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Abstract
At the moment, the world is at the verge of an energy transition. One of the most promising green
resources is solar energy, which is a rapidly growing market. However, to fully use its potential of
economy of scale, the application of offshore floating solar should be explored. A promising option
is the use of a flexible type of Very Large Floating Structures (VLFSs), which are called Very Flexible
Floating Structures (VFFSs). They are characterised by their large length to height ratio compared to
rigid bodies and depending on their material properties have a hydroelastic response to the incident
wave.

In the late 1990s, a lot of research has been done on VLFSs by Tsubogo and Okada (1998) who
derived an analytical dispersion relation assuming a zero­draught structure. However, only recently,
Schreier and Jacobi (2020b) did experimental research on VFFSs in a towing tank at the Delft University
of Technology, as little is still known about flexible structures. This report focuses on a numerical alter­
native that covers both VLFSs as well as VFFSs using a Finite Element Method (FEM) Fluid Structure
Interaction (FSI) model which has been built based on potential flow to model the fluid and a dynamic
Euler­Bernoulli beam that represents the floating structure using the Julia package Gridap. One of the
main advantages is that the zero­draught assumption is not necessary and, therefore, structures with
larger draughts can also be modelled. Next to this, the numerical model is able to cope with irregular
shapes, for which no analytical method yet exists.

The model is built such that it can handle 2D as well as 3D domains. A 2D analysis has been made to
understand the influence of hydroelastic wave deformation of the incident wave, in terms of wavelength
dispersion as well as amplitude dispersion on floating structures. To verify the model, the numerical
results were compared to the analytical solution and experimental research in a towing tank, which
showed accurate results. Test runs were set up that mimicked the towing tank set­up and a full­scale
solar park.

Furthermore, a sensitivity study was executed that shows the limits of the flexible domain and to see
in which cases significant (>1%) hydroelastic wave deformation would occur using governing mean
and extreme ocean waves, as well as a typical lake wave. Finally, the influence of the draught of the
structure was examined.

This report provides a good overview of when wave deformation should be accounted for in terms
of bending rigidity and density. Confirming existing theory, it was found that the stiffness of the VFFS
causes wave stretching and the draught of the structure influences the extent of wave shortening. It
was also found that significant wave deformation will not occur for ocean waves as the required stiff­
ness is beyond existing materials. For extreme ocean waves, there is even no dispersion at all. As the
wave frequency increases, the hydroelastic interaction gets stronger. The typical lake wave showed to
be well within the flexible regime and also showed significant dispersion with realistic material parame­
ters. The numerical model is able to cope with large draught scenarios which lead to wave shortening,
which in its turn leads to wave focusing.

Ultimately, the numerical model showed to be a good alternative to existing methods to investigate
the behaviour of VLFSs outside the floating solar domain, where one could think of ice floes, floating
islands or floating airports.
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Preface
“Voor niets gaat de zon op”

is a Dutch saying, which means that nothing comes free of cost. Hard work and investing plenty of
time will give you the desired result. For the last nine months, I have been working on my master the­
sis which is the final part of me as a student of the Delft University of Technology. What started as a
request of Mocean Offshore to find a knowledge gap within the floating solar market, at the beginning
of October 2020, evolved into a fluid structure interaction model to describe the hydroelastic response
of the structure.

This wasn’t a straightforward route, however. The first few weeks of the project, I started to conduct
interviews with all actors within the industry, trying to understand the status quo and which difficulties
they were facing. Most of them were busy building rigid puzzle­like structures on inland waters and
were mostly concerned about optimising electric circuits, whereas the hydrodynamics were less of an
issue. However, for offshore purposes the technology was still immature. I found out that Sebastian
Schreier was conducting experimental research at the TU Delft about very flexible floating structures
in the towing tank at 3ME. This sounded like the perfect solution to large oceanic wave action. Rather
than building a physical myself as well, I wanted to build a numerical model that could cope with the
same environment, but also be changed easily in terms of material properties and incident waves. In a
search to find someone who could help me build a numerical model, I found Oriol Colomés Gené who
is involved in the built of a Julia module called Gridap and specialised in fluid structure interactions.
Combining the knowledge of both researchers gave me the opportunity to build the model I was aiming
for.

However, the real objective only started when I had surrounded myself with these amazing people.
A big thanks to Sander and Maas, my company supervisors, who helped me get acquainted with the
potential flow theory and guided me through every phase of the master thesis. I would also like to
thank Alessandro, the chair of my committee, who kept the deadlines tight and helped me focus on the
right things in a labyrinth of complicated mathematics and physics. Furthermore, Sebastian occasion­
ally pulled me out of the numerical domain and put me back in reality, which helped me to zoom out
and find the relevance of the study back again, which I am really grateful for. Finally, I would like to
thank Oriol, who immediately jumped on the bandwagon and taught me the very principles of the Fi­
nite Element Method. During the course of the project, whenever I had questions or struggled with the
syntax of his Gridap module, he was there to explain it to me. Sometimes even far beyond office hours.

I would like to conclude by expressing a feeling I had during the entire project. From beginning un­
til the very end, I felt very welcome at the company Mocean Offshore, who gave me the opportunity
to work on this project in the office, even though the government limited the available spots due to the
COVID­19 pandemic. My colleagues and especially the committee members (university and company)
were so well involved in the project that it never felt as if I was working on it alone. This really helped
me enjoy the project in its entirety.

Enjoy reading!

Sjoerd van Hoof
Rotterdam, July 2021
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1
Introduction & problem description

At the moment, the world is at the start of an energy transition. People from all over the world are
looking into new ways to generate energy that is not exhaustive. One of these renewable energies is
solar power which has the potential to change the world. Would it not be beautiful to use the one thing
on Earth that has been given free of cost to use to our advantage, indefinitely? Definitely.

1.1. Solar energy
Solar energy is ”energy obtained from the light and heat from the sun, used to produce electricity”.1 The
technology to catch this type of energy can be divided into two different sections. Either active solar or
passive solar depending on how the energy is captured. Active solar techniques include ’concentrating
solar power’ and ’photovoltaic systems’ to harness the energy. Passive solar systems include the use
of transparent surfaces that enter light into a building or designs that naturally circulate air through
spaces. The former will be meant when speaking of solar power in this research. Generally speaking,
there are two types of locations to build solar panels; they are built on the land, or floating on a water
body.

1.2. Land based solar power
The largest amount of solar energy is generated from land based installations. According to the IEA2,
the total installed capacity of photovoltaics (PV) worldwide is set to 750 GW as of 2020 and will be
doubled within the next five years. Figure 1.2 is a graph from the IEA that shows the net additions of
installed solar PV globally, starting at 2015. As one can see, China is the main contributor worldwide.
As Figure 1.1 shows, the total installed capacity of PV in 2015 was only 200 GW. Therefore, the net
additions from Figure 1.2 give a good estimate of the leading countries concerning installed capacity.
1Oxford Dictionaries (2020), Solar Power, Oxford Dictionaries, Oxford https://www.oxfordlearnersdictionaries.com/definition/english/solar­
power?q=solar+power

2IEA (2020), Renewables 2020, IEA, Paris https://www.iea.org/reports/renewables­2020
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Figure 1.1: Global installed capacity photovoltaics.
(IEA, 2020)

Figure 1.2: Global net additions photovoltaics.
(IEA, 2020)

1.3. Floating solar power
As the total installed solar PV is 750 GW in 2020, this consists almost only of land based installations.
Figure 1.3 shows the total installed floating solar PV until 2018 and an expectation of 2019. The cu­
mulative installed capacity of FPV is considered to reach 2400 MWp by the end of 2019. According to
American credit rating agency Fitch Solutions the floating solar market will grow with 10 GW in the next
five years, with China as its main contributor.3

Figure 1.3: Global installed capacity floating photovoltaics. (Acharya and Devraj, 2019)

This clearly states that floating solar PV is still a very small market and is only a fraction of the renewable
energy sources. However, as the figures show, the installed capacity is vastly growing at an exponential
rate. Floating solar PV can be divided into two distinct segments; inland waterbodies and offshore
locations.

1.3.1. Inland
The largest portion of installed capacity is floating on inland waterbodies. The main reason to choose
this type is the moderately calm climate. Wind induced waves are the main force acting on the solar
panels. As wind waves are a function of the length of the waterbody (fetch), small lakes or old quarries
are an ideal location to build FPV. Other types of inland waterbodies which are (potentially) used to
accommodate FPV are reservoirs. They are a preferred location as it is man­made, which means the
ecological legislation is of less influence, reservoirs already have the proper connections to the grid
due to the hydro­power installations and it is often privately owned.4

3(2020), Fitch Solutions, https://www.rechargenews.com/transition/floating­solar­going­global­with­10gw­more­by­2025­fitch/2­
1­894336

4(2020), U.S. Army Corps of Engineers, https://www.bloomberg.com/news/articles/2020­05­21/michigan­flood­puts­privately­
owned­dams­in­a­critical­spotlight
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ProFloating and Groenleven are contractors in floating PV. They exclusively build on inland waterbod­
ies at the moment. The main challenge lies in the interconnections between the modules. According
to Van Daalen (2020), working at ProFloating, the modules break due to fatigue. Other concerns were
connected to the mooring of the structure as well as the layout of the power circuits. The former is
difficult especially when the water depth changes quickly over time or when the waterbody is deep; two
typical properties of a reservoir.
Moreover, there is a lot of research going on to optimise the yield of energy. De Jong and Soppe (2020)
at TNO are experimenting with the positioning of the solar panels; East­West versus South orientation.
Also, experiments are being done to have the floating solar park rotate with respect to the sun. These
tests are in collaboration with Marin lead by Otto (2020) who performs the physical experiments in their
test labs.

Finally, the maintenance of the panels is a point of attention. Biesheuvel (2020) from Groenleven
explained that the challenges they are facing include bird droppings or defective panels which require
the operator to have someone fix it.

1.3.2. Offshore
The second and newest type of FPV is based offshore. Although this type is still very immature, it has
great potential. The main reason to choose an offshore location is the economy of scale. There is
plenty of space in the oceans. Also, less actors are involved during the decision­making process and
it is away from everyone’s backyard.

As the construction of floating PV is already common practice on inland water bodies, this cannot be
said for offshore installations. Where the wind and waves are relatively limited on lakes compared to
open sea, this forms the main obstacle for offshore PV. The interconnections of the used modules are
not able to withstand the sea loads without an alteration in the design. Next to this, the maintenance is
much more difficult compared to inland water body installations, as the location is more remote and the
weather conditions are rougher. An offshore design should be less maintenance intensive compared
to inland grids.

Also, an offshore solar PV installation needs to be connected to the power grid to bring the electric
energy to the mainland. This can be expensive if the offshore location is remote. However, if a location
is chosen that already houses wind turbines, an infrastructure is present which lowers the costs. An­
other option would be to store the electric energy locally. One of the storage options is hydrogen (H2),
which can be used a fuel or as an energy carrier.

Ultimately, as De Werd and Van der Nat (2020) from Bluewater Energy Solutions explained, the in­
stallation costs play an important factor for the feasibility of the technology. It is likely that these costs
are higher than the alternatives on inland water bodies due to its remoteness. As long as these costs
are not reduced, the technology relies on subsidies from the government.

One of the companies that are already operating offshore is Oceans of Energy. They are testing with
a rigid structure, that is not much larger than a vessel. Next to this, several joint­ventures are exploring
the opportunities of offshore FPV. TNO is working together with Equinor at a test location Lake Oost­
voorne near Rotterdam.5 Shell and Eneco are cooperating under the name CrossWind. This is a new
offshore wind park, but also consists of a solar park of 0.5 MW.6 At the Delft University of Technology,
Schreier and Jacobi (2020a) are doing experimental research with flexible floating structures meant as
the foundation of FPV.
5(2020), Solar Magazine, https://solarmagazine.nl/nieuws­zonne­energie/i20999/tno­sabic­equinor­en­westvoorne­testen­
drijvende­zonnepanelen­op­het­oostvoornse­meer

6(2020), Solar Magazine, https://solarmagazine.nl/nieuws­zonne­energie/i22029/nieuwste­nederlandse­windpark­op­zee­krijgt­
0­5­megawattpiek­drijvende­zonnepanelen
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1.4. Floating structures
To really take advantage of the potential of offshore floating photovoltaics, its main perk (economy of
scale) should be further developed. The structure should be at least in the order of magnitude of a
football pitch. Such large offshore structures are called Very Large Floating Structures (VLFSs), which
also include ice floes, floating islands (as developed in the project Space@Sea (Jiang et al., 2020)) or
floating airports. They are characterised by their large length compared to the incident wavelength.

Although VLFSs are not specifically defined, they are characterised by their large length compared
to the dominant wavelength of the waves. (Suzuki et al., 2007) Figure 1.4 shows how Suzuki et al.
(2007) differentiated Very Large Floating Structures from other floating objects, by dividing the length
of the structure (𝐿) over incident wavelength (𝜆𝑖) on the x­axis and over the characteristic length (𝜆𝑐)
on the y­axis. The characteristic length is a measure to quantify the structural stiffness, but a more
extensive understanding of this is given in the next chapter.

Figure 1.4: Mapping of global response of floating structures. (Suzuki et al., 2007)

Several experiments have been carried out for a range of floating structures. However, most were in
the order of 𝐿

𝜆𝑐
≈ 1; being relatively stiff. (Schreier and Jacobi, 2020b) For structures longer than the

incident wavelength, the ratio of wavelength over characteristic length did not exceed 𝜆𝑖
𝜆𝑐
= 3. (Schreier

and Jacobi, 2020b).

A special type of floating structures is when the characteristic length is much smaller than the dominant
wavelength of the sea. In this case it is called a Very Flexible Floating Structure (VFFS). These struc­
tures are much more flexible than VLFS, and implies that there is a stronger hydroelastic interaction
between the waves and the structure. (Schreier and Jacobi, 2020b) The advantage of this behaviour is
that the wave energy is transformed into potential and kinetic energy of the structure instead of slam­
ming against the rigid structure of a VLFS.

When floating structures interact with waves, there is a relation between the incident waves and the
deflection of the floating structure. Tsubogo (1999) formulated a dispersion relation between the inci­
dent waves and the so called hydroelastic waves, which are defined as ”the propagation of deflection
vibrations” and is fully derived in the next chapter.

1.5. Wave diffraction
A possible 3D effect of wave deformation is wave diffraction. Due to a change in wavelength, the celerity
of the wave changes accordingly. Wave stretching causes an increase in phase speed, whereas wave
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shortening causes a decrease in phase speed. As the sides of the structure should be continuous
with the free surface, this effect gradually increases towards the centre­line of the VFFS. Figure 1.5
shows a schematic of the velocity field in the hydroelastic zone. An increased phase speed, results
in divergence of wave energy; diffraction. However, a lower wave celerity results in wave focusing.
Especially the latter could give unexpected or unwanted loads on the floating structure.

Figure 1.5: Velocity field schematic of wave diffraction (left) or wave focusing (right).

1.6. Mocean Offshore
Mocean Offshore is an offshore consultant that executes workability studies for its clients. As technolo­
gies emerge, to remain on the front row, studies are done to find and fill the knowledge gaps within the
offshore energy sector. Floating solar parks are such a novelty which still needs further exploration.
Therefore, this thesis was initiated to map the involved actors of the industry and identify the issues
they are facing.

Mocean Offshore regularly uses OrcaFlex for their calculations. OrcaFlex is a commercial software
tool built by Orcina.7 It is used for dynamic analysis of offshore marine systems. OrcaFlex uses undis­
turbed waves in their simulations, which means that the structure is only influenced by the wave, but not
vice versa. The shape of the wave will thus not deform. This key aspect of the software is relevant, as
VLFSs have some degree of wave deformation. Mocean Offshore wants to understand in what regime
wave deformation occurs and when an undisturbed wave is applicable for the calculations of VLFSs.
This research tries to find an answer with the use of a finite element model where a fluid structure
interaction problem is solved.

1.7. Research question
The insights obtained during the interviews showed that the problems faced by the inland water body
installations were more of a mechanical challenge. This research mainly focuses on the hydrodynamic
aspects of the floating solar technology as part of VLFSs. The offshore challenges, on the other hand,
have a stronger relation to this topic. The current techniques of floating PV used for inland waterbodies
cannot be used one to one for offshore installations. A VFFS, however, is a type of structure which is
a promising alternative for the application of floating solar panels. Several parties, like TNO, TU Delft,
Equinor and Moss Maritime are doing research in this field by making different designs. (De Jong and
Soppe, 2020)

A unique characteristic of VFFS is its flexibility compared to the incident waves. A lot of research has
been done on VLFS, particularly describing the dispersion relation of hydroelastic waves. However,
this mainly concerned stiff structures. Therefore, there is still a knowledge gap within the very flexible
regime. Schreier and Jacobi (2020b) are executing physical experiments with VFFS in a towing tank.
As a comparison to their work this research focuses on a computational alternative. This has several
advantages, such as scalability and time efficiency. Furthermore, different floating shapes and material
parameters can be tested. Finally, the model will also be suitable for calculations of stiffer VLFSs such
as ice floes and floating islands. In a search to find a proper modelling tool, Oriol Colomes, working
7Orcina (2021), OrcaFlex, Ulverston https://www.orcina.com/orcaflex/
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at the TU Delft recommended a module within the programming language Julia called Gridap. He has
been involved in developing this module for several years. Gridap is a Finite Element Method (FEM)
toolbox which provides solving partial differential equations and is able to capture this Fluid Structure
Interaction (FSI) problem. This leads to the following research question:

What is the performance of a Fluid Structure Interaction Finite Element Method model
based on linear potential flow theory compared to experimental research and the analyt­
ical dispersion relation of hydroelastic waves?

1.8. Scope
The research focuses on the hydrodynamics of the structure, as the structure is in motion due to the
wave forces. In an aim to describe the structural behaviour of the VFFS, the response of the structure
imposed by the incident waves is investigated. This interaction is known as the hydroelastic dispersion
relation. This will be the main topic of interest.

The FEM model has been built with the assumption of linear potential flow theory. This is often used
in ocean engineering due to the assumptions of inviscid and irrotational flow which can be made. The
linear system has its drawbacks, as it is only able to describe linear waves, such as regular and irreg­
ular waves. This means that non­linear phenomena, such as breaking waves or asymmetrical waves
cannot be modelled.

The structure itself is based on the linear Euler­Bernoulli beam. This is only valid for small vertical
deflections and cannot capture large deformations. Therefore, the steepness of the incident waves
waves should be limited. Schreier and Jacobi (2020b) used a wave steepness of 𝜉 = 𝜆𝑖

50 being 𝜉 the
wave amplitude. This is also used as a starting point in the report.

For the application of floating PV, it will not be uncommon that the structure exists of a composite
material. Although the main material is expected to be a rubber kind material. On top of it, the thin­film
solar panels need to be applied. Also, the material might be reinforced by a steel framework to attach
the mooring to. This complicates the problem, and as these composite materials are still not specified
by any literature, this research assumes a uniform material for the structure.

Apart from the topics that are within the scope, it is also convenient to show the fields of interest that
will not be discussed nor answered in this research. As was mentioned earlier, the focus lies within
the hydrodynamics. That means that electrical aspects such as circuit layout or the inverter location
will not be discussed. Furthermore, mechanical aspects such as connection types are also out of the
scope of this thesis. Finally, the location of the floating PV is not discussed extensively. The goal of
this research is to see if a computational linear FEM model is a worthy alternative to the existing ana­
lytical formulations and experimental research. This study can be done independently of a location in
the world. Too many factors, such as the amount of solar radiation around the globe, distance to an
existing power cable or local subsidies that make it more affordable to build floating PV, influence the
location of choice. However, the wave loads on the VFFS will be based on realistic scenarios existing
in potential vacant spots.

1.9. Structure
To give a good overview of the structure of the report a flowchart is presented in Figure 1.6. This first
chapter introduces the challenges related to (offshore) floating solar and explains the basics behind
fluid structure interactions.

The next chapter covers the full analytical mathematics behind the VFFS. It shows how a VFFS could
be simplified to a dynamic Euler­Bernoulli beam and the hydroelastic wave dispersion relation is de­
rived.

The third chapter converts this analytical problem into a numerical problem by rewriting the set of
equations to the weak formulation. The Finite Element Method is subsequently used to solve it.
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Once the boundary conditions of the model are established, the numerical model is set up and tested.
The parameters of the model are tweaked to give reliable results, which includes the definition of the
grid resolution, the amount of damping at the end of the model and checking if the system is energy
conservative once it reaches its steady­state.

Once this has been done, the model is ready to be used for test runs. Several tests will be executed
to better understand the fluid structure interaction. First, Schreier and Jacobi (2020b) experiments in
the towing tank will be run. Secondly, a full scale offshore scenario is tested to see how a VFFS would
interact with several design ocean waves and a governing lake wave. Next, two material parameters
are tested to the same five design waves; the stiffness and the density of the structure are altered
to see how they influence the hydroelastic response. Finally, a separate test run is dedicated to the
draught of the structure. Little research has been done on flexible structure with large draughts. Also,
the analytical theory has not captured this regime and wave shortening is likely to occur, which has
several consequences that will be explained later in this report.

Finally, the results from the test runs are evaluated and the observations are discussed. With the new
insights using the numerical model, it is tried to get a better understanding of how a floating structure
responds to the incident waves.

Fluid Structure Interaction

Discussion

Analytical approach Numerical approach

Finite Element Model set-up

Towing tank experiment Full scale Variable draughtMaterial parameters

Computer test runs Results

Figure 1.6: Flowchart that shows the structure of the report.
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Figure 1.7: Persona tree of people which have been interviewed. Each person is identified by name, title, company and asset
for this research.



2
Analytical Method

This chapter will give guidance through the mathematics that will be used to describe the problem; in
this case a floating one­dimensional flexible structure in a 2D environment. The more general mathe­
matics behind widely accepted concepts are only briefly discussed (potential flow, linear wave theory).
However, the floating structure, which is based on a dynamic Euler­Bernoulli beam, and its dispersion
relation is derived, as this was not found online elsewhere.

2.1. Potential flow
In the FEM model, the considered flow is potential flow. The theory of this type of flow has been de­
scribed extensively by others, such as (Kundu and Cohen, 1987). Therefore, the theory is only briefly
explained in this report.

Potential flow is based on the principle that the velocity field can be described by the spatial derivatives
of a scalar function, this is called the potential function. Moreover, the fluid is considered to be incom­
pressible. This consideration implies that the divergence of the velocity is equal to zero. The potential
function then satisfies the Laplace equation:

{ ∇ ⋅ �⃗� = 0∇𝜙 = �⃗� ⇔ ∇ ⋅ (∇𝜙) = Δ𝜙 = 0 in Ω (2.1)

Furthermore, the potential flow is characterised by irrotational flow, which implies that the curl of the
velocity field is equal to zero. This is only valid if viscous forces are absent. This also implies that
viscous terms cannot be described with potential flow theory. However, in this report ocean waves at
the free surface are examined; also called wind waves. These waves are characterised by the same
principles as potential flow, being inviscid, irrotational and incompressible.

2.2. Fluid boundary conditions
To determine the fluid domain, boundary conditions are imposed on each side of themodel. The domain
consists of three impermeable sides (Γ𝐿 , Γ𝑏𝑡𝑚 and Γ𝑅) and a free surface (Γ𝑓𝑠). The boundary condition
for the structure (Γ𝑏) is discussed in the next section. For an overview, the model is visualised in Figure
2.1.

9
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Figure 2.1: Two­dimensional fluid domain (Ω) with a floating 1D Euler­Bernoulli beam at the free surface. Boundaries are
indicated with Γ and their respected subscript.

The first boundary condition of the model is located on the sides and on the bottom. Here it is assumed
that these boundaries are impermeable. This is called the sea bed boundary condition and given as:

∇𝜙 ⋅ �⃗� = 0 on Γ𝐿 ∪ Γ𝑏𝑡𝑚 ∪ Γ𝑅 sea bed b.c. (2.2)

Where �⃗� is the unit normal vector to the boundary facing outwards.

The second boundary condition is the dynamic free surface boundary condition which states that the
pressure above the free surface is constant and equal to zero. Using Bernoulli’s equation in the lin­
earised form and assuming that there is no y­direction (since the model is only 2D), the boundary
condition is given as:

𝛿𝜙
𝛿𝑡 + 𝑔𝜂 = 0 on Γ𝑓𝑠 dynamic free surface b.c. (2.3)

Where 𝑔 is the gravity constant and 𝜂 is the surface elevation. With this boundary condition and as­
suming that they are imposed at 𝑧 = 0, the formula of the wave potential can be derived and is equal
to:

𝜙 = 𝜉𝑖𝑔
𝜔 ⋅ cosh (𝑘𝑖(𝑑 + 𝑧))

cosh (𝑘𝑖𝑑)
⋅ sin (𝑘𝑖𝑥 − 𝜔𝑡) (2.4)

Where 𝜉𝑖, 𝜔 and 𝑘𝑖 are the amplitude, the angular frequency and the wave number of the incident wave,
respectively and 𝑑 the water depth.

Finally, the third boundary condition is the kinematic free surface boundary condition which describes
that the vertical velocity of the free surface has to be equal to the vertical motion of the flow and is given
as follows:

𝛿𝜙
𝛿𝑧 =

𝛿𝜂
𝛿𝑡 on Γ𝑓𝑠 kinematic free surface b.c. (2.5)

Using this boundary condition the wave number can be related to the wave frequency. By differenti­
ating the dynamic free surface boundary condition and inserting the kinematic free surface boundary
condition one obtains the Cauchy­Poisson condition:

𝛿𝜙
𝛿𝑧 +

1
𝑔
𝛿2𝜙
𝛿𝑡2 = 0 (2.6)

Substituting Equation 2.4 into Equation 2.6 gives the dispersion relation:

𝜔2 = 𝑔𝑘𝑖 tanh (𝑘𝑖𝑑) (2.7)
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Now, the amplitude of the wave (𝜉𝑖) can be chosen freely, considered that the amplitude is small com­
pared to the wavelength (𝜆) and water depth (𝑑); this is called Airy wave theory.

The remaining boundary which has not been discussed yet, is the VFFS on the free surface (Γ𝑏). The
structure is considered to be a floating Dynamic Euler­Bernoulli beam.

2.3. Dynamic Euler­Bernoulli beam boundary condition
Next to the fluid domain, the VFFS is modelled. Tsubogo and Okada (1998) proposed the hydroelastic
wave dispersion as in Equation 2.8.

[1 − ( 𝜔𝜔0
)
2
+ ( 𝑘𝑘𝑝

)
4
] 𝑘 tanh 𝑘𝑑 = 𝜔2/𝑔 (2.8)

With angular frequency (𝜔), natural heave frequency (𝜔0), hydroelastic wave number (k), characteristic
wave number (𝑘𝑝), water depth (d) and gravity constant (g).

𝜔0 = √
𝜌𝑤𝑔
𝑚 (2.9)

With mass per horizontal unit area (m).

𝑘𝑝 =
2𝜋
𝜆𝑐
= (𝜌𝑤𝑔𝐵𝐸𝐼 )

1
4

(2.10)

However, a full derivation was not included. Therefore, this equation has been rededucted by using the
1D dynamic Euler­Bernoulli beam. This equation holds if loads are purely lateral and the structure has
small deflections. The general dynamic Euler­Bernoulli equation describes the relation of the deflection
of the beam (w) and the external force (f) on it as a function of time. Given as:

𝑑2
𝑑𝑥2 (𝐸𝐼

𝛿2𝑤
𝛿𝑥2 ) = −𝜇

𝛿2𝑤
𝛿𝑡2 + 𝑓(𝑥) (2.11)

With bending stiffness 𝐸𝐼 and mass per unit length 𝜇.

If the bending stiffness is constant, this equation will simplify to:

𝐸𝐼𝛿
4𝑤
𝛿𝑥4 = −𝜇

𝛿2𝑤
𝛿𝑡2 + 𝑓(𝑥) (2.12)

Where 𝐸 denotes the Young’s modulus and 𝐼 the moment of inertia. Assuming that the beam is shaped
as a rectangle, it is given as:

𝐼 = 𝐵ℎ3
12 (2.13)

However, the 2D model assumes that the incident waves are infinitely wide as there is no width in the
model. This also changes the bending stiffness constant and Equation 2.13 divided by the width (B) of
the structure and is rewritten to:

𝐼2𝐷 =
𝐵ℎ3
12
𝐵 = ℎ3

12 (2.14)

As the force on the beam is given by the pressure of the fluid, the dynamic free surface boundary
condition changes to a non­zero equation, and the water density (𝜌𝑤) is reintroduced:

− 𝜌𝑤
𝛿𝜙
𝛿𝑡 − 𝜌𝑤𝑔𝜂 = 𝑝 (2.15)

With pressure 𝑝 being:
𝑝 = 𝜌𝑏ℎ

𝛿2𝜂
𝛿𝑡2 +

𝐸𝐼
𝐵
𝛿4𝜂
𝛿𝑥4 (2.16)
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Where 𝜌𝑏 and ℎ are the density and the thickness of the structure, respectively. Resulting in the altered
dynamic free surface boundary condition:

𝜌𝑏ℎ
𝛿2𝜂
𝛿𝑡2 +

𝐸𝐼
𝐵
𝛿4𝜂
𝛿𝑥4 + 𝜌𝑤

𝛿𝜙
𝛿𝑡 + 𝜌𝑤𝑔𝜂 = 0 on Γ𝑏 (2.17)

Rewriting this equation and inserting the same governing kinematic free surface boundary condition
results in an altered Cauchy­Poisson condition with an added factor; three terms in between brackets:

( 𝜌𝑏ℎ𝜌𝑤𝑔
𝛿2𝜂
𝛿𝑡2 +

𝐸𝐼
𝜌𝑤𝑔𝐵

𝛿4𝜂
𝛿𝑥4 + 1)𝑔

𝛿𝜙
𝛿𝑧 = −

𝛿2𝜙
𝛿𝑡2 (2.18)

Assuming that the solution of the free surface elevation is a wave as given in 2.19:

𝜂 = 𝜉𝑏 cos (𝑘𝑏𝑥 − 𝜔𝑡) (2.19)

With 𝜉𝑏 and 𝑘𝑏 the amplitude and the wave number of the hydroelastic wave, respectively. Its second
derivative in time and fourth derivative in space are given as:

𝜂𝑡𝑡 = −𝜔2𝜉𝑏 cos (𝑘𝑏𝑥 − 𝜔𝑡)
𝜂𝑥𝑥𝑥𝑥 = 𝑘4𝑏𝜉𝑏 cos (𝑘𝑏𝑥 − 𝜔𝑡)

(2.20)

Inserting these wave terms in Equation 2.18 and assuming initial conditions (𝑥 = 0, 𝑡 = 0) the equation
is given as:

(−𝜔
2𝜌𝑏ℎ
𝜌𝑤𝑔

+ 𝑘4𝑏𝐸𝐼
𝜌𝑤𝑔𝐵

+ 1)𝑔𝛿𝜙𝛿𝑧 = −
𝛿2𝜙
𝛿𝑡2 (2.21)

Rewriting this equation for a simplified representation results in:

𝐾𝑔𝛿𝜙𝛿𝑧 = −
𝛿2𝜙
𝛿𝑡2 (2.22)

With K being:

𝐾 = 1 + 𝑘4𝑏𝐸𝐼
𝜌𝑤𝑔𝐵

− 𝜔
2𝜌𝑏ℎ
𝜌𝑤𝑔

(2.23)

Or in an alternate form:

𝐾 = 1 + (𝑘𝑏𝑘𝑝
)
4
− ( 𝜔𝜔0

)
2

(2.24)

With:

𝑘𝑝 = (
𝜌𝑤𝑔𝐵
𝐸𝐼 )

1
4

𝜔0 = √
𝜌𝑤𝑔
𝜌𝑏ℎ

(2.25)

From the altered Cauchy­Poisson equation the hydroelastic wave dispersion is retrieved and given as:

𝜔2 = 𝐾𝑔𝑘𝑏 tanh (𝑘𝑏𝑑) (2.26)

Note the difference between Equation 2.7 and 2.26 where the frequency remains unchanged. Equally,
the wave potential (𝜙) is given as:

𝜙(�⃗�, 𝑡) = 𝐾𝜉𝑏𝑔
𝜔 ⋅ cosh (𝑘𝑏(𝑑 + 𝑧))

cosh (𝑘𝑏𝑑)
⋅ sin (𝑘𝑏𝑥 − 𝜔𝑡) (2.27)

As the potential wave equation (Equation 2.4) and the hydroelastic potential wave equation (Equation
2.27) are compared, the only difference between them is the factor 𝐾. Therefore, 𝐾 can be used as
a transfer function to compute the difference in wave number between the incident waves and the hy­
droelastic waves.
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Not only the wavelength changes when the incident wave deforms into the transmitted hydroelastic
wave, but also the amplitude changes. Tsubogo and Okada (1998) showed that this relation can be
given by the fact that the energy flux just next to the beam is equal to the energy flux on the edge of
the beam. The relation is given as follows:

𝑅 = 𝜉𝑏
𝜉𝑖
= 2𝑘𝑏
𝑘𝑖 + 𝑘𝑏

√1 +
𝑘𝑖𝑑

cosh (𝑘𝑖𝑑) sinh (𝑘𝑖𝑑)
𝐾𝑁 (2.28)

With N being:

𝑁 = 1 + 𝑘𝑏𝑑
cosh (𝑘𝑏𝑑) sinh (𝑘𝑏𝑑)

+ 4
𝐾 (

𝑘𝑏
𝑘𝑝
)
4

(2.29)

However, Tsubogo and Okada (1998) simplified the solution by making a zero­draught assumption for
the structure (𝜔 ≪ 𝜔0), which implies that the density of the VLFS is very low compared to the water
density. Tsubogo also only looked at waves shorter than the natural heave period of the VLFS (𝜔 < 𝜔0),
which implies that there no resonance will occur.

2.4. Wave energy flux
In order to check if the numerical model is energy conservative, an energy flux balance is set up and the
incident wave energy flux (𝑃𝑖) is compared with the hydroelastic wave energy flux (𝑃𝑏). The energy flux
is the product of the wave energy and the group velocity of the wave. First the energy of the incident
wave is calculated. The total energy is split into two terms; potential energy and kinetic energy. The
potential component is calculated by integrating the pressure over the wavelength:

𝐸𝑝𝑜𝑡,𝑖 = ∫
𝜆𝑖

0
∫
𝜂

0
𝜌𝑤𝑔𝑧𝑑𝑧𝑑𝑥 = ∫

𝜆𝑖

0

1
2𝜌𝑤𝑔𝜉

2
𝑖 sin

2 (𝑘𝑖𝑥 − 𝜔𝑡)𝑑𝑥 =
1
4𝜌𝑤𝑔𝜉

2
𝑖 𝜆𝑖 (2.30)

Kinetic energy is calculated by integrating the horizontal (𝑢) en vertical (𝑤) velocity components as
follows:

𝐸𝑘𝑖𝑛,𝑖 =
1
2𝜌𝑤∫

𝜆𝑖

0
∫
0

−𝑑
(𝑢2𝑖 +𝑤2𝑖 )𝑑𝑧𝑑𝑥 (2.31)

Where, for incident waves, 𝑢 and 𝑤 are defined as the spatial derivatives of the wave potential in their
respected direction:

𝑢𝑖 = 𝜔𝜉𝑖
cosh (𝑘𝑖(𝑑+𝑧)
sinh (𝑘𝑖𝑑)

cos (𝑘𝑖𝑥 − 𝜔𝑡)

𝑤𝑖 = 𝜔𝜉𝑖
sinh (𝑘𝑖(𝑑+𝑧)
sinh (𝑘𝑖𝑑)

sin (𝑘𝑖𝑥 − 𝜔𝑡)
(2.32)

Inserting the velocity components of the incident waves into Equation 2.31 results in:

𝐸𝑘𝑖𝑛,𝑖 =
1
4𝜌𝑤𝑔𝜉

2
𝑖 𝜆𝑖 (2.33)

The kinetic and potential energy components together form the total energy of the incident wave:

𝐸𝑖 = 𝐸𝑘𝑖𝑛,𝑖 + 𝐸𝑝𝑜𝑡,𝑖 (2.34)

For the hydroelastic wave, the potential and kinetic energy terms of the incident wave can be rewritten
by using the dispersion factors 𝐾 and 𝑅:

𝐸𝑝𝑜𝑡,𝑏1 =
1
4𝜌𝑤𝑔𝜉

2
𝑏𝜆𝑏 =

1
4𝜌𝑤𝑔𝑅

2𝜉2𝑖 𝐾𝜆𝑖 (2.35)

𝐸𝑘𝑖𝑛,𝑏1 =
1
4𝜌𝑤𝑔𝜉

2
𝑏𝜆𝑏 =

1
4𝜌𝑤𝑔𝑅

2𝜉2𝑖 𝐾𝜆𝑖 (2.36)
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As:
𝐾 = 𝑘𝑖

𝑘𝑏
⋅ tanh(𝑘𝑖𝑑)
tanh(𝑘𝑏𝑑)

𝑅 = 𝜉𝑏
𝜉𝑖

(2.37)

As the altered dynamic boundary condition contains two more terms, two extra components of the
kinetic and potential energy of the VFFS need to be taken into account for a full energy balance:

𝐸𝑝𝑜𝑡,𝑏2 =
1
4
𝐸𝐼
𝐵 𝑘

4
𝑏𝜉2𝑏𝜆𝑏 =

1
4
𝐸𝐼
𝐵
𝑘4𝑖
𝐾4𝑅

2𝜉2𝑖 𝐾𝜆𝑖 =
1
4
𝐸𝐼
𝐵
𝑘4𝑖
𝐾3𝑅

2𝜉2𝑖 𝜆𝑖 (2.38)

𝐸𝑘𝑖𝑛,𝑏2 =
1
4𝜌𝑏ℎ𝜔

2𝜉2𝑏𝜆𝑏 =
1
4𝜌𝑏ℎ𝜔

2𝑅2𝜉2𝑖 𝐾𝜆𝑖 (2.39)

The total hydroelastic wave energy thus becomes:

𝐸𝑏 = 𝐸𝑘𝑖𝑛,𝑏1 + 𝐸𝑝𝑜𝑡,𝑏1 + 𝐸𝑘𝑖𝑛,𝑏2 + 𝐸𝑝𝑜𝑡,𝑏2 (2.40)

As the energy components are known, the remaining term to calculate the energy flux is the group
velocity (𝑐𝑔). This is the speed of the energy that is transferred by the waves and is equal to the phase
speed (𝑐) times the dispersion parameter (𝑛):

𝑐𝑔 = 𝑛𝑐 = 𝑛
𝜔
𝑘 with 𝑛 = 1

2 (1 + 𝑘𝑑
1 − tanh2 𝑘𝑑
tanh 𝑘𝑑 ) (2.41)

With 𝑛 = 0.5 for deep water and 𝑛 = 1 for shallow water.

For the incident wave the group velocity is equal to:

𝑐𝑔,𝑖 = 𝑛𝑐𝑖 = 𝑛
𝜔
𝑘𝑖

(2.42)

For the hydroelastic wave, the group velocity can be calculated from the dispersed wave number (𝑘𝑏)
and assuming that the frequency is constant:

𝑐𝑔,𝑏 = 𝑛𝑐𝑏 = 𝑛
𝜔
𝑘𝑏
= 𝑛 𝜔𝑘𝑖

𝐾
= 𝐾𝑐𝑔,𝑖 (2.43)

The wave energy flux is obtained by the product of the wave energy and the group velocity and should
be equal, resulting in:

𝑃𝑖 = 𝑃𝑏 = 𝐸𝑖 ⋅ 𝑐𝑔,𝑖 = 𝐸𝑏 ⋅ 𝑐𝑔,𝑏 (2.44)

If Equation 2.44 is satisfied, the numerical model is is coercive, meaning that energy is conserved. The
importance of coercivity will be further explained in the next chapter when the shape functions of the
Finite Element model are discussed.

2.5. Structural stiffness
To put the numerical test runs into perspective in relation to the towing tank results or other previously
researched VLFSs, the characteristic length of a structure will be used as introduced by Suzuki et al.
(2007). Equation 2.45 shows a relation of the bending stiffness 𝐸𝐼 and the hydrostatic stiffness:

𝜆𝑐 = 2𝜋 (
𝐸𝐼
𝜌𝑤𝑔𝐵

)
1
4

(2.45)

By dividing the length of the structure over the characteristic length the amount of elasticity is defined
as shown in Figure 1.4.



3
Finite Element Method

The Finite Element Method (FEM) is a numerical method to solve partial differential equations. The
method subdivides the large complex system into smaller parts; finite elements. This spatial discreti­
sation is done by creating a mesh. This mesh is the numerical domain with a finite number of nodes.
In this method an approximation of each element is evaluated to find the unknown function. Finally, the
solutions of all elements are assembled to form a full set of equations which represent the full model. To
get a full understanding of how the model has been built, Appendix B contains a tutorial which explains
every aspect.

3.1. Weak form
The notation for the Finite Element Method is different than the standard partial differential equations.
The regular form, also called the ’strong form’, as given in the previous section uses fractions to de­
scribe the problem. However, for FEM, the so called ’weak formulation’ is used. To rewrite an equation
into the weak form, it is integrated by parts. An example is shown how to convert the Laplace equation
(Equation 2.1) from the strong form into the weak form.

The governing Laplace equation in the two­dimensional domain Ω reads:

∇2𝜙 = 0 in Ω (3.1)

And the accompanying boundary condition is given as:

∇𝜙 ⋅ �⃗� = 𝑓 on Γ (3.2)

Where �⃗� is the normal unit vector and f being a constant.

The aim of this problem is to solve the Laplace equation. To do this, a solution space 𝑉 is speci­
fied. It is tried to find a solution for 𝜙 ∈ 𝑉 such that 𝑎(𝜙, 𝑔) = 𝑏(𝑔)∀𝑔 ∈ 𝑉. Here 𝑔(�⃗�) is a so called
test function. To apply this on the Laplace equation, the equation is multiplied by the test function.
Subsequently, this product is integrated over the domain (Ω):

∫
Ω
∇2𝜙 ⋅ 𝑔𝑑Ω = 0 (3.3)

Equation 3.3 is integrated by parts:

−∫
Ω
∇𝜙 ⋅ ∇𝑔𝑑Ω +∫

Γ
𝑔 (∇𝜙 ⋅ �⃗�) 𝑑Γ = 0 (3.4)

By integrating by parts, one ends up with a interior term over the Ω­domain and a boundary term one
dimension lower. This is indicated by the Greek letter Γ; the boundary of the domain. If Ω were a three­
dimensional domain, the boundary term would be a two­dimensional term representing for example a

15
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plane.

These terms are split over the bilinear function 𝑎(𝜙, 𝑔) and linear function 𝑏(𝑔), in which is assumed
that 𝑎(𝜙, 𝑔) = 𝑏(𝑔). Note that the boundary condition from Equation 3.2 has been inserted in the
boundary term, which makes Equation 3.6 only a function of 𝑔(�⃗�).

𝑎(𝜙, 𝑔) = ∫
Ω
∇𝜙 ⋅ ∇𝑔𝑑Ω (3.5)

𝑏(𝑔) = ∫
Γ
𝑔𝑓𝑑Γ (3.6)

This process will be used throughout the report when defining the conditions for the FEM model. As
this notation is spacious, a more compact format will be used; Equations 3.5 and 3.6 are rewritten as:

𝑎(𝜙, 𝑔) = (∇𝜙, ∇𝑔)Ω (3.7)
𝑏(𝑔) = (𝑔, 𝑓)Γ (3.8)

3.2. Newmark­beta method
To solve the FEMmodel, time integration is applied. There are several options available to solve sets of
equations, each with their own (dis)advantages, but there are two main categories; explicit and implicit
schemes. The explicit scheme uses only the current time to calculate the next time step. Whereas,
the implicit scheme uses both the current time as well as the next time step to solve for the next time
step. The main difference between the two, is that an explicit scheme could explode if the chosen time
step is too large. This is called numerical stability. The implicit scheme does not have this issue, which
means that it can use larger time steps. However, it is computational more expensive, as the system
needs to be solved for both the current state as well as the state of a later time. Whether one of the
two is better depends on the problem to be solved. Equation 3.9 shows an example of the difference
between an implicit and an explicit scheme. Where transfer function 𝐹1 only takes the current state as
an parameter, 𝐹2 also takes the future state as one of its parameters.

𝑦𝑡+1 = 𝐹1 (𝑦𝑡) explicit
𝑦𝑡+1 = 𝐹2 (𝑦𝑡 , 𝑦𝑡+1) implicit (3.9)

Next to numerical stability, there is the order of accuracy. This is defined by the error of the solution of
the system. A higher order of accuracy leads to better results, but comes at an expense of computa­
tional time. Systems with higher orders of accuracy generally are more computational expensive. One
needs to find an optimum between accuracy and time.

As the system of equations in this model contain both potential flow as well as an Euler­Bernoulli
beam, it is important to choose a numerical time integration scheme that fits both PDEs. As the dy­
namic beam equation consists of a second­order time derivative term, it would be convenient to use a
numerical time integration scheme that can cope with this. In 1959, Nathan M. Newmark developed a
method to solve dynamic systems. (Newmark, 1959) The structural equation is a second order ordinary
differential equation system:

M�̈� + C�̇� + 𝑓𝑖𝑛𝑡(𝑦) = 𝑓𝑒𝑥𝑡 (3.10)
With mass matrix M, damping matrix C, internal forces 𝑓𝑖𝑛𝑡 and external forces 𝑓𝑒𝑥𝑡. Based on this
equation, the full system is derived as Newmark explains (Newmark, 1959):

�̇�𝑛+1 = �̇�𝑛 + (1 − 𝛾)Δ𝑡�̈�𝑛 + 𝛾Δ𝑡�̈�𝑛+1
𝑦𝑛+1 = 𝑦𝑛 + Δ𝑡�̇�𝑛 +

Δ𝑡2
2 ((1 − 2𝛽)�̈�𝑛 + 2𝛽�̈�𝑛+1)

M�̈�𝑛+1 + C�̇�𝑛+1 + 𝑓int (𝑦𝑛+1) = 𝑓ext𝑛+1

(3.11)

This system of equations contains two parameters 𝛽 and 𝛾, which need to be specified in order to use
the method. Newmark states that unless 𝛾 = 0.5, spurious damping occurs in the system. Furthermore,
from a stability analysis it follows that if 𝛽 = 0.25, the system is unconditionally stable. (Newmark, 1959)
The system with these settings is called the Average constant acceleration (Middle point rule) and will
be used for the calculations of the FEM model.
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3.3. Damping zone
The incident waves in the model start on the left hand side and travel toward the right hand side of the
model. Preferably, the computational domain is not much longer than the domain of interest, which is
in this case the VFFS. Increasing the domain would only increase the computation time. There are two
alternatives to avoid reflecting waves on the boundary. One way is to let the waves radiate through the
outlet, which asks for a non­reflective boundary condition. Another option is to cancel the waves in a
damping zone. Both methods were investigated and it was found that adding a proper non­reflective
boundary condition was hard to find for the potential flow equation. Moreover, adding a non­reflective
boundary condition also results in small errors. (Thompson and Huan, 2000) Adding a damping zone,
however, was easy to implement and several options were made available by the work of Min Woo Kim.
(Kim et al., 2014) In experimental research this could be done by creating a beach. The decreased
water depth will cause the waves to break and the energy is dissipated. For a computer model, there
is an alternative called artificial damping. This could be compared to adding a viscous term on the end
of the domain (damping zone). The wave energy is in that way dissipated.

Kim et al. (2014) released a paper where different alternatives for artificial wave damping are com­
pared. The different alternatives distinguished themselves from each other on where the damping
terms were applied on; either on the kinematic or dynamic boundary condition or both. In his paper,
the fourth method jumped out as being the second best damping method, very close to the winning
method number five. However, method four was much easier to implement. Therefore, method four
has been chosen as the preferred damping method. Its accuracy is later discussed in the methodology
when the parameters are evaluated.
The damping factor consists of two components; a damping coefficient (𝜇1) and a dispersion parameter
(𝜇2). The damping coefficient determines the rate of damping and needs to be chosen iteratively. The
dispersion parameter also is a damping term, but it couples the potential with the elevation. To avoid
distortion of the wave frequency, the damping coefficient (𝜇1) and the dispersion parameter (𝜇2) are
linked with the following ratio:

𝜇2 = −
𝜇21
4 (3.12)

The dynamic boundary condition of the damping zone remains unchanged, but the kinematic free
surface boundary conditions in the damping zone is as follows:

𝛿𝜂
𝛿𝑡 −

𝛿𝜙
𝛿𝑧 + 𝜇1𝜂 +

𝜇2
𝑔 𝜙 = 0 kinematic b.c. (3.13)

The intensity of the damping factor varies in space. As the waves travel further into the damping zone
the damping factor increases. To prevent wave reflection, the slope of the ramp should be almost equal
to zero at the start of the damping zone. Therefore, there is chosen to use Shape 1 from Kims paper
and is given as:

𝜇1(𝑥) = 𝜇0 [1 − cos(𝜋2 (
𝑥 − 𝑥𝑑
𝐿𝑑

))] (3.14)

With (𝑥 − 𝑥𝑑) being the local length of damping zone and 𝐿𝑑 the total length of the damping zone.

3.4. Time step resolution
In numerical modelling, the time step is often related to the resolution of the grid. For explicit time
integration schemes this is mandatory to get a stable result. For implicit schemes, this is not necessary
as implicit schemes are by definition unconditionally stable. A proper way to describe to relate the time
step (Δ𝑡) to the resolution of the grid (Δ𝑥) is by using the Courant­Friedrichs­Lewy (CFL) condition.
It states that the time step should be smaller than a certain time, in order to reach convergence and
is necessary for time explicit scheme to prevent incorrect results. Equation 3.15 shows this relation.
Where 𝐶 is the dimensionless Courant number and 𝑐 the celerity of the wave:

Δ𝑡 ≤ 𝐶Δ𝑥𝑐 (3.15)
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For explicit schemes the typical maximum Courant number is one. Larger values imply that the phase
speed of the wave from the analytical domain travels faster than the numerical domain can cope with.
This results in potential loss of information and subsequently in incorrect results. Figure 3.1 visually
explains what happens if the Courant number exceeds this value.

Although the CFL­condition should be strictly followed for explicit time integration schemes, it is a
convenient tool to guess the initial time step for implicit schemes as well. Furthermore, it clarifies the
resolution of the time step compared to the spatial domain and is therefore used in the set­up of the
numerical model.

Figure 3.1: Three cases for different Courant number domains. If the Courant number is smaller or equal to one, the system is
stable. If the Courant number exceeds one, the system is unstable and will explode.

3.5. Julia
The Julia model is written with the aid of Gridap (Badia and Verdugo, 2020). Gridap is a package that
contains a library of functions that provide a set of tools for grid­based approximations of partial differ­
ential equations (PDE). It can be used for linear and nonlinear PDE systems. The choice for Gridap
was based on numerous reasons. Gridap has a very expressive API allowing to solve PDEs with very
few lines of code. The weak formulation can be written nearly one to one. Therefore, the notation is
well understood by readers and writers. Moreover, Oriol Colomes, assistant professor at the TU Delft,
who is involved in Fluid Structure Interactions, collaborates to improve this package. As there is still
little documentation online, he is a good source of information to guide the way. Finally, Julia is one of
the fastest programming languages at the moment.1 As Julia is a compiled language, it runs as fast as
Fortran or C, but at the same time, it has the look and feel of scripting languages like Matlab and Python.

The 2D Julia model is purely based on partial differential equations written in the programming lan­
guage Julia. This model will try to mimic the experimental research of Schreier, upon which the differ­
ences will be evaluated. The model is based on the Finite Element Method as explained in the previous
chapter. This model written from scratch using the module named Gridap and is visualised in Figure
3.2.
1(2019), Nature, Julia: come for the syntax, stay for the speed, https://www.nature.com/articles/d41586­019­02310­3
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Figure 3.2: Two­dimensional fluid domain (Ω) with a floating 1D Euler­Bernoulli beam at the free surface. Waves are induced
by a vertical velocity profile from the left. On the right hand side, an artificial damping zone is implemented to cancel the wave
energy. Boundaries are indicated with Γ and their respected subscript. Note that the boundary of the damping zone Γ𝑑𝑧 is part
of the free surface boundary.

The model consists of four different zones. At boundary Γ𝐿, a vertical velocity profile is imposed. This
profile is given by the horizontal velocity component of Airy wave theory, as written in Equation 3.29.
This induces the incident waves on the free surface which travel towards the structure that is posi­
tioned in the second zone. Right from the structure there is again a free surface. This continues until
the artificial damping zone reached which cancels the wave energy. There is no direct physical com­
parison with this damping zone, but it could be compared to a beach where the wave energy dissipates.

The partial differential equations which are the building blocks will be briefly repeated and their weak
formulation is given. This will be done twice; one time for a fluid domain only. Subsequently, the beam
boundary is added. Both formulations will be given as tests will be run, with and without the structure.
The equation that describes the potential flow is the Laplace equation and reads:

Δ𝜙 = 0 (3.16)

With the accompanying kinematic boundary condition on the free surface:

∇𝜙 ⋅ �⃗� = 𝜂𝑡 (3.17)

For the other boundaries (Γ𝐿, Γ𝑏𝑡𝑚 and Γ𝑅) the kinematic boundary condition states that they are imper­
meable:

∇𝜙 ⋅ �⃗� = 0 (3.18)

The dynamic boundary condition of the free surface is equal to the pressure:

𝑝 = −𝜌𝑤𝜙𝑡 − 𝜌𝑤𝑔𝜂 (3.19)

The dynamic Euler­Bernoulli beam is given as:

𝑝 = 𝜌𝑏ℎ𝜂𝑡𝑡 +
𝐸𝐼
𝐵 Δ

2𝜂 (3.20)

Where the pressure is the external force. Combining Equation 3.19 and 3.20, and dividing over the
water density, results in:

𝜌𝑏
𝜌𝑤
ℎ𝜂𝑡𝑡 +

𝐸𝐼
𝐵𝜌𝑤

Δ2𝜂 + 𝜙𝑡 + 𝑔𝜂 = 0 (3.21)

Finally, the damping terms for the kinematic boundary condition in the damping zone are given as
follows:

𝜂𝑡 − ∇𝜙 + 𝜇1𝜂 +
𝜇2
𝑔 𝜙 = 0 (3.22)

The dynamic boundary condition of the damping zone is the same as on the rest of the free surface.

The test function 𝑤 needs a stabilisation term 𝛼 in order to be coercive. Therefore, the weak for­
mulation is constructed as either 12(𝑤𝛼𝑏 + 𝑣) or

1
2(𝑤𝛼𝑓 + 𝑣), for the beam terms or the fluid terms,
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respectively. To fit the equations into the Newmark­beta time integration, they are written in the weak
formulation and grouped by their derivatives. This gives the following set of equations. The terms
containing second derivatives, representing the mass matrix:

𝑚((𝜙𝑡𝑡 , 𝜂𝑡𝑡), (𝑣, 𝑤)) =
1
2 (

𝜌𝑏
𝜌𝑤
𝛼𝑏𝑤 + 𝑣, 𝜂𝑡𝑡)

Γ𝑏
(3.23)

The terms containing the first derivative, representing the damping matrix:

𝑐((𝜙𝑡 , 𝜂𝑡), (𝑣, 𝑤)) =
1
2 (𝛼𝑓𝑤 + 𝑣,𝜙𝑡)Γ𝑓𝑠 − (𝑤, 𝜂𝑡)Γ𝑓𝑠

+12 (𝛼𝑏𝑤 + 𝑣,𝜙𝑡)Γ𝑏 − (𝑤, 𝜂𝑡)Γ𝑏
(3.24)

The terms containing no derivatives:

𝑎((𝜙, 𝜂), (𝑣, 𝑤)) = (∇𝜙, ∇𝑤)Ω
+12 (𝛼𝑓𝑤 + 𝑣, 𝑔𝜂)Γ𝑓𝑠

−(𝜇1𝜂, 𝑤)Γ𝑑𝑧 − (
𝜇2
𝑔 𝜙,𝑤)Γ𝑑𝑧

+12 (
𝐸𝐼
𝐵𝜌𝑤

𝛼𝑏Δ𝑤 + Δ𝑣, Δ𝜂)
Γ𝑏
+ 12 (𝛼𝑏𝑤 + 𝑣, 𝑔𝜂)Γ𝑏

+𝑠 ((𝜙, 𝜂), (𝑣, 𝑤))

(3.25)

Where 𝑠 ((𝜙, 𝜂), (𝑣, 𝑤)) is a function containing several stabilisation terms (𝛼𝑓 , 𝛼𝑏 and 𝛾ℎ) (Colomés
et al., 2021):

𝑠 ((𝜙, 𝜂), (𝑣, 𝑤)) = −12
𝐸𝐼
𝐵𝜌𝑤

[({Δ𝜂}, 𝑛Λ ⋅ (𝛼𝑏∇𝑤 + ∇𝑣)])Λ𝑏 + ([nΛ ⋅ ∇𝜂], {Δ𝑣})Λ𝑏]

+12
𝐸𝐼
𝐵𝜌𝑤

[𝛾ℎℎ ([nΛ ⋅ ∇𝜂], [nΛ ⋅ ∇𝑣])Λ𝑏 +
𝛾ℎ
ℎ ([nΛ ⋅ ∇𝜙], [nΛ ⋅ 𝛼𝑏∇𝑤])Λ𝑏]

Where the stabilisation terms are defined as:

𝛼𝑓 =
𝛿𝑢𝑡
𝛿𝑢

𝛼ℎ𝑔+
𝛿𝑢𝑡
𝛿𝑢

𝛼𝑏 =
𝛿𝑢𝑡
𝛿𝑢

𝛼ℎ(
𝜌𝑏ℎ
𝜌𝑤

𝛿𝑢𝑡𝑡
𝛿𝑢 +𝑔)+ 𝛿𝑢𝑡𝛿𝑢

𝛾ℎ = 100𝑟(𝑟 + 1)

(3.26)

With 𝑟 = 2 being the order of the system and:

𝛼ℎ =
1
2 (default value)

𝛿𝑢𝑡
𝛿𝑢 =

𝛾
𝛽Δ𝑡

𝛿𝑢𝑡𝑡
𝛿𝑢 = 1

𝛽Δ𝑡2

(3.27)

Where Λ𝑏 denotes the edge of the internal nodes of the structure. They are not part of the standard
weak formulation, but are added to ensure a coercive system. For the specific set of PDEs, there does
not exist a norm that satisfies 𝐵(𝑢, 𝑢) ≥ ||𝑢||. Currently, Colomés et al. (2021) are doing research to
find a norm which satisfies this inequality. If it can be proved that this norm exists, the monolithic sys­
tem is unconditionally stable. However, until then, the stabilisation parameters are required to ensure
a stable system, which could lead to numerical errors.

Finally, there is a function that contains the external forces, which is the incident vertical velocity profile,
that imposes the Airy waves:
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𝑏(𝑡, (𝑣, 𝑤)) = (𝑣𝐿(𝑡), 𝑤)Γ𝐿 (3.28)

Note that 𝑏(𝑡, (𝑣, 𝑤)) is a transient function of the linear form (the test functions only), whereas the other
functions were of the bilinear form (dependent on both the unknowns as well as the test functions). 𝑣𝐿(𝑡)
is the spatial derivative in the horizontal direction of Equation 2.4. The numerator has been rewritten
as the coordinate system of the numerical model is such that z = 0 at the bed and z = d at the free
surface.

𝑣𝐿(�⃗�, 𝑡) = 𝜔𝜉𝑖
cosh 𝑘𝑖𝑧
sinh 𝑘𝑖𝑑

cos 𝑘𝑖𝑥 − 𝜔𝑡 (3.29)

With �⃗� being the 2D spatial vector:

�⃗� = [𝑥𝑧] (3.30)

The Julia model contains several parameters that need to be calibrated before the tests can be run.
These parameters include: the grid resolution, the damping factor, length of the damping zone and the
steady state domain. Each of the parameters will be evaluated independently and are calibrated to
find an optimum between computational time and accuracy. In Figure 3.3, a representation of the 2D
model is given to scale.

Figure 3.3: Two­dimensional representation of the Julia model. The left­hand side shows the building zone where the waves
are generated, followed by the structural zone where the structure is located. Subsequently, there is a free zone without any
boundary conditions and finally a damping zone where the wave energy is dissipated.

3.6. Energy calculation
To compare the total amount of energy in the numerical model with the analytical solution, the trial
functions are specified as: 𝑤 = 𝜙𝑡 and 𝑣 = 2𝜂𝑡 − 𝛼𝑓,𝑏𝜙𝑡. (Colomés et al., 2021) Where 𝛼𝑓,𝑏 is the
stabilisation parameter for either the fluid or the structure. By inserting them in the weak formulation,
the following energy terms are found:

𝐸𝑘,𝑓 =
1
2𝜌𝑤∑∫∇(𝜙)2𝑑Ω (3.31)

𝐸𝑝,𝑓 =
1
2𝜌𝑤𝑔∑∫𝜂2𝑑Γ𝑓𝑠 (3.32)

𝐸𝑘,𝑏 =
1
2𝜌𝑤∑∫∇(𝜙)2𝑑Ω + 12𝜌𝑏ℎ∑∫𝜂2𝑡𝑑Γ𝑏 (3.33)

𝐸𝑝,𝑏 =
1
2𝜌𝑤𝑔∑∫𝜂2𝑑Γ𝑏 +

1
2
𝐸𝐼
𝐵 ∑∫Δ(𝜂)2𝑑Γ𝑏 (3.34)

Where 𝐸𝑘,𝑓 and 𝐸𝑝,𝑓 are the kinetic and potential energy of the fluid and 𝐸𝑘,𝑏 and 𝐸𝑝,𝑏 are the kinetic
and potential energy of the structure, respectively.

3.7. Set­up model
Now all the numerical tools are available, it is time to set up the model. An overview of the code is
given in Appendix B. The next chapter will discuss the choices which have made during the set­up.
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Model set­up

As the general mathematics behind the model has been laid out in the previous chapter, this chapter
will show how the 2D Julia model is set up. First, a model is tested where the free surface only consists
of a fluid. This is done to see if Airy waves can be generated accordingly. Secondly, the energy
balance of both the fluid as well as the VFFS are examined independently. The energy balance of
the numerical model is compared to the analytical solution. Once the model is set up and the tests
have been executed, the fluid structure interaction experiments can be built and run which is further
explained in the next chapter.

4.1. Model parameters
The numerical model is set up by using the parameters as given in the experiments by Schreier and
Jacobi (2020b). Below Table 4.1 and 4.2 show the parameters of the neoprene rubber material and
the incident waves of the experiments, respectively.

Material parameters Symbol Value Unit
Length L 4.95 m
Width B 1.02 m
Thickness h 0.005 m
Density of structure 𝜌𝑏 116 kg/m3

Flexural rigidity D 6.9e­3 Nm
Poisson’s ratio 𝜈 0.4 ­
Young’s modulus E 560 kPa
Characteristic length 𝜆𝑐 0.17 m

Table 4.1: List of material parameters, retrieved from Schreier’s experiment (Schreier and Jacobi, 2020b)

Wave parameters Symbol Experiment 1 (𝐻𝑑,1) Experiment 2 (𝐻𝑑,2) Unit
Wavelength 𝜆1 ∨ 𝜆2 0.495 0.990 m
Amplitude 𝜉1 ∨ 𝜉2 0.01 0.02 m
Wave period T1 ∨ T2 0.563 0.796 s
Water depth d 1.0 1.0 m

Wave steepness 2𝜉
𝜆

1
25

1
25 ­

Dispersion parameter n 0.500 0.500 ­

Table 4.2: Wave parameters retrieved from Schreier’s experiment (Schreier and Jacobi, 2020b)

23
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4.2. Verification
To verify if the numerical model produces the correct output values based on the input parameters,
the results are compared to the analytical solution. This is subdivided into different regions. The free
surface waves are compared to the analytical Airy waves. The wavelength, amplitude and frequency
of the waves should correspond to expected analytical input value.

Moreover, the amount of wave energy is calculated for both the free surface waves as well as the
hydroelastic waves. These are compared to the potential and kinetic energy components which were
derived from the (altered) Cauchy­Poisson condition.

Finally, the numerical damping zone is calibrated to ensure that all radiating energy is dissipated before
it reaches the end of the domain. This iteratively done and the energy levels should converge to zero. A
complete overview of all the chosen model settings is given in Table 4.12 at the end of the this chapter.

4.2.1. Grid resolution
The grid resolution or mesh size is the amount of cells the model consists of. The grid resolution should
be chosen accordingly based on the phenomena one wants to examine. If the grid resolution is too
large, the results may contain errors, or certain phenomena will not be visible due to the lack of res­
olution. If the mesh size is too small, the model becomes computationally expensive and will slow it
down. Also, if the model is explicit in time, a too small grid resolution could result in errors when trying
to solve the system. This will not happen for the Julia model, however, as the Newmark­beta method
is used, which is implicit in time and thus unconditionally stable.

As the model needs to be solved in space and time, the time step is inevitably connected to the grid
resolution. For these simulations, the CFL­condition is used to determine the time step as described in
the previous chapter. By choosing a Courant number equal to one (C = 1) and given the phase velocity
(𝑐 = 𝜆

𝑇 ), Equation 3.15 becomes:

Δ𝑡 ≤ Δ𝑥 ⋅ 𝑇𝜆 (4.1)

To prevent interpolation errors (see Figure 4.1), Δ𝑥 is dependent on the wavelength. From here it
follows that Δ𝑡 is subsequently dependent on the wave period:

Δ𝑡 ≤ 𝜆
𝑛𝑐𝑒𝑙𝑙𝑠

⋅ 𝑇𝜆 =
𝑇

𝑛𝑐𝑒𝑙𝑙𝑠
(4.2)

Figure 4.1: If the wavelength (𝜆) is misaligned with the grid size, an interpolation error is developed. As one is only able to
retrieve results from the nodes, it is convenient to choose a spatial resolution that complies with the length of the wave.

The resolution of the Julia model is chosen based on the wavelength of the governing wave conditions.
According to The SWASH team (2020), a rule of thumb is to have at least 50 grid cells per wavelength.
However, in a similar paper, Akkerman et al. (2020) finds a convergence of energy already at 24 cells
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per wavelength. The resolution of the grid can be divided into two parameters; the horizontal component
and the vertical component. For the horizontal component the resolution must be high, as the incident
waves travel across the domain and each location is equally important. For the vertical component,
however, the interest lies mainly at the free surface. Therefore, it is acceptable to have larger cells at
bottom of the model than at the free surface.

Horizontal mesh size
To check if the mesh size is accurate, the 2D FEM model is altered by removing the structure, and
looking only at the incident waves. A vertical velocity profile is imposed on the left boundary which
causes free surface waves to develop. These waves should be equal to the expected wavelength and
constant across the domain. By calculating the error, an optimal mesh size is retrieved. Figure 4.2
shows the wavelength of the incident waves over the domain of the model. A zero crossing method
has been used to calculate wavelength at each location. Therefore, the starting point in the graph is
not at X = 0, but half a wavelength ahead (𝑋 = 𝜆

2 ). The end of the calculation is at half a wavelength
before the damping zone starts. Otherwise, the damping zone is interfering. Three different horizontal
mesh sizes have been evaluated; 𝑛𝑐𝑒𝑙𝑙𝑠,𝑥 = 20, 𝑛𝑐𝑒𝑙𝑙𝑠,𝑥 = 50, 𝑛𝑐𝑒𝑙𝑙𝑠,𝑥 = 100 per wavelength. The
wavelength is normalised and plotted as the blue line. The black dashed line indicates the supposed
incident wavelength. The dashed red and green lines indicate where the VFFS is supposed to be laid in
the numerical model. However, during the set­up of the free surface waves of the model, no structure is
implemented yet. Figure 4.2 shows that for all three resolutions, the wavelength varies between higher
and lower values than the theoretical wavelength. The errors of each resolution are summarised in
Table 4.3.

Resolution Error [%]
𝑛𝑐𝑒𝑙𝑙𝑠,𝑥 Mean Upper bound Lower bound
20 ­1.59 +0.15 ­0.22
50 ­0.22 +0.05 ­0.03
100 ­0.03 +0.04 ­0.04

Table 4.3: Overview of wavelength error of long waves for each horizontal mesh size.

Figure 4.2: Calculation of normalised wavelength of long waves for ncells,x = 20 (left), ncells,x = 50 (middle) and ncells,x = 100 (right)
to determine the mean and the error. ( – Wavelength; ­ ­ BeginVFFS; ­ ­ End VFFS; ­ ­ Original wavelength)

In Figure 4.3, the wavelength for the short waves has been visualised and its errors are summarised
in Table 4.4.

Resolution Error [%]
𝑛𝑐𝑒𝑙𝑙𝑠,𝑥 Mean Upper bound Lower bound
20 ­1.27 +0.16 ­0.20
50 +0.09 +0.09 ­0.11
100 +0.29 +0.06 ­0.06

Table 4.4: Overview of wavelength error of short waves for each horizontal mesh size.
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Figure 4.3: Calculation of normalised wavelength of short waves for ncells,x = 20 (left), ncells,x = 50 (middle) and ncells,x = 100
(right) to determine the mean and the error. ( – Wavelength; ­ ­ BeginVFFS; ­ ­ End VFFS; ­ ­ Original wavelength)

For the long waves, there is an improved accuracy as the resolution increases. However, for the short
waves an optimum is found at 50 cells per wavelength. As for both waves, the mean difference to the
theoretical value and the errors are very small (­0.22%), it is chosen to use 50 cells per wavelength in
the X­direction.

Vertical mesh size
For the vertical mesh size, an unequally spaced grid is used. As explained above, the potential energy
in the top of the model is much more important than at the bottom. Therefore, the following formula
has been used to create an exponentially spaced grid, as this could potentially save some significant
computational time.

𝑧𝑖 = 𝑑 −
𝑑
2𝑖 for 𝑖 < 𝑛𝑐𝑒𝑙𝑙𝑠,𝑧

𝑧𝑖 = 𝑑 for 𝑖 = 𝑛𝑐𝑒𝑙𝑙𝑠,𝑧
(4.3)

Where 𝑧𝑖 is the ith vertical node. This formula applies to all vertical nodes, except the last one, which is
always equal to the water depth. This unequally spaced grid is compared with a uniform spaced grid
of 𝑛𝑐𝑒𝑙𝑙𝑠,𝑧 = 10 is used. Figure 4.4 shows the uniform spaced vertical grid cells for the long waves (left)
and the short waves (right). The errors are summarised in Table 4.5

Resolution Error [%]
𝑛𝑐𝑒𝑙𝑙𝑠,𝑧 Mean Upper bound Lower bound
10 (long) +0.25 +0.04 ­0.08
10 (short) +0.11 +0.05 ­0.07

Table 4.5: Overview of wavelength error of long waves and short waves for a uniform spaced vertical grid.

Figure 4.4: Calculation of normalised wavelength of long waves (left) and short waves (right) for uniform spaced grids. ( –
Wavelength; ­ ­ BeginVFFS; ­ ­ End VFFS; ­ ­ Original wavelength)

The uniform spaced grid is the benchmark to compare the exponentially spaced grid to. In Figure 4.5,
the wavelength is given for four different test runs; 𝑛𝑐𝑒𝑙𝑙𝑠,𝑧 = 3, 4, 5 and 6. It is observed that as the
amount of cells increases, the mean value decreases and the errors increase. This could be due to
numerical noise. The errors are summarised in Table 4.6.
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Resolution Error [%]
𝑛𝑐𝑒𝑙𝑙𝑠,𝑧 Mean Upper bound Lower bound
3 +0.10 +0.06 ­0.03
4 ­0.22 +0.05 ­0.03
5 ­0.24 +0.13 ­0.13
6 ­0.24 +0.27 ­0.33

Table 4.6: Overview of wavelength error for long waves for an uneven spaced vertical grid.

Figure 4.5: Calculation of normalised wavelength of long waves for ncells,z = 3 (top left), ncells,z = 4 (top right), ncells,z = 5 (bottom
left) and ncells,z = 6 (bottom right). ( – Wavelength; ­ ­ BeginVFFS; ­ ­ End VFFS; ­ ­ Original wavelength)

For the short waves, the unequally spaced grid calculations have also been made and visualised in
Figure 4.6. Where for the long waves the fewest amount of vertical grid cells (𝑛𝑐𝑒𝑙𝑙𝑠,𝑧 = 3) showed the
best solution, for the short waves the mean wavelength differs +2.9%. The errors are summarised in
Table 4.7

Resolution Error [%]
𝑛𝑐𝑒𝑙𝑙𝑠,𝑧 Mean Upper bound Lower bound
3 +2.9 +0.15 ­0.09
4 +0.09 +0.09 ­0.11
5 ­0.22 +0.16 ­0.12
6 ­0.35 +0.30 ­0.35

Table 4.7: Overview of wavelength error for short waves for an uneven spaced vertical grid.
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Figure 4.6: Calculation of normalised wavelength of short waves for ncells,z = 3 (top left), ncells,z = 4 (top right), ncells,z = 5 (bottom
left) and ncells,z = 6 (bottom right). ( – Wavelength; ­ ­ BeginVFFS; ­ ­ End VFFS; ­ ­ Original wavelength)

Comparing the values of the exponentially spaced grid to the benchmark, it becomes clear that for
the long waves, test runs perform better if only three or four vertical grid cells are used. For the short
waves this only accounts for four grid cells over the vertical domain. It is also observed that for a too
fine resolution, the accuracy of the results decrease again. It is likely that this is caused by numerical
noise as is observed in the lower right plot of Figure 4.5 and 4.6, where at the end of the domain the
wavelength is not constant anymore. Therefore, it is decided to use the exponentially spaced grid with
𝑛𝑐𝑒𝑙𝑙𝑠,𝑧 = 4.
In Table 4.8 an overview is given of the effect that Equation 4.3 has on the spacing of the vertical cells.
In the table, the Z­coordinates are given for unequally spaced vertical nodes for 𝑛𝑐𝑒𝑙𝑙𝑠,𝑧 = 4, 𝑛𝑐𝑒𝑙𝑙𝑠,𝑧 =
5 and 𝑛𝑐𝑒𝑙𝑙𝑠,𝑧 = 6 with a water depth of H = 1m as used in the model. Comparing to a uniform spaced
grid of 𝑛𝑐𝑒𝑙𝑙𝑠,𝑧 = 10 (spacing is 0.1m), one observes that four unequally spaced cells result in a coarser
grid (spacing is 0.125m), whereas five cells give a finer grid (spacing is 0.0625m) just below the free
surface.

Z­coordinate [m] Spacing [m]
Nodes / Cells 3 4 5 6
1 0.0 0.0 0.0 0.0 ­
2 0.5 0.5 0.5 0.5 0.5
3 0.75 0.75 0.75 0.75 0.25
4 1 0.875 0.875 0.875 0.125
5 ­ 1 0.9375 0.9375 0.0625
6 ­ ­ 1 0.96875 0.03125
7 ­ ­ ­ 1 0.03125

Table 4.8: Z­coordinates of unequally spaced grid for several amount of vertical grid resolutions.

The second criterion states that the amplitude of the wave should remain constant. To check this,
Figure 4.7 shows the free surface elevation of the model with the proposed mesh sizes: 𝑛𝑐𝑒𝑙𝑙𝑠,𝑥 = 50
and 𝑛𝑐𝑒𝑙𝑙𝑠,𝑧 = 4.
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Figure 4.7: (Free surface elevation of long waves (left) and short waves (right). (– Free surface elevation; ­ ­ BeginVFFS; ­ ­ End
VFFS)

For the long waves, the mean amplitude of the waves, before they enter the damping zone, is ­0.99%
lower than the theoretical amplitude of 𝜉 = 0.02m with errors ranging (­0.28% to +0.53%). For the short
waves, the differences are even lower, giving a mean amplitude difference of ­0.52% compared to 𝜉 =
0.01m with errors ranging (­0.13% to +0.13%). The errors on the amplitudes confirm the choice of the
proposed mesh sizes and therefore, it is decided to proceed with these values.

4.2.2. Damping factor
The damping factor (𝜇0) is a value that determines the amount of damping in the damping zone. Ac­
cording to Kim et al. (2014), this factor needs to be chosen iteratively. In their paper, they use a 𝜇0
equal to 2.5. However, their wave parameters are completely different than the ones used in this re­
port. Therefore, a range of values will be examined to see how this damping factor behaves. Values
of 𝜇0 = 5, 10 and 20 are evaluated to see which fits best to the model. Figure 4.8 shows the free
surface elevation of the damping zone in case of the long incident waves. To see if the damping works
accordingly, the final value of the free surface is compared to the initial amplitude. The left plot shows
the free surface elevation with a damping factor of 𝜇0 = 5 and the elevation at the end of the domain is
still 0.97% of the initial amplitude. If the damping factor is increased to 𝜇0 = 10, this value decreases
to 0.011%. An even larger damping factor of 𝜇0 = 20 gives an amplitude decrease of the same order
as the previous value, resulting in an elevation of only 0.008% of the initial amplitude. Based on these
results, the damping factor of 𝜇0 = 5 is clearly too low, as there is still energy to dissipate. On the
other hand, the Figure 4.8 also shows that a damping factor of 𝜇0 = 20 damps the waves faster than
necessary. This could cause wave reflection and is therefore not desirable.

Figure 4.8: Three plots with different damping factors (𝜇0 = 5 (left), 𝜇0 = 10 (middle) and 𝜇0 = 20 (right)) for short waves. ( –
Free surface elevation)

The results of different damping zone length for the short waves are visualised in Figure 4.9. The lowest
damping factor 𝜇0 = 5 gives a final elevation of 1.25%, indicating that not all energy is fully dissipated.
A damping factor of 𝜇0 = 10 results in an elevation of 0.083% at the end of the domain. The highest
damping factor 𝜇0 = 20 gives the best results in terms of damping with a final value of 0.016%. However,
this is at cost of potential wave reflection, as the numerical viscous zone becomes stronger early in the
damping zone.



30 4. Model set­up

Figure 4.9: Three plots with different damping factors (𝜇0 = 5 (left), 𝜇0 = 10 (middle) and 𝜇0 = 20 (right)) for short waves. ( –
Free surface elevation)

Taking into account that as much energy should be dissipated with a minimal risk on wave reflection, it
is chosen to use 𝜇0 = 10 as the damping factor value.

4.2.3. Damping zone
The damping zone needs to be sufficient long in order to damp the wave energy correctly. Min Woo
Kim suggests to use a damping zone of at 1.5 times the wavelength. The initial value will be set to the
wavelength of the incident waves. In Figure 4.10, three test runs are visualised that have a damping
zone length of 𝐿𝑑 = 2𝜆, 3𝜆 and 4𝜆. To see which damping zone length fits best, it is examined how
much the amplitude is decreased at the final node of the domain. Also, it is taken into account if a
larger damping zone has a significant effect on the decrease in amplitude.

For the shortest damping zone length (2𝜆), the amplitude is decreased to 0.434% of the incident am­
plitude. If the damping zone is elongated to 3𝜆, this decreases even further to 0.011%. Once the
damping zone is stretched even more to 4𝜆, there is a slight increase in amplitude compared to the
previous length; 0.018%. Taken these values into account, it is decided to use a damping zone length
of 3𝜆 for the model concerning the long waves.

Figure 4.10: Three plots with different damping zone lengths for long waves . A damping length of 𝐿𝑑 = 2𝜆 does not fully damp
the wave (left). A damping zone length of 3𝜆 gives the best results (middle). The damping zone length of 4𝜆 gives worse results
and requires unnecessary computational time (right). ( – Free surface elevation)

The same procedure has been repeated for the test runs with short waves and visualised in Figure
4.11. A damping zone length of 2𝜆 shows a decrease to 2.09% compared to the incident amplitude.
For the 3𝜆 test run, the final value is equal to 0.389% and for the largest damping zone length (4𝜆), the
amplitude decreases to even 0.083%. Therefore, it is decided that the test runs with the short waves
are run with a damping zone length of 4𝜆.

Figure 4.11: Three plots with different damping zone lengths for short waves . A damping length of 𝐿𝑑 = 2𝜆 does not fully damp
the wave (left). A damping zone length of 3𝜆 gives better results (middle). The damping zone length of 4𝜆 gives the best results
(right). ( – Free surface elevation)
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4.2.4. Steady­state domain
In order to get reliable results, the model should be in a steady­state. This means that the behaviour in
the model is constant or periodic in both space and time. To determine the steady­state, the wavelength
of the waves should be constant across the domain (except the damping zone). In Figure 4.12, the
wavelength of the long waves (left) and short waves (right) have been calculated for different moments
in time. After 50 wave periods, the normalised mean wavelength is ­0.28% lower than than the theo­
retical wavelength and there are still high fluctuations. The error of the normalised mean wavelength
drops as time progresses and the fluctuation errors stagnate after 100 wave periods.

The short waves show an error of the normalised mean wavelength of +0.09% after 50 wave peri­
ods. The mean error does not decrease anymore as time progresses. The fluctuations, however, keep
decreasing until 90 wave periods. An overview of the errors is given in Table 4.9. Therefore, it is chosen
to run both models for at least 100 wave periods.

Wave periods Error [%]
𝑇 [s] Mean Upper bound Lower bound
50 (long) ­0.28 +0.27 ­0.28
50 (short) +0.09 +0.57 ­0.63
100 (long) ­0.22 +0.05 ­0.03
90 (short) +0.09 +0.09 ­0.11

Table 4.9: Overview of wavelength errors at given timestamps.

Figure 4.12: Wavelength calculation for different points in time for the long waves (left) and short waves (right). As time pro­
gresses the fluctuations significantly drop and stagnate at t = 100T; for the short waves this happens at t = 90T. Note that although
the wavelength calculations seem not to align with the original wavelength, the y­axis is highly zoomed.

4.2.5. Energy calculation
Finally, as the model is set up, the total amount of energy is calculated to see if this corresponds to the
theory. This is done for both a scenario where there is only water, as well as an infinite VFFS. This time,
the setup of the model is only one wavelength long and the boundaries (Γ𝐿 and Γ𝑅) are periodic. This
means that the length of the model becomes infinitely long. An initial displacement of the free surface
is imposed and no energy is added to the system during the time span. As there is also no damping,
it is expected that the wave keeps traveling without any dissipation of energy. Using Equations 2.30,
2.33, 2.35, 2.36, 2.38 and 2.39 of the previous chapter, the total energy in the incident waves and the
VFFS are calculated independently. These values are compared to the numerical energy calculation
as given by Equation 3.31, 3.32, 3.33 and 3.34.

Fluid only
In the case of only having a fluid domain, the amount of energy in the system should be equal to the sum
of the potential energy and the kinetic energy. Figure 4.13 shows the amount of energy in the system for
the short waves and the long waves for one wave period. It is observed that the total amount of energy
remains constant over time, whereas the potential energy and kinetic energy component slightly vary in
time. Table 4.10 shows the theoretical value as well as the numerical value of the energy components.
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It is observed that the differences between the analytical approach are almost identical to the numerical
results (+0.08%).

Figure 4.13: Energy components for long waves (left) and short waves (right). ( – Potential energy; – Kinetic energy; – Total
energy)

Energy [J/m] Theoretical Numerical Difference Theoretical Numerical Difference
Short Short Long Long

𝐸𝑘,𝑓 0.1219 0.1220 +0.0769% 0.9735 0.9735 +0.0053%
𝐸𝑝,𝑓 0.1219 0.1220 +0.0770% 0.9735 0.9735 +0.0054%
𝐸𝑡 0.2437 0.2439 +0.0770% 1.9470 1.9471 +0.0053%

Table 4.10: Overview of energy components. Numerical values compared to analytical values.

Beam only
The amount of energy in the system for the beam is also calculated and is visualised in Figure 4.14
and the differences between the analytical method and the numerical calculation are given in Table
4.11. Here the differences are slightly larger, reaching a maximum error of 0.8%. Note that the total
energy in Figure 4.14 slightly differs compared to Figure 4.13. Due to the density of the beam and wave
deformation the amount of energy in the system does not correspond with the free surface wave.

Figure 4.14: Energy components for long waves (left) and short waves (right). ( – Potential energy; – Kinetic energy; – Total
energy; – Kinetic beam energy; – Potential beam energy)
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Energy [J/m] Theoretical Numerical Difference Theoretical Numerical Difference
Short Short Long Long

𝐸𝑘,𝑓 0.1160 0.1169 +0.8175% 0.9735 0.9722 ­0.1274%
𝐸𝑝,𝑓 0.1160 0.1161 +0.0718% 0.9735 0.9748 +0.1376%
𝐸𝑘,𝑏 0.0008 0.0008 ­0.1805% 0.0035 0.0035 ­0.5084%
𝐸𝑝,𝑏 0.0017 0.0017 +0.2036% 0.0009 0.0009 +0.2695%
𝐸𝑡 0.2345 0.2356 +0.4407% 1.9514 1.9515 +0.0043%

Table 4.11: Overview of wave energy differences between the numerical output values and the analytical method.

4.2.6. Conservation of energy
To show that the numerical model is energy conservative, the total amount of energy in the system
is measured. This is done for two different cases. First, the energy level in the system for the free
surface without a structure is shown. Figure 4.15 shows the evolution of energy for 100 wave periods.
The green line confirms that the total energy in the system is conserved, as after 30 wave periods it
becomes a constant line. It is observed that the potential and kinetic energy component are precisely
𝜋
2 out of phase, as was expected for regular waves. Furthermore, the kinetic energy component varies
less than the potential energy component. It is likely that this is caused by the damping zone where
the energy is dissipated. Finally, the total amount of energy in the system also varies over time. This
is caused by the fact that the incident wave energy is not in phase with the dissipated energy.

Figure 4.15: Evolution of energy components in time for long waves (left) and short waves (right). ( – Potential energy; – Kinetic
energy; – Total energy)

Secondly, the total energy of the fluid structure interaction is calculated. Figure 4.16 shows the amount
of energy in the entire domain split over four energy components. The total energy in the system,
indicated by the green line, is clearly conserved. For the fluid energy components similar behaviour
is observed compared to the case without a floating structure. Furthermore, it is observed that for the
short waves, the potential energy of the structure is higher than the kinetic part and for the long waves,
this is vice versa. The hydroelastic wave deformation is greater than one for the short waves (𝐾 > 1)
and lower than one for the long waves (𝐾 < 1), which thus have influence on the magnitude of the
energy components.



34 4. Model set­up

Figure 4.16: Evolution of energy components in time for fluid structure interaction of long waves (left) and short waves (right). (
– Potential energy; – Kinetic energy; – Total energy; – Kinetic beam energy; – Potential beam energy)

4.2.7. Wave frequency
The theory states that the incident wave deforms as the wave energy radiates through the structure.
However, the frequency of the wave should remain identical. A Fast­Fourier­Transform (FFT) has been
executed on the time series at two locations; the incident wave zone and the hydroelastic wave zone.
The FFT was used to calculate the spectral density of the system. This is done by taking the square of
the real part (𝑎𝑖) of the FFT solution and dividing it over two times the resolution (𝛿𝜔) of the FFT:

𝐸(𝜔) = 𝑎2𝑖
2𝛿𝜔 (4.4)

Figure 4.17 shows that the angular frequency across the domain remains constant, which means that
only the wavelength disperses. Subsequently, it can be derived that the phase velocity of the wave
also changes with the same ratio as the change of wavelength.

Figure 4.17: Spectral density calculation for incident waves and hydroelastic waves of long waves (left) and short waves (right).
( – Incident wave; – Hydroelastic wave)

4.2.8. Energy flux
To compare two locations with each other, an energy flux balance is established. This is the rate of
energy that travels through the domain and given by the product of the amount of wave energy and the
group velocity of the wave. As was shown in the previous section, the wave frequency was constant
across the numerical domain. This implies that the group velocity only changes if the wavelength
changes. Figure 4.18 shows the energy flux at two locations in the numerical domain. After 40 wave
periods, the red and the blue line clearly converge to the same value, which confirms that the energy
flux is equal at both locations. It is observed that the energy flux at 𝑋 = 𝜆 rises earlier than the energy
flux at 𝑋 = 9𝜆. Also, there is a peak in the total energy flux before it reaches its steady­state. For the
short waves, the energy fluxes are nearly identical, whereas, for the long waves, the differences are
slightly larger. However, the differences are so small that this could be related to numerical noise. The
flux has a sinusoidal shape, which fits with the energy transport of a wave.
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Figure 4.18: Energy flux for incident waves at two locations of long waves (left) and short waves (right). ( – Energy flux at 𝑋 = 𝜆;
– Energy flux at 𝑋 = 9𝜆)

4.2.9. Stabilisation
Currently, as mentioned in the previous chapter, Colomés et al. (2021) are doing research on the
stabilisation parameters to find an optimal definition, which will be found in the near future. Until then,
the default value for 𝛼ℎ = 0.5 will be used to calculate the results.

4.2.10. Summary
The findings of the results from the above mentioned criteria have been summarised in Table 4.12.
These parameters will be used in the set­up of the Julia model where the fluid structure interaction
is built. In order to obtain accurate results, it was found that the error of the resolution in X­direction
converged after 50 cells per wavelength. This is in line with the earlier mentioned rule of thumb pro­
posed by the SWASH team. The resolution in the Z­direction is only four cells per wavelength, but
exponentially mapped so that the resolution is high at the free surface and low near the bed. This gave
accurate results and speeds up the computation time. The time step has been set to a fraction of the
wave period with the highest resolution of the space vector, which is the X­direction. From here the
CFL condition equals one, which makes it stable for both explicit models, as well as implicit models.
The choice to make it a fraction of the wave period is convenient as the waves can be examined at their
zero­crossing. The damping factor of ten and a damping zone of three or four wavelengths, respec­
tively for long or short waves proved to result in dissipating the wave energy most efficiently without
having too much wave reflection. Finally, the steady state is well reached at 100 wave periods. An
overview of the model set­up is given in Figure 3.3.

Julia parameters Symbol Experiment 1 (short waves) Experiment 2 (long waves) Unit
Grid resolution (x) ncells,x 50 50 ­
Grid resolution (z) ncells,z 4 4 ­

Cell size Δ𝑥 𝜆1
𝑛𝑐𝑒𝑙𝑙𝑠,𝑥

𝜆2
𝑛𝑐𝑒𝑙𝑙𝑠,𝑥

m

Time step Δ𝑡 𝑇1
𝑛𝑐𝑒𝑙𝑙𝑠,𝑥

𝑇2
𝑛𝑐𝑒𝑙𝑙𝑠,𝑥

t

Damping factor 𝜇0 10 10 ­
Damping zone Ld 4𝜆1 3𝜆2 m
Steady­state Tss [100T1, ∞⟩ [100T2, ∞⟩ s
Stabilisation parameter 𝛼ℎ 0.5 0.5 ­

Table 4.12: Julia model parameters
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Experiments

This chapter explains the set­up of the test runs for the numerical model. The set­up is divided into
three parts. First, a comparison is made with the numerical model and Schreier’s experimental re­
search. Secondly, a sensitivity study is executed by comparing the analytical and the numerical model
for a range of different scenarios. These scenarios are based on realistic values of the North Sea.
This is done using wave climate characteristics of an offshore wind farm in the North Sea. The ma­
terial parameters are chosen such that they lie within the given boundaries of the theory. Thirdly, the
parameters are changed to values where the analytical approach does not hold anymore.

5.1. Schreier’s and Jacobi’s experiment
Schreier and Jacobi (2020b) made a test set­up in the towing tank of the TU Delft where a 5 mm floating
neoprene mat was installed with a 1

1000 height to length ratio. Regular waves were imposed directed
towards the floating structure. As the towing tank is not large enough to accommodate for full­scale
testing, the experiment was scaled. Given a significant wave height off the Dutch coast in the North
Sea of 1­2 metres (Eecen, 2009), a scaling comparison could be made using Froude Scaling. This
would lead to a scale model of 𝑠 = 50. They used a constant wave steepness ratio of 1

25 throughout
the experiments. Translating his values to the real world, corresponding wavelengths of 𝜆 = 25m and
𝜆 = 50m and wave periods of 𝑇 = 3.98s and 𝑇 = 5.63s would occur for the short and long waves,
respectively, at a water depth of 𝑑 = 50m. These values seem realistic wave periods of existing sea­
states, as DNV gives wave period bounds ranging from 𝑇𝑚𝑖𝑛 = √13𝐻𝑠 to 𝑇𝑚𝑎𝑥 = √30𝐻𝑠 (DNV­GL,
2016), resulting in values ranging from (3.60s ­ 5.48s) and (5.09s and 7.75s) for short and long waves,
respectively. Using the deep water relation between wavelength and wave period as given in Equation
5.1, DNV’s range is rewritten to a wave steepness range of 1

20 to
1
50 . Their choice of a wave steepness

of 1
25 therefore is moderately steep. In Table 4.1 and Table 4.2 one finds the used material and wave

parameters of the experiment. In Table 5.1

𝑇 = √2𝜋𝜆𝑔 ⟹ 𝐻𝑠
𝜆 = 2𝜋𝐻𝑠

𝑔𝑇2𝑚𝑖𝑛
≈ 1
20 ∨

2𝜋𝐻𝑠
𝑔𝑇2𝑚𝑎𝑥

≈ 1
50 (5.1)

Test run 𝐻𝑑,1 (short waves) 𝐻𝑑,2 (long waves)
𝐸𝐼
𝐵 𝜌𝑏

𝐸𝐼
𝐵 𝜌𝑏

1 0.09559 116 0.09559 116

Table 5.1: Overview of Schreier’s test runs for numerical model. 𝐸𝐼𝐵 in Nm and 𝜌𝑏 in kg/m3

They used Digital Image Correlation (DIC) to measure the surface elevation of the entire structure with
a spatial planar resolution of 15 mm and a surface height error ranging from 0.7 to 1.8 mm. Wave

37
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buoys were used to measure the wave elevation, which had a error margin of 1.3 mm. They showed
that using this technique the test runs were repeatable and that the VFFS followed the local waves
elevation for the long waves. In case of the short waves, a hydroelastic interaction was observed that
led to wave stretching. Finally, they observed 3D effects across the width of the structure.

Figure 5.1: Set­up of experimental study. (Schreier and Jacobi, 2020b)

Position (pos) 1 2 3
Wave probe 1 𝑑𝑤𝑝1[m] 25.84
Wave probe 2 𝑑𝑤𝑝2[m] 29.72
Wave probe 3 𝑑𝑤𝑝3[m] 38.35
Front mooring line 𝑑𝑓[m] 20.85 22.55 24.25
Aft mooring line 𝑑𝑎[m] 35.94 37.64 39.34
Front edge of model def(pos) [m] 25.77 27.47 29.17
Aft edge of model dea(pos) [m] 30.72 32.42 34.12

Table 5.2: Longitudinal position (in meters) of wave probes, mooring points, and front and aft model edge with respect to the
wave maker flap in its upright position. (Schreier and Jacobi, 2020b)

The results from Schreier and Jacobi (2020b) experiments are displayed in Figure 5.2. For the short
waves, the analytical value of wave stretching was calculated to be 40 mm. From the experiment at X =
800mm, a total wavelength stretching of 36 mm was observed at the center line of the VFFS compared
to the sides of the VFFS. For the long waves, an expected wave shortening of 15 mm was calculated.
The spatial resolution of the camera was about the same size. Therefore, it could not be confirmed
whether or not wave shortening actually occured. (Schreier and Jacobi, 2020b)
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Figure 5.2: Repeatability of surface elevation profiles of phase­matching DIC frames of the aft section of the model for each
two test runs with repeated wave condition. Top: runs R58 (continuous lines) and R73 (dashed lines), short waves (Experiment
1); bottom: runs R28 (continuous lines) and R69 (dashed lines), long waves (Experiment 2). Wave propagation right to left.
(Schreier and Jacobi, 2020b)

5.2. Sensitivity study
The sensitivity study is executed to examine when the numerical model corresponds with the analytical
solution. To do this, wave characteristics are used from an existing offshore wind farm located in the
North Sea; the Borssele Wind Farm Zone. The data is obtained from a site study executed by Deltares
(Deltares, 2015). In Figure 5.3, monthly wave roses are displayed from a 20 years time period. This
location shows a mean wave (𝐻𝑑,𝑚) height of 1.3m and a extreme wave height (𝐻𝑑,𝑒) of 6.8m. From
DNV, it is obtained that a typical wave climate consists of waves with a wave steepness ranging from
1
50 to 1

20 . Resulting in mean wavelengths of (26 ­ 65m) and extreme wavelengths of (136 ­ 340m).
Considering a water depth (d) of 50m, the mean waves are well within the deep water regime. The
extreme waves do not lie in the deep water regime, but neither are they shallow water waves; they
are located in the intermediate water regime. Table 5.3 summarises the characteristics used for the
sensitivity study.

As the expectations from the analytical method show that most wave deformation occurs due to high
frequency waves, a fifth wave (𝐻𝑑,𝑠) has been introduced. The wave height of this wave is only 0.10
metres. Its steepness is based on the maximum steepness as calculated by Deltares (Den Bieman
and Kieftenburg, 2015) on inward waterbodies, which is 1

12.5 , resulting in a wavelength of 1.25 m and
a corresponding wave period of 𝑇 = 0.895 s. This is a typical wave one would found on a lake. Al­
though this wave does not look like a design wave at first sight, as it contains much less energy than
the predefined ocean waves, this wave could potentially be of influence in the fatigue of the material of
the VFFS, due to the strong hydroelastic interaction which results in high curvatures.
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Figure 5.3: Monthly wave roses at the selected location. (Deltares, 2015)

Wave characteristics Symbol Mean wave Extreme wave Short wave Unit
𝐻𝑑,𝑚1 𝐻𝑑,𝑚2 𝐻𝑑,𝑒1 𝐻𝑑,𝑒2 𝐻𝑑,𝑠

Wave height 𝐻𝑑 1.3 1.3 6.8 6.8 0.1 m
Wave steepness 𝐻𝑑

𝜆
1
20

1
50

1
20

1
50

1
12.5 ­

Wavelength 𝜆 26 65 136 340 1.25 m
Wave period T 4.08 6.45 9.43 17.3 0.895 s
Water depth d 50 50 50 50 7 m
Dispersion parameter n 0.500 0.501 0.546 0.799 0.500 ­

Table 5.3: Summary of wave characteristics used in the test runs.

5.2.1. Sensitivity study within analytical domain
The analytical method is bound by two assumptions. The first assumption is the zero­draught assump­
tion, which tells us that the draught of the VFFS should be very low. In the numerical model the draught
is set by the VFFS density. The theory assumes thus, that the density of the structure is very small
compared to the fluid. Secondly, the theory assumes that the VFFS is able to follow the shape of the
waves. Therefore, the analytical domain only describes frequencies which are lower than the natural
heave period (𝜔 < 𝜔0).

These assumptions imply that the theory only holds for long waves and a VFFS of limited density.
The stiffness is not bound by the theory, however, in order to remain flexible, the characteristic wave­
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length should remain lower than to the incident waves (𝜆𝑐 < 𝜆𝑖). However, the theory should be able to
cope with stiff structures as well, as it was designed for that sole purpose. Next to this, the hydroelastic
dispersion relation is valid for the full wave domain; deep water as well as shallow water. However,
as the potential flow used in the numerical model does not go well beyond deep water waves, it is
expected that intermediate and shallow water waves will not be captured well in the model.

From these criteria three test runs are set up for the given five characteristic waves from Table 5.3.
Test run 2 is based on Schreier’s experiment, but scaled to realistic offshore sizes. Although the sur­
roundings of the VFFS are scaled using Froude scaling, the VFFS itself is not scaled using this method.
The numerical model assumes no width of the structure, as the model is only two­dimensional. There­
fore, only the length and height of the structure need to be scaled. However, a certain height of the
structure is only needed to create enough buoyancy to carry the solar panels. It is unfavourable to have
a too great thickness, as it will increase the wave loads. A full scale field study was executed by Michi­
gan University where a 1.27 cm (half inch) thickness of neoprene rubber was used. (Mayville et al.,
2020). They were able to get enough buoyancy to support the solar panels. This value will also be
used in the sensitivity study. Finally, the length of the structure needs to be determined. The analytical
solution assumes a semi­infinite VFFS. Therefore, the length of the structure should be long enough to
assume no more change in wave deformation. To ensure this, it is decided to use a different length for
each incident characteristic wave, and coupled to the incident wavelength. In Schreier’s experiments,
the minimum 𝐿

𝜆 ratio was five wavelengths (Schreier and Jacobi, 2020b). This should be sufficient, and
at the same time reduce the computational time. The material properties are kept identical to Schreier’s
set­up.

Next to this test run, two more test runs are set up that follow the analytical boundary conditions. These
test runs follow the zero­draught assumption, keeping the density low. The stiffness term is chosen
such that wave stretching starts to occur. Test run 3 should theoretically have nearly no wave deforma­
tion. Test run 5 is chosen such that it should give significant wave stretching. As the stiffness term is a
function of the incident wave number, the bending rigidity is also chosen differently per characteristic
wave. The exact values are explained in the next section Expectations.

5.2.2. Sensitivity study outside analytical domain
Although the analytical method is bound by the aforementioned assumptions, the numerical model does
not have this limitation. To investigate the wave deformation beyond the theoretical domain, test runs
are set up with increased draught. Test run 4 is identical to test run 3, except that the VFFS density is
increased such that it approximates the fluid density. The same approach has been repeated for test run
6, which mimics the input values of test run 5, but with the same increased VFFS density as in test run
4. Finally, test run 7 is based on test run 1a. The short wave of Schreier’s experiment is reintroduced.
This test run consists of five runs, each with an increasing VFFS density (200 ­ 1000 kg/m3). This test
run will investigate the effect of structure density on the hydroelastic wave deformation.

5.3. Expectations
From the given mathematics in the previous chapters, it is possible to draw expectations of the results
of the numerical method. The dispersion parameter 𝐾 is composed of two terms; the stiffness term and

the draught term. As recalled from Equation 2.24, shown below, the stiffness term, ( 𝑘𝑘𝑝 )
4
, adds wave

stretching, whereas the draught term, ( 𝜔𝜔0 )
2
, causes wave shortening.

𝐾 = 1 + ( 𝑘𝑘𝑝
)
4
− ( 𝜔𝜔0

)
2

To determine if their contributions are significant, it is stated that the terms are significant if their contri­
butions are higher than 1%. As the terms have a power in their calculation this relates to the following
conversions:
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( 𝑘𝑘𝑝
)
4
> 0.01 → 𝑘

𝑘𝑝
> 0.316 (5.2)

( 𝜔𝜔0
)
2
> 0.01 → 𝜔

𝜔0
> 0.1 (5.3)

Theoretically, the stiffness term is only bound by a lower limit, the bending rigidity cannot be negative.
For a bending rigidity of zero, the VFFS would behave like a fluid. There is no virtual upper limit, as
the VFFS theoretically could become infinitely stiff. However, a VFFS is characterised by its flexibil­
ity, therefore it should not exceed a certain bending rigidity. According to Schreier, the definition of a
VFFS is applicable for ratios of 𝜆

𝜆𝑐
> 5 or equivalently 𝑘

𝑘𝑝
< 1

5 . However, as previously stated, wave
stretching is only significant for a stiffness ratio larger than 0.316. Hence, this would result in insignif­
icant wave stretching for all VFFSs. The definition of the VFFS is stated as: ”structures longer than
the wavelength and able to follow the local wave elevation”. This is interpreted such that the wave
number could not exceed the characteristic wave number ( 𝑘𝑘𝑝 < 1). However, this upper limit would
lead to a wave stretching of factor two. During this study a maximum wave stretching of 10% is taken

into account (i.e. ( 𝑘𝑘𝑝 )
4
< 0.1 or 𝑘

𝑘𝑝
< 0.562). This results in a domain where wave stretching is expe­

rienced of 0.316 < 𝑘
𝑘𝑝
< 0.562. This upper limit states that the characteristic wavelength ratio is 𝜆

𝜆𝑐
≈ 2.

The draught term is bound by the air density and the water density in order not to levitate nor sink,
respectively. Looking at the draught term, it is expected that wave shortening intensifies as the VFFS

density increases, with a minimal value of 𝜔0 = √𝜌𝑤𝑔
𝜌𝑏ℎ

if the VFFS density equals the water density

(𝜌𝑏 = 𝜌𝑤). Using the realistic material properties from test run 2, it follows that significant wave short­
ening is only experienced for angular frequencies higher than 𝜔 > 2.78 rad/s or wave periods lower
than 𝑇 < 2.26 s.

𝜔0 = √
𝜌𝑤𝑔
𝜌𝑏ℎ

= √ 9.81
0.0127 = 27.79 rad/s → 𝜔 = 10% ⋅ 27.79 = 2.78 rad/s (5.4)

Based on the analytical method, wave deformation can be expected for both Schreier’s experiment
and the sensitivity study. The wave deformation is split over two parameters; the change in wave­
length and the change in wave amplitude. Using Schreier’s parameters from his two experiments,
one would expect wave stretching and a decrease in amplitude for Experiment 1 (short waves), and
wave shortening combined with an increase in amplitude for Experiment 2 (long waves). Table 5.4
summarises the expected outcome of the analytical method.

Name Symbol Experiment 1 Experiment 2 Unit
Change of wavelength K 1.007 0.997 ­
Change of amplitude R 0.965 1.001 ­

Table 5.4: Expected dispersion parameters of Schreier’s experiments. Wave stretching is expected for Experiment 1 (short
waves). Wave shortening is expected for Experiment 2 (long waves).

For the sensitivity study, there are still two unknown variables; the bending rigidity of the VFFS and the
density of the VFFS. In Figure 5.4, both variables are plotted independently to see how much influence
each variable has on wave deformation. The dashed line indicates a significance of 1%. The same
has been done in Figure 5.5, to show the influence of each variable on the change in amplitude. It
is clear that wave stretching only occurs if the structure is sufficiently stiff; longer waves require stiffer
structures in order to deform. Wave shortening, on the other hand, only occurs as the VFFS density
increases; shorter waves deform more than longer waves.
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Figure 5.4: Change of wavelength due to stiffness (left) and draught (right).

Figure 5.5: Change of amplitude due to stiffness (left) and draught (right).

However, in reality, both variables play a role in wave deformation. Therefore, a contour plot has been
made including both dispersion parameters for each of the five waves. The limits of the contour plot
have been chosen such, that maximum wave stretching was equal to 10%, the lower limit was obtained
using an equilibrium value (below a certain value there was no wave stretching observed anymore) and
has been plotted in Figure 5.6. It is expected that significant wave stretching only occurs for structures
being rather stiff. Below a certain stiffness the dispersion parameters, 𝐾 and 𝑅, go to one for the
characteristic ocean waves. The short characteristic lake wave, 𝐻𝑑,𝑠, shows values below one, which
means that wave shortening is expected.
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Figure 5.6: Expected change in wavelength for five characteristic waves. Note that the y­axis is different in each plot, the colours
match in each plot.

To put the stiffness parameters into perspective, they are compared to existing materials. Table 5.5
shows the equivalent materials that contain a similar Young’s modulus as the stiffness terms of the
respected test runs. Note that the density of the material has not been accounted for. Some mentioned
materials such as aluminium or tungsten carbide (used for high quality drilling equipment) do not float,
which makes them unable to use as a VFFS. However, this is purely an indication if the proposed
hydroelastic deformation would occur in real life. It is observed that for the extreme waves, to have
a hydroelastic interaction the material of the structure should be stiffer than diamond. For significant
wave deformation, even the small design waves (𝐻𝑑,𝑚1 and 𝐻𝑑,𝑚2) exceed Young’s moduli which are
workable materials. During the calculation method, it was assumed that the thickness of the VFFS
remained ℎ = 0.0127𝑚, which is very thin. Therefore, in cases where the Young’s modulus alone does
not give a realistic scenario anymore, the bending stiffness has been used to compare it to a concrete
structure with a larger thickness. As this report is also useful for VLFS, such as floating islands, this
still relates to realistic scenarios.
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Test run Low Stiffness High stiffness
3a­4a / 5a­6a Medium­density fiberboard (MDF) Tungsten carbide
3b­4b / 5b­6b Aluminium Concrete (h = 0.16m)
3c­4c / 5c­6c Tungsten carbide Concrete (h = 0.43m)
3d­4d / 5d­6d Concrete (h = 0.16m) Concrete (h = 1.6m)
3e­4e / 5e­6e Neoprene Polystyrene foam

Table 5.5: Comparison of real­world materials to numerical input data.

Using the value ranges of the previous figure. Figure 5.7 shows the expected change in amplitude
of the VFFS for a given VFFS density and a bending rigidity for each of the five waves. The change
in amplitude shows inverse results of the dispersion parameter 𝐾. For stiff structures, the amplitude
decreases towards zero for infinite rigid structures. On the other hand, the amplitude shows an increase
in wave height for short waves, especially in combination with a high VFFS density.

Figure 5.7: Expected change in amplitude for five characteristic waves. Note that the y­axis is different in each plot, the colours,
however, do match in each plot.

From these expected results, a set of numerical test runs is compiled. For each characteristic wave,
tests are run with realistic parameters of a VFFS. Furthermore, tests are run with stiffness and draught
values where significant wave deformation is expected. These values could lie well out of the regime
of VFFS, but are examined to see if the numerical model is also able to cope with VLFS. In Table 5.6
an overview is given of the tests which are being run.
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Test run 𝐻𝑑,𝑚1 𝐻𝑑,𝑚2 𝐻𝑑,𝑒1 𝐻𝑑,𝑒2 𝐻𝑑,𝑠
𝐸𝐼
𝐵 𝜌𝑏

𝐸𝐼
𝐵 𝜌𝑏

𝐸𝐼
𝐵 𝜌𝑏

𝐸𝐼
𝐵 𝜌𝑏

𝐸𝐼
𝐵 𝜌𝑏

2 0.09559 116 0.09559 116 0.09559 116 0.09559 116 0.09559 116
3 1 × 103 50 1 × 104 50 1 × 105 50 1 × 107 300 1 × 10−1 50
4 1 × 103 1000 1 × 104 800 1 × 105 900 1 × 107 1000 1 × 10−1 1000
5 1 × 105 50 1 × 107 50 2 × 108 50 1 × 1010 300 1 50
6 1 × 105 1000 1 × 107 800 2 × 108 900 1 × 1010 1000 1 1000

Table 5.6: Overview of characteristic wave test runs for numerical model. 𝐸𝐼𝐵 in Nm and 𝜌𝑏 in kg/m3.

Finally, as the wave deformation is expected to occur most significantly at high frequency waves,
Schreier’s setup is repeated one more time for the short waves. This time, only the density of the
VFFS is changed. Five runs, each having an increment of the density of 200 kg/m3. This would show
how the draught of the VFFS plays a factor in the wave deformation and gives a starting point for
experimental research.

Test run 𝐻𝑑,1 𝐻𝑑,1 𝐻𝑑,1 𝐻𝑑,1 𝐻𝑑,1
𝐸𝐼
𝐵 𝜌𝑏

𝐸𝐼
𝐵 𝜌𝑏

𝐸𝐼
𝐵 𝜌𝑏

𝐸𝐼
𝐵 𝜌𝑏

𝐸𝐼
𝐵 𝜌𝑏

7 0.09559 200 0.09559 400 0.09559 600 0.09559 800 0.09559 1000

Table 5.7: Overview of draught test runs for numerical model. 𝐸𝐼𝐵 in Nm and 𝜌𝑏 in kg/m3.

5.4. Comparison
To verify the numerical results, they are compared to the analytical solution. The dispersion parameters
𝐾 and 𝑅 are compared for the analytical solution and the numerical solution. Furthermore, the energy
fluxes on both ends of the VFFS are calculated and compared to the energy fluxes of the free surface
on both sides, respectively.

To compare the numerical results to the analytical solution, several factors are introduced to indicate
what is calculated. These factors are the dispersion parameters 𝐾 and 𝑅, each with different subscripts.
The dispersion parameters are calculated on each end of the VFFS. The analytical solution is calcu­
lated using the input parameters and indicated by 𝐾𝑎 and 𝑅𝑎, respectively. Subsequently, the same
factors are calculated, but this time, based on the numerical results. These factors are indicated by
𝐾𝑛 and 𝑅𝑛. The subscripts 𝑖 and 𝑜 indicate at which boundary the value is calculated. The subscript
𝑏 indicates the VFFS. Finally, the ’real’ solution is calculated. These are the measured numerical val­
ues of the wave number and the amplitude and indicated by 𝐾𝑟 and 𝑅𝑟. The difference between the
analytical solution and the numerical solution shows the error of the numerical model. The difference
between the real solution and the numerical solution shows if the mathematical theory is in line with
the numerical model. An overview of the used dispersion parameters is given in Table 5.8.
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Name Symbol Calculation
Wavelength dispersion
Analytical Solution 𝐾𝑎 Equation 2.24
Numerical solution (b/i) 𝐾𝑛 Equation 2.24

Real solution (b/i) 𝐾𝑟,𝑖
𝑘𝑖
𝑘𝑏
⋅ tanh(𝑘𝑖𝑑)
tanh(𝑘𝑏𝑑)

Real solution (b/o) 𝐾𝑟,𝑜
𝑘𝑜
𝑘𝑏
⋅ tanh(𝑘𝑜𝑑)
tanh(𝑘𝑏𝑑)

Amplitude dispersion
Analytical Solution 𝑅𝑎 Equation 2.28
Numerical solution (b/i) 𝑅𝑛,𝑖 Equation 2.28
Numerical solution (b/o) 𝑅𝑛,𝑜 Equation 2.28

Real solution (b/i) 𝑅𝑟,𝑖
𝜉𝑏
𝜉𝑖

Real solution (b/o) 𝑅𝑟,𝑜
𝜉𝑏
𝜉𝑜

Table 5.8: Overview of different dispersion parameters, used to compare the analytical and numerical results.

Next to the dispersion parameters, the energy fluxes on each side are calculated. These are indicated
by 𝑃𝑖, 𝑃𝑏 and 𝑃𝑜 for the incident, VFFS and outgoing wave energy flux, respectively. These are calculated
using Equation 2.44. The expected result versus the numerical values are discussed at each test run in
the next chapter. The accuracy between the theoretical and measured values is given in the summary
and discussed in the next chapter as well.

5.5. Overview test runs
To summarise the different test runs that have described in the previous sections, a clear overview is
given here. Figure 5.8 shows the relative stiffness of each structure of the different test runs. The black
dashed line denotes 𝐿

𝜆𝑐
= 5, which indicates the lower limit for VFFS. Values lower than this line should

be evaluated as VFLS. The lower limit of the plot is equal to one and as all structures are longer than
their incident wavelength (𝐿 = 5𝜆), all test runs conform Suzuki et al.’s (2007) definition of a VFLS as
shown in Figure 1.4. A detailed overview is also given in Table 5.9.

Figure 5.8: Relative stiffness of the VFFS per test run. Note that test run 2 has been omitted, as their values were beyond the
scale ranging from 176 to 775 (2a­2d). Test run 2e: 𝐿

𝜆𝑐
= 7.09.

1. Schreier’s experiment (long and short waves)

2. Full scale (five design waves)

3. Low stiffness, low VFFS density (five design waves)

4. Low stiffness, high VFFS density (five design waves)

5. High stiffness, low VFFS density (five design waves)

6. High stiffness, high VFFS density (five design waves)

7. Variable draught (short waves)
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Test run Wave Stiffness (𝐸𝐼𝐵 [Nm]) VFFS density (𝜌𝑏 [kg/m3]) Relative stiffness ( 𝐿𝜆𝑐 [­])

1a 𝐻𝑑,1 5.833 × 10−3 116 28.5
1b 𝐻𝑑,2 5.833 × 10−3 116 28.5
2a 𝐻𝑑,𝑚1 9.559 × 10−2 116 176
2b 𝐻𝑑,𝑚2 9.559 × 10−2 116 285
2c 𝐻𝑑,𝑒1 9.559 × 10−2 116 420
2d 𝐻𝑑,𝑒2 9.559 × 10−2 116 775
2e 𝐻𝑑,𝑠 9.559 × 10−2 116 7.09
3a 𝐻𝑑,𝑚1 1 × 103 50 17.4
3b 𝐻𝑑,𝑚2 1 × 104 50 15.8
3c 𝐻𝑑,𝑒1 1 × 105 50 13.1
3d 𝐻𝑑,𝑒2 1 × 107 300 7.66
3e 𝐻𝑑,𝑠 1 × 10−1 50 17.7
4a 𝐻𝑑,𝑚1 1 × 103 1000 17.4
4b 𝐻𝑑,𝑚2 1 × 104 800 15.8
4c 𝐻𝑑,𝑒1 1 × 105 900 13.1
4d 𝐻𝑑,𝑒2 1 × 107 1000 7.66
4e 𝐻𝑑,𝑠 1 × 10−1 1000 17.7
5a 𝐻𝑑,𝑚1 1 × 105 50 5.49
5b 𝐻𝑑,𝑚2 1 × 107 50 2.82
5c 𝐻𝑑,𝑒1 2 × 108 50 1.96
5d 𝐻𝑑,𝑒2 1 × 1010 300 1.36
5e 𝐻𝑑,𝑠 1 50 9.97
6a 𝐻𝑑,𝑚1 1 × 105 1000 5.49
6b 𝐻𝑑,𝑚2 1 × 107 800 2.82
6c 𝐻𝑑,𝑒1 2 × 108 900 1.96
6d 𝐻𝑑,𝑒2 1 × 1010 1000 1.36
6e 𝐻𝑑,𝑠 1 1000 9.97
7a 𝐻𝑑,1 5.833 × 10−3 200 14.3
7b 𝐻𝑑,1 5.833 × 10−3 400 14.3
7c 𝐻𝑑,1 5.833 × 10−3 600 14.3
7d 𝐻𝑑,1 5.833 × 10−3 800 14.3
7e 𝐻𝑑,1 5.833 × 10−3 1000 14.3

Table 5.9: Overview of test runs for numerical model



6
Numerical test runs

This chapter contains the results of the proposed test runs from the previous chapter. Each test run
is introduced and observations of the results are given. The figures show the wavelength deformation
and the amplitude deformation of each test run. Also, a table is given with the calculated dispersion
parameters and the energy fluxes. The accuracy of the analytical expected solution, the numerical
expected solution and the numerical measured solution is given at the end of the chapter.

6.1. Test run 1
Test run 1 is a copy of the experiments executed by Schreier and is schematised in Figure 6.1. The
material parameters are identical to the test set­up and the incident waves have the same shape as in
the towing tank. The first column of Table A.1 shows the expected results test run 1a. Wave stretching
was expected for the short waves as𝐾𝑎 was larger than one. Figure A.1 also shows that this expectation
is true. Likewise, the amplitude was expected to decrease as 𝑅𝑎 was lower than one. Looking at
Figure A.1 once again, this is also observed in the numerical model. Finally, something interesting is
observed in the wavelength calculation plot. At both interfaces between the free surface and the VFFS,
the wavelength is changing significantly. According to Ohmatsu (2005) this can be explained by the
fact that this is a transition zone between the two wavelengths and this zone is governed by an infinite
complex wave number.

Figure 6.1: Illustration of towing tank test run 1.

The same process has been repeated for the other test set­up, where long waves were imposed on the
VFFS. This time, wave shortening was expected, together with an amplitude increase. Although, the
wavelength decreased, an increase in amplitude was not noticed, as both 𝑅𝑟𝑖 and 𝑅𝑟𝑜 were not higher

49



50 6. Numerical test runs

than one. The amount of wave shortening is also lower than possible errors, which could have been
the cause. This is in line with the results presented by Schreier and Jacobi (2020b).

As a comparison to Schreier and Jacobi (2020b) results, the numerical results have been plotted on
top of their presented results in Figure 6.2. In both cases it is observed that the wavelength is shorter
for the numerical results than the experimental results. For the long waves this could be due to the
fact that the numerical test runs experienced wave shortening whereas this could not be confirmed in
the experimental set­up. For the short waves, it is clearly visible that the amplitude of the numerical
result is significantly higher than the experimental set­up. The proposed amplitude of 10mm was not
perfectly achieved during the experiments. Therefore the wave parameters might not align well with
the numerical results. In the experiment of the short waves, 3D effects were observed as the centre
line shows lower amplitudes with larger wave stretching than the sides.

Numerical model

Begin VFFS

End VFFS

Numerical model

Begin VFFS

End VFFS

Figure 6.2: Overlay of numerical results on top of experimental research from the towing tank for long waves (left) and short
waves (right).

6.2. Test run 2
The second test run describes a realistic sized (see Figure 6.3) VFFS with material parameters identical
to Schreier’s test set­up. The thickness of the VFFS is larger than in test run 1; 0.0127 m versus 0.005
m. The length of each VFFS is chosen such that the incident wave fits five times in the structure. Due to
wave deformation, this might change slightly. The incident waves in this test run are five characteristic
waves that occur at sea (1­4) or at a lake (5). The first two waves are mean ocean waves (a and b),
the other two are extreme ocean waves (c and d) and finally a typical wave that is found on a lake (e)
is imposed. This is repeated for test runs 3, 4, 5 and 6 as well.

Figure 6.3: Illustration of full scale test run 2.

The VFFS is very flexible compared to the incident waves. Therefore, no wave deformation was ex­
pected for any of the four characteristic ocean waves (a­d). This also turned out to be true for the
wavelength deformation. For each of the four waves, there is some noise visible on the incident wave
side. This indicates on small wave reflections being trapped in the system. Also, in contrast to the
previous test run, no transition zone at the interface of the free surface and the VFFS is observed.
Furthermore, it is observed that the measured amplitude on the outgoing wave side is lower than the
incident wave side. Finally, it is noticed that for test run 2d, the measured amplitude dispersion factor
𝑅𝑟𝑖 differs significantly from the theoretical value. The right plot of Figure A.6 shows that the shape
of the top amplitude is concave and of the bottom amplitude is convex in the hydroelastic zone. This
explains why the dispersion factor does not match the result. A reason for this behaviour could be that
the design wave is not in deep water, but in the intermediate water regime (𝑛 = 0.799).

Looking at the fifth characteristic wave in Figure A.7, the behaviour of the infinite complex wave number
is back on the interfaces of the free surface and the VFFS. Also, the expected wavelength dispersion
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is only 1‰, but the expected amplitude deformation is more than 1% and measured as well. This is
interesting, as in test run 1, the increase in wavelength went hand in hand with a decrease in amplitude,
and vice versa. However, test run 2e shows that both parameters could decrease at the same time as
well.

6.3. Test run 3
The third test run uses the same five characteristic waves as input, but the material properties of the
VFFS have changed. In the next four test runs (3­6), the stiffness of the VFFS and the density of the
VFFS are changed, independently, such that the influence of both terms can be investigated. First, in
test run 3, a low density value is chosen together with a low stiffness term (see Figure 6.4). Therefore,
it is expected that the VFFS should react similarly to the incident waves as in test run 2.

Figure 6.4: Illustration of flexible light structure of test run 3.

For the first four characteristic waves, almost no wave deformation was expected. The measured val­
ues in the tables also confirm this expectation. Test run 3d is an exception to this. Like in test run 2d,
the measured amplitude factors do not match with the theory. This is again possibly related to the fact
that 𝐻𝑑,𝑒2 is not a deep water wave. Although, the wave deformation is very small among the other
runs, the infinite complex wave number is observed in each of the test runs. It is also noticed, that
the measured values of the incident wave side are much more in line with the expected result than the
measured results on the outgoing side.

Finally, in test run 3e, some wavelength stretching is observed, together with a significant amplitude
decrease. The numerical model shows nearly identical results with errors ranging only 1‰.

6.4. Test run 4
The fourth test run uses identical values for both the incident waves as well as the material properties
as the third test run, except for the density of the VFFS. In this test run, the density of the structure
is increased such that it nearly has the density of the fluid. This results in a much higher draught of
the VFFS (see Figure 6.5). As previously explained in the theory, the draught term is responsible for
wave shortening. Therefore, this is also expected behaviour for the shorter waves, as higher angular
frequencies intensify this effect.

Figure 6.5: Illustration of flexible heavy structure of test run 4.

The expectations of wave shortening are met when looking at test run 4a, 4b and 4c. Wave shortening
also seems to lead to an increase in wave amplitude, as this is observed for these test runs as well.
Again, the theoretical values align much better on the incident wave interface than on the outgoing
wave interface.

Test run 4d does not show any wave shortening, which was not expected either. There was also
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no amplitude deformation expected. However, the measured values indicate that an amplitude drop of
3% was observed.

Finally, test run 4e contains a much shorter incident wave than the previous four characteristic waves.
Therefore, much more wave shortening was expected and by looking at Figure A.17, significant wave
shortening of more than 5% is observed. Together with the wave shortening, an amplitude increase
was expected. And although this was not observed at the incident wave interface, the outgoing wave
interface shows a significant amplitude difference; even more than expected. Also, relatively much
noise is observed on the incident wave side, which is an indication of possible wave reflection.

6.5. Test run 5
In the fifth test run, the VFFS density returns to the same low value as used in test run 3. However,
in this test run, the stiffness is increased to a point that significant wave stretching is expected. This
increased stiffness changes the material properties of the structure by this much, that the term VFFS
might not be applicable anymore (see Figure 6.6). Instead there should be referred to the structure as
VLFS (Very Large Floating Structure). However, as the theory is based on the latter type, the analytical
solution is expected to be valid. The application of flexible floating solar panels is perhaps not possible
anymore.

Figure 6.6: Illustration of stiff light structure of test run 5.

For all five characteristic waves, significant wave stretching and a corresponding amplitude reduction
is observed. Four of the five incident waves show numerical values as expected by the theory. Only
the measured value of the very large wave from 5d does not align with the theory. This could be due
to the fact that it is not a deep water wave. It is also observed that although the noise on the incident
wave side is relatively large compared to previous test runs, the measured wavelength in the structure
is very stable. Finally, the infinite complex wave numbers on both interfaces of the VFFS are visible.
What is interesting and different than previous test runs, is that the peaks of the graphs as seen in
Figure A.20 are much larger and exceed the 10% limit of the graph.

6.6. Test run 6
Finally, the sixth test run is the final test run that looks into the combination of stiffness and density.
This test run contains a structure with both a large stiffness as well as a large density (see Figure
6.7). Therefore, both wave stretching as well as wave shortening is expected. The five characteristic
waves each have different wavelengths and periods, which results in different behaviour of the wave
deformation. For the first four characteristic waves, wave stretching is expected to be dominant. For
the last wave, due to its short period, it is expected that the contribution of the stiffness cancels the
large draught of the VFFS.

Figure 6.7: Illustration of stiff heavy structure of test run 6.

The expectations for the first four waves are met. The larger draught almost has no influence on the
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wave deformation, as the angular frequency of the characteristic waves is simply too low. On the other
hand, looking at the fifth characteristic wave in Figure A.27, there is a significant difference compared
to A.22. The draught term completely canceled the wave stretching. Interestingly, the change in ampli­
tude was not canceled, nor was expected. Although, the expected decrease in amplitude did not align
perfectly with the measured results; being off 3%.

Figure 6.8 shows an overview of the dispersion accuracy of the test runs three to six. The colour of
each symbol represents the imposed design wave and the symbol itself corresponds with the material
parameters as given in the previous chapter.

Figure 6.8: Wavelength dispersion of the incident (top left) and outgoing (top right) wave interface and amplitude dispersion of
the incident (lower left) and outgoing (lower right) wave interface. ( – 𝐻𝑑,𝑚1; –𝐻𝑑,𝑚2; – 𝐻𝑑,𝑒1; – 𝐻𝑑,𝑒2; – 𝐻𝑑,𝑠)

6.7. Test run 7
The seventh and final test run shows the influence of the draught of the VFFS on wave deformation.
As the theory describes, a higher draught implies more wave shortening. Therefore, test run 7 consists
of five test runs, with an increasing VFFS density, starting at 200 kg/m3 all the way to 1000 kg/m3 (see
Figure 6.9). The size and the material parameters of the structure is again the same as Schreier’s test
set­up and the incident wave is the same as the short wave he used in his experiment. The expectations
of the first test run (7a) should, therefore, be very similar to test run 1a.

Figure 6.9: Illustration of variable draught of the structure of test run 7.

As expected, test run 7a shows almost no wave deformation (see Figure A.28), although the infinite
complex wave number is clearly visible on both interfaces of the VFFS. As the structure gets more
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dense, the incident wave gets shortened more as well. Interestingly, the expected amplitude deforma­
tion is lower than one for 7a, 7b, 7c and 7d. Only the last test run (7e) expects an increased amplitude
in the VFFS. It is also observed in the tables that as the density increases, the error between the the­
ory and the measured values increase. This confirms that the theory is only able to describe the fluid
structure interaction given its assumption of zero­draught.

6.8. Accuracy
The results are split into three parts. First the accuracy of test run 1 is evaluated. This is the copy of
Schreier’s experiments. Secondly, the accuracy of test runs 2, 3 and 5 are evaluated. They all contain
input parameters for which the analytical solution is expected to hold. Finally, test runs 4, 6 and 7 are
evaluated. These test runs are not covered by the analytical method and therefore may differ from the
expected analytical outcome.

6.8.1. Accuracy Schreier’s based numerical set­up
To define the accuracy of the dispersion parameters the root mean square error has been calculated for
all individual test runs, as well as for each ratio. The results are summarised in Figure 6.10. The first,
fourth and fifth column show the difference between the analytical expected value and the numerical
expected value. In both test runs, five out of six ratios are equal to 1.000, one is 1‰ off. This means
that the numerical incident wave is identical to the input values of the model.

The second and third column show measured wavelength dispersion versus the numerical expected
value. Both measured values are identical to the expected value; on the incident wave side as well as
on the outgoing wave side.

The sixth and seventh column show the ratios between themeasured amplitude deformation and the ex­
pected amplitude deformation. The incident wave side corresponds perfectly with the expected value,
the outgoing wave side shows a small difference.

Finally, the measured energy fluxes on either side are compared to the expected values. On the inci­
dent wave side, they are highly accurate. On the outgoing wave side the difference is very small for
the short waves, but for the long waves, the difference is reasonably large. Especially, as for the long
waves, no significant hydroelastic wave dispersion was expected.

The overall accuracy of the short waves was higher than for the long waves. The accuracy of the
wavelength dispersion is nearly one. On the other hand, the amplitude dispersion shows small differ­
ences, especially on the outgoing wave side. These small errors also reflect to the energy fluxes, as
that is a function of both parameters.
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Figure 6.10: Summary of accuracy of dispersion parameters of test run 1.

6.8.2. Accuracy sensitivity study within analytical domain
The accuracy of the this part of the sensitivity study is expected to be higher than the next part. In Figure
6.11 an overview of all dispersion parameter ratios is given. The test runs are discussed independently
and observations are done to deviating results.
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Test run 2
Test run 2 consists of five test runs, each with different wave characteristics. The overall wavelength
dispersion ratios are highly accurate, except for the measured wavelength dispersion on the incident
wave side of test run 2e. This characteristic wave is much shorter than the other four. It could be, that
more wave deformation occurs on the incident wave side, as the VFFS is relatively stiffer compared
to the other waves. However, the outgoing wave side shows nearly identical measured results as the
expected wave deformation.

It is also observed that test run 2d shows large differences between the expected amplitude defor­
mation and the measured amplitude deformation. A possible reason to this, could be the fact that the
characteristic wave at this test run is so large that the wave no longer behaves as a deep water wave.

Test run 3
Test run 3 has an increased stiffness compared to test run 2, however, it is still considered flexible.
Wavelength dispersion is highly accurate compared to the expected values. Amplitude dispersion on
the incident wave side is also in line with the expected values, except for test run 3d. The amplitude
dispersion on the outgoing wave side is less aligned with the expected values, for the ocean waves.
The shorter characteristic lake wave is nearly identical as the expected amplitude deformation.

Test run 5
Test run 5 is similar to test run 3, except the stiffness of the VFFS has increased significantly. For each
test run, wavelength stretching of several percent is expected. Figure 6.11 shows that the numerical
model copes well with the hydroelastic wave deformation. Except for test run 5d, all other four char­
acteristic waves show good approximations to the analytical method for wavelength dispersion and
amplitude dispersion on the incident wave side. The outgoing wave side is less accurate.



56 6. Numerical test runs

Ka
Kn

Kri
Kn

Kro
Kn

Ra
Rni

Ra
Rno

Rri
Rni

Rro
Rno

Pb
Pni

Pb
Pno

2a

2b

2c

2d

2e

3a

3b

3c

3d

3e

5a

5b

5c

5d

5e

Te
st

 ru
n

1.000 1.000 1.000 1.000 1.000 1.002 0.991 1.005 0.982

1.000 1.000 1.000 1.000 1.000 1.004 0.986 1.009 0.973

1.000 0.999 1.000 1.000 1.000 1.002 0.986 1.004 0.973

1.000 1.000 1.000 1.000 1.000 0.971 0.971 0.943 0.943

1.000 1.014 1.002 1.007 1.001 0.952 1.004 0.902 1.004

1.000 1.000 1.000 1.000 1.000 1.003 0.991 1.006 0.983

1.000 1.000 1.000 1.000 1.000 1.005 0.986 1.010 0.972

1.000 0.999 1.000 0.999 1.000 1.003 0.986 1.005 0.973

1.000 1.001 1.000 1.000 1.000 0.971 0.970 0.942 0.940

1.000 1.001 1.000 1.000 1.000 0.999 1.000 0.999 1.001

1.000 1.003 1.000 1.002 1.001 1.005 0.976 1.009 0.953

1.000 1.008 1.001 1.005 1.002 0.999 1.009 0.997 1.016

1.000 1.007 1.000 1.005 1.001 1.004 1.000 1.007 1.000

1.000 1.014 1.002 1.007 1.001 0.962 0.973 0.925 0.947

1.000 1.006 1.001 1.002 1.000 0.999 1.003 0.997 1.006

Figure 6.11: Summary of accuracy of dispersion parameters of test runs 2, 3 and 5.
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6.8.3. Accuracy sensitivity study outside analytical domain
Finally, the third part of the test runs includes numerical tests which may not be well described by
the analytical method, as they are outside of the boundary conditions, imposed by the zero­draught
assumption. An overview of the dispersion parameter ratios is given in Figure 6.12.

Test run 4
Test run 4 is identical to test run 3, with the exception of the VFFS density, which has been increased
to nearly the fluid density. The wavelength dispersion is well in line with the expected values. Although
the ocean waves do not change much in wavelength, the lake wave has significant wave shortening,
which is well captured. The measured amplitude deformation, however, does not fit with the expected
results. Especially, test run 4d and 4e do not correspond. The numerical results of test run 4d are
possibly inaccurate due to the fact that 𝐻𝑑,𝑒2 is not in the deep water regime. In the case of test run 4e,
the effect of hydroelastic wave deformation is stronger when waves get shorter. Therefore, the results
may also differ more compared to the other test runs.

Test run 6
Test run 6 is identical to test run 5, except for the VFFS density, which has been increased significantly.
The density of the structure are identical to test run 4. This test run shows a scenario where a rela­
tively stiff structure is combined with a high draught. The measured wavelength deformation generally
corresponds well with the expected results, except for test run 6d. Again, this is possibly due to the
large wave. An interesting observation is made in test run 6e, where almost no wavelength dispersion
is measured. The large stiffness of the VFFS in combination with the large draught predict significant
wave deformation. However, the two terms seem to cancel each other. Contrary to the dispersion fac­
tor 𝐾, the amplitude deformation is significant in test run 6e (see Figure A.27. However, the analytical
method was not able to capture this change in amplitude well. Neither was the theory able to cope well
with the amplitude deformation for the other test runs, as significant change of amplitude was observed
in the numerical results.

Test run 7
Finally, test run 7 was initiated to see what the influence of the draught term has on the hydroelastic
wave deformation of the VFFS. All input values are identical to test run 1a, except for the density of
the structure, which has been increased with 200 kg/m3 in each test run. This test run focuses on a
very flexible structure, as the stiffness term is very low, combined with different draughts. It is observed
that the expected wavelength dispersion corresponds well with the measured results, especially on the
outgoing wave side. The improved accuracy on the outgoing wave side versus the incident wave side
is possibly due to wave reflection on the incident wave side. Looking at Figure A.28 and Figure A.32,
there is more noise observed at test run 7e than in in test run 7a on the incident wave side, which could
indicate wave reflection, but the total amount of energy in the system does not increase over time.
Therefore, it is expected to be numerical instability. The outgoing wave side does not have this noise,
and wave reflection is also not expected in this region as the damping zone will dissipate all energy.
Looking at the amplitude deformation ratios, it is observed that as the VFFS density increases, the
accuracy of the expected amplitude deformation decreases. All five test runs show significant amplitude
deformation. It was expected that the first test runs were well described by the theory, as test run 7a is
still within the analytical domain. As the VFFS density increases, the difference between the measured
amplitude deformation and the expected results starts to deviate. Also interesting to notice, is that test
run 7a shows a lower amplitude of the structure compared to the incident and outgoing wave side.
However, test run 7d and 7e show that the outgoing waves are lower than the hydroelastic waves in
the VFFS.
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1.000 1.008 1.001 1.005 1.002 0.999 1.009 0.997 1.017

1.000 1.008 1.000 1.006 1.001 1.004 1.000 1.007 0.999

1.000 1.014 1.002 1.006 1.001 0.962 0.974 0.924 0.947

1.000 1.009 1.001 1.004 1.000 0.968 0.973 0.937 0.947

1.000 1.002 1.000 1.001 1.000 0.998 0.996 0.997 0.992

1.000 1.002 1.000 1.001 1.000 0.992 0.998 0.985 0.997

1.000 1.003 1.000 1.002 1.000 0.988 1.005 0.976 1.011

1.000 1.003 1.000 1.002 1.000 0.981 1.021 0.963 1.043

1.000 1.005 1.000 1.002 1.000 0.977 1.027 0.954 1.055

Figure 6.12: Summary of accuracy of dispersion parameters of test runs 4, 6 and 7.
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6.9. Stability analysis
As the numerical model is stabilised with several stabilisation parameters, an analysis is done on the
accuracy of the results versus the amount of energy in the system. Throughout the test runs, the default
value of 𝛼ℎ = 0.5 had been used, as this gave very accurate results. However, Colomés et al. (2021)
are currently researching the optimal stability of the system. Figure 6.13 shows the energy flux balance
in combination with the measured wave deformation for several values of 𝛼ℎ.

Test run 1a has been used to see if the energy flux matches the expected wave deformation results.
For a value of 𝛼ℎ = 0.5 the wavelength dispersion is very accurate matching the expected result within
1‰. However, the energy flux in the structure (red line) is lower than the energy flux on either side of
the interface. High values of 𝛼ℎ result to better stabilisation, but drain energy from the system. There­
fore, it is investigated if lower values for 𝛼ℎ could resolve the issue. Choosing 𝛼ℎ = 0.01 gives very
accurate results for the energy flux in the system. However, looking at the dispersion of the incident
wave, the hydroelastic zone shows wave shortening where wave stretching was expected. The wave
deformation result clearly does not match.

Going even lower by choosing 𝛼ℎ = 0.001, the wave deformation result even worsens and the energy
flux balance is also incorrect with a higher energy flux in the structure compared to the free surface
zones.

However, for all three scenarios, the energy flux at the incident wave side is nearly identical to the
energy flux of the outgoing wave side. This means that the energy is conserved, only the calculation in
the structure is slightly off. As Colomés et al. (2021) are currently working on this mismatch, a solution
to this issue is expected to be found in the near future.
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Figure 6.13: Energy flux at three locations of short waves (left). (Left plots: – Energy flux at 𝑋 = 3𝜆 (incident wave zone);
– Energy flux at 𝑋 = 5𝜆 (hydroelastic zone); – Energy flux at 𝑋 = 8𝜆 (outgoing wave zone), Right plots: – Wavelength; ­ ­
BeginVFFS; ­ ­ End VFFS; ­ ­ Original wavelength))
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Discussion

The numerical model shows to be a good alternative to the analytical solution. It is a versatile solution
as its input parameters, such as fluid density, VFFS density, structural stiffness and length, can easily
be changed. It works both in 2D as well as in 3D, which opens the possibilities to experiment with
irregular shapes or heterogeneous materials as well. The model is lightweight and able to run on a
standard computer without any effort.

The results of the different test runs are individually discussed as several phenomena have been tested.
First the towing tank experiment will be discussed, followed by the full scale set­up. The sensitivity study
shows the limits of a VFFS and where the rigid VLFS domain starts. Finally, the influence of the draught
of the structure is discussed.

7.1. Towing tank experiment
The numerical results of test run 1 show an overall good performance. The expected hydroelastic wave
deformation is captured well by the numerical model. The results found by Schreier and Jacobi (2020b)
corresponded with the numerical findings. In this study only 2D simulations have been executed as
the focus of this research was to build a stable alternative for the analytical model. The physical ex­
periments in the towing tank also showed 3D effects among which diffraction of the wave energy. This
was not observed in the 2D test runs, but the numerical model is able to run 3D test cases as well.
However, these runs are computational intensive did not fit in the scope of the project.

Next to this, the 3D effects can be deducted from the 2D results. Wave stretching is connected to
diverging waves, whereas wave shortening is related to wave focusing. The latter only occurs if the
draught of the structure dominates over the stiffness of the VFFS. For stiff applications such as float­
ing islands or floating airports, wave focusing is unlikely to happen. For flexible structures like floating
solar parks, it is important to design such that the zero­draught assumption remains valid, in order to
overcome this issue.

7.2. Full scale set­up
Test run 2 was dedicated to a full­scale set­up of a VFFS. The material properties were matched to
realistic dimensions and five design waves were chosen to see its response. It was found that for large
ocean waves, the VFFS did not have much interaction with the free surface waves. They were simply
too large and the floating structure is so flexible that it just moved up and down.

In case of the design wave lake, there was a noticeable wave interaction. Although the wave deforma­
tion was very low, the hydroelastic interface showed large fluctuations of the wavelength. Although the
load of a lake wave is less profound than of oceanic waves, the lifetime of the structure could potentially
be heavily reduced due to changing curvatures.
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7.3. Sensitivity study
The sensitivity study was done to find the limits of the VFFS and to see in which cases significant (>1%)
hydroelastic wave deformation would occur. The analytical solution told us that two phenomena are
responsible for a change in wavelength and amplitude; the bending rigidity and draught will stretch or
shorten the wave, respectively.

The wavelength dispersion showed really similar results between the numerical and the analytical
solution. However, for the calculation of the amplitudes, the analytical approach is bounded by the
assumption of a zero­draught, which means that the structure floats on top of the free surface line.

Test run 3 (flexible and zero­draught) and 5 (stiff and zero­draught) showed the influence of the bending
stiffness of the structure. As the material properties of these test runs were within the analytical regime,
they showed very similar results.

Test runs 4 (flexible and non­zero­draught) and 6 (stiff and non­zero­draught), however, lie outside
the analytical domain. The numerical results of these cases could therefore not verified by the ana­
lytical solution. However, as the model itself was not changed and remained stable, there is enough
confidence to state that these results are accurate as well. Experimental research could help to verify
this statement.

Test run 4e shows something unexpected. Whereas, normally, the amplitude of the structure is re­
stored to the incident wave amplitude once it enters the outgoing wave zone, this time it is further
decreased. As this behaviour is odd, it was decided to deeper dive into the effect of the density of
flexible structures. Test run 7 focuses on this and this phenomenon is further explained below.
Another interesting observation was done during test run 6e, where both the stiffness, as well as the
draught of the structure were increased, so that the wavelength dispersion would cancel out, but the
amplitude deformation would still occur. This expected behaviour sounds contradictory, however, the
numerical model confirmed this expectation. The energy here clearly enters the structure. However,
it is also released at the outgoing wave interface. This shows that designing for specific sea­states
could help in extending the lifetime of the structure, as fatigue could be minimised due to the absence
of wavelength deformation and less curvature due to lower amplitudes.

7.4. Influence of draught
The influence of the draught of the structure is highly interesting as the draught leads to wave short­
ening, which in its turn could lead to wave focusing under 3D objects. The same set­up as the towing
tank experiment has been used, only the density of the material was changed. The expected wave
shortening was clearly observed. For small wave shortening cases (7a and 7b), the amplitude drops
in the hydroelastic zone and returns to its original wave height.

However, for larger structure densities (7c, 7d, 7e), the amplitude drops, once the wave enters the
hydroelastic zone, but drops again once it travels out of the structure. This effect intensifies as the
structure density increases. The wavelength of the traveling wave, however, follows the expected be­
haviour and returns back to its original shape. As this behaviour was not expected, an energy flux
balance was established to examine the energy flux in each of the three zones (incident, hydroelastic
and outgoing wave zone). As was shown in Section 6.9, the stability analysis of the system showed that
further optimisation of 𝛼ℎ is necessary. Therefore, the results of this test run could contain numerical
errors. However, it also opens up the opportunity to investigate the possibilities of flexible submerged
wave dampers, as the combination of flexible structures with a large draught show lower amplitudes in
the outgoing wave zone than in the incident wave zone.

7.5. Adaptability
The numerical model showed to cope well with different material properties. Both the bending rigidity
as well as the density of the structure can easily be altered. Also, the dimensions of the structure can
easily be changed. This creates an opportunity to cheaply test a wide variety of test set­ups, in a rela­
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tively short period of time.

Besides the material, it was also shown that regular waves could be imposed without any difficulty
by imposing a periodic horizontal velocity on the inlet of the domain. This velocity profile is easily
changed to more complex types, such as irregular waves, to mimic a sea­state.

The model also showed to be give consistent results among different water depths. Both deep wa­
ter and intermediate water have been tested for the fluid structure interactions and both gave accurate
results. Although potential flow is able to describe shallow water, it has not been tested, as other bottom
induced phenomena, such as shoaling, start to play a role as well.

7.6. Possibilities
The model has been programmed in such a way that it can be upscaled to a 3D domain without chang­
ing the code. Unfortunately, the available computer power was not sufficient to run a 3D test run with
resolutions high enough to investigate the 3D effects observed by Schreier and Jacobi’s (2020b) ex­
periments. The Gridap module needs optimisation to cope with such large matrices, as it flooded the
computer RAM memory. However, with the needed adaptations, it is possible to run 3D models as well
as is shown in Figure 7.1.

Figure 7.1: Render of 3D numerical model in Paraview.

If the 3D model is further explored with the necessary hardware tools, it also becomes possible to
model irregular shapes, such as stars or ovals, without any difficulty. This is a huge advantage over
the analytical approach.
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Conclusion

The numerical model showed to be a great alternative to the analytical solution and shows similar
results to early experimental research. During the calibration, the method proved to be energy con­
servative and identical to the expected analytical solution, both for a scenario where only waves are
present in the system, as well as for the situation of a floating Euler­Bernoulli beam.

The test runs showed that the hydroelastic wave behaviour as observed in experimental research of
a VFFS is well mimicked by the numerical model. Compared to the analytical solution the numerical
results also correspond well within the given boundary conditions of the theory. This verifies the cor­
rectness of the numerical model versus the theory and vice versa. Outside this domain, the numerical
solution cannot be verified by the analytical solution. However, there is good reasoning to assume that
the numerical results outside this domain are correct, as the model has not changed.

Hydroelastic wave deformation (which consists of wavelength deformation and amplitude deforma­
tion) is related to three parameters: two material parameters and the incident wave. The stiffness of
the VFFS provides wavelength stretching and the draught of the structure is decisive on the amount of
wavelength shortening. A combination of the two material parameters could give a combination where
they cancel each other out. No wavelength dispersion is then experienced. The amplitude deforma­
tion is more complicated and is generally opposed to the wavelength deformation; wave stretching
is followed by an amplitude decrease and wave shortening is connected to an increase in amplitude.
However, there are also scenarios where there is no wavelength deformation, but the amplitude de­
forms in the hydroelastic zone. This is especially useful when designing for lower amplitudes.

The incident wave influences the intensity of wave deformation, where high frequency waves have
a larger influence on the hydroelastic wave deformation than low frequency waves. For the application
of offshore floating solar, the wave deformation is negligible as most sea­states consist of waves with
frequencies lower than the domain where significant hydroelastic wave deformation occurs. For the
application of floating solar on inland waterbodies certain waves are significantly deformed. Although
those waves seem small and insignificant compared to ocean waves, hydroelastic wave deformation
could potentially play an important factor on the fatigue life of a VFFS.

The influence of the draught of the structure resulted in significant wave shortening in the numerical
model. The wavelength deformation corresponded with the theory. However, it was not possible to ver­
ify the outcome of the amplitude deformation with an analytical method. Wave shortening is connected
with wave focusing in a 3D domain, which can play an important factor for the design of the structure.
This only happens if the draught dominates over the stiffness of the structure, as can be seen in Figures
5.6 and 5.7. For stiff structures wave focusing is therefore unlikely to be of any importance. However,
for flexible structure this should definitely be taken into account.
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Recommendations

While building the numerical model and executing the test runs, new questions arose that were not
able to be answered within the scope of this research thesis. Therefore, they are discussed below as
recommendations for further research.

The numerical model has been built in such a way that it can also calculate the outcome of a 3D
domain. Due to limited computer power, it was not possible to run tests with a sufficient high resolu­
tion. Also, adaptations need to be made on the Gridap side to overcome the issue of flooding the RAM
memory. The three­dimensional model could give answers to 3D effects that were not visible in the 2D
model. Wave stretching has an additional 3D effect that it diffracts the wave energy. On the other hand,
wave shortening leads to focusing of wave energy. This could result in certain areas under the structure
where so much wave energy is trapped that it leads to high amplitudes and possible failure of the VFFS.

Furthermore, the system of equations needs stabilisation parameters to ensure a coercive system.
This is necessary as there is yet to be found a norm that satisfies the condition 𝐵(𝑢, 𝑢) ≥ ||𝑢||. More
research should be carried out to prove if there exists a norm that satisfies this inequality, as a mono­
lithic coercive system is unconditionally stable. Until then, the stabilisation parameters ensure a stable
system, but could lead to numerical errors.

The ability to model in 3D also adds the possibility to investigate the response of a VFFS in a con­
fused sea­state, where wind waves are coming from a perpendicular angle than swell, as this is a
realistic scenario for offshore locations.

The numerical model was able to capture the effects of large draught scenarios of the structure. Cur­
rently, there is no analytical method which covers this regime. Therefore, it is difficult to verify the
correctness of the numerical results in this regime. Experimental research with different VFFS densi­
ties could be a solution to see if the numerical solution corresponds with the reality.

It was seen that flexible structure with large densities show a wave damping effect as the amplitude of
the outgoing wave was lower than the incident wave amplitude. Although this might be a numerical er­
ror, it could not be explained that unlike the amplitude, the wavelength deformation returns to its original
value. If the numerical results are correct, this opens up an opportunity to investigate the potential of
flexible wave dampers. However, more research is necessary to better understand this phenomenon.
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A
Numerical test run results

A.1. Test run 1

Figure A.1: Wave deformation, wavelength (left) and amplitude (right) for test run 1a.

Dispersion parameter 𝑋𝑎 𝑋𝑛 𝑋𝑛𝑖 𝑋𝑛𝑜 𝑋𝑟𝑖 𝑋𝑟𝑜 𝑋𝑏
K [­] 1.007 1.008 ­ ­ 1.010 1.008 ­
R [­] 0.965 ­ 0.964 0.965 0.963 0.963 ­
P [J/s] ­ ­ 0.2148 0.2154 ­ ­ 0.2146

Table A.1: Dispersion parameters for each subscript for test run 1a.

Figure A.2: Wave deformation, wavelength (left) and amplitude (right) for test run 1b.
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Dispersion parameter 𝑋𝑎 𝑋𝑛 𝑋𝑛𝑖 𝑋𝑛𝑜 𝑋𝑟𝑖 𝑋𝑟𝑜 𝑋𝑏
K [­] 0.997 0.997 ­ ­ 0.998 0.997 ­
R [­] 1.001 ­ 1.001 1.001 1.000 0.993 ­
P [J/s] ­ ­ 1.192 1.209 ­ ­ 1.191

Table A.2: Dispersion parameters for each subscript for test run 1b.

A.2. Test run 2

Figure A.3: Wave deformation, wavelength (left) and amplitude (right) for test run 2a.

Dispersion parameter 𝑋𝑎 𝑋𝑛 𝑋𝑛𝑖 𝑋𝑛𝑜 𝑋𝑟𝑖 𝑋𝑟𝑜 𝑋𝑏
K [­] 1.000 1.000 ­ ­ 1.000 1.000 ­
R [­] 1.000 ­ 1.000 1.000 1.003 0.991 ­
P [J/s] ­ ­ 6535 6684 ­ ­ 6565

Table A.3: Dispersion parameters for each subscript for test run 2a.

Figure A.4: Wave deformation, wavelength (left) and amplitude (right) for test run 2b.

Dispersion parameter 𝑋𝑎 𝑋𝑛 𝑋𝑛𝑖 𝑋𝑛𝑜 𝑋𝑟𝑖 𝑋𝑟𝑜 𝑋𝑏
K [­] 1.000 1.000 ­ ­ 1.000 1.000 ­
R [­] 1.000 ­ 1.000 1.000 1.004 0.986 ­
P [J/s] ­ ­ 1022 1059 ­ ­ 1031

Table A.4: Dispersion parameters for each subscript for test run 2b.
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Figure A.5: Wave deformation, wavelength (left) and amplitude (right) for test run 2c.

Dispersion parameter 𝑋𝑎 𝑋𝑛 𝑋𝑛𝑖 𝑋𝑛𝑜 𝑋𝑟𝑖 𝑋𝑟𝑜 𝑋𝑏
K [­] 1.000 1.000 ­ ­ 0.999 1.000 ­
R [­] 1.000 ­ 1.001 1.000 1.002 0.986 ­
P [J/s] ­ ­ 4.599 × 105 4.745 × 105 ­ ­ 4.617 × 105

Table A.5: Dispersion parameters for each subscript for test run 2c.

Figure A.6: Wave deformation, wavelength (left) and amplitude (right) for test run 2d.

Dispersion parameter 𝑋𝑎 𝑋𝑛 𝑋𝑛𝑖 𝑋𝑛𝑜 𝑋𝑟𝑖 𝑋𝑟𝑜 𝑋𝑏
K [­] 1.000 1.000 ­ ­ 1.000 1.000 ­
R [­] 1.000 ­ 1.000 1.000 0.971 0.971 ­
P [J/s] ­ ­ 9.088 × 105 9.091 × 105 ­ ­ 8.569 × 105

Table A.6: Dispersion parameters for each subscript for test run 2d.
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Figure A.7: Wave deformation, wavelength (left) and amplitude (right) for test run 2e.

Dispersion parameter 𝑋𝑎 𝑋𝑛 𝑋𝑛𝑖 𝑋𝑛𝑜 𝑋𝑟𝑖 𝑋𝑟𝑜 𝑋𝑏
K [­] 0.999 0.999 ­ ­ 0.999 0.999 ­
R [­] 0.989 ­ 0.989 0.989 0.987 0.988 ­
P [J/s] ­ ­ 8.640 8.627 ­ ­ 8.614

Table A.7: Dispersion parameters for each subscript for test run 2e.

A.3. Test run 3

Figure A.8: Wave deformation, wavelength (left) and amplitude (right) for test run 3a.

Dispersion parameter 𝑋𝑎 𝑋𝑛 𝑋𝑛𝑖 𝑋𝑛𝑜 𝑋𝑟𝑖 𝑋𝑟𝑜 𝑋𝑏
K [­] 1.000 1.000 ­ ­ 1.001 1.001 ­
R [­] 0.999 ­ 0.999 0.999 1.002 0.990 ­
P [J/s] ­ ­ 6529 6683 ­ ­ 6566

Table A.8: Dispersion parameters for each subscript for test run 3a.
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Figure A.9: Wave deformation, wavelength (left) and amplitude (right) for test run 3b.

Dispersion parameter 𝑋𝑎 𝑋𝑛 𝑋𝑛𝑖 𝑋𝑛𝑜 𝑋𝑟𝑖 𝑋𝑟𝑜 𝑋𝑏
K [­] 1.000 1.000 ­ ­ 1.000 1.000 ­
R [­] 1.000 ­ 1.000 1.000 1.005 0.986 ­
P [J/s] ­ ­ 1.021 × 104 1.060 × 104 ­ ­ 1031 × 104

Table A.9: Dispersion parameters for each subscript for test run 3b.

Figure A.10: Wave deformation, wavelength (left) and amplitude (right) for test run 3c.

Dispersion parameter 𝑋𝑎 𝑋𝑛 𝑋𝑛𝑖 𝑋𝑛𝑜 𝑋𝑟𝑖 𝑋𝑟𝑜 𝑋𝑏
K [­] 1.000 1.000 ­ ­ 0.999 1.000 ­
R [­] 1.000 ­ 1.000 1.000 1.003 0.986 ­
P [J/s] ­ ­ 4.592 × 105 4.745 × 105 ­ ­ 4.617 × 105

Table A.10: Dispersion parameters for each subscript for test run 3c.
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Figure A.11: Wave deformation, wavelength (left) and amplitude (right) for test run 3d.

Dispersion parameter 𝑋𝑎 𝑋𝑛 𝑋𝑛𝑖 𝑋𝑛𝑜 𝑋𝑟𝑖 𝑋𝑟𝑜 𝑋𝑏
K [­] 1.000 1.000 ­ ­ 1.000 1.000 ­
R [­] 1.000 ­ 1.000 1.000 0.970 0.969 ­
P [J/s] ­ ­ 9.092 × 105 9.115 × 105 ­ ­ 8.569 × 105

Table A.11: Dispersion parameters for each subscript for test run 3d.

Figure A.12: Wave deformation, wavelength (left) and amplitude (right) for test run 3e.

Dispersion parameter 𝑋𝑎 𝑋𝑛 𝑋𝑛𝑖 𝑋𝑛𝑜 𝑋𝑟𝑖 𝑋𝑟𝑜 𝑋𝑏
K [­] 1.003 1.003 ­ ­ 1.004 1.003 ­
R [­] 0.985 ­ 0.984 0.985 0.984 0.985 ­
P [J/s] ­ ­ 8.645 8.630 ­ ­ 8.634

Table A.12: Dispersion parameters for each subscript for test run 3e.
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A.4. Test run 4

Figure A.13: Wave deformation, wavelength (left) and amplitude (right) for test run 4a.

Dispersion parameter 𝑋𝑎 𝑋𝑛 𝑋𝑛𝑖 𝑋𝑛𝑜 𝑋𝑟𝑖 𝑋𝑟𝑜 𝑋𝑏
K [­] 0.997 0.997 ­ ­ 0.997 0.997 ­
R [­] 1.002 ­ 1.002 1.002 1.003 0.990 ­
P [J/s] ­ ­ 6532 6705 ­ ­ 6547

Table A.13: Dispersion parameters for each subscript for test run 4a.

Figure A.14: Wave deformation, wavelength (left) and amplitude (right) for test run 4b.

Dispersion parameter 𝑋𝑎 𝑋𝑛 𝑋𝑛𝑖 𝑋𝑛𝑜 𝑋𝑟𝑖 𝑋𝑟𝑜 𝑋𝑏
K [­] 0.999 0.999 ­ ­ 0.999 0.999 ­
R [­] 1.001 ­ 1.001 1.001 1.005 0.985 ­
P [J/s] ­ ­ 1.021 × 104 1064 × 104 ­ ­ 1.030 × 104

Table A.14: Dispersion parameters for each subscript for test run 4b.
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Figure A.15: Wave deformation, wavelength (left) and amplitude (right) for test run 4c.

Dispersion parameter 𝑋𝑎 𝑋𝑛 𝑋𝑛𝑖 𝑋𝑛𝑜 𝑋𝑟𝑖 𝑋𝑟𝑜 𝑋𝑏
K [­] 1.000 1.000 ­ ­ 0.999 1.000 ­
R [­] 1.000 ­ 1.001 1.000 1.003 0.988 ­
P [J/s] ­ ­ 4.597 × 105 4.737 × 105 ­ ­ 4.618 × 105

Table A.15: Dispersion parameters for each subscript for test run 4c.

Figure A.16: Wave deformation, wavelength (left) and amplitude (right) for test run 4d.

Dispersion parameter 𝑋𝑎 𝑋𝑛 𝑋𝑛𝑖 𝑋𝑛𝑜 𝑋𝑟𝑖 𝑋𝑟𝑜 𝑋𝑏
K [­] 1.000 1.000 ­ ­ 1.000 1.000 ­
R [­] 1.000 ­ 1.000 1.000 0.970 0.970 ­
P [J/s] ­ ­ 9.092 × 105 9.111 × 105 ­ ­ 8.569 × 105

Table A.16: Dispersion parameters for each subscript for test run 4d.
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Figure A.17: Wave deformation, wavelength (left) and amplitude (right) for test run 4e.

Dispersion parameter 𝑋𝑎 𝑋𝑛 𝑋𝑛𝑖 𝑋𝑛𝑜 𝑋𝑟𝑖 𝑋𝑟𝑜 𝑋𝑏
K [­] 0.946 0.946 ­ ­ 0.948 0.946 ­
R [­] 1.040 ­ 1.039 1.039 1.011 1.066 ­
P [J/s] ­ ­ 8.604 7.744 ­ ­ 8.140

Table A.17: Dispersion parameters for each subscript for test run 4e.

A.5. Test run 5

Figure A.18: Wave deformation, wavelength (left) and amplitude (right) for test run 5a.

Dispersion parameter 𝑋𝑎 𝑋𝑛 𝑋𝑛𝑖 𝑋𝑛𝑜 𝑋𝑟𝑖 𝑋𝑟𝑜 𝑋𝑏
K [­] 1.030 1.030 ­ ­ 1.034 1.031 ­
R [­] 0.918 ­ 0.916 0.918 0.920 0.896 ­
P [J/s] ­ ­ 6515 6901 ­ ­ 6573

Table A.18: Dispersion parameters for each subscript for test run 5a.
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Figure A.19: Wave deformation, wavelength (left) and amplitude (right) for test run 5b.

Dispersion parameter 𝑋𝑎 𝑋𝑛 𝑋𝑛𝑖 𝑋𝑛𝑜 𝑋𝑟𝑖 𝑋𝑟𝑜 𝑋𝑏
K [­] 1.067 1.068 ­ ­ 1.076 1.069 ­
R [­] 0.837 ­ 0.833 0.836 0.832 0.843 ­
P [J/s] ­ ­ 1.016 × 104 9973 ­ ­ 1.013 × 104

Table A.19: Dispersion parameters for each subscript for test run 5b.

Figure A.20: Wave deformation, wavelength (left) and amplitude (right) for test run 5c.

Dispersion parameter 𝑋𝑎 𝑋𝑛 𝑋𝑛𝑖 𝑋𝑛𝑜 𝑋𝑟𝑖 𝑋𝑟𝑜 𝑋𝑏
K [­] 1.070 1.071 ­ ­ 1.071 1.064 ­
R [­] 0.834 ­ 0.829 0.833 0.833 0.834 ­
P [J/s] ­ ­ 4.572 × 105 4.605 × 105 ­ ­ 4.605 × 105

Table A.20: Dispersion parameters for each subscript for test run 5c.
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Figure A.21: Wave deformation, wavelength (left) and amplitude (right) for test run 5d.

Dispersion parameter 𝑋𝑎 𝑋𝑛 𝑋𝑛𝑖 𝑋𝑛𝑜 𝑋𝑟𝑖 𝑋𝑟𝑜 𝑋𝑏
K [­] 1.093 1.093 ­ ­ 1.066 1.058 ­
R [­] 0.838 ­ 0.833 0.837 0.801 0.815 ­
P [J/s] ­ ­ 9.062 × 105 8.850 × 105 ­ ­ 8.379 × 105

Table A.21: Dispersion parameters for each subscript for test run 5d.

Figure A.22: Wave deformation, wavelength (left) and amplitude (right) for test run 5e.

Dispersion parameter 𝑋𝑎 𝑋𝑛 𝑋𝑛𝑖 𝑋𝑛𝑜 𝑋𝑟𝑖 𝑋𝑟𝑜 𝑋𝑏
K [­] 1.049 1.049 ­ ­ 1.055 1.050 ­
R [­] 0.870 ­ 0.868 0.870 0.867 0.873 ­
P [J/s] ­ ­ 8.595 8.513 ­ ­ 8.566

Table A.22: Dispersion parameters for each subscript for test run 5e.
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A.6. Test run 6

Figure A.23: Wave deformation, wavelength (left) and amplitude (right) for test run 6a.

Dispersion parameter 𝑋𝑎 𝑋𝑛 𝑋𝑛𝑖 𝑋𝑛𝑜 𝑋𝑟𝑖 𝑋𝑟𝑜 𝑋𝑏
K [­] 1.027 1.028 ­ ­ 1.031 1.028 ­
R [­] 0.920 ­ 0.918 0.919 0.921 0.896 ­
P [J/s] ­ ­ 6524 6905 ­ ­ 6561

Table A.23: Dispersion parameters for each subscript for test run 6a.

Figure A.24: Wave deformation, wavelength (left) and amplitude (right) for test run 6b.

Dispersion parameter 𝑋𝑎 𝑋𝑛 𝑋𝑛𝑖 𝑋𝑛𝑜 𝑋𝑟𝑖 𝑋𝑟𝑜 𝑋𝑏
K [­] 1.066 1.067 ­ ­ 1.076 1.068 ­
R [­] 0.837 ­ 0.833 0.836 0.832 0.843 ­
P [J/s] ­ ­ 1.016 × 104 9961 ­ ­ 1.013 × 104

Table A.24: Dispersion parameters for each subscript for test run 6b.
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Figure A.25: Wave deformation, wavelength (left) and amplitude (right) for test run 6c.

Dispersion parameter 𝑋𝑎 𝑋𝑛 𝑋𝑛𝑖 𝑋𝑛𝑜 𝑋𝑟𝑖 𝑋𝑟𝑜 𝑋𝑏
K [­] 1.070 1.070 ­ ­ 1.071 1.063 ­
R [­] 0.834 ­ 0.830 0.834 0.833 0.833 ­
P [J/s] ­ ­ 4.571 × 105 4.609 × 105 ­ ­ 4.603 × 105

Table A.25: Dispersion parameters for each subscript for test run 6c.

Figure A.26: Wave deformation, wavelength (left) and amplitude (right) for test run 6d.

Dispersion parameter 𝑋𝑎 𝑋𝑛 𝑋𝑛𝑖 𝑋𝑛𝑜 𝑋𝑟𝑖 𝑋𝑟𝑜 𝑋𝑏
K [­] 1.093 1.093 ­ ­ 1.066 1.058 ­
R [­] 0.838 ­ 0.833 0.837 0.801 0.815 ­
P [J/s] ­ ­ 9.066 × 105 8.847 × 105 ­ ­ 8.378 × 105

Table A.26: Dispersion parameters for each subscript for test run 6d.
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Figure A.27: Wave deformation, wavelength (left) and amplitude (right) for test run 6e.

Dispersion parameter 𝑋𝑎 𝑋𝑛 𝑋𝑛𝑖 𝑋𝑛𝑜 𝑋𝑟𝑖 𝑋𝑟𝑜 𝑋𝑏
K [­] 1.001 1.001 ­ ­ 1.010 1.002 ­
R [­] 0.893 ­ 0.889 0.893 0.861 0.869 ­
P [J/s] ­ ­ 8.690 8.603 ­ ­ 8.146

Table A.27: Dispersion parameters for each subscript for test run 6e.

A.7. Test run 7

Figure A.28: Wave deformation, wavelength (left) and amplitude (right) for test run 7a.

Dispersion parameter 𝑋𝑎 𝑋𝑛 𝑋𝑛𝑖 𝑋𝑛𝑜 𝑋𝑟𝑖 𝑋𝑟𝑜 𝑋𝑏
K [­] 1.003 1.003 ­ ­ 1.005 1.003 ­
R [­] 0.969 ­ 0.968 0.969 0.966 0.965 ­
P [J/s] ­ ­ 0.2134 0.2143 ­ ­ 0.2127

Table A.28: Dispersion parameters for each subscript for test run 7a.
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Figure A.29: Wave deformation, wavelength (left) and amplitude (right) for test run 7b.

Dispersion parameter 𝑋𝑎 𝑋𝑛 𝑋𝑛𝑖 𝑋𝑛𝑜 𝑋𝑟𝑖 𝑋𝑟𝑜 𝑋𝑏
K [­] 0.991 0.991 ­ ­ 0.993 0.991 ­
R [­] 0.979 ­ 0.977 0.979 0.970 0.977 ­
P [J/s] ­ ­ 0.2136 0.2110 ­ ­ 0.2103

Table A.29: Dispersion parameters for each subscript for test run 7b.

Figure A.30: Wave deformation, wavelength (left) and amplitude (right) for test run 7c.

Dispersion parameter 𝑋𝑎 𝑋𝑛 𝑋𝑛𝑖 𝑋𝑛𝑜 𝑋𝑟𝑖 𝑋𝑟𝑜 𝑋𝑏
K [­] 0.979 0.979 ­ ­ 0.983 0.980 ­
R [­] 0.989 ­ 0.987 0.988 0.975 0.994 ­
P [J/s] ­ ­ 0.2128 0.2056 ­ ­ 0.2078

Table A.30: Dispersion parameters for each subscript for test run 7c.
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Figure A.31: Wave deformation, wavelength (left) and amplitude (right) for test run 7d.

Dispersion parameter 𝑋𝑎 𝑋𝑛 𝑋𝑛𝑖 𝑋𝑛𝑜 𝑋𝑟𝑖 𝑋𝑟𝑜 𝑋𝑏
K [­] 0.968 0.968 ­ ­ 0.971 0.968 ­
R [­] 0.998 ­ 0.997 0.998 0.978 1.019 ­
P [J/s] ­ ­ 0.2131 0.1968 ­ ­ 0.2053

Table A.31: Dispersion parameters for each subscript for test run 7d.

Figure A.32: Wave deformation, wavelength (left) and amplitude (right) for test run 7e.

Dispersion parameter 𝑋𝑎 𝑋𝑛 𝑋𝑛𝑖 𝑋𝑛𝑜 𝑋𝑟𝑖 𝑋𝑟𝑜 𝑋𝑏
K [­] 0.956 0.956 ­ ­ 0.961 0.956 ­
R [­] 1.008 ­ 1.006 1.008 0.982 1.036 ­
P [J/s] ­ ­ 0.2126 0.1922 ­ ­ 0.2028

Table A.32: Dispersion parameters for each subscript for test run 7e.



B
Tutorial

85



86 B. Tutorial

3D model

Very Flexible Floating Structure (VFFS)  
This tutorial shows how a Fluid Structure Interaction (FSI) in a 2D domain is modelled. Potential flow is used 
to model the fluid and on top a Dynamic Euler-Bernoulli beam is located that serves as the floating 
structure. Below you find a picture of a 3D FSI model, however, as this is highly computational intensive, this 
tutorial will focus on a two-dimensional domain. Feel free to play with the code and try to make a 3D model!

Mathematics  
First of all, let's dive in to the mathematics behind the problem. Potential flow is based on the principle that 
the velocity field can be described by the spatial derivatives of a scalar function, this is called the potential 
function. Moreover, the fluid is considered to be incompressible. This consideration implies that the 
divergence of the velocity is equal to zero. The potential function then satisfies the Laplace equation:

Where  denotes the 2D domain.

Now it is time to set the boundary conditions of the domain. In this case, three different boundaries need to 
be applied:

The bottom boundary
The free surface boundary
The structure boundary

Bottom boundary  

The bottom boundary (also called the sea bed boundary) states that the boundary is impermeable and 
given as:

In this model, not only the bottom of the domain ( ) is impermeable, but also the left ( ) and right ( ) 
hand side of the domain (see figure below).
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The top boundary, however, is not impermeable, but is the free surface boundary ( ). The fluid is able to 
move freely up and down, but mustn't leave the domain. Two conditions need to be applied here:

The dynamic boundary condition
The kinematic boundary condition

Dynamic boundary condition  

The dynamic free surface boundary condition states that the pressure above the free surface is constant 
and equal to zero. Using Bernoulli’s equation in the linearised form and assuming that there is no y-
direction (since the model is only 2D), the boundary condition is given as:

Where  is the gravity constant and  is the surface elevation. With this boundary condition the formula of 
the potential flow can be derived and is equal to:

Where  ,  and  are the amplitude, the angular frequency and the wave number of the incident wave, 
respectively and  the water depth.

Kinematic boundary condition  

Finally, the third boundary condition is the kinematic free surface boundary condition which describes that 
the vertical velocity of the free surface has to be equal to the vertical motion of the flow and is given as 
follows:

Cauchy-Poisson condition  

Using this boundary condition the wave number can be related to the wave frequency. By differentiating the 
dynamic free surface boundary condition and inserting the kinematic free surface boundary condition one 
obtains the Cauchy-Poisson condition:
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Substituting the potential function into the Cauchy-Poisson equation gives the dispersion relation:

Using these equation, one is able to establish the free surface and the fluid domain can be modelled. 
However, we are interested in a fluid structure interaction, which means that there should also be a 
boundary condition at the location of the floating structure ( ). This is done by imposing the Dynamic 
Euler-Bernoulli beam on a slice of the free surface.

Dynamic Euler-Bernoulli beam  

The dynamic Euler-Bernoulli beam is a one-dimensional equation that is valid if the loads are purely lateral 
and the deflections remain small. The general form of the Euler-Bernoulli beam describes a relation of the 
deflection of the beam ( ) and an external force ( ) as function of time:

Where  is the bending stiffness and  is the mass per unit length.

Regarding the boundary conditions, the kinematic b.c. remains the same as for the free surface. However, 
the dynamic boundary condition changes to a non-zero solution and is multiplied by the fluid density :

The pressure  is equal to the external force of the Euler-Bernoulli beam:

Where  is equal to the product of the structure density  and the thickness of the structure . The 
bending stiffness has been divided by the width ( ) of the structure, as the model is only two-dimensional 
and the deflection  has been replaced by the surface elevation . Rewriting this into one equation results 
in the altered dynamic boundary condition:

Rewriting this equation and inserting the same governing kinematic free surface boundary condition results 
in an altered Cauchy-Poisson condition with an added factor; three terms in between brackets:

Assuming that the solution of the free surface elevation is wave:

With  and  the amplitude and the wave number of the hydroelastic wave, respectively. Its second 
derivative in time and fourth derivative in space are given as:
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Inserting these wave terms and assuming initial conditions ( ) the equation is given as:

Damping zone  

At the end of the domain the wave energy should be dissipated to prevent wave reflection. This is done by 
adding a viscosity term to the set of equations. There are several ways to achieve this, but the most effective 
way is to use a method by Kim Woo Min who changed the kinematic boundary condition by adding two 
terms which dissipate the wave energy:

Where  and  are damping coefficients that follow from the iteratively chosen , and are dependent on 
each other to ensure that no dispersion occurs:

Where  is starting point of the numerical damping zone and  is the length of the damping zone.

Numerical model  
As the mathematics behind the model have been shown, it is now time to rewrite the system of equations 
into the weak formulation and insert them into the numerical model. However, in order to do so, we should 
first set up the numrical model.

Wave parameters  

Let's start with initiating a simple regular wave with a period of  s and a steepness of 1/25 with a 
water depth of  m. Using the just derived Airy wave theory, the wave parameters can be calculated. 
The module Roots  is used to calculate the root of the function.

using Roots

T = 0.5

steepness = 1/25

d = 1

 

ω = 2*π / T                 # angular frequency
g = 9.81                    # gravity constant

f(k) = √(g*k*tanh(k*d)) - ω
k = abs(find_zero(f, 0.5))  # wave number

λ = 2*π / k                 # wavelength
ξ = λ * steepness / 2       # wave amplitude
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Material parameters  

Next to the wave parameters, the structure also contains several properties, such as a stiffness, a thickness 
and a density. The fluid density has been set equal to the sea and the VFFS is made of a 0.005 m rubber-like 
material called Neoprene, which is very flexible. The width of the structure has not been taken into account 
and it is assumed that the cross-section is a rectangle.  

For 3D applications the bending stiffness  should be replaced by the flexural rigidity  and can be 
calculated as follows:

Where  is the Poisson's ratio.

However, this tutorial will focus on a 2D domain, so this will be discarded.

Domain  

The domain of the model is defined such that the free surface waves can develop and travel a few 
wavelengths before they reach the structure. The structure must be longer than the incident wavelength in 
order to be assumed a VFFS. Finally, the waves will leave the structure and are free surface waves again. 
Before the waves reach the end of the domain the wave energy should be dissipated to prevent wave 
reflection at the right hand side of the domain ( ) The picture below shows the set-up of the model.

To define the domain the Gridap  module is used and the different zones are specified:

ρ_w = 1025    # fluid density
ρ_b = 116     # structure density
E = 560e3     # Young's modulus

h = 0.005     # thickness

I = h^3 / 12  # moment of inertia

EI = E * I    # bending stiffness

ν = 0.4
D = E * h^3 / (12 * (1-ν^2) )

using Gridap

using Gridap.Geometry

using GridapODEs

using GridapODEs.TransientFETools

using GridapODEs.ODETools
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Damping zone  

With these values the formula for the damping zone can be established. It is chosen to use a value of 
:

Resolution  

To define the resolution of the domain a partition is given. This is the amount of grid cells that the model 
contains. The resolution in the x-direction should be high, as we are interested in the exact shape of the 
wave. For the z-direction, however, we are only interested in the top layer near the free surface. It is 
assumed that the vertical velocity profile goes to zero when it reaches the bottom, so not much is going on 
as we proceed towards the bottom of the domain. Therefore, the resolution in x-direction is set to 50 cells 
per wavelength and for the z-direction only 10 cells are which have been unevenly spaced so that the 
resolution is fine at the free surface, but becomes coarser as we go down. This is done using the argument 
map  in the function CartesianDiscreteModel . The function simplexify  is used to change the mesh to 
an affine reference map, which is necessary to have the mapping work.

Li = 3*λ # length of incident wave zone
Lb = 5*λ # length of VFFS
Lo = 3*λ # length of outgoing wave zone
Ld = 4*λ # length of damping zone
 

xb₀ = Li        # x-coordinate start VFFS
xb₁ = Li + Lb   # x-coordinate end VFFS
x₂ = xb₁ + Lo   # x-coordinate start damping zone
x₃ = x₂ + Ld    # end of domain
 

Xmin = 0

Xmax = x₃
Zmin = 0

Zmax = d

 

domain = (Xmin, Xmax, Zmin, Zmax)

μ₀ = 10
μ₁(x::VectorValue) = μ₀*(1.0 - cos(π/2*(x[1]-x₂)/Ld)) * (x[1]>x₂)
μ₂(x::VectorValue) = -(μ₁(x::VectorValue)^2)/4 * (x[1]>x₂)

meshX = 50

meshZ = 10

function f_z(x)

    if x == d

        return d

    end



92 B. Tutorial

Boundaries  

As the numerical domain model_Ω  has been initiated, we wil now define the location of the floating 
structure using the following function and using a mask :

As well as the other boundaries:

The inlet of the domain is specified and a vertical velocity profile is imposed which is based on the gradient 
of the potential function:

    i = x / (d/meshZ)

    return d-d/(2^i)

end

map(x) = VectorValue(x[1],f_z(x[2]))

Xspan = Int(round((Xmax - Xmin) / λ))
Zspan = Int(round((Zmax - Zmin) / λ))
partition = (Xspan * meshX, Zspan * meshZ)

model_Ω = simplexify(CartesianDiscreteModel(domain,partition, map=map))
Ω = Triangulation(model_Ω)

function is_beam(coords)

    n = length(coords)

    x = (1/n)*sum(coords)

    (xb₀ <= x[1] <= xb₁ ) * ( x[2] ≈ d )
end

 

labels = get_face_labeling(model_Ω)
 

bgface_to_mask = get_face_mask(labels,[3,4,6],1)

Γface_to_bgface = findall(bgface_to_mask)
model_Γ = BoundaryDiscreteModel(Polytope{1},model_Ω,Γface_to_bgface)
Γ = Triangulation(model_Γ)
 

Γface_coords = get_cell_coordinates(Γ)
Γface_mask = lazy_map(is_beam,Γface_coords)
Γbface_Γface = findall(Γface_mask)
Γfface_Γface = findall(!,Γface_mask)
 

Γb = BoundaryTriangulation(model_Ω,view(Γface_to_bgface,Γbface_Γface))
Γf = BoundaryTriangulation(model_Ω,view(Γface_to_bgface,Γfface_Γface))

add_tag_from_tags!(labels,"bottom",[1,2,5])

add_tag_from_tags!(labels,"inlet",[7])

add_tag_from_tags!(labels,"outlet",[8])

add_tag_from_tags!(labels, "water", [9])
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Finally, the quadratures are specified for each boundary:

Finite Element spaces  

As the numerical domain has been set and the boundaries have been defined, the test spaces can be 
constructed. For this type of problem, two spaces will be built; one for the internal domain model_Ω  and 
one for the free surface model_Γ . Both will use lagrangian shape functions and are of order two. For the 
free surface there will be imposed dirichlet boundary conditions on all boundaries except for the free 
surface.

A TrialFESpace  is established using the test spaces and dirichlet boundary conditions. Note that for the 
"bottom" , "water"  and "outlet"  boundary the value is set to zero using the function u . For the 
"inlet"  boundary, the dirichlet condition is set to a vertical velocity profile which has been specified with 
the function v_inlet .

Γin = BoundaryTriangulation(model_Ω, tags = ["inlet"])
 

θ = π/2 # phase shift
function v_inlet(x,t)

    return (ω * ξ * ( cosh( k * (x[2]) ) / sinh( k * d ) ) * cos(k * x[1] - ω * t - θ))
end

 

v_inlet(t::Real) = x -> v_inlet(x,t)

order = 2

dΩ = Measure(Ω,2*order)
dΓb = Measure(Γb,2*order)
dΓf = Measure(Γf,2*order)
dΓin = Measure(Γin,2*order)
 

Λb = SkeletonTriangulation(model_Γ,Γface_mask)
nΛb = get_normal_vector(Λb)
dΛb = Measure(Λb,2*order)
mean_mask = CellField(mean(CellField(Γface_mask,Γ)),Λb)

reffe = ReferenceFE(lagrangian,Float64,order)

V_Ω = TestFESpace(
    model_Ω,
    reffe,

    conformity=:H1

    )

V_Γ = TestFESpace(
    model_Γ,
    reffe,

    conformity=:H1,

    dirichlet_tags=["bottom", "water", "inlet", "outlet"]

    )
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The test spaces and trial spaces are combined in a MultiFieldFESpace  indicated by X  and Y , respectively.

Numerical time integration  

To solve the system in time, a numerical time integration scheme needs to be chosen. As the set of 
equations consists of a second temporal derivative, the Newmark-beta integration scheme has been 
chosen, which is widely used in the dynamic response of structures. Generally, the system is explicit, 
however, by choosing the parameters  and , the system becomes unconditionally stable, 
which means that the time step can be chosen independently of the grid resolution. In this case, it was 
found that the results were accurate if the time step was equal to grid resolution in x-direction, resulting in 
a time step of 1/50 of the wave period.

Stabilisation terms  

To make sure that the system of equations is coercive, the weak formulation is stabilised by stabilisation 
terms. Currently, Oriol Colomés Gené is doing research to find the correct set of stabilisation terms to solve 
this problem. For now, a default value of  is used to display the correct values.

u(x,t) = 0

u(t::Real) = x -> u(x,t)

U_Ω = TransientTrialFESpace(V_Ω)
U_Γ = TransientTrialFESpace(V_Γ, [u,u,v_inlet,u])

X = TransientMultiFieldFESpace([U_Ω,U_Γ])
Y = MultiFieldFESpace([V_Ω,V_Γ])

γ = 0.5   # Newmark beta factor
β = 0.25  # Newmark beta factor
Δt = T / meshX # time step

∂ut_∂u = γ/(β*Δt)
∂utt_∂u = 1/(β*Δt^2)
αh = 0.5                                                      # default value
h_m = min((Xmax-Xmin)/partition[1],(Zmax-Zmin)/partition[2])

β_f = ∂ut_∂u / (αh*g + ∂ut_∂u)                                # stability parameter 
fluid

β_b = ∂ut_∂u / (αh*(ρ_b/ρ_w*h*∂utt_∂u + g) + ∂ut_∂u)          # stability parameter 
structure

γ_m = 1.0e2*order*(order+1)
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s((ϕ,η),(w,v))  is a function containing all stabilisation terms that will be included in the weak 
formulation to ensure a stable system.

Weak formulation  

The weak form is the set of equations that will be solved by Gridap . The Newmark-beta scheme 
distinguishes between three different matrices; the mass matrix  which contains the seond derivative 
terms, the damping matrix  which contains the first derivative terms,  and the other terms of the 
standard form. Finally there is the vector that includes the external loads . In Gridap , four functions are 
used that resemble the mentioned matrices. m((ϕtt,ηtt),(w,v)) , c((ϕt,ηt),(w,v))  and a((ϕ,η),
(w,v))  form the bi-linear form and b(t,(w,v))  is the vector containing the externeal forces.

The set of equations is combined into one matrix and the numerical solver is set up.

Solver  

The initial solution is set to zero.

And all time steps are set, ready to be computed.

s((ϕ,η),(w,v)) = ∫( (mean_mask==1)*β_b*EI/ρ_w*( - ( jump(∇(v)⋅nΛb) * mean(Δ(η)) + 
jump(αh*∇(w)⋅nΛb) * mean(Δ(η)) ) - ( mean(Δ(v)) * jump(∇(η)⋅nΛb) ) + γ_m/h_m * ( 
jump(∇(v)⋅nΛb) * jump(∇(η)⋅nΛb) + αh*jump(∇(w)⋅nΛb) * jump(∇(ϕ)⋅nΛb) ) ) )dΛb

m((ϕtt,ηtt),(w,v)) = ∫( ρ_b/ρ_w*h*ηtt*β_b*(v+αh*w) )dΓb
 

c((ϕt,ηt),(w,v)) =  ∫( β_f*(αh*w + v)*ϕt - w*ηt )dΓf +
                    ∫( β_b*(αh*w + v)*ϕt - w*ηt )dΓb
 

a((ϕ,η),(w,v)) =  ∫( ∇(ϕ)⋅∇(w) )dΩ +
                  ∫( β_f*(v + αh*w) * g*η - μ₁*η*w - μ₂*ϕ*w/g )dΓf +
                  ∫( β_b*(Δ(v) + αh*Δ(w)) * EI/ρ_w*Δ(η) + β_b*(v + αh*w) * g*η + EI/
ρ_w*αh*Δ(w)*Δ(ϕ) )dΓb +
                  s((ϕ,η),(w,v))
 

b(t,(w,v)) =  ∫( v_inlet(t) * w )dΓin +
              ∫( β_b*(αh*w + v)*(-0.0) )dΓb

op = TransientConstantMatrixFEOperator(m,c,a,b,X,Y)

ls = LUSolver()

odes = Newmark(ls,Δt,γ,β)
solver = TransientFESolver(odes)

x₀ = interpolate_everywhere([0.0, 0.0],X(0.0))
v₀ = interpolate_everywhere([0.0, 0.0],X(0.0))
a₀ = interpolate_everywhere([0.0, 0.0],X(0.0))
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The WriteVTK  and FileIO  modules are loaded to store the results on the computer and a directory is 
created to store all the files.

The model consists of three parts; the 2D potential domain and the free surface which can be subdivided 
into the fluid part and structure part. Each is stored seperately and can be viewed in Paraview.

Finally, a for loop is created that runs through all the timesteps and stores the potential ϕn  and the surface 
elevation ηn  of each time step.

t₀ = 0.0
periods = 50

tf = periods * T

sol_t = Gridap.solve(solver,op,(x₀,v₀,a₀),t₀,tf)

using WriteVTK

using FileIO

 

 

folderName = "solution"

if !isdir(folderName)

    mkdir(folderName)

end

filePath_Ω = folderName * "/fields_O"
filePath_Γb = folderName * "/fields_Gb"
filePath_Γf = folderName * "/fields_Gf"
pvd_Ω = paraview_collection(filePath_Ω, append=false)
pvd_Γb = paraview_collection(filePath_Γb, append=false)
pvd_Γf = paraview_collection(filePath_Γf, append=false)

for ((ϕn,ηn),tn) in sol_t
  println(tn)

 

  pvd_Ω[tn] = createvtk(Ω,filePath_Ω * "_$tn.vtu",cellfields = ["phi" => ϕn],order=2)
  pvd_Γb[tn] = createvtk(Γb,filePath_Γb * "_$tn.vtu",cellfields = ["eta" => 
ηn],nsubcells=10)
  pvd_Γf[tn] = createvtk(Γf,filePath_Γf * "_$tn.vtu",cellfields = ["eta" => 
ηn],nsubcells=10)
 

end

 

vtk_save(pvd_Ω)
vtk_save(pvd_Γb)
vtk_save(pvd_Γf)
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This is the end of the tutorial and I hope you now understand how to build a fluid structure interaction in 
Gridap . If you want to learn extra things, like storing values of a test run or calculating the energy in the 
system, please take a look below in the Extra's section.

Extra's  
The following blocks of code help to further explore the results that have been generated with the 
numerical model. If you want to run this file please comment out the full Extra's section to have the code 
properly work.

Storing values  

Sometimes, you don't want to only look at the results in Paraview, but also use them for more scientific 
uses. Then it is convenient to store all the values in a Dict() .  By creating a dictionary, it is possible to save 
all variables in a wrapper. Here, the module JLD2  is used which also gives the possibilty to save a .jld2  
file which contains all the data. Just follow the approach below:

Saving free surface as vector  

To save surface elevation as a datastring, a few extra lines need to be added to the for loop. A global  
variable ηns  is created before the for loop. In the loop, for each time step, the surface elevation is stored in 
a local variable surface  and subsequently push! 'ed to ηns . The datastring can be stored in a JLD2 file as 
mentioned in the previous section.

using DelimitedFiles

using JLD2

 

dat = Dict()

 

dat[:λ] = λ
dat[:ξ] = ξ
dat[:st] = steepness

dat[:d] = d

dat[:k] = k

dat[:ω] = ω
dat[:T] = T

 

dataname = "data"

datapath = "solution"

save(datapath * "$dataname.jld2", "data", dat)
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Calculating energy in the system  

To check the amount of energy in the system, the sum of all values can be taken in the for loop as well. 
Here, we distinguish the energy between potential energy Eₚ_f  and kinetic energy Eₖ_f  for the free 
surface. For the structure, two more energy terms are taken into account; the kinetic energy Eₖ_b  and the 
elastic energy Eₚ_b  of the structure. In this example the energy is calculated at three different locations; the 
incident wave zone xp1 , the hydroelastic wave zone xp2  and the outgoing wave zone xp3 .

global ηns = []
for ((ϕn,ηn),tn) in sol_t
  println(tn)

 

  global cell_values_ηn = get_cell_dof_values(ηn)
  surface = []

  for i in 1:length(cell_values_ηn)
      push!(surface, cell_values_ηn[i][3])
  end

  push!(ηns, surface')
  ηns = vcat(ηns...)
 

end

global Eₖ_f_p1 = []

global Eₚ_f_p1 = []

 

global Eₖ_f_p2 = []

global Eₖ_b_p2 = []

global Eₚ_f_p2 = []

global Eₚ_b_p2 = []

 

global Eₖ_f_p3 = []

global Eₚ_f_p3 = []

 

global η_0 = interpolate_everywhere(0.0, U_Γ(0.0))
 

global xp1 = 1 * λ
global xp2 = 3 * λ
global xp3 = 9 * λ
 

x_p1(x) = (xp1 <= x[1] <= (xp1 + λ))
x_p2(x) = (xp2 <= x[1] <= (xp2 + λ))
x_p3(x) = (xp3 <= x[1] <= (xp3 + λ))
 

for ((ϕn,ηn),tn) in sol_t
  println(tn)

 

  push!(Eₖ_f_p1, 0.5 * ρ_w * ∑( ∫(∇(ϕn)⋅∇(ϕn) * x_p1 )dΩ ))
  push!(Eₚ_f_p1, 0.5 * ρ_w * g * ∑( ∫((ηn*ηn) * x_p1 )dΓf ))
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  push!(Eₖ_f_p2, 0.5 * ρ_w * ∑( ∫(∇(ϕn)⋅∇(ϕn) * x_p2 )dΩ ))
  push!(Eₚ_b_p2, 0.5 * EI * ∑( ∫(Δ(ηn)⋅Δ(ηn) * x_p2 )dΓb ))
  push!(Eₖ_b_p2, 0.5 * ρ_b * h * ∑( ∫((ηₜ*ηₜ) * x_p2 )dΓb ))
  push!(Eₚ_f_p2, 0.5 * ρ_w * g * ∑( ∫((ηn*ηn) * x_p2 )dΓb ))
 

  push!(Eₖ_f_p3, 0.5 * ρ_w * ∑( ∫(∇(ϕn)⋅∇(ϕn) * x_p3 )dΩ ))
  push!(Eₚ_f_p3, 0.5 * ρ_w * g * ∑( ∫((ηn*ηn) * x_p3 )dΓf ))
 

  η_0 = interpolate_everywhere(ηn, U_Γ(tn))
 

end
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