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Abstract

Airfoil shape optimization plays an important role in improving aerodynamic performance
in aircraft and turbine applications. Recent advances in computational methods have al-
lowed the integration of machine learning algorithms into aerodynamic design workflows.
This MSc thesis investigates and compares two optimization algorithms, Factorization Ma-
chine Quantum Annealing (FMQA) and single-step Deep Reinforcement Learning (sDRL)
in the context of airfoil shape optimization, including a comparison against a standard op-
timizer from SciPy (Differential Evolution).

A series of numerical experiments were conducted, interfacing these algorithms with a
Lattice Boltzmann Method (LBM) solver across different aerodynamic objectives, flow
regimes, and parameterization schemes, including classical approaches such as the Joukowski
transformation and PARSEC, as well as a novel Variational Autoencoder (VAE)-based
scheme. Benchmark cases, including an adapted version of Drela’s optimization problem,
were also carried out to further evaluate the algorithms. Performance was assessed mainly
through the aerodynamic objective values obtained, the convergence behaviour, and the
analysis of the optimized airfoil shapes.

Results show that both FMQA and sDRL successfully identified high performing airfoil
shapes under different conditions. Convergence behaviour varied between the numerical
experiments, with clearer and more consistent convergence trends observed when using the
VAE-based parameterization. sDRL often achieved slightly better results in most of the
aerodynamic objectives, including the maximization of the lift-to-drag ratio, while FMQA
outperformed in specific numerical experiments. Compared with the standard optimizer,
FMQA and sDRL produced competitive results: in some numerical experiments, the ma-
chine learning algorithms outperformed the SciPy optimizer (especially sDRL), while in
others the standard optimizer achieved better performance. Testing the VAE-based pa-
rameterization confirmed that this scheme leads to improved aerodynamic performance
across different optimization objectives compared to classical parameterization approaches.

These findings highlight FMQA and sDRL as flexible and competitive optimization strate-
gies for aerodynamic design problems, outperforming the standard SciPy optimizer in some
challenging scenarios and showing strong potential for application to practical, higher fi-
delity design scenarios.
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Chapter 1

Introduction

Airfoil shape optimization is a well established research area with many applications in
fluid dynamics. In areas like aerodynamics, critical challenges like minimizing the drag
or reducing aircraft fuel consumption are often addressed through shape optimization [1].
Shape optimization is crucial in aircraft and turbine design, significantly impacting both
aerodynamic efficiency and energy consumption. The primary objective of the optimiza-
tion process is to enhance the lift-to-drag ratio, i.e. the aerodynamic performance, by
modifying the airfoil geometry.

Traditional optimization methods rely predominantly on computational fluid dynamics
(CFD) simulations. However, these methods are computationally expensive and often
struggle with complex design spaces. Recent advances in machine learning are helping
to address these challenges with the aid of surrogate models. Machine learning offers
a flexible and adaptable modeling framework that can be customized to tackle various
challenges in fluid mechanics, including reduced-order modeling, experimental data pro-
cessing, and, in this specific case, airfoil shape optimization [5]. Deep learning (DL), as
the main algorithm of artificial intelligence (AI), has remarkable abilities to process high-
dimensional and nonlinear data representations. By integrating the capabilities of DL
with the decision-making capabilities of reinforcement learning (RL), deep reinforcement
learning (DRL) offers an innovative approach to addressing complex system perception
and decision-making problems [6]. This approach has been successfully applied to shape
optimization in [1] and [7].

In contrast, machine learning approaches such as Factorization Machine Quantum An-
nealing (FMQA) algorithms have also emerged with potential in many research areas.
Examples of these are found for metamaterials in [8] and function smoothing regulariza-
tion in [9]. Applying it to shape optimization, the approach found in [10] has shown the
applicability of this algorithm to aerodynamic topics such as designing airfoil geometries
to improve their aerodynamic efficiency.

This research project will focus on developing an assessing recent machine learning algo-
rithms for the problem of airfoil shape optimization. As it has previously been stated,
Factorization Machine Quantum Annealing (FMQA) and Deep Reinforcement Learning
have shown promises in tackling this problem. However, several open questions remain on
their comparative performance and on which of these two algorithms is more suitable.

1
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Therefore, the main research objective of this thesis is to explore and compare Factoriza-
tion Machine Quantum Annealing (FMQA) and single-step Deep Reinforcement Learning
(sDRL) algorithms in the context of airfoil shape optimization by setting tasks of increasing
complexity, attempting to understand and explain their observed respective performances.
In addition, a standard optimizer is employed as a baseline for comparison and validation
of the results of the machine learning approaches.

The report is structured as follows. Chapter 2 presents the literature study, which forms
the basis of this MSc thesis. This chapter introduces the main concepts and summarizes
the key findings from the literature regarding the different methods considered. Chapter 3
outlines the research methodology, including a description of the methods, the computa-
tional setup, and the design of the numerical experiments. Chapter 4 includes the results
obtained from the numerical experiments, followed by the consequent discussions. Finally,
the main conclusions are provided in Chapter 5, and recommendations are presented in
Chapter 6.

2



Chapter 2

Literature Study

The Literature Study has the goal of exploring and defining the fundamentals of these two
machine learning algorithms, DRL and FMQA in the context of airfoil shape optimization.
Firstly, a background section on the fundamentals of optimization and neural networks
is covered. Then, DRL and FMQA will be compared in the context of airfoil shape
optimization, highlighting their strengths and weaknesses. Additionally, a section on airfoil
shape representation is also included to cover the different methodologies to represent the
shapes for the future optimization problems of this research work. Then, the research
objectives and research questions are presented as a bridge between the Literature Study
and the actual MSc thesis work.

2.1 Background

2.1.1 Optimization Problem - Definition

Optimization is a relevant tool in decision science and in the analysis of any physical sys-
tem. First, an objective should be identified to make use of this tool, that is, a measure
of the performance of the system that is being studied. The objective depends on specific
characteristics of the systems, called variables. In this case, the goal is to optimize the ob-
jective finding the right values of the variables. In many cases, these values are restricted
or constrained by a set of equations and inequalities [11].

In mathematical terms, optimization is the minimization or maximization of a function
subject to constraints on its variables. The key components of an optimization problem
are:

• x is the vector of variables, also called parameters to be optimized.

• f is the objective function, a function of x that we want to maximize of minimize.

• ci are the constraint functions, certain equations and inequalities that the vector x
must satisfy.

Using this notation, the optimization problem can be written as

min
x∈RN

f(x) subject to
ci(x) = 0, i ∈ E ,
ci(x) ≥ 0, i ∈ I.

(2.1)

where E is the set of indices corresponding to equality constraints and I the set of in-
dices corresponding to inequality constraints. In airfoil shape optimization, the objective

3
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function to be optimized is usually the lift-to-drag ratio. On the other hand, airfoil shape
parameters would correspond to the design variables of the problem.

Optimization is a fundamental component of machine learning, as most machine learning
algorithms formulate learning as an optimization problem where parameters of a given
model are adjusted to minimize or maximize an objective function based on the provided
data [12]. In the following, the focus will be on the shape optimization problem, a type of
optimization problem where the objective function depends on the geometry of a domain.

2.1.2 Gradient-based vs Gradient-free methods

In optimization, two main classes of approaches have emerged to deal with shape opti-
mization problems: gradient-based and gradient-free methods. Gradient-based methods
are dependent on the gradient of the objective function J with respect to the design pa-
rameters x, expressed as ∇xJ [1]. These methods have lower computational costs than
gradient-free methods, if the gradient is easy to compute. However, they have some draw-
backs. Firstly, gradient-based approaches have the tendency to being trapped in local
minima of the function rather than finding the global minimum point. Therefore, they are
very sensitive to the initial guess. Secondly, the efficiency of the methods presents chal-
lenges when the objective function exhibits discontinuities or nonlinear behavior [13]. In
this context, gradient-free methods often perform better than gradient-based, despite their
potentially more complex implementation [1]. Besides that, these methods are better at
finding the global optima. Within gradient-free methods, genetic algorithms show a good
behavior in finding the global optima. However, they are more expensive computationally
than gradient-based methods [13]. Particle-swarm optimization is also highlighted by its
easy implementation and low memory cost [14]. Nevertheless, it is not as good as other
methods in imposing constraints on the design parameters. Lastly, metropolis algorithms,
such as simulated annealing, are well-known for having an optimal behavior escaping local
minima. However, the results show a high dependency on the chosen meta-parameters of
the algorithm [1]. Table 2.1 shows in summary the comparison between gradient-based
and gradient-free methods.

Table 2.1: Gradient-based versus gradient-free methods [4].

Gradient-based Gradient-free
Advantages Lower computational cost Good at finding global optimum

Widely used method in aerodynam-
ics

Well suited for complex functions
(non-linear)

Drawbacks Convergence on local optima High computational cost
Sensitive to starting point Limitation on number of design

variables
Requires continuous function Low convergence speed when cou-

pled with CFD
Inability to use past optimum data Inability to use past optimum data
Poor efficiency for non-linear cost
function

Currently, there is an extensive literature supporting the use of neural networks alongside

4



MSc Thesis

gradient-based and gradient-free methods for shape optimization. Fundamentals of neural
networks are thus now introduced.

2.1.3 Neural networks

A neural network (NN) can be conceptualized as a collection of artificial neurons inspired
by the structure of the human brain. These neurons are connected computational units
that have the capability to be trained to approximate the mapping function between
input and output spaces. Each connection provides the output of a neuron as the input
to another. As can be seen in Figure 2.1, an input vector x, associated with a set of
weights w, is provided to the neuron. The neuron then calculates a weighted sum of the
inputs w · x + b to represent the importance of each input for the learning task. It adds
a bias b to account for parts of the output that are independent of the input, as shown
in Equation 2.2. The weight and the bias represent the degrees of freedom in the neuron
(parameters to be adjusted to approximate the function).

z = b+
∑
k

wk · xk (2.2)

This sum is processed through an activation function σ, which determines the degree
to which the computed value influences the final output. The activation function is a
hyperparameter (it is part of the choices made during the network design) [15].

a = σ(z) (2.3)

Neural networks are typically organized into layers. In this scenario, the input receives the
external data, the output layer produces the final result, and in between there are zero or
more hidden layers that transform the data via weighted summations and activations. For
a fully connected network, the neurons of one layer are exclusively connected to neurons in
the preceding and following layers. One can see in Figure 2.2 an example of how a neural
network looks like, connecting three inputs x1, x2 and x3 to an unique output y through
a series of interconnected layers.

Figure 2.1: Artificial Neuron Figure 2.2: Neural Network

In order to design an efficient neural network, it is required to select appropriately nonlin-
ear activation functions and optimize the weights and biases to minimize the value of a loss
function that measures the network’s prediction accuracy. The network architecture, the
meta-parameters and the quality/size of the dataset are also factors to take into careful
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consideration for an efficient learning [3].

In the context of deep reinforcement learning, the agent (which will be discussed later
in subsection 2.2.1) is a deep neural network (DNN). Here, the neural network learns to
represent the relation between input (action) and output (reward) by adjusting the weights
and biases. This adjustment is achieved through back-propagation, from the output layer
to the input layer passing through the hidden layer. This process is known as training [7].

2.2 Algorithms in Airfoil Shape Optimization

Airfoil shape optimization is a crucial aspect of aerodynamic design. However, the com-
plexity and non-linearity of fluid mechanics, combined with the high-dimensional design
space, make optimizing airfoil shapes a particularly challenging task [4]. In this section,
different algorithms to tackle the airfoil shape optimization problem are discussed.

In the late 1970s, one of the first papers on aerodynamic shape optimization was pub-
lished by Hicks and Henne [16], where a conjugate gradient optimization algorithm was
presented. Since then, aerodynamic shape optimization has become a very active area
of research [17]. Classical airfoil shape optimization techniques have evolved from ana-
lytical methods to approaches based on computational methods. One classical method is
conformal mapping, widely used in potential flow analysis. Using this technique, simple
flow solutions can be transformed into complex airfoil shapes while preserving the main
aerodynamic properties. However, conformal mapping has also its limitations. While it is
effective for inviscid flows, it struggles in handling viscous effects, leading to the develop-
ment of numerical methods [18].

An important improvement came with the introduction of adjoint methods, which use
ideas from control theory (the study of how to guide systems toward better performance
by adjusting inputs) and advanced mathematics to optimize shapes more efficiently [19].
In this context, the system being studied is the airflow around a shape such as an airfoil.
Adjoint methods allow one to determine the impact of small shape changes on perfor-
mance without needing to run a full simulation for every variation. This makes the design
process much faster and more effective. These methods were introduced to address the
issue of using a large number of design variables, which usually resulted in very high com-
putational costs [20]. In [21] and [22], Pironneau made use of the adjoint-based gradient
calculation in airfoil profile optimization by deriving the adjoint for the Stokes equations
and for the incompressible Euler equations. Later, the adjoint method was also extended
by Jameson [23] to the compressible Navier-Stokes equations with turbulent models, allow-
ing to solve practical aerodynamic design problems. However, a key limitation of adjoint
methods is their sensitivity to local minima, as they rely on gradient-based optimization
and therefore there is no guarantee of finding the global optimum. Another important
technique is numerical inverse design, an iterative process that adjusts the airfoil shape
to achieve specific performance metrics. These methods have been applied to real-world
problems, including business jet optimizations [18].

Another optimization technique to highlight is Bayesian Optimization, a data-driven tech-
nique that combines a surrogate model and an optimization algorithm, using updated prior
knowledge [24]. In [25], Bayesian Optimization is applied to aerodynamic shape design
of airfoils. This approach, also known as Efficient Global Optimization, is well-suited for
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optimization problems where the objective function is unknown or expensive to evaluate
(one advantage of Bayesian Optimization is its applicability to general black-box func-
tions [26]). In these scenarios, the objective function, such as aerodynamic drag or lift, is
not given in an explicitly mathematical form or is costly to compute through simulations
or experiments. To address this, Bayesian Optimization builds a probabilistic surrogate
model that approximates the objective function based on previously evaluated data points.
It consists of two essential aspects: a Bayesian regression model, usually a Gaussian pro-
cess (GP), and an acquisition function to guide the search process.

Despite successful applications of Bayesian Optimization to black-box optimization prob-
lems, the approach is restricted to problems of moderate dimension. In particular, Bayesian
Optimization struggles when the dimensionality exceeds 10-20 variables [27] [28]. This
limitation emerges because the number of evaluations needed to cover the search space
exponentially increases with the number of dimensions. As a result, scaling Bayesian Op-
timization to high-dimensional problems remains a major challenge.

Recent advances in machine learning have facilitated the development of new strategies for
addressing the problem of airfoil shape optimization. In this section, Deep Reinforcement
Learning and Factorization Machine Quantum Annealing are explored and discussed as
promising machine learning approaches for shape optimization.

2.2.1 Deep Reinforcement Learning (DRL)

Theoretical background

The combination of deep learning (based on neural networks) with reinforcement learning
(RL) is called deep reinforcement learning (DRL). Compared with simple RL, DRL enables
the use of high-dimensional state spaces. Diving into reinforcement learning, it is essential
to understand the different approaches in machine learning. The field of machine learning
is currently split into three categories: supervised, unsupervised, and reinforcement learn-
ing. In supervised learning, learning is performed from a training set of labeled examples
provided by a knowledgeable external supervisor with the goal of predicting the label of
unlabeled data. Unsupervised learning is typically about finding the structure hidden in
collections of unlabeled data [29]. In reinforcement learning (RL), an agent learns the
optimal behavior to follow within an environment by trying to maximize a reward which
is given based on trial-and-error interaction with its environment [7]. In comparison to
supervised and unsupervised learning, reinforcement learning does not need large sets of
user-provided data for its learning process. Instead, the procedure that follows is gaining
experience by interacting with the environment and exploiting the obtained knowledge to
improve its behavior [4].

In RL, the agent interacts with the environment through three signals of information: (i)
an observation of the current state of the environment, (ii) an action performed by the
agent on the environment, based on the previous observation, and (iii) a reward given to
the agent after the mentioned action (see Figure 2.3). The goal of RL is to find an optimal
decision policy that maximizes the accumulated reward [1]. The expected cumulative
reward at timestep t is defined as: [29]

R(τ) =
T∑
t=0

γtrt (2.4)
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Figure 2.3: Schematic of a reinforcement learning framework [1]

where T is the total time, rt is the immediate reward received at the time step t and
γ ∈ [0, 1] is a discount factor taking into account the impact of future rewards on the
current expected reward.

RL methods are typically divided into two categories: model-free and model-based al-
gorithms. Model-based algorithms rely on a model of the environment to perform their
interactions. In contrast, model-free algorithms interact directly with the environment
without requiring an explicit model. These algorithms are the most widely used in the
deep reinforcement learning (DRL) community, due to their simplicity and ease of imple-
mentation. Model-free methods can be categorized into value-based methods and policy-
based methods [15].

In RL, in order to maximize the cumulative reward, the agent must learn the optimal
behavior for any given state, represented by the policy π. This policy assigns probabilities
to each possible action based on the current state. The strategies used by the agent to
achieve this optimal behavior can be categorized into two methods [29]:

1. Value-based methods. The agent does not directly learn a policy but instead esti-
mates a value function. This value function helps to determine the best actions by
selecting the one with the highest expected return. This approach leads to an opti-
mal policy, where the agent always chooses actions that maximize future rewards [4].
There are two types of value functions:

(a) The state-value function vπ(s). It measures the expected return when starting
in state s and following the policy π after. It is expressed as:

vπ(s) = Eπ [R(τ) | s] (2.5)

(b) The action-value function qπ(s, a). It measures the expected return when start-
ing in state s, taking action a and then following policy π:

qπ(s, a) = Eπ [R(τ) | s, a] (2.6)

The Bellman relates the value of a state to the value of its possible successor
states. For the state-value function, this equation is written as:

vπ(s) =
∑
a

π(a|s)
∑
s′,r

p(s′, r|s, a)[r + γvπ(s
′)] (2.7)
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The optimal state-value function, denoted as v∗, is:

v∗ = max
π

vπ(s) (2.8)

which satisfies the Bellman optimality equation:

v∗ = max
a

∑
s′,r

p(s′, r|s, a)[r + γv∗(s
′)] (2.9)

If this final equation is solved, it will produce the optimal state-value function,
which consequently leads to an optimal policy. These equations are the ba-
sis of reinforcement learning algorithms like Q-learning and Deep Q-Networks
(DQN).

2. Policy-based methods. In these, the optimal policy is searched by directly optimizing
the policy π by adjusting the policy parameters θ, rather than estimating a value
function. There are advantages over value-based methods. First, it handles high-
dimensional action spaces (it performs better in complex environments). It is also
suited for both continuous and discrete action spaces (unlike value-based methods,
which struggle with continuous action spaces). Lastly, these methods have smoother
convergence properties [4]. The goal of policy optimization is to maximize the ex-
pected cumulative reward over a trajectory τ , which consists of a sequence of states
and actions. The objective function of a policy πθ is defined as:

J(θ) = Eτ∼πθ
[R(τ)] (2.10)

and seeks the optimal parameterization θ∗ that maximizes J(θ):

θ∗ = arg max
θ

Eτ∼πθ
[R(τ)] (2.11)

In order to optimize J(θ), policy gradient methods compute the gradient ∇θJ(θ)
and use gradient ascent to update the policy parameters. More information on
how to calculate this gradient can be found in [15]. Policy gradient methods are
trained based on episodes, a sequence of consecutive interactions of the agent with
the environment. The temporally discounted sum of rewards that is observed during
an episode acts as the quality assessment of the agent’s current decision policy. The
agent iteratively learns by repeating this process to choose more acceptable actions
to maximize its rewards [1].

In deep reinforcement learning, the agent is represented by a deep neural network (DNN).
The neural network learns to capture the relationship between input (action) and output
(reward) data by continuously refining the weights and biases through back-propagation
from the output layer back through the hidden layers to the input layer (process known
as training).
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Findings in Literature on DRL for shape optimization

[1] presents the first application of deep reinforcement learning (DRL) to shape opti-
mization. In this paper, The DRL agent is based on Proximal Policy Optimization in
combination with neural networks to generate 2D shape described by Bézier curves by in-
teracting with a CFD-based environment in Fenics. This type of optimization falls within
the category of policy gradient methods, which directly optimize a decision policy mapping
states to actions, are well suited for continuous action spaces, and have been successfully
applied to optimal control. Going back to the results of the paper, the research proves
that the agent is able to generate wing-like optimal shapes within 3000 episodes, with the
lift-to-drag ratio as the main aerodynamic objective.

In [4], a Markov decision process formulation of airfoil shape optimization is presented, also
using Deep Reinforcement Learning as the main optimization algorithm. This approach is
highlighted because it allows the agent to successively modify the thickness and camber of
the airfoil at selected positions, using continuous values, in comparison with other research
works where the action-space is more restricted. Another new aspect introduced in this re-
search is that more than one aerodynamic objective is searched separately: the lift-to-drag
ratio, the lift coefficient and drag coefficient. The flow solver environment is low-fidelity
(Xfoil), with which the agent interacts and receives a positive reward when it maximizes
(lift-to-drag ratio or lift coefficient) or minimizes (drag coefficient) the aerodynamic ob-
jective by modifying the airfoil shape. Again, the DRL agent is based on Proximal Policy
Optimization (PPO). Results demonstrate the learning capabilities of DRL in all cases.
DRL is also compared to a classical simplex method (where the optimizer is based on
the Nelder-Mead simplex algorithm) and demonstrates a higher efficiency at exploring the
design space (the L/D value obtained with the DRL approach is higher).

Other applications of DRL to shape optimization can be found in [7], where the authors
explore the application of deep reinforcement learning techniques to the optimization of
two- and three-dimensional shapes within CFD environments. The study presents an in-
novative single-step DRL framework for direct shape optimization. The main objective
of the paper is to evaluate DRLs effectiveness in discovering optimal aerodynamic shapes
without prior domain experience. What makes this paper different from [1] is the applica-
tion of a single-step DRL (sDRL), a subset of DRL that can be related to the performance
of a black-box optimization. Here, it is enough that the agent interacts only once per
episode with the environment if the optimal behaviour to be learnt by the agent is inde-
pendent of state. This means that the optimal action does not depend on a dynamically
changing environment or previous states. It uses Policy Based Optimization (PBO), a
single-step algorithm. Results showed the successful implementation of the DRL-CFD
framework in many cases, obtaining shapes that perform just as well as a conventional
airfoil in a scenario where the DRL had zero prior knowledge in aerodynamic concepts.
These results highlight present the potential of this method for black-box shape optimiza-
tion. In the following subsection, another innovative black-box optimization algorithm
will be presented, Factorization Machine Quantum Annealing (FMQA).

2.2.2 Factorization Machine Quantum Annealing (FMQA)

Theoretical Background

Factorization Machine Quantum Annealing (FMQA) is a type of black-box optimization
method that combines quantum annealing (QA) with factorization machine (FM), a ma-

10



MSc Thesis

chine learning method [9]. As previously covered, the main interest is to find a set of
variables x that minimizes/maximizes the objective function f(x). In FMQA, x is the
variable vector of size N and is represented in binary form, taking the value 0 or 1 [30].
The reason why the design variables should be in binary form is because the quantum
annealer requires the variables to be encoded in this form [8].

Minimize f(x)
subject to x ∈ [0, 1]N

In this case, if the information about the objective function (gradient, convexity, etc.) is
explicitly given, an efficient optimization can be performed. In contrast, when the objec-
tive function f(x) corresponds to the output of a simulation or experiment, the function
cannot be explicitly described. Mathematical optimization applied to a non explicit ob-
jective function is called black-box optimization.

As mentioned before, Factorization Machine Quantum Annealing uses quantum anneal-
ing and factorization machine in its optimization process. As shown in Figure 2.4, the
optimization loop looks for the input x that minimizes the objective function, as well as
approximates the black-box function by a second-order polynomial.

Train the FM
with dataset

Solve the QUBO
model with QA

Evaluate the
black-box
function

Output: QUBO

Output: New sample x̂

Updated training
data x, f(x)

Figure 2.4: FMQA flow
First, the Factorization Machine processes the design variables x in binary form and
learns from an unknown objective function expressed in QUBO-style (QUBO stands for
Quadratic Unconstrained Binary Optimization), which is a second order polynomial that
approximates the black-box function. In other words, it trains the machine-learning model.
Then, the optimization solver, based on the QUBO model, identifies the next evaluation
point x̂ that minimizes the quadratic polynomial. Next, the black-box function is evalu-
ated with the new x. If the polynomial approximation obtained by machine learning is
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reasonably good, the expected outcome of computing the new value x in the black-box
will be low. If this is not the case, one can expect a better polynomial approximation in
the next training cycle by adding the new computed data to the training data (training
data is updated) and performing machine learning again [9] [30]. This optimization loop
is shown in Figure 2.4. Here one can identify how the Factorization Machine and the
Quantum Annealer have different roles in the optimization routine.

As stated earlier, the process of computing the quadratic polynomial that approximates
the black-box function is performed by a machine learning model called the Factorization
Machine. The FM models the QUBO-styled polynomial as shown in Equation 2.12:

fFM (x|w, v) = w0 +
n∑

i=1

wixi +
n∑

i=1

n∑
j=i+1

⟨vi, vj⟩xixj . (2.12)

where w0 and wi are FM model parameters for real scalar and vi is the FM model pa-
rameter for K-dimensional real vector, where K is referred to as the rank of the FM.
Equation 2.12 is in QUBO form except for w0.

The objective of training the FM model is to minimize a loss function L, which measures
the difference between the predicted value fFM (x) and the real outcome f(x) of the black-
box function, shown in Equation 2.13

L(w0, wi, vi) =
∑
m

(fFM (xmi )− f(xmi ))2 . (2.13)

As the loss function L is differentiable with respect to the parameters w0, {wi}, and
{vi}, the optimal values of these parameters can be learned using general gradient descent
techniques. Then, after training fFM , the Ising Machine, in this case, a Quantum Annealer
(a specialized type of quantum computer designed to solve combinatorial optimization
problems) obtains a new evaluation point x̂ using the QUBO model. After this process,
the new result f(x̂) is obtained from the black-box function and added to the data set.
In summary, FMQA is a black-box optimization algorithm designed to find the optimal
solution to an optimization problem by iteratively repeating N times these processes,
which have been stated earlier (also shown in Figure 2.4):

1. Training fFM with FM using the (most recent) training data.

2. Estimate the new evaluation point x̂ that minimizes the acquisition function using
the Ising Machine.

3. Evaluate the objective function f(x) with x̂ to obtain f(x̂).

4. Add (x̂, f(x̂)) to the training data.

Findings in Literature on FMQA for optimization

Looking into literature, the first paper to present FMQA as a suitable algorithm for
black-box optimization is discussed in [8], where the authors present how FMQA can be
incorporated into automated materials discovery. The algorithm consists of three parts:
regression analysis for the target property by factorization machine, selection of candidate
metamaterial based on the regression outcome and simulation of the metamaterial prop-
erty. As can be seen, this cycle can be related to the general flow shown in Figure 2.4.
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The design variables of the black-box optimization are in binary form and represent the
structure of materials. Relating this to the airfoil shape optimization problem, the design
variables involved in airfoil representation (chord length, camber, angle of attack, etc.)
are usually represented as continuous variables. Therefore, other ways to handle this type
of design variables need to be addressed.

In [31], the use of FMQA is expanded to black-box optimization with integer variables,
integrating different encoding methods (binary encoding, one-hot encoding and domain
wall encoding) that allow the user to encode continuous design variables. However, repre-
senting continuous variables with binary variables can lead, in most cases, to optimization
inefficiencies. That is why in the study available in [9] the use of a Function Smoothing
Regularization (FSR) to improve FMQA when dealing with continuous variable optimiza-
tion problems is addressed. The main challenge is to minimize the noise introduced by
the encoding of the continuous variables. In this paper, they present a one-hot representa-
tion to handle these variables. This representation is commonly used for categorical data
but can also be applied to represent continuous variables in an optimization context. In
one-hot encoding, the continuous variable is represented as an array of binary variables
as:

y(c) → [x1, · · ·xi · · ·xN ]one-hot ,

xi =

{
1 i = c

0 i ̸= c,

where y(c) is a value of the continuous variable y, and [...]one-hot represents the one-hot
vector. This vector, used to represent the continuous value y(c), takes a value of 1 in the
element at the position i = c while all other elements remain 0. This ensures that exactly
one binary variable is active at a time.

In conclusion, the papers discussed, [9] and [31], might solve one of the challenges presented
by FMQA in terms of variable representation, which may be useful for the case of airfoil
shape optimization. However, the literature that addresses shape optimization is still
limited for FMQA. Fixstars Amplify presents a tutorial [10] where FMQA is applied for
airfoil shape optimization. This research work will try to expand the application of this
algorithm to airfoil shape optimization by testing this tutorial.

2.2.3 Airfoil Design Represention

In this subsection, the focus will be on airfoil design representation. The method of
defining an airfoil in the optimization process is a key topic of interest in this research
project. First, a brief explanation of PARSEC airfoils is provided, as this is among the
most widely used methods for characterizing airfoils in the field of aerodynamics. Then, the
two shape generation methods used in the optimization processes of the reference papers
in FMQA and DRL are discussed. Finally, a novel airfoil parameterization approach that
integrates Machine Learning techniques is introduced.

PARSEC airfoil

The PARSEC airfoil method is presented here. This method stands out for its own
intuitiveness, where its eleven parameters describe the main geometrical characteristics
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of the airfoil. These specifications makes the PARSEC method suitable for aerodynamic
optimization [32]. Table 2.2 and Figure 2.5 show the meaning of each parameter and its
representation in an airfoil.

Table 2.2: PARSEC Airfoil Parameters

PARSEC Parameter Geometry Parameter Description
p1 rle Leading edge radius
p2 xup Upper crest horizontal position
p3 zup Upper crest vertical position
p4 zxx,up Upper curvature at crest position
p5 xlo Lower crest horizontal position
p6 zlo Lower crest vertical position
p7 zxx,lo Lower curvature at crest position
p8 zte Trailing edge vertical position
p9 ∆zte Trailing edge thickness
p10 αte Trailing edge direction
p11 βte Trailing edge wedge angle

Figure 2.5: PARSEC parameters on an airfoil
The vertical airfoil coordinates are given by:

z(x) =
6∑

n=1

anx
n− 1

2 (2.14)

where the coefficients an for the upper side of the airfoil can be found solving the following
system of equations, in which the PARSEC parameters are included in Equation 2.15:
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The coefficients of the lower side are also obtained by means of the system of equations:
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Joukowski Airfoil Generator

The program used as the basis for this research to implement FMQA is presented in [10].
In this approach, the airfoil is constructed using the Joukowski transform. The Joukowski
transform is a mathematical technique, that can be used in airfoil design, that can map
simple geometric shapes into more complex airfoil profiles. This transformation is useful
in the design and analysis of airfoils for applications such as wind turbines and aircraft.
The Joukowski transform is:

z(x, y) = ζ(ξ, η) +
c2

ζ(ξ, η)
(2.17)

This equation represents a mapping between two complex planes, where ζ is transformed
into z (ζ → z), as shown in Figure 2.6. The airfoil is modeled as a circle in the ζ-plane,
centered at ξ0, η0 and passing through the point (c, 0). This circle is then rotated by an
angle α in the z plane. The parameters ξ0, η0 and α correspond to the wing thickness,
warping, and angle of attack, respectively.

Figure 2.6: Joukowski transform
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Shape generation using Bézier curves

One of the papers of reference for DRL, [1], uses Bézier curves to generate the airfoil shape
in the optimization process. In this section, the process of generating shapes from a set of
ns points provided by the agent will be covered. The process would be the following: once
the network provides the points, an ascending trigonometric angle sort is performed and
the system computes the angles between the points. Then, an average angle is computed
around each point:

θ∗i = α · θi−1,i + (1− α) · θi,i+1 (2.18)

where α takes a value between [0, 1]. This parameter α allows to adjust the sharpness of
the curve, with the maximum smoothness being α = 0.5. After computing the average
angle, one can join the pair of points using a cubic Bézier curve. This curve is defined by
four points: pi and pi+1 are the points where the curve passes through and are given by the
agent, and p∗i and p∗∗i , which are control points that define the tangent of the curve at pi
and pi+1. As shown in Figure 2.7c, the tangents at pi and pi+1 are controlled, respectively,
by θ∗i and θ∗i+1 [1].

Figure 2.7: Shape generation using cubic Bézier curves [1]

ML-based airfoil parameterization

The paper by Kilian Swannet [2] introduces a novel approach for airfoil design parameteri-
zation that utilizes variational autoencoders (VAEs), a class of neural networks known for
their proficiency in reducing dimensionality. These generative machine learning models
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learn a low-dimensional latent representation of input data, representing the key patterns
in a probabilistic manner. The encoder maps each input to a distribution, usually Gaus-
sian, from which latent vectors are sampled. A regularization term, based on Kullback-
Leibler divergence, ensures that the latent space remains smooth and continuous. This
latent space supports the encoding of complex geometries and the generation of new airfoil
shapes through sampling.

Figure 2.8: Distribution of the latent parameters [2]
The VAE network is trained on a dataset that contains 1619 airfoil data points extracted
from the UIUC airfoil database [33], allowing the model to capture a wide range of geomet-
ric variations. By passing the dataset through the encoder network of the autoencoder, la-
tent parameters Zi are sampled from the probability distributions inferred by the encoder.
The resulting inferred latent distributions, which contain the probability distribution of
every latent dimension are shown in Figure 2.8.

Moreover, to investigate the influence of each latent parameter on specific airfoil charac-
teristics, a series of geometric properties are computed from the generated airfoils. These
include features such as maximum thickness, maximum camber, and other relevant shape
properties. The visualization in Figure 2.9 provides insights into how each latent param-
eter influences these specific airfoil properties. For example, Z3 appears to control the
maximum thickness of the airfoil, while Z4 mainly influences its maximum camber. Other
latent parameters such as Z5 and Z6 do not appear to have captured any airfoil features.

2.3 Research Questions

This MSc thesis will primarily focus on a comparative study of two types of machine
learning algorithms applied to the problem of airfoil shape optimization. As discussed
previously, Factorization Machine Quantum Annealing (FMQA) has shown potential as
an optimization method in many areas like metamaterials [8]. However, the documen-
tation available regarding its application to shape optimization is still limited. In this
context, Fixstars Amplify demo [10] provides a tutorial where a black-box airfoil opti-
mization problem is addressed. Based on this tutorial, this research work will investigate
the potential of FMQA in this optimization environment, in an attempt to expand the
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Figure 2.9: Effect of the latent parameters on the generated shape. Each parameter is
set to Zi = µi ± 2σi while the rest are kept at their mean values [2]

applicability of this algorithm.

On the other hand, reinforcement learning techniques has demonstrated a larger potential
on the topic of shape optimization. More specifically, Deep Reinforcement Learning has
been succesfully applied to this topic in [1]. However, in this research work, the focus will
be set on single-step Deep Reinforcement Learning, since its performance (the agent inter-
act only once per episode with the environment) can be related to black-box optimization,
the type of optimization found in the Fixstars Amplify tutorial [10]. Furthermore, this
thesis will integrate the sDRL approach into the Fixstars Amplify framework to explore
and compare these two algorithms.

2.3.1 Research Questions

In order to achieve the research objective, one can formulate several research questions
that will explore the possibilities of implementing FMQA and sDRL to the airfoil shape
optimization problem.

• How do Factorization Machine Quantum Annealing (FMQA) and single-step Deep
Reinforcement Learning (sDRL) compare in terms of performance and efficiency for
airfoil shape optimization, relative to a standard optimization method?

– What are the advantages and limitations of FMQA compared to sDRL in deal-
ing with complex aerodynamic design spaces?

– What are the computational trade-offs between FMQA and sDRL in terms of
convergence speed and stability?
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• How do FMQA and DRL perform when optimizing airfoil shapes across different
Reynolds number regimes?

• How does the choice of airfoil parameterization (Joukowski transformation, PAR-
SEC) influence the optimization performance of FMQA and DRL?

• To what extent does VAE-based airfoil parameterization improve aerodynamic op-
timization results compared to classical parameterization techniques?
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Chapter 3

Methodology

This chapter outlines the methodology used to address the airfoil shape optimization
problem, with the aim of answering the research questions identified in Chapter 2. Based
on the literature review, two machine learning algorithms (sDRL and FMQA) were selected
for comparison. The chapter begins with the description of the theoretical foundation and
implementation of the methods. Then, it details the computational setup, including the
simulation model used for simulations, parameterization schemes, and integration of the
optimization components. Finally, the experimental design is presented, introducing the
test scenarios that will be used to evaluate and compare the performance of the two
algorithms.

3.1 Description of the methods

This section presents the description of the the optimization methods used to address the
airfoil shape optimization problem explored in this research. Two machine learning algo-
rithms are considered: Policy-Based Optimization (PBO), a single-step Deep Reinforce-
ment Learning (sDRL) method, and Factorization Machine Quantum Annealing (FMQA).
The PBO method, introduced in [34], serves as the basis for implementing sDRL in this
study. FMQA is explored as an alternative black-box optimization strategy, building on
the theoretical background outlined in Chapter 2. In addition, the standard optimizer
used as a comparison against the machine learning models is presented.

The selection of Policy-Based Optimization (single-step Deep Reinforcement Learning)
and Factorization Machine Quantum Annealing (FMQA) is based on the findings of the
literature review in Chapter 2. Both methods are well-suited for black-box optimization,
where the objective function must be evaluated through simulations. Single-step DRL
(sDRL) has demonstrated strong performance in previous airfoil shape optimization stud-
ies, while FMQA represents a novel approach in this domain with promising potential.
By comparing these two methods, this research work aims to evaluate their strengths in
terms of efficiency and flexibility across varying design and flow conditions.

3.1.1 Policy-based Optimization (PBO)

In this subsection, the Policy-based Optimization (PBO) approach is described, which is
used in the computational setup to implement a form of single-step deep reinforcement
learning.
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Figure 3.1: Action loop for the PBO model [3]

Policy-based optimization (PBO) is a degenerate policy gradient reinforcement learning
(RL) algorithm that, as introduced in Chapter 2, suggests that it is enough to per-
form single-step episodes when the policy to be learned is state independent, that is,
πθ(s, a) ≡ πθ(a). The core idea of this algorithm is the following: while other policy gra-
dient algorithms aim to find the optimal parameters θ∗ such that following the policy πθ∗

maximizes the discounted cumulative reward over an entire episode, PBO instead looks
for the optimal parameters θ∗ such that a∗ = πθ∗(s0) maximizes the instantaneous reward.
Here, s0 is a fixed input (typically a constant vector) that is consistently fed to the agent.
The goal is for the optimal policy to eventually represent the best transformation from s0
to a∗. The agent begins with a random policy defined by its initial parameters θ0, after
what it is given only a single opportunity per episode at finding the optimal. This can
be shown in Figure 3.1, where the agent samples a population of actions from the current
policy. Then it is incentivized to update its parameters so that future action samples yield
higher rewards. A direct consequence of this setup is that PBO relies on policy networks
smaller than those typically used in standard deep reinforcement learning (DRL) frame-
works. Here, the agent does not need to learn a complex state-action relation, but only a
simple transformation from a fixed input state to a given action [3].

In practice, PBO samples actions from a probability density function. Specifically, a d-
dimensional multivariate normal distribution N (m,C) is used, where m is the mean vector
and C is the full covariance matrix. As illustrated in Figure 3.2, three separate neural
networks are employed to predict the necessary mean, standard deviation, and correla-
tion. The output layers of these networks use hyperbolic tangent and sigmoid activation
functions to constrain all values with appropriate ranges.

Once generated, the sampled actions are clipped to the interval [−1, 1]d to ensure that all
action components are within the valid range. Clipping is a simple truncation operation
where any values that exceed the bounds are set to the nearest limit. This approach
is preferred over using soft-limiting transfer functions such as hyperbolic tangent or soft
clipping, which in certain cases yield slow convergence and numerical instabilities. The
clipped actions are then mapped to their relevant physical ranges ap as shown in Figure 3.1.
Finally, stochastic gradient ascent on the policy parameters is performed using the Adam
algorithm [35], based on a modified loss function:
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Figure 3.2: Policy networks used in PBO to map states to policy [3]

L(θ) = Ea∼πθ

[
logπθ(a) R̂(a)

]
, with R̂(a) = max

(
r(a)− µr

σr
, 0

)
. (3.1)

where R̂(a) is the clipped normalized reward, µr is the reward average over the current
generation, and σr the standard deviation. Regarding the networks architecture and PBO
meta-parameters used in the simulations, all benchmarks cases discussed in Chapter 4
follow the same scheme listed in Table 3.1.

Table 3.1: Detail of the networks architecture and PBO meta-parameters. λr is the
learning rate, ng is the number of generations used for learning, ne is the number of
epochs, and nb is the number of mini-batches

m σ ρ

λr 5× 10−3 5× 10−3 1× 10−3

ng 1 8 16
ne 128 16 16
nb 1 4 8

Arch. [2, 2, 2] [2, 2, 2] [2, 2, 2]

In the description of the PBO approach found in [3], a series of simple minimization prob-
lems are outlined to exploit the optimization capabilities of the PBO algorithm. Based
on these optimization environments, new scenarios based on optimization problems for
airfoil shape optimization will be developed and further explained in section 3.2, where
the objective function to be optimized in the main scenario will be the lift-to-drag ratio,
as previously mentioned.

In order to train the PBO (sDRL) algorithm across the different airfoil optimization en-
vironments, a certain training configuration was followed. Each scenario is executed over
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50 generations, with 6 individuals evaluated per generation at the same time. As a result,
each experiment consists of 300 evaluations, and is repeated three times to account for
variability between runs and to provide a more robust assessment of the algorithm’s perfor-
mance. Each individual represents a unique set of airfoil design variables (proposed by the
policy) which are evaluated in the LBM solver to obtain the corresponding aerodynamic
objective, the lift-to-drag ratio in most cases.

3.1.2 Factorization Machine Quantum Annealing (FMQA)

As discussed in Chapter 2, the tutorial provided in [10] forms the basis of the method devel-
oped to address airfoil shape optimization via Factorization Machine Quantum Annealing
(FMQA). Similarly to the previous method, the tutorial presents a black-box optimization
approach, based on factorization machine and simulated annealing in this case. The pur-
pose of this would be to optimize an airfoil profile with a limited number of evaluations.
The goal of the optimization process is to maximize aerodynamic performance, expressed
as the ratio between the lift force L and drag force D acting on an airfoil situated in a
flow field:

rLD = L/D (3.2)

Regarding how the airfoil shape will be constructed, there are several methods which were
discussed in Chapter 2. More specifically, this tutorial applies the Joukowski transforma-
tion to generate the airfoil representation. By default, FMQA performs a minimization.
Therefore, the negative value of the lift-to-drag ratio rLD is considered the objective func-
tion, to maximize the value.

Moreover, airfoil shape optimization involves non-binary decision variables, in particular,
it uses integer-valued input variables. However, as discussed in Chapter 2, FMQA requires
the variables to be represented in binary form. Therefore, it is necessary to convert the
input variables into binary decision variables. As introduced in [31], a method for per-
forming this transformation is one-hot encoding. For this reason, the baseline program in
the Fixstars Amplify tutorial employs one-hot encoding for this purpose.

As mentioned above, this FMQA tutorial uses the Joukowski transform as a method to
construct the airfoil. In Chapter 2, the design parameters ξ0, η0 and α were defined as the
wing thickness, warping, and angle of attack, respectively. These parameters used for the
mapping are real numbers. However, this tutorial applies a discrete optimization, where
each parameter is selected from a finite number of candidates. This operation is called
integer indexing. The tutorial includes a function that allows to check the correspondence
between the integer indices used when generating the airfoil and the design parameter
values (ξ0, η0, α).

FMQA is interfaced with a fluid flow simulator based on the Lattice Boltzmann Method
(LBM), due to its computational cost and ease of setting boundary conditions. The choice
of LBM over a traditional CFD solver is made because of the high computational cost of
traditional CFD simulations. These models provide fast and reasonably accurate predic-
tions of aerodynamic performance. This allows optimization algorithms, such as FMQA,
to explore the design space more efficiently without calling a traditional CFD simulation,
reducing the overall computational expense.
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Under the default conditions set in the Fixstars Amplify tutorial, one simulation of the
flow around the airfoil takes approximately 20 seconds of computation time. Once the
simulation is complete, the visualization displays the flow velocity vectors (in black) and
the pressure force acting on the airfoil (in red), which represents the combined lift and
drag forces, as shown in Figure 3.3. The surrounding environment is colored to indicate
the vorticity distribution.

Figure 3.3: Example of the simulation of an airfoil in the Lattice Boltzmann Method
solver
The FMQA framework used in the Fixstars tutorial employs a second-order factorization
machine, implemented via the TorchFM class, to approximate the objective function. This
model is trained using supervised regression, where the input consists of binary-encoded
design variables, and the target is the lift-to-drag ratio obtained from the LBM simulation.
Training is carried out using the Adam optimizer, with the mean squared error as the loss
function. The number of training epochs is fixed, and the model is trained again from
scratch at each optimization step using all samples previously evaluated.

Once the model is trained, the next step would be to determine the binary input vector
that minimizes the predicted objective value. As discussed in Section 2.2.2, this is done
by transforming the model into a Quadratic Unconstrained Binary Optimization (QUBO)
problem, which is then passed to the Amplify AE solver provided by Fixstars. Then, the
solver gives a new candidate vector that is expected to minimize the objective (in this
case, minimize f(x) = −L/D). If the proposed solution has already been evaluated in a
previous iteration, it is discarded or slightly changed to ensure the diversity of candidate
solutions.

The candidate vector is then evaluated by constructing the corresponding airfoil shape
and simulating it using the LBM solver. The resulting objective value is added to the
dataset used to train the factorization machine. This process is repeated over multiple
cycles, allowing the factorization machine to progressively improve its approximation of
the objective function. In each cycle, the FMQA algorithm explores regions of the design
space that are predicted to provide high performance and also less-sampled areas, guided
by the predictions of the factorization machine.

At the start of the optimization process, a number of initial samples N0 are generated by
randomly sampling binary design vectors. These design variables are evaluated using the
LBM solver to generate the training dataset for the factorization machine. Once initialized,
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the main FMQA loop starts and is executed N cycles. In each cycle, the factorization
machine is trained again using all available data, by solving the corresponding QUBO
problem, and the resulting airfoil is evaluated using the LBM solver. The total number of
simulations performed during the complete optimization is therefore N0+N . The detailed
pseudocode for this FMQA optimization loop can be found in the original Fixstars Amplify
tutorial [10].

3.1.3 SciPy Optimization: Differential Evolution

Optimization experiments are also performed using the differential_evolution func-
tion from the scipy.optimize library in Python, providing a baseline comparison of the
machine learning algorithms with a standard optimizer. Differential Evolution is a stochas-
tic global optimization method that operates on a population of solutions. During each
iteration, new trial candidates are produced by mutating existing solutions through com-
binations with others in the population. [36]. This population-based approach increases
the probability of avoiding local minima, making it particularly suitable for airfoil shape
optimization problems.

In the context of this work, Differential Evolution was used to optimize the airfoil objective
functions under the same parameterization schemes and flow conditions as FMQA and
sDRL. The solver was configured with the following settings [37]:

res = differential_evolution(f, bounds, maxiter=10, popsize=2, tol=0.1)

• Objective function (f): the aerodynamic objective function defined for each opti-
mization case (lift-to-drag maximization, drag minimization, etc.)

• Bounds: the design variables limits that correspond to the selected parameterization
scheme (Joukowski, PARSEC or VAE).

• maxiter = 10: the maximum number of generations through which the entire popu-
lation is evolved. The maximum number of function evaluations is: (maxiter + 1)
× popsize × number of parameters.

• popsize = 2: a multiplier that determines the total population size. Since the default
population is (popsize × number of parameters), this configuration results in a
relatively small population, lowering computational costs.

• tol = 0.1. the relative tolerance for convergence. Optimization stops when the
population has converged within 10% relative tolerance.

These relatively conservative settings (low population size and small number of iterations)
were selected so that the computational cost was comparable with the machine learning
models while allowing the standard otpimizer to explore the design space. Given that
the number of design variables ranges from 9 to 12 (depending on whether PARSEC or
VAE-based parameterization is used), the total number of function evaluations would be
approximately 200-250, which is comparable to the number of evaluations used for FMQA
and sDRL.
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3.2 Computational Setup

The computational setup includes developing a program in Python to compare the algo-
rithms in airfoil optimization problems. In order to do that, the code available in Fixstars
Amplify [10] and discussed previously will be used as a reference. It presents a black-box
optimization of an airfoil geometry with fluid flow simulation, where FMQA is imple-
mented using the Fixstars Amplify platform. To create the airfoil geometry, the airfoil
generator class Joukowski.WingGenerator is applied, which is based on the Joukowski
transform. On the other hand, lbm.Solver models the fluid dynamics of the problem,
which uses a two-dimensional Lattice Boltzmann Method (LBM) as a solver. Lastly, it
is important to highlight the libraries PyTorch and Amplify, used to support the FMQA
optimization process. These will be adopted in the implementation of the new code when
applying FMQA.

On the other hand, the code available in GitHub [34], based on the paper [7], presents a
case of black-box optimization method based on single-step deep reinforcement learning.
As previously mentioned, this implementation employs Policy-Based Optimization (PBO)
as the reinforcement learning algorithm. Part of the computational setup involves inter-
facing the sDRL code with components from the FMQA tutorial, specifically using the
Lattice Boltzmann Method (LBM) solver from FMQA. This integration requires modifi-
cations to both the FMQA and sDRL codes to ensure compatibility in data representation
and objective function evaluation, which will be detailed in this section.

As mentioned in other sections, FMQA requires the design variables to be represented in
binary form. In the Fixstars Amplify tutorial [10], the design variables are chosen from a
discrete array and then converted into binary form using one-hot encoding to represent the
discrete choices in a format compatible with quantum annealing. In contrast, the sDRL
algorithm performs optimization using continuous design variables. Therefore, parts of the
original code must be adjusted to support continuous variables instead of discrete ones.
Specifically, the airfoil generator class Joukowski.WingGenerator should be modified so
that, instead of generating an array of discrete values between the minimum and maximum
limits and selecting a value by index, the continuous variable itself is passed directly to the
generate_wing function. This step significantly simplifies the implementation for sDRL,
as it eliminates the need to encode the design variables in binary form for compatibility
with the optimizer. Therefore, FMQA’s use of discrete variables is an inherent limitation
of the algorithm.

For most of the experimental campaign, the fluid flow simulator based on the Lattice
Boltzmann Method (lbm) will remain unchanged for both the FMQA and sDRL programs.
However, some modifications to accommodate the VAE-based parameterization and other
benchmark cases will be incorporated into the solver.

3.2.1 Objective Function

As defined in subsection 2.1.1, specifying an objective function is a necessary step when
performing optimization. This objective function should reflect the performance of the
system under study, in this case, the aerodynamic performance in airfoil shape optimiza-
tion. To obtain a computed value of aerodynamic performance, an airfoil must first be
constructed and then simulated under specified flow conditions. Therefore, referring to
Figure 3.4, the objective function should involve steps such as constructing the airfoil
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shape, running the simulation using the fluid flow simulator model, and computing the
objective value based on the simulation results.

Figure 3.4: Optimization loop

Constructing the Airfoil Shape

In this part of the code, the airfoil shape is constructed based on the design parameters
x (binary-coded variables in the case of FMQA, and continuous variables for sDRL). For
FMQA, the binary-coded variables must be decoded into array indices that correspond to
discrete values of the airfoil parameters. This decoding step is omitted in sDRL, as the
program directly operates with continuous (real) values.

There are different methods to construct an airfoil, as introduced in subsection 2.2.3. The
base program, based on the Fixstars Amplify tutorial [10], utilizes the Joukowski trans-
form representation, as described in subsection 3.1.2. In order to evaluate alternative
parameterization methods, the computational setup will be adapted to incorporate more
complex airfoil representations, which may lead to improved optimization results. This is
the case for PARSEC parameterization and VAE-based parameterization.

To optimize using the PARSEC parameterization, a new module PARSEC was implemented.
This module replicates the structure of the original Joukowski module used in the FMQA
tutorial, and includes the same core classes and functions, such as generate_wing and
draw, to maintain compatibility with the existing FMQA and sDRL implementations. The
PARSEC module internally solves the system of equation described in subsection 2.2.3 to
generate upper and lower surface coordinates based on 11 geometric design parameters.
In addition, the angle of attack was incorporated as a twelfth parameter, allowing the
generated airfoil shape to be rotated during the optimization process.

In addition to classical parameterizations (such as PARSEC, Joukowski), a VAE-based
method was implemented to generate airfoil shapes from a small set of latent parameters.
As already introduced in subsection 2.2.3, the VAE (variational autoencoder) is trained
on a dataset that contains 1619 airfoil data points, and learns to represent these shapes in
a low-dimensional vector. During optimization, either FMQA or sDRL proposes a latent
vector, which is then passed to the decoder of the VAE to reconstruct the corresponding
airfoil geometry.

To maintain consistency with the existing structure, a VAE module was created, following
the same interface as the Joukowski and PARSEC modules. This includes a generate_wing
function that enables integration with both optimization algorithms. As will be detailed
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in Chapter 4, the latent values are constrained within a safe range (between -1.5 and 1.5)
to ensure the airfoil shape remains realistic and out of numerical noise.

Figure 3.5: VAE architecture [2]
The VAE architecture used in this research work is shown in Figure 3.5. It consists of a
fully connected neural network, with an encoder that maps the input airfoil coordinates to
a low-dimensional latent vector, and a decoder that reconstructs the airfoil shape. Specif-
ically, the architecture contains four hidden layers with 196, 172, 172, and 143 neurons,
respectively. This structure is mirrored in both the encoder and decoder networks to en-
sure symmetry and stable reconstruction performance. Once trained, only the decoder is
used during optimization to generate airfoil shapes from latent vectors proposed by FMQA
and sDRL.

In summary, to understand better how these different parameterizations are used in this
research work, Table 3.2 presents a comparison between the three implemented methods.
Joukowski, PARSEC and VAE. Each approach encodes the airfoil geometry differently
and introduces trade-offs in terms of complexity, flexibility and integration with the opti-
mization algorithms.

Table 3.2: Comparison of airfoil parameterization methods.

Parameterization Type # Parameters Interpretability Flexibility

Joukowski Analytical 2 (+AoA) High Low
PARSEC Geometric 11 (+AoA) High Medium
VAE-based Data-driven 8 (+AoA) Low High

Joukowski and PARSEC are classical parameterization techniques rooted in physics, offer-
ing well-defined geometric interpretations. On the one hand, the Joukowski transformation
offers a simple and analytically defined airfoil shape controlled by only two design param-
eters (ξ0, η0). On the other hand, the PARSEC method allows for greater geometric
control through 11 parameters, including the leading-edge radius, trailing-edge angle, and
the location of maximum thickness.

In contrast, the VAE-based parameterization learns to represent airfoil shapes directly
from data, rather than relying on predefined geometric rules or equations. This results
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in a more flexible and expressive representation. However, as discussed in Section 2.2.3,
most parameters in the VAE’s latent space do not correspond to interpretable geometric
features (only two appear to influence the maximum thickness and camber of the airfoil).
Consequently, although the latent space is less intuitive than the classical methods, it
provides a smoother structure that can facilitate more efficient exploration during the
optimization process.

Running the Simulation Model

After the airfoil geometry is generated via a selected parameterization method, the simu-
lation is performed. A Lattice Boltzmann Method (LBM) solver is provided through the
lbm.Solver class, which simulates incompressible, two-dimensional laminar flow around
the airfoil. The solver takes the airfoil coordinates as input and runs a simulation of the
flow field under predefined boundary conditions. These conditions are described in Ta-
ble 3.3, which will later be modified to incorporate other Reynolds numbers.

Table 3.3: Simulation settings used in the Lattice Boltzmann Method solver.

Parameter Value

Grid resolution 400× 160
Time Steps 3000
Inlet velocity 0.1 (lattice units)
Kinematic viscosity 0.02 (lattice units)
Relaxation time (τ) 3 ∗ vis+ 0.5 = 0.56
Boundary conditions No-slip walls at top and bottom

Computing the Objective Value

Once the LBM simulation is complete, the results derived from the pressure and velocity
fields are used to compute the aerodynamic forces acting on the airfoil shape. Specifically,
the lift and drag forces are extracted from the surface pressure distribution, and these
are used to calculate the lift-to-drag ratio. This ratio serves as the primary objective in
most of the test cases performed in this research work. Additional performance metrics,
involving combinations of the lift and drag coefficients, are also considered and discussed
in Section 4.6.

How this objective is formulated within the optimization process depends on the nature
of each algorithm. Since FMQA is a minimization algorithm, the objective is expressed
as the negative of the lift-to-drag ratio. In contrast, in sDRL the agent is trained to
maximize the expected cumulative reward, so the lift-to-drag ratio is used directly as the
reward signal.

3.2.2 Integration of the Optimization Environment

The integration of the optimization environment differs significantly between the FMQA
and sDRL frameworks. These differences lie mainly in the architectural design of each
approach and in how the interaction between the optimizer, parameterization method,
and fluid flow simulator is managed. In the FMQA framework, the environment is imple-
mented such that the optimizer and objective function are defined within the same script.
The parameterization method and the LBM solver are implemented as separate modules,
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and they are directly called from the main program. This configuration ensures that all
components are located in a single place, facilitating their identification and accessibility.
However, it also means that any modification to the optimizer or the objective function
would modify the whole script.

In contrast, the sDRL implementation uses a separate environment defined independently
from the optimizer in order to handle the objective function. This environment includes
the airfoil construction, simulation, and reward calculation. As in the FMQA setup, the
parameterization method and the LBM solver are implemented externally and are called
within the environment when evaluating a candidate design. In this configuration, the
agent interacts with this environment by taking actions (providing different parameter
values) and receiving feedback in the form of a reward, which in most cases corresponds
to the lift-to-drag ratio. This separation between the environment and the learning al-
gorithm makes it easier to adapt the setup to different scenarios, such as changing the
parameterization method or modifying simulation parameters like the Reynolds number.

These differences reflect the design approaches typically used in each method: FMQA is
structured around a single evaluation loop, while sDRL relies on interaction between agent
and external environment.

3.3 Design of Numerical Experiments

The experiment phase will begin by evaluating the performance of FMQA and sDRL using
simple airfoil shapes generated via Joukowski parameterization. The primary objective in
this initial stage is to maximize the lift-to-drag ratio under controlled conditions. In later
phases, the focus will shift towards more complex aerodynamic objectives.

Once the initial tests have been performed, the study will transition to more complex
geometric representations, such as the PARSEC parameterization, which offer great flexi-
bility and accuracy in describing airfoil shapes. In addition to these conventional methods,
this project will incorporate a novel parameterization approach developed by K. Swannet
that utilizes variational autoencoders (VAEs), a class of neural networks known for their
proficiency in reducing dimensionality [2]. Based on the available literature, this will be
the first study interfacing this VAE-based parameterization with optimization algorithms
such as FMQA and sDRL.

To evaluate these parameterizations in a computationally efficient way, the experiments
will be conducted using a simulation model based on a Lattice Boltzmann Method (LBM)
solver, as previously mentioned. The solver simulates incompressible flow at a Reynolds
number of approximately 800 by default (considering the constructed airfoil as the simu-
lated shape), which represents moderate laminar flow conditions. To test across varying
Reynolds numbers, the viscosity is modified while keeping the inflow velocity low to ensure
that the Mach number remains below 0.1, mimicking incompressible flow behavior.

Another key parameter to vary is the angle of attack, to see how the algorithms adapt the
airfoil shape in response to a changing aerodynamic environment (caused by varying the
angle of attack). This variation allows the study to observe whether FMQA and sDRL
adjust design strategies effectively under different flow conditions, such as increased lift
or early flow separation. Other metrics such as the convergence and a comparison of the
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objective for the same number of iterations will be tested for both FMQA and sDRL, in
an attempt to decide which advantages one has over the other.

Therefore, to rigorously compare the performance of Factorization Machine Quantum An-
nealing (FMQA) and single-step Deep Reinforcement Learning (sDRL) in aerodynamic
shape optimization, a structured set of experiments was designed based on the logic de-
tailed above. The goal of these experiments is to assess not only the optimization quality,
but also the adaptability of each algorithm across different shape representations and flow
conditions.

Five main experiment types were conducted. In all cases, the results of FMQA and sDRL
are compared against a standard optimizer (differential_evolution from scipy.optimize),
unless otherwise specified.

1. Baseline Comparison
FMQA and sDRL are tested under the same conditions using Joukowski parameter-
ization to assess their baseline optimization behaviour.

2. Parameterization Sensitivity
The algorithms are evaluated using three shape parameterization schemes: Joukowski,
PARSEC, and VAE-based. This assessment enables the analysis of how each design
representation impacts performance.

3. Reynolds Number Variation
The Reynolds number is increased from its default value of 800 to 5000, in order to
study its effect on aerodynamic performance. To achieve this increase, the kinematic
viscosity is varied while keeping the inflow velocity constant.

4. Parametric Study: Angle of Attack
In other test scenarios, the angle of attack was treated as a design parameter. In this
experiment, however, it is fixed at specific values to assess its impact on aerodynamic
performance and to determine which angle yields the most favorable optimization
results for both FMQA and sDRL algorithms. For simplicity, only the machine
learning algorithms are considered here, omitting the standard optimizer.

5. Benchmark Cases
Additional aerodynamic objectives are explored to evaluate the capabilities of FMQA
and sDRL as optimization algorithms. First, an aerodynamic objective considering a
target lift coefficient and the drag coefficient is analysed. Then, another aerodynamic
objective is replicated from literature considering the drag coefficients at different
lift coefficient values.
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Chapter 4

Results and Discussion

This chapter presents the results of airfoil optimization experiments conducted using
single-step Deep Reinforcement Learning (sDRL) and Factorization Machine Quantum
Annealing (FMQA). The objective is to compare both algorithms in terms of performance,
efficiency and robustness across a range of different airfoil parameterizations (Joukowski,
PARSEC, and VAE-based), flow conditions (varying the Reynolds number) and opti-
mization objectives (maximizing the lift-to-drag ratio, targeting a specific lift coefficient,
etc). Performance is mainly evaluated through the obtained aerodynamic objective val-
ues, convergence behaviour and analysis of the optimized airfoil shapes. Moreover, the
performance of both algorithms is compared against a standard optimizer.

4.1 Baseline Comparison
This section presents a baseline comparison between FMQA and sDRL for the airfoil shape
optimization problem under the same default conditions. The objective is to assess the
performance of both algorithms when applied to a common aerodynamic target using a
fixed parameterization scheme. In this case, the Joukowski transformation is used to gen-
erate the airfoil shape, and the optimization objective is to maximize the lift-to-drag ratio
(L/D) under the default simulation settings described in Table 3.3. Based on the inlet
velocity, kinematic viscosity, and a reference airfoil shape, the corresponding Reynolds
number for this configuration is approximately 800.

The design space for this experiment is defined by the three parameters of the Joukowski
transformation: ξ0, η0, and α. These variables control key geometric characteristics of the
airfoil, such as the wing thickness, camber, and angle of attack, respectively. To ensure
realistic and aerodynamically feasible designs, the parameters are constrained within the
ranges ξ0 ∈ [1.0, 10.0], η0 ∈ [0.0, 10.0], and α ∈ [0.0◦, 40.0◦]. A summary of these param-
eter bounds is provided in Table 4.1. These limits were applied consistently across all
experiments conducted with FMQA and sDRL, ensuring that both algorithms operated
within the same feasible design region.

Table 4.1: Limits of the design parameters in Joukowski transformation

Parameter Minimum Value Maximum Value
ξ0 1.0 10.0
η0 0.0 10.0

α (◦) 0.0 40.0
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FMQA is run with N0 = 50 initial randomly generated training samples and a total of
N = 100 objective function evaluations, corresponding to 50 optimization cycles. In con-
trast, sDRL is executed over 50 generations with 6 individuals per generation, resulting
in a total of 300 evaluations. To allow a fair comparison between the two algorithms, the
sDRL results are initially truncated to the first 100 evaluations, as shown in Figure 4.3.
Performance is evaluated on the basis of convergence behavior, final objective function
values, and the resulting optimized airfoil shapes.

Figure 4.1 shows the optimization history of the FMQA run under the defined baseline
conditions. The initial training samples are shown in blue, while the evaluations from the
optimization cycles are shown in red. The history reveals that the minimum value of the
objective function, defined as f(x) = −L/D, reaches approximately −4.0. The progression
of the evaluations during the optimization phase appears stochastic, with little evidence
of a consistent convergence trend. Although the results of the optimization cycle show
an improvement over the initial training data, FMQA does not exhibit a clearly directed
optimization trajectory. Nevertheless, it successfully identified an optimal solution early
in the optimization phase.

Figure 4.1: Optimization history of FMQA using the Joukowski transformation (N0 =
50, N = 100).

Once the optimization process is completed, FMQA returns the set of design parameters
that minimize the objective function. The resulting airfoil shape, constructed using these
parameters, is shown in Figure 4.2. The airfoil exhibits low camber (appearing nearly
symmetric), reduced thickness, and an orientation of approximately 10 degrees. There-
fore, this thin, symmetric geometry is associated with an improved lift-to-drag (L/D) ratio
under the given flow conditions.
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Figure 4.2: Airfoil obtained with FMQA using the Joukowski transformation (N0 = 50,
N = 100).

These characteristics suggest that the optimizer tends to favor shapes that reduce drag,
which is typical in flows with low Reynolds numbers. Under these conditions, flow sepa-
ration and higher viscous losses may occur in airfoils with too much camber or thickness.
The resulting shape makes sense for this flow regime, since keeping the airfoil thin and
nearly symmetric can help reduce drag without making the flow separate too easily.

Moving on to the sDRL experiment, it is important to note that the algorithm was run
for a total of 300 evaluations. However, to enable a fair comparison with FMQA, only the
first 100 evaluations are shown in Figure 4.3. Unlike FMQA, sDRL performs training and
optimization simultaneously, which means there is no clear distinction between an initial
training phase and the subsequent optimization steps.

The optimization history displays a behaviour similar to that observed with FMQA: the
minimum objective function value again reaches approximately −4.0, and the progression
of evaluations appears stochastic, as seen in Figure 4.3. Once more, the optimal solution
is identified early in the optimization process (around the 40th evaluation).

Figure 4.3: sDRL optimization history (first 100 evaluations) for baseline comparison
with FMQA
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On the other hand, Figure 4.4 shows the optimization history of sDRL plotted in terms
of generations. As mentioned previously, each generation consists of 6 individuals, cor-
responding to 6 objective function evaluations. For each generation, both the average
objective value and the best value among the individuals are computed. In the plot, the
average value per generation is shown in red, while the best evaluation per generation is
shown in blue.

The best value curve indicates that the optimal solution was reached within the first 10
generations, with a minimum objective value of approximately f(x) = −4.0. This corre-
sponds to the minimum found in Figure 4.3. However, the average values do not converge
to this optimum over the 50 generations. Although a downward trend is observed, it is
not sufficient to be considered converged. This behavior confirms the stochastic nature of
the optimization process already observed in the previous figure.

Figure 4.4: Optimization history of sDRL using the Joukowski transformation.

Regarding the optimized airfoil shape, the result obtained by sDRL is shown in Figure 4.5,
plotted alongside the initial airfoil used by the algorithm. In the sDRL experiments, op-
timization begins from a fixed initial airfoil shape derived from the policys first action,
which enables a direct comparison between the initial and optimized designs. In con-
trast, FMQA explores the design space through random sampling of discrete parameter
combinations and does not rely on a predefined starting point. For this reason, a similar
initial-to-final shape comparison is not applicable in the FMQA case.

Returning to Figure 4.5, it is evident how the airfoil shape evolved throughout the sDRL
generations. The most notable change is a reduction in overall thickness. Similar to the
optimized shape obtained by FMQA, the airfoil exhibits very low camber (η0 = 0.764),
being almost a symmetric airfoil. Additionally, the orientation of the airfoil has shifted
slightly toward a less inclined profile compared to the initial design, with the final angle
of attack being approximately 10 degrees.

35



MSc Thesis

Figure 4.5: Airfoil obtained with sDRL using the Joukowski transformation (initial vs.
optimized)

To sum up, FMQA and sDRL performed similarly in this initial baseline comparison. Both
algorithms identified an optimum of approximately f(x) = −L/D = −4.0 reached around
the 40th evaluation (corresponding to the 40th optimization cycle in the case of FMQA).
Regarding the airfoil shapes, the resulting geometries exhibit comparable characteristics,
with the airfoil optimized by FMQA being slightly thinner than the one obtained through
sDRL.

Besides the comparison between both machine learning algorithms, an additional optimiza-
tion using the differential_evolution algorithm from SciPy is performed to validate
the results. Figure 4.6 shows the resulting airfoil, which is slightly thicker and more cam-
bered compared to the previously optimized geometries.

Figure 4.6: Airfoil obtained with SciPy using the Joukowski transformation

Table 4.2 summarizes the optimized design parameters along with their respective lift-to-
drag ratios for FMQA, sDRL, and the SciPy optimizer. Both machine learning algorithms
achieve higher L/D values compared to standard optimization, with sDRL achieving the
highest overall. These results will be compared in Section 4.2 to see whether using the
PARSEC parameterization gives similar outcomes or leads to better results in both algo-
rithms.
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Table 4.2: Optimized values of the design parameters in the Joukowski transformation
and the corresponding objective function values.

FMQA sDRL SciPy
ξ0 1.0 1.954 3.593
η0 0.0 0.764 2.888

α (◦) 11.0 10.2 11.74
L/D 3.959 4.085 3.392

4.2 Parameterization Sensitivity: PARSEC

This section explores the effect of using a different parameterization scheme, PARSEC,
on the performance of the algorithms in the context of airfoil shape optimization. While
the previous experiments were based on the Joukowski transformation, PARSEC provides
a more flexible and descriptive way to define an airfoil shape using a set of geometric
parameters, such as leading edge radius, trailing edge angle, and curvature control points.

The aim of this experiment is to evaluate how each algorithm performs when the parame-
terization scheme is changed, and whether the use of PARSEC parameterization can lead
to improved optimization results. The algorithms are applied under the same simulation
conditions as in the baseline comparison, with the only modification being the parame-
terization type. As before, the results are compared in terms of convergence behaviour,
optimized objective values and the characteristics of the resulting airfoil shapes.

The design space in this case is defined by 11 geometric parameters, including the angle
of attack. For a detailed description of these parameters, refer to Section 2.2.3. As before,
to ensure aerodynamically feasible airfoil designs, the parameters are constrained within
defined ranges, as shown in Table 4.3. The angle of attack is also included as a design
variable, with bounds set to α ∈ [0.0◦, 40.0◦]. Both FMQA and sDRL used these param-
eter limits during the optimization process.

Table 4.3: Limits of the PARSEC Airfoil Parameters in the FMQA and sDRL code.

Parameter Minimum Value Maximum Value
rle 0.005 0.00938
xup 0.36 0.45
zup 0.045 0.057

zxx,up -0.555 -0.26
xlo 0.3 0.56
zlo -0.058 -0.04

zxx,lo 0.28 1.1
zte -0.02 -0.009
∆zte 0.005 0.0082
αte (◦) -7.44 -4.58
βte (◦) 5.72 16.6

In this experiment, FMQA is run with N0 = 30 initial randomly generated training sam-
ples and a total of N = 60 objective function evaluations. This configuration was selected
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instead of the previously used N0 = 50, N = 100 setup, as it led to better optimization
results in preliminary testing. sDRL, on the other hand, is again executed over 50 gener-
ations with 6 individuals per generation, resulting in a total of 300 evaluations.

Figure 4.7: Optimization history of FMQA using PARSEC parameterization (N0 = 30,
N = 60)

Figure 4.7 shows the optimization history of the FMQA run using the PARSEC param-
eterization. The objective function, defined as f(x) = −L/D, reaches a minimum value
of approximately −3.5 to −4. The evaluations during the optimization cycles show ran-
dom variation, without a clear trend towards convergence. Still, they generally produce
better values than the initial training data. Interestingly, several of the best performing
candidates are discovered early in the process, indicating that FMQA is able to identify
promising solutions within the first few optimization cycles.

Figure 4.8: Airfoil obtained with FMQA using PARSEC parameterization (N0 = 30,
N = 60).

The FMQA algorithm returns an optimal candidate that minimizes the objective function
once the optimization cycles are completed. The resulting airfoil, plotted in Figure 4.8,
shows a more complex shape compared to the one obtained using the Joukowski trans-
formation. The thickness appears relatively constant up to the mid-chord, after which it
gradually decreases towards the trailing edge. The orientation is similar to the previously
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computed airfoil, with an angle of attack of around 10 degrees. It can be considered a
relatively thin airfoil; however, compared to the airfoil shown in Figure 4.2, the thinness
of the PARSEC shape is barely noticeable.

Figure 4.9: Optimization history of sDRL using PARSEC parameterization.
Regarding the sDRL case, Figure 4.9 shows the evolution of the objective function through-
out the 50 generations of the optimization process. The best value curve indicates that
a minimum is reached after approximately 5 generations, with a value between −3.5 and
−4. This suggests that the optimum was found early in the optimization process. In
contrast to previous experiments, the average value curve shows a clear downward trend
over the generations, gradually approaching the minimum during the final stages. This
may indicate partial convergence, although the curve does not completely flatten. This be-
haviour marks a difference in the optimization process, as earlier results (particularly those
using the Joukowski transform) showed stochastic trends with no clear sign of convergence.

Figure 4.10: Airfoil obtained with sDRL using PARSEC parameterization (initial vs.
optimized).
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The resulting airfoil obtained from the sDRL optimization using PARSEC parameteriza-
tion is shown in Figure 4.10, compared to the initial best individual identified during the
optimization process. Comparing both shapes, there is a noticeable but slight change in
orientation from the initial to the optimized airfoil. Overall, the geometry does not largely
change, with the optimized airfoil appearing slightly thinner near the trailing edge. The
shape closely resembles the one obtained from the FMQA optimization, with only minor
geometric variations. Once again, while these airfoils may appear slightly thicker than
those obtained using the Joukowski transformation, they still fall within the range of thin
airfoil geometries.

Overall, both FMQA and sDRL produced similar results in terms of the optimized lift-
to-drag ratio and the resulting airfoil shape. The optimal objective value was found to
be between −3.5 and −4 and the final airfoil geometries are comparable in their main
characteristics. In terms of convergence, sDRL demonstrated a more stable trend, with
the average values approaching the optimum.

Figure 4.11: Airfoil obtained with SciPy using PARSEC parameterization

Similarly to the previous experiment, an extra optimization was performed using the
differential_evolution algorithm from SciPy in order to assess whether the machine
learning algorithms improve the aerodynamic objective. The resulting optimized geom-
etry is shown in Figure 4.11, exhibiting a slightly thinner leading edge compared to the
previous airfoil shapes.

Table 4.4: Optimized values of the design parameters in PARSEC parameterization and
the corresponding objective function values.

FMQA sDRL SciPy
rle 0.009 0.006 0.0077
xup 0.41 0.44 0.38
zup 0.047 0.045 0.048

zxx,up -0.47 -0.32 -0.44
xlo 0.37 0.38 0.46
zlo -0.044 -0.053 -0.042

zxx,lo 0.57 0.96 0.87
zte -0.019 -0.016 -0.012
∆zte 0.005 0.005 0.0076
αte (◦) -6.96 -5.63 -6.00
βte (◦) 9.89 15.73 13.79
α (◦) 9.00 11.21 9.78
L/D 3.783 3.828 3.869
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Table 4.4 shows the optimized design variables together with the optimized lift-to-drag
ratios, for both the machine learning algorithms and the standard optimizer. Unlike the
baseline comparison, the SciPy optimizer appears to slightly outperform FMQA and sDRL
in terms of the aerodynamic objective.

Compared to the baseline comparison using the Joukowski transformation, the optimal
objective values obtained with the PARSEC parameterization were slightly lower (except
for the SciPy optimizer), as shown in Table 4.5. However, this difference is not large.
sDRL appears to produce the best results under both parameterization schemes when
compared to FMQA. The resulting airfoil shapes using PARSEC parameterization can
also be classified as thin airfoils, although they appear slightly thicker than those obtained
using the Joukowski parameterization. These findings suggest that while the selection of
parameterization slightly affects the optimization results, the algorithms are capable of
producing high performing airfoil designs under different shape definitions.

Table 4.5: Optimum of f(x) for the different parameterization schemes

Parameterization FMQA (L/D) sDRL (L/D) SciPy (L/D)
Joukowski 3.959 4.085 3.392
PARSEC 3.783 3.828 3.869

4.3 Reynolds Number Variation

This section investigates the effect of varying the Reynolds number on the performance
of FMQA and sDRL in the context of airfoil shape optimization. Although the previous
experiments were conducted at a default Reynolds number of approximately 800, changing
this parameter allows assessing how each algorithm adapts to different flow regimes. To
solve the optimization problem at different Reynolds numbers, it is necessary to modify
one of the variables that defines it. The Reynolds number is defined as:

Re =
UL

ν
(4.1)

where U is the inflow velocity, L the characteristic length and ν the kinematic viscos-
ity. These variables were assigned specific values in the default configuration of the LBM
solver: the airfoil shape had a characteristic length of L = 160 lattice units, the inflow
velocity was set to U = 0.1 lattice units, and the kinematic viscosity was ν = 0.02 lattice
units.

To increase the Reynolds number, either the inflow velocity or the kinematic viscosity
must be modified. However, increasing the inflow velocity can degrade the accuracy of the
Lattice Boltzmann Method (LBM) solver. This is because the solver assumes a low Mach
number for accurate simulation of near-incompressible flows, defined by:

Ma =
U

cs
≪ 1 (4.2)

where cs is the lattice speed of sound. In order to maintain a low Mach number, it is
preferable to keep the inflow velocity at or below U = 0.1.

For these reasons, the kinematic viscosity was chosen as the variable to adjust. Since it is
inversely proportional to the Reynolds number, it was calculated directly by rearranging
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the formula ν = UL
Re . In this research work, the Reynolds number is increased to values

between Re = 1000 and Re = 5000. However, setting the Reynolds number too high may
lead to numerical instability in the LBM solver, resulting in overflow errors or non-physical
values such as NaNs.

Another important consideration is the orientation of the airfoil, specifically maintaining
the angle of attack in the range α ∈ [0.0◦, 10.0◦]. At higher angles, especially when com-
bined with high Reynolds numbers, the flow tends to separate from the airfoil surface,
generating strong vortices and nonlinearities that the solver may not be able to capture
accurately. The LBM solver is best suited for smooth, laminar flows, and becomes unsta-
ble in the presence of large gradients or separated flow regions. In this experiment, the
PARSEC parameterization is used due to its greater geometric flexibility, which allows
for more detailed airfoil shapes that may be better suited for flow conditions at higher
Reynolds numbers. In particular, a Reynolds number of 5000 is considered, representing
the upper limit tested within the stability constraints of the LBM solver.

In this case, the FMQA algorithm is run with N0 = 150 and N = 300, since this con-
figuration resulted in a better optimum. Increasing the number of evaluations allows the
algorithm to explore the design space more thoroughly, which can lead to improved per-
formance. Additionally, using 300 objective function evaluations matches the total used
by sDRL over 50 generations, allowing for a fair comparison between both methods. Fig-
ure 4.12 shows the optimization history of the FMQA run at a Reynolds number of 5000
using the PARSEC parameterization, with the configuration described in the previous
paragraph. The objective function reaches a value of approximately f(x) = −7.0 early in
the optimization process. However, the evaluations during the optimization cycles exhibit
stochastic behaviour, with limited improvement compared to the initial training data. As
a result, no clear convergence trend is observed. Still, the FMQA algorithm manages to
identify high-performing candidates early in the process.

Figure 4.12: Optimization history of FMQA using PARSEC parameterization and Re =
5000 (N0 = 150, N = 300)
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Figure 4.13: Airfoil obtained with FMQA using PARSEC parameterization and Re =
5000 (N0 = 150,N = 300).

Regarding the optimized airfoil obtained from this optimization process, the resulting
shape is shown in Figure 4.13. The mean camber line is noticeably curved, indicating
a positive camber, which is typically associated with increased lift at low to moderate
angles of attack. The leading edge is rounded and smooth, facilitating flow attachment
and reducing the risk of separation. Towards the trailing edge, the airfoil tapers into a
thin, sharp profile, which is desirable to minimize wake and drag. The overall geometry
resembles the optimized airfoil obtained in the previous section (shown in Figure 4.8),
suggesting that a similar shape may remain effective under different Reynolds number
conditions.

Figure 4.14: Optimization history of sDRL using PARSEC parameterization and Re =
5000.

Moving on to the sDRL experiment at a Reynolds number of 5000, Figure 4.14 shows the
corresponding optimization history, represented by the best performing individual and the
average objective value plotted per each generation. The best value curve indicates that
the algorithm reaches approximately f(x) = −7.0 between the 10th and 20th generations,
improving to around f(x) = −7.5 after the 40th generation. This result is slightly bet-
ter than the optimum obtained with FMQA. Meanwhile, the average value curve does
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not fully converge to the optimum but shows a gradual downward trend, improving from
around f(x) = −4.0 to approximately f(x) = −6.0 over the optimization process.

Figure 4.15: Airfoil obtained with sDRL using PARSEC parameterization and Re =
5000 (initial vs. optimized).

In Figure 4.15, a comparison between the initial and optimized airfoil shapes from the
sDRL experiment is shown. Visually, the optimized shape exhibits only minor differences,
including a slightly higher angle of attack and a more pronounced curvature on the up-
per surface. The thickness and trailing edge appear quite similar to the initial design.
Compared to the FMQA optimized shape, this geometry appears slightly thicker near the
trailing edge, with a more uniform thickness distribution along the chord.

To sum up, FMQA and sDRL produced both similar and distinct results. In terms of
convergence, both algorithms exhibited stochastic behaviour over the optimization process.
However, sDRL showed a slight downward trend in the average values, indicating a more
consistent progression towards the optimum. Regarding other metrics, sDRL improved
the optimized objective value by approximately 6.97% compared to FMQA, as shown in
Table 4.6. Both resulting airfoils can again be classified as thin, with the sDRL optimized
shape appearing slightly thicker near the trailing edge. For reference, Figure 4.16 shows
the optimized geometry obtained with the SciPy, which closely resembles the one obtained
with FMQA.

Figure 4.16: Airfoil obtained with SciPy using PARSEC parameterization and Re =
5000.

Table 4.6 shows the optimized design variables and the optimized aerodynamic objectives
for the algorithms using PARSEC parameterization with Re = 5000. In this case, the
objective value obtained with the SciPy optimizer is lower than those achieved by the
machine learning algorithms. As discussed before, sDRL provides the highest lift-to-drag
ratio.
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Table 4.6: Optimized values of the design parameters in PARSEC parameterization and
the corresponding objective function values (Re = 5000).

FMQA sDRL SciPy
rle 0.008 0.0081 0.0067
xup 0.40 0.37 0.44
zup 0.057 0.053 0.047

zxx,up -0.36 -0.28 -0.34
xlo 0.45 0.55 0.34
zlo -0.043 -0.045 -0.042

zxx,lo 0.59 0.37 0.61
zte -0.010 -0.011 -0.018
∆zte 0.008 0.008 0.0067
αte (◦) -5.69 -7.29 -6.89
βte (◦) 9.25 7.13 6.83
α (◦) 8.00 6.23 6.72
L/D 7.157 7.656 7.010

Table 4.7 shows the comparison between the results obtained in Section 4.2 at a Reynolds
number of 800 and those achieved at a Reynolds number of 5000. The results indicate that
increasing the Reynolds number leads to improved aerodynamic performance, reflected by
higher lift-to-drag ratios. Since the kinematic viscosity was reduced to achieve a higher
Reynolds number, viscous effects became less dominant in the flow simulation. This re-
duction in viscous effects results in lower drag, thereby increasing the lift-to-drag ratio.
The optimized values at Re = 5000 are nearly double those at Re = 800, with sDRL
achieving the best performance between the two machine learning algorithms.

Table 4.7: Optimum of f(x) for the different Reynolds number using PARSEC parame-
terization

Reynolds FMQA (L/D) sDRL (L/D) SciPy (L/D)
800 3.783 3.838 3.869
5000 7.157 7.656 7.010

4.4 Parameterization Sensitivity: VAE-based

In this section, the impact of using a novel parameterization scheme is investigated for
both FMQA and sDRL. The selected scheme is a VAE-based parameterization, a machine
learning approach proposed by K. Swannet [2], which was introduced in Section 2.2.3. The
architecture of the VAE was described in detail in Subsection 3.2.1. The goal is to com-
pare the results with those obtained in the previously studied cases and assess whether the
VAE-based parameterization improves aerodynamic optimization performance compared
to classical representation techniques.

The design space in this case is defined by the latent variables of the VAE, which are used
to construct the airfoil shape. To ensure the generation of realistic and aerodynamically
feasible geometries, these latent variables are constrained within the range [−1.5, 1.5], as
summarized in Table 4.8. In this experiment a Reynolds number of 5000 is selected, since
the previous section demonstrated that higher Reynolds numbers lead to a noticeable
improvement in the lift-to-drag ratio. The angle of attack is also kept below 10 degrees to
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prevent flow separation and other instabilities that may arise at higher Reynolds numbers.

Table 4.8: Limits of the latent variables in VAE-based parameterization

Latent Variables Minimum Value Maximum Value
z0 z1 z2 z3 z4 z5 z6 z7 −1.5 1.5

After testing different configurations, FMQA performed best with N0 = 50 and N = 100
evaluations in terms of aerodynamic results. Figure 4.17 shows the optimization history
of the FMQA algorithm using the VAE-based parameterization. Overall, the optimization
displays stochastic behaviour, with only the last 20 evaluations showing a slight conver-
gence, oscillating between values f(x) = −6 to f(x) = −8. The best candidate is identified
around the middle of the optimization process, with a value exceeding than f(x) = −8.

Figure 4.17: Optimization history of FMQA using VAE-based parameterization and
Re = 5000 (N0 = 50, N = 100)

The best latent variables from FMQA optimization with VAE-based parameterization
were used to generate the airfoil shown in Figure 4.18. Generally speaking, the resulting
shape appears relatively thin overall, with the maximum thickness located approximately
at the mid-chord. It also counts with slight positive camber (looking almost symmetric)
and a smooth, rounded leading edge that supports attached flow. The airfoil also tapers
gradually towards the back, forming a thin trailing edge that helps to reduce pressure drag
and supports smoother wake behaviour. Overall, this airfoil seems to be well suited for
low drag. Compared to the airfoils obtained in previous sections, this design is almost as
thin as those generated using the Joukowski transformation and noticeably thinner than
those optimized using the PARSEC parameterization.
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Figure 4.18: Airfoil obtained with FMQA using VAE-based parameterization and Re =
5000 (N0 = 50, N = 100).

On the other hand, Figure 4.19 shows the optimization history of sDRL using VAE-based
parameterization. The best value curve indicates that the optimum is reached after ap-
proximately the 10th generation (corresponding to 60 objective function evaluations), with
a value lower than f(x) = −8.5. Additionally, the average value curve shows a convergence
trend towards the optimum, gradually flattening at a value slightly above the minimum.

Figure 4.19: Optimization history of sDRL using VAE-based parameterization and Re =
5000.

Throughout the optimization process, the airfoil shape evolved towards a thinner con-
figuration, as shown in Figure 4.20. The leading edge remains mostly unchanged, while
the rest of the chord exhibits a reduction in thickness. In addition, the optimized shape
shows a slightly reduced camber, and the trailing edge is sharper and more tapered. A
small irregularity can be observed on the upper surface near mid-chord. This irregular-
ity is likely a consequence of the VAE-based parameterization rather than an intentional
aerodynamic feature. In general, the optimization process resulted in a shape typically
associated with improved aerodynamic efficiency. Compared to the shape obtained with
FMQA, the sDRL optimized shape maintains similar thinness.
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Figure 4.20: Airfoil obtained with sDRL using VAE-based parameterization and Re =
5000 (initial vs. optimized).
In summary, sDRL exhibited a clear convergence trend, whereas FMQA showed more
stochastic behaviour during the optimization process. Both optimized airfoils exhibited
geometric features associated with good aerodynamic performance. For reference, the
geometry obtained with the SciPy optimizer is shown in Figure 4.21, achieving a shape
similar to that of the sDRL case, including a geometric irregularity around the midchord.

Figure 4.21: Airfoil obtained with SciPy using VAE-based parameterization and Re =
5000.
Table 4.9 show the optimized variables together with the optimized objective values for
FMQA, sDRL and the SciPy optimizer. Among the three optimization processes, sDRL
achieves the highest lift-to-drag ratio, followed by SciPy and then FMQA. Therefore, in
this case, only one of the machine learning algorithms outperforms the standard optimizer.

Table 4.9: Optimized values of the design parameters in VAE-based parameterization
and the corresponding objective function values.

FMQA sDRL SciPy
z0 -1.05 -1.15 -1.48
z1 1.42 1.20 0.83
z2 1.05 1.50 1.50
z3 -1.50 -1.50 -1.38
z4 0.22 0.28 0.28
z5 -0.45 -0.11 -0.85
z6 0.15 1.13 -0.92
z7 -0.60 -0.35 -0.52

α (◦) 5.75 7.08 7.24
L/D 8.556 9.022 8.649
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In order to determine whether VAE-based airfoil parameterization improves aerodynamic
optimization results compared to classical techniques, it is compared with the results ob-
tained with PARSEC parameterization at Re = 5000, shown in Table 4.10. The results
indicate that the algorithms performed better when using the VAE-based parameteri-
zation, with higher lift-to-drag ratios. Although the VAE occasionally produces small
geometric irregularities, it allows the discovery of airfoil shapes with better aerodynamic
performance. Therefore, under the simulated conditions, the comparison supports that
VAE-based parameterization leads to improved aerodynamic optimization outcomes.

Table 4.10: Optimum of f(x) for the different parameterization schemes for Re = 5000

Parameterization FMQA (L/D) sDRL (L/D) SciPy (L/D)
PARSEC 7.157 7.656 7.010

VAE-based 8.556 9.022 8.649

4.5 Parametric Study: Angle of Attack

In this section, a parametric study is conducted to investigate the effect of the angle of
attack on aerodynamic performance. In the previous sections, the angle of attack was
included as one of the design variables during the optimization process. However, the
impact of this parameter on the lift-to-drag ratio was not explicitly analyzed. By isolat-
ing this parameter and varying it while performing shape optimization, this study aims to
better understand how changes in the angle of attack influence the aerodynamic behaviour.

This study is carried out under the same flow simulation conditions used in previous
experiments, specifically a Reynolds number of 5000, and the type of airfoil representa-
tion would be VAE-based parameterization. These settings were chosen because of their
demonstrated ability to produce high performing airfoils in earlier sections.

Five discrete angles of attack were selected to have an accurate representation from α = 0◦

to α = 12◦, with increments of 3◦ (that is, α = 0◦, 3◦, 6◦, 9◦, and 12◦). For each fixed angle
of attack, the optimization process was carried out independently to identify the optimal
airfoil shape that corresponds to that specific orientation. The assessment includes a com-
parison of the resulting airfoil geometries and the associated lift-to-drag ratios obtained
from each optimization run, for both FMQA and sDRL. For simplicity, this study only
considers machine learning algorithms, omitting the SciPy comparison. Furthermore, a
detailed analysis of the optimization history is excluded here in order to emphasize the
aerodynamic results (see Appendix A for details).

Figure 4.22 illustrates the optimized airfoil shapes obtained using FMQA at five different
angles of attack (α = 0◦, 3◦, 6◦, 9◦, 12◦) under a Reynolds number of 5000 using VAE-
based parameterization. Across the range of angles, all the airfoils share a generally thin
and streamlined geometry with smooth leading edges and sharp trailing edges.

Interestingly, optimized airfoils at α = 0◦ and α = 3◦ exhibit higher camber than those
optimized at higher angles of attack. This result suggests that, at lower angles of attack,
the optimizer compensates for the lack of incidence by increasing the camber to enhance
lift generation. At higher angles of attack, the shape can rely more on the geometric
orientation to generate lift, allowing for less-cambered profiles.
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Although higher camber increases lift at low angles, it may also lead to increased drag or
reduced aerodynamic efficiency at higher incidence. Therefore, the optimizer appears to
reduce camber at higher angles to maintain a good lift-to-drag ratio and avoid the penal-
ties associated with excessive curvature. The comparison of the lift-to-drag ratios obtained
from the optimization at different angles will be discussed at the end of the section.

Regarding other aerodynamic features, as the angle of attack increases, the optimized
airfoils tend to show minor changes in thickness distribution and variations in the trailing
edge orientation. Overall, the FMQA optimization combined with the VAE-based param-
eterization demonstrates the ability to adapt the airfoil shape to different aerodynamic
regimes, maintaining smooth and aerodynamically efficient geometries across a range of
angles of attack.

(a) α = 0◦

(b) α = 3◦

(c) α = 6◦

(d) α = 9◦

Figure 4.22: Parametric study of the angle of attack with VAE-based parameterization.
FMQA airfoils
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(e) α = 12◦

Figure 4.22: Parametric study of the angle of attack with VAE-based parameterization.
FMQA airfoils.

On the other hand, Figure 4.23 shows the optimized airfoil shapes obtained using sDRL
at the same five angles of attack and under the same conditions as those used for the
FMQA based optimization. Similarly to the previous case, all resulting shapes fall into
the category of thin airfoils with smooth leading edges. In particular, the airfoils at α = 9◦

and α = 12◦ appear slightly thicker at the leading edge compared to those optimized at
lower angles of attack.

The same camber trend observed at lower angles of attack in the FMQA optimized air-
foils is also identified in the sDRL results, with airfoils optimized at lower angles showing
greater camber than those optimized at higher angles of attack. Again, this suggests that
a higher camber may be a favorable design feature for improving lift generation at low
angles of attack.

In general, both algorithms produced very similar optimized airfoils, with only minor vari-
ations in thickness distribution along the chord, all characteristic of thin airfoil shapes.

(a) α = 0◦

(b) α = 3◦

Figure 4.23: Parametric study of the angle of attack with VAE-based parameterization.
sDRL airfoils.
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(c) α = 6◦

(d) α = 9◦

(e) α = 12◦

Figure 4.23: Parametric study of the angle of attack with VAE-based parameterization.
sDRL airfoils.
Regarding the obtained lift-to-drag ratios at each angle of attack, Table 4.11 presents a
comparison between the FMQA and sDRL algorithms. The results indicate that both
algorithms produce very similar L/D values across all angles, demonstrating comparable
optimization performance under the specified conditions. Both algorithms achieve their
highest lift-to-drag ratio at α = 6◦, with sDRL showing slightly superior performance. For
the rest of the angles, this algorithm also slightly outperforms FMQA by a small margin.
Despite these minor differences, the results suggest that both algorithms are well-suited
for this task.

Table 4.11: Optimum of f(x) at the different angles of attack for VAE parameterization
and Re = 5000

α(◦) FMQA (rLD = L/D) sDRL (rLD = L/D)
0.00 5.312 5.3389
3.00 8.0258 8.5650
6.00 8.7351 8.9042
9.00 8.2277 8.5329
12.00 7.0682 7.0208

52



MSc Thesis

4.6 Benchmark Cases

In this section, other benchmark cases beyond the lift-to-drag ratio optimization are as-
sessed to further evaluate the performance of the algorithms. Specifically, a new aerody-
namic optimization problem is formulated, where the objective function includes a target
lift coefficient while simultaneously trying to minimize the drag coefficient of the airfoil
shape. Then, Drela’s optimization problem [38] is introduced, with some modifications to
align it with the type of simulations supported by the Lattice Boltzmann Method (LBM)
solver.

4.6.1 New Aerodynamic Objective: Target Lift Coefficient

In this subsection, a new aerodynamic optimization problem is designed to evaluate per-
formance under multiple criteria. The objective function, defined in Equation 4.3, incor-
porates both a target lift coefficient and the drag coefficient of the airfoil. The goal is to
minimize the resulting cost function, balancing lift generation with drag reduction.

Minimize f(x) ≡ β · (CLtarget − CL)
2 + C2

D (4.3)

where β = 10 and CLtarget = 0.8. The design variables include both the airfoil shape
parameters and the angle of attack. The simulations are performed at a Reynolds number
of 5000. The algorithms will be evaluated under two parameterization schemes: PARSEC
and VAE-based. Consequently, this experiment also serves to assess whether VAE-based
parameterization improves aerodynamic optimization results when evaluated under a dif-
ferent objective than the lift-to-drag ratio.

The analysis begins with a discussion of the convergence behavior and the optimized airfoil
geometries obtained from each parameterization scheme and algorithm. At the end of the
section, a comparison of the optimized objective values is presented to assess the overall
performance of both FMQA and sDRL under each parameterization, including their com-
parison with the SciPy optimizer.

PARSEC parameterization

First, the performance of FMQA and sDRL will be evaluated using the PARSEC parame-
terization under the new aerodynamic objective. In this case, FMQA is run with N0 = 50
and N = 100. Figure 4.24 presents the corresponding optimization history under the de-
fined conditions. At first glance, the algorithm appears to improve the training data over
the course of the optimization cycles, displaying an overall positive convergence trend,
despite a few less favorable evaluations scattered throughout the process. In addition,
the optimization history suggests that the optimum was identified early in the process.
This optimum has a value close to zero, meaning that the FMQA algorithm successfully
identified an airfoil shape that satisfies the target lift coefficient of CL = 0.8 while also
minimizing drag.
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Figure 4.24: Optimization history of FMQA (N0 = 50, N = 100) with PARSEC param-
eterization and Re = 5000 for the new objective.
The corresponding airfoil shape obtained with FMQA and PARSEC parameterization
is shown in Figure 4.25. It presents a relatively thin airfoil (slightly thicker than other
PARSEC derived airfoils) characterized by a smooth, rounded geometry. The thickness is
evenly distributed along the chord, with a trailing edge that tapers gradually towards the
end.

Figure 4.25: Airfoil obtained with FMQA (N0 = 50, N = 100) with PARSEC parame-
terization and Re = 5000 for the new objective.
In addition, the camber of the airfoil shape is moderate with a maximum located around
the mid-chord. The smooth curvature and the absence of sharp edges suggest that the
shape is ideal for maintaining attached, laminar flow across most of the surface, which is
desirable under the given conditions. All in all, it appears that airfoil is well-suited for
the given task of achieving a certain lift coefficient while minimizing drag, something also
shown by the optimization history.

Moving on to the sDRL optimization, Figure 4.26 shows the optimization history of sDRL
with PARSEC parameterization and its progression over evaluations. The figure presents
a clear improvement in the objective function, demonstrating the ability of the algorithm
to explore and exploit the design space effectively. Within the first 20 generations, the
average value curve seems to gradually approach the best value curve, showing a positive
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convergence trend. After this phase, the average value curve begins to flatten towards the
optimum, suggesting that the search process has entered a phase of fine-tuning around
high performing designs. Again, the fact that the optimum is close to zero demonstrates
the ability of the algorithm to find a shape that reaches the target lift coefficient while
minimizing drag.

Figure 4.26: Optimization history of sDRL with PARSEC parameterization and Re =
5000 for the new objective

The airfoil obtained through the sDRL optimization with PARSEC parameterization is
illustrated in Figure 4.27. Compared to the optimized airfoil obtained with FMQA, this
shape appears slightly thinner and has a more pointed leading edge. Regarding other
aerodynamic features such as the trailing edge, the sDRL airfoil seems sharper and thinner
than the FMQA airfoil, which could help reduce pressure drag but may also make it more
sensitive to flow separation or instability. Overall, the sDRL shape appears more aggressive
in its design, whereas the FMQA algorithm presents a smoother geometry. The optimized
objective function values will be discussed at the end of the subsection together with those
obtained using VAE-based parameterization.

Figure 4.27: Airfoil obtained with sDRL with PARSEC parameterization and Re = 5000
for the new objective
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Similarly to the previous experiments, an extra comparison with an standard optimizer
(differential_evolution from SciPy) is performed to validate the results. Figure 4.28
illustrates the geometry obtained with the SciPy optimizer. The resulting shape is a thin
airfoil, closely resembling the characteristics of the one achieved with FMQA. At the end
of the subsection, the optimized objective value obtained with the standard optimizer will
be discussed for both parameterization schemes.

Figure 4.28: Airfoil obtained with SciPy with PARSEC parameterization and Re = 5000
for the new objective

VAE-based parameterization

After evaluating PARSEC parameterization, the use of VAE-based parameterization is
also analyzed for both algorithms under this new objective. FMQA is run again with
N0 = 50 and N = 100. Figure 4.29 shows the optimization history of this algorithm
with VAE-based parameterization and Re = 5000. The convergence behavior is similar to
that observed in the previous case, showing an overall positive trend. Although some less
favorable evaluations appear throughout the optimization cycles, most of the predictions
are around the optimum. This optimum appears again to be close to zero, demonstrating
the ability of the FMQA algorithm to reach the target lift coefficient while minimizing
drag.

Figure 4.29: Optimization history of FMQA (N0 = 50, N = 100) with VAE-based
parameterization and Re = 5000 for the new objective
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Figure 4.30 shows the optimized airfoil from FMQA optimization with VAE-based param-
eterization. The resultant shape shows a cambered airfoil with a smooth and rounded
leading edge. It appears noticeably thicker near the leading edge compared to other opti-
mized airfoils, which may contribute to improved flow stability. The trailing edge is sharp
and clean, as expected to reduce wake and pressure drag.

Figure 4.30: Airfoil obtained with FMQA (N0 = 50, N = 100) with VAE-based param-
eterization and Re = 5000 for the new objective

On the other hand, Figure 4.31 shows the optimization history of sDRL with VAE-based
parameterization for this new objective. The figure shows a clear downward trend in the
objective function across generations. Within the first 10-20 generations, the average value
curve converges toward the best value curve, indicating a positive convergence trend in the
algorithm. Near optimal values are achieved around generation 10. The final objective
values approach zero, demonstrating the algorithms capability to satisfy the target lift
coefficient while simultaneously minimizing the drag coefficient.

Figure 4.31: Optimization history of sDRL with VAE-based parameterization and Re =
5000 for the new objective

The optimized shape obtained from the previous optimization process is shown in Fig-
ure 4.32. It corresponds to a cambered airfoil with a smooth and rounded leading edge.
Additionally, the airfoil shape appears to be thinner than the optimized airfoil obtained
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with FQMA, especially near the leading edge. The trailing edge in this case appears
slightly sharper and thinner in comparison, a feature typically associated with reduced
wake and pressure drag.

Figure 4.32: Airfoil obtained with sDRL with VAE-based parameterization and Re =
5000 for the new objective

For comparison with the standard optimizer, Figure 4.33 shows the geometry achieved
with differential_evolution algorithm from SciPy. The airfoil resembles the FMQA
optimized geometry in camber and overall shape but exhibits a thinner thickness distri-
bution. It is nearly as thin as the sDRL optimized geometry, although with a slightly
thicker leading edge. The optimized objective value will be discussed below together with
the machine learning results.

Figure 4.33: Airfoil obtained with SciPy with VAE-based parameterization and Re =
5000 for the new objective

The optimized objective values for the new aerodynamic objective are presented in Ta-
ble 4.12, categorized by parameterization method and optimization algorithm. Broadly
speaking, both FMQA and sDRL successfully met the new objective across parameter-
ization methods: achieving the target lift coefficient while minimizing the drag coeffi-
cient. However, upon closer examination, the VAE-based parameterization appears to
have achieved lower objective values compared to the PARSEC parameterization for both
algorithms, indicating a more effective minimization of the objective. Therefore, this nu-
merical experiment corroborates the idea that using VAE-based parameterization results
in improved aerodynamic optimization performance.

Table 4.12: Optimum of f(x) for the different parameterization schemes for Re = 5000

Parameterization FMQA (f(x)) sDRL (f(x)) SciPy (f(x))
PARSEC 0.04215 0.05053 0.03449

VAE-based 0.02243 0.01207 0.01262

Regarding algorithmic performance, FMQA achieved better results when using the PAR-
SEC parameterization, whereas sDRL obtained a lower objective value with the VAE-based
parameterization. This suggests that each algorithm performed best within a different pa-
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rameterization scheme. Compared to the standard optimizer, SciPy outperformed both
FMQA and sDRL under PARSEC parameterization. With the VAE-based parameteriza-
tion, the SciPy results fall between those of FMQA and sDRL, with sDRL achieving the
best overall performance. For details on the optimized design parameters, see Appendix B.

4.6.2 Drela’s Optimization Problem

Other benchmark cases, such as Drela’s optimization problem [38], are analyzed in this
subsection. As can be seen below, a 6-point weighted optimization problem is defined,
where the drag coefficient CD is optimized at 6 different fixed lift coefficients CL with
the shape parameters Si and angle of attack α as design variables. Some modifications
were introduced to the original objective function defined by Drela. Since the LBM solver
simulates laminar flow at low Reynolds numbers, achieving shapes with a lift coefficient
of CL = 1.6 was a difficult task. Therefore, instead of evaluating the drag coefficient at
lift values CL = [0.8, ..., 1.6], the interval was adjusted to CL = [0.8, ..., 1.4] to better suit
the limitations of the simulation setup.

Minimize: F ({Si}, α) ≡
5

45
CD|CL=0.8 +

6

45
CD|CL=1.0 +

7

45
CD|CL=1.1

+
8

45
CD|CL=1.2 +

9

45
CD|CL=1.3 +

10

45
CD|CL=1.4

Subject to: CM ≥ −0.133

(
t

c

)
0.33c

≥ 0.128

(
t

c

)
0.90c

≥ 0.014

CL = [0.8, 1.0, 1.1, 1.2, 1.3, 1.4]

The optimization problem is subject to aerodynamic and geometric constraints on the
pitching moment coefficient, the thickness-to-chord ratio at x/c = 0.33 and x/c = 0.90,
and the lift coefficient. These constraints are enforced by adding penalties to the objective
function whenever the design fails to meet the required conditions. Regarding other simu-
lation conditions, a Reynolds number of 1000 was selected to remain within the stable and
accurate operating range of the LBM solver. Additionally, VAE-based parameterization
was selected as the parameterization scheme. To compute the drag coefficient values, a
lift-drag polar is constructed by simulating the airfoil at different angles of attack. The
drag coefficients are then interpolated or extrapolated to estimate CD at the desired lift
values CL, and the optimization objective is computed for each candidate accordingly.

In this numerical experiment, the algorithms are compared in terms of performance and
convergence behavior, the optimized objective value, and the resulting airfoil shapes, in-
cluding a final comparison with the standard optimizer. FMQA is run this time N0 = 100
and N = 200. Figure 4.34 shows the optimization history of this algorithm for Drela’s
optimization problem at the defined simulation conditions. The initial training data ex-
plores a wide range of the design space, including candidates that violate the constraints.
In such cases, penalties are applied to the objective function, resulting in values exceeding
1. During the optimization cycles, most candidate designs satisfy the constraints, with
only a few evaluations exceeding the limits. Overall, the optimization results show clear
improvement over the initial training data, with most candidates from the optimization
cycles achieving objective values below 1. This indicates a positive convergence trend in
the algorithm, despite a small number of evaluations that violate the constraints.

59



MSc Thesis

Figure 4.34: Optimization history of FMQA (N0 = 100, N = 200) with VAE-based
parameterization and Re = 1000 for Drela’s optimization problem.

On the other hand, Figure 4.35 presents the optimized airfoil shape obtained by the FMQA
algorithm for Drela’s optimization problem. The geometry shows moderate thickness near
the leading edge and a relatively thin trailing edge. The profile also shows high camber,
with the upper surface being considerably more convex than the lower surface. Compared
to other optimized airfoils obtained in this MSc thesis, this geometry has a more distinctive
form, resembling the DAE-11 airfoil presented in [38], but with some geometric variations.

Figure 4.35: Airfoil obtained with FMQA (N0 = 100, N = 200) with VAE-based pa-
rameterization and Re = 1000 for Drela’s optimization problem.

Moving on to the optimization performed by sDRL, Figure 4.36 shows the optimization
history of this algorithm under the defined conditions for Drela’s optimization problem.
Overall, the algorithm demonstrates good performance, with only the first generations
containing individuals that slightly violate the constraints. After approximately the 20th
generation, the average value curve converges to the best value curve, indicating a positive
convergence trend. Compared to FMQA, sDRL identifies a greater number of candidates
that satisfy the constraint ranges. As noted, convergence of the objective function is
achieved after the 20th generation, corresponding to approximately 120 evaluations.
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Figure 4.36: Optimization history of sDRL with VAE-based parameterization and Re =
1000 for Drela’s optimization problem.

The resulting airfoil shape from the previous optimization process is shown in Figure 4.37.
The geometry generated from the optimal parameters obtained by sDRL exhibits moderate
thickness, with the maximum thickness located forward of the mid-chord. The airfoil also
displays high camber and a sharp trailing edge. These geometric characteristics are similar
to those of the FMQA optimized airfoil. However, in this case, the sDRL optimized airfoil
shows smoother leading and trailing edges, as well as a more gradual thickness transition
compared to the FMQA result.

Figure 4.37: Airfoil obtained with sDRL with VAE-based parameterization and Re =
1000 for Drela’s optimization problem.

Finally, the performance and results of FMQA and sDRL are compared with a standard op-
timizer. Figure 4.38 shows the optimized geometry obtained with the differential_evolution
algorithm from SciPy. The resulting airfoil resembles the geometries achieved with FMQA
and sDRL. In this case, the lower surface appears flatter than in the sDRL optimized air-
foil, whereas the thickness distribution is slightly greater from mid-chord towards the
trailing edge. The objective value achieved with SciPy optimization will be compared
with the results of FMQA and sDRL at the end of the subsection.
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Figure 4.38: Airfoil obtained with SciPy with VAE-based parameterization and Re =
1000 for Drela’s optimization problem.
To summarize, Table 4.13 presents the optimized objective values obtained by the machine
learning algorithms and the standard optimizer for Drela’s optimization problem. The al-
gorithms successfully minimized the drag coefficient across the six different lift coefficients.
However, the objective value is slightly lower in the case of sDRL. Specifically, the objec-
tive value obtained by sDRL is 8.85% lower than the one achieved by FMQA, indicating a
slight improvement in optimization performance. Compared with the standard optimizer,
sDRL also outperformed SciPy, whereas FMQA achieved a slightly higher objective value
than SciPy, suggesting that the classical optimizer achieved a deeper minimization in this
case.

Table 4.13: Optimum of f(x) for Drela’s optimization problem

Parameterization FMQA (f(x)) sDRL (f(x)) SciPy (f(x))
VAE-based 0.44426 0.40497 0.4156

Overall, sDRL outperformed FMQA in this optimization problem. Although FMQA
demonstrated strong performance during the optimization process, with a clear positive
convergence trend, the results obtained by sDRL were slightly better. The algorithm
identified candidates within the constraints ranges and converged to a lower minimum ob-
jective value. Furthermore, the sDRL optimized airfoil showed a geometry more favorable
for low drag performance, with smoother leading and trailing edges. Regarding the com-
parison with SciPy, the standard optimization provided a useful baseline, outperforming
FMQA but not surpassing sDRL.
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Conclusions

The main objective of this MSc thesis was to explore and compare the FMQA and sDRL al-
gorithms for airfoil shape optimization. For this purpose, a series of numerical experiments
were conducted to assess their performance, convergence behaviour, optimized objective
values, and the resulting airfoil geometries. This section presents the conclusions drawn
from these experiments, highlighting the strengths and limitations of each algorithm in
the tested scenarios through the different research questions.

The research was structured around four main research questions, presented below.

- How do Factorization Machine Quantum Annealing (FMQA) and single-step
Deep Reinforcement Learning (sDRL) compare in terms of performance and
efficiency for airfoil shape optimization, relative to a standard optimization
method?

Performance and efficiency of FMQA and sDRL were assessed primarily by the aerody-
namic objective values, their convergence behaviour, and the characteristics of the opti-
mized airfoil shapes. Besides a comparison between both machine learning algorithms,
FMQA and sDRL were compared against a standard optimizer from SciPy (differential
evolution) to validate their capabilities.

Across the numerical experiments, sDRL generally outperformed FMQA in terms of op-
timized objective values, with only a few exceptions. In terms of convergence, both al-
gorithms showed both stochastic behaviour and positive convergence trends, depending
on the numerical experiment. FMQA often displayed stochastic fluctuations with less
clear convergence trends in the first baseline comparisons, whereas sDRL showed a more
consistent progression, particularly in cases with higher Reynolds numbers and advanced
parameterization schemes. In the benchmark cases, both algorithms showed clear conver-
gence trends.

The resulting airfoil shapes from both FMQA and sDRL displayed good aerodynamic
properties, with only minor differences in thickness distribution and camber. The use of
different airfoil parameterizations was reflected in the diversity of airfoil geometries.

When compared to the standard optimizer, both FMQA and sDRL produced competitive
results. In some cases, SciPy outperformed the machine learning algorithms, while in oth-
ers, especially with sDRL, the ML based approaches identified slightly better optimization
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candidates. This suggests that while classical optimizers remain effective for airfoil design,
machine learning algorithms (particularly sDRL) offer the potential to deliver improved
results in certain scenarios.

Advantages and Limitations

• FMQA demonstrated flexibility and was especially effective when coupled with ad-
vanced parameterizations such as the VAE-based scheme. However, its convergence
behaviour was often more stochastic and less stable.

• sDRL generally showed clearer convergence trends and achieved slightly better re-
sults in most numerical experiments, although it did not always outperform FMQA
in every case.

Computational trade-offs

Both FMQA and sDRL were similarly demanding in terms of computational cost, with
each simulation typically requiring approximately 75 - 90 minutes. The main distinction
was observed in their convergence behaviour: sDRL generally exhibited smoother conver-
gence trends, whereas FMQA was more stochastic and less stable.

- How do FMQA and DRL perform when optimizing airfoil shapes across dif-
ferent Reynolds number regimes?

When the Reynolds number was increased from 800 to 5000, both FMQA and sDRL
achieved significant improvements in aerodynamic performance, with lift-to-drag ratios
nearly doubling. Both algorithms adapted to the new regime, but sDRL again demon-
strated a clearer convergence trend and achieved a slightly higher optimized value (around
7% better than FMQA). The optimized airfoil shapes remained thin across both regimes.
These results indicate that both algorithms are capable of handling changes in flow regime
within the limits of the LBM solver. The increase in Reynolds number primarily improved
aerodynamic performance rather than altering the overall optimization dynamics.

- How does the choice of airfoil parameterization (Joukowski transformation,
PARSEC) influence the optimization performance of FMQA and DRL?

The parameterization scheme had a noticeable impact on some aspects of the optimiza-
tion results. With the Joukowski transformation, both algorithms produced very thin
airfoils and achieved similar objective values, with sDRL slightly outperforming FMQA.
With PARSEC parameterization, the optimized shapes became thicker, the convergence
improved (especially for sDRL), and both algorithms found high quality designs. However,
these geometric differences did not translate into higher aerodynamic performance, as the
objective values obtained with PARSEC were comparable to (or slightly lower than) those
achieved with Joukowski.

Therefore, the choice of parameterization strongly influences the type of geometries ex-
plored during optimization, but does not necessarily guarantee improved aerodynamic
results. While this was the case for the classical schemes explored here, the following re-
search question shows that the VAE-based parameterization can lead to different outcomes.
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- To what extent does VAE-based airfoil parameterization improve aerody-
namic optimization results compared to classical parameterization techniques?

The VAE-based parameterization significantly enhanced optimization results compared to
classical methods (Joukowski and PARSEC). Both FMQA and sDRL displayed clearer
convergence behaviour under this scheme, and the resulting airfoil geometries exhibited
aerodynamic features that led to higher lift-to-drag ratios, although minor geometric ir-
regularities were observed in a few cases. Benchmark cases further reinforced the advan-
tages of the VAE approach, as it produced lower objective values compared to PARSEC
in multi-objective optimization scenarios. In general, VAE parameterization improved
aerodynamic performance and demonstrated great potential as a powerful alternative to
classical schemes in airfoil optimization.

With all the explored cases, this MSc thesis extends the application of FMQA and sDRL in
the context of airfoil shape optimization, demonstrating their capabilities through a series
of optimization problems covering different aerodynamic objectives, flow regimes, and pa-
rameterization schemes. The research objective was achieved by assessing and comparing
their performance across multiple numerical airfoil shape optimization cases, using both
classical and VAE-based parameterizations, and always relative to a standard optimizer
baseline. This work highlights the potential of FMQA and sDRL as flexible and competi-
tive optimization strategies for practical aerodynamic design problems, while showing that
in certain scenarios they can even outperform classical optimizers (particularly in the case
of sDRL). Overall, the thesis provides a foundation for their application to more complex
and computationally demanding scenarios.
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Recommendations for Future
Work

While the results of this study demonstrated the capabilities of FMQA and sDRL for airfoil
shape optimization across a range of aerodynamic objectives, parameterization schemes,
and flow regimes, several opportunities remain open for further research and development.
This work also represents one of the first attempts to integrate VAE-based parameteriza-
tion within optimization algorithms such as FMQA and sDRL, highlighting its potential
and the need for further investigation into its applicability and performance in more com-
plex aerodynamic design scenarios. Building on the results of this work, several directions
can be explored to further advance the applications of FMQA and sDRL in aerodynamic
shape optimization:

Integration with higher-fidelity solvers
This work made use of a low-fidelity solver based on the Lattice Boltzmann Method (LBM)
due to its computational cost and ease of setting boundary conditions. Future research
could extend the optimization problems to more complex higher-fidelity solvers to assess
the performance of the algorithms under more realistic aerodynamic conditions, including
the effects of turbulent flows.

3D aerodynamic shape optimization
The results presented in this MSc thesis were based on 2D airfoil shapes to evaluate the
aerodynamic objectives of the optimization problems, chosen for their ease of application
and simplicity. Future work could extend this approach to 3D geometries to better reflect
practical aerodynamic design challenges.

Multi-objective optimization
This MSc thesis considered individual aerodynamic optimization objectives to evaluate the
capabilities of FMQA and sDRL. Future research could adapt these algorithms to handle
multiple objectives simultaneously, such as maximizing the lift-to-drag ratio while mini-
mizing the pitching moment, to assess their performance in more complex and realistic
design scenarios.

Extension of VAE-based parameterization to more complex problems
This work demonstrated that using VAE-based parameterization in the presented op-
timization problems led to improved aerodynamic performance. Future research could
build on this approach by applying VAE-based parameterization to more complex aero-
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dynamic optimization problems. Potential extensions include three-dimensional configu-
rations, higher Reynolds number flows, and multi-objective design frameworks, enabling
a broader and more comprehensive comparison with classical parameterization schemes.

Experimental validation
In order to complement the numerical findings, future work could involve validating the
optimized airfoil shapes through wind tunnel experiments or high-fidelity CFD simulations.
Such validation would help confirm the results obtained with FMQA and sDRL and assess
their robustness beyond the simulated conditions used in this work.
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Appendix A

Additional Results Parametric
Study

A.1 FMQA Optimization History

(a) α = 0◦ (b) α = 3◦

(c) α = 6◦ (d) α = 9◦

Figure A.1: Optimization history of FMQA for the parametric study of the angle of
attack with VAE-based parameterization.
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(e) α = 12◦

Figure A.1: Optimization history of FMQA for the parametric study of the angle of
attack with VAE-based parameterization.

A.2 Optimized Design Variables

Table A.1: Optimized values of the design parameters in VAE-based parameterization
and the corresponding objective function values (α = 0.00◦).

FMQA sDRL
z0 -0.60 0.36
z1 1.35 1.40
z2 0.90 0.73
z3 -1.50 -1.50
z4 1.20 1.24
z5 0.30 -0.84
z6 -0.38 1.50
z7 -0.69 -1.21

L/D 5.313 5.339

Table A.2: Optimized values of the design parameters in VAE-based parameterization
and the corresponding objective function values (α = 3.00◦).

FMQA sDRL
z0 -0.98 -0.22
z1 0.53 1.35
z2 0.67 0.71
z3 -1.50 -1.50
z4 1.35 1.50
z5 -0.38 -1.10
z6 -0.90 1.07
z7 1.20 -0.76

L/D 8.023 8.565
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Table A.3: Optimized values of the design parameters in VAE-based parameterization
and the corresponding objective function values (α = 6.00◦).

FMQA sDRL
z0 -0.67 -0.64
z1 1.35 1.33
z2 1.20 0.61
z3 -1.50 -1.48
z4 0.83 0.50
z5 -0.08 -1.22
z6 -0.38 0.75
z7 -0.67 -0.56

L/D 8.735 8.904

Table A.4: Optimized values of the design parameters in VAE-based parameterization
and the corresponding objective function values (α = 9.00◦).

FMQA sDRL
z0 -0.98 0.24
z1 0.53 1.37
z2 0.22 -0.42
z3 -1.27 -1.40
z4 0.60 1.00
z5 -1.12 -0.40
z6 -0.15 0.19
z7 -1.27 -0.44

L/D 8.228 8.533

Table A.5: Optimized values of the design parameters in VAE-based parameterization
and the corresponding objective function values (α = 12.00◦).

FMQA sDRL
z0 1.05 0.74
z1 1.35 1.43
z2 0.00 1.50
z3 -1.50 -1.45
z4 1.28 1.00
z5 -0.08 -0.95
z6 -0.30 1.11
z7 -0.60 0.24

L/D 7.068 7.021
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Appendix B

Additional Results Benchmark
Cases

B.1 Target Lift Coefficient

B.1.1 PARSEC: Optimized Design Variables

Table B.1: Optimized values of the design parameters in PARSEC parameterization and
the corresponding objective function values.

FMQA sDRL SciPy
rle 0.009 0.0089 0.0075
xup 0.40 0.37 0.43
zup 0.054 0.048 0.055

zxx,up -0.38 -0.49 -0.52
xlo 0.43 0.38 0.33
zlo -0.053 -0.044 -0.054

zxx,lo 0.77 1.08 0.55
zte -0.011 -0.020 -0.010
∆zte 0.006 0.0081 0.0082
αte (◦) -6.23 -4.71 -6.70
βte (◦) 6.79 11.39 12.66
α (◦) 9.00 10.00 9.97
f(x) 0.04215 0.05053 0.03449
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B.1.2 VAE: Optimized Design Variables

Table B.2: Optimized values of the design parameters in VAE-based parameterization
and the corresponding objective function values.

FMQA sDRL SciPy
z0 -0.82 1.50 1.15
z1 -0.75 1.47 0.06
z2 -0.30 1.01 0.60
z3 0.22 -1.33 -0.84
z4 1.28 1.23 0.75
z5 -0.15 -1.15 -1.05
z6 -0.52 0.44 1.07
z7 0.97 -1.49 1.40

α (◦) 9.25 10.00 9.11
f(x) 0.02243 0.01207 0.01262

B.2 Drela’s Optimization Problem

B.2.1 Optimized Design Variables
Table B.3: Optimized values of the design parameters in VAE-based parameterization
and the corresponding objective function values.

FMQA sDRL SciPy
z0 -1.20 -0.55 0.24
z1 0.90 1.38 0.92
z2 1.42 -1.00 1.40
z3 0.75 0.61 0.67
z4 0.97 1.31 1.39
z5 1.35 -0.25 1.34
z6 1.35 1.36 -1.02
z7 -0.15 -1.47 -1.49

f(x) 0.4442 0.4050 0.4156

75


	Abstract
	Acknowledgments
	List of Figures
	List of Tables
	Nomenclature
	Introduction
	Literature Study
	Background
	Optimization Problem - Definition
	Gradient-based vs Gradient-free methods
	Neural networks

	Algorithms in Airfoil Shape Optimization
	Deep Reinforcement Learning (DRL)
	Factorization Machine Quantum Annealing (FMQA)
	Airfoil Design Represention

	Research Questions
	Research Questions


	Methodology
	Description of the methods
	Policy-based Optimization (PBO)
	Factorization Machine Quantum Annealing (FMQA)
	SciPy Optimization: Differential Evolution

	Computational Setup
	Objective Function
	Integration of the Optimization Environment

	Design of Numerical Experiments

	Results and Discussion
	Baseline Comparison
	Parameterization Sensitivity: PARSEC
	Reynolds Number Variation
	Parameterization Sensitivity: VAE-based
	Parametric Study: Angle of Attack
	Benchmark Cases
	New Aerodynamic Objective: Target Lift Coefficient
	Drela's Optimization Problem


	Conclusions
	Recommendations for Future Work
	Bibliography
	Additional Results Parametric Study
	FMQA Optimization History
	Optimized Design Variables

	Additional Results Benchmark Cases
	Target Lift Coefficient
	PARSEC: Optimized Design Variables
	VAE: Optimized Design Variables

	Drela's Optimization Problem
	Optimized Design Variables



