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Summary

CO2 geo-sequestration (CGS) is considered to be a feasible technology for reducing

the amount of CO2 emission into the atmosphere. Selection of an appropriate

reservoir is vital and requires appropriate knowledge of the involved phenomena and

processes. In a CO2 geo-sequestration process, carbon dioxide goes through mainly

four storage (trapping) mechanisms: structural and stratigraphic trapping, residual

trapping, solubility trapping and mineral trapping. In this study, focus is placed on

modeling the first trapping mechanism, together with corresponding deformation

and electrokinetic flow.

Multiphase fluid flow due to injection of CO2 in an unsaturated reservoir is

accompanied by continuous redistribution of pore pressure and effective stress,

causing local and regional deformations and probably major uplifting or subsidence.

This flow is also accompanied by electrokinetic flow. In such a system, electrokinetic

potentials occur due to the interaction between the formation fluid and the mineral

grains. Due to pressure gradients, the flow of the pore fluid produces an advective

electric current: such a flow generates an electric field, which produces a counter

electric current through the interface, known as the self-potential (SP). Since the

electrical conductivity of CO2 is lower than that of the formation brine, it can be

detected by measuring the self-potential. Based on this, the SP can be used for

monitoring CO2 plume movement, a necessary procedure to ensure that geologic

sequestration is both safe and effective.

In spite of the versatility of the available numerical tools, attempts to model

CO2 geo-sequestration in a region and considering events occurring in local areas

lead to enormous demands for computational power. This makes the development of

numerical tools for CO2 geo-sequestration not only difficult, but rather expensive.

In this study, the governing field equations are derived based on the averaging

theory and solved numerically based on a mixed discretization scheme. In this

i



Summary

scheme, variables exhibiting different nature are treated using different numerical

discretization techniques. Techniques such as the standard Galerkin finite element

method (SG), the extended finite element method (XFEM), the level-set method (LS)

and the Petrov-Galerkin method (PG) are integrated in a single numerical scheme.

SG is utilized to discretize the deformation and the diffusive dominant field equations,

and XFEM, together with LS, are utilized to discretize the advective dominant field

equations. The level-set method is employed to trace and locate the CO2 plume front,

and the XFEM is employed to model the associated high gradient in the saturation

field front. The use of XFEM for the advective field leads to a computationally

efficient, stable and effectively mesh-independent discretization. However, it gives

rise to an extra degree of freedom. The use of SG for the deformation and the

diffusive fields requires only standard degrees of freedom, limiting the total number

of degrees of freedom and making the scheme computationally efficient.

Several verification and numerical examples are presented for both homogenous

and fractured reservoirs. The examples demonstrate the capability of the proposed

mixed discretization model to simulate challenging, coupled analyses. It has been

shown that this model is capable of solving problems, which typically involve several

state variables with different transient nature, using relatively coarse meshes.
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Samenvatting

CO2-sequestratie (CGS) wordt beschouwd als een uitvoerbare technologie voor het

verminderen van de hoeveelheid CO2-uitstoot in de atmosfeer. Het selecteren van een

geschikt reservoir is essentieel en vereist passende kennis van de betrokken fenomenen

en processen. In CO2-sequestratie wordt koolstof op vier manieren opgeslagen:

structurele en stratigrafische opslag, restopslag, opslag door oplossing en opslag in

mineralen. In deze studie ligt de focus op het modeleren van het eerstgenoemde

opslagmechanisme en de bijbehorende deformatie en elektrokinetisch transport.

Multifase vloeistofstroming door CO2-injectie in een onverzadigd reservoir gaat

samen met continue herverdeling van de waterspanning en de effectieve spanning wat

locale en regionale deformatie en waarschijnlijk grote bodemstijging of bodemdaling

veroorzaakt. Deze stroming gaat ook samen met elektrokinetisch transport. In zo’n

systeem ontstaat elektrokinetische spanning door de interactie tussen de vloeistof in

het reservoir en de mineralen. Door de spanningsgradiënten produceert de vloeis-

tofstroom een advectieve elektrische stroom: zo’n elektrische stroom genereert een

elektrisch veld wat een tegengestelde elektrische stroom door het medium veroorzaakt,

beter bekend als de zelfpotentiaal (SP). Omdat de elektrische conductiviteit van

CO2 lager is dan die van de vloeistof in het reservoir kan het worden gedetecteerd

door het meten van de zelfpotentiaal. De zelfpotentiaal kan dus worden gebruikt

voor het monitoren van beweging van de CO2-pluim, een noodzakelijke procedure

om te verzekeren dat de geologische sequestratie veilig en effectief is.

Ondanks de veelzijdigheid van de beschikbare numerieke methodes leiden pogingen

tot het modelleren van CO2-sequestratie in een gebied samen met het beschouwen

van lokale gebeurtenissen tot een enorme vraag naar computerkracht. Dit maakt

het ontwikkelen van numerieke methodes voor CO2-sequestratie niet alleen moeilijk

maar ook duur.

In deze studie zijn de relevante veldvergelijkingen gebaseerd op de middelingsthe-
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Samenvatting

orie en numeriek opgelost door gebruik te maken van een gecombineerd discretisa-

tieschema. In dit schema worden variabelen met verschillende karakter behandeld

met verschillende numerieke discretisatiemethodes. Technieken zoals de standaard

Galerkin eindige-elementenmethode (SG), de uitgebreide eindige-elementenmethode

(XFEM), the level-set methode (LS) en de Petrov-Galerkin methode (PG) zijn gecom-

bineerd in één numeriek schema. SG wordt gebruikt om de deformatie en de diffusie

dominante veldvergelijkingen te discretiseren, terwijl XFEM en LS samen worden

gebruikt om de advectie dominante veldvergelijkingen te discretiseren. De level-set

methode wordt toegepast om het front van de CO2-pluim te traceren en te lokaliseren

en de XFEM wordt toegepast om de bijbehorende hoge gradiënt in het saturatiefront

te modeleeren. Het gebruikt van XFEM voor het advectieveld leidt tot een efficiënte,

stabiele en nagenoeg mesh onafhankelijke discretisatie. Deze aanpak leidt echter tot

een extra vrijheidsgraad. Het gebruik van SG voor de deformatie en het diffusieveld

vereist standaard vrijheidsgraden wat het totale aantal vrijheidsgraden beperkt en

het numerieke schema efficiënt maakt.

Enkele numerieke voorbeelden voor zowel homogene als ’fractured’ reservoirs

worden gepresenteerd ter verificatie. De voorbeelden tonen de mogelijkheden van

het voorgestelde gemixte discretisatiemodel om uitdagende, gekoppelde analyses uit

te voeren. Er is aangetoond dat met dit model problemen opgelost kunnen worden

met een aantal toestandsvariabelen met verschillend tijdsafhankelijk karakter, terwijl

gebruik wordt gemaakt van een grove discretisatie.
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Introduction 1
This chapter addresses the concept, process, and modeling of carbon dioxide (CO2)

geo-sequestration. It provides an overview of trapping mechanisms, types of geological

sinks, and risks associated with geological storage. Thereafter, a literature review,

current state of the art and challenges in mathematical and numerical modeling and

the underlying concepts are presented. Finally, the aims of this work and the thesis

outline are summarized.

1.1 Motivation for CO2 geo-sequestration

Atmospheric levels of CO2 have increased steadily since the beginning of the industrial

revolution and these levels are projected to increase even faster as the global economy

grows. Increases in CO2 concentrations are attributed mainly to burning coal, oil

and natural gas for electrical generation, transportation, industrial and domestic

uses. Today, globally, significant climate changes are very likely associated with

increased atmospheric concentrations of certain gases, most significantly CO2 (ASME,

2009). The Intergovernmental Panel on Climate Change (IPCC) predicts that the

global mean temperature will increase about 3± 1.5◦ Celsius if CO2 doubles in the

atmosphere (IPCC, 2005). The human and ecological cost of climate changes forecast

in the absence of mitigation measures is sufficiently large, and the time scales of

both intervention and resultant climate change response are sufficiently long, that

prudent action is warranted now.

During the past several years, focus has been placed on different solutions that

could prevent this by mitigating anthropogenic CO2 emissions. These solutions

are categorized in four main options that can be implemented by using current

technology.

1



Chapter 1. Introduction

1. Use more energy-efficient technologies

2. Use alternative environmentally friendly energy sources

3. Enhance the natural uptake of CO2 by the terrestrial biosphere through various

biochemical processes

4. remove CO2 from atmosphere and store underground

A variety of factors will need to be considered in any appraisal of these mitigation

options. The factors include the potential of each option to deliver emission reductions,

the local resources available, the accessibility of each technology for the country

concerned, national commitments to reduce emissions, the availability of finances,

public acceptance, likely infrastructural changes, environmental side-effects, etc.

(IPCC, 2005).

Carbon dioxide capture and storage (CCS) is considered as an effective and viable

strategy in the worldwide effort to reduce the human contribution to climate change

(Holloway, 1997; IPCC, 2005). This process involves the separation of CO2 from an

emission source (e.g., a fossil fuel power plant), compression to a supercritical fluid

condition, transport via pipelines and injection into deep geological formations.

CO2 sequestration should be done in quantities of gigatonnes of CO2 per year

to be effective for the mitigation of global warming. Effective methods of CO2 se-

questration include enhancement of terrestrial carbon sinks, geological sequestration

(CGS), ocean and mineral sequestration. This thesis focuses on the CGS technology.

1.2 Principles of CGS

1.2.1 CGS options

A geological sink for CGS is a system composed of an appropriate porous rock for

injection of a large amount of CO2 and a barrier that will permanently trap the CO2.

Potential targets that fulfill these conditions for CO2 injection include depleted oil

and gas reservoirs, deep unmineable coal seams, salt caverns and deep saline aquifers

CO2 storage in depleted oil and gas fields

CO2 can be geologically sequestered in depleted oil and gas reservoirs. The

hydro-geological properties that allowed the accumulation of hydrocarbon in the first

2
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place will also permit the trapping of CO2 in the depleted space in the reservoir.

This entails that the sealing condition that prevented the escape of hydrocarbons

over geological time can permanently store the injected CO2.

Depleted oil and gas reservoirs are very attractive candidates for the underground

storage of CO2. This is because these reservoirs have been extensively studied during

the oil and gas production period. Moreover, surface and sub-surface facilities (wells,

equipment and pipelines) are already available and could be used for CGS. Besides

that, the experiences achieved during the injection of miscible and immiscible gases

into oil and gas reservoirs as an enhanced oil recovery (EOR) method, including

CO2-EOR can be adapted for CGS projects. Estimates of the world’s CO2 storage

capacity in geological formations ranges from 300 to 3200 Gt CO2 (DOE, 2007). The

worldwide capacity of the depleted oil and gas reservoirs is estimated at 100 GtC.

Table 1.1 shows the potential volumes of carbon that can be trapped in different

formations.

CO2 storage in active oil and gas reservoirs

CO2 can be injected into an oil reservoir to increase the production of oil. This

technology has long been used in the petroleum industry. This process has mutual

benefit to decrease emissions of CO2 into the atmosphere and enhance oil and gas

recovery.

During oil production from a reservoir, a substantial amount of the reserved oil

may trap in the reservoir (more than 65%). Enhanced oil recovery processes alter

the physical characteristics of the reservoir to increase production. A huge amount

of trapped oil can be recovered with CO2 injection under appropriate conditions.

Injected CO2 has the property of dissolving in the oil to swell it, make it lighter,

reduce the viscosity and interfacial tension, increase the reservoir pressure and

improves the sweep efficiency, resulting in the recovery of up to 40% of the residual

oil.

Table 1.1: An estimate of the volumes of CO2 that can be sequestered below surface

(Herzog, 2001).

geo-sequestration Option Worldwide Capacity

Oceans 1000 GtC

Deep saline formations 100− 1000 GtC

Depleted oil and gas reservoirs 100 GtC

Coal seams 10− 100 GtC

3
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CO2 storage in coal seams

Coal beds are a possible storage medium for CO2. Within the microstructure of

the coalbed, there is adsorbed methane. Since CO2 is preferentially adsorbed by coal

relative to methane, a large amount of injected CO2 can be adsorbed in the pore

matrix of the coal bed for a long geological time. CO2 injection can also be used as

an enhanced gas recovery (EGR) technique in coal bed methane (CBM) where for

every molecule of CH4 desorbed, two molecules of CO2 will be adsorbed.

CO2 storage in deep saline aquifers

Saline aquifers are permeable underground formations that contain very salty

water (brine) and are considered as one of the most promising options for CO2

geo-sequestration. Suitable aquifers must be sealed by a regional aquitard (e.g.

shale), which is impermeable and should not have any fractures or uncompleted

wells (Bachu et al., 1994). Deep saline aquifers provide no economic return for CO2

injection, but they have the largest potential in volume for CO2 storage in geological

media and are widely distributed in the earth in all sedimentary formations.

Compared to hydrocarbon bearing reservoirs, which usually have broad explora-

tion and characterization study, saline aquifers are mostly uncharacterized in terms

of their geological structure. Hence, an appropriate study of the process will be

challenging and unexpected problems may come along during operation.

1.2.2 Trapping mechanisms of CGS

Selection of an appropriate reservoir requires appropriate knowledge of the involved

phenomena and processes. In general, to reduce costs associated with injection and

to reduce the buoyancy forces and increase the mass of CO2 that can be injected per

given pore volume, CO2 should be injected in a supercritical state (Bachu, 2002).

With an average surface temperature of 10 ◦C, a geothermal gradient of 25◦C/km,

and a hydrostatic pressure gradient of 10 MPa/km, the critical point for CO2 (31.1
◦C and 7.38 MPa) can be reached at 800 m depth below the surface (Holloway and

Savage, 1993). Based on this, the CO2 injection should take place at a depth of at

least 800 m to ensure that the CO2 enters the formation in a supercritical state.

With time, CGS processes and phenomena go through mainly four storage

(trapping) mechanisms, Figure 1.1. During the injection stage, and in the first

couple of years after injection, the dominant process is two-phase flow, when the

CO2 systematically displaces the formation brine controlled by gravity, capillary

and viscous forces. During this period, structural and stratigraphic trapping occurs,

when the low permeability cap-rock prevents the CO2 from rising upwards. In this
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case, an important part of the CO2 plume resides at the boundary between the

reservoir and the cap layer.

The CO2 plume also leaves a trace of residual saturation that no longer moves

(residual trapping). Capillary forces restrict the behavior of the CO2 flow and

CO2 will be left behind as trapped (residual) saturation. Rock and fluid property

distributions, the structure of the porous material, the wettability of the rock and

the extent of the displacement process in different regions of an aquifer affect the

distribution of residual trapping in different parts. Residual saturation is different

for each reservoir and should be measured for each individual rock in the lab.

At a later stage, CO2 starts to dissolve into the brine by dispersion and diffusion.

Diffusion of CO2 into the brine can set up reverse density gradients that lead to

convective mixing and increased rate of CO2 dissolution. The solubility of CO2

varies as a function of pressure, temperature, and salinity.

In the long term, chemical reactions between the CO2-water mixture and the

formation and cap rock solid matrices will take place. These geochemical reactions

take place slowly within a time frame of decades or centuries. This mechanism is

effective and when minerals form, CO2 is bound for long periods of time in mineral

trapping. Incorporating chemical processes may require several additional degrees

of freedom per node, depending on the sophistication of the simulation and what

processes are deemed important. This will depend on the type of host rock (limestone,

granite, sandstone, etc), and the time scale of the simulation.

In this work, focus is placed on the first trapping mechanism, when the CO2

undergoes stratigraphic trapping by buoyancy due to its density difference with the

formation brine water.

A proper selection of underground storage of CO2 is essential to ensure that CO2

would stay safely underground for a long geological time. Regions with earthquake

or volcanic activity can be dangerous for CO2 geo-sequestration. Proper storage site

selection, comprehensive reservoir characterization, appropriate injection operation,

site monitoring, together with the implementation of remedial measures if leakage is

identified and also a reliable numerical simulator, assure the safe geo-sequestration

of CO2.

1.2.3 Risks of CGS

CO2 can remain trapped underground for very long periods, but leakage of CO2 can

lead to serious local environmental consequences. In general, the risks of injecting

CO2 into geological formations can be divided into the following categories:

• CO2 leakage from the reservoir to the atmosphere

5
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Figure 1.1: CO2 trapping mechanisms over time (see IPCC (2005)).

• Brine movement and subsequent displacement into shallower drinking water

reserves

• Methane displacement and leakage

• Geomechanical uplift or subsidence of earth surface because of underground

pressure changes induced by CO2 injection

• Induced seismicity and small earthquakes

A plume of stored CO2 can migrate by several mechanisms from the reservoir:

• Escape through low permeability caprocks, if the pressure difference between

CO2 and the water phase exceeds the capillary entry pressure

• Diffusion of CO2 through the caprock

• Lateral migration along unconformities that end up at the sea bottom

• Escape through openings in the caprock or fractures and faults

• Escape through or along wells, which can be caused by failure in casing or

cementation

To ensure safety of large-scale geo-sequestration of CO2, monitoring of CO2

migration in the subsurface is needed. Moreover, to assess the long-term fate of

injected CO2 and the effect of CO2 on the host environment, it is necessary to

simulate the process. In this thesis a comprehensive modeling is conducted on

simulation of a coupled electrokinetic–hydromechanic process for CGS and the

behavior of a well-known CO2 leakage problem is studied.
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1.2.4 Monitoring of CGS

The main purpose of monitoring is to ensure that geologic sequestration is both safe

and effective without leakage and to meet the regulation and environmental policy

for a long-term period.

Benson and Myer (2000) stated that one of the most important purposes of

monitoring is to confirm that the project is performing as expected from the predictive

models. This is particularly valuable in the early stages of a project when there is

an opportunity to alter the project if it is not performing adequately. Moreover,

monitoring data collected early in the project are frequently used to improve and

calibrate the predictive model further. The refined model then forms the basis for

predicting the longer-term performance of the project.

Existing monitoring methods include geophysical techniques such as surface

and borehole seismic and electromagnetic, streaming potential (SP) measurements,

geomechanical methods such as tiltmeters, well testing and pressure monitoring,

tracers and chemical sampling.

Geophysical techniques are utilized to remotely and economically monitor the

distribution and pore-space saturation of CO2 in underground storage sites. The

spatial and temporal resolution of these methods is unlikely to be sufficient for

performance evaluation and leakage detection. Of these techniques, in this study the

focus is on monitoring by measuring streaming-potential in the reservoir.

Measurements of the streaming potential may be used to monitor subsurface

fluid flow in regions where two or more mobile fluid phases occupy the pore space,

such as the vadose zone, hydrocarbon reservoirs, contaminated aquifers and CO2

geo-sequestration (Moore et al., 2004; Sailhac et al., 2004; Saunders et al., 2006,

2008, 2012).

Electrokinetic and electro-magnetic monitoring measures the change in resistivity

due to CO2 injection. The resistivity is expected to increase when CO2 replaces e.g.

the brine. Fracturing can also be detected by this method (Moore and Glaser, 2007).

It is generally considered that the first person to measure a streaming potential

was Georg Hermann Quincke in about 1859, which was followed some 20 years later

in 1879 by Helmholtz who developed a mathematical expression for that effect. The

self-potential has been extensively utilized and modeled for geothermal exploration

(Ishido and Pritchett, 1999; Ishido et al., 2010), groundwater flow (Bolève et al.,

2007), and oil reservoirs (Saunders et al., 2008; Wurmstich and Morgan, 1994).

The concept of monitoring the streaming potential in hydrocarbon reservoirs was

first suggested by Wurmstich and Morgan (1994). They used numerical techniques

to simulate the streaming potential measured at monitoring wells and at the surface
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during production. Saunders et al. (2006) used numerical techniques to simulate

water moving toward a well during oil production and the resulting streaming

potential measured at the well.

1.3 Modeling CGS

A model may be defined as a selected simplified version of a real system and

phenomena that take place within it. It approximately simulates the system’s

excitation-response relationships that are of interest (Bear et al., 1993). There are

three important steps in the modeling of any physical process: (i) Development of a

conceptual model, (ii) mathematical modeling, and (iii) numerical simulation.

The first step is to describe an idealized form of a problem in terms of a set of

specific quantities. It is not always feasible to ensure the reliability of the idealized

system since, in some cases, the physical process is not totally known.

The second step in the modeling is to characterize the idealization of the physical

process by a mathematical model; in other words, the development of the govern-

ing equations of the problem. These governing equations are mostly complicated

equations that are challenging to solve both analytically and numerically. Therefore,

we must introduce simplifying assumptions to decrease the complexity of the model

which makes it possible to obtain either an exact or a numerical solution. Because the

model is a simplified version of the real system, no unique model exists to describe

it.

After the development of a proper mathematical model, with suitable boundary

and initial conditions, we need to solve it analytically or numerically.

In the following section, a review of the methodology of constructing models that

are required for solving CO2 geo-sequestration is given.

1.3.1 Conceptual modeling of CGS

The real system of CO2 geo-sequestration and its behavior may be very complicated,

depending on the amount of details we wish, or need to be included in describing it.

The art of modeling is to simplify the description of the system and its behavior to

a degree that will be useful for the purpose of planning and making management

decisions in specific cases. The simplifications are introduced in the form of a set of

assumptions that express our understanding of the system and its performance.

The injection of CO2 into the underground formation and its interaction with

the resident fluid as well as with the porous medium domain involves coupled multi-

physical processes including multiphase fluid flow (H), geomechanical deformation
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(M), heat transfer (T) and geochemical reaction (C), normally denoted as THMC

processes. The term coupled THMC indicates that each process affects others, and

the overall response of the model cannot be predicted accurately by considering each

process.

In recent years, a great deal of attention has been directed towards coupled

THMC modeling in petroleum and environmental engineering, geothermal energy

utilization and CO2 geo-sequestration (Gawin and Schrefler, 1996; Gawin et al., 1995;

Lewis and Schrefler, 1998; Lewis et al., 1989; Rutqvist et al., 2002). These model

frameworks, developed for multiphase flow and reactive transport problems, can be

adopted for modeling CO2 geo-sequestration processes. Different numerical simula-

tion researches determined how the performance evaluation of CO2 geo-sequestration

requires the study of these simultaneously interacting processes (Johnson and Nitao,

2002; Rutqvist et al., 2009; Xu and Pruess, 2001; Xu et al., 2006).

A wide variety of modeling techniques have been reported in literature for HM

process in CO2 geo-sequestration. However, only a few fully coupled THMC models

have addressed large-scale numerical simulation of CO2 injection (Rutqvist et al.,

2009; Xu et al., 2007). Since a fully coupled THMC model may be computationally

intensive, models that are more manageable may be created by identifying which

processes are strongly linked and which processes are weakly linked.

These studies include numerical simulations of CO2 flow in a homogenous forma-

tion (H process) (e.g. Pruess et al., 2002; Weir et al., 1995), a coupled hydromechanical

simulation (HM process) to study the potential for tensile and shear failure associated

with underground CO2 injection (e.g. Rutqvist and Tsang, 2002; Rutqvist et al., 2002,

2007, 2009) and a coupling of geochemical reactions with multiphase flow to evaluate

long-term caprock integrity considering HC processes during CO2 geo-sequestration

(Johnson and Nitao, 2002; Johnson et al., 2004, 2005; Pruess, 2010). In addition,

simulations have been conducted considering mineral precipitation and dissolution

reactions in a homogeneous formation (e.g. Xu et al., 2004, 2007). In this thesis

a computational model for the simulation of coupled hydromechanical (HM) and

electrokinetic flow is introduced. Particular emphasis is placed on modeling CO2

flow in a deformed, fractured geological formation and the associated electrokinetic

flow.

In order to understand and predict a coupled multi-physical process, one must

obtain quantitative mathematical models of this process. Therefore, it is necessary to

analyze the relationship between the process variables and to obtain a mathematical

model.
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1.3.2 Mathematical modeling of CGS

The second step in the modeling process is the mathematical modeling. In this

step, the conceptual model is expressed in the form of mathematical equations.

Mathematical modeling and simulation of CO2 flow and its propagation in porous

media are essential for understanding all THMC processes, designing the injection

process and monitoring the geo-sequestration process. A mathematical model consists

of:

1. Balance equations describing the conservation of mass, electric charge, mo-

mentum and energy in the system.

2. Constitutive equations describing the internal mechanical, thermal, and other

properties of the constitutive quantities of the system.

3. Domain geometry describing boundary surfaces of the system.

4. Initial and boundary conditions describing the initial state of the system and

the interaction of the system with its surrounding.

The earliest studies of multiphase flows in porous media concern flow in partially

saturated soil in ground water hydrology. However, the most intense researches in

this field over the past four decades have focused on simulating multiphase flow in

petroleum reservoirs. The core of any fluid flow in porous media consists of a partial

differential equation (PDE) that represents the physical reality of the subsurface

porous medium and flow phenomena that occur there.

The construction of such equations is based on the assumption that the porous

medium domains of interest may be described as continua; the models constructed

in this way are referred to as ‘continuum models’. Continuum models represent

the classical engineering approach to describing materials of complex and irregular

geometry characterized by several distinct relevant length scales. A spatial domain

is said to behave as a continuum if state variables and properties that describe the

behavior of the material occupying it can be assigned to every point within it (Bear

et al., 1993).

Appropriate models are not based on a physical characterization of the real micro-

structure, but consider their effects on the physical behavior in a phenomenological

manner. For flow in porous medium problems, microscopic modeling is usually

impractical, due to the inability to describe the complex configuration of the solid-

liquid boundary over large porous medium domains. Moreover, even if the solution

of the problem could be obtained in great detail, it would contain much more

information than would be useful in any practical sense. To avoid these difficulties,

associated with solving problems at the microscopic level, another level of description
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is introduced, referred to as the macroscopic level. Therefore, some averaging is

necessary to go from the pore scale (micro scale) to the reservoir scale (macro scale).

In the classical model for single phase flows in a porous media (e.g. Bear, 2012;

De Marsily), a conservation of mass equation for the fluid phase is combined with an

equation of state relating the pressure, temperature and fluid properties; imposing

a compressibility model for the solid phase; and invoking Darcy’s law to relate

macroscopic velocity (volumetric flux density) to the pressure gradient.

For multiphase flow, a similar approach is taken and the governing equations are

based on a continuum theory, which consists of two basis elements, the fundamental

conservation law and constitutive relations. The equations are written for each

fluid phase and fluid saturations are related to the fluid pressures, using empirical

correlations. A multiphase extension of the empirical Darcy’s law, which typically

includes relative permeabilties, is used to relate the flux vector to the pressure

gradient of the individual phase.

The classical approach for multiphase flow, based on direct extension of Darcy

law, leads to several problems. Limitations are reflected in many aspects, including

the hysteresis in capillary pressure and relative permeability relations and interfacial

effects. Hysteresis means that capillary pressure and relative permeability have

different values between an upper and a lower bound, depending on the history

of the system and the path along which the particular state was reached (Dullien,

1991). An example of the interfacial effects would be the effects of the momentum

transfer caused by a viscous force across two-phase interface, which is referred to

as viscous coupling. Different studies (e.g. Bachmat and Bear, 1986; Ehrlich, 1993;

Hassanizadeh and Gray, 1980, 1979b) have shown that viscous coupling effects are

important over a broad range of porous media flow problems. The existence of these

phenomena indicates that simple extension of Darcy’s law for multiphase flow is not

capable of capturing microscale physics.

In general there is a lack of a rigorous connection between the microscale and

the macroscale in the classical approach. The absence of cross-scale consistency is a

result of formulation approaches that by-pass the microscale and instead propose

conservation equations and closure relations directly at the macroscale (Gray and

Miller, 2005).

In the last three decades, there has been theoretical work attempting to develop

a rigorous and consistent framework for formulating macroscale models that better

account for microscale physics. In general, there are three major approaches that

can be used to transform the microscopic physical laws, e.g., balance equations of

extensive quantities, such as mass, momentum and energy, into their macroscopic

counterparts for practical application purposes (Bear and Cheng, 2010):
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1. The mixture-theory approach (Boer, 2000; Whitaker, 1986, 1999), which starts

from the macroscopic level and can be viewed as an extension of the classical

continuum mechanics theory. Employing the concept of volume fraction allows

accounting for the different constituents of the soil.

2. The averaging approach, which is characterized by applying the balance laws

of classical continuum mechanics to the actual microstructure of the porous

medium. based on a thermodynamic framework that provides constraints

on system behavior, this approach starts from microscopic balance equations

of mass, momentum, and energy for two fluid phases, a solid phase, and the

interfaces between the phases and transform them to the macroscale. A number

of studies have been devoted to the development of averaging theorem and

applying it to multiphase transport problems (e.g. Cushman, 1982; Gray, 1983;

Hassanizadeh and Gray, 1979a).

3. The homogenization approach (e.g. Hornung, 1997; Sánchez-Palencia, 1980),

which is a mathematical technique applied to differential equations that describe

physical phenomena associated with a domain exhibiting heterogeneities and

geometrical features at two scales or more. This aims at smoothing out the

heterogeneity at the pore scale, as well as at other scales. It assumes that

the heterogeneity is periodically distributed in the domain. This condition is

needed for a rigorous mathematical proof of the existence and uniqueness of

the solution. Physically, this means a structure based on a repeated pattern,

e.g., a certain form of stacking of grains, or of alternating layers of different

materials.

A variety of simplifying assumptions and constraints are introduced in each of

these three approaches; hence, the resulting macroscopic laws depend on the selected

set of underlying assumptions. It must be pointed out that, under appropriate

assumptions, the averaging theory yields the same equations as the classical mixture

theory, as shown in Boer et al. (1991).

The averaging theory is one of the most important mathematical models for

multiphase flow in porous media. It provides physically sound up-scaling of the mi-

croscopic quantities to their corresponding macroscopic quantities. The conservation

equations for micro scale variables are transformed to conservation equations for

macro scale variables. These theorems essentially transform averages of derivatives

to derivatives of averages. Utilization of such a model can effectively be substituted

for the use of multiscale techniques, where material properties or system behavior are

calculated on one level using information or models from different levels. Concerning
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a detailed overview of mathematical modeling of multiphase multicomponent porous

media, the reader is referred to Boer (2000).

These different theoretical approaches produce a similar final formulation which

is referred as the generalized two-phase flow model. Typically there are a number of

different possibilities to select a set of independent variables with which the remaining

dependent variables can be eliminated. This results in different mathematical

formulations for the same model. The selection of the proper formulation can

strongly influence the behavior of the numerical simulation and is, therefore, of

primary importance. In the following, an example of this will be briefly discussed

Modeling immiscible two-phase flow in porous media

Darcy’s law presents the principle that governs fluid flow in porous media.

According to this law the fluid velocity is linearly proportional to the pressure

gradient and the gravitational force. In a two-phase flow system, Darcy velocity can

be defined as:

uα =
kkrα
µα

(−∇Pα + ρα g∇z) , α = w, n (1.1)

where uα is the flow velocity, k is the absolute permeability, the subscript α specifies

the fluid phase, w is the wetting phase and n is the non-wetting phase, krα is relative

permeability of phase α (functions of saturation), µα is viscosity of phase α, Pα is

pressure of phase α, ρα is density of phase α and g is the gravity force vector.

If Darcy’s law is inserted into the mass continuity equation, a system of two-phase

flow differential equations is obtained,

∂ (Sαφρα)

∂t
− div

(
krαρα
µα

k (∇Pα − ρα g)

)
= ραQα (1.2)

in which Sα is saturation of phase α, φ is porosity and Qα is a source or sink term.

Note that, in this example, we are concerned with isothermal, immiscible dis-

placement of the incompressible fluids in a rigid porous medium. These assumptions

bring certain implications on the equations: the fluid properties of the two-phases

are constant, solid matrix is rigid and the temperature is constant.

This set of equations contains four unknowns which are wetting phase pressure,

non-wetting phase pressure, wetting phase saturation and non-wetting phase satura-

tion. This system is completed by two further algebraic conditions. The wetting and

the non-wetting phases are jointly occupying the voids, implying:

Sw + Sn = 1 (1.3)
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and at the interface between the two-phases, the capillary pressure is expressed as:

Pc(Sw) = Pn − Pw (1.4)

Thus, two of the four unknowns Pw, Pn, Sw and Sn can be eliminated. Due to

the non-linear dependencies of the capillary pressure and the relative permeability,

the system of equations is non-linear.

Different formulations, describing the primary variables, have been developed.

They are briefly explained here; further reading is given in Helmig (1997).

Pressure formulation

Immiscible two-phase flow in porous media includes separate equations for the

wetting and nonwetting phases. If a pressure formulation is used, the pressures of

the wetting and the non-wetting phases are the primary variables and the resulting

system is of mixed parabolic/hyperbolic type. This formulation is based on an

inverse function which describes the saturation dependency on the capillary pressure,

Sw = f−1(Pc). Substituting Eq.(1.3) into Eq.(1.2), ignoring force sources, using the

definition of the capillary pressure, Eq.(1.4), and setting fluid capacity, Cw = −φ∂Sw∂Pc
,

and phase mobility λα = krα
µα

, results in two PDEs for the wetting and non-wetting

phases, as:

Cw

[
∂Pw
∂t
− ∂Pn

∂t

]
−∇ (kλw∇Pw) = 0 (1.5)

− Cw
[
∂Pw
∂t
− ∂Pn

∂t

]
−∇ (kλn∇Pn) = 0 (1.6)

The inverse function only exists if the capillary-pressure gradient is greater than

zero. In many practical examples, for instance in the case of discrete fractures or

transitions between two heterogeneous medium, the capillary pressure gradient is very

small or even zero, so that the pressure formulation cannot be chosen (Hinkelmann,

2005). A regularization approach is needed in this case that can be done by artificially

adding capillary diffusion to the system. Consequently, the application range of

the pressure formulation is rather limited. For this reason, this formulation is not

considered in this work.

Saturation formulation

Darcy’s law for a wetting and a non-wetting phase, assuming that both phases are

incompressible, can be formulated using Eq.(1.1) combined with Equation Eq.(1.4)

as

uw = −λwk (∇Pw − ρwg) (1.7)
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and

un = −λnk (∇Pw +∇Pc − ρng) (1.8)

Eliminating the wetting phase pressure between Eq.(1.7) and Eq.(1.8) gives

uw =
λw
λn

un + λwk [∇Pc + (ρw − ρn) g] (1.9)

By introducing the total velocity of the two-phase system, ut = uw + un and

fractional flow function fw = λw/(λw + λn) and λ̄ = λwλn/(λw + λn) into Eq.(1.9)

yields

uw = fwut + λ̄k

[
∂Pc
∂Sw
∇Sw + (ρw − ρn) g

]
(1.10)

which can be further inserted into the wetting phase mass balance equation, Eq.(1.2).

The system is then reduced to one equation with Sw as a primary variable.

φ
∂Sw
∂t

+∇ .

[
fwut + λ̄K

∂Pc
∂Sw

∇Sw
]

= 0 (1.11)

Two major problems in this formulation are that, first; the total velocity must

be known in advance, and second; it results into a hyperbolic formulation for

small capillary pressure gradients. If the saturation equation is assumed to be

advection–dominated, standard methods of finite difference, finite element or finite

volume do not perform well. They show nonphysical oscillations and mesh orientation

sensitivity. Therefore, this formulation is not considered in this study.

Pressure-Saturation formulation

In a pressure–saturation formulation, one of the phases’ pressures and one of the

phases’ saturations are eliminated, using the constitutive relations. There are two

main versions of this formulation: the (Pn, Sw) and the (Pw, Sn). They are directly

derived from Eq.(1.2) with the relations:

∇Pn = ∇Pc +∇Pw (1.12)

and
∂Sw
∂t

= −∂Sn
∂t

(1.13)

The differential equations of the wetting and non-wetting phase for (Pn, Sw)

formulation read as follows:

∇.
(
λw

∂Pc
∂Sw

k∇Sw − λtk∇Pn
)

= 0 (1.14)

φ
∂Sw
∂t

+∇.
(
λw

∂Pc
∂Sw

k∇Sw − λwk∇Pn
)

= 0 (1.15)
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For many cases, the pressure-saturation formulation represent the most suitable

equations. These two equations are a strongly coupled highly non-linear system of

equations of a mixed parabolic/hyperbolic type. The degree of advection domina-

tion depends on flow conditions and capillary pressure. Eq.(1.14) is a dissipative-

convective quasi steady-state equation, and Eq.(1.15) is marching with time. The

major advantage lies in the fact that they are not limited to small capillary-pressure

gradients, i.e. the pressure-saturation formulation can be applied to discrete fractured

systems and heterogeneous media. All equations presented in this study are adopted

for a (Pn, Sw) formulation.

Mathematical model in this work

All formulations in this work are based on the averaging theory. Averaging

theories offer the possibility of a good understanding of the microscopic scale and

its relation to the macroscopic one, which is the natural domain of all continuum

mechanical models. For a full development, the reader is referred to Hassanizadeh

and Gray (1979a) and Lewis and Schrefler (1998). The averaging theory has also been

described by Musivand and Al-Khoury (2014), from whom this outline is derived.

Within the averaging theory we make use of macroscopic variables, which cor-

respond to real measurable quantities directly linked to laboratory measurements.

The macroscopic balance equations applied in the model were obtained from balance

equations at macroscopic level by use of a local volume/mass averaging of the cor-

responding microscopic quantities. Some interfacial effects are explicitly accounted

for, including the possibility of exchange of mass, momentum and energy between

the constituents. The averaging process is conducted by integrating the involved

microscopic quantities over a REV of volume dv and area da. At the microscopic

level, the conservation equation of phase π of a multiphase system can be described

as:
∂

∂t
(ρψ) + div(ρψṙ) − div i− ρb = ρG (1.16)

in which ψ is a generic conserved variable, which might be mass, linear momentum

or energy; ρ is the mass density of phase π; ṙ is the local value of the velocity field

at a fixed point in space; i is the flux vector; b is the external supply of ψ; and G is

the net production of ψ. At the interface between two phases, π and α for instance,

the following constraint holds:

[ρψ(w − ṙ) + i]|π · nπα + [ρψ(w − ṙ) + i]|α · nαπ = 0 (1.17)

where w is the interface velocity, and nπα is the unit normal vector pointing out of

phase π and towards phase α, with nπα = −nαπ. This equation indicates that it is

possible to transport mass, momentum and energy between interacting constituents.
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solid phase
wetting phase
non-wetting phase

dv
(REV)

dv
(REV)

V

A
0

x

r

dvm

Figure 1.2: REV of a multiphase medium

Consider a multiphase medium occupying a total volume V , and bounded by

a surface area A. The constituents, π = 1, 2, . . . , k, have the partial volumes Vπ.

Each point within the total volume V is considered as the centroid of a REV with

volume dv, described by a position vector x. The volume of a microscopic element is

denoted by dvm, described by a position vector r (Figure 1.2). The average volume

element of π constituent within REV is defined as:

dvπ(x, t) =

∫
dv

γπ(r, t) dvm (1.18)

where γπ(r, t) is a phase distribution function, defined as:

γπ(r, t) =

{
1 for r ∈ dvπ
0 for r ∈ dvα, α 6= π

(1.19)

This distribution function describes the step discontinuity at the interface between

different constituents. The same is valid for the microscopic area element dam and the

average area element daπ. Following these definitions, the concept of volume fraction,

ηπ, which is an important parameter in multiphase modeling, can be introduced, as

ηπ(x, t) =
dvπ
dv

=
1

dv

∫
dv

γπ(r, t) dvm (1.20)

with
k∑

π=1

ηπ = 1 (1.21)

Volume fractions of a porous material consisting of solid, s, wetting phase (water),

w, and non-wetting phase (CO2), n, are defined as:
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• solid phase: ηs = 1− φ, where φ = (dvw + dvn)/dv is the porosity.

• wetting phase: ηw = φSw, where Sw = dvw/(dvw + dvn) is the degree of

wetting phase saturation.

• non-wetting phase: ηn = φSn, where Sn = dvn/(dvw + dvn) is the degree of

non-wetting phase saturation.

Introducing ζ as any microscopic field variable, important averaging operators

can be introduced, as:

volume average operator:

〈ζ〉π(x, t) =
1

dv

∫
dv

ζ(r, t) γπ(r, t) dvm (1.22)

intrinsic volume average operator:

〈〈ζ〉〉π(x, t) =
1

dvπ

∫
dv

ζ(r, t) γπ(r, t) dvm (1.23)

The relationship between the volume average operator (also known as phase average

operator) and the intrinsic operator can then be written as:

〈ζ〉π = ηπ〈〈ζ〉〉π (1.24)

mass average operator::

ζ̄π(x, t) =

∫
dv
ρ(r, t) ζ(r, t)γπ(r, t) dvm∫
dv
ρ(r, t) γπ(r, t) dvm

(1.25)

We also introduce a deviatoric operator, which describes perturbations around the

mass average operator, given by:

ζ̃π(x, r, t) = ζ(r, t)− ζ̄π(x, t) (1.26)

Accordingly, by applying a systematic averaging to the microscopic balance

equation, Eq.(1.16), the averaged macroscopic conservation equation can be obtained

as (Lewis and Schrefler, 1998):

∂

∂t
(〈ρ〉πψ̄π)︸ ︷︷ ︸
storage

+ div (〈ρ〉πψ̄π v̄π)︸ ︷︷ ︸
advection

− div iπ︸ ︷︷ ︸
diffusion

− 〈ρ〉π b̄π︸ ︷︷ ︸
external supply

− 〈ρ〉πeπ(ρψ)︸ ︷︷ ︸
inter−phase interaction
due to mass exchange

− 〈ρ〉πIπ︸ ︷︷ ︸
inter−phase
interaction

= 〈ρ〉πḠπ︸ ︷︷ ︸
net production

(1.27)
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subjected to: ∑
π

〈ρ〉π [eπ(ρψ) + Iπ] = 0 (1.28)

where iπ is the flux vector associated with ψ̄π, b̄π is an external supply associated

with ψ̄π, and v̄π is the mass averaged velocity of phase π. The last two terms

on the left-hand side of Equation (1.27) describe possible chemical and physical

exchanges between phases, eπ(ρψ) describes an exchange term associated with ψ due

to phase changes or mass exchanges between phases, and Iπ describes the mechanical

interaction between phases.

To complete the description of flow and mechanical behavior, we now need

to specify the constitutive equations. They express dependent variables of the

continuum balance equations as the functions of the state variables. In general, the

formulation used in this work relies on the following basic assumptions:

1. The CO2 phase is modeled as a supercritical fluid with constant properties

2. Isotropic rock mechanical properties

3. Linear elastic deformation under small strain

4. No phase changes

5. No diffusion or dispersion in mass

The resulting field equations represent a coupled, strongly nonlinear set of partial

differential equation for an unsaturated two-phase flow in both a homogeneous porous

medium and a fractured porous medium. A continuum fracture model, namely the

double porosity model, is adopted for the fractured porous medium (see Chapter 4).

The resulting governing equations are then rearranged for a (Pn, Sw) formulation.

As it stated before, the pressure-saturation formulation yields the most suitable

equations for many cases. Based on the flow conditions and capillary pressure, the

equations are parabolic to hyperbolic functions. The advantage of the formulations is

that the capillary pressure gradient ∂Pc
∂Sw

is explicitly included, and hence, in contrast

to the pressure-pressure formulation, it can be applied to systems with small capillary

pressure gradients. This issue will be treated in the next chapters.

The next step in the modeling process is to translate the mathematical model into

algorithms that can be treated and solved by computers. In general, the mathematical

model of CO2 geo-sequestration cannot be solved analytically. However, analytical

and semi-analytical models do exist for simplified cases and are usually used for

gaining physical insight into the phenomenon, to quickly assess potential storage

sites and as a relatively simple comparative check on numerical modeling results.

Available semi-analytical approaches (Dentz and Tartakovsky, 2009; Nordbotten,
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2004; Nordbotten et al., 2004, 2005; Riaz et al., 2006; Saripalli and McGrail, 2002)

use significant simplification.

1.3.3 Numerical modeling of CGS

In the mathematical sense, the governing partial differential equations are of a mixed

hyperbolic/parabolic type, which has a major impact on the discretization methods.

In what follows a brief discussion of the basic concepts in numerical modeling is

given and then several numerical methods, used in the simulation of fluid flow in

porous media are reviewed. The emphasis is placed on the development of finite

element methods.

Numerical model characteristics

The features of the numerical model are typically selected with an effort to minimize

the computational demand and also the processing time.

A discretization method must be consistent, i.e. the discretization error goes

to zero as the temporal and spatial discretization sizes go to zero. The order of

consistency is a measure of the speed at which a numerical method converges to the

exact solution as the discretization becomes finer.

A discretization method must also be stable, this refers to how errors, which

are generated during the solution of discretized equations, grow or decay in the

solution. The aspect of numerical stabilization plays an important role when it comes

to advective dominant flow simulations. There are many well-known stabilization

techniques available in the literature, namely upwind schemes and streamline diffusion,

as an example. However, the stabilization method may lead to numerical diffusion

(smearing of the front), and not representing the exact solution. This emphasizes

one major difficulty of numerical methods for advection-diffusion problems.

These important numerical characteristics can quantify how well the mathematics

of a partial differential equation is represented, but they cannot identify how well the

physics of the system is represented by a particular numerical method. A numerical

model that violates the fundamental physics is in many respects just as defective as

an unstable solution. Since mathematical models of fluid flow in porous media are

based on conservation principles, similar principles should apply to the approximate

solution. In a conservative numerical method the temporal change of an entity

considered in a domain (mass or entropy for example) should be in equilibrium with

the advective and diffusive fluxes across the boundaries plus source or sink terms. A

good discretization method should be both locally and globally conservative, thus

being in good agreement with the divergence structure of the original PDE. However
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for some problems, depending on the nature and severity of the nonlinearity, global

mass balance errors may not be totally eliminated even when very small time steps

and fine meshes are used.

Classical numerical methods for CGS

Numerical simulations are employed to monitor and model the fate of the injected

CO2 and regional characterization of the reservoir and its caprock. They are also

used to investigate the effect of various injection parameters such as injection rate,

injection duration, and injection pressure on CO2 storage efficiency and plume

migration in a given reservoir.

The different processes involved in CO2 injection into underground formation

lead to a complicated numerical problem. Any attempt to model a whole region

and to consider events happening at local areas will lead to enormous demands for

computational power. Parallel computing with tens of computer processors and days

of CPU time is not uncommon. This makes the development of numerical tools for

CO2 geo-sequestration difficult and rather expensive.

The first numerical simulators for the computation of multiphase flow in porous

media were developed to solve problems in petroleum engineering (see Aziz and

Settari, 1979; Peaceman, 1977), followed by solving hydrology and environmental

problems, (see Falta et al., 1992; Helmig, 1997). The computational challenges

of multiphase flow in oil reservoirs and CO2 geo-sequestration cause a continuing

development of numerical procedures and numerical software. There are several

methods to solve time-dependent partial differential equations of multiphase flow in

porous media. The three classical choices for the numerical solution of PDEs are:

finite difference method (FDM), finite volume method (FVM) and finite element

method (FEM). In this thesis, the finite element method is utilized.

Finite difference method

The finite difference method (FDM) is the oldest of the three methods considered

here and its main advantage is its conceptual simplicity. Here, a grid with discrete

points discretizes the domain of interest. The PDE of the particular field problem is

locally transferred into a finite difference equation by using a Taylor expansion.

The finite difference method is the most commonly used numerical method for the

simulation of multiphase flow in porous media. This method is straightforward and

easy to implement. However, it is difficult to incorporate the high level of detailing of

geological models into the flow models, and additionally serious numerical difficulties

can arise. These difficulties involve oscillations in advective dominant processes and
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near sharp fronts, mesh dependency, convergence problem and instabilities in the

iterative and time stepping schemes. The FDM relies on the existence of derivatives

and cannot easily satisfy the conservation principles and discontinuity conditions.

Several treatments have been proposed in the literature to avoid these difficulties,

including upstream weighting of relative permeabilities and implicit iterative tech-

niques, among others. One of the well-known methods that are employed in this

regard is the Implicit Pressure Explicit Saturation (IMPES) (Chen et al., 2004; Coats,

2000; Monteagudo and Firoozabadi, 2007). In this scheme, the pressure equation is

evaluated implicitly while the saturation equation is solved explicitly. The IMPES

method is more stable than the fully implicit method because it considers the linear

terms implicitly and solves the other terms explicitly. A comprehensive review of

these techniques has been presented by Aziz and Settari (1979).

Finite volume method

The finite volume method (FVM) is a numerical method for solving PDEs that

estimates the values of the conserved field variables averaged through the volume. In

this method, volume integrals in a PDE that contain a divergence term are changed

to surface integrals, using the divergence theorem. These terms are calculated as

fluxes, at the surfaces of each finite volume.

The FVM allows the discrete representation of problems with irregular boundaries.

Another advantage of the FVM is that, unlike the node-centered FDM, where the

conservation principle is satisfied only if the grid size approaches zero, the FVM

conserves the extensive quantity within each local cell.

Godunov (1959) introduced control-volume cell average interpretation in the

discretization of the gas dynamics equations by assuming a piecewise constant

solution representation in each control-volume with values equal to the cell average.

The FVM is also suitable for discontinuity capturing and has been used in obtaining

a solution to nonlinear hyperbolic conservation laws (Lax, 1954; LeVeque, 2002).

The method is also very popular in the fluid flow in porous media literature, due

to their stability and mass conservation. A high order finite volume method has

been applied to two-phase flow by Durlofsky (1993) and Michel (2003). The method

is used in the cell-centered form on structured meshes in Peaceman (1977) and on

unstructured meshes in the TOUGH2 simulator (Pruess, 1991).

Finite element method

The finite element method (FEM) is a numerical method broadly used in different

engineering disciplines. It belongs to the family of methods of weighted residual. Here,

the residual, which is the difference between the exact solution and the approximate
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solution, is weighted and minimized to obtain the best approximation.

FEM is the most flexible numerical method in terms of dealing with complex

geometry and complicated boundary conditions. This flexibility is useful not only

for irregularly shaped domains, but also for elements in regions where large field

variations exist, and where a better accuracy is required. The FEM guarantees

global mass and momentum conservation, which is a consequence of the formulation,

because it states that the residual should vanish in the whole computational domain.

Another advantage of using FEM in fluid flow in porous media is that FEM

provides a more flexible, realistic method to couple geomechanical deformation and

transient fluid flow in porous media.

The standard Galerkin method produces accurate solutions to elliptic and para-

bolic transport equations as long as the Peclet number of the element is relatively

small. However it often fails for incompressible Stokes problems and advection-

dominated problems. In two-phase flow in porous media, if the saturation equation

is advection–dominated, standard methods of FEM do not perform well. They

either show nonphysical oscillations or numerical diffusion and mesh orientation

sensitivity. Moreover, FEM is known to be accurate on homogeneous domains.

Whereas, in the case of a medium involving discontinuities, which is common in CO2

geo-sequestration, an undesired smearing effect occurs (Klausen and Russell, 2004).

This is a direct result of the loss of local conservation property of the method.

The literature available on FEM is vast and the details of the methods and their

applications can easily be found in e.g., Meek (1996); Zienkiewicz et al. (2005). Hughes

et al. (2000) addressed the conservation issue of continuous finite element methods

by showing that local conservation can be achieved by the correct computation of

the flux. A complete presentation of the FEM applied to porous medium flow and

transport can be found in Huyakorn (1983); Lewis et al. (1989); Pinder and Gray

(1977). FEM is becoming more and more popular in implementing fully coupled

geomechanics-reservoir simulation (Chin et al., 2002; Lewis and Sukirman, 1993;

Noorishad et al., 1982).

Recently, a variety of advanced finite element techniques have been developed for

the transport equations.

Advanced finite element methods

A major challenge in reservoir modeling and CO2 injection processes is raised

when the transport process is characterized by low level of physical dispersion and

dominance of advection. In these problems with high gradient in the fluid front, the

application of standard numerical procedures usually leads to spurious oscillations.
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To attain a high level of accuracy and a stable result for the advection-dominant

flow process, especially in a large domain, conventional simulators require a large

number of finite elements and significant CPU time.

In recent years, a variety of advanced numerical methods have been proposed

to overcome the shortcoming of conventional procedures. While finite difference

and finite volume approximations are commonly used for solving subsurface flow

equations, the focus here is on the finite element method, which is appealing as it is

well-suited for unstructured spatial meshes in irregular domains and enables some

types of enrichment. Different varieties of finite element methods are introduced

in the literature, such as: stabilized finite element, control volume finite element

(CVFE), discontinuous Galerkin method (DG), Multi-domain FEM, adaptive FEM,

characteristic finite element method, and Extended FEM (XFEM).

Stabilized finite element

The stabilized finite element method is a class of numerical methods for the

solutions of advection-dominated flow, which was developed, based on an Eulerian

method. The Streamline Upwind Petrov-Galerkin method (SUPG) and Galerkin

Least Square method (GLS) are most frequently used techniques in this regard. The

SUPG can be considered as the first successful stabilization technique to eliminate

oscillations in advection dominant problems. It was proposed by Brooks and Hughes

(1982). In upwinding techniques, the node in the upstream direction of flow gives

more weight to the solution than the node in the downstream. In the SUPG method,

the shape function is perturbated in the direction of the flow. The SUPG has been

extended by Hughes et al. (1989), to the Galerkin least-squares (GLS) method by

adding residuals of the Euler-Lagrange equations in least-squares form to the standard

Galerkin formulation. Hughes et al. (1989) showed similar stabilization by modifying

time stepping forms of the associated transient problems. Further elaborations of

the stabilized finite element methods for porous medium flow problems can be found

in Masud and Hughes (2002) and Brezzi et al. (2005).

Control volume finite element

An attractive numerical method for solving transport equations is the control

volume finite element method (CVFEM), which is a hybrid method that combines

the advantages of the finite element method and the finite volume method. In

this method, the solution of elliptic problems is sought in a finite dimension space

of piecewise smooth functions by using a finite set of control volumes defined by

the triangles. Control volumes can be created across grid nodes by connecting the

midpoints of the edges of a triangle with a point inside the triangle. These types of
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discretization were first introduced by Lemonnier et al. (1979) for reservoir simulation.

CVFEM with irregular grid has been applied in simulation of the complex geometry

reservoir (Forsyth, 1990; Heinemann et al., 1991; Rozon, 1989).

Different types of CVFEM have been developed with a different name like box

method, generalized difference method and element based control volume method

(EbFVM). As discussed by Cordazzo et al. (2004) in the majority of the CVFEM

methods, the approximate equations for multiphase flow are achieved from a single

phase flow and then to obtain the multiphase flow equation, the transmissibilities

are multiplied by the mobilities. As a result, this method can exhibit non-physical

behavior in several situations.

Discontinuous Galerkin method

The discontinuous Galerkin method (DGM) is a special type of finite element

method that uses piecewise continuous basis and testing functions that may be

discontinuous across element boundaries, consequently obtaining more robustness

for a discontinuous process.

DGM was first developed for solving advection problems for which continuous

finite element methods lack robustness. Advantages of the discontinuous Galerkin

method are supporting non-structured and non-conforming meshes, conserve mass

locally and globally, little numerical diffusion and increase the order of accuracy.

In general, the discontinuous Galerkin method locally conserves mass, but loses

continuity and needs additional stabilization terms in the weak formulation. Moreover,

this method introduces further degrees of freedom, which makes it an expensive

procedure compared to traditional continuous finite element methods.

Recently, discontinuous Galerkin methods have been applied to a variety of flow

and transport problems and due to their flexibility, they have been shown to be

competitive to standard methods. The applications of this method in fluid flow in

porous media were investigated by different authors (Bastian, 2003; Epshteyn and

Riviere, 2007; Riviere, 2004; Sun and Wheeler, 2005).

Multi-domain FEM

In the multi-domain finite element method, instead of a single FE space used

in a Galerkin finite element, two or more different approximation spaces are used.

Here due to the complexity of the geometry or discontinuity in the solution a

multiblock domain structure is used. The computational domain is decomposed

into non-overlapping subdomains with meshes constructed independently of each

subdomain.

The multi-domain finite element method is well suited for the reservoir simulation
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due to its accurate approximation of the velocity, and proper treatment of discon-

tinuities. The method can treat discontinuities in the medium because of inherent

flux continuity condition in the formulation.

Douglas et al. (1983) used a multi-domain finite element method for the pressure

equation and a Galerkin finite element method for the concentration equation.

Wheeler, Yotov and co-workers (Arbogast and Yotov, 1997; Wheeler and Yotov,

2000, 2006) developed a mixed finite element discretization for second order elliptic

equations. The continuity of flux is imposed via a mortar finite element space on a

coarse grid scale, while the equations in the coarse elements (or sub-domains) are

discretized on a fine grid scale

Adaptive FEM

Adaptive methods are other numerical schemes that automatically adjust nu-

merical processes to minimize the discretization errors and improve approximate

solutions by a posteriori error estimation. Adaptive techniques try to automatically

refine a mesh or adjust the basis to attain a solution with a specified accuracy in an

optimal fashion. For example using a dynamic refinement treats localized phenomena

such as high gradients and sharp fronts in multiphase flow in porous media.

Although adaptive methods have been studied for several years, little is known

about optimal strategies. The main adaptive procedures used in the literature

include:

• h refinement : local refinement of a mesh

• r refinement : relocating a mesh

• p refinement : locally varying the polynomial degree of the basis

An h adaptive strategy involves processing the error information, represented by

error estimators, to determine the refinement level on which a new mesh can be

constructed. In r refinement the nodes of the initial mesh are moved or relocated

during multiple passes of mesh relaxation. At each pass, each node of the mesh is

moved in a direction that tends to equalize the error of the elements that share the

node. The function is then re-evaluated at the new node location. r refinement

alone is generally not capable of finding a solution with a specified accuracy, if the

mesh is too coarse. This type of refinement is more useful for transient problems,

where elements move to follow an evolving phenomenon. With p refinement the

mesh is not changed but the order of the finite element basis is varied locally over the

domain. Compared to pure h adaptive methods, hp adaptive methods require the

choice of h or p type adaption for each element. Conceptually, it is more common to
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believe that h refinements near singularities or steep fronts are more appropriate.

In practice, it is a popular approach for elliptic problems to choose the order by

selecting between p refinement and competitive h refinement. However, this strategy

becomes more expensive as the order of approximations increases (Moore, 2001).

Adaptive local mesh refinement approaches in two-phase flow are first considered

by Heinemann et al. (1983) and Ewing et al. (1989). In the adaptive mesh refinement

methods the computed velocity, obtained from the pressure equation, verifies the

location of the sections where local refinement will be needed at the next time step.

Different adaptive methods, error estimators and indicators, as well as refinement

and coarsening strategies, are explained in Bear and Cheng (2010).

Extended FEM (XFEM)

As it was mentioned, in the classical finite element, mesh refinement is needed

near a high gradient region in modeling of evolution problems. This refinement

can increase the computational effort. Moreover, mesh-refinement is often not a

fully instinctive procedure, and user-controlled modifications are required. As an

alternative method, Belytschko’s group in 1999 (Belytschko and Black, 1999), utilized

the idea of partition of unity enrichment of the finite elements for the simulations

of cracks in structures by allowing the discontinuities to be independent of the

mesh. The main idea in this method, known also as extended finite element method

(XFEM), is to extend a classical approximate solution basis by a set of enrichment

functions to capture the discontinuity or high gradient in the problem. For the case

of cracks in structures, a Heaviside jump function is used to capture the jump across

the crack faces. As a consequence, simple, fixed meshes can be used throughout the

simulation and mesh construction and maintenance are reduced to a minimum

In the classical finite element methods, the domain of the problem, Ω is subdivided

into elements Ωe associated with a set of nodes. The approximation of a field variable

u is written as:

u(x, t) =
∑
I∈N

NI(x)uI(t) (1.29)

while in XFEM, the approximation is enriched as:

u(x, t) =
∑
I∈N

NI(x)uI(t)︸ ︷︷ ︸
standard

+
∑

J∈Nenr

N∗J(x, t)aJ(t)︸ ︷︷ ︸
enrichement

(1.30)

where

• N is the set of all nodes in the domain
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• NI(x) are the standard shape functions associated to the degree of freedom at

node I

• uI(t) are the nodal values for the standard finite element approximation

• Nenr is the set of all enriched nodes

• N∗J(x, t) are the local enrichment shape functions at an enriched node J

• aJ(t) are additional nodal parameters

One of the main advantages of XFEM is the flexibility it gives in the choice of

the enrichment functions for different problems. In general the enrichment shape

functions capture the behavior of the solution near the interface. This is particularly

useful for problems involving a discontinuity or high gradient. In general, the

enrichment shape functions are defined as multiplication of standard shape function

and an enrichment function ψJ(x, t):

N∗J(x, t) = NJ(x). ψJ(x, t) (1.31)

There are several works in the literature devoted to the selection of the enrichment

function. Typical choices for the enrichment functions are the sign function and

the Heaviside enrichments. For more details on the history of development of these

methods the reader is referred to Fries and Belytschko (2010) and the references

therein.

XFEM is a relatively robust and efficient method, which is now used for industrial

problems; however, the implementation of it is not straightforward. It has been

applied to a wide range of problems, such as fracture mechanics, modeling hetero-

geneous media (holes, material inclusions), thermal and phase change problems,

fluid-structure interaction, high gradient problems and immiscible two-phase flow.

XFEM was successfully applied for crack propagation and other fields in com-

putational physics (e.g. Dolbow and Belytschko, 1999; Sukumar et al., 2001; Wells

and Sluys, 2001). The method has been employed to simulate crack growth without

remeshing for both two-dimensional and three-dimensional problems (Dolbow et al.,

2000; Sukumar and Belytschko, 2000).

XFEM is a promising method to simulate immiscible two-phase flow, which is

a coupled problem between velocity and pressure fields. The velocity and pressure

fields can show either weak or strong discontinuities in a domain. This method is

used by Wagner et al. (2001) and Chessa and Belytschko (2003b) for the simulation

of two-fluid flows without surface-tension effects solving the Navier-Stokes equations.

The XFEM framework has also been used for the modeling of fluid-structure

interaction (e.g. Legay et al., 2006; Wang et al., 2008). The combined XFEM fluid-
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structure-contact interaction method allows computing contact of arbitrarily moving

and deforming structures embedded in an arbitrary flow field (Mayer et al., 2009).

Abbas et al. (2010) employed the XFEM with the aim to approximate advection-

dominant problems without stabilization or mesh refinement. A regularized enrich-

ment function is proposed that enables the approximation to capture arbitrary high

gradients.

Al-Khoury and Sluys (2007) coupled the double porosity model with XFEM and

presented a computational model for the fracturing process in a porous medium.

In their work XFEM is used for describing the fracturing process, and the double

porosity model is used for describing the resulting fluid flow.

Coupling interface-tracking procedures with the XFEM can provide a procedure

with accurate results for problems with moving interfaces without remeshing. Suku-

mar et al. (2001) were the first to combine the XFEM with a level set (LS) method

to make the enrichment function related to interfaces. By coupling level set with

XFEM, it is not only possible to track where the enrichment function is needed but

it also facilitates the assembly of the enrichment.

The level set method was first introduced by Osher and Sethian (1988) for

capturing moving fronts. This method makes use of a distance function, referred

to as the level-set function, which labels every point with a sign and a value. The

sign indicates the fluid domain and the value represents the shortest distance to the

interface. As such this function is equal to zero at the interface itself and non-zero

in the fluids. The interface is advected with a local flow velocity, using any of the

known advection equations. The LS method has found many applications ranging

from two-fluid flow simulation, to structure optimization, in the image processing

and flame propagation (Osher and Fedkiw, 2001). Chessa and Belytschko (2003a)

applied a coupled level set-XFEM technique for modeling a two-phase immiscible

flow problem. The level set method was used to track the phase interface and then

the enriched basis is constructed directly in terms of the level set function.

In this thesis, XFEM-LS is utilized to develop a computational model for the

simulation of coupled hydromechanical and electrokinetic flow in a porous medium.

1.4 Research Objectives

Despite that CO2 sequestration in geological formations is a relatively new technology,

an enormous amount of theoretical and experimental work has already been conducted.

Numerical codes at both academic and commercial level, such as CMG, DuMux,

Eclipse, FEHM, GeoSys, IPARS-CO2, MUFTE, RockFlow, SIMUSCOPP, TOUGH

and its derivatives, among others, are already in use. Finite difference, finite volume
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and, to a lesser extent, finite element methods have been employed. A well-addressed

comparison between different commercial and academic codes for simulating a CO2

leakage problem has been presented by Pruess et al. (2002).

As illustrated earlier, these methods have their own advantages and disadvantages,

but in general, the use of standard discretization schemes require fine meshes (or

grids) to capture the moving front and to eliminate the possible occurrence of

numerical oscillation due to advection. On the other hand, the use of an advanced

discretization procedure, such as the discontinuous Galerkin or the multiscale finite

element, generates a large system of equations that requires powerful computational

capacity.

To tackle the issue of the computational demands associated with modeling

CO2 sequestration in geological formations, in this work, a computationally efficient

numerical model based on a mixed discretization scheme is introduced. Focus is

placed on the computational aspects of this problem, though maintaining the essential

physics. The standard Galerkin finite element method is utilized to discretize the

deformation and the diffusive dominant field equations, and the extended finite

element method, together with the level-set method, is utilized to discretize the

advective dominant field equations. The level set method is employed to trace and

locate the CO2 plume front, and the extended finite element method is employed

to model the associated high gradient in the saturation field front. Physically, for

such an application, capturing and modeling the front of the CO2 plume is not very

important, but numerically, it is vital that the discretization scheme leads to an

accurate and conservative system. The use of XFEM for the advective field leads

to locally conservative discretization, giving a stable and convergent scheme. By

such a coupling, a numerical scheme that is stable and effectively mesh-independent

can be obtained. This technique is utilized in this thesis and applied to different

applications involving different fields behavior.

To facilitate the formulation of the computational model and its computer imple-

mentation, several assumption were made. The thermodynamic parameters, such

as the density and viscosity are made constant. The material behavior under the

mechanical forces is assumed to be linear elastic. Also, it is assumed that there is no

dissolution or chemical reaction in the reservoir. Though, many other physical and

modeling aspects, including the type of balance equations, unsaturated multiphase

flow, buoyancy effect, capillary effect, deformation and electrokinetic flow in a CO2

environment, are carefully considered.
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1.5 Thesis outline

This thesis is based on three peer reviewed and published journal papers (Appendix

A). It is divided into five chapters, of which Chapters 2, 3 and 4 comprise the main

body. The chapters are organized as follows.

In Chapter 2, a computationally efficient finite element model for the simulation

of isothermal immiscible two-phase flow in a rigid porous medium with a particular

application to CO2 sequestration in underground formations is presented. Focus is

placed on developing a numerical procedure, which is effectively mesh-independent

and suitable for problems at regional scales. Chapter 2 is based on an extended

version of Paper I (Talebian et al., 2013a).

Chapter 3 deals with the simulation of coupled electrokinetic and hydromechanical

flow in a multiphase domain. This chapter extends the model introduced in Chapter

2, to include hydromechanical coupling and the incorporation of flow associated

streaming potential. Chapter 3 is based on an extended version of Paper II (Talebian

et al., 2013b).

Chapter 4 is an extension of Chapter 3 where the concept of a mixed discretization

method is elucidated with application in coupled multiphysics processes of CO2

sequestration in fractured porous media. The governing field equations are derived

based on the averaging theory and the double porosity model. Chapter 4 is based

on an extended version of Paper III (Talebian et al., 2013c).

Chapter 5 concludes the thesis with the essential results of this research as well

as its implications and potentials.
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Two Phase Flow in a rigid

porous medium domain 2
This chapter is based on Talebian et al. (2013a), a paper published in the International

Journal of Numerical Methods for Heat and Fluid Flow.

2.1 Introduction

In this chapter, a computationally efficient, accurate and consistent model capable

of simulating multiphase flow at a regional scale is introduced. The averaging theory,

presented in Chapter 1, is utilized to describe the mathematical model, and the

coupling between the extended finite element method (XFEM) and the level-set

method (LS) is utilized to formulate the numerical model. In the averaging theory,

the transport effects at microscopic level are, by definition, taken into consideration,

alleviating thus the need for multiscale modeling techniques. The coupling between

XFEM and LS is utilized to trace and model the CO2 plume front. Physically, for

such an application, capturing and modeling the front of the CO2 plume is not very

important, but numerically, it is vital that the discretization scheme leads to an

accurate and conservative system. By such a coupling, a numerical scheme that is

stable and effectively mesh-independent can be obtained.

In what follows, a description of the governing equations and the involved

constitutive relationships is given. Based on the averaging theory, the pressure-

saturation balance equation of an isothermal two-phase fluid is derived (see Chapter

1) . Then, a detailed formulation of the numerical model and the discretization

procedure, including linearization of the system and its time integration, is introduced.

Later on, numerical examples illustrating the accuracy, stability, mesh insensitivity

and convergence of the model are given.
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Chapter 2. Two Phase Flow in a rigid porous medium domain

2.2 Governing Equations

As it was stated in Chapter 1, the macroscopic balance equation can be obtained

by applying averaging theory as proposed by, among others, Hassanizadeh and

Gray (1979a), to the microscopic balance equation. In the averaging approach, the

flow events at the microscopic level are mapped to the macroscopic level on the

basis of the thermodynamic principles. The mapping is done by integrating the

microscopic fractional volume of each individual constituent over a representative

elementary volume (REV), representing a field of macroscopic multiphase medium.

The multiphase medium is described as a superposition of all phases involved, but

the state of motion of each phase is described independently, leading to a detailed

description of their interactions. Based on the averaging theory, the averaged

macroscopic conservation equation of phase π in a multiphase medium can be

described as

∂

∂t

(
〈ρ〉πψ̄π

)
+ div

(
〈ρ〉πψ̄π v̄π

)
− div Jπ − 〈ρ〉π b̄π = 〈ρ〉πḠπ (2.1)

where the bar (̄·) indicates an intrinsic averaged quantity, ψ̄π is a generic thermody-

namic variable, which might be mass, linear momentum or energy and 〈ρ〉π is the

volume-averaged mass density of phase π.

This equation can be specialized to formulate the linear momentum balance and

the mass balance equations of a multiphase material. Derivations of these equations

are elegantly presented in Lewis and Schrefler (1998). Following this, the governing

partial differential equations of a coupled three-phase material constituting soil,

water and gas (CO2) can be presented.

In this chapter, focus is placed on two-phase flow in a rigid porous medium, but

for completeness, the equilibrium equations are first introduced, then the governing

equations are reduced to describe an incompressible fluid and solid medium.

2.2.1 Equilibrium equations

For a three-phase medium constituting solid, water and gas, the linear momentum

balance equation in terms of the total stress tensor, σ, under a static condition, can

be expressed as

∇ · σ + ρ̄g = 0 (2.2)

in which g is the gravity force vector and ρ̄ is the average mass density, given by

ρ = (1 − φ) ρs + φSwρw + φSgρg (2.3)
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Governing Equations 2.2

where ρs is the solid density, ρw is the water density, ρg is the gas (CO2) density,

Sw is water saturation, Sg is gas saturation and φ is the porosity. The total stress is

defined as

σ = σ′′ − mTα (SwPw + SgPg) (2.4)

in which, σ′′ is the effective stress, Pw and Pg are water and gas pressure, mT =

[1, 1, 1, 0, 0, 0]
T

and α is Biot’s coefficient, describes the compressibility of the

material.

2.2.2 Mass continuity equations

The continuity equations for the water phase and the CO2 phase, in isothermal

condition, and neglecting phase exchanges, can be expressed as (Lewis and Schrefler,

1998):

Water phase:(
α − φ

Ks
S2
w +

φSw
Kw

)
∂Pw
∂t

+
α − φ

Ks
SwSg

∂Pg
∂t

+αSwmT ∂ε

∂t
+

(
α − φ

Ks
PwSw −

α − φ

Ks
PgSw + φ

)
∂Sw
∂t

+∇ ·
[

kkrw
µw

(−∇Pw + ρw g)

]
= Qw

(2.5)

Gas phase: (
α − φ

Ks
SwSg

)
∂Pw
∂t

+

(
α − φ

Ks
S2
g +

φSg
Kg

)
∂Pg
∂t

+αSgm
T ∂ε

∂t
−
(
α − φ

Ks
Sg (Pg − Pw) + φ

)
∂Sw
∂t

+∇ ·
[

kkrg
µg

(−∇Pg + ρg g)

]
= Qg

(2.6)

in which Ks, Kw and Kg are the bulk modulus of the solid, water and gas respectively,

k is the absolute permeability, krw and krg are water and CO2 relative permeability

(functions of saturation), Qw and Qg are source or sink terms and µw, µg are water

and CO2 viscosities and ε is the strain vector.

The water and the gas are jointly occupying the voids, implying:

Sw + Sg = 1 (2.7)

and

Pc (Sw) = Pg − Pw (2.8)
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Chapter 2. Two Phase Flow in a rigid porous medium domain

where Pc(Sw) is the capillary pressure, empirically a function of water saturation.

Equations. (2.2), (2.5) and (2.6), together with the constraints in Eqs. (2.7) and

(2.8), represent a strongly coupled system of partial differential equations that is

highly nonlinear due to the dependency of the capillary pressure and the relative

permeability on the degree of saturation. The strong coupling and the associated

non-linearity are known to introduce numerical difficulties, especially at low capillary

pressure and/or high advection. In such cases, this set of equations behaves like

a hyperbolic function, causing spurious oscillations. To reduce the effects of this

coupling, different models have been introduced. Here, we adopt the saturation-

pressure formulation, in particular gas pressure-water saturation.

Using Eq. (2.8) and applying the chain rule, the water pressure can be eliminated

from Eqs. (2.5) and (2.6) by considering

∇Pw = ∇Pg −
∂Pc
∂Sw
∇Sw (2.9)

∂Pw
∂t

=
∂Pg
∂t
− ∂Pc

∂t
=
∂Pg
∂t
− ∂Sw

∂t

∂Pc
∂Sw

(2.10)

Substituting Eqs. (2.9) and (2.10) into Eq. (2.5), and rearranging, gives

d1
∂Pg
∂t

+ d2
∂Sw
∂t

+ αSwmT ∂ε

∂t

+∇ ·
(
−kλw∇Pg +

∂Pc
∂Sw

kλw∇Sw + kλwρw g

)
= Qw

(2.11)

Similarly, substituting Eqs. (2.9) and (2.10) into (2.6), gives:

d3
∂Pg
∂t

+ d4
∂Sw
∂t

+ αSgm
T ∂ε

∂t
+∇ · [−kλg∇Pg + kλg ρg g ] = Qg (2.12)

where

d1 =
α − φ

Ks
Sw +

φSw
Kw

(2.13)

d2 = −α − φ

Ks
PcSw + φ− α − φ

Ks
S2
w

∂Pc
∂Sw

− φSw
Kw

∂Pc
∂Sw

(2.14)

d3 =
α − φ

Ks
− Sw

α − φ

Ks
+
φ(1− Sw)

Kg
(2.15)

d4 = −α − φ

Ks
Pc +

α − φ

Ks
SwPc − φ−

α − φ

Ks
Sw

∂Pc
∂Sw

+
α − φ

Ks
Sw

2 ∂Pc
∂Sw

(2.16)

λw =
krw
µw

(2.17)

λg =
krg
µg

(2.18)
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Governing Equations 2.2

For an incompressible fluid and solid medium, Eqs. (2.13)-(2.16) reduce to

d1 = 0

d2 = φ

d3 = 0

d4 = −φ

(2.19)

Ignoring source/sink terms and substituting Eq. (2.19) into Eqs. (2.11) and (2.12)

gives

φ
∂Sw
∂t

+∇ ·
(
−kλw∇Pg +

∂Pc
∂Sw

kλw∇Sw + kλwρw g

)
= 0 (2.20)

− φ∂Sw
∂t

+∇ · [−kλg∇Pg + kλg ρg g ] = 0 (2.21)

Adding Eq. (2.21) to Eq. (2.20), and leaving Eq. (2.20) unmodified, the gas

pressure-water saturation formulation can be expressed as

∇ ·
(
λw

∂Pc
∂Sw

k∇Sw − λtk∇Pg + (λwρw + λgρg) k g

)
= 0 (2.22)

φ
∂Sw
∂t

+∇
(
λwk

∂Pc
∂Sw
∇Sw + λwk (ρwg −∇Pg)

)
= 0 (2.23)

where, λt = λw + λg is the total mobility.

These equations represent a coupled, strongly nonlinear set of partial differential

equation for an unsaturated two-phase flow in a rigid porous medium. Eq. (2.22)

is a dissipative-convective quasi steady-state equation, and Eq. (2.23) is marching

with time. The equations are parabolic to hyperbolic functions, the degree of which

depends on flow conditions and capillary pressure. The advantage of this formulation

is that the capillary pressure gradient ∂Pc/∂Sw is explicitly included, and hence, in

contrast to the pressure-pressure formulation (Eqs. (2.5) and (2.6)), it can be applied

to systems with small capillary pressure gradients (Helmig, 1997). If ∂Pc/∂Sw = 0

, Eq. (2.22) becomes elliptic; because the total mobility, λt, is always positive

(Chen et al., 2006). Thus, this gradient determines the nature of the equations, and

consequently the solution behavior. It is therefore vital to formulate a stable and

robust numerical procedure capable of solving a wide range of applications, involving

a wide-ranging ∂Pc/∂Sw relationships. This issue will be treated in the next section.

In literature, there are several empirical formulations correlating the capillary

pressure and relative permeability to degree of saturation, mainly, the van Genuchten

(1980) and Brooks and Corey (1964). Here for an example, the Brook and Corey’s
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Chapter 2. Two Phase Flow in a rigid porous medium domain

formulation is presented. Accordingly, the capillary pressure-saturation relationship

is described as

Pc =
Pb

S
1/λ
e

Pc ≤ Pb (2.24)

and the relative permeability-saturation relationships are described as

krw = S(2+3λ)/λ
e (2.25)

krg = (1− Se)2
(

1− S(2+λ)/λ
e

)
(2.26)

where Se = Sw−Swr
1−Swr−Sgr is the effective saturation, Swr is the irreducible water

saturation, Sgr is the residual gas saturation, λ is the pore size distribution index

and pb is the entry pressure, corresponding to the capillary pressure needed to

displace the wetting phase from the largest pore.

2.2.3 Initial and boundary conditions

Initially, at t=0, the gas pressure and water saturation are described as

Pg = P0(x), Sw = S0(x) at t = 0 (2.27)

The boundary conditions can be imposed values on Γπ or fluxes on Γqπ, where the

boundary Γ = Γπ ∪ Γqπ. The Dirichlet boundary conditions are prescribed as

Pg = P̂g on Γg

Sw = Ŝw on Γw
(2.28)

The Neumann boundary conditions are imposed as

kkrg
µg

(−∇Pg + ρg g) · n = qg on Γqg (2.29)

kkrw
µw

(
−∇Pg + ∇Sw

∂Pc
∂Sw

+ ρw g

)
· n = qw on Γqw (2.30)

where n is the unit vector, perpendicular to the surface of the medium, qg and qw

are imposed gas and water fluxes.

2.3 Numerical discretization

Equations (2.22) and (2.23), together with the initial conditions and boundary

conditions in Eqs. (2.27)-(2.30), represent an initial and boundary value problem of

immiscible CO2 flow in underground formations. This problem involves injection of
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Numerical discretization 2.3

CO2 flux into a permeable aquifer, creating a plume that travels under the effect of

viscous, capillary and gravity forces. At the front of the plume, there is a relatively

high gradient in the saturation field and the pressure field. Capturing and modeling

this front is usually accompanied by numerical nuisance. A straightforward remedy

to this problem is the use of a fine mesh. However, for problems of regional scales

this approach is not feasible. CPU time of the order of several days or weeks is then

not unusual. Alternatively, in this work, we formulate a numerical technique, which

is based on the coupling between the level-set method (Osher and Sethian, 1988)

and the extended finite element method (Belytschko and Black, 1999). The level-set

method is utilized to trace the propagation of the plume front, and the extended

finite element method is utilized to model the front.

2.3.1 Tracing the front

The level-set method makes use of an auxiliary distance function, referred to as

the level-set function, which labels every point with a sign and a value. The sign

indicates the fluid domain, and the value represents the shortest distance to the

interface. This function is equal to zero at the interface and non-zero elsewhere

according to

Φ(x) =

{
minxi∈Γ ‖x− xi‖ , x ∈ Ω1

−minxi∈Γ ‖x− xi‖ , x ∈ Ω2

Φ(x) ∈ <, x ∈ Ω (2.31)

In each time step, the level-set value is advected by the fluid velocity, such that

∂Φ

∂t
+ vΓd · ∇Φ = 0 (2.32)

where vΓd represents the interface (front, Γd) velocity. For a typical multiphase

medium, this velocity is difficult to calculate, and is usually treated as a weighted

average of the gas velocity and the water velocity. Here, we adopt a formulation

suggested by Liu et al. (2010), that reads

vΓd =
ρg (1− Sw)

ρ
vg +

ρwSw
ρ

vw (2.33)

where ρ = ρwSw + ρgSg, vg and vw are the gas and water Darcy velocities described

as

vα =
kkrα
µα

(−∇Pα + ρα g∇z) , α = g, w (2.34)

To describe the interface motion, the normal component of the interface velocity

is considered.
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Chapter 2. Two Phase Flow in a rigid porous medium domain

Level-set discretization

The level-set equation, Eq. (2.32), is a first-order hyperbolic equation and its dis-

cretization using the standard Galerkin method may result into spurious oscillations.

Different techniques have been employed to stabilize this problem, among which the

Streamline Upwind Petrov-Galerkin (SUPG) method (Brooks and Hughes, 1982) is

known to be effective in many cases. In the SUPG method the weighting function is

perturbed in the direction of the flow, as

N̄ = N + τvΓd · ∇N (2.35)

where N and N̄ are standard and modified finite element weighting functions,

respectively, and the parameter τ is a stabilization parameter. In literature, there

are several formulations describing τ . In the absence of diffusion, τ can be expressed

as

τ =
he

2 |vΓd |
(2.36)

where, he is the characteristic length of the element, defined as

he = 2

(
ne∑
α

∣∣∣∣ ui
‖vΓd‖

∂Nα
∂xi

∣∣∣∣
)−1

(2.37)

in which ne is the number of nodes in the element and Nα is the basis function

associated with them.

Applying Eq. (2.35) to Eq. (2.32), the weak formulation of the level-set function

can be expressed as∫
Ω

N

(
∂Φ

∂t
+ vΓd · ∇Φ

)
dΩ +

∑
k

∫
Ωk

τ (vΓd · ∇N)

(
∂Φ

∂t
+ vΓd · ∇Φ

)
dΩk = 0

(2.38)

Approximating Φ = NΦ̄, where Φ̄ is the level-set nodal values, and substituting into

Eq. (2.38), yields∫
Ω

NTN
∂Φ̄

∂t
dΩ +

∫
Ω

NT (vΓd · ∇N)Φ̄ dΩ +
∑
k

∫
Ωk

NT
s N

∂Φ̄

∂t
dΩ

+
∑
k

∫
Ωk

NT
s (vΓd · ∇N)Φ̄ dΩ = 0

(2.39)

The stabilizing term in Eq. (2.39) is denoted by a subscript k to emphasize that,

due to ∇N, which is discontinuous across the elements, the numerical integration

must be carried out on the element interior Ωk, not at the nodes (Zienkiewicz et al.,

2005).
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Figure 2.1: Intersection of the interface in the cell face (see Cho et al. (2011)).

Level-set re-initialization

Utilizing the level-set method to trace a moving front requires re-distancing (re-

initialization) at every time step. This is necessary because otherwise the distance

property of the level-set function is no longer maintained after advection. In literature,

several numerical approaches have been employed to treat this problem, including

the fast marching method, a distancing direct approach, and a direct solution of the

advection hyperbolic partial differential equation (see Choi (2011) for more details).

Most of the efforts are spent on maintaining the high gradient curvatures of the

boundaries of the involved moving phase, such as the advection of air bubbles in

a liquid. In this study, and due to the relatively large size of the CO2 plume, the

gradients of the curvature of the plume front, within an element, are not significant,

and thus, a direct distancing approach, proposed by Cho et al. (2011), suffices. In

this approach the re-distancing is performed by geometrical updating of the advective

front instead of solving a re-initialization equation. The signed distance function

from the front, where it intersects the element edges, to each node of the element is

calculated as (see Figure 2.1):

d = n · (x− xs) (2.40)

where

xs = x1 −
Φ1

Φ1 − Φ2
(x1 − x2) (2.41)

Upon locating the plume front, the Φ values of the nodes of the neighboring

elements are updated accordingly, and used in the next time step. A detailed

procedure can be found in Cho et al. (2011).
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Chapter 2. Two Phase Flow in a rigid porous medium domain

2.3.2 Modeling the front

As mentioned earlier, Eqs. (2.22) and (2.23) represent a strongly coupled system of

partial differential equations describing a two-phase flow in a rigid porous medium.

At the front of the gas plume, the saturation field exhibits a strong jump, but the

pore pressure field, due to capillary effects, exhibits a diffusive gradient. Considering

this mixed nature of the plume front, we utilize the extended finite element method

to discretize the saturation field, and the standard Galerkin method to discretize the

pressure field. This approach of a mixed discretization procedure between XFEM

and standard Galerkin method has been introduced by Al-Khoury and Sluys (2007)

to model fracturing porous media. Using such an approach, a conservative system

can be obtained by capturing the field discontinuity, and meanwhile, the number

of degrees of freedom are reduced, as compared to a case in which both fields are

discretized using XFEM.

XFEM discretization

In XFEM, the finite element space is enhanced by adding a special function necessary

to capture physical discontinuities or high gradient fields. Different enhancement

functions are utilized and made suitable for different applications. Here, the level-set

function is utilized to enhance the water saturation field as

Sw(x, t) =
∑
I∈N

NI(x)SwI(t)+
∑

J∈Nenriched

N∗J(x, t)aJ (2.42)

where SwI(t) is a set of nodal degrees of freedom representing the saturation degree,

and aJ(t) is an additional set of nodal degrees of freedom at the enriched nodes

J in the elements where the plume front intersects. As proposed by Chessa and

Belytschko (2003a), the enriched shape function is defined as a multiplication between

the standard shape function and the level-set function, such that

N∗J(x, t) = Nj(x) (|Φ(x, t)| − |Φ(xJ , t)|) (2.43)

Figure 2.2 depicts Eq. (2.43) for a linear two-node element. Note that the

enriched shape functions vanish at the nodes. The enrichment functions for a three-

node linear triangle and a four-node quadrilateral element are shown in Figures 2.3

and 2.4, receptively.

Using the weighted residual method, the finite element formulation of Eq. (2.22)
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Figure 2.2: Example of the enriched shape functions for a linear two-node element

(see also Chessa and Belytschko (2003a))

and its boundry equations Eqs. (2.29) and (2.30) can be described as:∫
Ω

wT

[
−∇ (λtk∇Pg) +∇

(
λw

∂Pc
∂Sw

k∇Sw
)

+∇ (λwρw + λgρg) k g

]
dΩ

+

∫
Γq

w̄T

[
kkrw
µw

(
−∇Pg + ∇Sw

∂Pc
∂Sw

+ ρw g

)
+

kkrg
µg

(−∇Pg + ρg g) · n− qg
]
· n dΓ = 0

(2.44)

where w and w̄ are arbitrary weighting functions, limited in such a way that

w = 0 on Γw ∪ Γg

w̄ = −w on Γqw ∪ Γqg
(2.45)

By applying the Galerkin method, the weighting functions w is replaced by the

shape function N. This gives∫
Ω

NT

[
−∇ (λtk∇Pg) +∇

(
λw

∂Pc
∂Sw

k∇Sw
)

+∇ (λwρw + λgρg) k g

]
dΩ = 0

(2.46)

Applying XFEM to Eq. (2.23), and using a weighting function of the form:

w = N + N∗J (2.47)
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Interface

N2
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Figure 2.3: Example of the enriched shape functions for a quadrilateral element.

gives:∫
Ω

(
NT
) [
φ
∂Sw
∂t

+∇ · (−λwk∇Pg + λwk
∂Pc
∂Sw
∇Sw + λwkρwg)

]
dΩ

+

∫
Ω+

(
N∗TJ

) [
φ
∂Sw
∂t

+∇ · (−λwk∇Pg + λwk
∂Pc
∂Sw
∇Sw + λwkρwg)

]
dΩ

= 0 (2.48)

where Ω and Ω+ are the continuous and the discontinuous subdomains, respectively.

As the summation of the residuals of the two subdomains is equal to zero, the

residual of each subdomain must also be zero, and Eq. (2.48) can thus be split into

two equations, as:∫
Ω

(
NT
) [
φ
∂Sw
∂t

+∇ ·
(
−λwk∇Pg + λwk

∂Pc
∂Sw
∇Sw + λwkρwg

)]
dΩ = 0 (2.49)∫

Ω+

(
N∗TJ

) [
φ
∂Sw
∂t

+∇ ·
(
−λwk∇Pg + λwk

∂Pc
∂Sw
∇Sw + λwkρwg

)]
dΩ = 0

(2.50)

Interface

N1
enrich N2

enrich N3
enrich N4

enrich

Figure 2.4: Example of the enriched shape functions for a quadrilateral element.
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Applying Green’s theorem and introducing (2.42) into Eq. (2.46) leads to:∫
Ω

(∇N)
T

(λtk) (∇N)P̄g dΩ−
∫

Ω

(∇N)
T

(
λw

∂Pc
∂Sw

k

)
(∇N) S̄w

−
∫

Ω+

(∇N)
T

(
λw

∂Pc
∂Sw

k

)
(∇N∗) aJ dΩ

=

∫
Ω

(∇N)
T

(λwρw + λgρg) kg dΩ +

∫
Γq

NT (qt) dΓ

(2.51)

where P̄g and S̄w are the nodal vectors of the gas pressure and water saturation.

The saturation gradient is calculated from Eq. (2.42) as

∇Sw =
∑
I∈N
∇NISwI +

∑
J∈Nenriched

∇N∗JaJ

=
∑
I∈N
∇NISwI +

∑
J∈Nenriched

(∇NJΨJ + NJ∇ΨJ) · aJ
(2.52)

Similarly, applying Green’s theorem and introducing Eqs. (2.42) and (2.47), to Eqs.

(2.49) and (2.50) yields∫
Ω

NTφN
∂S̄w
∂t

dΩ +

∫
Ω+

NTφN∗
∂aJ
∂t

dΩ +

∫
Ω

(∇N)
T

(λwk) (∇N)P̄g dΩ

−
∫

Ω

(∇N)
T

(
λw

∂Pc
∂Sw

k

)
(∇N) S̄w dΩ−

∫
Ω+

(∇N)
T

(
λw

∂Pc
∂Sw

k

)
(∇N∗) aJ dΩ

=

∫
Ω

(∇N)
T

(λwρw) k g dΩ +

∫
Γqw

NT qw dΓ

(2.53)

and∫
Ω+

N∗TφN
∂S̄w
∂t

dΩ +

∫
Ω+

N∗TφN∗
∂aJ
∂t

dΩ

+

∫
Ω+

(∇N∗)
T

(λwk) (∇N)P̄g dΩ−
∫

Ω+

(∇N∗)
T

(
λw

∂Pc
∂Sw

k

)
(∇N∗) S̄w dΩ

−
∫

Ω+

(∇N∗)
T

(
λw

∂Pc
∂Sw

k

)
(∇N∗)aJ dΩ

=

∫
Ω+

(∇N∗)
T

(λwρw) k g dΩ +

∫
Γqw

N∗T qw dΓ

(2.54)

2.3.3 Linearization

The resulting weak formulations, Eqs. (2.51), (2.53) and (2.54), represent a set of

semi-discrete nonlinear equations, where the nonlinearity arises from the constitutive
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Chapter 2. Two Phase Flow in a rigid porous medium domain

relationships between the relative permeability and water saturation, and between

the capillary pressure and water saturation, described in Eqs. (2.24)-(2.26). Since

the nonlinearity is due to scalar coefficients (i.e. λw, λt, ∂Pc/∂Sw, etc.), and as the

constitutive relationships are continuous, it is convenient to linearize these equations

using Taylor series expansions up to the first order. The Taylor series expansion of a

function f(x) around a point x̄ is given by

f(x) = f(x̄) +
df

dx

∣∣∣∣
x=x̄

(x− x̄) + high order terms (2.55)

For example, the nonlinear mobility parameter λw at the current iteration, r + 1,

can be linearized as

λr+1
w = λw(Srw) +

∂λw(Srw)

∂Sw
(δSw) (2.56)

with

δSw = Sr+1
w − Srw (2.57)

Other nonlinear parameters are linearized in the same manner. The unknown

variables and their time derivatives can be written as

Pr+1
g = Pr

g+δPg Sr+1
w = Srw+δ Sw ar+1

J = arJ+δaJ

Ṗr+1
g = Ṗ

r

g+δṖg Ṡr+1
w = Ṡ

r

w+δṠw ȧr+1
J = ȧrJ+δȧJ

(2.58)

where the vectors, Ṡrw, Ṗr
g, and ȧrJ denote the times derivatives of the state vector

at iteration r and δṠw, δṖg and δȧJ are the unknown times derivatives of the

incremental state vector.

Using Brook and Corey’s model given in Eqs. (2.24)-(2.26), and assuming a

constant viscosity, the mobility gradients can be calculated analytically according to

∂λw
∂Sw

=
1

µw

∂krw
∂Se

∂Se
∂Sw

=
1

µw (1− Swr − Sgr)λ

(
3S(2λ+2)/λ

e λ+ 2S(2λ+2)/λ
e

)
(2.59)

∂λt
∂Sw

=
∂λw
∂Sw

+
∂λg
∂Sw

=
1

(1− Swr − Sgr)

[
1

λµw

(
3S(2λ+2)/λ

e λ+ 2S(2λ+2)/λ
e

)
− 1

λµg

(
S2/λ
e

(
3Se

2 − 4Se + 1
)
− 2Se + 2

)
λ+ S2/λ

e

(
2Se

2 − 4Se + 2
) ]
(2.60)
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∂ (λs)

∂Sw
=
∂λw
∂Sw

∂Pc
∂Sw

+ λw
∂2Pc

∂Sw
2

=
−pb

(
3S

(λ+1)/λ
e λ+ 2S

(λ+1)/λ
e

)
µw(1− Swr − Sgr)2

λ2
+

λwpb (1 + λ)

(1− Swr − Sgr)2
S

(2λ+1)/λ
e λ2

(2.61)

where λs = λw
∂Pc
∂Sw

. Inserting Eqs. (2.56)-(2.61), into Eq. (2.51), gives

∫
Ω

(∇N)
T

(kλrt ) (∇N)P̄r
g dΩ +

∫
Ω

(∇N)
T

(kλrt ) (∇N)δP̄g dΩ

+

∫
Ω

(∇N)
T

(
k
∂λt
∂Sw

P̄r
g

)
(∇N)δS̄w dΩ−

∫
Ω

(∇N)
T

(kλrs) (∇N) S̄rw dΩ

−
∫

Ω

(∇N)
T

(kλrs) (∇N) δS̄w dΩ−
∫

Ω

(∇N)
T

(
k
∂λs
∂Sw

S̄rw

)
(∇N) δS̄w dΩ

−
∫

Ω+

(∇N)
T

(kλrs) (∇N∗) arJ dΩ−
∫

Ω+

(∇N)
T

(kλrs) (∇N∗) δaJ dΩ

−
∫

Ω+

(∇N)
T

(
k
∂λs
∂Sw

arJ

)
(∇N∗) δS̄w dΩ

=

∫
Ω

(∇N)
T (
λrwρw + λrgρg

)
k g dΩ

+

∫
Ω

(∇N)
T

(
∂λw
∂Sw

ρw +
∂λg
∂Sw

ρg

)
k g δS̄w dΩ +

∫
Γq

NT qt dΓ

(2.62)

In a concise form, Eq. (2.62) can be written as

K11 δP̄g + K12 δS̄w + K13 δaJ = f1 − (K0
11 P̄r

g + K0
12 S̄rw + K0

13 arJ) (2.63)

Similarly, Eqs. (2.53) and (2.54) can be expressed as

C22δṠw + C23δȧJ + K21 δP̄g + K22 δS̄w + K23 δaJ

= f2 −
(
C0

22Ṡ
r
w + C0

23ȧ
r
J + K0

21 P̄r
g + K0

22 S̄rw + K0
23 arJ

) (2.64)

C32δṠw + C33δȧJ + K31 δP̄g + K32 δS̄w + K33 δaJ

= f3 −
(
C0

32Ṡ
r
w + C0

33ȧ
r
J + K0

31 P̄r
g + K0

32 S̄rw + K0
33 arJ

) (2.65)

Putting Eqs. (2.63), (2.64) and (2.65) in a matrix form, yields
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 K11 K12 K13

K21 K22 K23

K31 K32 K33




δP̄g

δS̄w

δaJ

+

 0 0 0

0 C22 C23

0 C32 C32




δṖg

δṠw

δȧJ


=


f1

f2

f3

−
 K0

11 K0
12 K0

13

K0
21 K0

22 K0
23

K0
31 K0

32 K0
33




P̄r
g

S̄rw
arJ

−
 0 0 0

0 C0
22 C0

23

0 C0
32 C0

33




Ṗr
g

Ṡrg
ȧrg


(2.66)

where

K11 = K0
11 =

∫
Ω

(∇N)
T

(kλrt ) (∇N) dΩ (2.67)

K12 =

∫
Ω

(∇N)
T

(
k
∂λt
∂Sw

P̄r
g

)
(∇N) dΩ −

∫
Ω

(∇N)
T

(kλrs) (∇N) dΩ

−
∫

Ω

(∇N)
T

(
∂λw
∂Sw

ρw +
∂λg
∂Sw

ρg

)
k g N dΩ

−
∫

Ω

(∇N)
T

(
k
∂λs
∂Sw

S̄rw

)
(∇N) dΩ −

∫
Ω+

(∇N)
T

(
k
∂λs
∂Sw

arJ

)
(∇N∗) dΩ

(2.68)

K0
12 = −

∫
Ω

(∇N)
T

(kλrs) (∇N) dΩ (2.69)

K13 = K0
13 = −

∫
Ω+

(∇N)
T

(kλrs) (∇N∗) dΩ (2.70)

K21 = K0
21 =

∫
Ω

(∇N)
T

(kλrw) (∇N) dΩ (2.71)

K22 =

∫
Ω

(∇N)
T

(
k
∂λw
∂Sw

P̄r
g

)
(∇N) dΩ−

∫
Ω

(∇N)
T

(kλrs) (∇N) dΩ

−
∫

Ω

(∇N)
T

(
∂λw
∂Sw

ρw

)
k g N dΩ−

∫
Ω

(∇N)
T

(
k
∂λ2

∂Sw
S̄rw

)
(∇N) dΩ

−
∫

Ω+

(∇N)
T

(
k
∂λs
∂Sw

arJ

)
(∇N∗) dΩ

(2.72)

K0
22 = −

∫
Ω

(∇N)
T

(kλrs) (∇N) dΩ (2.73)

K23 = K0
23 = −

∫
Ω+

(∇N)
T

(kλrs) (∇N∗) dΩ (2.74)

K31 = K0
31 =

∫
Ω+

(∇N∗)
T

(kλrw) (∇N) dΩ (2.75)
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K32 =

∫
Ω+

(∇N∗)
T

(
k
∂λw
∂Sw

P̄r
g

)
(∇N) dΩ−

∫
Ω+

(∇N∗)
T

(kλrs) (∇N) dΩ

−
∫

Ω+

(∇N∗)
T

(
∂λw
∂Sw

ρw

)
k g N dΩ−

∫
Ω+

(∇N∗)
T

(
k
∂λs
∂Sw

S̄rw

)
(∇N) dΩ

−
∫

Ω+

(∇N∗)
T

(
k
∂λs
∂Sw

arJ

)
(∇N∗) dΩ

(2.76)

K0
32 = −

∫
Ω+

(∇N∗)
T

(kλrs) (∇N) dΩ (2.77)

K33 = K0
33 = −

∫
Ω+

(∇N∗)
T

(kλrs) (∇N∗) dΩ (2.78)

C22 = C0
22 =

∫
Ω

NTφN dΩ (2.79)

C23 = C0
23 =

∫
Ω+

NTφN∗dΩ (2.80)

C32 = C0
32 =

∫
Ω+

N∗TφN dΩ (2.81)

C33 = C0
33 =

∫
Ω+

N∗TφN∗dΩ (2.82)

f1 =

∫
Ω

(∇N)
T (
λrwρw + λrgρg

)
k g dΩ +

∫
Γq

NT qt dΓ (2.83)

f2 =

∫
Ω

(∇N)
T

(λrwρw) k g dΩ +

∫
Γq

NT qw dΓ (2.84)

f3 =

∫
Ω+

(∇N∗)
T

(λrwρw) k g dΩ +

∫
Γq

N∗T qw dΓ (2.85)

2.3.4 Time discretization

Finite difference in time is used for solving the semi-discrete equations, Eq. (2.66).

Using the theta-method, the time derivatives of the state vector, X = [Pg Sw aJ ]
T

are approximated by{
dX

dt

}
n+1

=
1

θ∆t
(Xn+1 −Xn)− 1− θ

θ

{
dX

dt

}
n

(2.86)

where, ∆t denotes the time step size and θ is a scalar parameter which varies between

0 and 1. Substituting δXn+1= Xr+1
n+1 −Xr

n+1 (see Eq. (2.57)), into Eq. (2.86), and
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knowing that δXn=d(δXn)/dt = 0, gives an expression for the time derivative of

the incremental state vector

d (δXn+1)

dt
=

1

θ∆t
(δXn+1) (2.87)

In the first time step, the time derivative dXn/dt is not known, and therefore a

first-order backward difference scheme is used to approximate the time derivative as{
dX

dt

}
1

=
1

∆t
(X1 −X0) (2.88)

where X0 is the initial condition. For each time step the procedure for updating the

results is as follows:

1. Given Png , S
n
w and Φn.

2. Compute front velocity vΓd from Eq. (2.33).

3. Compute Φn+1 from Eq. (2.32).

4. Reinitialize Φ as explained in section 2.3.1.

5. Locate the plume front and discretize using XFEM.

6. Compute Pn+1
g and Sn+1

w from Eq. (2.66).

7. n← n+ 1; go to step 1.

2.4 Verifications and numerical examples

In this section, the discretization method described above is examined with respect

to its capability to solve three different problems involving multiphase flow in

porous media, and the results with those obtained from standard and the upwind

finite element methods are compared. Two of the problems have analytical and

quasi-analytical solutions, and the other one is a benchmark problem, treated in

several literatures: namely, the Buckley-Leverett problem (advection dominant), the

McWhorter problem (diffusion dominant), and the CO2 leakage problem (advection-

diffusion). Focus is placed on the accuracy, stability, and the boundedness of the

solution (monotonic behavior). In a fourth numerical example, we study the mesh

convergence of the proposed model.

2.4.1 Buckley-Leverett example

The Buckely-Leverett problem (Buckley and Leverett, 1942) describes a one-dimensional

transient displacement of two immiscible fluids in a porous medium without ca-

pillary pressure or gravitational force. The location of the saturation front before
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Table 2.1: Parameters for solving Buckley Leverett problem.

Parameter Value Unit

Domain length, L 300 m

Absolute permeability, k 1× 10−13 m2

Porosity, φ 0.2

Wetting phase viscosity, µw 1× 10−3 Pa.s

Non-wetting phase viscosity, µnw 1× 10−3 Pa.s

Residual wetting phase saturation, Swr 0.0

Residual non-wetting phase saturation, Snwr 0.0

In-flux velocity, v 4.3× 10−7 m/s

pressure, Pw 1× 107 Pa

breakthrough is described as

xf =
1

φ

(
∂fg
∂Sg

)
Sg

t∫
0

v dt (2.89)

where v is the total velocity, and fg = λg/(λg + λw) is a fractional flow function. A

schematic representation of Eq. (2.89) is shown in Figure 2.5.

A physical domain representing a non-wetting phase saturated one-dimensional

porous formation, subjected to a wetting phase flux at its left-hand side boundary, is

studied first. The geometry, initial and boundary conditions, and model parameters

are given in Table 2.1. The Brooks and Corey model is utilized to describe the

relative permeability-saturation relationship, Eqs. (2.24) -(2.26).

Figure 2.6-a shows the relative permeability–saturation relationship for the

studied material. Three numerical approaches are utilized to solve the problem:

the standard Galerkin method (SG), the upwind method and the proposed XFEM-

level set model. Figure 2.7 shows the saturation profiles obtained from these three

approaches, together with the analytical solution, after 7 years and 20 years of

wetting phase injection. The figure demonstrates that the standard Galerkin method

exhibits spurious oscillations, obviously due to advection. The result of the upwind

method is rather smooth (monotonic), but highly dissipative. The proposed model,

on the other hand, produces a monotonic profile, and is less dissipative.

2.4.2 McWhorter problem

The McWhorter problem (McWhorter and Sunada, 1990) describes a one-dimensional

quasi-transient displacement of a non-wetting phase by a wetting phase, driven by the
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capillary pressure. It solves an idealized immiscible two-phase flow quasi-analytically.

The location of the saturation front, xf is described as (Helmig, 1997)

xf =
2A (1− fiR)

φ
F ′ (Sw) t−

1
2 (2.90)

where A is a function of initial saturation, R = qt/qn with qt the total flux and qn

the non-wetting flux, fi is a fractional flow function at initial effective saturation

condition, defined as

fi =

(
1 +

krn(Si)µw
krw(Si)µn

)
(2.91)

and

F ′ =
dF

dSw
=

(∫ Sn
Sw

D
F−fn dβ

)
(∫ Sn

Si

(Sw−Si)D
F−fn dSw

) (2.92)

where

F (x, t) =
qw/qo − fiR

1− fiR
(2.93)

and

fn =
(fw − fi)R

1− fiR
(2.94)

in which D is the capillary diffusion tensor, defined as

D =
krnkfw
µn

dpc
dSw

(2.95)

Here, a physical domain for a two phase flow is solved. The initial and boundary

conditions are presented in Figure 2.8 and model parameters are given in Table 2.2.

The van Genuchten model is utilized to describe the relative permeability-saturation

relationship and the capillary pressure-saturation relationship, defined by

krw =
√
Se

[
1−

(
1− (Se)

1/m
)m]2

(2.96)

krg = (1− Se)1/2
(

1− S1/m
e

)2m

(2.97)

pc = pb

(
S−1/m
e − 1

)1/n

(2.98)

where m and n are fitting parameters, (m = 1−1/n), pb is entry or bubbling pressure,

and Se is the effective saturation.

Figure 2.9 shows numerical results obtained from the proposed model, compared

to those obtained from the standard Galerkin method, the upwind method and

the quasi-analytical solution of the McWhorter problem, Eq. (2.90). The figure

shows that the three discretization procedures are in good agreement with the
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Table 2.2: Parameters for solving McWhorter problem.

Parameter Value Unit

Domain length, L 2.6 m

Absolute permeability, k 1× 10−10 m2

Porosity, φ 0.3

Wetting phase viscosity, µw 1× 10−3 Pa.s

Non-wetting phase viscosity, µnw 1× 10−3 Pa.s

Residual wetting phase saturation, Swr 0.0

Residual non-wetting phase saturation, Snwr 0.0

Van Genuchten parameter, m 2/3

Entry pressure, Pb 5× 103 Pa

no flow

aquifer qn=0.0
Sw=Swi

0.5 m

no flow

2.6 m

wettingnon-wetting

front

Pnw=2.0E5 Pa
Sw=1.0

Pnwi=2.0E5 Pa
Swi=0.1

Figure 2.8: McWhorter problem

quasi-analytical solution, though the proposed model is more accurate at the smaller

distance. The reasonably good performance of the standard Galerkin model might

be explained by the fact that, unlike the Buckley-Leverett problem, the McWhorter

problem exhibits diffusion due to the capillary effect, and hence no sharp front exists.

2.4.3 Leakage problem

This example is a benchmark study utilized in literature to compare the performance

of different simulators and models in describing the consequences of CO2 sequestration

in underground formations (Class et al., 2009). It illustrates a leakage scenario of

CO2 from an abandoned well. This problem is physically important since injection of

a large amount of CO2 into underground formations requires careful environmental

risk assessment.

The greatest concern is that the injected supercritical CO2, which is less dense

and less viscous than the resident water, is driven by buoyancy forces towards the
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top of the injection formation and the upper layers through cracks or faults.

Here, a 2D benchmark model described by (Nordbotten et al., 2004) and (Ebigbo

et al., 2007) is considered, Figure 2.10. It consists of a CO2 injection well, two

aquifers, one aquitard and a leaky well. The physical domain extends 1000 m

horizontally, and the upper aquifer is located 2840 m below the ground surface. The

thickness of the aquifers is 30 m each, and the aquitard is 100 m. The leaky well

is located 100 m from the injection well. The simulation parameters are shown in

Table 2.3. Brooks and Corey equations, Eqs. (2.24) -(2.26), are utilized.

Initially, the domain constitutes a fully brine saturated porous material, under

a hydrostatic pressure condition. On the horizontal surfaces, a no-flow boundary

Depth = 2840 m

Leaky WellInjection 

30 m 

100 m

30 m 

Surface

CO2

A -
B -

≈ Depth = 2840 m

-

lower aquifer

≈

upper aquifer

aquitard

Figure 2.10: CO2 leakage through an abandoned well
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Table 2.3: Simulation parameters

Parameter Value Unit

Lateral dimension, L 1000 m

Aquifers thickness, w1 30 m

Aquitard thickness, w2 100 m

Distance between wells, d 100 m

Aquifers permeability, k1 2.0× 10−14 m2

Leaky well permeability, k2 1× 10−12 m2

Porosity, φ 0.15

Brine viscosity, µw 2.535× 10−4 Pa.s

CO2 viscosity, µg 3.95× 10−5 Pa.s

Brine density, ρw 1045 kg/m3

CO2 density, ρg 479 kg/m3

Injection rate, qinj 6.26× 10−5 m2/s

Residual water saturation, Swr 0.0

Residual CO2 saturation, Sgr 0.0

Brooks and Corey parameter, λ 2

Bottom pressure, Pbh 30.8 MPa

condition is prescribed, and on the vertical surfaces, a constant hydrostatic pressure

is imposed. In this simulation, the fluid properties are assumed constant, and the

dissolution of CO2 into the brine is neglected. As for the previous examples, the

problem is solved using the standard Galerkin method, the upwind finite element

method and the coupled XFEM-level set model. Finite element meshes of different

sizes are utilized. The solution results are evaluated at point A, shown in Figure

2.10, at the time when the CO2 flux reaches 0.005 % of the injected flux. In what

follows, we call this moment, the arrival time of the CO2 plume.

Table 2.4 shows the arrival time of the CO2 plume to the leaky well. The table

shows that, using the coarse mesh (425 elements), the standard Galerkin model failed

to converge. Upon refinement, the SG converged, but exhibited mesh sensitivity,

i.e. the mesh with 909 elements was still too coarse. For case 2 with 909 elements,

the arrival time was 7.2 days, but for case 3, with 2857 elements, the arrival time

was 8.45 days. The upwind solution converged for the coarse mesh. However, it

exhibited high diffusivity and the CO2 front arrived in just 6.05 days. Apparently

the front is smeared over a wider distance.

On the other hand, the proposed model converged for the coarse mesh and the
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Figure 2.11: CO2 saturation at different times
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Table 2.4: different simulation methods and configurations

Case Elements Method Arrival time

(day)

CPU time (sec)

1 425 SG not converged

2 909 SG 7.20 612

3 2857 SG 8.45 1860

4 425 Upwinding 6.05 265

5 425 XFEM-level set 8.10 365

arrival time of the CO2 plume was 8.10 days, close to that of the Galerkin solution

using the fine mesh.

Figure 2.11 shows CO2 saturation profile at different time steps during injection

(case 5). The CO2 plume extends radially from the injection well and upon reaching

the leakage well, it rises to the upper aquifer.

To examine the stability of the model, we investigate its performance numerically

by varying the flow velocity. Three different aquifer permeabilities are utilized

(1.5 × 10−14, 2 × 10−14 and 2.5 × 10−14 m2) using two different mesh sizes (2857

and 909 elements). The coarser mesh (425 elements) was not considered because the

Galerkin model failed to converge for all permeabilities.

Figure 2.12 shows the CO2 leakage rate, as a function of time for the fine mesh

(2857 elements). The CO2 leakage rate is calculated as the percentage ratio of the

CO2 flux to the injection rate at point B, shown in Figure 2.10. The figure shows

that the two models demonstrate similar behavior. Figure 2.13 shows the results of

the coarse mesh (909 elements). This figure shows that, for the low permeability, the

two models give similar results, while for the higher one (25 mD) the Galerkin model

failed to converge. This performance indicates that the proposed model is stable and

perturbation in the model parameters results to a physically realistic perturbation

in the flow behavior, even for relatively coarse meshes.

Examining Figures 2.12 and 2.13, it can be noticed that, at a certain stage, there

is a sharp increase in the CO2 flux due to the breakthrough in the leakage well. The

pressure in the leakage well builds up and, depending on the permeability of the

upper aquifer, the pressure might exhibit a peak followed by a drop or a continuous

build up. For a high permeability aquifer, there is a pressure build up followed by a

fast drop in the pressure due to the relatively fast leakage rate in the upper aquifer.

Comparing Figure 2.11 to Figures 2.12 and 2.13, it can be noticed that the pressure

build up started after 20 days of injection. For a low permeability aquifer, on the
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Figure 2.12: Leakage rate at different permeabilities computed with fine mesh

simulation (2857 elements)
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Figure 2.13: Leakage rate at different permeabilities computed with coarse mesh

simulation (909 elements)

other hand, the pressure build up will continue for a longer time, though after a

certain time limit it will drop (not shown in the figures).
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Chapter 2. Two Phase Flow in a rigid porous medium domain

2.4.4 Mesh sensitivity study

Here, we study the mesh sensitivity of the proposed model and compare it to the

standard Galerkin model. This example is taken from Ebigbo et al. (2007). Consider

a rectangular domain of 30 m × 100 m representing a fully saturated porous medium,

see Figure 2.14. Initially, the domain is under hydrostatic pressure, with a top

pressure of 10 MPa. At the left boundary, a CO2 flux with qg = 6.263× 10−5 m2/s

is imposed. At the right boundary, a constant hydrostatic pressure and a constant

water saturation of Sw = 1 are imposed.

The fluid and medium properties are the same as those presented in Table 2.3.

Different mesh sizes are utilized and the calculations are carried out for 1000 days.

The capillary pressure is ignored, making the problem hyperbolic, i.e. numerically

more difficult. The calculation results, indicating the flux percentage qr, are evaluated

at the right boundary. Figure 2.15 shows the calculation results of the standard

Galerkin method using 30, 85, 750, 3000 and 12000 quadratic elements. In this

example, and because of the advective nature of the problem, we ought to add an

artificial diffusion to the standard Galerkin equations to obtain monotonic solutions.

The figure shows that the SG model converged after approximately 750 elements.

Figure 2.16 shows the calculation results of the proposed model using 30, 85, 120,

480 and 3000 elements. The figure shows that the model converged after 85 elements,

almost 9 times coarser than that for the standard Galerkin method.

no flow

hydrostatic 
pressure

no flow

                    

                    

                    

                    

                    

                    

 

CO2 Injection
Sw=1

Figure 2.14: Mesh convergence problem
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Figure 2.15: Convergence study for standard Galerkin method
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Figure 2.16: Convergence study for XFEM-LS method
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Chapter 2. Two Phase Flow in a rigid porous medium domain

2.5 Conclusions

In this chapter a computational model based on the averaging theory, for the

mathematical modeling, and the level-set and the extended finite element methods,

for the numerical modeling, has been introduced to simulate two-phase flow in an

unsaturated porous medium at a regional level. We show that a good combination

between a mathematical model and a numerical model enables the simulation of

complicated processes occurring in complicated and large geometry using minimal

computational efforts. The basic requirements for an accurate, stable, and converging

model are met using relatively coarse meshes. Mesh-insensitivity is another important

outcome of this combination.
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Hydromechanical Modeling

of CGS 3
This chapter is based on Talebian et al. (2013b), a paper published in Transport in

Porous Media.

3.1 Introduction

Multiphase fluid flow due to injection of CO2 in an unsaturated reservoir is ac-

companied by continuous redistribution of pore pressures and effective stresses,

causing local and regional deformations and probably a major uplifting or subsidence.

Important studies for modeling multiphase flow in rigid, deformable, isothermal,

and/or non-isothermal systems have been introduced by, among others, Gawin et al.

(1995), Lewis et al. (1989), Schrefler (2001) and Helmig (1997). Modeling CO2

sequestration in porous media was also covered by, among others, Pruess and Garćıa

(2002), Rutqvist and Tsang (2002), and Class et al. (2009).

Multiphase fluid flow due to injection of CO2 in an unsaturated reservoir is also

accompanied by electrokinetic flow. Electrokinetic flow is a natural process occurring

due to movement of ions in the porous medium electric double layer under the action

of fluid flow. The driving hydromechanical force, due to pressure gradient, and the

restraining force, due to electrical resistance, give rise to various electrokinetic effects,

including the streaming potential, known also as the self-potential (SP). Since the

electrical conductivity of CO2 is lower than that for the formation brine, it can be

detected by measuring the self-potential.

Based on this, SP can be used as a monitoring technique, which is necessary

to ensure that geologic sequestration is both safe and effective. The self-potential

has been extensively utilized and modeled for geothermal exploration (Ishido and

Pritchett, 1999; Ishido et al., 2010), groundwater flow (Boleve et al., 2007), and
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Chapter 3. Hydromechanical Modeling of CGS

oil reservoir (Saunders et al., 2008; Wurmstich and Morgan, 1994). However, it

seems that so far no study has been introduced on the numerical modeling of the

self-potential associated with CO2 flow in porous media.

In what follows, a description of the governing equations and the involved con-

stitutive relationships is given. Then, a detailed discretization procedure, including

linearization of the system and its time integration is introduced. Later, the proposed

model is verified by comparing its computational results with analytic solutions of

two idealized examples. Finally, numerical examples with parametric analyses are

presented.

3.2 Governing Equations

Balance and field equations of a multiphase/multicomponent medium are commonly

derived based on multiple overlapping continua with emphasis on the averaged

contribution of individual constituents and their interactions. Averaging theories

with varying complexities are utilized for formulating the governing balance equations

for multiphase flow in porous media. The hybrid mixture theory, known also as the

averaging theory, elaborated and effectively employed by Hassanizadeh and Gray

(1979a), is considered as one of the most important theories in this field. Based on this

theory, general averaged macroscopic balance equations and constitutive relationships

for deformed multiphase porous media are derived based on thermodynamic principles.

A comprehensive treatment of the averaging theory is given by Lewis and Schrefler

(1998) and Bear and Cheng (2010).

Here, an outline of the involved governing equations describing coupled linear

momentum, mass balance and electrokinetic balance equations, together with their

constitutive laws, are given. It is assumed that the phases are chemically non-reacting,

the medium is in isothermal equilibrium, no mutual dissolution between CO2 and

water, CO2 density and viscosity are constant, and the mechanical properties of the

solid phase are not affected by the CO2 geo-sequestration process.

3.2.1 Equilibrium equations

The linear momentum balance equation of a three-phase medium, under static

loading condition, can be expressed as (Lewis and Schrefler, 1998)

divσ + ρ̄g = 0 (3.1)
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where σ is total stress, defined for a multiphase medium constituting solid, s, brine

water, w, and CO2, g, as

σ = ts + tw + tg (3.2)

in which tπ is the intra-phase stress tensor of phase π (s, w, g), g is the gravity, and

ρ̄ is an effective density, expressed as

ρ̄ = 〈ρ〉s + 〈ρ〉w + 〈ρ〉g (3.3)

with 〈· · · 〉π the volume average quantity of phase π. For simplicity of notation, in

what follows, the volume and mass averaged symbol will not be used, though all

quantities are volume/mass averaged.

In engineering notation, the total stress is expressed as

σ = σ′ − IP (3.4)

in which σ′ is the effective stress, I is the identity tensor, and

P = SwPw + SgPg (3.5)

where Pw and Pg are the water pressure and CO2 pressure, respectively, and Sw and

Sg are their degrees of saturation. Including Eq. (3.5) into Eq. (3.4) gives

σ′ = σ + I(SwPw + SgPg) (3.6)

In the literature, an extended expression incorporating the solid grain compress-

ibility, known as Biot’s constant α, is also utilized, as

σ′′ = σ + Iα(SwPw + SgPg) (3.7)

Substituting Eq. (3.7) into Eq. (3.1) gives

div [σ′′ − Iα(SwPw + SgPg)] + ρ̄g = 0 (3.8)

The field equilibrium equation of the multiphase domain can be obtained by

incorporating appropriate constitutive equations to the linear momentum balance

equation, Eq. (3.1). For a linear isotropic solid, the effective stress is described as

σ′′ = De(ε− ε0) (3.9)

in which De is the stiffness tensor of the solid, ε0 is an initial strain, and ε is the

total strain of the solid, defined as

ε = L̂u (3.10)
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where u is the displacement vector of the solid phase and L̂ is the displacement-strain

operator, defined as

L̂T =


∂
∂x 0 0 ∂

∂y 0 ∂
∂z

0 ∂
∂y 0 ∂

∂x
∂
∂z 0

0 0 ∂
∂z 0 ∂

∂y
∂
∂x

 (3.11)

Incorporating Eq. (3.9) into Eq. (3.8), gives the equilibrium field equation (see

section 3.2.4).

3.2.2 Mass continuity equations

The continuity equations for the water phase and the CO2 phase, in isothermal

condition with no phase exchange, can be expressed as (Lewis and Schrefler, 1998)

Water phase:

(
α − φ

Ks
S2
w +

φSw
Kw

)
∂Pw
∂t

+
α − φ

Ks
SwSg

∂Pg
∂t

+αSwmT ∂ε

∂t
+

(
α − φ

Ks
PwSw −

α − φ

Ks
PgSw + φ

)
∂Sw
∂t

+
1

ρw
div (φSwρwvw) = Qw

(3.12)

Gas phase: (
α − φ

Ks
SwSg

)
∂Pw
∂t

+

(
α − φ

Ks
S2
g +

φSg
Kg

)
∂Pg
∂t

+αSgm
T ∂ε

∂t
−
(
α − φ

Ks
Sg (Pg − Pw) + φ

)
∂Sw
∂t

+
1

ρg
div (φSgρgvg) = Qg

(3.13)

in which Ks, Kw and Kg are the bulk modulus of the solid, water and gas respectively,

vw and vg are water and CO2 relative velocities to the solid phase, φ is porosity, Qw

and Qg are source or sink terms and m = [1, 1, 1, 0, 0, 0].

In a multiphase system, the Darcy velocity, vπ, is expressed as

φSπvπ =
kkrπ
µπ

(−∇Pπ + ρπ g) (3.14)

where k is the intrinsic permeability tensor, µπ and krπ are the dynamic viscosity

and the relative permeability of phase π respectively.
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Eqs. (3.12) and (3.13) contain four unknowns: Pw, Pg, Sw and Sg. However, for

a multiphase medium, the water and the CO2 phases are jointly occupying the voids,

implying

Sw + Sg = 1 (3.15)

Also, the water pressure and the CO2 pressure are related by the capillary

pressure, Pc, as

Pc(Sw) = Pg − Pw (3.16)

which represents the difference in pressure across the interface between two immiscible

fluids. The capillary pressure is a function of water saturation. In literature, there

are several empirical formulations correlating the capillary pressure and relative

permeability to the degree of saturation, mainly those of van Genuchten (1980) and

Brooks and Corey (1964). Using Brooks and Corey (1964) formulation, the capillary

pressure-saturation relationship is described as

Pc =
Pb

S
1/λ
e

Pc ≤ Pb (3.17)

and the relative permeability-saturation relationships are described as

krw = S(2+3λ)/λ
e (3.18)

krg = (1− Se)2(1− S(2+λ)/λ
e ) (3.19)

where Se is the effective saturation, defined as

Se = (Sw − Swr)/(1− Swr − Sgr) (3.20)

in which Swr is the irreducible water saturation, Sgr is the residual gas saturation,

λ is the pore size distribution index and Pb is an entry pressure, corresponding to

the capillary pressure needed to displace the wetting phase from the largest pore.

Spatial and temporal differentiation of Eq. (3.16), using the chain rule, gives

∇Pw = ∇Pg −
∂Pc
∂Sw
∇Sw (3.21)

∂Pw
∂t

=
∂Pg
∂t
− ∂Pc

∂t
=
∂Pg
∂t
− ∂Sw

∂t

∂Pc
∂Sw

(3.22)

Applying these equations to the balance equations, Eqs. (3.12) and (3.13), would

eliminate the water pore pressure. Combining Eqs. (3.12) and (3.13) with Eqs.

(3.14) and (3.22) gives the general field equations of the mass flow (see section 3.2.4).
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3.2.3 Electric current density continuity equation

With no direct electrical current source, there is zero net current flow through the

system boundaries, and the conservation of the total current density at quasi-steady

state condition implies:

∇ · j = 0 (3.23)

where j is the total electric current density.

In a multiphase domain, the fluid flow and the electrokinetic flow are coupled.

This coupling can be formulated using the theory of coupled flow (Mitchell, 1993),

which states that different flow fields can be coupled as

qi =

n∑
j=1

Lij .∇Fij (3.24)

relating a potential gradient, ∇Fij , to a field flux qi, by a transport coupling

coefficient Lij (Revil et al., 1999). In a CO2 geo-sequestration system, the fluid

flow, represented by Darcy’s law, Eq. (3.14), can be coupled to the electric flow,

represented by Ohm’s law, via:

vw = L11(−∇Pw + ρw g)− L12∇V (3.25)

j = L21(−∇Pw + ρw g)− L22∇V (3.26)

where V is the electrical potential, and L12 and L21 are cross coupling coefficients,

which following Onsager reciprocity principle (Onsager, 1931), are equal, giving

L12 = L21 = L. Apparently, L11 represents the hydraulic conductivity, and L22

represents the electric conductivity, σe. Under zero total electrical current condition

(j = 0), Eq. (3.26) leads to (Sill, 1983)(
∇V

−∇P + ρg

)∣∣∣∣
j=0

= C =
L

σe
⇒ L = σeC (3.27)

in which C is the electrokinetic (voltage) coupling coefficient.

For a partially saturated domain, similar to the permeability coefficient, the

electrokinetic coupling coefficient and the electrical conductivity are made function

of phase saturation via saturation dependent relative parameters, Cr and σr, ranging

from 0 to 1. Accordingly, the coupling coefficients in Eqs. (3.25) and (3.26) can be

expressed as

L11 =
k krw
µw

, L12 = L21 = CCr σeσr, L22 = σeσr (3.28)

The electrokinetic coupling coefficient plays a key role in the magnitude of the

formation streaming potential. There have been extensive theoretical and empirical
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works on this regard, see for example (Bolève et al., 2007; Revil et al., 1999; Saunders

et al., 2008).

In a saturated porous medium, the electrokinetic coupling coefficient at a given

pressure is a function of temperature, fluid salinity, electrolyte pH, and rock type,

expressed as

C =
ζεw
µwσw

(3.29)

where ζ is the zeta potential, and εw, µw, σw are the brine permittivity (for anisotropic

material, a second rank tensor), viscosity and electrical conductivity, respectively.

Available data suggests that the effect of temperature changes in the reservoirs

conditions is negligible (Reppert and Morgan, 2003).

The electrical conductivity of the bulk formation can be calculated following

Glover et al. (2000), as

σe = φm [σg + (Sw)
n
(σw − σg)] (3.30)

where n is Archie’s saturation exponent (close to 2), m is the cementation exponent

(in the range 1.8–2.0 for sandstones, for instance), σg and σw are the gas and water

phase conductivities, respectively. In Eq. (3.30) it is assumed that the electrical

conductivity of the non-wetting phase (CO2) is small compared to that of the wetting

(brine), and the electrical conductivity of the sand grains is negligible.

In a partially saturated porous medium, the relative electrical conductivity

(inverse of the resistivity index) can simply be calculated using Archie’s law, as

σr = (Sw)n. On the other hand, determination of the relative electrokinetic coupling

coefficient is more complicated and several models are presented in the literature,

see for example (Jackson, 2010; Linde et al., 2007; Revil et al., 1999). Saunders et al.

(2008) proposed a power law to describe this parameter, such that

Cr = (Se)
p (3.31)

where, exponent p is a function of the excess counter-ions in the diffuse layer and

the salinity of the brine. The effect of varying this exponent on the electrokinetic is

examined in section 3.4.5.

The salinity of the formation brine significantly affects the conductivity and the

electrokinetic coupling coefficients. Electrical conductivity increases with increasing

brine salinity. Salinity also affects the zeta potential, permittivity and viscosity (Eq.

(3.29)). The effect of salinity on permittivity and viscosity is ignored in this study.

According to Worthington et al. (2002), the salt concentration, Cf , is related to the
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brine electrical conductivity, σw, by

log (σw) = 9.42203× 10−1 + 8.88900× 10−1 [log (Cf )]

−2.72398× 10−2[log (Cf )]
2 − 2.25682× 10−3[log (Cf )]

3

+1.46605× 10−5[log (Cf )]
4

(3.32)

Following Saunders et al. (2008) , the salinity is related to the zeta potential by

ζ = 16.175× log (Cf )− 16.606 (3.33)

In general, the values of the coupling coefficients decrease as the salinity increases.

Incorporating the constitutive equation for coupled electrokinetic and hydro-

dynamic flow, Eq. (3.25), into the mass balance equations, Eqs. (3.12) and (3.13) ,

and also Eq. (3.26) into the electric current density balance equation, Eq. (3.23),

gives the governing field equation for the streaming potential (see section 3.2.4).

3.2.4 General field equations

The governing field equations of a coupled hydromechanical-electrokinetic flow in a

CO2 geo-sequestration process are obtained by incorporating the constitutive equa-

tions into the relevant balance equations. In literature, there are three well-known

formulations for multiphase flow in porous media: pressure formulation, where phases

pressures are the unknown variables; pressure-saturation formulation, where the

pressure of a fluid phase and the saturation of the other phases are the unknown

variables; and saturation formulation, where phases saturation are the unknown

variables (Helmig, 1997). Here we adopt the pressure-saturation formulation, namely

Pg-Sw, because it gives a concise set of equations.

Equilibrium field equation

Incorporating Eqs. (3.9), (3.10) and (3.16) into Eq. (3.8), ignoring the initial strain,

the equilibrium equation can be obtained as

div
[
De(L̂u)−mTα(Pg − PcSw)

]
+ ρ̄g = 0 (3.34)

where the effective density is usually described as

ρ̄ = (1 − φ) ρs + φSwρw + φSgρg (3.35)

Mass balance field equations

Incorporating Eqs. (3.21), (3.22) and (3.25) into Eq. (3.12) and rearranging,
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neglecting the gradient of the water density, the field mass balance equation can be

expressed as

d1
∂Pg
∂t

+d2
∂Sw
∂t

+d3m
T ∂ε

∂t
+∇· (−c1∇Pg−c2∇Sw −c3∇V +G1) = Qw (3.36)

Similarly, substituting Eqs. (3.21) and (3.22) into Eq. (3.13), gives

d4
∂Pg
∂t

+ d5
∂Sw
∂t

+ d6m
T ∂ε

∂t
+∇ · (−c4∇Pg + G2) = Qg (3.37)

where d1. . . d6, c1-c4, and G1. . . G2 are coefficients described in Table 3.1.

Electric current density balance field equations

Incorporating Eqs. (3.21) and (3.26) into Eq. (3.23) gives

∇ · (−c5∇Pg − c6∇Sw − c7∇V + G3) = 0 (3.38)

where c5-c7 and G3 are coefficients described in Table 3.1.

3.2.5 Initial and boundary conditions

Initially, at t = 0, displacement, CO2 pressure, water saturation and the electrokinetic

potential are described as

u = u0; Pg = Pg0(x); Sw = Sw0(x); V = V0(x) at t = 0 (3.39)

The Dirichlet boundary conditions for the three fields are prescribed as

u = û on Γu

Pg = P̂g on Γg

Sw = Ŝw on Γw

V = V̂ on ΓV

(3.40)

where Γ = Γu ∪ Γg = Γw ∪ ΓV = Γqg ∪ Γqw = Γqe ∪ Γqu is the boundary surface. The

relevant Neumann boundary conditions for the flow are:

CO2 flux:
kkrg
µg

(−∇Pg + ρgg) · n = qg on Γqg (3.41)

Water flux:

kkrw
µw

(
−∇Pg +∇Sw

∂Pc
∂Sw

+ ρw g

)
· n = qw on Γqw (3.42)
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Mixed discretization scheme 3.3

where n = {nx, ny, nz}T is the unit normal vector. The Neumann boundary condition

for the equilibrium field is:

ITσ = t̄ on Γqu (3.43)

where the unit matrix I is defined as

IT =

 nx 0 0 ny 0 nz

0 ny 0 nx nz 0

0 0 nz 0 ny nx

 (3.44)

In a typical CO2 geo-sequestration system, no Neumann boundary condition for the

electrokinetic field is applicable.

3.3 Mixed discretization scheme

Eqs. (3.34)-(3.38) together with the initial and boundary conditions, Eqs. (3.39)-

(3.43), represent an initial and boundary value problem of a coupled electrokinetic-

multiphase flow in a deformable unsaturated underground formation. It involves the

motion of an immiscible CO2 plume under the combined action of solid deformation

and viscous, capillary and gravity forces. At the front of the plume, there is a

relatively high gradient in the saturation field and the pressure field. Capturing and

modeling this front can lead to spurious oscillations. Using standard finite element

discretization schemes requires fine or adaptive meshes, and probably CPU time of

the order of several days or weeks to conduct an analysis at a regional level. On

the other hand, using advanced discretization schemes, such as the Discontinuous

Galerkin or the multiscale finite element, generates a large system of equations,

requiring parallel and powerful computational capacity.

To tackle this problem, here, the governing equations are solved using a mixed

discretization scheme. The standard Galerkin finite element method (SG) and the

extended finite element method (XFEM), coupled to the level-set method (LS),

are utilized. Coupling between LS and XFEM is essential for effectively capturing

and modeling the CO2 plume front. Physically, for a typical CO2 geo-sequestration

problem, capturing the front of the CO2 plume at the exact location is not very

important; but numerically, it is vital because it leads to a locally conservative

discrete system, making the scheme stable and convergent. For the equilibrium

field equation and the diffusive dominant equations, the standard Galerkin method

suffices.
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3.3.1 Level-set discretization

The level-set method is a numerical technique usually utilized for tracing a moving

interface, Γd, between two zones, for instance, Ω1 and Ω2. A level-set function is

defined as a signed distance function Φ(x), which is positive in Ω1, negative in Ω2,

and zero at the interface between them. The level-set value is advected by the field

motion, as
∂Φ

∂t
+ vΓd · ∇Φ = 0 (3.45)

where vΓd represents the interface velocity, the CO2 plume front velocity. Following

Liu et al. (2010), the front velocity can be calculated as

vΓd =
ρg(1− Sw)

ρ̄
vg +

ρwSw
ρ

vw (3.46)

where vg and vw are CO2 and water Darcy velocities, calculated by Eq. (3.14) and

ρ = ρwSw + ρgSg.

The level-set equation, Eq. (3.45), is a first-order hyperbolic and its discretization

using the standard Galerkin method may result into spurious oscillations. Different

techniques have been employed to stabilize this problem, among which the Streamline

Upwind Petrov-Galerkin (SUPG) method is known to be effective in many cases

(Brooks and Hughes, 1982). In the SUPG method the shape function is perturbed

in the direction of the flow, as

N̄ = N + Ns (3.47)

where N is the standard finite element shape functions and Ns is an enhancement

function, defined as

Ns = τvΓd · ∇N (3.48)

where τ is a stabilization parameter. In literature, there are several formulations

describing τ . In the absence of diffusion, it can be expressed as

τ =
he

2 |vΓd |
(3.49)

where he is the characteristic length of the element, defined as

he = 2

(
ne∑
α=1

∣∣∣∣ vΓd i

‖vΓd‖
∂Nα
∂xi

∣∣∣∣
)−1

(3.50)

in which ne is the number of nodes in the element and Nα is the basis function

associated with node α. Applying the weighted residual finite element discretization

procedure to Eq. (3.45), using Eq. (3.47), gives∫
Ω

N

(
∂Φ

∂t
+ vΓd · ∇Φ

)
dΩ +

∑
k

∫
Ωk

Ns

(
∂Φ

∂t
+ vΓd · ∇Φ

)
dΩ = 0 (3.51)
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Approximating Φ = NΦ̄, where Φ̄ is the level-set nodal values, and substituting

into Eq. (3.51), yields∫
Ω

NTN
∂Φ̄

∂t
dΩ +

∫
Ω

NT (vΓd · ∇N)Φ̄ dΩ +
∑
k

∫
Ωk

NT
s N

∂Φ̄

∂t
dΩ

+
∑
k

∫
Ωk

NT
s (vΓd · ∇N)Φ̄ dΩ = 0

(3.52)

The stabilizing term in Eq. (3.52) is denoted by a subscript k to emphasize that,

due to ∇N, which is discontinuous across the elements, the numerical integration

must be carried out on the element interior Ωk, not at elements boundaries.

Utilizing the level-set method to trace a moving front requires re-initialization

at every time step. This is necessary because otherwise the distance property of

the level-set function is no longer maintained after advection. In literature, several

numerical approaches have been employed to treat this problem, including the fast

marching method, a distancing direct approach, and a direct solution of the advection

hyperbolic partial differential equation. Most of the efforts are spent on maintaining

the high gradient curvatures of the interface between the involved phases, such

as the advection of air bubbles in a liquid. Here, and due to the relatively large

size of the CO2 plume, the gradient of the curvature of the plume front within an

element is insignificant, making its contour line within the elements nearly straight

(in 2D problems), rather than curves. Thus, a direct distancing approach, proposed

by Cho et al. (2011), suffices. In this approach, the re-distancing is performed by

geometrical updating of the advective front instead of solving a re-initialization

equation. Detailed procedure can be found in Cho et al. (2011).

3.3.2 SG-XFEM discretization

The governing field equations, Eqs. (3.34)-(3.38), involve fields of different nature.

The displacement field is continuous but the pressure, saturation and electrokinetic

fields at the CO2 plume front exhibit high gradients. The extended finite element

method can be utilized to model these high gradients. However, this implies doubling

the degrees of freedom, making the gained stability, computationally inefficient. To

reduce the number of degrees of freedom, a mixed discretization scheme, proposed

by Al-Khoury and Sluys (2007), is utilized. Equations containing diffusion and/or

strong capillary effects can be discretized using SG method, and equations containing

advection together with high gradient in the saturation field can be discretized using

XFEM method. Following this, Eqs. (3.34), (3.36) and (3.38), and as they contain

continuous displacement, capillary effects and diffusive terms including that for
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saturation, discretization using SG suffices. Eq. (3.37), on the other hand, describes

a marching saturation front with no diffusion, and thus XFEM discretization is more

appropriate.

Using the weighted residual method, the finite element formulation of the equi-

librium equation, Eq. (3.1), using Eq. (3.43), can be described as∫
Ω

wT (L̂Tσ + ρ̄g)dΩ−
∫

Γqu

wT (ITσ − t̄)dΓ = 0 (3.53)

in which w is any arbitrary weighting function. Applying Green’s theorem to the

first part of Eq. (3.53), gives

−
∫

Ω

(L̂w)
T
σ dΩ +

∫
Γqu

wT ITσ dΓ+

∫
Ω

wT ρ̄g dΩ−
∫

Γqu

wT (ITσ − t̄)dΓ = 0

(3.54)

Simplifying Eq. (3.54) yields

−
∫

Ω

(L̂w)
T
σ dΩ +

∫
Ω

wT ρ̄g dΩ +

∫
Γqu

wT t̄ dΓ = 0 (3.55)

Introducing Eq. (3.34) gives

−
∫

Ω

(L̂w)
T
[
De(L̂u)−mTα(Pg − PcSw)

]
dΩ +

∫
Ω

wT ρ̄gdΩ +

∫
Γqu

wT t̄dΓ = 0

(3.56)

Displacement, gas pressure and streaming potential values are expressed in terms of

their nodal values as
u(x, t) = Nu(x)ū(t)

Pg(x, t) = Np(x)P̄g(t)

V (x, t) = NV (x)V̄(t)

(3.57)

where ū, P̄g and V̄ are the nodal vectors for displacement, CO2 pressure and

streaming potential.

The saturation field, on the other hand, exhibits high gradient at the CO2 plume

front that is best described by the XFEM. In XFEM, the finite element spatial

discretization is conducted by adding an enhanced function necessary to capture

any physical discontinuity or a high gradient field exists within the element. The

saturation field can thus be described in terms of its nodal values as

Sw(x, t) = N(x)S̄w(t) +
∑

J∈Nenriched

N∗J (x, t)aJ(t) (3.58)

where S̄w is the nodal water saturation vector and aJ is an additional nodal degree of

freedom on node J of an enriched element, Nenriched, where the plume front intersects.
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As proposed by Chessa and Belytschko (2003a), the level-set function can be utilized

for the enriched shape functions, giving

N∗J (x, t) = NJ(x) [|Φ(x, t)| − |Φ(xJ , t)|] (3.59)

Based on Eq. (3.58) and Eq. (3.59), the saturation gradient can be calculated, in

tensor notation, as

∇Sw =
∑
I∈N
∇NISwI +

∑
J∈Nenriched

∇N∗JaJ

=
∑
I∈N
∇NISwI +

∑
J∈Nenriched

(∇NJΨJ + NJ∇ΨJ) · aJ
(3.60)

with ΨJ = [|Φ(x, t)| − |Φ(xJ , t)|].
Using the Galerkin finite element method, the weighting function w is defined

by the shape function, i.e. w = N. Substituting Eq. (3.57) and Eq. (3.58) into Eq.

(3.56) gives

−
∫

Ω

BTD B ū dΩ +

∫
Ω

BTmTαNpP̄g dΩ−
∫

Ω

BTmTαPcNsS̄wdΩ

−
∫

Ω+

BTmTαPc N∗aJ dΩ +

∫
Γqu

NT
u t̄ dΓ +

∫
Ω

NT
u ρ̄g dΩ = 0

(3.61)

where B = L̂N, ū, P̄g and S̄w are the nodal vectors for displacement, CO2 pressure

and water saturation; t̄ is the traction force, and Ω and Ω+ are the continuous and

the discontinuous subdomains, representing the formation water zone and the CO2

zone within an element, respectively. The capillary pressure Pc in Eq. (3.61) is a

nonlinear parameter that will be linearized in terms of water saturation (see Eq.

(3.70) in section 3.3.3).

In a similar manner applying the Galerkin weighted residual method to Eq. (3.36),

employing Green’s theorem, applying Eq. (3.42), ignoring source/sink terms, and

using the same shape function as for the equilibrium field equation, yields∫
Ω

NT d1 N Ṗg dΩ +

∫
Ω

NT d2N ṠwdΩ +

∫
Ω+

NT d2N
∗ȧJ dΩ

+

∫
Ω

NT d3 mTB u̇ dΩ +

∫
Ω

(∇N)
T
c1∇NP̄gdΩ +

∫
Ω

(∇N)
T
c2∇NS̄wdΩ

+

∫
Ω+

(∇N)
T
c2∇N∗aJdΩ +

∫
Ω

(∇N)
T
c3∇NV̄ dΩ−

∫
Ω

(∇N)
T
G1dΩ

+

∫
Γqw

NT qw dΓ = 0

(3.62)

where Γd represents the interface between the CO2 plume front and the formation

water, and Γqe represents a surface on the system boundary where an electrical flux
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can be applied. In a typical geo-sequestration problem, fluxes at these two surfaces

are not valid and these two terms vanish.

Applying XFEM to Eq. (3.37), using a weighting function of the form:

w = N + N∗J (3.63)

gives gives∫
Ω

NT

[
d4
∂Pg
∂t

+ d5
∂Sw
∂t

+ d6 mT ∂ε

∂t
+∇ · (−c4∇Pg + G2)

]
dΩ

+

∫
Ω+

N∗TJ

[
d4
∂Pg
∂t

+ d5
∂Sw
∂t

+ d6m
T ∂ε

∂t
+∇ · (−c4∇Pg + G2)

]
dΩ = 0

(3.64)

As the summation of the residuals of the two subdomains is equal to zero, the residual

of each subdomain must also be zero, and thus, Eq. (3.64) can be split into two

equations, giving∫
Ω

NT

[
d4
∂Pg
∂t

+ d5
∂Sw
∂t

+ d6 mT ∂ε

∂t
+∇ · (−c4∇Pg + G2)

]
dΩ = 0 (3.65)∫

Ω+

N∗TJ

[
d4
∂Pg
∂t

+ d5
∂Sw
∂t

+ d6 mT ∂ε

∂t
+∇ · (−c4∇Pg + G2)

]
dΩ = 0 (3.66)

Employing the Green’s theorem, applying Eq.(3.41), and introducing Eq. (3.58) into

Eqs. (3.65) and (3.66) leads to∫
Ω

NT d4 NṖgdΩ +

∫
Ω

NT d5NṠwdΩ +

∫
Ω+

NT d5N
∗ȧJdΩ

+

∫
Ω

NT d6m
TBu̇ dΩ +

∫
Ω

(∇N)
T
c4∇NP̄gdΩ

+

∫
Γqg

NT qg dΓ−
∫

Ω

(∇N)
T
G2dΩ = 0

(3.67)

and ∫
Ω+

N∗T d4NṖgdΩ +

∫
Ω+

N∗T d5N ṠwdΩ +

∫
Ω+

N∗T d5 N∗ȧJdΩ

+

∫
Ω+

N∗T d6m
TBu̇ dΩ +

∫
Ω+

(∇N∗)
T
c4∇NP̄gdΩ

+

∫
Γqg

N∗T qg dΓ−
∫

Ω+

(∇N∗)
T
G2dΩ = 0

(3.68)

Applying the Galerkin weighted residual method to the streaming potential field

balance equation, Eq. (3.38), gives∫
Ω

(∇N)
T
c5∇NP̄gdΩ +

∫
Ω

(∇N)
T
c6∇NS̄wdΩ +

∫
Ω+

(∇N)
T
c6∇N∗aJdΩ

+

∫
Ω

(∇N)
T
c7∇NV̄dΩ−

∫
Ω

(∇N)
T
G3dΩ +

∫
Γqe

qedΓ = 0

(3.69)
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where the flux term qe in a typical self-potential vanishes.

3.3.3 Linearization

The resulting weak formulations, Eqs. (3.61), (3.62), (3.67), (3.68) and (3.69),

represent a set of semi-discrete nonlinear equations that need to be solved iteratively.

Since the constitutive relationships are continuous, it is convenient to linearize these

equations using Taylor series expansions up to the first order. For example, the

nonlinear parameter c1 at iteration r + 1, can be linearized as

cr+1
1 = c1(Srw) +

∂c1(Srw)

∂Sw
(δSw) (3.70)

with

δSw = Sr+1
w − Srw (3.71)

Using Brook and Corey’s model, given in Eqs. (3.17)-(3.19), and assuming a constant

viscosity, c1 variation with saturation can be calculated analytically as

∂c1

∂Sw
=

k

µw

∂krw
∂Se

∂Se
∂Sw

=
k

µw(1− Swr − Sgr)λ
(3S(2λ+2)/λ

e λ+ 2S(2λ+2)/λ
e ) (3.72)

Derivatives of the other nonlinear parameters, given in Table 3.1, can be calculated

in the same way. The primary variables and their time derivatives can be written as

Xr+1=Xr+δX

Ẋr+1=Ẋr+δẊ
(3.73)

where Xr+1 = [u Pg Sw aJ V]T is the unknown state vector at the current iteration

(r + 1) and δX is its incremental value. Ẋr denotes the time derivative of the state

vector at iteration r and δẊ is the time derivatives of the incremental state vector.

Linearizing Eq. (3.61) and rearranging gives, in a concise form

K11 δū + K12 δP̄g + K13 δS̄w + K14 δaJ

= f1 − (K0
11 ūr + K0

12 P̄r
g + K0

13 S̄rw + K0
14 arJ)

(3.74)

Similarly, Eqs. (3.62), (3.67), (3.68) and (3.69) can be expressed as

C21δu̇ + C22δṖg + C23δṠw + C24δȧJ + K22 δP̄g + K23 δS̄w

+K24 δaJ + K25 δV̄ = f2 − (C0
21u̇

r + C0
22Ṗ

r
g + C0

23Ṡ
r
w

+C0
24ȧ

r
J + K0

22 P̄r
g + K0

23 S̄rw + K0
24 arJ + K0

25 V̄r)

(3.75)

C31δu̇ + C32δṖg + C33δṠw + C34δȧJ + K32 δP̄g + K33 δS̄w

= f3 − (C0
31u̇

r + C0
32Ṗ

r
g + C0

33Ṡ
r
w + C0

34ȧ
r
J + K0

32 P̄r
g)

(3.76)
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C41δu̇ + C42δṖg + C43δṠw + C44δȧJ + K42 δP̄g + K43 δS̄w

= f4 − (C0
41u̇

r + C0
42Ṗ

r
g + C0

43Ṡ
r
w + C0

44ȧ
r
J + K0

42 P̄r
g)

(3.77)

K52 δP̄g + K53 δS̄w + K54 δaJ + K55 δV̄

= f5 − (K0
52 P̄r

g + K0
53 S̄rw + K0

54 arJ + K0
55 V̄r)

(3.78)

Assembling Eqs. (3.74)-(3.78) in matrix form, yields


K11 K12 K13 K14 0

0 K22 K23 K24 K25

0 K32 K33 0 0

0 K42 K43 0 0

0 K52 K53 K54 K55





δū

δP̄g

δS̄w

δaJ

δV̄


+


0 0 0 0 0

C21 C22 C23 C24 0

C31 C32 C33 C34 0

C41 C42 C43 C44 0

0 0 0 0 0





δu̇

δṖg

δṠw

δȧJ

δV̇



=



f1

f2

f3

f4

f5


−


K0

11 K0
12 K0

13 K0
14 0

0 K0
22 K0

23 K0
24 K0

25

0 K0
32 0 0 0

0 K0
42 0 0 0

0 K0
52 K0

53 K0
54 K0

55





ūr

P̄rg
S̄rw
arJ
V̄r


+


0 0 0 0 0

C0
21 C0

22 C0
23 C0

24 0

C0
31 C0

32 C0
33 C0

34 0

C0
41 C0

42 C0
43 C0

44 0

0 0 0 0 0





u̇r

Ṗrg
Ṡrw
ȧrJ
V̇r


(3.79)

where

K11 = K0
11 = −

∫
Ω

BTDB dΩ (3.80)

K12 = K0
12 =

∫
Ω

BTmTαNdΩ (3.81)

K13 = −
∫

Ω

BTmTαP rc NdΩ−
∫

Ω

BTmTα
∂Pc
∂Sw

SrwNdΩ

−
∫

Ω+

BTmTα
∂Pc
∂Sw

arJ N∗dΩ +

∫
Ω

NT ∂ρ̄

∂Sw
Ng dΩ

(3.82)

K0
13 = −

∫
Ω

BTmTαP rc N dΩ (3.83)

K14 = K0
14 = −

∫
Ω+

BTmTαP rc N∗dΩ (3.84)

K22 = K0
22 =

∫
Ω

(∇N)
T
cr1(∇N) dΩ (3.85)
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K23 =

∫
Ω

NT

(
∂d3

∂Sw
u̇rN

)
mTB dΩ +

∫
Ω

NT

(
∂d1

∂Sw
NṖ

r

g

)
NdΩ

+

∫
Ω

NT

(
∂d2

∂Sw
NṠ

r

w

)
NdΩ +

∫
Ω

NT

(
∂d2

∂Sw
NȧrJ

)
N∗dΩ

+

∫
Ω

(∇N)
T

(
∂c1

∂Sw
NP̄

r
g

)
(∇N) dΩ−

∫
Ω

(∇N)
T

(
∂G1

∂Sw
N

)
dΩ

+

∫
Ω

(∇N)
T

(
∂c2

∂Sw
NS̄

r
w

)
(∇N) dΩ +

∫
Ω+

(∇N)
T

(
∂c2

∂Sw
NarJ

)
(∇N∗)dΩ

+

∫
Ω

(∇N)
T

(cr2)(∇N) dΩ +

∫
Ω

(∇N)
T

(
∂c3

∂Sw
NV̄r

)
(∇N) dΩ

(3.86)

K0
23 =

∫
Ω

(∇N)
T
cr2 (∇N) dΩ (3.87)

K24 = K0
24 =

∫
Ω+

(∇N)
T
cr2 (∇N∗)dΩ (3.88)

K25 = K0
25 =

∫
Ω

(∇N)
T
cr3 (∇N) dΩ (3.89)

K32 = K0
32 =

∫
Ω

(∇N)
T
cr4(∇N) dΩ (3.90)

K33 =

∫
Ω

NT

(
∂d6

∂Sw
Nu̇r

)
mTBdΩ +

∫
Ω

NT

(
∂d4

∂Sw
NṖ

r

g

)
NdΩ

+

∫
Ω

NT

(
∂d5

∂Sw
NṠ

r

w

)
NdΩ +

∫
Ω+

NT

(
∂d5

∂Sw
NȧrJ

)
N∗dΩ

+

∫
Ω

(∇N)
T

(
∂c4

∂Sw
NP̄

r
g

)
(∇N) dΩ−

∫
Ω

(∇N)
T

(
∂G2

∂Sw
N

)
dΩ

(3.91)

K42 = K0
42 =

∫
Ω+

(∇N∗)
T
cr4(∇N)dΩ (3.92)

K43 =

∫
Ω+

N∗T
(
∂d6

∂Sw
Nu̇r

)
mTBdΩ +

∫
Ω+

N∗T
(
∂d4

∂Sw
NṖ

r

g

)
N dΩ

+

∫
Ω+

N∗T
(
∂d5

∂Sw
NṠ

r

w

)
NdΩ +

∫
Ω+

N∗T
(
∂d5

∂Sw
NȧrJ

)
N∗dΩ

+

∫
Ω+

(∇N∗)
T

(
∂c4

∂Sw
NP̄

r
g

)
(∇N) dΩ−

∫
Ω+

(∇N∗)
T

(
∂G2

∂Sw

)
NdΩ

(3.93)

K52 = K0
52 =

∫
Ω

(∇N)
T
cr5(∇N) dΩ (3.94)
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K53 =

∫
Ω

(∇N)
T

(
∂c7
∂Sw

NV̄r

)
(∇N)dΩ +

∫
Ω

(∇N)
T

(
∂c5

∂Sw
NP̄

r
g

)
(∇N) dΩ

+

∫
Ω

(∇N)
T
cr6 (∇N) dΩ +

∫
Ω

(∇N)
T

(
∂c6

∂Sw
NS̄

r
w

)
(∇N) dΩ

+

∫
Ω+

(∇N)
T

(
∂c6

∂Sw
NarJ

)
(∇N∗)dΩ−

∫
Ω

(∇N)
T

(
∂G3

∂Sw

)
N dΩ

(3.95)

K0
53 =

∫
Ω

(∇N)
T
cr6 (∇N)dΩ (3.96)

K54 = K0
54 =

∫
Ω+

(∇N)
T
cr6(∇N∗) dΩ (3.97)

K55 = K0
55 =

∫
Ω

(∇N)
T
cr7 (∇N) dΩ (3.98)

C21 = C0
21 =

∫
Ω

NT dr3m
TBdΩ (3.99)

C22 = C0
22 =

∫
Ω

NT dr1NdΩ (3.100)

C23 = C0
23 =

∫
Ω

NT dr2NdΩ (3.101)

C24 = C0
24 =

∫
Ω+

NT dr2N
∗dΩ (3.102)

C31 = C0
31 =

∫
Ω

NT dr6m
TBdΩ (3.103)

C32 = C0
32 =

∫
Ω

NT dr4NdΩ (3.104)

C33 = C0
33 =

∫
Ω

NT dr5NdΩ (3.105)

C34 = C0
34 =

∫
Ω

NT dr5N
∗dΩ (3.106)

C41 = C0
41 =

∫
Ω+

N∗T dr6m
TBdΩ (3.107)

C42 = C0
42 =

∫
Ω+

N∗T dr4NdΩ (3.108)

C43 = C0
43 =

∫
Ω+

N∗T dr5NdΩ (3.109)
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C44 = C0
44 =

∫
Ω+

N∗T dr5N
∗dΩ (3.110)

f1 = −
∫

Ω

NT ρrg dΩ−
∫

Γqu

NT t̄ dΓ (3.111)

f2 =

∫
Ω

(∇N)
T
G1

rdΩ−
∫

Γqw

NT qw dΓ (3.112)

f3 = −
∫

Γqg

NT qg dΓ +

∫
Ω

(∇N)
T
Gr

2dΩ (3.113)

f4 = −
∫

Γqg

NT qg dΓ +

∫
Ω+

(∇N∗)
T
Gr

2dΩ (3.114)

f5 =

∫
Ω

(∇N)
T
Gr

3
dΩ−

∫
Γqe

NT qe dΓ (3.115)

3.3.4 Time discretization

A finite difference scheme in time is utilized to solve the semi-discrete system of

equations, Eq. (3.79). In a concise form, this equation can be written as

C
dX

dt
+ KX = F (3.116)

Using the theta-method, the dependent state variable and the force vector can

be defined as
X = θXn+1 + (1− θ)Xn

F = θFn+1 + (1− θ)Fn
(3.117)

in which n is a time step, and 0 ≤ θ ≤ 1 is a time integration parameter, which gives

for θ ≥ 1/2 an unconditionally stable time scheme.

Using the backward differencing, the time derivative of the state variable is

Ẋ =
Xn+1 −Xn

∆t
(3.118)

Substituting Eqs. (3.117) and (3.118) into Eq. (3.116) gives

(C + θ∆tK)Xn+1 = (C− (1− θ)∆tK)Xn + θ∆tFn+1 + (1− θ)∆tFn (3.119)

In all numerical examples presented in next section, the algorithmic time integration

parameter θ is assumed 1, fully implicit.
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3.3.5 Computer implementation

The above finite element formulation together with the linearization procedure and

the time discretization scheme are implemented in a C++ code and included in an

object oriented computer environment available at Delft University of Technology.

The system of equations is solved using a standard direct solver. The computational

algorithm is summarized as the following.

1. Given X0 and Φ0.

2. Compute front velocity vΓd from Eq. (3.46).

3. Compute Φn+1 from Eq. (3.45).

4. Reinitialize Φ as explained in section 3.3.1.

5. Locate the plume front and discretize using SG-XFEM.

6. Compute Xn+1 from Eq. (3.119).

7. n← n+ 1; go to step 2.

3.4 Verifications and numerical examples

In this section, numerical examples illustrating the capability of the proposed model

to accurately and efficiently simulate coupled deformation, two-phase flow and

electrokinetic flow problems are presented. Currently, there are no analytical solutions

capable of solving such coupled problems. Thus, the model is first evaluated by

comparing its computational results to those obtained from analytical solutions of two

simple cases representing fluid and electrokinetic flow in a saturated porous medium.

Then, the performance of the model is studied using complicated examples describing

electrokinetic and hydromechanical flows in an unsaturated CO2 sequestration

system.

Analytical verifications

Two examples are discussed. The first example describes a one-dimensional con-

solidation problem in a linear poroelastic medium (Terzaghi problem). The second

example describes an electrokinetic-hydromechanic coupling, where the maximum

value of an electro-osmotic head built-up across a block of a saturated porous medium

is calculated.
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3.4.1 Saturated consolidation

A domain comprising a saturated porous column of height H is simulated. The

domain is subjected to load F at the top and fixed at the bottom, with drainage

occurring through top and bottom surfaces. The load is applied instantaneously

at time t = 0, giving a non-zero initial pressure P0(z). Assuming that the z-axis is

positive downwards, the analytical solution gives (Wang, 2000)

P (z, t) =
4

π
P0

∞∑
m=0

1

2m+ 1
sin
[
(2m+ 1)π

z

H

]
exp

[
−(2m+ 1)

2
π2 cvt

H2

]
(3.120)

u(z, t) = cMP0H
4

π2

∞∑
m=0

1

(2m+ 1)
2

{
1− cos

[
(2m+ 1)π

z

H

]}
{

1− exp

[
−(2m+ 1)

2
π2 cvt

H2

]} (3.121)

where

P0 = αM
c−1
m +α2M

F

M = Kw
φ ; Biot modulus

cm = 1
λ+2G ; vertical uniaxial compressibility

cv = k
ρg(M−1+α2cm) ; consolidation coefficient

and λ and G are Lame’s first parameter and shear modulus, respectively. The

material parameters are given in Table 3.2. The finite element domain is discretized

using 8, 4-node quadrilateral elements.

Figure 3.1 shows the pore pressure and the vertical displacement distribution at

different time steps, obtained from the analytical solution and the proposed mixed

SG-XFEM-LS model. Apparently, there is a rather good match between the two

results.

3.4.2 Electro-osmotic consolidation

In this example, electro-osmotic head build-up in a saturated porous medium is

studied. Electro-osmosis (electrokinetic stabilization) is a soil improvement technique

used for accelerating the consolidation of saturated fine grained soils. In this

process, a direct voltage is applied to the soil by two electrodes to generate electric

current. The current induces displacement in the water phase from the positive pole

(anode) towards the negative pole (cathode). The model geometry and the boundary

conditions are shown in Figure 3.2.

Theoretically, the electro-osmotic consolidation is governed by the ratio of the

electrokinetic cross coupling term and the hydraulic conductivity of the soil. The
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Table 3.2: Parameters for solving consolidation problem.

Parameter Value Unit

Domain height, H 10 m

Absolute permeability, k 1× 10−12 m2

Porosity, φ 0.2

Water viscosity, µw 1× 10−3 Pa.s

Water density, ρw 1000 kg/m3

Biot’s constant, α 1.0

Young’s modulus, E 1.0 MPa

Poisson’s ratio, ν 0.3

Fluid bulk modulus, Kf 100.0 MPa

Load, F 0.1 MN
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Figure 3.1: Analytical vs. SG-XFEM-LS model
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Table 3.3: Parameters for Electro-osmotic consolidation example.

Parameter Value Unit

Domain Length, H 2.4 m

Absolute permeability, k 1× 10−14 m2

Electro-osmotic permeability, ke 1× 10−9 m2s−1V

Porosity, φ 0.2

Water viscosity, µw 1× 10−2 Pa.s

Water density, ρw 1000 kg/m3

analytical solution to this problem is given by Esrig (1967), as

hp (x) =
ke
kh
E(x)− 2keEmax

khπ2

∞∑
m=0

(−1)
m

(m+ 1/2)
2 sin

[
(m+ 1/2)π

x

L

]
exp

[
−(m+ 1/2)

2
π2 cvt

L2

] (3.122)

where hp is the hydraulic pressure head; kh and ke are the hydraulic permeability and

the electro-osmotic permeability of the soil, respectively; L is the distance between

the anode and the cathode; x is the distance between the anode and any section X-X;

and E(x) is the voltage at section X-X. The physical parameters of this problem are

presented in Table 3.3. The finite element domain is discretized using 12, 4-node

quadrilateral elements.

Figure 3.3. shows the calculation results of the analytical solution and the mixed

SG-XFEM-LS model. Obviously, there is a good agreement between the two results.

Numerical examples and parametric analysis

Three examples are discussed. The first example studies consolidation of a partially

L=240 cm
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No Flow

No Flow

N
o 

F
lo

w

E=E
Max

P=P
Hyd

E=0 90 cm

Figure 3.2: Geometry and boundary conditions of the Electro-osmotic consolidation

example
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consolidation

saturated soil column due to a change of pore water pressure at the upper boundary.

The simulation results are compared with those presented by Rahman and Lewis

(1999). The second example studies the behavior of the well-known CO2 leakage

problem presented by Class et al. (2009), with some modification. The third example

studies the electrokinetic response during injection of a fluid into an underground

formation: a 2D reservoir model is simulated based on a 3D model presented by

Saunders et al. (2008). The effects of different parameters on the electrokinetic

response are investigated in this example.

3.4.3 Unsaturated consolidation

Here, the SG-XFEM-LS model is validated based on an example presented by

Rahman and Lewis (1999). A vertical soil column, 1 m height and 0.1 m width,

is simulated. The soil column is unsaturated, with an initial water saturation of

0.52 and initial water pressure of -280 kN/m
2
. The soil column is subjected to

an external load of 1000 N/m
2
. The top surface is the only drained boundary

of the column, and the bottom surface is fixed. At the top boundary, the water

pressure is instantaneously changed to -420 kN/m
2
, while the air pressure is kept

atmospheric. The Brooks and Corey (1964) model is utilized to describe the relative

permeability-saturation and the capillary pressure-saturation relationships. Other

parameters are summarized in Table 3.4. Figure 3.4 shows the geometry and the

finite element mesh of the problem.

Figure 3.5 and 3.6 show the vertical displacement and the water saturation
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Table 3.4: Material properties for the unsaturated consolidation example.

Parameter Value Unit

Domain height, H 1 m

Absolute permeability, k 0.46× 10−11 m2

Porosity, φ 0.3

Water viscosity, µw 1× 10−3 Pa.s

Water density, ρw 1000 kg/m3

Dynamic viscosity of air, µg 1× 10−3 Pa.s

Air density, ρg 1.22 kg/m3

Biot’s constant, α 1.0

Young’s modulus, E 6.0 MPa

Poisson’s ratio, ν 0.4

Water bulk modulus, Kw 0.43× 107 MPa

Bulk modulus of air, Kg 0.1 MPa

Solid phase density, ρs 2000 kg/m3

Bulk modulus of solid, Ks 0.14× 104 MPa

Gravitational acceleration, g 9.806 ms−2

Atmospheric pressure, Patm 101.8967 kPa

Residual water saturation, Swr 0.397

Entry pressure, Pb 225 kPa

Pore size distribution index, λ 3

distribution at 0.1, 0.5, 0.7, and 0.95 m from the bottom (see Figure 3.4). Figure 3.7

shows the water pressure distribution along the column at different time intervals.

The computational results agree with those presented by Rahman and Lewis (1999)

and Khoei and Mohammadnejad (2011).

3.4.4 CO2 Leakage problem

This example examines the capability of the SG-XFEM-LS model to simulate the

well-known benchmark case-study utilized in literature to compare the performance

of different CO2 geo-sequestration simulators (Class et al., 2009). The cap rock

uplift due to CO2 injection is examined. This problem is physically important since

injection of a large amount of CO2 into underground formations requires careful

environmental risk assessment. The greatest concern is that the injected supercritical

CO2, which is less dense and less viscous than the formation water, is driven by

buoyancy forces towards the top of the formation. Thus, the reservoir should be
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Figure 3.8: Water pressure distribution along the column

capped by a low-permeability rock to prevent CO2 movement to upper aquifers or

to the ground surface. The mechanical properties of the cap rock play a key role

in assessing the risk of long term CO2 geo-sequestration. Cap rock discontinuities,

such as fracture or fault, may promote upwards movement of CO2. Furthermore,

the resulting overpressure due to CO2 injection affects the stress field and induces

deformation in the rock. This may activate closed fractures or create new fractures

in the formation.

The domain geometry, shown in Figure 3.8, consists of a CO2 injection well,

two aquifers, one aquitard and a leaky well. Here, the injection well is treated

as a Neumann boundary and the leaky well is treated as a porous medium with

high permeability compared to the aquifer formation. Initially, the domain is fully

saturated with brine, under a hydrostatic pressure condition. The initial stresses

in the domain are assumed to be induced by the gravitational force only. CO2 is

injected into the aquifer for a period of time and then stopped.

On the horizontal surfaces, a no-flow boundary condition is prescribed, and on

the vertical surfaces, a constant hydrostatic pressure is imposed. In this example,

the fluid properties are assumed constant, and the dissolution of CO2 into the brine

is neglected. The simulation parameters are shown in Table 3.5.

To examine the accuracy and the computational efficiency of the proposed model,

this example is also analyzed using the standard Galerkin method and the upwind

finite element method. Finite element meshes of different sizes are utilized. Since

there is no analytical solution available to this problem, the accuracy of the examined

schemes and mesh sizes is compared to a “converged” solution using a relatively fine

mesh. Galerkin solution using a finite element mesh of 30000 elements is utilized as

a reference. The computational results of this simulation gave an arrival time of 8.5

days for the CO2 plume to reach to the leaky well.

Table 3.6 shows arrival times calculated by the numerical schemes for different
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Table 3.5: Simulation parameters of the leakage problem

Parameter Value Unit

Lateral dimension, L 1000 m

Aquifers thickness, w1 30 m

Aquitard thickness, w2 100 m

Distance between wells, d 100 m

Aquifers permeability, k1 2.0× 10−14 m2

Leaky well permeability, k2 1× 10−12 m2

Porosity, φ 0.15

Brine viscosity, µw 2.535× 10−4 Pa.s

CO2 viscosity, µg 3.95× 10−5 Pa.s

Brine density, ρw 1045 kg/m3

CO2 density, ρg 479 kg/m3

Injection rate, qinj 6.26× 10−5 m2/s

Residual water saturation, Swr 0.0

Residual CO2 saturation, Sgr 0.0

Brooks and Corey parameter, λ 2

Bottom pressure, Pbh 30.8 MPa

Biot’s constant, α 1.0

Young’s modulus, E 6.0 MPa

Poisson’s ratio, ν 0.4

Water bulk modulus, Kw 0.43× 107 MPa

Bulk modulus of CO2, Kg 0.1 MPa

Solid phase density, ρs 2400 kg/m3

Bulk modulus of solid, Ks 0.14× 104 MPa
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Table 3.6: SG-XFEM-LS model vs. SG and Upwind finite element models.

SG Unwinding SG-XFEM

Element size 10 7 4 2 10 7 4 2 10 7 4 2

Elements 300 612 1875 7500 300 612 1875 7500 300 612 1875 7500

Arrival time − 7.1 8.2 8.4 5.8 6.5 7.4 8.1 7.5 8.2 8.4 8.5

mesh sizes. It shows that the standard Galerkin model exhibits high mesh-dependency,

as with mesh refinement, the arrival time decreases. The upwind solution shows a

high degree of numerical dissipation, and the CO2 plume arrives earlier compared to

other cases. Apparently, the CO2 front is smeared to a great extent. In contrast,

the proposed model is convergent, as even with a coarse mesh, the results are close

to that of the standard Galerkin solution with a fine mesh.

To determine the convergence rate of the different numerical schemes, we com-

pared the CO2 flux at the leaky well after 100 days of injection to the converged

solution, using different mesh sizes. The relative error is calculated using the l2-norm,

defined as

‖eq‖2 =


n∑
i=1

(qi − qRi)
2

N∑
i=1

q2
Ri


1/2

(3.123)

in which qi is the calculated flux at node i on the leaky well boundary, and n is the

number of boundary nodes. Figure 3.9 shows the relative error of the different cases

compared to the reference case. The figure shows that the convergence rate of the

proposed model is almost double those of the Galerkin and the upwind finite element

methods.

To study the effect of deformation on the flow fields, numerical analysis illustrating

the behavior of a rigid formation and a deformed formation with different stiffness

were conducted. Figure 3.10 shows the evolution of saturation at point A (see

Figure 3.8). The figure shows that, with more deformation, the CO2 plume expands

further away, though not significant. However, it must be noted that this result is

for the linear elastic material proposed in this work. For a nonlinear material, CO2

expansion might be more pronounced.

Figure 3.11 shows CO2 saturation profile at different time steps during injection.

The CO2 plume extends radially under buoyancy forces, and upon reaching the

leakage well, it rises to the upper aquifer.

Figure 3.12 shows the vertical displacement profile at the top of the aquitard

versus distance for different time intervals. As a result of CO2 injection, the pore
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pressure increases near the injection well, uplifting the cap rock. Upon seizing

injection, the pore pressure dissipates, leading to a gradual decrease of the cap rock

uplift.

3.4.5 Front tracking of electrokinetic potential

Electrokinetic measurement has proven to be an efficient technique for monitoring

fluid motion in underground formations in response to pumping or injection of fluids

or contaminants. For CO2 injection, the cross coupling coefficient, L in Eq. (3.26),

decreases as the CO2 displaces brine, allowing remote monitoring of the CO2 plume

front. However, it seems that no computational work on monitoring CO2 movement

in underground formations has yet been published. Hence, in order to compare, here,

we simulate a numerical example obtained from petroleum engineering, particularly

that of Saunders et al. (2008). They simulated water encroachment during oil

production towards a well and the resulting electrokinetic potential response.

Based on Saunders et al. (2008) example, a 2D reservoir domain, consisting of
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Figure 3.12: Vertical displacement at the top of the aquitard

six layers, is modeled, Figure 3.13. The reservoir is bounded by conductive, low

permeability layers, representing reservoir seals. The seal layers are located between

two high permeability sandstone layers. At the top of the geometry, a highly resistive

weathered layer exists. At the left boundary of the reservoir, a water aquifer exists.

As oil is produced, the water in the aquifer expands and moves into the reservoir,

displacing oil. The material and other simulation parameters are given in Table 3.7.

A large domain (2000 m × 2000 m) is simulated to allow for setting zero potentials

at the boundaries, used as a reference for the electrokinetic measurements. No

electrical potential flux is applied on the domain surface. The capillary pressure and

the gravitational forces are neglected.

Water and oil relative permeability are calculated using Brook and Corey re-

lationships, Eqs. (3.18) and (3.19). The electrical conductivities of the layers are

calculated using Eq. (3.30), with Archie’s saturation exponent n=2 and cementation

exponent m=1.8.

Figure 3.14 shows the streaming potential versus horizontal distance, along a

section in the center of the reservoir, at different time intervals. Salinity of Cf = 0.01

mol/L is assumed. Figure 3.15 shows the water saturation front at the same time

intervals. Comparing Figures 3.14 and 3.15, reveals that the electric potential peaks

follow the water front. Therefore, even though this example is analyzing water-oil

front motion, it can be deduced that the electrokinetic potential technique can be

utilized for monitoring CO2 motion in underground formations.

In modeling the streaming potential, it is vital to understand the effects of
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Table 3.7: Parameters used in the electrokinetic simulation example

Parameter Value Unit

Lateral dimension, L 2000 m

Reservoir thickness, w1 100 m

Reservoir permeability, k1 1.0× 10−13 m2

Confining rock permeability, k2 1× 10−15 m2

Upper layer permeability, k3 3.3× 10−13 m2

Reservoir porosity, φ1 0.25

Confining rock Porosity, φ2 0.01

Upper layer porosity, φ3 0.3

Upper layer conductivity, σr1 3.0× 10−5 Sm−1

Sandstone conductivity, σr2 0.0097 Sm−1

Confining rock conductivity, σr3 0.0135 Sm−1

Brine viscosity, µw 1.0× 10−3 Pa.s

Oil viscosity, µo 1.0× 10−3 Pa.s

Oil density, ρo 900 kg/m3

Oil conductivity, σnw 1.0× 10−5 Sm−1

Production rate, q 8.1× 10−4 kg/ms

Residual water saturation, Swr 0.2

Residual oil saturation, Snr 0.2

Pore size distribution index, λ 2

Initial pressure, Pi 10.0 MPa
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the involved parameters on the electrokinetic flow. Here, the effects of varying

the relative coupling coefficient and the salinity on the streaming potential are

investigated. Figure 3.16 shows the relationship between the relative coupling

coefficient and water saturation, Eq. (3.31), for different exponent values, p. Figure

3.17 shows the streaming potential profiles after 1000 days for different values of ’p’.

Apparently, the calculated streaming potentials are not very much affected.

Salinity of the formation brine affects its electrical conductivity and zeta potential

and, hence, the electrokinetic coupling coefficient. The brine conductivity and the

zeta potential are related to salinity via Eqs. (3.32) and (3.33), respectively. The

coupling coefficient for different salinities is shown in Figure 3.18, which illustrates

that, as the brine salinity increases, the electrokinetic coupling coefficient reduces to

zero. This is attributed to the fact that, at high salinity, the electrical double layers

collapses. Hence, it can be deduced that electrokinetic monitoring of CO2 plume
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Figure 3.18: Effect of salinity on electrokinetic coupling coefficient
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Figure 3.19: Effect of salinity on electrokinetic response

movement can give more accurate results in low salinity reservoirs, compared to high

salinity ones.

Several numerical simulations are conducted for different salinity values. The

results of the electric potential profile for different salinities, at 1000 days, are

compared in Figure 3.19. Figure 3.20 shows that the maximum electrical potential

at the fronts decreases significantly as the salinity increases.
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Figure 3.20: Maximum potential at the front vs. brine salinity

3.5 Conclusions

Coupled electrokinetic and hydromechanical flow occurs naturally due to fluids flow

in unsaturated porous media, giving rise to various electrokinetic effects, including

streaming potential. Remote sensing of the streaming potential is a vital tool

for monitoring many geoenvironmental applications, including geothermal systems,

groundwater flow, and oil reservoirs. For this, computational models with different

complexities have been introduced. However, so far, it seems that no study has

been reported for modeling the streaming potential associated with CO2 plume flow

in an unsaturated underground formation. This study focuses on modeling this

phenomenon.

In this chapter, a coupled electrokinetic–hydromechanical computational model,

based on the averaging theory, for formulating the governing field equations; and

a mixed discretization scheme, based on coupling between the standard Galerkin

finite element method (SG), the extended finite element method (XFEM), and the

level-set method (LS) has been introduced to simulate CO2 sequestration in geologic

formations. SG has been utilized to discretize the deformation and the diffusive

dominant field equations, and XFEM, together with LS, has been utilized to discretize

the advective dominant field equations. Utilization of XFEM and LS produces a

locally conservative discretization scheme, giving a stable and convergent model.

However, an extra degree of freedom must be added to describe the discontinuity

in the advective field. Nevertheless, utilization of SG limits this increase to the

minimum, yielding a computationally efficient numerical scheme.

Several verification and numerical examples with parametric analyzes are presen-

ted. The capability of the mixed SG-XFEM-LS numerical scheme has been examined

to simulate coupled solid deformation, multiphase flow, and electrokinetic flow in
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unsaturated porous media. The coupled deformation-multiphase flow example reveals

that the formation deformation, which is a function of stiffness, has little influence

on the CO2 flow. However, this conclusion is valid for the linear elastic material

model utilized in this study. For nonlinear materials, with possible occurrence of

localization, this conclusion might not be valid.

On the other hand, the coupled electrokinetic-multiphase flow example reveals

that the salinity of the formation brine can play a major role in the electrokinetic flow,

and hence, measuring the streaming potential can be a useful tool for monitoring

CO2 flow remotely.
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Multiphysics Processes of

CGS in Fractured Porous

Media 4
This chapter is based on Talebian et al. (2013c), a paper published in Advances in

Water Resources.

4.1 Introduction

Many of targeted formations for CO2 geo-sequestration are to some extent naturally

or man-made fractured. The existence of the fractures might significantly influence

fluids flow in the formation, depending on their permeability, intensity and length

scales.

Fracture models for multiphase porous media can in general be classified into

three types: discrete fracture models (Andersson and Dverstorp, 1987; Bear et al.,

1993), continuum fracture models (Barenblatt et al., 1960; Royer et al., 2002) and

hybrid models (Berkowitz, 2002; Wu and Pruess, 2000). In a discrete fracture model,

the fractures represent the flow path geometry and are explicitly modeled. This

type of models provides accurate description of fluid flow in the fractures, but for a

large scale problem, such as CO2 geo-sequestration, discretizing the fissure network

becomes unrealistic and requires enormous computational power. On the other

hand, in a continuum fracture model, no discrete fractures are presented and the

formation is divided into two interacting continua: fracture and porous matrix. The

two continua vary by their porosities and permeabilities, and interact with each other

via leakage occurring, implicitly, at the interfaces between them. The hybrid models

are a combination between the discrete models and the continuum models. In this

paper, a continuum fracture model, namely the double porosity model, is adopted.

Barenblatt et al. (1960) were the first to formulate the double porosity model for

single phase flow in a rigid fractured domain. Later on, this model was extended
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and several models with different complexity have been introduced. Aifantis (1977);

Khaled et al. (1984); Wilson and Aifantis (1982) extended Barenblatt’s model to

account for coupled single phase flow to poroelastic deformation. Similarly, Bai

et al. (1993); Chen and Teufel (1997); Cho et al. (1991); Ghafouri and Lewis (1996);

Valliappan and Khalili (1990) have elaborated on the double porosity model with

each considered different aspects of the model. Moreover, Bai et al. (1998); Lewis

and Pao (2002); Lewis and Ghafouri (1997) have utilized the double porosity model

to simulate multiphase flow in a deformed fractured porous medium domain.

Multiphase fluid flow due to CO2 injection in an unsaturated porous medium

domain generates electrokinetic flow.Since the electrical conductivity of CO2 is lower

than that of the formation brine, it can be detected by measuring the self-potential.

Based on this, SP can be used as a monitoring means, which is necessary to ensure

that geological sequestration is both safe and effective. Different applications of

Electrokinetic in the conventional reservoirs have been presented in the previous

chapters. Ishido and Pritchett (2003) seem to be the first to introduce a computational

model for the calculation of self-potential in fractured geothermal reservoirs, using

the double porosity approach.

In this chapter, a computational model describing coupled electrokinetic– hy-

dromechanic processes in a fractured medium domain is introduced. The mathemat-

ical model of two-phase flow in a deformable continuum double porosity domain is

formulated based on the averaging theory. The numerical solution is carried out by

a mixed discretization technique explained in the previous chapters.This technique

is suitable for advective dominant flow, typically exists in fractured domains.

This model is an extension of models presented in the previous chapters. The

novel aspect of the proposed model is in the choice of the highly advective balance

equation for XFEM discretization, while treating other equations by standard

procedures. Here, the CO2 balance equation of the fractured continuum is chosen

for XFEM discretization. This entails introducing an extra degree of freedom for

CO2 saturation, while keeping all other degrees of freedom standard. Employing

this technique reduces the number of degrees of freedom in the system as compared

to that if all quantities are discretized using XFEM.

In what follows, governing equations describing two-phase flow in a double

porosity domain and the involved constitutive relationships are outlined. Then, a

detailed finite element discretization is presented. Finally, numerical examples with

parametric analyses are given.
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4.2 Governing Equations

Fluid flow in an unsaturated porous medium domain is commonly modeled based on

a continuum averaging approach, where physical laws describing transport of mass,

momentum and energy at the microscopic level are transformed to macroscopic level.

The representative elementary volume (REV) averaging approach is one of the most

commonly used (Bear and Cheng, 2010; Hassanizadeh and Gray, 1979a). In this

approach, the averaging process is conducted by integrating the involved microscopic

quantities over the REV, and each spatial point is simultaneously occupied by the

material points of all involved phases. The multiphase domain occupying the REV

is postulated as a superposition of all involved phases, but the state of motion of

each phase is described independently. The averaging theory is elegantly described

by Lewis and Schrefler (1998), from whom the governing equations outlined here are

derived.

Fluid flow in an unsaturated fractured porous domain can also be modeled based

upon the continuum averaging approach. A fractured reservoir can be simulated

as a superposition of two distinct continua describing the porous matrix and the

fractured zone. As indicated above, this type of models is commonly known as the

double porosity model. Here, fluid flow occurs independently in the two continua,

but interacting via leakage at their interfaces. The governing equations of such a

domain can be derived based on two-phase flow equations in a continuum domain

augmented by a leakage term, considering the following assumptions:

• The porous medium domain can be divided into two overlapping but distinct

subdomain continua: a porous matrix continuum and a fracture continuum.

• Fluid flow in each subdomain is described independently, but interacting by a

leakage term describing the flow of mass between the two subdomains.

• The process of mass transfer between the pores in the porous matrix and

the fissures in the fractured zone takes place essentially under a sufficiently

smooth change of pressure, and therefore, it can be assumed that this pressure

is quasi-stationary (Barenblatt et al., 1960).

• Darcy’s law is assumed valid in both subdomains.

• Linear elastic deformation under small strains is assumed to occur only in the

porous matrix.

• The involved CO2, water and solid phases are assumed to be in an isothermal

condition, no phase change or exchange and chemically non-reacting.
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In the following, governing equations describing coupled linear momentum, mass

balance and electrokinetic balance equations for the double porosity model, together

with their constitutive laws, are presented.

4.2.1 Momentum balance equation

As mentioned above, linear elastic deformation under small strains is assumed to

occur in the porous matrix. Since the volume of the fractures is normally small

compared to the total void space, it is assumed that the compressibility of the fracture

network does not alter the compressibility of the porous medium significantly and

can thus be ignored. However, due to a coupling between the two subdomains,

the deformation of the whole domain is affected by the gradients in the pressure

field between the porous matrix and fractured zone. It should be noted though,

the fracture network compressibility, depending on the geometry and boundary

conditions, might play a dominant role in the coupled hydromechanical processes in

fractured domains, see Liu et al. (2009).

Using the concept of effective stresses, the total stress can be described as

σ = σ′ − IαPm (4.1)

in which σ is the total stress, σ′ is the effective stress, I is the identity tensor, α is

Biot’s coefficient, which depends on the compressibility of the constituent, and Pm is

the intrinsically averaged pressure of the fluids in the matrix continuum, defined as

Pm = SwmPwm + SgmPgm (4.2)

where Pwm and Pgm are the water pressure and CO2 pressure in the matrix domain,

respectively, and Swm and Sgm are the corresponding degrees of saturation. The

subscripts ‘m’ refers to the porous matrix domain. Including Eq. (4.2) into Eq. (4.1)

gives

σ = σ′ − Iα(SwmPwm + SgmPgm) (4.3)

The linear momentum balance equation governing the solid phase, under static

loading condition, can be expressed as

divσ + ρ̄g = 0 (4.4)

where g is the gravity acceleration and ρ̄ is the effective density, described as

ρ̄ = (1 − φm) ρs + φm Swmρw + φmSgmρg (4.5)

where φm is the matrix porosity, ρs, ρw and ρg are the mass density of the solid,

water and CO2 phases, respectively. Substituting Eq. (4.3) into Eq. (4.4) yields

div [σ′ − Iα(SwmPwm + SgmPgm)] + ρ̄g = 0 (4.6)
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4.2.2 Mass continuity equations

Porous matrix continuum

The continuity equations for the water phase and the CO2 phase in the porous

matrix can be expressed as

Water phase:(
α − φm
Ks

S2
wm +

φmSwm
Kw

)
∂Pwm
∂t

+
α − φm
Ks

SwmSgm
∂Pgm
∂t

+αSwmmT ∂ε

∂t
+

(
α − φm
Ks

PwmSwm −
α − φm
Ks

PgmSwm + φm

)
∂Swm
∂t

+qleakagew +
1

ρw
div (φmSwmρwvwm) = Qwm

(4.7)

CO2 phase:(
α − φm
Ks

SwmSgm

)
∂Pwm
∂t

+

(
α − φm
Ks

S2
gm +

φmSgm
Kg

)
∂Pgm
∂t

+αSgmmT ∂ε

∂t
−
(
α − φm
Ks

Sgm (Pgm − Pwm) + φm

)
∂Swm
∂t

+qleakageg +
1

ρg
div (φmSgmρgvgm) = Qgm

(4.8)

in which Ks, Kw and Kg are the bulk modulus of the solid, water and CO2 re-

spectively, vwm and vgm are water and CO2 relative velocities to the solid phase,

m = [1, 1, 1, 0, 0, 0] and ε is the strain vector. qleakagew and qleakageg in Eqs. (4.7) and

(4.8) are leakage terms governing water and CO2 mass transfer between the porous

matrix and the fractures, respectively. Several leakage terms have been introduced in

literature. According to Warren and Root (1963), the leakage terms can be described

as

qleakagew =
ᾱkmkrwm

µw
(Pwm − Pwf )

qleakageg =
ᾱkmkrgm

µg
(Pgm − Pgf )

(4.9)

where subscript “f ” refers to the fractured zone, µw and µg are water and gas

dynamic viscosities, kα is the intrinsic permeability tensor for α subdomain (matrix

or fracture), krπα is the relative permeability of π phase in α subdomain and

the parameter ᾱ is defined as a shape factor that represents the geometry of the

porous matrix and controls flow between the two continua. This parameter has the

dimensions of reciprocal area, and, for a cubic matrix block, can be calculated as

ᾱ =
4n(n+ 2)

l2
(4.10)
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in which n is the set of normal fractures and l is a characteristic length given by

l = a n = 1

l =
2ab

a+ b
n = 2

l =
3abc

ab+ bc+ ca
n = 3

(4.11)

where a, b and c are lengths of the sides of a cubic matrix block.

Fracture continuum

The continuity equations for the water phase and the CO2 phase in the fracture

continuum can be expressed as

Water phase:

φfSwf
Kw

∂Pwf
∂t

+ φf
∂Swf
∂t

− qleakagew +
1

ρw
div (φfSwfρwvwf ) = Qwf (4.12)

CO2 phase:

φfSgf
Kg

∂Pgf
∂t
− φf

∂Swf
∂t

− qleakageg +
1

ρg
div (φfSgfρgvgf ) = Qgf (4.13)

where Qwf and Qgf are the source or the sink terms.

4.2.3 Streaming current density continuity equation

Flow of a heterogeneous fluid in a porous medium generates an electrical potential

gradient (electrokinetic potential), arising by the interaction of the moving fluid

with the electrical double layer at the pore surface. For a saturated porous medium,

the relationship between the electrical current density j and the fluid (brine water)

velocity vw can be obtained by coupling Darcy’s law to Ohm’s law, as

vw = L11(−∇Pw + ρwg)− L12∇V (4.14)

j = L21(−∇Pw + ρw g)− L22∇V (4.15)

where V is the electrical potential (self-potential, SP), and L12 and L21 are cross coup-

ling coefficients, which, following Onsager reciprocity principle (Onsager, 1931), are

equal, giving L12 = L21 = L. Apparently, L11 represents the hydraulic conductivity,

and L22 represents the electric conductivity σe.

In Eq.(4.15), the first term arises due to the streaming (advection) of the electrical

excess charge with fluid flow, while the second term arises due to conduction current
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density caused by electric conduction. Under zero total electrical current condition

(j = 0), Eq.(4.15) leads to (Sill, 1983)(
∇V

−∇P + ρg

)∣∣∣∣
j=0

= C =
L

σe
⇒ L = σeC (4.16)

in which C contains the self-potential coupling coefficients and σe is the electrical

conductivity.

For a fractured domain, Ishido et al. (2010) suggested that the current density

can be volumetrically averaged to calculate the electrokinetic process, as

j = (1− ψ)jm + ψjf (4.17)

where ψ is the fractional volume of the fractures.

The conservation of the total current density at quasi-steady state condition in

the absence of external current sources implies:

∇ · j = 0 (4.18)

which is the Poisson’s equation for the electrical potential V .

4.2.4 Constitutive equations

In a fractured multiphase domain, Darcy’s law can be expressed as

φαSπαvπα =
kπα
µπ

(−∇Pπα + ρπ g) (4.19)

where α = m, f ; π = w, g, vπα is the velocity of phase π in the α continuum and

kπα is the effective phase permeability described as

kπα = kαkrπα (4.20)

where kα is the intrinsic permeability tensor for α subdomain, and krπα is the relative

permeability of phase π in α subdomain. For a multiphase medium, the water and

the CO2 phases are jointly occupying the voids, implying

Swα + Sgα = 1 (4.21)

Also, the water pressure and the CO2 pressure are related by the capillary pressure,

Pc, as

Pcα(Swα) = Pgα − Pwα (4.22)
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describing the difference in pressure across the interface between two immiscible

fluids. Spatial and temporal differentiation of Eq. (4.22) for the porous matrix and

the fracture continuum, using the chain rule, gives

∇Pwα = ∇Pgα −
∂Pcα
∂Swα

∇Swα (4.23)

∂Pwα
∂t

=
∂Pgα
∂t
− ∂Pcα

∂t
=
∂Pgα
∂t
− ∂Swα

∂t

∂Pcα
∂Swα

(4.24)

In literature, there are several empirical formulations correlating the capillary

pressure and relative permeability to saturation. van Genuchten (1980) and Brooks

and Corey (1964) are the most commonly used formulations. Using Brooks and

Corey, the capillary pressure-saturation relationship for α subdomain is described as

Pc =
Pb

S
1/λ
e

Pc ≤ Pb (4.25)

and the relative permeability-saturation relationships are described as

krw = S(2+3λ)/λ
e (4.26)

krg = (1− Se)2(1− S(2+λ)/λ
e ) (4.27)

where Se is the effective saturation, defined as

Se = (Sw − Swr)/(1− Swr − Sgr) (4.28)

in which Swr is the irreducible water saturation, Sgr is the residual gas saturation,

λ is the pore size distribution index and Pb is an entry pressure, corresponding to

the capillary pressure needed to displace the wetting phase from the largest pore.

The SP coupling coefficients in the electrokinetic equations, Eqs. (4.14) and

(4.15), have been developed for fully saturated conditions (Esrig, 1967; Revil et al.,

2007; Sill, 1983).

In a fully saturated condition, at a given pressure, the SP coupling coefficient is

a function of temperature, fluid salinity, electrolyte pH, and rock type, expressed as

Csat =
ζ εw
µwσw

(4.29)

where ζ is the zeta potential, and εw, µw, σw are the brine permittivity, viscosity

and electrical conductivity, respectively.

For unsaturated conditions, however, determination of the SP coupling coefficient

is still debatable. Commonly, they are treated similar to the effective permeability
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relation, Eq.(4.20), and they are made function of a phase saturation via saturation-

dependent relative parameters, Cr and σr. Accordingly, the cross coupling coefficients

in Eqs. (4.14) and (4.15) can be expressed as

L11 =
k krw
µw

L = Ceffσeff = CsatCr σbσr

L22 = σ̄ = σbσr

(4.30)

where Ceff is the effective SP coupling coefficient for unsaturated media and σ̄ is the

effective electrical conductivity, Csat is the SP coupling coefficient for the saturated

media and σb is the electrical conductivity of the bulk formation.

Incorporating Eqs. (4.17) and (4.30) into Eq. (4.15), the averaged electrical

current density for a fractured porous media can be expressed as

j = (1− ψ)(CmCrm σemσrm(−∇Pwm + ρwm g)− σemσrm∇V )

+ψ(CfCrf σefσrf (−∇Pwf + ρwf g)− σefσrf∇V )
(4.31)

Determination of the relative SP coupling coefficient is not straightforward and

several constitutive models have been proposed in the literature (Jackson, 2008;

Linde et al., 2007; Revil et al., 2007).

For an unsaturated porous media, the relative SP coupling coefficient (Cr) is a

function of a number of parameters, including the wettability of the rock and the

distribution of fluids in porous media.

Perrier and Morat (2000) monitored SP signals at an experimental site for one

year and proposed a means to explain observed daily variations by considering vadose

zone processes. They proposed an empirical expression describing the dependence of

relative SP coefficient on water content based on a relative permeability model as:

Cr =
krw
σr

(4.32)

where krw is the relative permeability of the wetting phase and σr is relative electrical

conductivity of the rock matrix, which is a function of saturation.

Guichet et al. (2003) performed the first experimental SP coefficient measurements.

They conducted several drainage experiments by injecting an inert gas into a 1-meter

long column of water saturated sand, and measured the streaming potentials at the

different water saturation. They observed that the coupling coefficient decreases

linearly with increasing water saturation as

Ce = CsatCr = ASw +B (4.33)
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where A and B are constants. For a dry porous media with no flow and hence no

electrokinetic flow, B must be zero. For a fully saturated domain Cr = Sw = 1 and

Ce = Csat = A and A can thus be calculated from Eq. (4.29). This relation is valid

when the surface electrical conductivity of the sample is negligible.

A simple bundle of capillary tubes model has been used by Jackson (2008) to

investigate SP coupling during the flow of water and a second immiscible phase such

as air or oil. It is shown that the SP coupling coefficient depends on the pore size

distribution, the wetting behavior of the capillaries, and the thickness of electrical

double layer. The Jackson formulation can be expressed as:

Cr =
krwQr
σr

(4.34)

where, Qr is the relative excess charge density transported by the flow of water at

partial saturation, describing how the charge density of counter ions in the fluid is

affected by the saturation of the wetting phase. Jackson (2008) assumed that the

excess charge transported by the flow is independent of water saturation, and in this

case Qr = 1 and Eq. (4.34) for the relative coupling coefficient becomes

Cr =
krw
σr

(4.35)

which is the same as Eq. (4.32), presented by Perrier and Morat (2000).

In an alternative approach, Revil and Linde (2006) used the volume averaging

of the excess charge within a representative elementary volume (REV) instead of

characterization of the excess charge distribution at the pore scale. This approach was

then extended by Revil et al. (2007) to consider wetting and non-wetting phases in

unsaturated porous media. In this method the excess charge density scales inversely

with water saturation (Qr = 1/Sw) and Eq. (4.34) becomes

Cr =
krw
σrSw

(4.36)

Lately Saunders et al. (2008) proposed a power law to describe the behavior of

the unsaturated relative coupling coefficient during imbibition.

Cr = (Se)
p

(4.37)

where exponent p is a positive number between 0.01 and 1, which is function of the

excess counter-ions in the diffuse layer and the salinity of the brine.

Allègre et al. (2010) presented continuous records of the electrokinetic coefficient

as a function of water saturation. Two drainage experiments were performed within

a column filled with clean sand. Streaming potential measurements were combined
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with water pressure and saturation measurements along the column. They observed

that SP coupling coefficient first increases with decreasing saturation, and then

decreases up to the residual water saturation. Therefore, they proposed an empirical

relation for the relative SP coupling coefficient as,

Cr = Se [1 + β(1− Se)γ ] (4.38)

where β and γ are two fitted parameters (Allègre et al., 2012).

In a work by Saunders et al. (2012) all mentioned models are adjusted for the

imbibition process to account for the presence of immobile fractions of both the

wetting and non-wetting phases and to have endpoints at 0 and 1. This adjustment

was done by substituting the mobile wetting phase volume fraction (effective satura-

tion) Se with Sw in the Guichet model, Eq. (4.33), and by multiplying the Jackson

model, Eq. (4.34), and the Revil model, Eq. (4.36), by the reciprocal of the original

function value at Sw = 1− Snwi; where Snwi is initial non-wetting phase saturation.

The Guichet model then becomes

Cr = Se (4.39)

and the Revil formulation reads

Cr =
krw
σrSw

σ̃r (1− Snwr)
k̃rw

(4.40)

where σ̃r and k̃rw are the relative fluid conductivity and permeability calculated at

Sw = 1− Snwi, i.e., at the maximum possible brine saturation. The Jackson model

is modified as:

Cr =
Seσ̃r
σr

(4.41)

All mentioned models for calculating relative SP coupling coefficient are numeric-

ally compared in Section 4.4.4.

The relative electrical conductivity (inverse of the resistivity index) can be

calculated using Archie’s law, as

σr = (Sw)n (4.42)

where n is Archie’s saturation exponent (close to 2).

4.2.5 General Field Equations

The governing field equations for a coupled hydromechanical-electrokinetic flow in a

double porosity system are obtained by incorporating the constitutive equations into

the relevant balance equations. Here, we adopt the pressure-saturation formulation.
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Equilibrium field equation

For a linear isotropic solid, the effective stress is described as

σ′′ = Deε = DeL̂ u (4.43)

in which De is the stiffness tensor of the solid phase, u is the displacement and L̂ is

the displacement-strain operator.

Incorporating Eq. (4.22) for the matrix continuum and Eq. (4.43) into the momentum

equation, Eq.(4.6), the equilibrium field equation can be expressed as

div
[
De(L̂u)−mTα(Pgm − PcmSwm)

]
+ ρ̄g = 0 (4.44)

Mass balance field equations

Substituting Eq. (4.14), together with Eqs (4.23), (4.24) and (4.9), into the mass

balance equation, Eqs. (4.7), the field mass balance equations for the water phase

can be expressed as

Porous matrix:

d1
∂Pgm
∂t

+ d2
∂Swm
∂t

+ d3m
T ∂ε

∂t
+∇ · (−c1∇Pgm − c2∇Swm − c3∇V + G1)

+a1Pgm + a2Pgf + f
1

= 0

(4.45)

Fracture continuum:

d7
∂Pgf
∂t

+ d8
∂Swf
∂t

+∇ · (−c5∇Pgf − c6∇Swf − c7∇V + G3)

+a5Pgm + a6Pgf + f2 = 0

(4.46)

Similarly, the field mass balance equation for the CO2 phase can be expressed as

Porous matrix:

d4
∂Pgm
∂t

+ d5
∂Swm
∂t

+ d6m
T ∂ε

∂t
+∇ · (−c4∇Pgm + G2)

+a3Pgm + a4Pgf = 0

(4.47)

Fracture continuum:

d9
∂Pgf
∂t

+ d10
∂Swf
∂t

+∇ · (−c8∇Pgf + G4) + a7Pgm + a8Pgf = 0 (4.48)

where a1 − a8, d1 − d6, c1 − c8, G1 −G4 and f1 . . . f2 are coefficients described in

Table 4.1.
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Electric current density balance field equation

Incorporating Eqs. (4.15) and (4.23) into Eq. (4.18) gives

∇ · (−c9∇Pgm − c10∇Swm − c11∇Pgf − c12∇Swf − c13∇V + G5) = 0 (4.49)

where c9 . . . c13 and G5 are coefficients described in Table 4.1.

4.2.6 Initial and boundary conditions

Initially, at t = 0, solid displacement, CO2 pressure, water saturation in the porous

matrix and the fractured zone, and the electrokinetic potential are described as

u = u0; Pgm = Pgm0(x); Pgf = Pgf0(x)

Swm = Swm0(x); Swf = Swf0(x); V = V0(x)
at t = 0 (4.50)

The Dirichlet boundary conditions for these fields are prescribed as

u = û on Γu Pgm = P̂gm on Γgm Pgf = P̂gf on Γgf

Swm = Ŝwm on Γwm Swf = Ŝwf on Γwf V = V̂ on ΓV
(4.51)

The relevant Neumann boundary conditions for the flow fields are: CO2 flux:

kkrgf
µg

(−∇Pgf + ρgg) · n = qg on Γqgf (4.52)

Water flux:

kkrwf
µw

(
−∇Pgf +∇Swf

∂Pcf
∂Swf

+ ρw g

)
· n = qw on Γqwf (4.53)

where n = {nx, ny, nz}T is the unit normal vector.

The Neumann boundary condition for the equilibrium field is:

ITσ = t̄ on Γqu (4.54)

where the unit matrix I is defined as

IT =

 nx 0 0 ny 0 nz

0 ny 0 nx nz 0

0 0 nz 0 ny nx

 (4.55)
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Numerical discretization 4.3

4.3 Numerical discretization

The governing equations, given in Eqs. (4.44)-(4.49), describe a two-phase flow in

a deformable fractured porous medium domain coupled to electrokinetic processes

arising from the interaction between the moving phases and the electrical double

layer existing on the solid pore surface. These equations consist of six primary

variables (u, Pgm, Pgf , Swm, Swf , V ), which are of basically different nature. The

displacement field is continuous, but the pressure, saturation and electrokinetic fields

exhibit relatively high gradients at the CO2 plume front. Using standard numerical

procedures, it is likely that the solution leads to spurious oscillations unless very fine

meshes and/or adaptive meshes are utilized. A better alternative is to utilize the

extended finite element method (XFEM), where a discontinuity or a high gradient

in a field can be modeled regardless of the mesh. However, this implies doubling

the degrees of freedom, making the gained stability, computationally inefficient. To

reduce the number of degrees of freedom, a mixed discretization scheme, proposed

by Al-Khoury and Sluys (2007) and extended in the previous chapters, is utilized.

Equations containing diffusion and/or strong capillary effects can be discretized

using the standard Galerkin finite element method (SG), and equations containing

advection together with high gradient in the saturation field can be discretized using

XFEM, together with the level-set method (LS) and the Petrov-Galerkin method

(PG).

A fractured reservoir comprises a porous matrix of a relatively low permeability

and a network of fissures of a relatively high permeability. Consequently, under the

combined action of solid deformation and viscous, capillary and gravity forces, there

exists a relatively high velocity motion of the CO2 plume in the fractured continuum.

This gives rise to an advective dominant fluid flow with a high gradient saturation

field at the CO2 plume front. All other fields exhibit a relatively low velocity motion,

giving rise to a diffusive dominant fluid flow. Accordingly, here, SG is utilized to

discretize solid deformation u, CO2 pressure in the porous matrix and the fractured

zone, Pgm and Pgf , water saturation in the porous matrix swm, and the effective

self-potential in the porous matrix and the fractured zone, V . The water saturation

field in the fractured zone Swf , on the other hand, is discretized using XFEM-LS-PG.

The level-set method is employed to trace and locate the CO2 plume front, and

XFEM, is employed to model the high gradient in the saturation field front. Two

advantages can be drawn from this scheme: a) capturing and modeling the front of

the advective field gives a locally conservative system, resulting in an accurate and

convergent simulation, and b) using XFEM only for the highly advective saturation

field in the fractured zone and SG for all other fields reduces drastically the number
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Chapter 4. Multiphysics Processes of CGS in Fractured Porous Media

of degrees of freedom of the system, compared to that if all fields are simulated using

XFEM.

4.3.1 Level-set discretization

The level-set method is a numerical technique usually utilized for tracing a moving

interface, Γd, between two zones, for instance, Ω1 and Ω2. A level-set function is

defined as a signed distance function Φ(x), which is positive in Ω1, negative in Ω2,

and zero at the interface between them. The level-set value is advected by the field

motion, as
∂Φ

∂t
+ vΓd · ∇Φ = 0 (4.56)

where vΓd represents the interface velocity, in this case the CO2 plume front velocity

in the fractured zone. Following Liu et al. (2010), the front velocity can be calculated

as

vΓd =
ρg(1− Swf )

ρ
vgf +

ρwSwf
ρ

vwf (4.57)

where vgf and vwf are CO2 and brine water Darcy velocities in the fractured zone,

calculated by Eq. (4.19) and ρ = ρwSwf + ρgSgf .

The level-set equation, Eq.(4.56), is a first-order hyperbolic function and its dis-

cretization using the standard Galerkin method may result into spurious oscillations.

Different techniques have been employed to stabilize this problem, among which

the Streamline Upwind Petrov-Galerkin (SUPG) method is known to be effective in

many cases. In the SUPG method the shape function is perturbed in the direction

of the flow, as

N̄ = N + Ns (4.58)

where N is the standard finite element shape functions and Ns is an enhancement

function, defined as

Ns = τvΓd · ∇N (4.59)

where τ is a stabilization parameter, which, in the absence of diffusion, can be

expressed as

τ =
he

2 |vΓd |
(4.60)

with he the characteristic length of the element, defined as

he = 2

(
ne∑
α=1

∣∣∣∣ vΓd i

‖vΓd‖
∂Nα
∂xi

∣∣∣∣
)−1

(4.61)

in which ne is the number of nodes in the element and Nα is the basis function

associated with node α.
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Applying the weighted residual finite element discretization procedure to Eq.

(4.56), using Eq. (4.58), gives∫
Ω

N

(
∂Φ

∂t
+ vΓd · ∇Φ

)
dΩ +

∑
k

∫
Ωk

Ns

(
∂Φ

∂t
+ vΓd · ∇Φ

)
dΩ = 0 (4.62)

Approximating Φ = NΦ̄, where Φ̄ are the level-set nodal values, and substituting

into Eq. (3.62), yields∫
Ω

NTN
∂Φ̄

∂t
dΩ +

∫
Ω

NT (vΓd · ∇N)Φ̄ dΩ +
∑
k

∫
Ωk

NT
s N

∂Φ̄

∂t
dΩ

+
∑
k

∫
Ωk

NT
s (vΓd · ∇N)Φ̄ dΩ = 0

(4.63)

The stabilizing term in Eq. (4.63) is denoted by a subscript k to emphasize that,

due to ∇N, which is discontinuous across the elements, the numerical integration

must be carried out on the element interior Ωk and not at the nodes (Zienkiewicz

et al., 2005).

Utilizing the level-set method to trace a moving front requires re-initialization.

This is necessary because otherwise the distance property of the level-set function is

no longer maintained after advection. Here, we adopt a re-initialization technique

proposed by (Cho et al., 2011).

4.3.2 SG-XFEM-LS discretization

Following the above described discretization scheme, Eqs. (4.44)-(4.47) and (4.49)

are discretized using SG, and Eq. (4.48) is discretized using XFEM-LS. Using the

weighted residual method, the finite element formulation of the equilibrium equation,

Eq. (4.4), using Eq. (4.54), can be described as∫
Ω

wT (L̂Tσ + ρ̄g)dΩ−
∫

Γqu

wT (ITσ − t̄)dΓ = 0 (4.64)

in which w is any arbitrary weighting function. Applying Green’s theorem to the

first part of Eq. (4.64), gives

−
∫

Ω

(L̂w)
T
σ dΩ +

∫
Ω

wT ρ̄g dΩ +

∫
Γqu

wT t̄ dΓ = 0 (4.65)

Using standard finite element method, solid displacement, CO2 pressure in the

porous matrix and the fractured zone, water saturation in the porous matrix and
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streaming potential values can be approximated in terms of their nodal values, as

u(x, t) = Nu(x)ū(t)

Pgm(x, t) = Npm(x)P̄gm(t)

Swm(x, t) = Nsm(x)S̄wm(t)

Pgf (x, t) = Npf (x)P̄gf (t)

V (x, t) = NV (x)V̄(t)

(4.66)

where ū, P̄gm, S̄wm, P̄gf and V̄ are the nodal vectors for displacement, CO2 pressure

in the porous matrix, water saturation in the porous matrix, CO2 pressure in the

fractured zone and the effective streaming potential in the porous matrix-fracture

subdomains.

The saturation field in the fractured zone, on the other hand, is approximated

using XFEM. In XFEM, the finite element spatial discretization is conducted by

adding an enhanced function necessary to capture any physical discontinuity or a

high gradient field exists within the element. The saturation field in the fractured

subdomain can thus be described in terms of its nodal values as

Swf (x, t) = N(x)S̄wf (t) +
∑

J∈Nenriched

N∗J (x, t)aJ(t) (4.67)

where S̄wf is the nodal water saturation vector in the fractured zone, and aJ is

an additional nodal degree of freedom on node J of an enriched element,Nenriched,

where the plume front intersects. As proposed by Chessa and Belytschko (2003a),

the level-set function can be utilized for the enriched shape functions, giving

N∗J (x, t) = NJ(x) [|Φ(x, t)| − |Φ(xJ , t)|] (4.68)

Using the Galerkin finite element method, the weighting function w is taken

equal to the shape function, i.e. w = Nu. Making the shape function of all fields

equal, i.e Nu = Npm = Npf = Nsm = NV = N, and substituting Eqs. (4.66) and

(4.67) into Eq. (4.65) gives

−
∫

Ωm

BTD B ū dΩ +

∫
Ωm

BTmTαNP̄gm dΩ−
∫

Ωm

BTmTαPcmNS̄wmdΩ

+

∫
Γqu

NT t̄ dΓ +

∫
Ωm

NT ρ̄g dΩ = 0

(4.69)

where B = L̂N and Ωm is the porous matrix subdomain. In a similar manner

applying the Galerkin weighted residual method to Eqs.(4.45)-(4.46), employing

Green’s theorem, yields
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Matrix (water phase)

∫
Ωm

NT d1 N Ṗgm dΩ +

∫
Ωm

NT d2N ṠwmdΩ +

∫
Ωm

NT d3 mTB u̇ dΩ

+

∫
Ωm

(∇N)
T
c1∇NP̄gmdΩ +

∫
Ωm

(∇N)
T
c2∇NS̄wmdΩ

+

∫
Ωm

(∇N)
T
c3∇NV̄m dΩ−

∫
Ωm

(∇N)
T
G1dΩ

+

∫
Ωm

NTa1 N P̄gm dΩ +

∫
Ωm

NTa2 N P̄gf dΩ +

∫
Ωm

NT f1 dΩ = 0

(4.70)

Matrix (CO2 phase)

∫
Ωm

NT d4 N Ṗgm dΩ +

∫
Ωm

NT d5N ṠwmdΩ +

∫
Ωm

NT d6 mTB u̇ dΩ

+

∫
Ωm

(∇N)
T
c4∇NP̄gmdΩ−

∫
Ωm

(∇N)
T
G2dΩ

+

∫
Ωm

NTa3 N P̄gm dΩ +

∫
Ωm

NTa4 N P̄gf dΩ = 0

(4.71)

Fracture (water phase)

∫
Ωf

NT d7 N Ṗgf dΩ +

∫
Ωf

NT d8N ṠwfdΩ +

∫
Ω+
f

NT d8N
∗ȧJdΩ

+

∫
Ωf

(∇N)
T
c5∇NP̄gfdΩ +

∫
Ωf

(∇N)
T
c6∇NS̄wfdΩ

+

∫
Ω+
f

(∇N)
T
c6∇N∗aJ dΩ +

∫
Ωf

(∇N)
T
c7∇NV̄f dΩ

−
∫

Ωf

(∇N)
T
G3dΩ +

∫
Ωm

NTa5 N P̄gm dΩ

+

∫
Ωm

NTa6 N P̄gf dΩ +

∫
Ωm

NT f2 dΩ =

∫
Γqwf

NT qw dΓ

(4.72)

where Ω and Ω+ are the continuous and the discontinuous subdomains, respectively.

Applying XFEM to Eq. (4.48), using a weighting function of the form: w =

N + N∗J gives
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Fracture (CO2 phase)∫
Ωf

NT

[
d9
∂Pgf
∂t

+ d10
∂Swf
∂t

+∇ · (−c8∇Pgf + G4) + a7Pgm + a8Pgf]
dΩ

+

∫
Ω+
f

N∗TJ

[
d9
∂Pgf
∂t

+ d10
∂Swf
∂t

+∇ · (−c8∇Pgf + G4) + a7Pgm

+a8Pgf

]
dΩ = 0

(4.73)

This equation can be split into two equations, giving∫
Ωf

NT

[
d9
∂Pgf
∂t

+ d10
∂Swf
∂t

+∇ · (−c8∇Pgf + G4) + a7Pgm + a8Pgf]
dΩ = 0

(4.74)

∫
Ω+
f

N∗TJ

[
d9
∂Pgf
∂t

+ d10
∂Swf
∂t

+∇ · (−c8∇Pgf + G4) + a7Pgm

+a8Pgf

]
dΩ = 0

(4.75)

Employing the Green’s theorem and introducing Eq. (4.67) into Eqs. (4.74) and

(4.75) leads to∫
Ωf

NT d9 NṖgfdΩ +

∫
Ωf

NT d10NṠwfdΩ +

∫
Ω+
f

NT d10N
∗ȧJdΩ

+

∫
Ωf

(∇N)
T
c8∇NP̄gfdΩ−

∫
Ωf

(∇N)
T
G4dΩ

+

∫
Ωm

NTa7 N P̄gm dΩm +

∫
Ωf

NTa8 N P̄gf dΩf =

∫
Γqgf

NT qg dΓf

(4.76)

and ∫
Ω+
f

N∗T d9NṖgfdΩ +

∫
Ω+
f

N∗T d10N ṠwfdΩ +

∫
Ω+
f

N∗T d10 N∗ȧJdΩ

+

∫
Ω+
f

(∇N∗)
T
c8∇NP̄gfdΩ +

∫
Ωm

N∗Ta7 N P̄gm dΩ

+

∫
Ωf

N∗Ta8 N P̄gf dΩ−
∫

Ω+
f

(∇N∗)
T
G4dΩ =

∫
Γ+
gf

NT qg dΓ

(4.77)
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Applying the Galerkin weighted residual method to the streaming potential field

balance equation, Eq.(4.49), gives

∫
Ωm

(∇N)
T
c9∇NP̄gmdΩ +

∫
Ωm

(∇N)
T
c10∇NS̄wmdΩ

+

∫
Ωf

(∇N)
T
c11∇NP̄gfdΩ +

∫
Ωf

(∇N)
T
c12∇NS̄wfdΩ

+

∫
Ω+
f

(∇N)
T
c12∇N∗aJdΩ +

∫
Ω

(∇N)
T
c13∇NV̄dΩ

−
∫

Ω

(∇N)
T
G5dΩ = 0

(4.78)

The resulting weak formulations, Eqs. (4.69)-(4.72) and Eqs. (4.76)-(4.78),

represent a set of semi-discrete nonlinear equations that need to be solved iteratively.

To linearize the problem, Taylor series expansions up to the first order suffices. For

example, the nonlinear parameter c1 at iteration r + 1, can be linearized as

cr+1
1 = c1(Srw) +

∂c1(Srw)

∂Sw
(δSw) (4.79)

with

δSw = Sr+1
w − Srw (4.80)

and c1 variation with saturation can be calculated analytically via Brook and Corey’s

or other constitutive relationships.

Derivatives of all nonlinear parameters, given in Table 4.1, can be calculated in

the same way. The primary variables and their time derivatives can be written as

Xr+1=Xr+δX

Ẋr+1=Ẋr+δẊ
(4.81)

where Xr+1 = [u Pgm Swm Pgf Swf V aJ ]
T

is the unknown state vector at the

current iteration (r + 1) and δX is its incremental value. Ẋr denotes the time

derivative of the state vector at iteration r and δẊ is the time derivative of the

incremental state vector. Linearizing Eqs. (4.69)-(4.72) and Eqs. (4.76)-(4.78) and

rearranging gives
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K11 K12 K13 0 0 0 0

0 K22 K23 K24 K25 0 K27

0 K32 K33 K34 0 0 0

0 K42 K43 K44 K45 K46 K47

0 K52 K53 K54 K55 0 0

0 K62 K63 K64 K65 0 0

0 K72 K73 K74 K75 K76 K77





δū

δP̄gm

δS̄wm

δP̄gf

δS̄wf

δaJ

δV̄



+



0 0 0 0 0 0 0

C21 C22 C23 0 0 0 0

C31 C32 C33 0 0 0 0

0 0 0 C44 C45 C46 0

0 0 0 C54 C55 C56 0

0 0 0 C64 C65 C66 0

0 0 0 0 0 0 0





δu̇

δṖgm

δṠwm

δṖgf

δṠwf

δȧJ

δV̇



=



f1

f2

f3

f4

f5

f6

f7


−



K0
11 K0

12 K0
13 0 0 0 0

0 K0
22 K0

23 K0
24 0 0 K0

27

0 K0
32 0 K0

34 0 0 0

0 K0
42 0 K0

44 K0
45 K0

46 K0
47

0 K0
52 0 K0

54 0 0 0

0 K0
62 0 K0

64 0 0 0

0 K0
72 K0

73 K0
74 K0

75 K0
76 K0

77





ūr

P̄r
gm

S̄rwm
P̄r
gf

S̄rwf
arJ
V̄r



+



0 0 0 0 0 0 0

C0
21 C0

22 C0
23 0 0 0 0

C0
31 C0

32 C0
33 0 0 0 0

0 0 0 C0
44 C0

45 C0
46 0

0 0 0 C0
54 C0

55 C0
56 0

0 0 0 C0
64 C0

65 C0
66 0

0 0 0 0 0 0 0





u̇r

Ṗr
gm

Ṡrwm
Ṗr
gf

Ṡrwf
ȧrJ
V̇r
f



(4.82)

where

K11 = K0
11 = −

∫
Ωm

BTDB dΩ (4.83)

K12 = K0
12 =

∫
Ωm

BTmTαNdΩ (4.84)

K13 = −
∫

Ωm

BTmTαP rcmNdΩ−
∫

Ωm

BTmTα
dPcm
dSwm

SrwmNdΩ

+

∫
Ωm

NT ∂ρ̄

∂Swm
Ng dΩ

(4.85)

K0
13 = −

∫
Ωm

BTmTαP rcmN dΩ (4.86)
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K22 = K0
22 =

∫
Ωm

(∇N)
T
c1∇NdΩm +

∫
Ωm

NTa1N dΩm (4.87)

K23 =

∫
Ωm

(∇N)
T ∂c1

∂Swm
P̄r
gm∇NNdΩm +

∫
Ωm

(∇N)
T
c2∇NdΩm

+

∫
Ωm

(∇N)
T ∂c2

∂Swm
S̄rwm∇NNdΩm +

∫
Ωm

(∇N)
T ∂c3

∂Swm
V̄r
m∇NN dΩm

−
∫

Ωm

(∇N)
T ∂G1

∂Swm
NdΩm +

∫
Ωm

NT ∂a1

∂Swm
P̄r
gmN N dΩm

+

∫
Ωm

NT ∂a2

∂Swm
P̄r
gfN N dΩm +

∫
Ωm

NT ∂f1

∂Swm
NdΩm

(4.88)

K0
23 =

∫
Ωm

(∇N)
T
c2∇NdΩ (4.89)

K24 = K0
24 =

∫
Ωm

NTa2 N dΩ (4.90)

K25 =

∫
Ωm

NT ∂f1

∂Swf
NdΩ (4.91)

K27 = K0
27 =

∫
Ωm

(∇N)
T
c3∇N dΩ (4.92)

K32 = K0
32 =

∫
Ωm

(∇N)
T
c4∇NdΩ +

∫
Ωm

NTa3 N dΩ (4.93)

K33 =

∫
Ωm

(∇N)
T ∂c4

∂Swm
P̄r
gm∇NNdΩ−

∫
Ωm

(∇N)
T ∂G2

∂Swm
NdΩ

+

∫
Ωm

NT ∂a3

∂Swm
P̄r
gmN N dΩ +

∫
Ωm

NT ∂a4

∂Swm
P̄r
gfNN dΩ

(4.94)

K34 = K0
34 =

∫
Ωm

NTa4 N dΩ (4.95)

K42 = K0
42 =

∫
Ωm

NTa5 N dΩ (4.96)

K43 =

∫
Ωm

NT ∂a5

∂Swm
P̄r
gmNN dΩ +

∫
Ωm

NT ∂a6

∂Swm
P̄r
gfNN dΩ

+

∫
Ωm

NT ∂f2

∂Swm
N dΩm

(4.97)

K44 = K0
44 =

∫
Ωm

NTa6 N dΩ +

∫
Ωf

(∇N)
T
c5∇NdΩ (4.98)
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K45 =

∫
Ωf

(∇N)
T ∂c5

∂Swf
P̄r
gf∇NNdΩ +

∫
Ωf

(∇N)
T
c6∇NdΩ

+

∫
Ωf

(∇N)
T ∂c6

∂Swf
S̄rwf∇NNdΩ +

∫
Ωm

NT ∂f2

∂Swf
N dΩm

+

∫
Ω+
f

(∇N)
T ∂c6

∂Swf
ārJ∇N∗N dΩ +

∫
Ωf

(∇N)
T ∂c7

∂Swf
V̄r
f∇NN dΩ

−
∫

Ωf

(∇N)
T ∂G3

∂Swf
NdΩ

(4.99)

K0
45 =

∫
Ωf

(∇N)
T
c6∇NdΩ (4.100)

K46 = K0
46 =

∫
Ω+
f

(∇N)
T
c6∇N∗ dΩ (4.101)

K47 = K0
47 =

∫
Ωf

(∇N)
T
c7∇N dΩ (4.102)

K52 = K0
52 =

∫
Ωm

NTa7 N dΩ (4.103)

K53 =

∫
Ωm

NT ∂a7

∂Swm
P̄r
gmNN dΩ +

∫
Ωf

NT ∂a8

∂Swm
P̄r
gfN N dΩ (4.104)

K55 =

∫
Ωf

(∇N)
T ∂c8

∂Swf
P̄r
gf∇NNdΩ−

∫
Ωf

(∇N)
T ∂G4

∂Swf
NdΩ (4.105)

K62 = K0
62 =

∫
Ωm

N∗Ta7 NdΩ (4.106)

K63 =

∫
Ωm

N∗T
∂a7

∂Swm
P̄r
gmN N dΩ +

∫
Ωf

N∗T
∂a8

∂Swm
P̄r
gfN N dΩ (4.107)

K64 = K0
64 =

∫
Ω+
f

(∇N∗)
T
c8∇N dΩ +

∫
Ωf

N∗Ta8 N dΩ (4.108)

K65 =

∫
Ω+
f

(∇N∗)
T ∂c8

∂Swf
P̄r
gf∇NNdΩ−

∫
Ω+
f

(∇N∗)
T ∂G4

∂Swf
NdΩ (4.109)

K72 = K0
72 =

∫
Ω

(∇N)
T
c9∇NdΩ (4.110)

K73 =

∫
Ω

(∇N)
T ∂c9

∂Swm
P̄r
gm∇NNdΩ +

∫
Ω

(∇N)
T
c10∇NdΩ

+

∫
Ω

(∇N)
T ∂c10

∂Swm
S̄rwm∇NNdΩm +

∫
Ω

(∇N)
T ∂c13

∂Swm
V̄r∇NNdΩ

−
∫

Ω

(∇N)
T ∂G5

∂Swm
NdΩ

(4.111)
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K0
73 =

∫
Ω

(∇N)
T
c10∇NdΩ (4.112)

K74 = K0
74 =

∫
Ω

(∇N)
T
c11∇NδdΩ (4.113)

K75 =

∫
Ω

(∇N)
T ∂c11

∂Swf
P̄r
gf∇NNdΩ +

∫
Ω

(∇N)
T
c12∇NdΩ

+

∫
Ω

(∇N)
T ∂c12

∂Swf
S̄rwf∇NNdΩ +

∫
Ω+
f

(∇N)
T ∂c12

∂Swf
ārJ∇N∗NdΩ

+

∫
Ω

(∇N)
T ∂c13

∂Swf
V̄r
f∇NNdΩ−

∫
Ωf

(∇N)
T ∂G5

∂Swf
NdΩ

(4.114)

K0
75 =

∫
Ω

(∇N)
T
c12∇NdΩ (4.115)

K76 = K0
76 =

∫
Ω+
f

(∇N)
T
c12∇N∗dΩ (4.116)

K77 = K0
77 =

∫
Ω

(∇N)
T
c13∇NdΩ (4.117)

C21 = C0
21 =

∫
Ωm

NT dr3m
TBdΩ (4.118)

C22 = C0
22 =

∫
Ωm

NT dr1NdΩ (4.119)

C23 = C0
23 =

∫
Ωm

NT d2NdΩ (4.120)

C31 = C0
31 =

∫
Ωm

NTNT d6 mTB dΩ (4.121)

C32 = C0
32 =

∫
Ωm

NT d4N dΩ (4.122)

C33 = C0
33 =

∫
Ωm

NT d5N dΩ (4.123)

C44 = C0
44 =

∫
Ωf

NT d7N dΩ (4.124)

C45 = C0
45 =

∫
Ωf

NT d8N dΩ (4.125)

C46 = C0
46 =

∫
Ω+
f

NT d8N
∗dΩ (4.126)
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C54 = C0
54 =

∫
Ωf

NT d9NdΩ (4.127)

C55 = C0
55 =

∫
Ωf

NT d10NdΩ (4.128)

C56 = C0
56 =

∫
Ω+
f

NT d10N
∗dΩ (4.129)

C64 = C0
64 =

∫
Ω+
f

N∗T d9N dΩ (4.130)

C65 = C0
65 =

∫
Ω+
f

N∗T d10N dΩ (4.131)

C66 = C0
66 =

∫
Ω+
f

N∗T d10 N∗dΩ (4.132)

f1 = −
∫

Ωm

NT ρrg dΩ−
∫

Γqu

NT t̄ dΓ (4.133)

f2 =

∫
Ωm

(∇N)
T
G1dΩ−

∫
Ωm

NT f1 dΩ (4.134)

f3 =

∫
Ωm

(∇N)
T
G2dΩ (4.135)

f4 =

∫
Ωf

(∇N)
T
G3dΩ−

∫
Ωm

NT f2 dΩ−
∫

Γqwf

NT qw dΓ (4.136)

f5 =

∫
Ωf

(∇N)
T
G4dΩ−

∫
Γqgf

NT qg dΓ (4.137)

f6 =

∫
Ω+
f

(∇N∗)
T
G4dΩ (4.138)

f7 =

∫
Ωf

(∇N)
T
G5dΩ (4.139)

Eq. (4.82) is a semi-discrete system of equations that can be written in a concise

form as

C
dX

dt
+ KX = F (4.140)

Using the θ finite difference scheme in time, the state variable vector and the force

vector can be defined as
X = θXn+1 + (1− θ)Xn

F = θFn+1 + (1− θ)Fn
(4.141)
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in which n is a time step, and 0 ≤ θ ≤ 1 is time integration parameter. Substituting

Eq. (4.141) into Eq. (4.140) gives

(C + θ∆tK)Xn+1 = (C− (1− θ)∆tK)Xn + θ∆tFn+1 + (1− θ)∆tFn (4.142)

The above finite element formulation together with the linearization procedure and

the time discretization scheme are implemented in a C++ code. The system of

equations is solved using a standard direct solver.

4.4 Numerical examples

In this section, numerical examples illustrating the capability of the proposed model

to simulate coupled deformation, two-phase flow and electrokinetic flow problems in

fractured domains are presented. As there are no analytical solutions for this kind

of problems, the computational results are compared with those obtained with other

numerical models. First, we modeled a case presented by Ghafouri and Lewis (1996)

to model saturated flow in a deformable double porosity domain. Then the five-spot

and the CO2 leakage benchmark problems are simulated and discussed. Finally a

coupled hydromechanical-electrokinetic problem is simulated.

4.4.1 Consolidation problem

In this example we discuss the computational accuracy of the proposed SG-XFEM-LS

model and the effect of fracture spacing and permeability ratio between the porous

matrix and the fractured zone on the pore pressure distribution and deformation.

A one-dimensional consolidation problem in a saturated linear poroelastic double

porosity medium is considered. A plane strain soil column of height H is simulated.

The domain is subjected to a load F at the top and fixed at the bottom. The top sur-

face is open (Pw = 0), and the drainage occurs only through the fracture continuum.

All other boundaries are close, Figure 4.1. The load is applied instantaneously at

time t = 0, giving an initial pressure P0(z). The geometry and material parameters

are given in Table 4.2. The finite element domain is discretized using a mesh size of

28 isoparametric 4-node quadrilateral elements. Varying time step sizes for different

time intervals are utilized, see Table 4.3.

Analysis for different ratios of fracture permeability to matrix permeability

(kf/km), and for different fracture spacing were conducted. In all examples, the

matrix permeability km = 4 × 10−9m2 was constant. Figure 4.2 shows surface

displacement for different combinations of kf/km, including results obtained from

Ghafouri and Lewis (1996) and analytical solution of a single porosity domain,
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Table 4.2: Simulation parameters for the consolidation problem.

Parameter Value Unit

Domain height, H 7 m

Matrix permeability, km 4× 10−9 m2

Fracture permeability, kf variable m2

Matrix Porosity, φm 0.1

Fracture Porosity, φf 0.05

Fracture spacing, d 0.1 m

Water viscosity, µw 1× 10−3 Pa.s

Water density, ρw 1000 kg/m3

Biot’s constant, α 1.0

Young’s modulus, E 6000.0 Pa

Poisson’s ratio, ν 0.4

Fluid bulk modulus, Kf ∞
Load, F 1.0 kN

kf/km = 1. Apparently, there is a good match between the results. As it can

be seen, the consolidation is significantly affected by the permeability ratio: the

higher permeability ratio, the faster consolidation occurs. Figure 4.3 compares the

consolidation process for different fracture spacing. Fracture spacing of 0.1, 1.0 and

3.0 were simulated. As fracture spacing is small, the excess pore pressure dissipates

rapidly, leading to faster consolidation.

Figure 4.4 shows the pore pressure variation with time in the porous matrix

continuum (solid lines) and the fracture continuum (dashed lines), for different

permeability ratios. As expected, in the fracture continuum, the dissipation of pore

pressure is faster than in the matrix continuum. This amplifies as the permeability

ratio increases.
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Table 4.3: Time step sizes for different time intervals.

Time interval (s) Number of time steps

1× 10−2 10

1× 10−1 10

1× 100 10

1× 101 10

1× 102 10

1× 103 10

1× 104 10

time

lo
ad

F

H=7 m

F

W=2.0 m

no flow, uy=0

u
x
=

0
n
o 

fl
ow

n
o 

fl
ow

u
x
=

0

P = 0.0

Pi = 0.0
ux=uy= 0.0

A

Figure 4.1: Geometry and boundary conditions of the consolidation problem
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Figure 4.4: Matrix (solid) and fracture (dashed) pore pressure for different permeab-

ility ratios

4.4.2 Five-spot problem

In this example we discuss the computational efficiency of the proposed SG-XFEM-LS

model and the effect of the capillary pressure on the fluid flow pattern.

The five-spot benchmark problem is utilized for this purpose. This problem

addresses conceptual fluid flow in a reservoir filled by a non-wetting phase and

displaced by a wetting phase with an injection well at the center and four production

wells at the corners, Figure 4.5, (see also Helmig (1997)). Due to symmetry, a 2D

plane square domain of length, L = 100 m, with injection and production wells at

opposite corners of one of the diagonals is modeled.

Figure 4.5 shows the geometry and the boundary conditions, and Table 4.4 gives

the involved geometrical and material parameters. The capillary pressure-saturation

relationships for the porous matrix and the fracture continuum follow that of Brooks-

Corey, Eq. (4.25). The relative permeability-saturation relationship for the fracture

continuum is assumed linear, and for the porous matrix follows that of Brooks-Corey,

Eqs. (4.26)-(4.27). The injected wetting phase fluid volume rate is equal to the

non-wetting production volume rate.

The finite element domain is discretized using 4-node isoparametric quadrilateral

elements with varying mesh sizes, shown in the first column of Table 4.5. Figure

4.6 shows the computed non-wetting phase saturation profiles in the porous matrix

and the fracture continuum at different times. Obviously fluid flow in the fractured

continuum is faster due to its higher permeability. This analysis is conducted using
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Figure 4.5: Domain and boundary conditions of the five-spot injection example
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Figure 4.6: Fracture and matrix saturation contours at different times

a mesh size of 1225 elements.

Computational efficiency

To examine the computational efficiency of the proposed model, finite element

analysis using meshes of different sizes are examined. Since there is no analytical

solution to this problem, the accuracy is examined relative to a “converged” Galerkin

solution using a very fine mesh of 1600 elements. This simulation resulted in a

breakthrough time of 512.4 days for the wetting phase to reach to the production

well. A threshold value of 0.01% was chosen.

Table 4.5 shows the breakthrough times calculated by the proposed SG-XFEM-LS

model and the standard Galerkin finite element method for different mesh sizes.
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Table 4.4: Simulation parameters of the five-spot problem.

Parameter Value Unit

Domain length, L 100 m

Matrix permeability, km 1× 10−11 m2

Fracture permeability, kf 2× 10−10 m2

Matrix porosity, φm 0.25

Fracture porosity, φf 0.15

Fracture spacing, d 0.18

Wetting phase viscosity, µw 1× 10−3 Pa.s

Non-wetting phase viscosity, µnw 1× 10−3 Pa.s

Residual saturation in matrix, Swrm 0.0

Residual saturation in fracture, Swrf 0.0

Matrix Brooks and Corey parameter, λm 2.5

Fracture Brooks and Corey parameter, λf 4.5

matrix Entry pressure, Pbm 10000 Pa

Fracture Entry pressure, Pbf 50 Pa

Injection and production rate, q 1.3× 10−5 m2/s

Table 4.5: Standard Galerkin model vs. SG-XFEM-LS model

Element size

(m)

Numbers of

elements

Breakthrough time

(Standard Galerkin)

Breakthrough time

(SG-XFEM method)

10.0 10× 10 not converged 537.0

6.67 15× 15 532.1 525.0

5.0 20× 20 527.2 519.3

4.0 25× 25 521.9 516.1

3.33 30× 30 520.3 514.5

2.86 35× 35 519.2 513.4

2.5 40× 40 512.4 —
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Figure 4.7: Relative error in breakthrough time for different mesh sizes

Figure 4.7 shows the corresponding relative errors, calculated using the l2-norm on

the breakthrough times compared to a reference solution. The figure shows that the

proposed model converges faster.

Capillary pressure effect

Appropriate description of transport parameters, such as relative permeability and

capillary pressure, is essential for predicting the flow process in fractured porous

media. Difference in the capillary pressure between the fractured zone and the porous

matrix might have a substantial effect on the fluid flow in reservoirs (Firoozabadi,

2000). The most commonly used assumption for modeling fluid flow in fractured

reservoirs is a linear relative permeability-saturation relationship with zero capillary

pressure in the fractures (de la Porte et al., 2005). Romm and Blake (1972) found that

the capillary pressure is zero in the aperture between two parallel glass plates, and

the relative permeability and saturation were linearly dependent. In the contrary,

Firoozabadi and Thomas (1990) utilizing different capillary pressure-saturation

relationships, found that the capillary pressure in the fractures is non-zero and can

have a significant effect on the non-wetting phase flow. Firoozabadi and Hauge

(1990) proposed a capillary pressure-saturation relationship in the fracture continuum

similar to that in the porous matrix continuum.

To study the effect of fracture capillary pressure on two phase flow in a fractured

porous medium, this numerical example is re-conducted using different capillary

pressure parameters. Figure 4.8 shows the saturation profile after 200 days of

injection for low (left) and high (right) fracture capillary pressures. The figure clearly
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Figure 4.9: Breakthrough times for different capillary entry pressures
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shows that for the low capillary pressure, the CO2 plume exhibits a relatively sharp

front, while that of the high capillary pressure exhibits a smeared front.

Figure 4.9 shows the breakthrough times for different capillary entry pressures,

Eq.(4.25). The Figure shows that by increasing the capillary pressure, the break-

through time decreases. With a low entry pressure (low capillary pressure), the

process is advection dominant, and there is a sharp saturation front. On the contrary,

with a high entry pressure, the process is diffusive, and hence it takes less time for

the injected fluid to reach to the production well. This phenomena is apparent in

Figure 4.8, where it can be seen that the high capillary pressure case exhibits a wide

spread saturation front.

4.4.3 CO2 Leakage problem

In this example we utilize the SG–XFEM–LS model to compute CO2 flow under its

buoyancy in a deformable fractured reservoir. We simulate coupled hydromechanical

processes in a likely leaky environment. For this, the CO2 leakage benchmark

problem introduced by (Ebigbo et al., 2007) is modeled.

The geometry consists of a CO2 injection well, two aquifers, one aquitard and

a leaky well, Figure 4.10. The lower aquifer is assumed fractured. The physical

domain extends horizontally 1000 m, and the upper aquifer is located 2840 m below

the ground surface. The thickness of the aquifers is 30 m each, and the aquitard is

100 m. The leaky well is located 100 m from the injection well.

This problem is modeled using a finite element mesh size of 1875, 4-node isopa-

rametric quadrilateral elements. The simulation parameters are given in Table 4.6.

Brooks and Corey relative permeability– saturation relationships are used for the

porous matrix, and a linear relative permeability–saturation curve is used for the

fractured zone.

Initially, the domain is fully saturated with brine water under a hydrostatic

pressure condition. The no-flow condition is prescribed on the horizontal boundaries,

and a constant hydrostatic pressure is imposed on the vertical boundaries. CO2 is

injected for 600 days and the analysis was conducted using a time step size of 0.1

day.

Figure 4.11 shows the computed CO2 saturation profile at different time intervals

for the porous matrix and the fractured zone. It can be seen that the CO2 plume

extends radially under buoyancy forces, and upon reaching the leakage well, rises to

the upper aquifer.

Figure 4.12 shows the vertical displacement profile at the top of the aquitard vs.

distance for different time intervals. As a result of CO2 injection, the pore pressure

140



Numerical examples 4.4

Table 4.6: Simulation parameters of the leakage problem

Parameter Value Unit

Lateral dimension, L 1000 m

Aquifers thickness, w1 30 m

Aquitard thickness, w2 100 m

Distance between wells, d 100 m

Aquifers matrix permeability, k1m 1.0× 10−14 m2

Aquifers fracture permeability, k1f 1.0× 10−14 m2

Leaky well permeability, k2 1× 10−13 m2

matrix Porosity, φm 0.2

fracture Porosity, φm 0.15

Brine viscosity, µw 2.535× 10−4 Pa.s

CO2 viscosity, µg 3.95× 10−5 Pa.s

Brine density, ρw 1045 kg/m3

CO2 density, ρg 479 kg/m3

Injection rate, qinj 1.04× 10−4 m2/s

Residual water saturation, Swr 0.0

Residual CO2 saturation, Sgr 0.0

fracture spacing, d 3 m

Biot’s constant, α 1.0

Young’s modulus, E 6.0 MPa

Poisson’s ratio, ν 0.4

Water bulk modulus, Kw 0.43× 107 MPa

Bulk modulus of CO2, Kg 0.1 MPa

Solid phase density, ρs 2400 kg/m3

Bulk modulus of solid, Ks 0.14× 104 MPa

Depth = 2840 m

Leaky WellInjection Well

30 m 

100 m

30 m CO2

-
-

Depth = 2840 m

-

aquifer I

aquifer II

Figure 4.10: CO2 leakage problem.
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Figure 4.11: CO2 saturation profiles in the porous matrix (left) and the fractured

zone (right).
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Figure 4.12: Vertical displacement at the top of the aquitard.
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Figure 4.13: Geometry of the electrokinetic simulation example.

increases near the injection well causing uplifting of the cap rock.

4.4.4 Front tracking of electrokinetic potential

In this example we illustrate the capability of the proposed model to simulate coupled

hydromechanical–electrokinetic flow in fractured media. We study the effects of

fracture spacing and salinity on the streaming potential. We also discuss several

constitutive models describing the relative SP coupling coefficient, Cr.

Electrokinetic measurement has proven to be an efficient technique for monitoring

fluid motion in underground formations in response to pumping or injection of fluids

or contaminants. To gain insight into the physics of this phenomena, a numerical

example simulating water encroachment during oil production, based on the work

of Saunders et al. (2008), is examined. Saunders et al. (2008) original example is

modified to include the effect of fractures on the electrokinetic flow.

A 2D reservoir domain, consisting of six layers is modeled (Figure 4.13). It

consists of a 100 m fractured reservoir bounded by conductive, low permeability

layers, representing reservoir seals. The seal layers are located between two highly

permeable sandstone layers. At the top of the geometry, a highly resistive weathered

layer exists. At the left boundary of the reservoir, a water aquifer exists. As oil is

pumped out, the water in the aquifer expands and moves into the reservoir, displacing

oil. The material and other simulation parameters are given in Table 4.7.

A large finite element domain (2000 m × 2000 m) is simulated to allow for

setting zero potential at the boundaries, used as a reference for the electrokinetic

measurements. No electrical potential flux is applied on the domain surface. The

gravitational force is neglected.

The water is considered the wetting phase and the oil is the non-wetting phase.
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Table 4.7: Simulation parameters of the electrokinetic simulation example.

Parameter Value Unit

Lateral dimension, L 2000 m

Reservoir thickness, w1 100 m

Reservoir matrix permeability, k1m 4.0× 10−14 m2

Reservoir fracture permeability, k1f 3.0× 10−13 m2

Confining rock permeability, k2 1× 10−15 m2

Upper layer permeability, k3 3.0× 10−13 m2

Reservoir matrix porosity, φ1m 0.25

Reservoir fracture porosity, φ1f 0.15

Confining rock Porosity, φ2 0.01

Upper layer porosity, φ3 0.3

Upper layer conductivity, σr1 3.0× 10−5 Sm−1

Sandstone conductivity, σr2 0.0097 Sm−1

Confining rock conductivity, σr3 0.0135 Sm−1

Brine viscosity, µw 1.0× 10−3 Pa.s

Oil viscosity, µo 1.0× 10−3 Pa.s

Oil density, ρo 900 kg/m3

oil conductivity, σnw 1.0× 10−5 Sm−1

Production rate, q 1.8× 10−3 kg/ms

Residual water saturation, Swr 0.2

Residual oil saturation, Snr 0.2

Fracture spacing, d 5

Initial pressure, Pi 10.0 MPa
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The phase’s relative permeability–saturation relationships in the porous matrix are

given by quadratic functions of the form:

krwm = k′wmS
2
em

krom = k′om(1− Sem)2

where k′wm and k′om are the maximum relative permeability, equal to 0.3 and 0.8

respectively. For the fractured continuum, a linear relative permeability–saturation

function is utilized.

As water encroaches towards the well, the water front in the fracture continuum is

always ahead of that of the porous matrix. This entails having at each time interval

two saturation fronts and two corresponding SP peaks. Figure 4.14 shows streaming

potentials calculated along the center of the fractured reservoir, oriented parallel

to the horizontal axis of the model and passing through the well, for different time

intervals. The figure shows that at each time interval there are two SP peaks: a slow

one in the porous matrix, and an advanced one in the fractured zone. At early time

intervals (not shown in the figure), the SP peak in the fractured zone dominates,

giving rise to effectively one peak.

Figure 4.15 and 4.16 show the corresponding water saturation fronts in the

fractured zone and the porous matrix, respectively, calculated along the centerline of

the reservoir. Comparing these figures to Figure 4.14, reveals that, for any specific

time interval, the two streaming potential peaks coincide with their corresponding

saturation fronts. This correspondence might be vital for using the electrokinetic

potential for monitoring fluids displacement in fractured underground formations.

Fracture spacing effect

Figure 4.17 shows the effect of fracture spacing on the spatial distribution of

SP. Three domains are examined: a single porosity, high fracture spacing and low

fracture spacing. The figure shows that for the single porosity domain and the high

fracture spacing domain, the SP exhibits a single peak, while for the low spacing

fractures, SP exhibits clear double peaks. This exhibits the merit of the double

porosity model which is capable of modeling a wide range of fractured formations.

It shows clearly that for a highly fractured domain, two distinct saturation fronts,

and thus SP fronts, can be identified.

Constitutive equations

As mentioned in Section section 4.2.4, in literature there are several models

describing the relative SP coupling coefficient, Cr. For an unsaturated porous

medium, the relative SP coupling coefficient is a function of a number of parameters,

including the wettability of the rock and the distribution of fluids in the porous
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Figure 4.14: Streaming potential along a section in the center of the reservoir at

different time intervals.
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the center of the reservoir.

146



Numerical examples 4.4

0.00

0.20

0.40

0.60

0.80

1.00

0 500 1000 1500 2000

M
at

ri
x
 s

at
u
ra

ti
on

Horizontal distance [m]

t=3000 days

t=2500 days

t=2000 days

t=1500 days

t=1000 days

Figure 4.16: Water saturation profile in the matrix continuum along a section in the

center of the reservoir.
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medium. Here, this numerical example is re-calculated using constitutive models

presented in section 4.2.4.

Figure 4.18 shows the relationship between the relative coupling coefficient and

water saturation for different models. Figure 4.19 shows the calculated cross coupling

coefficient, L, and Figure 4.20 shows the streaming potential profiles, after 2500

days, obtained from these constitutive models. Apparently, the calculated streaming

potentials due to different Cr are not very much different from each other, though

Jackson’s model shows some divergence.

Salinity effect

The salinity of the formation brine affects its electrical conductivity, and hence the

electrokinetic coupling coefficient. Electrical conductivity increases with increasing

brine salinity. Salinity also affects the zeta potential, permittivity and viscosity, see

Eq. (4.29). The effect of salinity on permittivity and viscosity is ignored in this

study. According to Worthington et al. (2002), salt concentration, Cf , is related to

the brine electrical conductivity, σw by

log (σw) = 9.42203× 10−1 + 8.88900× 10−1 [log (Cf )]

−2.72398× 10−2[log (Cf )]
2 − 2.25682× 10−3[log (Cf )]

3

+1.46605× 10−5[log (Cf )]
4

(4.143)

Following Saunders et al. (2008), the salinity is related to the zeta potential by

ζ = 16.175× log (Cf )− 16.606 (4.144)

To study this effect, several numerical simulations were conducted for different

salinity values. Figure 4.21 shows SP peak values vs. salinity. It shows that the

maximum electrical potential at the saturation fronts decreases significantly as the

salinity increases. This indicates that electrokinetic monitoring of fluid movement

can give more accurate results in low salinity reservoirs, compared to high salinity

ones.
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4.5 Conclusions

In this chapter, a new coupled electrokinetic–hydromechanical computational model

is introduced to simulate CO2 sequestration in fractured geological formations. The

governing equations are formulated based on the averaging theory and the double

porosity model; and solved using a mixed discretization scheme. A coupled standard

Galerkin finite element method, extended finite element method, level-set method,

and Petrov–Galerkin method are formulated. The standard Galerkin method is

utilized to discretize the deformation and the diffusive dominant field equations. The

extended finite element method, together with the level-set method and the Petrov-

Galerkin method are utilized to discretize the advective dominant field equations.

The level set method is utilized to trace the moving saturation front and the extended

finite element method to model the front. Utilization of the extended finite element

method and the level-set method produces a locally conservative discretization

scheme, giving a stable and convergent model. However, this entails introducing an

extra degrees of freedom in the fracture saturation field. Nevertheless, utilization of

standard Galerkin method to discretize other quantities limits this increase to the

minimum, yielding a computationally efficient numerical scheme.

Several verification and numerical examples with parametric analyzes are presen-

ted. The examples demonstrate the capability of the proposed SG-XFEM-LS model

to simulate challenging problems describing coupled solid deformation, multiphase

flow and electrokinetic flow in unsaturated fractured porous media. It has been shown

that the proposed model is capable of solving these kinds of problems, which typically

involve several state variables with different transient nature, using relatively coarse

meshes.
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Works 5
5.1 Conclusion

The main objective of this work is to develop a computational model capable of

simulating the complicated nature of CO2 geo-sequestration using relatively coarse

meshes, making it thus suitable for engineering practice.

Modeling the geoenvironmental impact of CO2 sequestration involves theoretical

and numerical challenges. It involves strong coupling between physical phenomena

and hydro-mechanical processes occurring in complicated geometries, ranging from

micro-scale to mega-scale. Due to this complicated combination of geometry and

processes, it is vital to obtain a good combination between the mathematical model

and the numerical model. The mathematical model should be able to simulate flow

processes at the microscopic level and scale them up to the macroscopic level. The

numerical model, on the other hand, should be consistent, stable and computationally

efficient.

In this work, a coupled multi-physical computational model, based on the aver-

aging theory, for formulating the governing field equations; and a mixed discretization

scheme, based on coupling between the standard Galerkin finite element method

(SG), the extended finite element method (XFEM), and the level-set method (LS);

has been introduced to simulate CO2 sequestration in geologic formations. SG has

been utilized to discretize the deformation and the diffusive dominant field equations,

and XFEM, together with LS, have been utilized to discretize the advective dominant

field equations. Utilization of XFEM and LS produces a locally conservative discret-

ization scheme, giving a stable and computationally efficient model. However, an

extra degree of freedom must be added to describe the discontinuity in the advective

field. Nevertheless, utilization of SG limits this increase to the minimum, yielding a
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computationally efficient numerical scheme.

Chapter 2 of this thesis deals with the simulation of the isothermal two-phase flow

in an unsaturated rigid porous medium. Four numerical examples illustrating the

accuracy, stability, mesh insensitivity and convergence of the model are given. The

Buckley-Leverett example, which is an advective-dominate process, demonstrates

that the standard Galerkin method exhibits spurious oscillations, obviously due to

advection; the result of the upwind method is rather smooth, but highly dissipative;

but the proposed model produces a monotonic profile, and is less dissipative. Unlike

the Buckley-Leverett problem, the McWhorter problem exhibits diffusion due to

the capillary effect, and hence no sharp front exists. In this example, the three

discretization procedures are in good agreement with the quasi-analytical solution.

The CO2 leakage example shows the efficiency of the model and indicates that

the proposed model is stable and perturbation in the model parameters result in

a physically realistic perturbation in the flow behavior, even for relatively coarse

meshes.

Chapter 3 extends the previous model with coupling the electrokinetic process

and mechanical deformation with two-phase flow in an unsaturated porous medium.

The standard Galerkin method has been utilized to discretize the deformation and

the diffusive dominant field equations, and XFEM, together with LS, have been

utilized to discretize the advective dominant field equations. The capability of the

mixed SG-XFEM-LS numerical scheme has been examined to simulate coupled

solid deformation, multiphase flow, and electrokinetic flow in unsaturated porous

media. The coupled deformation-multiphase flow example reveals that the formation

deformation, which is a function of stiffness, has minor influence on the CO2 flow.

On the other hand, the coupled electrokinetic-multiphase flow example reveals that

the salinity of the formation brine can play a major role in the electrokinetic flow,

and hence, measuring the streaming potential can be a useful tool for monitoring

CO2 flow remotely.

In Chapter 4, the model is extended for simulation of coupled multiphysics

processes of CO2 sequestration in fractured porous media. The governing equations

are formulated based on the averaging theory and the double porosity model; and

solved using a mixed discretization scheme. The examples in this chapter demonstrate

the capability of the proposed SG–XFEM–LS model to simulate challenging problems

describing coupled solid deformation, multiphase flow and electrokinetic flow in

unsaturated fractured porous media.

So, in conclusion, it has been shown that the proposed model is capable of solving

these kinds of problems, which typically involve several state variables of different

transient nature, using relatively coarse meshes. To facilitate the formulation of the
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computational model and its computer implementation, several assumption were

made. The thermodynamic parameters, such as the density and viscosity are made

constant. The material behavior under the mechanical forces is assumed to be linear

elastic. Also, it is assumed that there is no dissolution or chemical reaction in the

reservoir. Though, many other physical and modeling aspects, including the type

of balance equations, unsaturated multiphase flow, buoyancy effect, capillary effect,

deformation and electrokinetic flow in a CO2 environment, are carefully considered.

The focus of this thesis was the development of a new computational technique

tailored to the nature of the involved processes and phenomena. The pressure

dependency of fluid properties will not degrade the computational efficiency of the

proposed model.

5.2 Recommendations for future work

The following recommendations are proposed for future study. They have been

organized into 3 categories, each having its own relevance for future research: the

required steps have to be taken to continue with this model; the improvements will

increase the robustness over the model; and the extensions will produce additional

potentially relevant results that are not presented in this work.

Required steps

• code optimization - The implemented algorithm and the C++ code is needed

to be optimized to improve computation time of the model.

• 3D level set model - The developed reinitialization algorithm for the level-set

method works for 2D examples. Modification is needed to include 3D problems.

Improvements

• Non-linear solver - The Newton-Raphson solver can be tuned to improve

numerical performance and stability.

• Time integration - A finite difference scheme in time is utilized to solve the

semi-discrete system of equations. More advanced time integration should be

considered to increase the stability of the model.

• Enrichment function - In this work the extended finite element spatial discretiz-

ation is conducted by adding an enhanced function necessary to capture a high
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gradient field which exists within the element. Different enhancement functions

are utilized and made suitable for different applications. Here, the level-set

function is utilized to enhance the water saturation field. Other enhancement

functions can be considered and examined for further improvement.

Extensions

• 3D model - Our focus mainly lied on developing an efficient computational

model. The 2D numerical examples are presented to show the capability of

the model. A more realistic behavior of multiphysics processes in CGS should

be demonstrated by means of 3D examples. Extension to 3D is in principle

straightforward, once the 2D extension is understood. The main focus should

be placed in implementation of front tracking in 3D (level set method).The

theory and formulation of the 3D XFEM does not differ much from the 2D

XFEM. The same enrichment function can be used in 3D XFEM.

• Other physical processes - The physical model is focused on the simulation

of the involved processes during the injection and in the early time after the

injection when the dominant process is two-phase flow. For the long term

simulation other mechanisms like dissolution of CO2 into water and geochemical

reaction should be considered.

• Pressure, volume and temperature (PVT) model - Simple thermodynamic

properties of CO2 and water are used in the simulations. A more elaborated

PVT model is needed to be developed.

• Non-linear elasticity - The current model uses a linear elastic material model,

which is not valid for large deformations, if occurring. Implementation of a

non-linear constitutive model will increase the physical relevance of the results.

• Deformable fractures - In the double porosity model, deformation is assumed

to occur only in the porous matrix; however, due to a coupling between the two

subdomains, the deformation of the whole domain is affected by the gradients

in the pressure field between the porous matrix and fractured zone and the

fractures might play a dominant role in the coupled hydromechanical processes

in fractured reservoirs. The current model can be applied for a fractured

porous medium with a low stiffness porous matrix rock. For a hard rock, where

stress-induced changes in hydraulic properties of fractures are high, a new

model, considering fracture deformation, should be developed.
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V. Allègre, L. Jouniaux, F. Lehmann, and P. Sailhac. Streaming potential dependence

on water-content in fontainebleau sand. Geophysical Journal International, 182

(3):1248–1266, 2010.
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coupling in unsaturated porous media. Journal of Colloid and Interface Science,

313(1):315–327, 2007.

A. Riaz, M. Hesse, H. Tchelepi, and F. Orr. Onset of convection in a gravitationally

unstable diffusive boundary layer in porous media. Journal of Fluid Mechanics,

548:87–111, 2006.

B. Riviere. Numerical study of a discontinuous galerkin method for incompressible

two-phase flow. In ECCOMAS Proceedings, 2004.

E. S. Romm and W. R. Blake. Fluid flow in fractured rocks. Phillips Petroleum

Company, 1972.

P. Royer, J. L. Auriault, J. Lewandowska, and C. Serres. Continuum modelling of

contaminant transport in fractured porous media. Transport in Porous Media, 49

(3):333–359, 2002.

B. J. Rozon. A generalized finite volume discretization method for reservoir simulation,

6-8 February 1989 1989.

166



Bibliography

J. Rutqvist and C.-F. Tsang. A study of caprock hydromechanical changes associated

with CO2 injection into a brine formation. Environmental Geology, 42(2):296–305,

2002.

J. Rutqvist, Y.-S. Wu, C.-F. Tsang, and G. Bodvarsson. A modeling approach

for analysis of coupled multiphase fluid flow, heat transfer, and deformation in

fractured porous rock. International Journal of Rock Mechanics and Mining

Sciences, 39(4):429–442, 2002.

J. Rutqvist, J. Birkholzer, F. Cappa, and C. F. Tsang. Estimating maximum sustain-

able injection pressure during geological sequestration of CO2 using coupled fluid

flow and geomechanical fault-slip analysis. Energy Conversion and Management,

48(6):1798–1807, 2007.

J. Rutqvist, D. W. Vasco, and L. Myer. Coupled reservoir-geomechanical analysis of

CO2 injection at in salah, algeria. Energy Procedia, 1(1):1847–1854, 2009.

P. Sailhac, M. Darnet, and G. Marquis. Electrical streaming potential measured at the

ground surface: Forward modeling and inversion issues for monitoring infiltration

and characterizing the vadose zone. Vadose Zone Journal, 3(4):1200–1206, 2004.

E. Sánchez-Palencia. Non-homogeneous media and vibration theory. In Non-

homogeneous media and vibration theory, volume 127, 1980.

P. Saripalli and P. McGrail. Semi-analytical approaches to modeling deep well

injection of CO2 for geological sequestration. Energy Conversion and Management,

43(2):185–198, 2002.

J. H. Saunders, M. D. Jackson, and C. C. Pain. A new numerical model of elec-

trokinetic potential response during hydrocarbon recovery. Geophys. Res. Lett.,

33(15):L15316, 2006.

J. H. Saunders, M. D. Jackson, and C. C. Pain. Fluid flow monitoring in oil

fields using downhole measurements of electrokinetic potential. Geophysics, 73(5):

E165–E180, 2008.

J. H. Saunders, M. D. Jackson, M. gulamali, J. Vinogradov, and C. C. Pain. Streaming

potential at hydrocarbon reservoir conditions. Geophysics, 77(1):E77–E90, 2012.

B. A. Schrefler. Computer modelling in environmental geomechanics. Computers &

Structures, 79(22-25):2209–2223, 2001. doi: DOI: 10.1016/S0045-7949(01)00076-1.

W. R. Sill. Self-potential modeling from primary flows. Geophysics, 48(1):76–86,

1983.

167



Bibliography

N. Sukumar and T. Belytschko. Arbitrary branched and intersecting cracks with the

extended finite element method. Int. J. Numer. Meth. Engng, 48:1741–1760, 2000.
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Alphabets

aJ XFEM new degree of freedom

bπ external supply of a thermodynamic property for the phase π

C electrokinetic coupling coefficient, V Pa−1

Cf salt concentration, mole/m3

Cr relative coupling coefficient

De stiffness matrix of the solid

E Young’s modulus of elasticity, Pa

fπ fractional flow function of phase π

Gπ net production of a thermodynamic property for the phase π

g gravitational acceleration, ms−2

g gravity acceleration vector, ms−2

he characteristic length of the element, m

I Identity tensor

Jπ flux vector of a thermodynamic property for the phase π

j total electric current density, Am−2

k intrinsic permeability tensor, m2

ke electro-osmotic permeability, m2s−1V −1

krπα relative permeability of π phase in α continuum

Kπ bulk modulus of the phase π, Pa−1

Ks bulk modulus of the grain material, Pa−1

L cross coupling coefficients, m2V −1s−1

L̂ displacement-strain operator

l characteristic length of a matrix block, m

m a vector equal to m = [1, 1, 1, 0, 0, 0]
T
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Appendix A. Nomenclature

m cementation exponent

n Archie’s saturation exponent. Otherwise defined in the text.

ne number of nodes in the element

pc capillary pressure, Pa

pπα π phase pressure in α continuum, Pa

Pb entry pressure, Pa

Qπ source or sink terms

qπ imposed volumetric flux of phase π normal to the boundary

Sπα π phase saturation in α continuum

Srπα residual saturation of phase π in α continuum

Se effective saturation
^

tπ intra-phase stress tensor, N m−2

u displacement vector of solid phase, m

vΓ interface velocity, ms−1

vπ mass averaged velocity of phase π, ms−1

V electrical potential, V

Greek

α Biot’s constant

ᾱ shape factor of fractured domain, m−2

ε total strain of the solid

ε0 initial strain

εw brine permittivity, F m−1

Φ level set function

φ porosity

λ pore size distribution index

µπ dynamic viscosity of phase π, Pa s

υ Poisson’s ratio

θ time integration parameter

ρ̄ effective density in multiphase domain, kgm−3

ρπ intrinsic phase averaged density of phase π , kgm−3

σ total stress, N m−2

σ′ effective stress, N m−2

σ′′ effective stress with Biot’s constant included, N m−2

σe electrical conductivity, Sm−1

σπ electrical conductivity of phase π , Sm−1

σr relative electric conductivity
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τ stabilization parameter

Ψ a thermodynamic property

ψ fractional volume of the fractures

ζ Zeta potential, V

Subscripts and Superscripts

eff effective

f fracture continuum

g gas phase

m matrix continuum

π phase π

r residual saturation

s solid phase

sat saturated porous media

w water phase
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