obtain the linearised 

equation of continuity, 

-'^^y) I i ^ ly = ° ' >̂ (y) = y^(y)]^ - ^ (^) 
We shall! assume that the vorticity associated with 

the disturbance can be neglected,—— - — = 0, (see 
® 9x 3y ' ^ 

r e f . I4., p . 22) so t h a t t h e mot ion p o s s e s s e s a v e l o ­

c i t y " o o t e n t i a l jZf, u = :r^ , Y - Tf^ . 
nX dy 

By (1), ̂f satisfies the equation 
->,(y)2!|,2!| . 0 . (2) 

Particular solutions of (2) are obtained by assuming 

that !2̂ (x,y) is of the form (2f(x,y) = f (y) cos (kx + 0 ) , 

where k and s are arbitrary. Substitution in (2) 

yields the follov/ing. ordinary differential equation 

for f (y), 

k^ A ( y ) f ( y ) + ^ = 0. (3) 
dy^ 

When y i ^ y ^ , X Q = LM(y)l - 1 = M^ - 1 , 
vi/here M = V / a , so t h a t a f undamen ta l s e t of s o l u -o 0"̂  o 
t i o n s of (3) i s g i v e n by cos k^ (y-y ) , s i n k P ( y - y J , w h e r e 

3 =JX^ = yM - 1. More g e n e r a l l y we v / r i t e f (y) 

a s a power s e r i e s of t h e p a r a m e t e r k 
CO 

f (y) = £ _ . f (y)k^ (k) 
/ w h e r e . . , . 
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where the f (y) are independent of k. Substituting 

this, and the corresponding series for f" (y) in (3)s 

we obtain 

E : A(y)f (y)k''''̂  + X: f̂  (y)k^ = 0 (5) 
n=0 ^̂  n=0 ^ 

Comparison of coefficients of equal powers 

of k then yields 

f̂ " (y) = 0 

f J (y) +.X(y)fn_2iy) 0. 

1. 

I 
i 
\. 
f' 
I 

nS2.1 

(6) 

To obtain a continuation of the solution 

cos kP (y-y ) in the region y >.y?ï.y (i.e. a solu­

tion Vi/hich passes continuously into cos k'H (y-y ), 

while its first derivative passes continuously into 

[cos kP^(y-y^)j = - kP^ sin kPQ(y-y^), we put 

fo(y) = ̂  

f. (y) 0 
s-y 

y, y 
fn(y) = - j dy'\ X ( y " ) V 2 ^ y " ) ^^''^ ^^ ^ „/ 

o 

(7) 

The set of functions f (y) defined in this 

way, clearly satisfies (6). The corresnonding power 

series f (y) = > ^ f (y)k reüresehts an even func-
n=0 ^ 

of k. To discuss its convergence let L be a positive 
upper bound of j A (y) f. Then 

ifp(y)| 
i¥ cJ' •.sj ry' 

dyl X(y")fo(y")dy"|^L|rdyr dy"| 
J y 0̂  y "̂  '̂  o '̂  o "̂ o "̂ O 

y-y^ 
L-

/•y (-y' 

ifh(y) I =li dy' X(y"^- (y")dy"(^L2||^'^dyf^^^dy"| 
"̂ o ^̂ o 

L 
2 K-yol 

2 

2 

U.' 
and in general 

(f2n(y)/=irdyf A(y")f2(n-i) (y")^y'1 

ry ,y' |y"-y i' 
•- L 1 dyl i r ^ 
•" Jy Jv (2n-2): 

2n-2 

•'^o ^ ^ o 

dy' .n Y-Y 
2n 
o) 

(25yy 
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This shows that ̂ ^ f^(y)k converges for all (real 

and complex) k, and therefore represents an integral 

function of k, for all y^y^^. This function will 

be denoted by G(y;k). We have C(yQ,'k) = 1, from (7). 

and C' (y,'k) = 0, where the dash indicates differen­

tiation with respect to y. It follows that, for j ^ ^ — 

y-iy^s C(y,-k) = cos kP^(y-yQ), as required. m 
Similarly, if we define the set of functions fj-̂ (y) "by ^ 

fo(y) = 0 ; 

f., (y) = %(y-yo) " i (0) 

f^(y) = J dy'l A(y")f^_2(y")dy" , n>2 

then the function 

s(y,-k) = Î Q f^(y)k^ 

is an odd integral function of k for all yS~y,,, such 
w 

that S(y,'k) = sin kB^{y-Y^) for y>:yQ. Suitable 
bounds for the functions f^(y) now are 

"^^^^ ° (2n+1 ) : 

for n = 0, 1 , 2 , C(y;k) and S (y,*k) form a 

set of independent solutions of the di f ferent ia l 

equation (3). Par t icu lar 'normal' solutions of (2) 

are given by 

C (yjk"* 1 (cos kx 
S(yjk) j [sin kx (9) 

and we note that in the region y>y these solutions 

reduce to 

cos k8^(y-yQ) | 

sin kP (y-y ) J (̂ sin kx (10) 

respectively, 

In the sequcl,X(y")s v/hich equals -1 at 

the wall, and equals ̂  T'O for y>y , v/ill be assumed 

to be an increasing function of y. There is then 

just one distinct value of y, y=y , say, for vi/hich 

A (y^) = 0, corresponding to the sonic line. For 

convenience we shall refer to the region y-^y briefly 

as the 'supersonic region' while y^>yiy_ and 
O s 

yg^yï:y^,, win be termed 'transonic' and 'subsonic' 
respectively. We may ass\ame that y =0. 

/A disturbance 
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A disturbance travelling towards the wall 

in the supersonic region may be expressed in the 

form jzl = P(x+P y). Subject to suitable restrictions 

on the behaviour of the function for numerically 

large values of the argument this may be written as 

a Fourier integral 

[ 
I 

'-0O 

P(x + P^y) =j (P(k)+ iQ(k)) (cos k(x + P^y)-isin k(x + P^y))dk 

(11) 

where ?(k) and Q(k) are real functions of k, even 

and odd, respectively. 

Re-writing (11) in the form 

; —ilex 
P(x+R^y) = j (P(k) + iQ:(k)) (cos kP^y-isin k6^y)e dk 

we see from (9) and (10) that F(x+P y) is the function 

to which 
rCKi 

P*(x,y) = ; (P(k)+iQ(k))(C(y;k)-iS(y;k))e~^ ^ dk, ŷ : y^ 

•fA"/ (12) 
3C 

reduces for y^^Y = 0 . P (x,y) is real since 

C(y,'k) and S(yik) are even and odd functions of k, 

respectively. 

Similarly the function 

G*(x,y) =j (R(k) + iS(k))(C(y;k)+iS(y;k))e~^ ^dk ...(13) 

R(k) even, S(k) odd, 

reduces to 

G*(x,y) =1 (R(k)+iS(k))e"^"o'' e ""'dk 
,3E. .V 1 ,„,, V .„„ vx ikp^y -ikx 

• t>0 

(R(k) + iS(k)e"̂  ^̂ "'̂ ô V = Gix-S^y) 

for y,> y = 0 , i.e. in the supersonic region it 

represents a disturbance travelling away from the 

wall. 

The velocity components in a direction 

normal to the wall in the two cases are given by 

II = j (P(k)+iQ(k))(C' (y;k)-iS' (y;k))e~'- ""dk [Ik] 

/and 
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and 

II = I (R(k)+iS(k)) (C (y;k)+iS' (y,-k))e"^^''dk (15) 

respectively, where the dash denotes differentiation 

with respect to y. 

Let 

/(x,y) = P*(x,y) + G*(x,y) (16) 

be the velocity potential of a field of flow in the 

region under consideration. To satisfy the con­

dition of zero normal velocity at the wall v/e must 

have 

hy ^ 9y \^^ - ^ 

or, by (114.) and (I5) 

[(P(k) + iQ(k))(C' (ŷ ;̂k)-iS' (y^;k))+(R(k)+iS(k)) 

(C'(ŷ _,;k) + iS'(y^.^;k))] 

This yields the condition 

w 
" ^ . . . . , . .1 -ikx 

dJc :̂  0, for all 

(P(k) + iQ(k)) (C (ŷ ;̂k)-iS' (y^;k))+(R(k) + iS(k)) 

(C (ŷ ,-k)+iS' (y^;k))= 0 (17) 

Assume now that the incoming wave P (x+P y) is 

specified in the supersonic region. This deter­

mines P(k) and (Q(k). It follows that if the 

potential of the total disturbance can be written 

as in (16), '̂'(k") and S(k) must satisfy (17) so that 

these functions are given by 

C' (y ;k)-iS' (y ^k) 
R(k)+iS(k)= ^ ^ î  (P(k^+iQ(k)) (18) 

C'(ŷ ;̂k)+iS'(ŷ .̂ ;k) 

Since C(y*,k) and S(y;k) are independent 

solutions of the second order differential equation 

(3)> their derivatives cannoc vanish simultaneously. 

It follov/s that the right-hand side of (18) remains 

finite for all real k. It will be seen that the 

real part of the right-hand side of (18) is an even 

function of k, while its imaginary part is odd, as 

required. 

/The 
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The above formulae enable us to determine 

a solution corresponding to any incoming wave 

P(x+- y) sriecified in the supersonic region. How­

ever, our argument so far has not established that 

we have obtained the physically correct result ex­

pressing the evolution of the incident wave as it 

travels through the transonic into the subsonic 

layer and is reflected at the wall. To elucidate 

this somewhat subtle distinction we may point out 

that equation (12) which defines our incoming wave 

(a disturbance travelling towards the wall) in the 

supersonic region does not in general represent an 

incoming wave in the transonic region. Thus to 

ensure that we obtain the physically correct answer 

we shall trace the gradual evolution of the distur­

bance on passing through the various layers. In 

actual fact we shall find that the final result 

agrees with that obtained by the simple analysis 

which was given above. However, apart from being 

necessary as a matter of principle, the following 

considerations also help to throw light on the 

physical mechanism of the phenomenon. 

3. Reflection in the Transonic Region. 

In a region of uniform supersonic flovif, 

i.e. in our case for y>>y 0, any perturbation 

velocity potential can be written in the form 

P(x + '̂  y) + G(x-'̂  y), so that the incoming and 

outgoing disturbances vi/hich constitute the field 

of flow correspond simply to the first and second 

term of that expression, resuectively. The posi­

tion in a region of variable supersonic stream 

velocity is less simple. Writing P(y) = /X(y) 

in (2) for A(y)>0, the equation becomes 

-3 
2 ':f:£ 

+ 9̂ 0 0 (19) 
^x gy 

The characteristic curves (Mach lines) 
of this equation are given by 

2 2 2 P'̂  dy - dx = 0, 

or f'ig. 1 ) 

dx 
dy 

+ p(y) ; X = ± t P(y)dy + const (20) 

/An 
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An 'incoming wave' now is a disturbance 

whose fronts, or potential lines of discontinuity 

are the Mach lines. 

X - I Q (y)dy + const (21 ) 

e.g. the line NPQ in Pig. 1, while an outgoing vi/ave 

is a disturbance whose potential lines of discon­

tinuity are the lines 

X J'̂ /y )dy + const. (22) 

More precisely, the analytical expression 

for an incoming wave must be such that a distur­

bance, or modification of initial values at a point 

R dov;fnstream of one of the Mach lines (21 ) does 

not affect conditions at a point unstream of PQ, 

e.g. the point S. Since p is nov/ variable we are 

no longer in a position to represent the two types 

of waves simply by functions P(x + Py) and G(x-Py) 

res-oectively. Nevertheless it is still possible 

to associate distinct disturbances with the two 

families of Mach lines in the follov/ing way. 

Given any solution /(x,y) of the 

differential equation (19) vire put 

(23) 

so that 

= ^(^1 + ̂ 2) 
9£ 
ax 

^ = f - f dy 1̂ 2 

Then 

ax P 3y 2 ̂ \^2 öx?^y 8x3y P dy ax P . 2 '' 
oX ny 

- L- È- M 
~ 2P dy ax ' 

or 

^̂ 1 1 ^̂ 1 1 dP 
H " P 9y " " 26^ ̂ y ^^1^^2^ ^̂ ^̂  

/and 



- 1 1 -

and similarly 

! £ 2 1 ^ _ _ l _ d P . . 
9x P gy ~ ^„2 dy ^̂ 1 ^ ̂ 2^ 

Denoting by D V D X , D^/DX differentiation 

along the families of Mach lines (21) and (22) 

respectively, Yte have 

-̂i = i_ + ̂  1_ ̂  i_ 1 a 
Dx 8x dx 9y 9x ~ P 9y 

and similarly 

^ = i_ + 1 i_ 
Dx 9x P 9y 

(2L|.) may then be v / r i t t e n as 

^ = - ^ i (̂ 1 - ' 2 ) (25) 

D f 
V 2 ̂  _1_ dP , s 
Dx 2«2 dy ^M ^ ̂ 2^ 
An equivalent set of equations is 

^ = k i (fi - fg ) (26) 

D f 
^212 ^ 1_ dP (f + f ) 
Dy 2R dy ^1 2^' 

If P is a constant, then the right-hand sides of 

(25) and (26) vanish so that the functions fx(x,y), 

and fp (x,y) are constant along their respective 

Mach lines. Also in that case (Zf (x,y)=P (x+Py )+G (x-By) 

so that 

f̂  = -HP f|+ |f)= 8P'(x+Py) (27) 

f ^ .̂(q M _ A = p.G^ (x-«y) 
2 '̂  ax 9y^ ^ '̂^ 

Thus, f. (x,y) and f^(x,y) are associated 

with the incoming and outgoing waves respectively, 

and the two disturbances do not interact. More 

generally, if P is variable we may still regard 

f. (x,y) and fr-(x,y) as the incoming and outgoing 

waves respectively, but there is now a gradual 

interaction between the two disturbances as indi­

cated by the right-hand sides of (25) and (26). 

/Thus 
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Thus, assume that an incoming disturbance 

f̂  (x,y) is specified for some y=y. , f, (x,y)=f (x), 

say, and that we wish to calculate its variation as 

it travels tov\rards y=y2 s y2**^1' ^^ well as the 

variation of the disturbance fp(x,y) which is built 

up from f̂  (x,y) by gradual reflection within the 

layer ŷ S:y>:.y2. It follows from this definition 

of f2 (x,y) that it does not include any disturbance 

which penetrates into the layer across y^y^ along 

the second family of characteristics, (22), so that 

f2(x,yp) = 0. The two boundary conditions 

f^{x,y^) = f ^ { x ) , f2(x,y2) - 0 (28; 

together with the set of differential equations {2l\.) 

then determine fp(x,y) and f (x,y) for the region 

-c<i<x< ÖC', y^i^ yey2-

However, the above analysis is inconclusive 

because we have not shown as yet that the function 

f-l (x,y) obtained in this way satisfies the crucial 

test for an 'incoming wave': we have not established 

that a modification of f (x) at a uoint R dov/nstream 

of any given Mach line PQ of the family (21) does 

not affect conditions at any point S upstream of PQ, 

i^'ig. 1). The rigorous proof of this fact is ad­

journed to section 5. 

Coming back to the particular case under 

consideration, we identify y, with y = 0, and y^ -

in the limit - Y/ith the sonic line y. We assume 

that the incoming v/ave is given by (11) in the 

supersonic region and we write the velocity potential 
of the motion in the transonic region which is due 

to the joint effect of the inooming wave and of the 

gradually developing reflected wave in the form 

f^(x,y) - I r(P^(k) c(y;k)+ P2(k) S(y,k))+ i (Q̂  (k)G (y,-k) 

, ,T -ikx 
+ Q2(k)S(y,k))Je dk (29) 

*ƒ. (x,y) does not include the disturbances 

originating from the evolution of the v/ave in the 

subsonic region or from the reflection at the wall. 

The first boundary condition in (28) yields, taking 

into account (11 ) 

/fi(x,0) 



f, (x,0) = i p — i - -57! ^ - %^- (^) (30) 
W- ^ »« v = f) 'Jy=0 

or 

r'" • 1 -ikx 

__-ikR̂ (P̂  (k)+iQ̂  (k))+kPQ(P2(kUiQp(k)) Ie dk 

.•,,00 ., _ 

= P / -ik(?(k) + iQ^k))e" ''" 'dk 

since P^y) = P^, C(o;k) = 1, C'(o;k) = O, S(o;k) - O, 
S' (Ojk) = kP^. 

We therefore obtain as a first condition 

for the four coefficients P^(k), P2(k), Q^(k), Q2(k) 

(P̂  (k)-Q2(k))'-i(P2(k)+Q^ (k))=2(P(k)+iQ(k)) (31) 

The second boundary condition in (28) is, 

in terms of the function ̂; ̂  (x,y) 

9V, 91. 
s _ 1 _ — 1 1 = 0 ...,,...,.... (32) 

3x 9y ? ^-^ ' 
'̂ -y=y2 

f 2 ( ^ ^ y 2 ) = ^ 

In the limit as ŷ  tends to y^, P(y) tends 

0 0 , and so 

(é, 
V 3y 

1 - 0 M ̂  "l 
y=y-, 

o 

This is the same boundary conditions as 

v/ould be obtaln>jd at a v/all, so that if we could 

place a rigid vrall along the sonic line,̂ ', (x,y) 

would represent the total pertui'̂ bation potential. 

The Fourier integral expression for (33) 

is 

— CO 

((P̂  (k)C' (yg;k)-f?2(k)S' (y„;k))+ i (Q̂  (k)Ĉ  (y^,k) 

"i -ikx 
-;-Q2(k)3' (yg;k))je <iv :- 0. 

so that 

(P̂  (k)C' (ŷ ;k)H-P2(k)S' (y^5k))+i(Q^ (k)C' {y^'X) 

+Q2(k)s' (y^;k)) - 0 , (3i;) 

We may re-?/rite (3I ) and (5^) in the form 

(P̂  + iQ^) + (P2 + iQ2^ " 2(P(k) + iQ(k)) 

C' (y •,k)(P +iQj -h S' (y •k)(P„fiQ.J r. 0, .. ,. (35) 

/The ... 
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The determinant of this system is 

S' (y^Jk) - iC' (y^,"k), which cannot vanish for real k. 
s 

Hence 
S' (yjk) 

P̂  (k) + iQ. (k) = 2 § (p(k)+iQ(k)) 
S'(y a)-iC'(y ;k) ' (36) 

P2(k) + iQ (k) =-2 ^^-^ (?(k)+iQ(k)) 
^ S'(y :k)-iC'(y,,'k) S ' / v^ g 

Since P̂  (k ), P2(k), Q̂  (I:), ^2 

functions of k, they are determined by (36). How­

ever, 'f. (x,y) can also be expressed directly in terms 

of P,+iQ. and P̂ +iQ.,, 

'ïT J .*" ! i kx 

ï^(x,y)=| KP^ (k)+iQ^ (k)C(y;k)+(P2(k) + iQ2(k)S(y;k)){e~ dk 

'̂  -oo 

Hence • f-'-^'^ 
X / S' (y ,-k)C(y;k)-C' (y ;k)S(y;k) .̂ x̂ 
9. (x,y) = 2 § § (p(k)+iQ(k))e dk 
^ j S' (y jk)-iC' (y ,-k) 

(37) 

It follovifs from the construction of (37), 

that if the incoming v/ave has a sharp front, e.g. if 

it vanishes upstream of the Mach line NF in the super­

sonic region (Fig. 1) thenx-|(x,y) vanishes upstream 

of the Mach line PQ which is the continuation of NP 

in the transonic region. 

In the supersonic region, x. (x,y) as given 

"by (37) should represent the incoming wav"' (11) 

together with the outgoing wave v/hich is built up 

through gradual reflection in the transonic layci*. 

It may serve as a check on our calculations to show 

that the difference between j., (x,y) and P(x+p y) 

does in fach ro(ji-(;L:wiih an onhgojng Vi'ave for y> 0. 

We have, for y.>0 

X. ^ ^ Jr S' (y ;k)cos kP y-C' (y^;k)sin-kP y 
$. (x,y)-P(x-fP y):=/ 1(2 ?--- ° ^ --°-

' ° J_:;o S'(y3;k)-iC'(y^;k) 
"I -ikx 

-(cos k'' y-isin k'̂. y)^|(?(k)+iQ(k)) e dk 
.CO o " o 

(P(k) + iQ(k)) 
S' (yg;k) + iC' (ŷ jk 

S' (y :k)-iC' (y ^k) 
^~ S b 

(cos k'̂ ŷ=+ isin kRj)e dk 

/Comparison ..... 
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Comparison with (13) shows that this is 

an outgoing wave, as required. 

k. Reflection at the Wall. 

We now come to the consideration of the 

subsonic region, y„^y2:y,„. The characteristic 

curves being novif complex, there are no physical 

lines along which a disturbance is propagated. 

Thus, we only have to ensure that the potential, 

together with its derivatives is continuous across 

the sonic line, and that the normal velocity va­

nishes at the y/all. For this purpose we ï/rite 

i(x,y) =f^(x,y) +§2(^'y) 
w h e r e $ ^ ( x , y ) i s g iven by (29) and (37)s andX2(xsy ) 
i s a s o l u t i o n of (2) v/hich, when con t inued through' 
the t r a n s o n i c i n t o the supersonic r e g i o n , f i n a l l y 
y i e l d s an outgoing wave. I t fo l lows t h a t ŷ p̂ (x,y) 
i s of the form 
— /• CO ' 

%(y^>j) =1 (R(k)+iS(k))(C(y,-k)+iS(y,-k))e~^^^dk (38) 
J — i.A^; 

X 4 

The boundary cond i t ion a t the wall i s —[Ï.+ Zr^)= 0, . 

° r ^^^ 
J (P^ (k)+iQ^ (k)C' (y^^,;k)+(P2(k)+iQ2(k))S' (y 5k)+(R(k)+iS(k}) 

~oo 
ikx 

C' (y^^,-k)+iS' (y^^;k))e die =. 0, 

so that R(k)+iS(k) is given by 

(P̂  (k)+iQ^ (k))C' (y^,Jk)+(P2(k)+iQ2(k))S' (ŷ ,̂;k)+(R (k) + iS (k)) 

(C'(y,,;k)+iS'(ŷ ;̂k)) = 0, 

or 

R(^),,s(k) ... .js' (̂ ŝ ^̂ '̂ (̂ ŵ )̂-'̂ ' ̂ ys-^)s' (yw'̂ 4&̂ )̂̂ Q̂-0---)! 

§'(y3;k)-.iC'(y^;k5[s'(y^;k)-iC'^y^;k)| 

^.•».. (39) 

Hence ,f,x> 

(x,y) = 2 

'J 

(S' (yg;k)c(y;k)-C' (yg5k)S(y;k) 

L S'(y ,'k)-iC' (y ,'k) 
'-.oo " ^ 
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+ 1 
JS' (yg;k)C' (y^;k)-C' (y3^k)S' (y^;kj[c (y^k)+iS (y;k)i ] 

i •• ,.,., I I — ,.,. % 

[S' (yg5k)-iG' (Ys^kjlp' (y^;k)-iC' (y^lkjj j 

—ilcx 
(P(k)+iQ(k))e dk 

-,ü<ï 

S' (y aOc(y;k)-C' (y ;k)S(y,-k) _ii,x 
'' (P(k)+iQlk))e dk 

^oo s'(y^;k)-ic'(y^;k) 

(p(k)+iQ(k))(C(y;k)-iS(y:k))c"̂ -''''ai_ 

rc'(ŷ ,,.;k)-iS'(y ,-k) _iky_ 
(P(k)+iQ(k))(C(ŷ k)+iS(y5k))e d_k 

JC'(y^;k)+iS'(y a ) 

This shows that x(x,y) can be written as 

the sum of the tv/o functions P (x,y) and G (x,y) 

as given by (12), (13) and (18). The same formula 

for the total perturbation potential still applies 

in the transonic region and in the supersonic region, 

propagation upstream being no longer inadmissible 

owing to the effect of the subsonic layer. More 

particularly, the disturbance produced by reflection 

at the wall is given by (38) also in the transonic 

and supersonic regions. It will be seen that (38) 

does not in general represent a pure outgoing wave 

in the transonic region, since it accounts also for 

the 'incoming v/aves' which are obtained from the 

wave reflected at the wall by subsequent reflection 

in the transonic layer. Hov/ever, a further analysis 

of this process will not be necessary. 

We have obtained the samie final result as 

provided by the simple analysis of section 2. The 

same formulae still apply if vve place the wall in 

the (uniform) supersonic region. But the fact that 

(12), (13) and (18) do not provide the correct 

answer when the wall is placed in the transonic 

region may serve as a sufficient indication that 

a more detailed analysis was not out of place. 

5. A Two-line Bound'.ry Value Problem. 

We still have to settle the question men­

tioned towards the end of section 3. "-''or this 

purpose we shall study the following problem from 

a purely mathematical point of vievî . 
/Consider. . , 
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Consider the system of differential 

equations 

1̂ 
95F ̂  °1 ̂y)~ay " â ^ (y)f̂  (x,y)+a^2^y)f2(^'y)/ 

9f^ 9f̂  

(̂ 0) 
9f2 9f2 i 
~9x "̂  ̂ 2 (̂ ^̂ "17 = 2̂1 ̂ ^̂ 1̂ (^^y)+^22^^)^2^^'^^! 

where c^(y), C2(y), a^^(y), a^2(y)' ^21 ̂ '̂̂  ̂  '"̂22 ̂ ^̂  ̂  ®^® 
continuous functions of y in an interval y^>y;>:yp, 
such that ĉ (y)-c.O, C2(y)>0 throughout. The 
characteristic curves of the system are 

g = c ^ ( y ) x = J j ^ . const (U1) 

and 

^ - c dx °2 (y) X = J ^ ^ + const (42) 

Assume that f. (x,y) is specified for 

y=y^ , f̂  (x,ŷ  )=P(x), and that f2(x,y) is speci­

fied for y=y2j f2 (x,y2 )=G(x), -e<><x<̂ *o, such that 

both F(x) and G(x) vanish for sufficiently small 

X, F(x) = G(x) = 0 for x<t x , say. 

Let P be any point in the region R de­

fined by ~:Ki<.x<c>0, y.>: y>-yp. Through P draw 

the two characteristics -t'̂  and f5'o belonging to the 

families (i+1 ) and (i|2), respectively (Pig. 2). 

These characteristics meet the straight lines 

y-y. and y=yo in points x=x. and x=Xp, respectively, 

fie propose to show that subject to certain condi­

tions of regularity the given problem possesses 

a solution f. (x,y), fp(x,y). Furthermore, we 

shall show that the value of f - (x,y) and f2(x,y) 

at ? is determined com.pletely and uniquely by the 

values of P(x) for x i~x. and of G(x) for x-fi Xp. 

We may replace ('LO) by 

D -f 1" 1 
"DF" " ^11^1 "̂  ̂ 12^2 

^2-2 ' ^ 
~Dx~ "" ̂21^1 "̂  ̂22^2 

where D V D X and Dp/Dx denote differentiation along 

/the two. . 

^k3) 
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the two characteristics through any given point, 

similarly as in equation (25). These equations 

in turn are equivalent to 

f^(x,y) =f^(x^,y^) + l la^^{^)f^{E,r^)+8i^^{-<,)r^{E,r,)\d£, 

• ^ ^ ^ 

-X 

f2( X ' y ) = f2^^2'y2)+! |'^21 ^''^^l (^'''^+^22^''')^2^^''''li dH 
w x^ ^ 

.. (Vi-j 

vifhere the integrals on the right-hand side are taken 

along the characteristics of the first and second 

family, ([4.1) and {l\2) respectively. x and y are 

co-ordinates of any point P in R, and x. and Xp are 

defined as in Pig. 2. 

ihk-) suggests a method of successive 
approximation. Yie define f. (x,y) and f2(x,y) in 
the region R as any set of functions which satisfy. 

the specified boundary conditions, e.g. 

^1,0^^'^^ "" P(x.̂ sŷ ) f2^Q(x,y) = G(x2sy2)' (U5) 

so that f̂  Q(x,y)=f2 Q(x,y)=0 for x-£x . Next we 

define sequences of functions f. ^(x,y), f„ (x,y); 

n=1,2 successively by 

f<x _ 

^1,n^^'y) = ^ l ^ n - l ^ ' ^ l ^ ^ (^11^'')^1,n-1^^'^^)^^2^^') 
X 

2,n 

f2,n-l(^'^')]^^ 
.. > (i+6) 

(̂ 'y) = f2,n-l(^2'^ b2l(')^1,n-1^^''^)-'^22^^') I 

f2,n.l(^'^)^ 

.rr 

dP. 

where the integrals are again taken along (.I4.I ) and 

{i\2) respectively. 

We prooose to show that the sequences 

f. (x,y), f̂  (x,y) converge at all points of R. 

Let 

A = max 
ŷ  iY >y2 

(/â ^ (y)|,(a^2(y)(,ja2^ (y) | p | a22 ̂'̂ M )' 

and let M be a common bound to |P(^)| and JG(P,) | 

for F smaller than some arbitrarily large value X, 

/X^^' 
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g;s.-X. Denoting by d, ^(x,y), d^ „(x,y) the 

differences 

^1,n(^-y) = ^1,n(^^y) - ^1,n-l(^-y) 

d2 .(x,y) = r^ (x,y) - f2,n-1 ̂ ^^y) 

we then obtain 

fX ^ ) 

d^^^(x,y) = [a^^(r,)f^^Q(e,r.)+a^2(^l)^2,o("'^'y^-^/ 
X. 

f.X 
. . . . ikl) 

d2^^(x,y) 4 La2^(-,)f^^o(f,r,)+a22(n)f2^o(^'-^')J^^^ 
X, J 

where the integral on the right-hand side is taken 

along the respective characteristics, as before. 

But I f̂  Q(x,y)j=jP(x^ )jé M for x £ x , since x^^x, 

and similarly \f^ Q (x.y )i = jG (x2)l 1Ê M. 

Hence 

{d.| ̂ (x,y)|= La^^(.Jf^ ^{E,r-,)+a^^{r.,)f^ ^(E^,ri)UE 

x, 
r-x 

fr 2 AMI dx :£ 2AM (x -X ) , 

^^1 

and similarly 

[dg^^ (x,y)j-£;2A..(x-x^). 

Also for n > 2 , 

'1 ^(x,y) =1 L^u^^^^^l ,n-1 (<-^)+^12(''')^2,n-1 ̂ ?̂ *̂)] ̂ ^ 

^1 

A X 

'^2,n^^'y) = [^2l(^)^1,n-l(^'^')^^22(''')'^2,n-1^^''"')]^^ 
J X 

1 
and so we o b t a i n s u c c e s s i v e l y 

,2 o IX-X \ I I o Ix-X \ 
|d^ 2^^ '^) ! - ^ 2 A ) " M ' ^ ^ ,ld2 2(x,y)i '^(2A)Svr ^ 

|d^ ( x , y ) / ^ ( 2 A ) ^ l ^ ^ ^ ^ ^ ^ ^ , | d p ^ ( x , y ) ( t è ( 2 A ) ^ M ' ^ i ^ ' l , n ^, ^ , n ^ , 

n 

Ave 
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We conclude in the usual way (compare 

Refs. 6,7) that the series'S-d. , iSTd̂  converge 

uniformly in any bounded sub-region of R, and hence 

that the sequences f. (x,y) and f̂  (x,y) converge 

to functions f, (.ic,y) and fo(x,y) vî hich satisfy (i;3) 

as well as the boundary conditions f.(x,y.) = F(x), 

f^(x,yp) = G(x). If we assume moreover that F(x) 
and G(x) are diff erentiable, then we may shovv" that 

the functions 9f./9x, 9fV^x, 9f,/ay, 9fV9y exist 

so that D.f>/DX and Dpfp/Dx may be replaced by 

9f^ 9f^ afg 9f2 
+ c ̂(y) -v7 ^^d -17 ^ ^2^^) -lY^ 9x 1̂ v̂/- ay ax ^2^*"^ ay 

respectively. It follovirs that f. (x,y) and f2(x,y) 

satisfy (L|.0). We may also show, by the procedure 

adopted for ordinary differential equations, that 

the solution is unique. It follows from the con­

struction that the values of f. (x,y) and fp(x,y) 

at any given point P involve only the values of 

P(x) for x^x. , and of G(x) for x±x^. 

The above theory can be applied directly 

to the case discussed in Section 3 only so long 

as y2>y„^ since the coefficients of (2I|.) become 

infinite for y = y . However, the boundary con-
s 

dition remains determinate as y^-^y and we there-
2 s 

fore conclude, subject to the limiitations of 

linearised theory, that (33) is the correct boundary 

condition for y„ = y . 
£~ S 

6. General Properties of the Solution. 

The incoming v/ave in the supersonic 

region is given in the form of a function of one 

variable, P (x+P y) = P(z), say, v/hile the out­

going wave is expressed as G(x-P y) = G(z). 

And by (11), (13) and (18) if 

.p(z) = j (P(k) + iQ(k),)e~̂ ''̂  dk (48) 

"'- CO 

then 

f'^ C' (y ;k)-iS' (y ,-k) -ikz 
G(z) = - I (P(k)4-iQ(k)) / ' - ^ e dk... (49) 

; C' V •,k +iS' y,.,,-k 

/f'e may. 
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We may use the linearised version of Bernoulli's 

equation 

9f 
V = V ~ (50) 

9x 

to find the pressure increment p due to any 

perturbation potential (^ in the supersonic region'. 

Its applicability in the region of variable m̂ ain 

stream velocity is doubtful. The form of (50) 

shows that if the pressure increment p. due to 

incoming wave is given by v^/f V = P(x-6 y) where 

P(z) is defined by (48) then the pressure increment 

p due to the resulting outgoing wave is given by 

V^/fo^Q = G(x-P y), where G(z) is defined by (49). 

It was mentioned earlier that our 

analysis should still yield the (theoretically) 

correct answer if the wall is placed in the 

supersonic region so that P is constant, 3 = P , 

for all y'Z.y . It may serve as a check on our 

calculations to show that this is indeed the case. 

We now have C(y,'k) = cos kP y, 

S(y;k) = sin kP y, and so 

C' (y.,;k)i iS' (ŷ .̂ }k) = -kP^(sin kP^y^ ; icos kP^y^) 

= t ik6^(cos kP̂ ŷ .̂  ± isin kP^y^). 

Hence 

C'(y^-,k)-iS'(y^jk) ^ _̂ _2ik0̂ ŷ ^̂ , 

C'(y^;k) + iS'(ŷ ;̂k) 

so that (49) becomes, for a given function P(z) 

/ V r'^ / V . Nv -2ikR^y.^ -ikz 
G(z) =1 (P(k)+iQ(k))e o '-^ e dk 

oo 

= P(Z + 2^ J J 

and this is the correct answer. 

/Coming 
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Coming back to the general case we may 

use Fourier's integral theorem to express G(z) 

directly in terms of F(z). Inverting (48) we obtain 

P(k) + iQ(k) = _± 
2'r 

r.'.-'O 
/ \ ikt 

P(t)e dt 

Substitution in (49) then yields 

a(z)=-2i/ 
^ I C'(y^^;k)-iS'(y^,-k) 

dk 

••i/«0 

C' (y,,;k)-MS'(y^^;k) J_^ 
P(t)e 

ik(t-z) 

(51) 

dt (52) 

We shall now deduce the following general principle. 

If G(z) is the total reflected vmve for a 

specified incoming v\rave P(z) as given by (49), then 

G (z) = F(-z) is the reflected v;ave corresponding to 

an incoming wave F (z) = G(-z). 

In fact by (52) 

G*(z). _ _ — , (3_]j ƒ p (t)e dt 
2% i 

ƒ C'(y^;k).iS'(y^;k) l ^ 

l|C'(y,,;k)-iS'(y.̂ ;k) / 
_i dk 

.fX) 

'|C'(ŷ 5̂k)+iS'(ŷ ;̂k) 

, ik(t-z) 
.t)e ^ ^dt, 

!-•" CK) 

Putt ing T = - t , ^ = _ 3 , •̂ ; = -k, we obtain 

, C ' (y^;^) - iS ' (y^; / . ) __^__ife_,,) 
G*(-^J 2% C'(v ,--̂ ) + i S ' ( v „ v £ ) 

d-^- G ( T ) e dT: 

w W' 

V_ CO 

• CKi 

&0 
1 c • ( y , , ; ^ ) + i S • ( y ^ ^ e ) ^ ^ / • _ ^ , ^ ( , _ ^ ) 

2Mc'(y^;^;)-iS'(y^.;£) J_^ d T 

On the other hand, by the inversion of (49) 

C' (y ;k)-iS' (y ;k) 
(P(k)+iQ(k)) '^ '^ 

C'(ŷ ;̂k) + iS'(y ,-k) 

1 f . V ikt 
' ' G (t) e dt 2^ j 
J— OQ 

(53) 

/and so , 
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and so, by (48) 

w ^ i|c'(y^;k)+is'(y^^jk) f'"^ ik(t-z) 
P(z)= - 27' dk G t e ^ ^dt (54) 

^-|o.(y„a)-is.(y,;.) l ^ • 

Comparing (53) and (54) we find G*(z) = F(-z), as 

asserted. The above principle shows that while a 

sharp front, such as presented by a pure compression 

is smoothed out by the subsonic layer, the opposite 

effect is equally likely - at least in theory. In 

reality the conclusion is modified by the interven­

tion of viscosity effects etc. , which are neglected 

in our theory. 

Another general relation betï/een the 

incoming and the outgoing wave is 

jrF(z)]"dz= |G(z)j^ dz (55) 

In fact, by applying Parseval's formula 

to (48) we obtain 

J[F(Z)]^ dz = i |p(k) + iQ(k)|'' dk. 

Also, by applying the same formula to (49) -

fr 12 T C'(y^^;k)-iS'(y^.^,'k) 2 
G(z)rdz = |(P(k)+iQ(k)) '^ ^ 1 dk 

r I C'(v ,-k)+iS'(y ;k) 
r 2 

= ƒ ]p(k)+iQ(k)| dk; 

,C'(y,„-,k)-iS'(y,,^jk)_ 

C'(y,,;k) + iS'(y^-,k)' 
since} Lw_. __w 1 ̂  ^^ ^^^ ^^_^ ^^^^ ,̂_ 

This proves our assertion. 

We conclude thi.R l̂i i-.cop.GJ.on of some of 

the mathematical features '«i.th the cal cnlation of 

the variation of a discontinuity in the incoming 

wave along the Mach lines of the transonic region. 

Thus assume that the function 

f,(x,y) = PP'(x + Py), which represents the in­

coming wave in the supersonic region, possesses 

a discontinuity of magnitude j = j ^ along the 

Mach line NP. Let PQ be the continuation of 

/ N P across. 
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NP across the transonic region. Writing down the 

first equation of (26) at points Just downstream 

of NPQ, and at points just upstream of NPQ and 

subtracting, we obtain the following equation for 

the variation of the discontinuity j along NPQ. 

1 dp 
D 2P dy 

Regarding j, vifhich is defined on NPQ, as 

a function of y we may integrate v/ith respect to y 

and obtain 

d (y) = const. /P(y), 

Since j = j in the supersonic region where ^ 

we therefore have 

liil 
drs 0 

Equation (57)' shows that any initial disoontJnnity 

is diffused complptely by the time it reaches the 

sonic line (where P(y) = O), This is consistent 

with the results provided by m.ore exact theories. 

(36) 

(57) 

7' Numerical Examples. 

The exact evaluation of (49) or (52) for 

given P(z) appears to be, generally speaking, 

impossible. However, it can be shown that subject 

to the condition 

I IP (k) + iQ (k) j dk ^ c^ 

J-oo 
legitimate approximations to (49) are obtained by 

replacing the functions C(y5k), S(y,'.k'! on the 

right-hand side by their partial sums of specified 

order, as given by (4)5 (7) and (8). If moreover 

P(k) + iQ(k) is a rational function of > then the 

resulting integral can be evaluated by the calculus 

of residues. A function P(2) such that P(k) + iQ(k) 

satisfies all the requisite conditions is given by 

0 for z^ z 
o 

-x'(z-z ) 
e ^^ o for z^< z < z. 
-y(z-z^) -T(z-z^) 

P(z) = 1 

-e for z > z 1 

(5S) 

(59) 

/where. 
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where z < z. , andTf>0. If we let z tend to c?o 

while keeping z constant, we obtain an incoming 

wave of the type considered by Tsien and Pinston 

P(z) = I 0 for Z < Z Q 

i -5f(z-2 ) 
i e o for z >z , 

' o 

and if furtherm.ore we let ^ tend to 0, then we 

obtain a step function 
P(z) = f'o for zCz ) 

J 0 I 
U f°^ ̂ >2oJ 

which corresponds to a simple compression or 

expansion wave. 

Numerical calculations were carried out 

for the case of a siniple incom.ing wave as given by 

(6o) and for a tj-yical laminar velocity profile 

snecified by 

V(y) = V for y>0 

V(y) = VQCOS I ^ for 0> y > ŷ^ 

The functions C(y,-k) and sty;k) were approximated 

by their seventh partial suras. Pigs. 3 and 4 show 

the total pressure incrementaó,p at the 'outer edge' 

of the boundary layer, i.e. for y - 0, at a 

distance jy_,i from the wall. The abscissae are 

measured in rnxUltiples of j y j. 

The effect of an incoming wave concen­

trated at the origin can be calculated by 

differentiating the curves in Pigs. 3 and 4> and 

aioproximate numerical results for other incoming 

waves may then be obtained by integration. 

Hov;ever all the numerical results appear to be 

inadequate as shown by the discussion in Section 1 

above. 

(60) 

(61) 

ooOco 
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