
 
 

Delft University of Technology

Three consecutive approximation coefficients
Asymptotic frequencies in semi-regular cases
De Jonge, Jaap; Kraaikamp, Cor

DOI
10.2748/tmj/1527904823
Publication date
2018
Document Version
Final published version
Published in
Tohoku Mathematical Journal

Citation (APA)
De Jonge, J., & Kraaikamp, C. (2018). Three consecutive approximation coefficients: Asymptotic
frequencies in semi-regular cases. Tohoku Mathematical Journal, 70(2), 285-317.
https://doi.org/10.2748/tmj/1527904823

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.2748/tmj/1527904823
https://doi.org/10.2748/tmj/1527904823


Tohoku Math. J.
70 (2018), 285–317

THREE CONSECUTIVE APPROXIMATION COEFFICIENTS:
ASYMPTOTIC FREQUENCIES IN SEMI-REGULAR CASES

JAAP DE JONGE AND COR KRAAIKAMP

(Received September 28, 2015, revised March 22, 2016)

Abstract. Denote by pn/qn, n = 1, 2, 3, . . . , the sequence of continued fraction con-
vergents of a real irrational number x. Define the sequence of approximation coefficients by
θn(x) := qn |qnx − pn| , n = 1, 2, 3, . . . . In the case of regular continued fractions the six
possible patterns of three consecutive approximation coefficients, such as θn−1 < θn < θn+1,
occur for almost all x with only two different asymptotic frequencies. In this paper it is shown
how these asymptotic frequencies can be determined for two other semi-regular cases. It ap-
pears that the optimal continued fraction has a similar distribution of only two asymptotic
frequencies, albeit with different values. The six different values that are found in the case of
the nearest integer continued fraction will show to be closely related to those of the optimal
continued fraction.

1. Introduction. In this paper we are concerned with a question that arises in the
study of approximating real irrational numbers using continued fractions. Generally, we de-
fine a continued fraction of a real number x as a finite or infinite fraction

(1) a0 + ε1

a1 + ε2

a2 + ε3

a3 + .

.

.

In this expression we have εn = ±1, n ≥ 1, a0 ∈ Z and an ∈ N, n ≥ 1. In the following we
will use the more convenient notation [a0; ε1a1, ε2a2, ε3a3, . . . ] for a continued fraction. A
finite or infinite continued fraction is called a semi-regular continued fraction (SCRF) when
an ≥ 1, n ≥ 1; εn+1 + an ≥ 1, n ≥ 1, and, in the infinite case, εn+1 + an ≥ 2 infinitely often;
see for instance [P] or [K1]. In this paper we will only deal with infinite continued fractions.

The SRCFs have been studied extensively (e.g. [B, K1]), as have their approximation
coefficients, defined by

θn(x) := q2
n

∣∣∣∣x − pn

qn

∣∣∣∣ , n = 1, 2, 3, . . . ,
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where x is a real irrational with continued fraction expansion (1) and pn/qn, n = 1, 2, 3, . . . ,
is the corresponding sequence of convergents, obtained by truncation of the infinite continued
fraction (1). In the sequel we will omit the suffix ’(x)’ behind θn.

For the regular continued fraction (RCF) expansion, being the SRCF with εn = +1 for
all n ≥ 1, Legendre showed in 1798 ([L]) that if p, q ∈ Z, q > 0, gcd(p, q) = 1, and∣∣∣∣x − p

q

∣∣∣∣ < 1

2

1

q2
,

then there exists an n ≥ 1 for which pn/qn = p/q , where pn/qn is the nth RCF-convergent
of x. In 1895, Vahlen ([V]) showed that for all irrational x and all n ≥ 2,

min{θn−1, θn} <
1

2
,

while Borel ([Bor]) showed in 1905 that

min{θn−1, θn, θn+1} <
1√
5

.

In the course of the 20th century several authors sharpened Borel’s result:

min{θn−1, θn, θn+1} <
1√

a2
n+1 + 4

;

see e.g. [BM]. In fact, J. Tong ([T1]) showed in 1983 that one also has the converse property:

max{θn−1, θn, θn+1} >
1√

a2
n+1 + 4

.

For the optimal continued fraction (OCF) expansion, which we will discuss in Section 3, one
has even more impressive Diophantine properties such as:

min{θn−1, θn} <
1√
5

.

Unfortunately, this is not the case for the nearest integer continued fraction (NICF) expansion,
which we will discuss in Section 4. In 1995, J. Tong showed in [T2] that for all irrational x,
for all n ≥ 2 and for all k ≥ 1 one has that:

min{θn−1, θn, . . . , θn+k} <

(
1 +

(
(3 − √

5)/2
)2k+3

)
/
√

5 .

Note that

lim
k→∞

(
1 +

(
(3 − √

5)/2
)2k+3

)
/
√

5 = 1/
√

5 .

In various papers the distribution for almost all x for the sequences (θn)n≥1 and
((θn−1, θn))n≥2 has been studied for the RCF, OCF, NICF, and several other continued fraction
algorithms; see e.g. [BJW, BK1]. In this paper, we will focus on the asymptotic frequency of
triplets (θn−1, θn, θn+1).
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In [JJ] the six patterns

A : θn−1 < θn < θn+1 , B : θn−1 < θn+1 < θn , C : θn < θn−1 < θn+1 ,

D : θn < θn+1 < θn−1 , E : θn+1 < θn−1 < θn , F : θn+1 < θn < θn−1

are studied in the case of the regular continued fraction (RCF), being the SRCF with εn = 1
for all n ≥ 1. Defining the asymptotic frequency (AF ) of A as

AF(A) = lim
N→∞

1

N
#{n ∈ N | 2 ≤ n ≤ N, θn−1 < θn < θn+1}

and the asymptotic frequencies of the other patterns likewise, the following result was derived:

THEOREM 1. Define the constant ρ by

ρ :=
∞∏

a=1

(
1

2
+ 1

2

√
1 + 4

a2

)
= 2.82698 · · · .

Then for almost all x1

AF(A) = AF(F) = 1

2
− 1

log 2
· log

sinh π

πρ
= 0.12109 · · ·

and

AF(B) = AF(C) = AF(D) = AF(E) = 1

2 log 2
· log

sinh π

πρ
= 0.18945 · · · .

In this paper we will investigate these asymptotic frequencies for two other SRCFs: the
optimal continued fraction (OCF) and the nearest integer continued fraction (NICF). In gen-
eral, we take the same approach as we used for the regular RCF, which involves the following
definitions and notations. We write

tn = [0; εn+1an+1, εn+2an+2, . . . ], n ≥ 1

and

vn = qn−1

qn

= [0; an, εnan−1, . . . , ε2a1], n ≥ 1 ,

which are the ‘future’ respectively the ‘past’ of x ‘at time n’. We have the following relations,
which can be found in, for instance, [JK, p. 303]:

(2) θn−1 = vn

1 + tnvn
, n ≥ 1 ,

(3) θn = εn+1tn

1 + tnvn

, n ≥ 1 ,

and

(4) θn+1 = εn+2
(
εn+1θn−1 + an+1

√
1 − 4εn+1θn−1θn − a2

n+1θn

)
, n ≥ 1 .

We see that we can express both θn−1, θn and θn+1 in terms of tn and vn.
1All almost all statements in this paper are with respect to Lebesgue meausure λ.
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In [JJ] the approach for the RCF is based upon the (one-sided) shift operator (or Gauss
map) T : � → �, defined by

T (t) := 1

t
−
⌊

1

t

⌋
,

with � := [0, 1] \ Q, but especially on the natural extension of T , with the two-sided shift
operator T : �̄ → �̄, defined by

(5) T (t, v) :=
(

T (t),
1

v + a1

)
=
(

1

t
− a1,

1

v + a1

)
,

with �̄ := � × [0, 1].
In particular, we can show that

(tn, vn) = T n(t, 0) , n ≥ 0 .

Now the following theorem of Jager ([J]) is used:

THEOREM 2. The two-dimensional sequence (tn, vn), n = 1, 2, . . . , is for almost all
irrational x distributed over the unit square in the (t, v)-plane according to the density func-
tion d defined by

d(t, v) := 1

log 2
· 1

(1 + tv)2
.

For a proof of this theorem, see [DK], Lemma 5.3.11.
From Theorem 2 we derive that for every Borel measurable set A ⊆ �̄

AF(A) =
∫∫

A

1

log 2
· 1

(1 + tv)2
dt dv .

For convenience we will put aside normalizing factors such as 1
log 2 in our calculations and

will mostly use on the appropriate space the measure m, defined by

(6) m(A) :=
∫∫

A

1

(1 + tv)2
dt dv ,

processing the normalizing factor in the final stage of the calculations.
In [JJ] the (t, v)-plane is divided in vertical strips

Ra :=
(

1

a + 1
,

1

a

)
× [0, 1] , a = 1, 2, . . . ,

in each of which the measures of all areas corresponding to the six patterns are computed, by
applying Theorem 2. The asymptotic frequencies are found by summing all measures over
a. In the following sections we will show how to adopt this approach to the OCF and the
NICF, where the situation is more complicated. For convenience we will identify a pattern
P ∈ {A, . . . ,F}, with the region corresponding to this pattern. Throughout this paper, we
will use g := 1

2

√
5 − 1

2 = 0.6180 · · · and G := 1
2

√
5 + 1

2 = 1.6180 · · · as abbreviations of
the two golden means. Note that G = g + 1 and that g = 1

G
.
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2. The asymptotic frequencies in the case of the Optimal Continued Fraction. As
remarked above, we obtain the convergents pn/qn, n = 1, 2, 3, . . . , by truncating the infinite
continued fraction (1) expansion of a real irrational number x, so as to obtain good approxi-
mations of x. The approximation coefficients θn, n = 1, 2, 3, . . . , provide a way of measur-
ing the quality of the approximants. In [B], Wieb Bosma introduced the optimal continued
fraction as a continued fraction that is both fastest (i.e. having an expansion for which the
growth rate of the denominators is maximal) and closest (i.e. having expansions for which
sup {θk : θk = qk|qkx − pk|} is minimal).

Optimal as this fraction may be as to its approximating qualities, in [B, BK1] it is shown
that both the subset of R2, which we denote by ϒO , and the two-sided shift operator TO :
ϒO → ϒO of the ergodic system underlying the OCF are less accessible than those of the
RCF:

ϒO =
{
(t, v) ∈ (−1, 1) × (−1, 1) : v ≤ min

(
2t + 1

t + 1
,
t + 1

t + 2

)
and v ≥ max

(
0,

2t − 1

1 − t

)}
,

see also Figure 1, and

TO(t, v) :=
(∣∣∣∣1t

∣∣∣∣− a(t, v),
1

a(t, v) + sign(t)v

)

where

(7) a(t, v) :=

⎢⎢⎢⎢⎢⎣
∣∣∣∣1t
∣∣∣∣+

⌊∣∣∣∣1t
∣∣∣∣
⌋

+ sign(t)v

2

(⌊∣∣∣∣1t
∣∣∣∣
⌋

+ sign(t)v

)
+ 1

⎥⎥⎥⎥⎥⎦ .

It is not hard to see that TO works on ϒO in way similar to T on �̄ in the RCF case:

TO(t, v) =
(

ε1

t
− a1,

1

ε1v + a1

)
, and (tn, vn) = T n

O(t, 0) , n ≥ 0 .

In [BK1] it is shown that (ϒO,BϒO , μ̄ϒO ,TO) forms an ergodic system, with BϒO the
collection of Borel subsets of ϒO and μ̄ϒO the measure with density function

(8) dO(t, v) := 1

log G
· 1

(1 + tv)2 , for (t, v) ∈ ϒO .

In particular, we have that (apart from sets with Lebesgue measure 0) TO : ϒO → ϒO is
bijective and that μ̄ϒO is invariant under TO . In [BK1] the following version of Theorem 2
was obtained:

THEOREM 3. The two-dimensional sequence (tn, vn), n = 1, 2, . . . , is for almost all
irrational x distributed over ϒO according to the density function dO in (8).
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FIGURE 1. The domain of the OCF.

For more detailed information about the metric properties of the OCF, see for instance
[BK1].

From Theorem 3 we derive that for every Borel measurable set A ⊆ ϒO

(9) AFO(A) =
∫∫

A

1

log G
· 1

(1 + tv)2 dt dv .

The most important obstacle to following the approach taken in the case of the RCF is that a
’stripwise’ computation (with 1/an+1 < tn < 1/an, n = 1, 2, . . . ) is not possible, due to the
curved boundary of the domain of the natural extension of the OCF; see Figure 1. In view of
(7), an obvious solution of this problem is regarding curved regions for every an+1 = 2, 3, . . . .
For (t, v) ∈ ϒO , the sign of t is obvious. However, it is not easy to find the regions of ϒO

where the value of the digit a(t, v) is fixed using (7). We first will show that, apart from sets
of Lebesgue measure 0, for every (t, v) ∈ ϒO a unique integer a ≥ 2 exists for which

TO(t, v) =
(

ε

t
− a,

1

a + εv

)
=: (T , V ) ∈ ϒO ,

where ε = sign(t). We first consider the points (t, v) that are sent under TO to the boundary
of ϒO . Let (T , V ) ∈ ∂(ϒO), then we have the following three cases:

(1) (T , V ) satisfies V = 2T +1
1+T

. In this case we obviously have that

(α, β) :=
(

ε1

t
− a−1,

1

a+1 + εv

)
	∈ ϒO ,

since T −1 = ε1
t

− a−1 < − 1
2 . Now consider the point (α, β), given by

(α, β) :=
(

ε1

t
− a+1,

1

a−1 + εv

)
.
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In this case we have

β = 1

a + εv − 1
= 1

1
V

− 1
= 2α − 1

1 − α
;

i.e. (α, β) is on one of the other boundary curves of ϒO . We conclude that (t, v) ∈
ϒO was on the boundary of the regions where the digit is either equal to a or to a −1.

(2) (T , V ) satisfies V = 2T −1
1−T

. In this case we obviously have that

(α, β) :=
(

ε1

t
− a+1,

1

a−1 + εv

)
	∈ ϒO ,

since T +1 = ε1
t

− a+1 > 3
2 > g . Now consider the point (α, β), given by

(α, β) :=
(

ε1

t
− a−1,

1

a+1 + εv

)
.

In this case we have

β = 1

a + 1 + εv
= 1

1
V

+ 1
= 2T − 1

T
= 2α + 1

1 + α
;

i.e. (α, β) is on one of the other boundary curves of ϒO . Again we conclude that
(t, v) ∈ ϒO was on the boundary of the regions where the digit is either equal to a or
to a + 1.

(3) (T , V ) satisfies V = 1+T
2+T

. In this case we obviously have that

(α, β) :=
(

ε1

t
− a+1,

1

a−1 + εv

)
	∈ ϒO ,

since T + 1 ≥ g . Now consider the point (α, β), given by

(α, β) :=
(

ε1

t
− a−1,

1

a+1 + εv

)
.

In this case we have

β = 1

a + 1 + εv
= 1

1
V

+ 1
= 2 + T

3 + 2T
= α + 3

2α + 5
	∈ ϒO .

In this case the digit a was unique.

Now let (t, v) ∈ ϒO be such, that TO(t, v) ∈ Int(ϒO) (here Int(S) denotes the interior
of the set S). Then from the above it follows that we must have that

(α, β) :=
(

ε1

t
− a ± 1,

1

a ∓ 1 + εv

)
	∈ ϒO ,

so we must have that a = a(t, v), i.e.

a =

⎢⎢⎢⎢⎢⎣
∣∣∣∣1t
∣∣∣∣+

⌊∣∣∣∣1t
∣∣∣∣
⌋

+ sign(t)v

2

(⌊∣∣∣∣1t
∣∣∣∣
⌋

+ sign(t)v

)
+ 1

⎥⎥⎥⎥⎥⎦ .



292 J. JONGE AND C. KRAAIKAMP

FIGURE 2. The map of the leftmost corner of ϒO applying TO.

In the regular case, the value of an+1 depends on tn only, but in the optimal case it
depends on both tn and vn. We want to know how to determine the curves between which
an+1 is constant, given tn and vn. For convenience, we will generally omit the indices n for t

and v and n + 1 for a in what follows. We start in the leftmost corner of ϒO , where a = 2,
εn+1 = −1 and εn+2 = +1. So

(10) TO(t, v) =
(−1

t
− 2,

1

2 − v

)
(a = 2, εn+1 = −1, εn+2 = +1) .

The left boundary is given by
(
t, 2t+1

t+1

)
, for t between − 1

2 and −g2, which TO maps to the

curve (T , V ) =
(

−1
t

− 2, 1

2− 2t+1
t+1

)
=
(−1

t
− 2, t + 1

)
, which we can write as

(
T , T +1

T +2

)
,

for T between 0 and g . The horizontal line segment with v-coordinate 0 is mapped to the
horizontal line segment with V -coordinate 1

2 . We now determine the right boundary, denoted
by r−2 = r−2(t), such that r−2 is mapped to the upper right boundary of ϒO . Applying (10),

we want to be able to write
(−1

t
− 2, 1

2−r−2(t)

)
as
(
T , 2T −1

1−T

)
. A straightforward calculation

yields r−2(t) = 13t+5
5t+2 (see Figure 2).

This procedure is easily copied to the rightmost side of ϒO . This time we have a = 2,
εn+1 = εn+2 = +1. Now

(11) TO(t, v) =
(

1

t
− 2,

1

2 + v

)
(a = 2, εn+1 = εn+2 = 1) .

The right boundary is given by
(
t, 2t−1

1−t

)
, for t between 1

2 and g , which TO maps to
(
T , T +1

T +2

)
,

for T between −g2 and 0. The upper boundary is part of
(
t, t+1

t+2

)
, its rightmost point being

(g, g), which is mapped to
(
T , 2T +5

5T +13

)
, with leftmost point on T = −g2. We now determine
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FIGURE 3. The map of the rightmost strip applying TO.

FIGURE 4. The alternating character of the map TO.

the left boundary, denoted by l2 = l2(t), such that l2 is mapped to
(
T , 2T −1

1−T

)
. Applying

(11), we want to be able to write
(

1
t

− 2, 1
2+l2(t)

)
as
(
T , 2T −1

1−T

)
. We find l2(t) = 13t−5

2−5t
; see

Figure 3.
Proceeding similarly, we establish formulas for all combinations of a = 3, 4, . . . , εn+1

and εn+2. We remark that the boundary between two regions with equal a and εn+1 are
separated by the line t = εn+1

a
, where

r−a(t) = (2a2 + 2a + 1)t + 2a + 1

(2a + 1)t + 2

and

la(t) = −(2a2 + 2a + 1)t + 2a + 1

(2a + 1)t − 2
.

We conclude that TO maps vertical regions from the left and the right side of ϒO alternately
to horizontal regions from the top of ϒO downwards; see Figure 4.

In Figure 4 we have not yet processed the value of εn+2, which is indispensable for
determining the six patterns. In Figure 5, confining ourselves to the leftmost part of ϒO , we
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FIGURE 5. The six patterns for εn+1 = −1.

show how the six patterns are spread out over ϒO , for a = 2, 3, . . . . We have filled the regions
with different shades of grey, such that pattern A has the lightest shade and F has the darkest.
Now that we have established a way of dividing ϒO in regions where a, εn+1 and εn+2 are
constant, we will show how we compute the measure of all regions. From the relations (2),
(3) and (4) we derive for each of the four possible ordered sign tuples (εn+1, εn+2) the three
curves that establish the six patterns. In each strip, that is, for every a ≥ 2, we will now
draw the curves that divide the strip in regions that correspond with the patterns A through
F , for which we will use the table on the next page. Recall that for convenience we use
t := tn, v := vn and a := an+1. Finally, in Figure 6 we have a generic situation for the
patterns: we know the values of εn+1 and εn+2 (which in Figure 6 is −1 for both of them) and
all patterns actually occur, which is not the case in the leftmost and the rightmost regions. In
Figure 6 we have indicated the formulas belonging to the curves drawn and some noteworthy
values of t . For convenience, we have omitted the coordinates of most intersection points,
which are a bit lenghty in some cases. For instance, the t-coordinate of the intersection of

v = (2a2−2a+1)t+2a−1
(2a−1)t+2 (which is actually ra−1) and v = −t is

(12)

√
4a4 − 8a3 + 4a + 5 − (2a2 − 2a + 3)

4a − 2
·

The calculation of the measure of areas such as Ca involves computing the sum of two double
integrals, the limits of which are expressions such as (12). Computing the measures of all
pattern regions for all four cases would obviously be very tedious and demanding, and there-
fore it is convenient that several areas prove to have the same measure. As in [JJ], we use a
composed operator, which in the case of εn+1 = −1 is

S−
O := R−TO ,
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(εn+1, εn+2) (−1,−1) (−1, 1) (1,−1) (1, 1)

θn−1 = θn v = −t v = −t v = t v = t

θn−1 = θn+1 v = a + 1
t v = a2t+a

at+2 v = a2t−a
−at+2 v = −a + 1

t

θn = θn+1 v = (a2−1)t+a
at+1 v = (a2+1)t+a

at+1 v = (−a2+1)t+a
at−1 v = (a2+1)t−a

−at+1

θn−1 = θn = θn+1 t = −a+
√

a2−4
2 t = −a2−2+

√
a4+4

2a
t = 2−a2+

√
a4+4

2a
t = −a+

√
a2+4

2

TABLE 1. The curves and their intersection per sign tuple.

FIGURE 6. The six regions for εn+1 = εn+2 = −1.

R− being the reflection

R−(t, v) = (−v,−t) .

This operator S−
O is an involution that is measure-preserving with respect to the measure m in

(6). We will show how S−
O works on the regions shown in Figure 6, where εn+2 = −1 holds

as well. We have (leaving the computations to the reader)

(13)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

S−
O {(t, v) : v = 1

t
+ a)} = {(t, v) : v = 1

t
+ a)} ;

S−
Or−(a−1) = {(t, v) : v = t+1

t+2 } ;
S−

O {(t, v) : v = 0} = {(t, v) : t = − 1
a
} ;

S−
O {(t, v) : v = −t} = {(t, v) : t = (a2−1)t+a

at+1 } .
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For X ∈ {A, . . . ,F}, we set X ε1/ε2
a = {(x, y) ∈ X | a1(x) = a, ε1(x) = ε1, ε2(x) = ε2}.

Now, using (13), we easily derive the following (while εn+1 = εn+2 = −1):

(14)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

m(A−/−
a ) = m(F−/−

a ) ;
m(B−/−

a ) = m(E−/−
a ) ;

m(C−/−
a ) = m(D−/−

a ) ;
m(A−/−

a ∪ B−/−
a ∪ C−/−

a ) = m(D−/−
a ∪ E−/−

a ∪ F−/−
a ) .

This is exactly what was found in the case of the RCF. We note, however, that at this place
we are only dealing with the situation εn+1 = εn+2 = −1, while in the case of the RCF one
always has εn+1 = εn+2 = 1. Still, we can confine ourselves to computing three relatively
easy measures, say m(C−/−

a ), m(E−/−
a ) and m(D−/−

a ∪ E−/−
a ∪ F−/−

a ).
We have (in the case εn+1 = εn+2 = −1, a ≥ 4)

m(C−/−
a ) =

−a+
√

a2−2a+2
a−1∫

√
4a4−8a3+4a+5−(2a2−2a+3)

4a−2

(2a2−2a+1)t+2a−1
(2a−1)t+2∫

−t

dt dv

(1 + tv)2 +
−a+

√
a2−4

2∫
−a+

√
a2−2a+2

a−1

1
t
+a∫

−t

dt dv

(1 + tv)2 ,

which is

1

2

(
log

√
4a4 − 8a3 + 4a + 5 + 2a2 − 2a − 1

2
+ log

a − √
a2 − 4

2

+ log
(√

a2 − 2a + 2 − a + 1
))

and can be written as

1

2
log

√
(2a2 − 2a − 1)2 + 4 + 2a2 − 2a − 1

(a + √
a2 − 4)

(√
(a − 1)2 + 1 + a − 1

) ·

Then,

m(E−/−
a ) =

−1
a∫

−a+
√

a2−4
2

−t∫
1
t
+a

dt dv

(1 + tv)2 = 1

2
log

a − √
a2 − 4

2
+ 1

2
log

a2 − 1

a
·

Finally,

m(D−/−
a ∪ E−/−

a ∪ F−/−
a ) =

−1
a∫

−a+
√

a2−2a+2
a−1

t+1
t+2∫

1
t
+a

dt dv

(1 + tv)2

= 1

2
log

2a2 − 2a + 1

a
+ 1

2
log
(√

(a − 1)2 + 1 − (a − 1)
)
.
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Applying (14), we find for εn+1 = εn+2 = −1 and a ≥ 4:

(15)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

m(A−/−
a ) = m(F−/−

a ) = 1
2 log

(2a2−2a+1)
(
a
√

a2−4+a2−2
)

(a2−1)
(√

(2a2−2a−1)2+4+(2a2−2a−1)
) ;

m(B−/−
a ) = m(E−/−

a ) = 1
2 log a−

√
a2−4

2 + 1
2 log a2−1

a
;

m(C−/−
a ) = m(D−/−

a ) = 1
2 log

√
(2a2−2a−1)2+4+2a2−2a−1

(a+
√

a2−4)
(√

(a−1)2+1+a−1
) ·

We remark that although for a = 3 patterns C−/−
a and D−/−

a do not occur, the formula in (15)
still holds, for it gives m(C−/−

a ) = m(D−/−
a ) = 0.

In the case that εn+1 = εn+2 = 1, the approach is completely analogous, including the
use of

S+
O := R+TO ,

R+ being the reflection

R+(t, v) = (v, t) ,

instead of S−
O . In this case we find, for a ≥ 3,

(16)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

m(A+/+
a ) = m(F+/+

a ) = 1
2 log

(
a2+2+a

√
a2+4

)
(2a2+2a+1)

(a2+1)
(

2a2+2a+3+
√

(2a2+2a+3)2−4
) ;

m(B+/+
a ) = m(E+/+

a ) = 1
2 log

√
a2+4−a

2 + 1
2 log a2+1

a
;

m(C+/+
a ) = m(D+/+

a ) = 1
2 log 2a2+2a+3+

√
(2a2+2a+3)2−4(√

a2+4+a
)(√

(a+1)2+1+(a+1)
) ·

In the cases where εn+1 · εn+2 = −1, we get hold of the six patterns with a mixture of S−
O and

S+
O :

(17)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

S+
O(A−/+

a ) = F+/−
a ; S−

O(F+/−
a ) = A−/+

a ;
S+

O(B−/+
a ) = E+/−

a ; S−
O(E+/−

a ) = B−/+
a ;

S+
O(C−/+

a ) = D+/−
a ; S−

O(D+/−
a ) = C−/+

a ;
S+

O(D−/+
a ) = C+/−

a ; S−
O(C+/−

a ) = D−/+
a ;

S+
O(E−/+

a ) = B+/−
a ; S−

O(B+/−
a ) = E−/+

a ;
S+

O(F−/+
a ) = A+/−

a ; S−
O(A+/−

a ) = F−/+
a ,
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FIGURE 7. The four deviant regions, where a = 2 and εn+1 · εn+2 = −1.

and we find, for a ≥ 3,

(18)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

m(A−/+
a ) = m(F+/−

a ) = 1
2 log

(√
a4+4−a2

)
(a2+1)

(2a2+2a+1)
(√

(2a2+2a−1)2+4−(2a2+2a−1)
) ;

m(B−/+
a ) = m(E+/−

a ) = 1
2 log a2+2+

√
a4+4

2(a2+1)
;

m(C−/+
a ) = m(D+/−

a ) = 1
2 log

(
a2−2+

√
a4+4

)(
a2+a+1+(a+1)

√
a2+1

)
a2
(√

(2a2+2a−1)2+4+(2a2+2a−1)
) ;

m(D−/+
a ) = m(C+/−

a ) = 1
2 log

(
a2+2+

√
a4+4

)(
a2−a+1+(a−1)

√
a2+1

)
a2
(

2a2−2a+3+
√

(2a2−2a+3)2−4
) ;

m(E−/+
a ) = m(B+/−

a ) = 1
2 log a2−2+

√
a4+4

2(a2−1)
;

m(F−/+
a ) = m(A+/−

a ) = 1
2 log

(√
a4+4−a2

)
(a2−1)

(2a2−2a+1)
(

2a2−2a+3−
√

(2a2−2a+3)2−4
) ·

We are almost able to give the total sum measure of all the six patterns. To actually do so, we
have yet to compute the measures of the regions in the leftmost and the rightmost part of ϒO ,
where a = 2. In the case εn+1 = εn+2 = 1, we can apply the formulas of (16). In the case
εn+1 · εn+2 = −1, the patterns C and D do not occur. In fact, on the left side we only have A
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and B and on the right side we only have E and F , which can be mutually mapped onto each
other as in (17); see Figure 72. To compute their measures, we apply the formulas in (18).

Now we can compute the total sum measures of all regions:

PATTERNS A AND F :

m(A) = m(F) = m(A−/+
2 ) + m(A+/+

2 ) +
∞∑

a=3

m(A−/−
a ) + m(A−/+

a ) + m(A+/−
a ) + m(A+/+

a )

= 1
2 log

3 + √
5

2
+ 1

2 log
5

13
+ 1

2 log
13(6 + 4

√
2)

5(15 + √
221)

+
∞∑

a=3

(
1

2
log

(
2a2 + 2a − 1 +

√
4a4 + 8a3 − 4a + 5

)(
2a2 − 2a + 3 +

√
4a4 − 8a3 + 16a2 − 12a + 5

)
2
(
2a2 − 2a − 1 +

√
4a4 − 8a3 + 4a + 5

)(
2a2 + 2a + 3 +

√
4a4 + 8a3 + 16a2 + 12a + 5

)
+ 1

2
log

(
a
√

a2 − 4 + a2 − 2
)(

a
√

a2 + 4 + a2 + 2
)

(
a4 + 2 + a2

√
a4 + 4

)
)

.

Applying the principle of telescoping series, we can reduce this to

1

2
log
(
3 + 2

√
2
)+ 1

2
log
(√

5 − 2
)

+
∞∑

a=3

1

2
log

(
a
√

a2 − 4 + a2 − 2
)(

a
√

a2 + 4 + a2 + 2
)

2
(
a4 + 2 + a2

√
a4 + 4

) ,

and finally to

log
(√

2 + 1
)− 1

2
log G3 +

∞∑
a=3

log

(
a + √

a2 − 4
)(

a + √
a2 + 4

)
2
(
a2 + √

a4 + 4
) ,

which can be simplified further to

3

2
log G +

∞∑
a=2

log

(
a + √

a2 − 4
)(

a + √
a2 + 4

)
2
(
a2 + √

a4 + 4
) .

In order to facilitate numerical computations, we write

3

2
log G +

∞∑
a=2

log

(
1 +

√
1 − 4

a2

) (
1 +

√
1 + 4

a2

)
2
(

1 +
√

1 + 4
a4

) .

PATTERNS B AND E :

m(B) = m(E) = m(B−/+
2 ) + m(B+/+

2 ) +
∞∑

a=3

m(B−/−
a ) + m(B−/+

a ) + m(B+/−
a ) + m(B+/+

a )

= 1

2
log

(
3 + √

5

5

)
+ 1

2
log
(√

2 − 1
)

+ 1

2
log

5

2

2For visual purposes, we used different scaling for the left part and the right of ϒO , as a result of which not
everything seems to fit.
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+
∞∑

a=3

1

2
log

2
(
a2 + √

a4 + 4
)

(
a + √

a2 − 4
)(

a + √
a2 + 4

) ,
shortly

1

2
log G2 + 1

2
log
(√

2 − 1
)

+
∞∑

a=3

1

2
log

2
(
a2 + √

a4 + 4
)

(
a + √

a2 − 4
)(

a + √
a2 + 4

) ,

which can be simplified further to

−1

2
log G +

∞∑
a=2

1

2
log

2
(
a2 + √

a4 + 4
)

(
a + √

a2 − 4
)(

a + √
a2 + 4

) or

−1

2
log G +

∞∑
a=2

1

2
log

2
(

1 +
√

1 + 4
a4

)
(

1 +
√

1 − 4
a2

) (
1 +

√
1 + 4

a2

) .

PATTERNS C AND D:

m(C) = m(D) = m(C+/+
2 ) +

∞∑
a=3

m(C−/−
a ) + m(C−/+

a ) + m(C+/−
a ) + m(C+/+

a )

=
∞∑

a=3

⎛
⎝1

2
log

(
2a2 − 2a − 1 +

√
4a4 − 8a3 + 4a + 5

)(
2a2 + 2a + 3 +

√
4a4 + 8a3 + 16a2 + 12a + 5

)
(

2a2 + 2a − 1 +
√

4a4 + 8a3 − 4a + 5
)(

2a2 − 2a + 3 +
√

4a4 − 8a3 + 16a2 − 12a + 5
)

+ 1

2
log

2
(
a2 +

√
a4 + 4

)(
2a2 + 1 + 2a

√
a2 + 1

)
(
a +

√
a2 − 4

) (
a +

√
a2 + 4

)(
a + 1 +

√
a2 + 2a + 2

)(
a − 1 +

√
a2 − 2a + 2

)
⎞
⎠

+ 1

2
log

15 + √
221

2
+ 1

2
log
(√

10 − 3
)

+ 1

2
log
(√

2 − 1
)

.

Again applying the principle of telescoping series, we can reduce this to

1

2
log G2 + 1

2
log
(√

2 − 1
)+ ∞∑

a=3

1

2
log

2
(
a2 + √

a4 + 4
)

(
a + √

a2 − 4
)(

a + √
a2 + 4

) ,

which can be simplified further to

−1

2
log G +

∞∑
a=2

1

2
log

2
(
a2 + √

a4 + 4
)

big(a + √
a2 − 4

)(
a + √

a2 + 4
) or

−1

2
log G +

∞∑
a=2

1

2
log

2
(

1 +
√

1 + 4
a4

)
(

1 +
√

1 − 4
a2

) (
1 +

√
1 + 4

a2

) ,

being the same as for patterns B and E .
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All we have to do to find the asymptotic frequencies for the six patterns A through F
is dividing these expressions by the normalising constant 1

log G
from (9) and rendering these

numerically3. We have now proved the following theorem:

THEOREM 4. For the optimal continued fraction, the asymptotic frequencies of the six
patterns of three consecutive approximation constants are given by

AFO(A) = AFO(F) = 3

2
+ 1

log G

⎛
⎜⎝ ∞∑

a=2

log

(
1 +

√
1 − 4

a2

) (
1 +

√
1 + 4

a2

)
2
(

1 +
√

1 + 1
a4

)
⎞
⎟⎠

≈ 0.160377 . . . ;
AFO(B) = AFO(C) = AFO(D) = AFO(E)

= −1

2
+ 1

2 log G

⎛
⎜⎝ ∞∑

a=2

log
2
(

1 +
√

1 + 4
a4

)
(

1 +
√

1 − 4
a2

) (
1 +

√
1 + 4

a2

)
⎞
⎟⎠

≈ 0.169811 . . . .

We conclude that, similar to the case of the RCF, the OCF has only two different values
for the asymptotic frequencies of the six patterns, similarly divided over these patterns, but
mutually differing considerably less than in the case of the RCF (where these values are
0.12109 . . . and 0.18945 . . . ).

3. The asymptotic frequencies in the case of the Nearest Integer Continued Frac-
tion. Like the OCF, the NICF is an example of a continued fraction with better approxima-
tion properties than those of the regular one. Although the NICF is merely fastest (and not
closest), it is a continued fraction that is much studied; see for instance [WB] and [W]. As with
the OCF, the convergents of the NICF and the OCF form a subsequence of the sequence of the
RCF-convergents. It can be obtained from the RCF by a singularization process concerning
all partial quotients with value 1 ([K1]), yielding a continued fraction [a0; ε1a1, ε2a2, . . . ]
that – in the case of the NICF – satisfies

εn ∈ {−1, 1}, n ≥ 1 ; a0 ∈ Z ; an ≥ 2, n ≥ 1 ; εn+1 + an ≥ 2 , n ≥ 1 .

The NICF of an x ∈ R \Q can also be obtained directly, by an algorithm explaining the name
of this continued fraction. We remark that for α ∈ (− 1

2 , 1
2 ) \ {0} the expression

⌊ 1
α

+ 1
2

⌋
is

the rounding of 1
α

+ 1
2 to its nearest integer, the absolute value of which is at least 2. It is also

this expression in the NICF operator τ : (− 1
2 , 1

2 ) → (− 1
2 , 1

2 ) that yields the partial quotients
an of the NICF, where

τ (t) := ε

t
−
⌊

ε

t
+ 1

2

⌋
, t 	= 0; τ (0) := 0,

with ε being the sign of t .

3For obtaining numerical values we used Mathematica from WolframAlpha.
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The values of εn and an, n ≥ 1, are determined by repeated application of this operator:

εn = sgn
(
τn−1(t)

)
and an =

⌊
εn

τn−1(t)
+ 1

2

⌋
,

provided τn−1(t) 	= 0 – which is always true in the case of t ∈ R \ Q.
Now put �N := [− 1

2 , 1
2 ] \ Q and let [0; ε1a1, ε2a2, . . . ] be the NICF expansion of

t ∈ �N .
We define

ρ(t) :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1

log G
· 1

G + t
, 0 ≤ t ≤ 1

2

1

log G
· 1

G + t + 1
, − 1

2 ≤ t < 0

.

Let μ be the measure with density function ρ. Then (�N,μ, τ) forms an ergodic system, as
was proved by G. J. Rieger ([Ri]) and A. M. Rockett ([Ro]).

For our investigation we use the natural extension of τ , which is the same as the one of
the OCF, but defined on a different domain:

TN(t, v) :=
(

τ (t),
1

ε1v + a1

)
=
(

ε1

t
− a1,

1

ε1v + a1

)
,

where

(t, v) ∈ ϒN := [− 1
2 , 0] \ Q × [0, g2] ∪ [0, 1

2 ] \ Q × [0, g] ;
see Figure 8. This natural extension domain was first obtained by H. Nakada ([N]), who
showed that (ϒN,BϒN , μ̄ϒN ,TN) forms an ergodic system, where the TN -invariant proba-
bility measure μ̄ϒN has density function

dN(t, v) := 1

log G
· 1

(1 + tv)2
1ϒN (t, v) .

Note that projecting this measure on the first coordinate axis yields a τ -invariant probability
measure with Rieger’s density function ρ; see also [K1]. As in the case of the OCF, we have
to deal with εn+1 and εn+2, yielding four different cases. At first, it seems convenient that
we can take the approach from the RCF by regarding vertical strips in the (t, v)-plane. These
strips R

εn+1/εn+2
a , defined below, are determined by the values of εn+1 and εn+2 and an+1,

about which we remark that

T n
N (t, 0) ∈ R

εn+1/εn+2
a ⇔ an+1 = a, n ≥ 0 .

We define

R
−/−
a :=

(
− 2

2a − 1
, − 2

2a

)
× [0, g2] , a = 3, 4, 5, . . .

R
−/+
a :=

(
− 2

2a
, − 2

2a + 1

)
× [0, g2] , a = 2, 3, 4, . . .
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FIGURE 8. The strips R
∗/∗
a .

R
+/−
a :=

(
2

2a
, 2

2a − 1

)
× [0, g] , a = 3, 4, 5, . . .

R
+/+
a :=

(
2

2a + 1
, 2

2a

)
× [0, g] , a = 2, 3, 4, . . .

In Figure 8 we have drawn these strips in the (t, v)-square. Note that g ≈ 0.618 and g2 ≈
0.382. Also, εn+1 = −1 implies t < 0 and an ≥ 3, from which follows v < g2. Secondly,
εn+2 = −1 implies a = an+1 ≥ 3, and therefore |t| < 2

5 .
An important difference with the regular case is that the measure of each region is not

given by one formula for every a for which the patterns exist. As we can see in Figure 9, in
both R

−/+
2 and R

−/−
3 not all patterns are present. In Figures 10 and 11, we have filled all

regions according to the same pattern with the same shade of grey, where – similar to the case
of the OCF – darker shades correspond with ascending alphabetical order from A to F .

In the case of the patterns C and D it is only from a = 6 on that the same formula holds
for every value of a. This absence of one formula for every a is connected with the inutility
of measure-preserving maps within the strips, from which the clear distribution of asymptotic
frequencies was derived, in case of the RCF in [JJ] and in the case of the OCF in the previous
sections. Actually, if both regions would have 0 ≤ v ≤ 1

2 instead of 0 ≤ v ≤ g2 (in the case
εn+1 = −1) and 0 ≤ v ≤ g (in the case εn+1 = 1), we could have applied the same maps
for R

−/−
a and R

+/+
a as in the regular and the optimal case. But even then we would still have

to deal with the less ‘convenient’ two other strips. There is not much we can do but calculate
the measure for each region in the most exterior strips and then find general formulas for the
regions in all other strips.
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FIGURE 9. The curves dividing the regions of the patterns A through F .

FIGURE 10. The patterns A through F for εn+1 < 0.

4. The measures of the six patterns of the NICF. For the frequencies of the patterns
A through F that we are investigating, we define

X :=
∞⋃

a=2

Xa, X = A, . . . ,F .
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FIGURE 11. The patterns A through F for εn+1 > 0.

A major complication in trying to determine a clear expression for the sum of the measures
of all regions belonging to each pattern, is that quite a lot of different smaller expressions
are involved, among which three different square root arguments, as we have seen in Table 1.
In this section we wil evaluate these measures for each pattern separately. The calculations
involve laborious double integrals that we will mostly omit. In establishing the formulas
below, however, it is interesting to see how some terrifying expressions can be reduced using
basic calculus. We come across expressions such as (in case A)

1

2
log
(
a6 + a4 + 4a2 + 4− (a4 + a2 + 2)

√
a4 + 4

)
−1

2
log
(
−a4− 4 + (a2 + 2)

√
a4 + 4

)
,

which at first seem hard to handle. Applying long division and some other basic techniques,
though, we can reduce this to

1

2
log

−a2 + √
a4 + 4

2
.

It is in fact possible to evaluate the sum measures for four patterns as more or less well-
arranged expressions of a definite form; for the patterns C and D a bit too many terms are
involved. To find the asymptotic frequency of each pattern, we merely have to divide these
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measures by the normalizing constant, that is by

m(ϒN) =
0∫

− 1
2

g2∫
0

dt dv

(1 + tv)2 +
1
2∫

0

g∫
0

dt dv

(1 + tv)2 = log G .

Unfortunately but not unexpectedly, the attractive conciseness of the regular case will not be
reached, and we shall see that the asymptotic frequencies are different in all six cases.

4.1. Pattern A. There are two regions of pattern A, in the strips R
+/+
2 and R

−/−
3 ,

with deviant measures, that is, not computable with the formulas for all other strips stated
below. These measures are log(

√
2+1)+ 1

2 log 5
29 and 1

2 log(7
√

5−15)+ log 5
4 , respectively.

The measures of all other A-regions can be expressed as functions of an+1 or shortly a, for
a ≥ 3, as in the previous section. These are

R
−/−
a , a ≥ 4 : 1

2
log

(2a − 1)2

((2a − 1)2 − 4)(a2 − 1)
− log

a − √
a2 − 4

2
;

R
−/+
a , a ≥ 3 : 1

2
log

((2a + 1)2 − 4)(a2 + 1)

(2a + 1)2 +1

2
log

−a2 + √
a4 + 4

2
;

R
+/−
a , a ≥ 3 : 1

2
log

((2a − 1)2 + 4)(a2 − 1)

(2a − 1)2 +1

2
log

−a2 + √
a4 + 4

2
;

R
+/+
a , a ≥ 3 : 1

2
log

(2a + 1)2

((2a + 1)2 + 4)(a2 + 1)︸ ︷︷ ︸
part I

− log
a − √

a2 + 4

2
.︸ ︷︷ ︸

part II

A close inspection of the factors in the arguments of the logarithms in part I unfolds that
all terms in part I are mutually canceled, except for the one of R

+/−
3 , the canceling term

of which would be found partly in R
+/+
2 and partly in R

−/−
3 . This yields a measure of

1
2 log 29·8

25 . If we now sum all terms of both parts from a = 3, we mistakenly add a ‘vir-

tual’ − 1
2 log 32−2−3

√
32−4

2 from R
−/−
3 that we have to cancel by adding 1

2 log 7−3
√

5
2 . Finally,

summing up to a = n, we should add the value 1
2 log(n2 + 4n− 3)− 1

2 log(n2 + 4n+ 5) from

R
−/+
n and R

+/+
n that has by then not yet been canceled by the corresponding terms in R

−/−
n+1

and R
+/−
n+1 . However, limn→∞ 1

2 log(n2 +4n−3)− 1
2 log(n2 +4n+5) = 0, so for the infinite

summation this makes no difference. So far, having summed the aforementioned constants,
we have found the sum measure of the regions A to be:

(19)
1

2
log

235
√

5 − 525

2
+ log(

√
2 + 1) +

∞∑
a=3

(expressions in part II) .

The final step in getting hold of the sum measure is reducing the sum of the four expressions

in part II, which turns out to be log

(
1+
√

1− 4
a2

)(
1+
√

1+ 4
a2

)
2
(

1+
√

1+ 4
a4

) . This means that we can write (19)
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as

(20)
1

2
log

235
√

5 − 525

2
+ log

⎛
⎜⎝(

√
2 + 1)

∞∏
a=3

(
1 +

√
1 − 4

a2

) (
1 +

√
1 + 4

a2

)
2
(

1 +
√

1 + 4
a4

)
⎞
⎟⎠ .

Unfortunately, we cannot but give a numerical approximation for this expression, which is
0.08122410 . . . . Dividing this by the normalizing constant, log G, we find

AFN(A) = 0.168790 . . . .

4.2. Pattern B. There is one region of pattern B, in the strip R
−/+
2 , with a deviant

(see 4.1) measure, which is 1
2 log 26

25 . The measures of all other B-regions can be expressed as
functions of a. These are

R
−/−
a , a ≥ 3 : 1

2
log

(
a − 1

a

)
+ 1

2
log

a − √
a2 − 4

2
;

R
−/+
a , a ≥ 3 : −1

2
log

(
a + 1

a

)
+ 1

2
log

a2 + 2 + √
a4 + 4

2a
;

R
+/−
a , a ≥ 3 : −1

2
log

(
a − 1

a

)
+ 1

2
log

a2 − 2 + √
a4 + 4

2a
;

R
+/+
a , a ≥ 2 : 1

2
log

(
a + 1

a

)
︸ ︷︷ ︸

part I

+1

2
log

−a + √
a2 + 4

2
.︸ ︷︷ ︸

part II

It appears that in part I all terms are mutually canceled, except for R
+/+
2 , where we also

have to take the corresponding value in part II into account, yielding the sum value 1
2 log 5 −

1
2 log 2 + 1

2 log(
√

2 − 1) = 1
2 log 5

√
2−5
2 . Adding this number to the aforementioned 1

2 log 26
25 ,

we find the sum measure of the regions B to be:

(21)
1

2
log

13
√

2 − 13

5
+

∞∑
a=3

(expressions in part II) .

We can write the sum of the four expressions in part II as 1
2 log

2
(

1+
√

1+ 4
a4

)
(

1+
√

1− 4
a2

)(
1+
√

1+ 4
a2

) . This

means that we can write (21) as

(22)
1

2
log

⎛
⎜⎝13

√
2 − 13

5

∞∏
a=3

2
(

1 +
√

1 + 4
a4

)
(

1 +
√

1 − 4
a2

) (
1 +

√
1 + 4

a2

)
⎞
⎟⎠ .

A numerical approximation for this expression is 0.07825923 . . . . Dividing this by the nor-
malizing constant, we find

AFN(B) = 0.162629 . . . .
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4.3. Pattern C. There is one region of pattern C, in the strip R
−/+
3 , with deviant (see

4.1) measure, which is 1
2 log(7 + √

85) + 1
2 log 5

81 . The measures of all other C-regions can
be expressed as generic functions only from a ≥ 6. These are

R
−/−
a , a ≥ 4 :

1

2
log

(2a − 1)2 − 4

(2a + √
5 − 4)2

+ log(a + √
5 − 3) + log a−

√
a2−4

2

2
;

R
−/+
a , a ≥ 4 :

1

2
log

(2a + √
5 − 2)2

(2a + 1)2 − 4
− log

(
a2 + (

√
5 − 3)a + 7 − 3

√
5
)− log a2−2+

√
a4+4

2

2
;

R
+/−
a , a ≥ 6 :

− 1

2
log((2a − 1)2 + 4) +

log
(

4 − 4
a

+ 2
a2

)
+ log a2+2+

√
a4+4

2

2
;

R
+/+
a , a ≥ 2 :

1

2
log((2a + 1)2 + 4)︸ ︷︷ ︸

part I

− log(4a + 4) − log −a+
√

a2+4
2

2
.︸ ︷︷ ︸

part II

Unfortunately, we also have to deal with

R
+/−
a , a ∈ {3, 4, 5} : −1

2
log((2a − 1)2 + 4)︸ ︷︷ ︸

part I

+
log (2a+√

5−2)2

a2+(
√

5−1)a+3−√
5

+ log a2+2+
√

a4+4
2

2
.︸ ︷︷ ︸

part II

Both parts make the computations for pattern C more troublesome than for A and B. Luck-
ily, in part I all terms, including those for a ∈ {3, 4, 5}, are mutually canceled, except for
1
2 log 45

21+8
√

5
in R

−/−
4 when we sum the terms of both parts from a = 4. This summation

seems the most convenient in the sense of restricting the number of loose constants to be
summed separately. Still, there are too many of those to write them sensibly as one logarithm.
They are:

from R
+/−
a : − 1

2
log(2

√
5 + 9), −1

2
log(3

√
5 + 15),

− 1

2
log(4

√
5 + 23), log(4 + √

5), log(6 + √
5) ,

log(8 + √
5),

1

2
log

11 + √
85

2
,

1

2
log

16

50
,

1

2
log

25

82
;

from R
+/+
a : − 1

2
log 12,

1

2
log(

√
2 − 1), −1

2
log 16,

1

2
log

√
13 − 3

2
.
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Summing all constants aforementioned yields a value of −1.90648232 . . . . Summing all
terms of both parts up to a = n, we should add the value

− 1
2 log(n2 + 4n − 3) + log(2n + √

5 − 2) + 1
2 log(n2 + 4n + 5)

from R
−/+
n and R

+/+
n that has by then not yet been canceled by the corresponding terms in

R
−/−
n+1 and R

+/−
n+1 . Note that limn→∞ 1

2 log(n2 + 4n− 3)− 1
2 log(n2 + 4n+ 5) = 0 (as used in

the case of pattern A), so we have to compute the sum of the terms of part II from a = 4 up
to n and log(2n + √

5 − 2) as n → ∞. It seems like we cannot write this as anything shorter
than

(23)

lim
n→∞

( n∑
a=4

1
2 log

(
1 +

√
5−3
a

) (
1 +

√
1 + 4

a4

) (
2 − 2

a
+ 1

a2

)
(

1 +
√

5−3
a

+ 7−3
√

5
a2

) (
1 +

√
1 − 4

a2

) (
1 +

√
1 + 4

a2

) (
1 + 1

a

)
+ log(2n + √

5 − 2)

)
,

which is 1.98689899 . . . . So we can approximate the sum measure of the C-regions by
1.98689899 . . .− 1.90648232 . . . ≈ 0.08041667. Dividing this by log G, we find

AFN(C) = 0.167112 . . . .

4.4. PatternD. Pattern D demands even more bothersome computations than pattern
C. There is also one region of pattern D, in the strip R

−/+
3 , with deviant (see 4.1) measure

1

2
log

(
3 − √

5
)(

21 + 8
√

5
)(

11 + √
85
)

600
,

which is 0.00057163 . . . . The measures of all other D-regions can be expressed as generic
expressions only from a ≥ 6. These are

R
−/−
a , a ≥ 4 :

1

2
log
(
a2 + (

√
5 − 3)a + 5

2 − 3
2

√
5
)− log(a + √

5 − 3) − log a−
√

a2−4
2

2
;

R
−/+
a , a ≥ 4 :

− 1

2
log
(
a2 + (

√
5 − 3)a + 9

2 − 3
2

√
5
)+ log

(
a2 + (

√
5 − 3)a + 7 − 3

√
5
)− log a2+2−

√
a4+4

2
2

;

R
+/−
a , a ≥ 6 :

1

2
log

(2a + √
5 − 2)2

a2 + (
√

5 − 1)a + 1
2 − 1

2

√
5

−
log
(

4 − 4
a + 2

a2

)
+ log −a2+2+

√
a4+4

2

2
;

R
+/+
a , a ≥ 2 :
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1

2
log

a2 + (
√

5 − 1)a + 5
2 − 1

2

√
5

(2a + √
5)2︸ ︷︷ ︸

part I

+ log(4a + 4) + log −a+
√

a2+4
2

2
.︸ ︷︷ ︸

part II

As in the case of pattern C, there are some deviant expressions namely

R
+/−
a , a ∈ {3, 4, 5} : 1

2
log

a2 + (
√

5 − 1)a + 3 − √
5

a2 + (
√

5 − 1)a + 1
2 − 1

2

√
5

− 1

2
log

−a2 + 2 + √
a4 + 4

2
.

Again, both parts make the computations more troublesome than for A and B. Luckily, in part
I almost all terms, including those for a ∈ {3, 4, 5}, are mutually canceled when we sum the
terms of both parts from a = 4. This summation seems the most convenient, similar to the
case of pattern A. The number of loose constants to be summed separately are:

from R
+/−
a : 1

2
log(2

√
5 + 9),

1

2
log(3

√
5 + 15),

1

2
log(4

√
5 + 23) ,

− 1

2
log

(
− 7

2
+ 1

2

√
85

)
,

1

2
log

50

16
,

1

2
log

82

25
;

from R
+/+
a : − log(4 + √

5), − log(6 + √
5), − log(8 + √

5),
1

2
log 12,

1

2
log 16,

1

2
log(

√
2 − 1),

1

2
log

(
9

2
+ 3

2

√
5

)
,

1

2
log

(
1

2

√
13 − 3

2

)
.

Summing all constants aforementioned yields a value of 2.03969322 . . . . Summing all terms
of both parts up to a = n, we should add the value

−1

2
log

(
n2 +(

√
5−1)n+ 1

2
− 1

2

√
5

)
− log(2n+√

5)+ 1

2
log

(
n2 +(

√
5−1)n+ 5

2
− 1

2

√
5

)

from R
−/+
n and R

+/+
n that has by then not yet been canceled by the corresponding terms in

R
−/−
n+1 , R

−/+
n+1 and R

+/−
n+1 . Note that limn→∞ − 1

2 log(n2 + (
√

5−1)n+ 1
2 − 1

2

√
5 )+ 1

2 log(n2 +
(
√

5 − 1)n + 5
2 − 1

2

√
5 ) = 0, so we have to compute the sum of the terms of part II from

a = 4 up to n and − log(2n+ √
5 ) as n → ∞. It seems like we cannot write this as anything

shorter than

(24)

lim
n→∞

( n∑
a=4

1
2 log

(
1 +

√
5−3
a

+ 7−3
√

5
a2

) (
1 +

√
1 + 4

a4

) (
4 + 4

a

)
(

1 +
√

5−3
a

) (
2 − 2

a
+ 1

a2

) (
1 +

√
1 − 4

a2

) (
1 +

√
1 + 4

a2

)
− log

(
2n + √

5
))

,

which is −1.95667971 . . . . We approximate the sum measure of the D-regions by 2.03969322
. . . − 1.95667971 = 0.08301351 . . . . Dividing this by log G, we find

AFN(D) = 0.172509 . . . .
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4.5. Pattern E . There is one region of pattern E , in the strip R
−/+
2 , with a deviant

(see 4.1) measure, which is log(3 + √
5) − 1

2 log 26. The measures of all other E-regions can
be expressed as functions of a. These are

R
−/−
a , a ≥ 3 : 1

2
log(a2 − 1) + 1

2
log

a − √
a2 − 4

2a
;

R
−/+
a , a ≥ 3 : −1

2
log(a2 − 1) + 1

2
log

a2 − 2 + √
a4 + 4

2
;

R
+/−
a , a ≥ 3 : −1

2
log(a2 + 1) + 1

2
log

a2 + 2 + √
a4 + 4

2
;

R
+/+
a , a ≥ 2 : 1

2
log(a2 + 1)︸ ︷︷ ︸

part I

+1

2
log

−a + √
a2 + 4

2a
.︸ ︷︷ ︸

part II

It appears that in part I all terms are mutually canceled, except for R
+/+
2 , where we also

have to take the corresponding value in part II into account, with the sum value 1
2 log 5 +

1
2 log(− 1

2 + 1
2

√
2). Adding this number to the aforementioned two constants, we find the sum

measure of the regions E to be:

(25)
1

2
log

35 + 15
√

5

26(
√

2 + 1)
+

∞∑
a=3

(expressions in part II) .

Attentive inspection of the four expressions in part II reveals that they have the same sum
value as part II of pattern B. This means that we can write (25) as

(26)
1

2
log

⎛
⎜⎝ 35 + 15

√
5

26(
√

2 + 1)

∞∏
a=3

2
(

1 +
√

1 + 4
a4

)
(

1 +
√

1 − 4
a2

) (
1 +

√
1 + 4

a2

)
⎞
⎟⎠ .

A numerical approximation for this expression, which is 0.08517144 . . . . Dividing this by
log G, we find

AFN(E) = 0.176993 . . . .

4.6. Pattern F . There is one region of pattern F , in the strip R
−/−
3 , with deviant (see

4.1) measures, which is 1
2 log(9

√
5 + 20) − 1

2 log 40.
The measures of all other F -regions can be expressed as functions of a. These are

R
−/−
a , a ≥ 4 : 1

2
log

(2a + √
5 − 3)2

(2a2 − 2)
(
2a2 + 2(

√
5 − 3)a + 5 − 3

√
5
) − log

a − √
a2 − 4

2
;

R
−/+
a , a ≥ 3 : 1

2
log

(2a2 − 2)
(
2a2 + 2(

√
5 − 3)a + 9 − 3

√
5
)

(2a + √
5 − 3)2

+ 1

2
log

−a2 + √
a4 + 4

2
;

R
+/−
a , a ≥ 3 : 1

2
log

(2a2 − 2)
(
2a2 + 2(

√
5 − 1)a + 1 − √

5
)

(2a + √
5 − 1)2

+ 1

2
log

−a2 + √
a4 + 4

2
;



312 J. JONGE AND C. KRAAIKAMP

R
+/+
a , a ≥ 2 : 1

2
log

(2a + √
5 − 1)2

(2a2 − 2)
(
2a2 + 2(

√
5 − 1)a + 5 − √

5
)︸ ︷︷ ︸

part I

− log
a − √

a2 + 4

2
.︸ ︷︷ ︸

part II

All terms in part I are mutually canceled. If we sum all terms of both parts from a = 3, we
have to add a corrective 1

2 log( 7
2 − 3

2

√
5 ) in R

−/−
3 , 1

2 log 8 in R
−/+
3 and of − 1

2 log(3−2
√

2 )−
1
2 log 5 in R

+/+
2 . Finally, summing up to a = n, we should add the value 1

2 (log(2n2 +2(
√

5−
1)n + 1 − √

5 ) − log(2n2 + 2(
√

5 − 1)n + 5 − √
5 ) from R

+/−
n and R

+/+
n that has by then

not yet been canceled by the corresponding terms in R
−/−
n+1 and R

−/+
n+1 . However, as limn→∞,

this difference approaches 0, so for the infinite summation this makes no difference. So far,
having summed the aforementioned constants, we have found the sum measure of the regions
F to be:

(27)
1

2
log

(
5 + 3

√
5
)(

3 + 2
√

2
)

50
+

∞∑
a=3

(expressions in part II) .

It appears that part II is completely the same as part II of pattern A, and we can write (27) as

(28)
1

2
log

5 + 3
√

5

50
+ log

⎛
⎜⎝(

√
2 + 1)

∞∏
a=3

(
1 +

√
1 − 4

a2

) (
1 +

√
1 + 4

a2

)
2
(

1 +
√

1 + 4
a4

)
⎞
⎟⎠ .

A numerical approximation for this expression is 0.07312636 . . . . Dividing this by log G, we
find

AFN(F) = 0.151962 . . . .

Summarizing, we have obtained the following result.

THEOREM 5. For the nearest integer continued fraction, the asymptotic frequencies of
the six patterns of three consecutive approximation constants are given by

AFN(A) = 0.168790 . . . AFN(B) = 0.162629 . . . AFN(C) = 0.167112 . . . ,

AFN(D) = 0.172509 . . . AFN(E) = 0.176993 . . . AFN(F) = 0.151962 . . . .

At first sight, these numbers seem quite unremarkable; they are all different, and that’s
it. But something interesting happens when we add the expressions for patterns A and F , for
patterns B and E , and for patterns C and D. First, adding (20) and (28), belonging to patterns
A and F , we get

1

2
log

235
√

5 − 525

2
+ log

⎛
⎜⎝(

√
2 + 1)

∞∏
a=3

(
1 +

√
1 − 4

a2

) (
1 +

√
1 + 4

a2

)
2
(

1 +
√

1 + 4
a4

)
⎞
⎟⎠

+ 1

2
log

5 + 3
√

5

50
+ log

⎛
⎜⎝(

√
2 + 1)

∞∏
a=3

(
1 +

√
1 − 4

a2

) (
1 +

√
1 + 4

a2

)
2
(

1 +
√

1 + 4
a4

)
⎞
⎟⎠ ,
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which equals

log

⎛
⎜⎝g3

⎛
⎜⎝(

√
2 + 1)

∞∏
a=3

(
1 +

√
1 − 4

a2

) (
1 +

√
1 + 4

a2

)
2
(

1 +
√

1 + 4
a4

)
⎞
⎟⎠

2⎞⎟⎠ .

A close inspection of this last expression reveals that it equals

(29) 3 log G + 2 ·
∞∑

a=2

log

(
1 +

√
1 − 4

a2

) (
1 +

√
1 + 4

a2

)
2
(

1 +
√

1 + 4
a4

) ,

which is exactly the same as the sum of the expressions for patterns A and F in the OCF case.

Adding (22) and (26), belonging to patterns B and E , yields

1

2
log

⎛
⎜⎝13

√
2 − 13

5

∞∏
a=3

2
(

1 +
√

1 + 4
a4

)
(

1 +
√

1 − 4
a2

) (
1 +

√
1 + 4

a2

)
⎞
⎟⎠

+ 1

2
log

⎛
⎜⎝ 35 + 15

√
5

26(
√

2 + 1)

∞∏
a=3

2
(

1 +
√

1 + 4
a4

)
(

1 +
√

1 − 4
a2

) (
1 +

√
1 + 4

a2

)
⎞
⎟⎠ ,

which equals

(30) log

⎛
⎜⎝G2(

√
2 − 1)

∞∏
a=3

2
(

1 +
√

1 + 4
a4

)
(

1 +
√

1 − 4
a2

) (
1 +

√
1 + 4

a2

)
⎞
⎟⎠ .

Completely similarly to the case of patterns A and F , we can rewrite (30) so as to find

(31) − log G +
∞∑

a=2

log
2
(

1 +
√

1 + 4
a4

)
(

1 +
√

1 − 4
a2

) (
1 +

√
1 + 4

a2

) ,

which is exactly the same as the sum of the expressions for patterns B and E in the OCF
case. Since the sum of all expressions for patterns A through F equals log G, the sum of the
patterns C and D equals log G− (29) − (31), equalling

(32) − log G +
∞∑

a=2

log
2
(

1 +
√

1 + 4
a4

)
(

1 +
√

1 − 4
a2

) (
1 +

√
1 + 4

a2

) ,

which is exactly the same as the sum of the expressions for patterns C and D in the OCF case.
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5. Discussion-How to connect the results with our understanding of the continued
fractions involved. In the previous sections we showed that in the case of both the OCF and
the NICF the distribution of asymptotic frequencies (as defined above) is more even than in
the case of the RCF. Moreover, we showed that the two different values occurring in the case
of the OCF were distributed over the six patterns in a way completely similar to the RCF case.
Finally, the six different values in the case of the NICF proved to be remarkably connected
with the values belonging to the OCF.

Although some adjustments were needed and the calculations were more troublesome,
the approach we took in computing the asymptotic frequencies in the RCF case proved to
be applicable to the other two continued fractions. In fact, it is applicable to all continued
fractions of which we know the natural extension, such as the Nakada α-expansions (for√

2 − 1 ≤ α ≤ 1), all Rosen fractions, the odd and the even continued fraction expansion et
cetera.

The fact that in the case of the RCF we have

(33) AF(A) = AF(F) , AF(B) = AF(E), and AF(C) = AF(D) ,

follows from the properties of the natural extension of the RCF, see also [N], with natural
extension map T : � = [0, 1) × [0, 1] → � given by

T (x, y) =
(

T (x) = 1
x

− a,
1

a + y

)
, for(x, y) ∈ � , with 1

a+1 < x ≤ 1
a

, 0 ≤ y ≤ 1 ,

and T (0, y) = (0, y), for 0 ≤ y ≤ 1; see also (5) on page 288.
As a natural extension we have that T : � → � is bijective almost surely. So apart from

a set of Lebesgue measure zero, T −1 : � → � exists, and is also a bijection (almost surely).
Note that

T −1(x, y) =
(

1

a + x
, 1

y
− a

)
, for (x, y) ∈ � , with 0 ≤ x ≤ 1, 1

a+1 < y ≤ 1
a
,

so essentially we again find the natural extension of the Gauss map T . We can understand this
as follows: if (x, y) ∈ �, where x = [0; a1, a2, . . . ] and y = [0; a0, a−1, a−2, . . . ] are the
RCF-expansions of x resp. y, then - apart from a set of measure zero - we can write (x, y)

symbolically also as a bi-infinite sequence

[. . . , a−3, a−2, a−1, a0; a1, a2, a3, . . . ] ,

where for each m ∈ Z the expression [0; am, am+1, . . . ] is the RCF-expansion of some point
xm ∈ [0, 1].

Now T acts on [. . . , a−3, a−2, a−1, a0; a1, a2, a3, . . . ] as the left-shift τ , i.e. we can
write T (x, y) as

τ ([. . . , a−3, a−2, a−1, a0; a1, a2, a3, . . . ]) = [. . . , a−3, a−2, a−1, a0, a1; a2, a3, . . . ] .

Note that for each m ∈ Z the expression [0; am, am−1, . . . ] is the RCF-expansion of some
point ym ∈ [0, 1]. Since in T −1 time runs “backwards,” we can view T −1 also as the left-
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shift on

[. . . , a3, a2, a1; a0, a−1, a−2, a−3, . . . ] .

Since T and T −1 are essentially the same algorithm (but with “time n running forward resp.
backward”) we find the equalities (33).

Due to the way the OCF and also Minkowski’s Diagonal continued fraction (DCF) ex-
pansion can be described as S-expansions, it can be shown that these continued fraction al-
gorithms have the same property: the second coordinate map of T −1 of the corresponding
natural extension map T behaves essentially the same as the first coordinate map of T ; see
[K1, BK1, BK2, K2]. This is essentially due to symmetry in the singularizations yielding
these continued fraction expansions. Consequently, (33) also holds for these two continued
fraction algorithms.

In fact, one can show4 that for the DCF one has that

AF(A) = AF(F) = 0.168017 . . . , AF(B) = AF(C) = AF(D) = AF(E) = 0.165991 . . . .

In the previous section we found that

(34) AFN(A) 	= AFN(F) , AFN(B) 	= AFN(E) , AFN(C) 	= AFN(D) ,

and also that

(35)
AFN(A) + AFN(F)

2
= AFO(A) ,

and similarly for the other two means.
Although we do not have an explanation for these phenomena, we think that they are

due to the fact that the NICF and Hurwitz’ singular continued fraction (see [P], §44) are
closely related; again see [K1], Section (2.11). In the latter case, the continued fraction map
TH : [g − 1, g) → [g − 1, g) defined by

TH (x) =
∣∣∣∣1x
∣∣∣∣−
⌊∣∣∣∣1x

∣∣∣∣+ 1 − g

⌋
, for x ∈ [g − 1, g) \ {0} ,

and TH (0) = 0, is used. Nakada showed in [N] that the natural extension �H of this continued
fraction algorithm can be obtained by reflecting the natural extension of the NICF in the line
Y = X for those points in �N for which x ≥ 0, and by reflecting (x, y) in Y = −X if x < 0;
so the natural extension region of TH is given by

�H = [g − 1, g) × [0, 1
2 ] .

One could say that Hurwitz’ singular continued fraction ‘suffers reflectedly’ from what we
noted at the end of Section 3 about the NICF: “Actually, if both regions would have 0 ≤ v ≤ 1

2
instead of 0 ≤ v ≤ g2 (in the case εn+1 = −1) and 0 ≤ v ≤ g (in the case εn+1 = 1), we
could have applied the same maps for R

−/−
a and R

+/+
a as in the regular and the optimal case.”

4These calculations are quite similar to those for the OCF in Section 2.
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It is not hard to show that the second coordinate-map of TN is essentially the map TH , not the
map TN , which explains (34). “Running back the time” now only yields that

AFN(A) = AFH(F) , AFN(B) = AFH(E) , AFN(C) = AFH(D)

and that

AFN(F) = AFH(A) , AFN(E) = AFH (B) , AFN(D) = AFH (C) ,

something which is immediately clear if we view these two continued fraction algorithms as
S-expansions; see the examples in [K1], Section (2.11). However, we think that an expla-
nation of (35) should follow from understanding how the singularization areas of the OCF,
NICF and Hurwitz’ singular continued fraction are related.
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