
Building façade renovation through parametric
panel generation for Dutch housing

By T.R.L. Pluimers

Msc. Graduation Thesis
Building Technology

June 2021

Thijmen Pluimers 2

Title:
Building façade renovation through parametric panel generation for Dutch housing.

Author:
Ing. T.R.L. (Thijmen) Pluimers
Student nummer: 4992032

Mentors:
Dr. ing. T (Thaleia) Konstantinou MSc
Product Innovation
T.Konstantinou@tudelft.nl

Dr. M. (Michela) Turrin
Design informatics
M.Turrin@tudelft.nl

Thijmen Pluimers2 3

Preface
This thesis is the concluding piece of the Building Technology study master at the faculty of Architecture
at the Delft University of Technology. The research described in this paper covers the last 9 months of the
master program and is the graduation work of my masters.

During my studies façade has always interest since starting my master an interest in parametric has grown
and this topic allowed me to use both while also working on a current problem in the building industry. Which
is the need to renovate more than 1000 houses every day in order for them to be heated with electricity and
disconnect all houses from the natural gas supply.

The research has been a great way of learning more about the scripting and coding aspect as well as the
façade design for renovation. And although with the current Corona situation I learned and enhanced the
skill I wanted to.

I would like to thank my mentors Thaleia Konstantinou and Michela Turrin for their guidance and support
through this process. They helped me sharpen the thesis it’s methodology and understood my ideas before
I could even properly communicate them. Furthermore, I would like to thank Hans Hoogenboom for helping
me with the process of transferring my initial ideas to Python code.

Abstract
The Dutch government has set the goal to disconnect all houses from the natural gas network that runs
through our country. This to decrease emissions and meet the goals set in the Paris Agreement in an effort to
halt the global mean temperature increase. To provide heat to the houses they will need to be heated with
electric energy. This heating system is most efficient using lower temperatures therefore the houses will need
to have a building envelope which has the right insulation levels. Meaning that a lot of older houses will need
to be insulated better and therefore renovated. To reach this goal more than a 1000 house will need to be
renovated every day. Ranging from small addition of insulation to houses that have no insulation at all.

To provide this solution this thesis researched the possibility of using parametric design to generate timber
frame renovation panels. By doing so the time to engineer these panels could drastically drop while it would
still be possible to adjust panels to building owner or designer’s needs.
The boundary of this thesis is set to research the possibilities on prewar row houses as these have the largest
impact with the consumption of 21 TWh every year. The process of renovation using prefab elements has
been studied to determine the steps that are to be performed to complete the renovation. Within these
steps the panels are engineered. This step has been disected into more detail to see what steps are taken
to go from design to a panel that can be manufactured. The steps are then automized using python and
grasshopper as software and the engineers decisions are implied by parameters.

The steps taken to generate the panels are: determining the to be panelized area, composing the panel
contours, creating the panel geometries and calculating the panel specific data. These steps are to be
automated by using the step specific parameters which are: the panel size limit, tolerances and geometry
sizing and properties. These are decided by the engineer or are already established in the pre-engineering
phase. Together they enable the tool to generate building information models of prefabricated building
envelope panels which can be adjusted by its user if required.

Thijmen Pluimers 4

Contents
Glossary 5
1. Orientation phase 7
1.1. Background 8
1.2. Problem statement 8
1.3. Objective 8
1.4. Scope 9
1.5. Research question 10
1.6. Methodology 10
1.7. Planning 14
2. Research Phase 17
2.1. Which poor energy performing buildings are being considered? 18
2.1.1. Current building stock analyses 18
2.1.2. Energy performance 19
2.1.2. Conclusion 21
2.2. What façade renovation method is being considered? 22
2.2.1. Strategies 22
2.2.2. Case studies 24
2.2.3. Prefabricated façade renovation 28
2.2.4. Conclusion 34
2.3. How is the parametric method designed for the building renovation? 35
2.3.1. Current methods 35
2.3.1. Input parameters 38
2.3.3. Tool output 38
2.3.4. Tool process 39
2.3.5. Overview of tool 40
3. Design phase 43
3.1. Design of the panel 44
3.1.1. Characteristics of facades 44
3.1.2. Wall panels 46
3.1.3. Roof panels 53
3.1.4. Bay-window panels 59
3.2. Design of the tool 61
3.2.1. Generic tool design 61
3.1.7. Wall generation tool 70
3.2.3. Roof generation tool 100
3.2.4. Bay windows 130
3.3. Case study application 134
4. Discussion 144
5. Conclusion & Recommandation 146
6. References 148
7. Appendix 151
7.1. Wall tool script 152
7.1.1. Domain generation script 153
7.1.2. Panel contour generation script 155
7.1.3. Panel structuring script 161
7.1.4. Solid layer generation script 162
7.1.5. Boundary member generation script 163
7.1.6. Opening plate generation script 168

Thijmen Pluimers 5

7.1.7. Stud generation script 169
7.1.8. Panel connection generation script 172
7.1.9. RC-calculation script 175
7.1.10. Window placement script 176
7.2. Roof tool script 177
7.2.1. Panel contour generation script 178
7.2.2. Solid layer generation script 179
7.2.3. Plate contour generation script 180
7.2.4. Rafter contour generation script 182
7.2.5. Overhang generation script 185
7.2.6. Wall beam generation script 188
7.2.7. Lath’s generation script 189
7.2.8. Roof generation scheme 191

Thijmen Pluimers 6

Glossary

Thermology Meaning
Adjustable meaning that something can be adjusted throughout the design process.

Automation An industrial process where mechanic tools normally used by human labors
are automized to perform a specific task automatically. (Richard, 2004)

BIM
Building information model - a digital 3D model that contains information
about the project. Generally, the level of detail (LOD) is determined to set a
standard for the amount of detail in the model.

Computational method A process that makes use of computing power. The method describes a certain
process without an already defined solution to perform the process.

Computational tool the tool performs the process described as the computational method.
Parametric method a computational method that makes use of parameters as an input.
Parametric tool the tool performs the process described as the parametric method.

Prefabricate prefabrication is the process of fabricating before. Meaning the fabrication of
elements or modules before the arrive on the building site.

robotization

One step further then atomization. The task that are done by the automized
tools are now completed by robots. Meaning they can be programmed to do
different tasks to different elements rather than being limited to one task and
one element type. (Richard, 2004)

ZEB
Zero energy building, there are different opinions as to when a building is zero
energy. In this thesis a building is zero energy as over the course of a year it
does not use more energy than it generates.

Thijmen Pluimers6 7

1. Orientation phase
In this chapter the introduction to the subject and its framework is
given. Starting with the background and through the problem statement
forming an objective and a research question to provide a solution.

1.1. Background
The Dutch government aims to disconnect all houses from natural gas by 2050. According to a study done by
the RVO (Rijksdienst voor Ondernemend Nederland) there are currently 7,9 million homes in the Netherlands.
Since 2008 it is mandatory for new buildings to have an energy label. These are valid for ten years. The study
of the RVO shows that more then 3,8 million houses currently have this label. Meaning that the other 4,1
million houses are not accounted for. (RVO, 2020)
Data from the CBS (Het Centraal Bureau voor de Statistiek) shows that the of the current building stock only
1,5 million has been built after 1995 (CBS, 2020). Meaning there are currently a lot of old houses without an
energy label which need to be renovated to meet the required goal before 2050.

1.2. Problem statement
Renovating all these houses before 2050 is an enormous task especially because the majority of the houses
are different and need a different approach to reach their energy usage target in the most efficient and
effective way. Doing all these renovations at the rate they are done now will not meet the goal of 2050
(Filippidou F., 2017). The traditional way with onsite labor does not work. This is possibly also due to the
decreasing number of skilled labors (CBS, 2020). This is substantiated further by the European Commission
who acknowledges the necessity of prefabrication of modules for building renovation. In 2014 the horizon
2020 program was launched, including the issue Energy Efficiency (EE1: Manufacturing of prefabricated
modules for renovation of building). Not only does the program aim for lowered pre-fabrication cost by using
automation/robotization. It also calls for the combination with advanced computer-based tools like Building
Information Modelling (BIM) in order to facilitate the industrialization process of the construction (Veld,
2015). Here in lies the problem however, to make accurate models that allow for de industrialization of the
façade production a model with sufficient amount of detailing is necessary. The measurements of the façade
should be exact and the panels fully detailed so they can be produced.
The mean size of a house in the Netherlands is 120 square meters (CBS, 2013). In order for this to be
modelled it would take approximately a week (calculated at bimprice.com). This is without the modelling of
the renovation adaptations. This shows that although we have the means to create a panel for renovation
and mount it the next day, the real bottleneck is in the lies in the engineering of the renovation.

1.3. Objective
The object to be achieved in this thesis will be to help speed up the engineering process of prefab panels
for building envelope renovation though parametric means. The final product will be a parametric tool that
helps its user to speed up the model generating process.

Thijmen Pluimers 10

1.4. Scope
In their paper about the five levels on industrialization (HU S.J., 2008) explains the levels and how the fifth
level influences how the work is being done in the first four levels. Those levels are directly related to the
physical process of manufacturing while the fifth is about the engineering process and making it “smarter”
and more innovative to increase the efficiency in manufacturing. This thesis will focus on that fifth level by the
creation of a parametric tool that provides the user with models for the prefabricated façade renovation they
want to perform. The tool will be created by computational means using the software Rhino Grasshopper
and its components.

There are a lot of parameters to take into account for the renovation of buildings. This research chooses to
focus itself on the process of the integration of these parameters rather than dedicating itself to make sure
the parameters are 100% accurate. Therefore, certain inputs are given into the tool manually which can also
be calculated more accurately with programs. But as these are parameters they can be changed easily in
future researches and application.

No specific material research will be done into the most optimal material for the façade renovations. For this
research timber frame panels will be considered as in several papers (Pihelo P., 2017; Balkuv, 2017) about
zero energy building renovations this is pointed to as the best option because it adds much isolation value
compared to it thickness. Furthermore, building with timber frame elements has increased from 1-2% since
the 1970’s to 5% between 2000 and 2011. It is expected to take a market share of 15% as a consequence of the
CO2 policies of the government (Vis M.W., 2014). However, with the aim of the Dutch government to strongly
reduce nitrogen being emitted into the atmosphere in order to protect nature reserves it could mean a real
breakthrough for timber frame constructions as mentioned by Andy van Den Dobbelsteen (Belzen, 2019).
Timber frame elements are widely used already in the construction industry by contractors so the knowledge
about them is already there onto which this tool will build and it might increase the chance of the tool being
further developed and implemented.

The façade creates the outer impression of the building. But this research focusses on the technical aspect
of the process and development of the tool. The images shown in this research are a product of the author’s
way of thinking. Nevertheless, the design in reality is subject to the architect creating it.

Thijmen Pluimers10 11

1.5. Research question
During the research the following research question will be answered:

How can a parametric tool be designed and what parameters are used for the renovation of poor energy
performing buildings in order to provide designers and engineers with a building information model of
prefabricated adjustable building’s envelope panels?

Sub questions
To answer the research question the following sub-questions have been composed:

1. Which poor energy performing buildings are being considered?
2. What façade renovation method is being considered?
3. How is the parametric method designed for the building renovation?

1.6. Methodology
The research methodology describes how the research is being done. What type of research is being used for
what topic and how it helps validate the research.

In the introduction the background and the problem are defined to do so desk study was used to clarify the
background of the problem and literature to verify it.
Afterwards desk research will be used to solidify the theoretical framework for the thesis. First into the
building stock for which literature will be reviewed to come up with numbers of houses and their energy
performance. So that an educated discission can be made on what typology the research will be mainly
focused.

Next possible renovation methods will be looked at through literature review first the different strategies will
be analyzed before looking deeper into a specific case studies for the chosen building typology after which
the prefabrication of this method will also be investigated. Once the literature review is completed a field
research will be done into prefabricated elements.

After that computational methods will be reviewed through desk research by looking at examples that fit the
research scope and by reviewing literature about the topic. This will continue during the design stage of the
research. Once working on and experimenting with the tool it becomes clearer what is needed. This is the
research through experimentation.

During the design phase the characteristis of the building typology will be researchedon case study building
to determine what characteristic can be supported with the research.

After which for these characteristics a renovation method is composed using the knowledge from the research
phase. Then the steps taken in the process of renovation are identified for the next step.

The last step of the design is to design the parametric method which allows for automization of the renovation
process. This is done by taking the steps identified in the previous step and evaluating if they are can be
automized using a parametric tool. If so the parameters used to complete the step need to be determined
and a scrip can be build.

The last part of the research will be the application of the tool, it is taken out of the design enviroment and
applied on a case study building. any component that doesnt work will be adapted after which the final
results will lead to the discussion, conclusion and recommandations for this thesis.

Thijmen Pluimers 12

Thijmen Pluimers12 13

Report chapters
1. Introduction phase
 a. Background
 b. Problem statement
 c. Objective
 d. Research question
 e. Boundary conditions
 f. Research methodology
2. Literature phase
 a. Which poor energy preforming buildings are being considered?
 - What typology building is being considered and why?
 b. What renovation method is being considered?
 - What are the different strategies for building renovation?
 - How are buildings renovated in a prefabricated manner?
 c. How is the parametric method designed for the building renovation?
 - What are the inputs for the method?
 - What is the expected output?
 - General workflow of script
3. Design phase
 a. What are the characteristics that are common in row housing and that can be supported in the
 tool and this thesis?
 b. How can these characteristics be renovated?
 c. How can a computational method perform these renovation designs?
 d. Verification of the tool on existing building plans and adaptation on the tool to make it work.
4. Discussion
5. Conclusion
6. References
7. Appendices

Thijmen Pluimers 14

Societal relevance
The subject of this research is a hot topic at this moment as the aim to renovate all the buildings becomes
increasingly harder to achieve as time goes by and there isn’t a solution that allows for mass customization.
In this case it isn’t the renovation that is posing the problem it is the time in which it has to be done. This is a
known problem in the industry and there are already companies moving towards a more industrialized and
digitalized solution for the renovation, this paper will contribute to that.

Scientific relevance
Although there has been plenty of research done on the renovation of existing housing, most of these
researches looked into the method of the renovation. Little research has been done. the paper Building
renovation adopts mass customization by Andrés F. Barco (Barco A.D., 2016) come closest to what is aspired
to do with this research. Although it goes deeper into the preliminary stage of the renovation process rather
than the creation of detailed elements. This is also a problem that is encountered in the literature survey
while trying to gain knowledge of the state of art when it comes to the use of computational and parametric
design in renovation or with existing facades.

Thijmen Pluimers14 15

1.7. Planning

45 46 47 48 49 50 51 1 2 3 4 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
1.10 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 2.10 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 3.10 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 4.10 4.11 5.1

1 - Topic definition
1.1 topic selection
1.2 information gathering and reading
1.3 litrature review
1.4 Research framework
1.5 making planning

2 - Research
2.1. Building stock analyses
2.2. Renovation method

Strategies
Case studies
prefabricated renovation

2.3 Computational design
Input parameters
Expected output
Concept process plan

Prep time
3 - Designing

3.0 Computational method design plan
Specify tool boundaries
Specified process plan

3.1 Computational method design
Façade devision
Penalization
Evaluate and inprove

Prep time

Prep time

4 - Finalization

Write thesis
Finalize research

Prep time

P1

P2

P3

P4

P5

June Julynovember December Januari Februari March April May

Thijmen Pluimers 16

45 46 47 48 49 50 51 1 2 3 4 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
1.10 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 2.10 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 3.10 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 4.10 4.11 5.1

1 - Topic definition
1.1 topic selection
1.2 information gathering and reading
1.3 litrature review
1.4 Research framework
1.5 making planning

2 - Research
2.1. Building stock analyses
2.2. Renovation method

Strategies
Case studies
prefabricated renovation

2.3 Computational design
Input parameters
Expected output
Concept process plan

Prep time
3 - Designing

3.0 Computational method design plan
Specify tool boundaries
Specified process plan

3.1 Computational method design
Façade devision
Penalization
Evaluate and inprove

Prep time

Prep time

4 - Finalization

Write thesis
Finalize research

Prep time

P1

P2

P3

P4

P5

June Julynovember December Januari Februari March April May

Thijmen Pluimers16 17

2. Research Phase
Having constructed the framework of the graduation this chapter
focusses on the literature that is already been made on this topic. In
this way it creates a foundation for further construction of knowledge.

2.1. Which poor energy performing buildings are being considered?
There are a lot of different building typologies in the Netherlands. In this chapter the different typologies
are analyzed and it is determined which building typology would have the biggest impact on the energy
transition if it would be renovated to a higher energy label. This house will then be used as a starting point
for the creation of the tool.

2.1.1. Current building stock analyses
A study by the Dutch government into housing typologies, there numbers and energy usage (Agentschap NL,
2011)there are 7 typologies. These will be the typologies further referred to in this thesis. Below the different
typologies are described with the number of owner-occupied homes and portion of the total building stock.
After which the distribution per building period and energy label will be discussed.

Detached
Detached houses are houses that is not joined by any other house (Collins, 2020). Because of this it also
has the largest loss area compared to the volume as it has no external walls that are connected to other
heated areas. A large part of the detached houses is owned by the inhabitants (circa 95%) at the time
of the study there were 959.000 detached houses build before 2005, which is roughly 14% of the total
building stock (Agentschap NL, 2011).

Semi-Detached
A semi-detached house is a house that is joined to another house on one side by a shared wall (Collins,
2020). A benefit of this is that the joint wall is between two heated area’s and there is almost no heat
being lost through this wall. Between 85 and 90% of the semidetached houses is owned by its residents.
Finally, 824.000 semidetached houses were built before 2005, which is roughly 12% of the building stock
(Agentschap NL, 2011).

Row house
A row house is a house that is part of a row of similar houses that are joined together by both of their side
walls (Collins, 2020). Due to this it has less heat loss area. Roughly 60% of the row houses are owned by
the dwellers. Furthermore 2.839.000 of these were built before 2005, which is roughly 42% of the building
stock (Agentschap NL, 2011).

Duplex house
A duplex house is a house divided into two separate dwellings (Collins, 2020). After the second world war
this was a temporally solution to the housing shortage but they are still being built in small numbers. A
large part of the houses is being rented out as only 27% of the building is owned by the inhabitants. There
is a total of 382.000 of this topology houses that was built before 2005, which accounts for 6% of the total
building stock (Agentschap NL, 2011).

Gallery house
Gallery houses have an external passageway which provides entry to individual apartments on each floor
(Collins, 2020). Due to this feature, they have two outside facing facades, one on the gallery side and one
on the opposing side where a private balcony is situated. Most of the houses are built to be rented out as
only 23% of them is inhabited by the owner of the apartment. There is a total of 465.000 Gallery houses in
the Netherlands and the represent around 7% of the total housing stock (Agentschap NL, 2011).

Tenement apartments
A tenement apartment is a house that is part of a building which looks much like an apartment building.
But rather than having a hallway connecting the houses, the front door of the houses is directly connected
to a stair. At the time of the study around 14% of these houses were owned by the inhabitants. There are
847.000 of these houses which represents around 12% of the building stock (Agentschap NL, 2011).

Thijmen Pluimers 20

Other flat apartments
The left-over flat apartments are a category where the apartments are reachable through a central hall
of corridor. Around 26% of their apartments are owned by their residents with a steep increase in owner
ship between 1992-2005 (47%). There are currently 485.000 apartment houses in the Netherlands and the
represent about 7% of the housing stock (Agentschap NL, 2011).

2.1.2. Energy performance
To judge buildings on their energy performance energy labels are used, A being an energy efficient house and
G being the least efficient. Having given a general overview of the building typologies. This paragraph will go
into the numbers of the number of houses that were built in a certain time period and their energy labels.

Building stock per time period and their energy label
To further analyze the building stock separations into different groups are needed. The government research
has already done so for houses being built in a specific time span that had the same energy regulations. The
years by which they are grouped are as follows:

1946-1964: Tenement apartments and row houses have a division between prewar and post war houses.
1965-1974: The first regulations about insulation were made.
1975-1991: Minimal thermal insulation with an Rc of 2,5 m²K/W and double glazing.
1992-2005: The building code was introduced.

Table 1: Showing the number of houses per typology and building period with their energy label (Agentschap NL, 2011).

<1945 <1964/1946-1964 1965-1974 1975-1991 1992-2005

Detached 441.000 119.000 221.000 178.000
Energy label G F D B

Semi-detached 285.000 142.000 224.000 173.000
Energy label F E C B
Row house 523.000 478.000 606.000 879.000 353.000

Energy label G F E D C
Duplex house 226.000 22.000 94.000 40.000

Energy label G D C B
Gallery house 69.000 174.000 109.000 113.000

Energy label D E C B
Tenement apartment 256.000 267.000 112.000 142.000 70.000

Energy label F E D C B
Other flat aparments 99.000 125.000 125.000 136.000

Energy label E E C B

Thijmen Pluimers20 21

Calculation of energy labels
The letters used for the energy labels stand for a range of numbers that are calculated with formula 1. The
formula calculates the ratio between the used energy and the floor- and loss area of a building. If energy
usage is decreased of floor- or loss area is increased compared to the other the Energy Index number is
lowered. The calculated number represents the energy efficiency of the house (Majcen D., 2013).

Table 2: Energy indexes and their corresponding energy labels (source: https://www.rvo.nl/onderwerpen/duurzaam-on-
dernemen/gebouwen/wetten-en-regels/bestaande-bouw/energie-index)

Label A B C D E F G
EI ≤1.20 1.21 – 1.40 1.41 – 1.80 1.81 – 2.10 2.11 – 2.40 2.41 – 2.70 ≥2.70

To see where the biggest impact of renovation will be it is important to compare all different typologies.
In order to give an indication of the impact of renovating a certain typology from a certain time period the
amount of said houses and their energy labels must be combined. In order to do so the energy labels must
be converted in to back into their energy index.

Equation 1: Calculation of the Energy index (Source: (Majcen D., 2013))

With these energy indexes also comes a mean theoretical primary energy consumption. Combining these
with the average size of dwellings, the theoretical primary energy consumption of that part of the building
stock can be calculated. The table below shows all the numbers needed for such a calculation. The results of
these calculations are seen in table 4.

Table 3: showing the energy index that belongs to the energy labels(Sources: Labels and energy index (Agentschap
NL, 2011), primary energy consumption gathered from (Filippidou F., 2017), Average dwelling size source (Majcen D.,
2013).

Label Energy index Mean theoretical primary energy consumption
(kWh/m2 ∙y)

Average size of dwelling
(m2)

A 0.78 96.8 105.1
B 1.18 132.5 90.2
C 1.46 161.6 90.9
D 1.81 207.8 94.8
E 2.21 265.0 95.8

F 2.66 328.0 94.3
G 2.9 426.9 95.5

Thijmen Pluimers 22

Multiplying the energy usage per house by the number of houses the mean energy usage of the complete
building stock can be calculated. The graph below shows this grouped per typology and building period.

Table 4: Impact chart showing the impact of typologies of buildings, there quantity and energy label. Information for
this chart is taken from table 2 (Agentschap NL, 2011; Filippidou F., 2017; Majcen D., 2013).

2.1.2. Conclusion
The purpose of this chapter was to see where the biggest impact for an intervention can be made. As can be
seen in the energy usage per year and building type in almost every time period row houses have the biggest
impact other than the oldest group of detached houses. Of course, this chart is made using an interpretation
of energy labels but using all mean numbers gives a good general overview of the big picture. However, with
row houses being 47% of the current building stock it is hard not to see why this group could not have the
biggest impact. Literature study has also shown that the least amount of research has been done on pre-war
row housing. Combining these facts pre-war row houses have been chosen as a case study building for this
research thesis.

Thijmen Pluimers22 23

2.2. What façade renovation method is being considered?
In this chapter the renovation methods are discussed, as this thesis is focused on the development of the tool
it is considering which subjects are important for the tool. First the strategies of renovation will be discussed.
Afterwards cases are studied to see what is the best way to renovate the case study building and to see how
prefabricated panels are used for renovation. This all to give guidelines for the creation of the parametric
method.

2.2.1. Strategies
To renovate buildings there are several strategies in this chapter the different strategies are discussed. To
determine these strategies different studies have been consulted (Konstantinou, 2014; Ebbert, 2010).

Replace
Replacement is a strategy in which old building panels are removed and replaced by new panels. In
doing so any downsides that came with the old façade are taken away and resolved with new panels. By
replacing the panels and not adding a new layer it is possible to increase the buildings energy performance
without increased width of the wall. However, by taking out the original façade the space becomes (partly)
inhabitable during the construction period. Furthermore, the strategy only works with not load-bearing
walls. The whole process will also be more energy consuming as the original façade needs to be taken off
and transported away.

Add-in
Adding in is a practice of adding an extra façade elements or insulation on the interior side of the façade.
This is a common practice when it comes to buildings with monumental protection, this because it does
not have any influence on how the exterior of the building looks. Limitations to this approach are that the
insulation line doesn’t continue all the way throughout the building’s envelope. This results in Thermal
bridges where floor slabs and walls connect to the façade. Furthermore, because the insulation is on the
interior side condensation could be a problem if it is not the air- and vapor proving is not handled correctly.
Lastly there is the fact that adding to the inside of the façade takes away interior space and interferes with
the inability of the building during the construction period.

Wrap-it
This strategy suggests adding an insulating layer to the outside of the façade directly, naturally this can
only be done if there are no restrictions for the building design. This strategy replaces windows or places
additional ones in front of the existing ones and adds insulation and new cladding. This technique can be
executed on most buildings that have load bearing facades. However, the limiting factor is the structural
capacity of the original façade as mostly this approach is fixed directly on the existing façade. There are
different approaches to applying this technique; it can be done on site by attaching insulation panels and
plaster over them. Also mounting prefabricated panels can be a way to execute this approach.

Add-on
Add-on shares some similarities with the wrap-it strategy in that it adds to the outside of the building. But
rather then replacing the windows and adding insulation onto the existing façade this strategy adds an
extra layer all around the building. This could be a secondary skin to form a double-skin façade. And thus,
avoiding wind and rain loads on the original façade. It also could help with the natural ventilation of the
building.

Thijmen Pluimers 24

Cover-it
Similar to the add-on approach the cover it approach adds a structure to the building but rather then
adding it in front of the façade this strategy is about covering building courtyards and using it as interior
space. It also has the benefit that it takes away wind and rain load from the façade. Naturally to use this
approach the building is required to have a courtyard that is allowed to be covered. Also, this approach is
not a solution for all sides of the building.
This strategy is an upgrade to a building or group of buildings in which they are connected via a roof that
coffers outdoor space. The benefit of this method is that it creates extra indoor space, and the old exterior
facades are now in between two heated spaces so the heat loss is reduced. A limitation to this strategy is
that not all buildings can use this method and it still requires additional measures for the other parts of
the facades.

Image 1: Possible refurbishment strategies for building envelope based on (Konstantinou, 2014) (source of image:
(Balkuv, 2017))

Thijmen Pluimers24 25

2.2.2. Case studies
Having looked into the different strategies, in this chapter case studies will be analyzed to study the way
in which the renovation has been done. First the optimal way of renovating a building with the row house
typology is studied to see what measures are taken in the façade for the renovation. After this a renovation
with prefabricated elements is researched.

2.2.2.1. Zero energy refurbishment of pre-war houses.
This case study is based on a research paper from Faik Nebil Balkuv who researched the best way to
renovate a cluster of row houses situated in Haarlem that was built before 1945 with an energy index
of 2,16 (energy label E) (Balkuv, 2017).

He did so by determining what renovation approach would be best and testing it. In the thesis two
refurbishment strategies are compared. The first is the most realistic approach in which there are
only moderate interventions to the building with most of the retrofitting only being done by adding
on the outside. The method is referred to in the thesis as Refurbishment-1 and is based on the Wrap-it
refurbishment strategy (Konstantinou, 2014). The second approach is a more extensive refurbishment
option with large-scale interventions in this case the exterior wall and the roof are removed and
replaced with a better preforming version. This method is referred to as Refurbishment-2 and is
based on the Replace refurbishment strategy (Konstantinou, 2014). One of the main differences
between the two strategies is the impact on the dwellers. In Refurbishment-1 most of the work
is done on the outside, as a result of this the building will be inhabitable during the construction
period. While in Refurbishment-2 the construction process is of such an impact that the building
cannot be inhabited for a maximum of 10 days.
After having determined the most suited strategy for the refurbishment the thesis looked into 5
case studies in which 60+ houses were renovated from poor energy performance to A++ for most of
them. Having learned from those case studies the thesis continues with the adaptation of these to
the building cluster in Haarlem. It does so by calculating all options for refurbishment and choosing
the best.
The final results chosen for the renovation are shown on the next pages.

Thijmen Pluimers 26

Refurbishment-1
As stated, before this refurbishment is the one where the least impact on the dwellers is considered.
For the building envelope different building envelope parts were upgraded to meet the regulations and to
bring the dwelling up to a zero-energy building.

Table 5: Shows the Rc-values that are chosen for the façade in refurbishment option 1 (Source: A remake of the table in
(Balkuv, 2017).)

Envelope part Description Existing New

External Wall Wall cavity is filled with Loose Cellulose filling.
Rigid insulation is added on the outside with

stone strips on the outside

0,8 m2K/W 4,5 m2K/W

Ground floor The ground floor is insulated from the crawlspace
with a mineral wool fiber blanket. The crawlspace

walls are insulated from both sides to reduce
heat leakage through the thermal bridges.

0,32 m2K/W 3,5 m2K/W

Pitched Roof Insulation is added from the inside. 1 m2K/W 6 m2K/W
Dormer roof No changes 2,53 m2K/W 2,53 m2K/W
Dormer sides No changes 2,53 m2K/W 2,53 m2K/W

Glazing Triple glazing (Rehau Geneo) on West and Double
Glazing (Rekord Basic) on East facing façades.

Single:
6,1 W/

m2K

Double:
2,5 W/

m2K

Rekord:
1 W/
m2K

Rehau:
0,9 W/

m2K
Window frames Window frames are replaced with PVC framing.

The leaking stone is replaced with an insulated
steel version.

Wood:
3,6 W/

m2K

UPVC:
3,4 W/

m2K

Rekord:
1,1 W/

m2K

Rehau:
0,78 W/

m2K
Doors Doors are replaced with better insulated

alternatives
3,5 W/m2K 0,75 W/m2K

Thijmen Pluimers26 27

Refurbishment-2
This refurbishment focusses less on the inability of the house but more on the energy performance of the
house in the end. For the building envelope different building envelope parts were upgraded to meet the
regulations and to bring the dwelling up to a zero-energy building.

Table 6: Shows the Rc-values that are chosen for the façade in refurbishment option 2 (Source: A remake of the table in
(Balkuv, 2017).)

Envelope part Description Existing New

External Wall Outer brick wall is removed and replaced with
prefabricated insulated panel.

0,8 m2K/W 4,5 m2K/W

Ground floor The ground floor is insulated from the crawlspace
with a mineral wool fiber blanket. The crawlspace

walls are insulated from both sides to reduce
heat leakage through the thermal bridges.

0,32 m2K/W 3,5 m2K/W

Pitched Roof
Dormer roof
Dormer sides

Roof is totally removed and replaced with
prefabricated insulated panel

1 m2K/W 6 m2K/W
2,53 m2K/W 6 m2K/W
2,53 m2K/W 4,5 m2K/W

Glazing Triple glazing (Rehau Geneo) on West and Double
Glazing (Rekord Basic) on East facing façades.

Single:
6,1 W/

m2K

Double:
2,5 W/

m2K

Rekord:
1 W/
m2K

Rehau:
0,9 W/

m2K
Window frames Window frames are replaced with PVC framing.

The leaking stone is replaced with an insulated
steel version.

Wood:
3,6 W/

m2K

UPVC:
3,4 W/

m2K

Rekord:
1,1 W/

m2K

Rehau:
0,78 W/

m2K
Doors Doors are replaced with better insulated

alternatives
3,5 W/m2K 0,75 W/m2K

Services
To both of these refurbishments have almost the same installations were added.
For heating (and cooling) a Water-to-Water heat pump with low temperature source and low temperature
(radiators in refurbishment-1)/ (floor heating in refurbishment-2). For domestic hot water the can, be boosted.
For both there is a back-up electrical system that can support the heat pumps on very cold days.
For the Ventilation refurbishment-1 uses natural inlet and mechanical extraction. But refurbishment-2 uses
mechanical supply and extraction is used with heat recovery. During the summer natural ventilation can be
used and the heat recovery is bypassed. Lastly for energy generation there are PV-panels 18,4 m2 on the
east- and 6,7 m2 west facing roof.

Thijmen Pluimers 28

2.2.2.2. Prefabricated façade renovation – 2ND skin
In this paragraph a façade renovation approach called 2nd skin is studied. Second skin is a modular renovation
system where different prefabricated façade elements are used to update a builds energy efficiency. This can
be done up to different levels up to zero energy (Nul op de meter) depending on the wishes of the owner. The
design vision that sets 2nd skin apart from the rest is the integration of services into the façade while keeping
panels lightweight so they don’t need additional foundation support. The prefabrication of the panels allows
the project not only to integrate the services into the facades effectively but also limits the disturbance for
the occupants (Silvester S., 2016).

2nd skin provides certain packages to give an indication of the intervention needed to reach a certain goal.
Those packages are shown below.

Table 7: The different Packages that can be chosen for the second skin approach of renovating existing buildings.
(Source: (2ND skin, 2020))

Packages Premium Hybrid All Electric Zero energy

Façade RC 4,5 4,5 6,0 6,0
Roof RC 6,0 6,0 6,0 6,0
Floor RC 3,5 3,5 4,5 4,5

Glazing type HR++ HR++ HR+++ HR+++
Ventilation system Ventilation rosters

above glass with
mechanical CO2

driven extraction.

Ventilation rosters
above glass with
mechanical CO2

driven extraction.

Ventilation pipes
over façade. Heat
recovery system.

Ventilation pipes
over façade. Heat
recovery system.

Heating installation Existing boiler
Existing radiators

Heat pump 3kW
Existing boiler

Existing radiators

Heat pump 6kW
Existing radiators

Ground source heat
pump

Solar panels - 8 PVT panels 16 PVT panels 15 PV panels
Disturbance for

occupants
Circa 3 days Circa 5 days Circa 10 days Circa 10 days

Energy Index 1.00 (Label A) 0.67 (Label A+) 0.08 (Label A++) 0
(Nul op de meter)

As explained in the energy performance paragraph of chapter 2.1. these energy indexes have corresponding
energy labels (Shown in table 2).
The packages used by 2ND skin are arbitrary as they are based on some choices made by the company to
showcase the impact of certain renovation measures. However, the four levels correspond with levels of
renovation that measures people might want to take.

The first level is Premium, in this level only the building envelope is updated to a better insulation value. In
the second level a heat pump and PVT panels are added to this so decrease the energy needed for heating of
the house and a small portion of electrical energy generation.
In the third level this is taken a step further by insulating the house better and placing a better heat pump
with more panels. This allows the house to be all electric, meaning the house is no longer connected to the
natural gas network. The last level is Zero energy. There are different definitions of what it means to be zero
energy. However, since the energy index is revered to as “Nul op de meter” it means that the building’s
net energy consumption is reduced to zero (rvo.nl). Meaning that over the course of a year a house does
generate at least as much energy as it consumes.

Thijmen Pluimers28 29

2.2.3. Prefabricated façade renovation
In this paragraph the process of renovating a façade through prefabricated façade panels is studied.
Prefabricated façade renovation is done through the means of using panels. For this there are a lot of different
options including: concrete panels with rigid insulation and a stone strip or concrete finish (Mjörnell, 2016) or
Wooden framing with insulation infill and vapor barriers are most commonly used (Pihelo P., 2017).
In this chapter first the focus points that are important in every renovation (with prefabricated panels) are
discussed by the use of literature. Then the design rules for prefabricated panels will be analyzed using
drawing from companies that practice the engineering and fabrication of such panels. Then in chapter 2.3.
an over view is given of the parameters that can be input for the parametric method.

2.2.3.1. Key points for façade renovation using prefabricated panels.
Several different papers (Mjörnell, 2016; Pihelo P., 2017; Colinart T., 2019; Aldanondo M., 2014) have
shown similar critical points when it comes to renovating of existing buildings using prefabricated
elements. These points are discussed below;

Energy performance and moisture
When renovating a façade of course the energy performance of the element (opaque parts and the
windows, doors and other openings) is of great importance, next to that there is the airtightness
of the exterior wall. In order to prevent mold from growing in the construction it is important to
have a waterproof exterior barrier that does allow the damp that is trapped inside the element to
exit. Also, the damp proofing of the interior wall needs to be assessed and addressed. If there are
seams or cracks in the wall the damp that is generated inside can flow into the construction which
is unwanted (Pihelo P., 2017).

Existing situation
Next to this there is the fact that the existing building has to be taking into account. There will
always be some unevenness in the walls due to the manufacturing and use of the construction. To
make sure every element fits in the plan de façade needs to be measured or scanned to assess the
tolerance. After this a reference plane can be placed. This is an imaginary frame that is offset parallel
to the façade to ensure clearance between the elements and the original façade (Aldanondo M.,
2014). The space between the element and the façade will be filled with non-rigid wool insulation
to ensure that trapped vapor can ventilate. Also, the opening should be assessed because like the
evenness of the wall they could be not perfectly square.

Transportation
Furthermore, there is the transportation of the panels. Panels can be made in all different sizes but
are constrained by some factors namely: First manufacturing process as the factories have a certain
maximum size of panel, they can produce on their production lines. Secondly assembly process as
in some cases large panels are hard to place in certain positions or it might not be accessible for a
crane. Lastly the transportation because the panels are most commonly transported using lorries
they need to fit inside the trailer.

Mounting
And lastly there is the fixing system. Panels can be hung directly from the façade using brackets if
the façade has the loadbearing capabilities (Aldanondo M., 2014). Otherwise, there are different
solutions to solve this. In the renovation of the row house (Balkuv, 2017) this is solved by adding a
concrete block at the bottom of the lowest panel onto the façade. The panels are stacked on top
of each other and the load is transferred through them, the panels still need support from the
façade for wind and rain load however. Another example given is a metal subframe with its own
foundation is added Infront of the façade (Aldanondo M., 2014).

Thijmen Pluimers 30

2.2.3.2. Panel & process limitations
The whole process of renovation process limits on the design of the panels. These limits are discussed
in this paragraph and will be implemented into the final parametric method. According to previous
research (Barco A.D., 2016) an industrialized renovation can be done in six stages. These six being:

1. Information collection.
Information about the façade is collected, this can be done in different ways such as taking
measurements and translating them to drawings of by making 3D scans. This part is important
because as-build buildings slightly differ from their original drawings due to manufacturing,
assembling and settlement of the buildings.
This stage will pose the limitations on the size of the panels, location of windows and other
openings in the façade and defines the unevenness in the façade which the panels need to adopt
to.

2. Semantic enrichment
The model that has been built in stage one is enriched with important detailing such as load
bearing capabilities of specific areas or the Rc-value of the different parts of the façade.
This stage sets goals for the panels. How much insulation needs to be in them in order to reach the
goal of the energy performance of the building. And where the panels can be mounted and how
much weight they can support (this also dictates the weight of the façade panel. As the bigger the
panel gets the more weight has to be distributed over the mounts.

3. Envelope configuration
In this stage the panels are being made according to the limitations that are set in all other stages.
It is important that attention is given to the location of windows and doors on the panels. As a
panel cannot end with an opening, they always need to be framed. This will pose a challenge in
the creation of the parametric tool.

4. Manufacturing
In the manufacturing stage the designed panels are being constructed. In this stage the limitations
posed on the panels are due to the manufacturing equipment. Limiting the panels in their
maximum size.

5. Transportation
The panels have to be transported to the building site this brings its own set of limitations. For
example, the size of the lorry that transports the panels. But also, the weight limit or dimension
limit of certain roads, bridges or tunnels.

6. Installation
Lastly the panels are installed on the building. The limitations in this part come from the method
of installation. For example, is a crane able to reach the position where the panel needs to be
mounted. This might limit the size and weight of the panels.

Thijmen Pluimers 31

2.2.3.3. Design rules prefabricated panels
Having discussed the theoretical part of the prefabricated elements this paragraph goes into detail
about the practice om designing these panels. In this instance they are timber framing panels. The
information is gathered through contact with Mr. W. Lubbers from the company De Groot Vroomshoop
who are specialized in the engineering and fabrication of timber framing panels. The drawings that
were shared have been analyzed and the design rules that have been discovered are featured in this
paragraph. In the first paragraph the literature is researched to see how panels are made generally
to validate the information gathered. After that the drawings are analyzed.

Element build layering
Timber framed panels are generally known as lightweight panels as their strength comes from a
framework of timber beams with insulation in between. This also makes the panel more efficient
in thickness. As prefabricated panels that use concreate for their structural performances need a
layer of concrete which would not add to the insulation value of the panel while adding thickness.
Windows are also incorporated in the framework to make sure their weight is transferred down
properly. And most of the time on the inside a wooden board is added for stability of the panels. This
is not necessary when it relies on the stability of another element however.
When using wooden panels, it is important to take moisture into account. This is why mostly there are
foils incorporated in the panels that allow moisture to escape when it gets in the panel and another
one that does not allow moisture to enter. Lastly on the exterior an aesthetical finish is added, this
can be done in different ways. It is always important to make sure there is ventilation in front of the
water-repellent foil to make sure any access moisture can ventilate away (Knaack U., 2012).

The description above and the drawings of De Groot Vroomshoop are generally similar. As explained
the panels are but up out of different layers every layer has its own function and is explained here.
These layers and functions are a general description however. In practice variations from this might
occur.

Table 8: General buildup of prefabricated panels (dimensions and layers can vary a lot depending on desired design and
performance) (Source: own analyses of drawings)

Layer General thickness Function

Interior
Interior finish - -

Wooden board 12-18 mm Provides stability if the panel is
structurally loaded

Vapor repellent foil 0,2 mm Makes sure vapor from the inside
doesn’t enter the panel.

Insulation in timber framework Varies depending on desired
Rc-value. Usually depended on
standard timber dimensions.

Provides the required insulation
value.

Water repellent foil 0,2 mm Makes sure water from the
exterior cannot enter while vapor

from within can leave.
Timber battens 12-24 mm Enables the ventilation behind

the cladding to make sure any
access water is ventilated away.

Cladding 12+ mm Esthetical and shields the frame
of direct rain.

Exterior

Thijmen Pluimers 32

Tolerances
In prefabricated building tolerances are of great importance as the material behaviors, production
system and the management of the elements cannot be predicted 100% of the time (Jingmond
M., 2010). To ensure all elements fit together and none of them are too big a certain tolerance
is considered. In the first image below, it can be seen that between the elements and exterior
construction elements a tolerance of 20mm has been used. The second image shows tolerance
between two elements that are mounted against each other, in this case the tolerance is roughly
12mm. As these tolerances differ per material, element size and production system (Jingmond M.,
2010) it would be wise to make them an input parameter into the tool.

Image 2: Detail showing the mounting of a prefabricated element and the tolerances (source: personal communication
with De Groot Vroomshoop)

Image 3: Detail showing the connection between two elements and its tolerance (source: personal communication with
De Groot Vroomshoop)

Thijmen Pluimers32 33

Vapor resistant foils
Vapor balance in constructions is very important. If moisture gets trapped in a construction it can
start to degrade the elements. This is especially important when wood is being considered as
construction material or as wools are considered as insulation. In most buildings there is a vapor
pressure from inside to outside due to the temperature difference and the moisture production
inside (Künzel H.M., 1996). For this reason, vapor barriers are placed in timber framing elements.
They’re referenced drawings also show these barriers. They are shown in image 2 and 3. The interior
barrier is a vapor proof barrier that does not allow any type of moisture (liquid or vapor) through.
While the outside foil is a water proof vapor open barrier. This allows the vapor pressure in the
construction to be balanced by the exterior vapor pressure. And thus, making sure no condensation
takes place. To make sure that the vapor barrier is closed it is important that there are no seams on
the joints. To ensure this generally the foil is continued outside the panel. This way when the panel
gets on the building site the foils may the taped closed ensuring a closed vapor barrier.

Wood dimensions and intermediate distance
The dimensions of the wooden profiles are dependent on the milling which differs per supplier. For this
reason, the sizes of the profiles should be something that can be input by hand. As for the distance between
the profiles. This depends on the manufacturing process. There is always a maximum distance, in some
cases this depends on the structural performance of the panel. However, most of the time it is dictated by
insulation width. As rolls or blankets of insulation are mostly 60cm wide the space between the wooden
profiles is set to 60cm to not waste any material. Nonetheless De Groot Vroomshoop uses a machine to blow
insulation into the panels. So, there is no fixed size to ensure this is also possible the distancing should also
be changeable.

Thijmen Pluimers 34

Windows
Windows will be framed within the timber frame and there are multiple options for fitting them
in. One is shown below on image 3 where a separate framework is placed with the window in it.
Another way is mounting the window directly on the timber framing like shown in image 4, in this
case the timber framing of the window needs to be smaller than the timber of the panel itself in
order for the window to fit in the panel. However, the window is applied it is generally not fabricated
in the same factory as the prefab elements. Meaning they are also not modelled by the company.
Instead, they are provided as models.

Image 4: Detail showing how a metal/plastic window frame might be fitted in the fade panel by using an additional
framework (source: personal communication with De Groot Vroomshoop)

Image 5: Detail showing how a wooden window frame might be fitted in the fade panel by using the existing timber
frame of the panel (source: personal communication with De Groot Vroomshoop)

Thijmen Pluimers34 35

2.2.4. Conclusion
Having investigated the renovation strategies and the case studies it is clear that the general way of renovating
the building envelope is through the strategy of wrapping and in some cases adding in. However, since in
the case of this thesis prefabricated modules are considered it is most likely that the wrap-it approach the
most optimal one as it allows for the use of larger prefabricated panels. The case studies gave some clarity
about the preferred façade renovation strategies. In the case of the row-house renovation about what is
required in order to achieve zero energy. And the 2ND skin gave some insight in all-in-one renovation through
prefabricated panels which is further substantiated by the documentation from the prefabrication firm. How
these inputs are included in the tool is further elaborated on in the section about input parameters (2.3.2).

Thijmen Pluimers 36

2.3. How is the parametric method designed for the building renovation?
In this chapter the parametric aspect of this thesis is researched. With computational design a design process
with the assistance of computers (computer aided design or CAD) intended. Since decades computers are a
part of the design process. They help speed up the process of engineering and building. Where conventional
design with computers was mostly about modeling or drawing, parametric design is about the relationship
between elements. In the conventional design process, an engineer modelled what he thought to be the right
solution. If this had to change everything depended on it needed to change as well, all by hand. However,
in parametric design the aim is to establish relationships between parts. This does require more time and
requires the engineer not to think in solutions but rather in relations. The end result is a model that can be
changes by changing one of the parameters (Woodbury, 2010). It is therefore interconnected and a lot of
options can be rapidly produced. By doing this the engineer does not have to come up with the single best
solution. He can select from many solutions. In the case of this thesis, it is about generating panels and
adapting them to the parameters given by the engineer, who can judge the outcome and change the input
parameters accordingly.

The general aspects of the parametric tool are discussed in this chapter. First the current methods are
discussed after which the input parameters and the expected outcome is described. Finally, the general
process of getting from the input to the output is shown.

2.3.1. Current methods
In his paper (Montali J., 2018) Montali writes about the growing tendency to bring knowledge, which is
normally used in later stages to the design stage. Which helps the process to achieve the design for
manufacturing and assembly which reduces the failure costs of the building process. However, as Montali
describes the currently available tools do not address the current design-manufacturability gap in the façade
sector. The paper does not refer to renovation. However, its principles reviewed by Montali are the ones
also used in this thesis. From a literature has been reviewed to look at the current level of knowledge and to
establish the gap that this thesis hopes to bridge. To do so different criteria are included in the search terms.
First there is the manufacturing part, this is important as the tool need to design façade panels that can be
manufactured. Then there are the parametric design search terms which is the basis of the tool. The building
façade term because it is about building facades. And lastly there are the existing constrains, because in
renovation there are existing constrains that need to be taken into account. The keywords that were used to
search for literature are listed below.

Table 9: Key words used to search for literature. (source: self-made)

Manufacturing Parametric design Building façade Existing constrains

Design for
manufacturing

Dfm*

Parametric design
Paramet*

Façade*
Enveloppe

Existing
Constraints
Renovation

The search query gave a total result of 51 papers. All papers were screened using the title, abstract and
key words. The papers left are listed below and have fully been reviewed a summary is written about their
findings on the next pages. After then the gap in the knowledge which is necessary for this thesis is pointed
out.

Thijmen Pluimers36 37

Table 10: Resulting literature of the search query that is related to this thesis. (source: self-made)

Reference Author Title Year

(Tan T. M. G., 2019) T. Tan et al. BIM-enabled Design for Manufacture and Assembly 2019
(Sun Y., 2020) Y. Sun et al. Constraints Hindering the Development of High-Rise

Modular Buildings
2020

(Tan T. L. W., 2020) T. Tan et al. Construction-Oriented Design for Manufacture and
Assembly Guidelines

2020

(Chen K., 2018) K. Chen et al. Design for Manufacture and Assembly Oriented Design
Approach to a Curtain Wall System: A Case Study of a

Commercial Building in Wuhan, China

2018

(Holzer D., 2007) D. Holzer et al. Parametric Design and Structural Optimization for Early
Design Exploration

2007

(Austern G., 2018) G. Austern et
al.

Rationalization methods in computer aided fabrication: A
critical review

2018

BIM-enabled design for manufacture and assembly
In the paper Tan et al. (Tan T. M. G., 2019) Has reviewed several papers in order to determine the gap
between BIM-enabled engineering, design for manufacture and design for assembly. “The main purpose of
DfMA is to assist designers in optimizing and increasing productivity by integrating downstream knowledge
and information into the design stage.” The study mainly focusses on facades but there are some reviewed
papers about weather seals and bridges. The conclusion of the paper is that BIM in combination with Design
for Manufacturing and Assembly (DfMA) can adopt intelligent technologies. However, in the discussion it
is stated that these intelligent technologies in the manufacturing industry have gone through more than
twenty years of development. But the corresponding research in the construction industry is still lacking. But
with the last developments of construction industrialization an opportunity is provided to fill this gap.

Constraints Hindering the Development of High-Rise Modular Buildings
In his paper Sun et al. (Sun Y., 2020) researches the constrains that are holding back the development of
modular high-rise buildings. This is done by a literature survey to determine constrains and by a group of 12
experts in the field that review these constrains. The biggest constrain in this case is the Lack of experience
and expertise in the development process of the building. In de discussion Sun refers to the fact that the most
experienced engineers know what to take into account in the beginning of the process in order to not form
a problem during the manufacturing stage. This experience is what is lacking with engineers that just start
or architectural firms who do not have this type of expertise in house. It is therefore mentioned that DfMA
is an important aspect to fix this experience gap. By taking decisions that are made in the end upstream and
projecting them at the end result better decisions can be made.

Construction-Oriented Design for Manufacture and Assembly Guidelines
In this paper Tan et al. (Tan T. L. W., 2020) compares DfMA of the manufacturing industry where it has been
used for a reasonable period to the DfMA that can be used in the building industry where it is still infancy. The
paper points out that the industries are different and thus the guidelines for the one might need to adapt in
order for it to work for the other. The paper concludes with a set of five guide lines for construction-oriented
DfMA. First, the DfMA must consider context-based design as the project is attacked to land and its, physical,
natural and cultural context. Second, building technology-rationalized DfMA should help in de consideration
of the technology used by the means of their availability and efficiency. Third, logistics and supply chain
management are rarely considered in manufacturing but is of great importance in the construction industry,
therefore it is important that the logistics-optimized design principle is considered in the DfMA. Fourth, the
level of prefabrication and integration of parts greatly differs. Therefore, DfMA must consider component-
integrated designs. Fifth, Materials are related to all the presented guiding principles. The use of lightweight
structural efficient materials is a principle that should be included in the DfMA. The study shows that these
guidelines can operate both individually or collectively.

Thijmen Pluimers 38

Design for Manufacture and Assembly Oriented Design Approach to a Curtain Wall System: A Case Study
of a Commercial Building in Wuhan, China
In the paper Chen et al. (Chen K., 2018) describes that studies reporting DfMA-oriented design approaches to
curtain wall systems (CWS) are extremely rare. His paper reports a case study of a successfully applied DfMA-
orientated design with a CWS. But as described might be held back by the fact that no parametric design
was used. Meaning that any re-engineering forced the engineers to redo their drawings, calculations and
reports. This is then also the sole discussion point proposed in the paper. As the rest states that DfMA helped
decrease the material costs (nearly 40% in this particular case), improved the CWS quality and decreased the
pollution and waste materials during the manufacturing process. the paper shows the potential DfMA might
have.

Parametric Design and Structural Optimization for Early Design Exploration
The article written by Holzer et al. (Holzer D., 2007). Focuses on the question how engineering and architectural
expertise can be assisted by a process of digital engineering. The article describes the process of the creation
of a roof shell. The roof is created using parametric models. The paper concludes that the implementation
of this method and the type of parameters chosen are dependent on the progress of the project according
to the design stages. Meaning that the parameters differ greatly depending on the chosen design concept
but also the process. It goes on to state that the architect immediately gets visual feedback of the structural
performance of his design. Because of this he can design with this already in mind rather than having to adapt
his ideas and concepts to what is structurally possible later on. Furthermore, the architect and the engineer
get a better understanding of each other’s working methodology. Lastly it is stated that the project would not
have been possible without the iterative experimentation which is the basis of any parametric model.

Rationalization methods in computer aided fabrication: A critical review
In this paper about rationalization of the design using Computer aided fabrication (Austern G., 2018) the
writes describe the important roll robots are playing in industrialization. But that they have not really arrived
in the building industry yet. In order for robotization and fabrication in general rationalization is of great
importance. The paper shows the different stages at which different disciplines tend to rationalize their design.
Researchers before the process while designers, and engineers tend to do this during or after the process.
According to the author this is due to the fact that academics are typically also in charge of the fabrication
and thus have good cause to incorporate the constraints of it early in the project. In typical design-bid-build
projects this expertise is added later in the project where changes in order to make it manufacturable are
harder to implement (the academics practice DfMA while in typical projects this is not the case). Also, it
is explained that rationalization during the process is hard to implement if there is not a tool that helps
the experts. Parametric tools such as Grasshopper, Digital Project or Generative Component are named as
examples to help the engineer to do so. These tools can help its user to rationalize the design in real time. The
paper concludes to recommend future research directed towards development of easy-to-use parametric co-
rationalization methods that can operate in real time.

Concluding
The papers that have been reviewed all show the importance of design for manufacturing and assembly. It
is also noted that taking these design discissions to earlier in the process is not an easy task if there is no
computational or parametric aid for the project team. In his paper Austern et al. described parametric tools
that could help achieve this. There is no literature that connects DfMA to renovation however, Tan et al.
mentions in their paper Construction-oriented design for manufacture and assembly guidelines that in every
case the context is of great importance and should be one of the guidelines for the process. However, since
there is no mention of a desired way in which to do so this will be a gap in the knowledge this thesis tries to
fill.

Thijmen Pluimers38 39

2.3.1. Input parameters
In this paragraph the inputs of the tool are discussed. An input is whatever the tool requires from the user
to do its job. These inputs are gathered mainly from chapter 2.2. where the renovation and prefabrication
requirements are discussed.

Existing facade
The biggest input of the tool will be the limitations set by the current façade. As the panels and their windows
and doors need to align with the windows and doors of the existing façade. This existing façade can be input
as a model that is enriched with important details like where there should not be a panel (for mounting
purposes). Also, the strength of the façade behind the panels needs to be taken in to account in order for the
tool to calculate if the panels are not too big and therefore to heavy.

Tolerances
The tolerances used should be specified. Possibly there should be a difference between tolerances between
the panels themself and the tolerances between panels and other structures.

Rc-value
The need for renovation starts with the need for better insulation. This should be an input so that the tool
can calculate the Rc-value and determine the thickness that is needed for the panel in order to achieve this
Rc-value.

Panel limitations
The panel itself has limitations related to its size. A panel cannot be bigger than the façade, it should be able
to be manufactured in a given factory. But also, transportation and placement should be considered. In the
end it comes down to one maximum panel size. In width and in height.

Layer and Frame dimensions
Because each company might work with a different supplier for their layering and framing materials of choice
in this tool its dimensions and characteristics can be chosen as an input.

2.3.3. Tool output
The output of the tool should be a building information model that is ready for manufacturing. The engineer
should only have to check it and possibly make minor adjustments to project specific areas that the tool
does not produce correctly. The level of detailing should be such that all individual elements are modelled
separately (into layers of the panel and its framework) and are thus distinguished for the manufacturing
process. This corresponds with the LOD300 (level of detail) a term mostly used in the modeling world for
the amount of detailing a model should have. It should also provide the user with the information it needs
separate from the manufacturing, for instance the materials that are needed to make the panel. The weight,
RC-value and eventual size.

Thijmen Pluimers 40

2.3.4. Tool process
As stated in the introduction of chapter 2.2. there is a lack of literature on the topic presented in this thesis.
This is why the process described below is a general overview of how the process could be designed. However,
through consulting experts in the field, experimenting and research while designing the tool will be solidified
and try to bridge the gap in the body of knowledge. In the discussion, conclusion and recommendation of
this thesis this will be evaluated.

1. Façade division
In order to make the prefabricated panels the façade needs to be divided in multiple frame (if the panel
limitations make it so that one panel is not sufficient to cover the whole façade). Important aspects for
this are: the location of the windows/doors in the frames. As they cannot be divided over two frames due
to the required strength and stiffness of the panels. Also, tolerances and mounting positions need to be
taken into consideration.

2. Penalization of frames
The frames that the façade is divided into are to be penalized. This is done by taking the user input about
the layers and building a model of it. If there is a framework desired in the case of a timber frame panel
this should be specified by the user. The sizes of the framework and insulation layers can be specified by
the user as they are most comely standardized. The panels are being assessed in terms of energy and
structural performance as explained below. Possibly they have to be adapted after the results

3. Energy assessment
To make sure the façade achieves its goal of the required heat resistance it needs to be calculated in the
parametric method. The thermal resistance of a construction is generally expressed in Rc-values with
m²K/W as unit or for windows and doors it is common to talk about the U-value which is 1/Rc.
The Rc-value of a building component is calculated by dividing the thickness of the material by the Thermal
conductivity of the material. For example: r=d/λ=0.006/1.0=0.006 m²K/W. In most instances the wall
construction is layered. If is concerns a solid layered construction (without air cavities) only conduction has
to be taken into account to calculate the Rc value of the panel itself. To calculate the total Rc value of these
components the following formula can be used Rc=r_1+r_2+r_3+.. . If certain layers of the construction
consist of more than one part the r-value should be divided into percentages of that layer equal to the
material. For example, a layer has steel sections (5%) and insulation (95%). That layer would be calculated
as r_total=(r_(metal studs)∙0,05)+(r_insulation∙0,95) (Hagentoft, 2003). (The heat transmission from
surface to air (re or ri) is not taken into account in this part as it is already there in the original wall and
the value added in the parametric method should be the thermal resistance the user wants to add to the
building.)
The heat resistance is calculated using the user input for thickness of the element due to the standard
wood sizes. If the calculated RC-value is lower than the desired Rc-value the user is notified.

4. Structural assessment
In order to make sure the panels can be hung from the façade their weight can be divided of the loading
capacity of the mounting brackets, so that the engineer knows how much brackets are needed to carry the
panel and can decide it this is desired or not.

5. Information user
The final step is to inform the user of what has been done. If something has gone wrong the user should
be notified and told what they can change to make the tool work right. But if everything goes right the
user should be informed with the final shape of the panels and their specifications. For example, the Rc-
value or weight of every panel and materials used might be something the user is interested in.

Thijmen Pluimers40 41

2.3.5. Overview of tool
Having determined the input, output and the general process steps the layout of the tool might look something
like the image below.

Image 6: General layout of the tool after the research phase of the graduation (Source: Author)

Thijmen Pluimers 42

Thijmen Pluimers42 43

3. Design phase
With the research phase of the thesis completed the aim of the design phase is to take the research as a foundation and provide an answer to the main
research question: How can a parametric method be designed and what parameters are used for the renovation of poor energy preforming buildings in
order to provide designers and engineers with a building information model of prefabricated adjustable building’s envelope panels? In order to answer
this question, first the design of the panel has to be determined. After which this design is taken and a parametric method will be created to generate the
designed elements. To test this method, it will be applied on a case study building in order to generate renovation panels. Which are then assessed and
compared with the original design. Lessons learned from this are implemented in the tool if it did not function properly.

Thijmen Pluimers 44

3. Design phase
With the research phase of the thesis completed the aim of the design phase is to take the research as a foundation and provide an answer to the main
research question: How can a parametric method be designed and what parameters are used for the renovation of poor energy preforming buildings in
order to provide designers and engineers with a building information model of prefabricated adjustable building’s envelope panels? In order to answer
this question, first the design of the panel has to be determined. After which this design is taken and a parametric method will be created to generate the
designed elements. To test this method, it will be applied on a case study building in order to generate renovation panels. Which are then assessed and
compared with the original design. Lessons learned from this are implemented in the tool if it did not function properly.

Thijmen Pluimers44 45

3.1. Design of the panel
In order to make a good approach for the design of the refurbishment and the automatization of this process
with the use of computational design. This paragraph will analyze the most common building envelope
characteristics that are to be found in a rowhouse to determine if it is feasible to preform them with
prefabricated elements and/or parametric design. After which the elements will be discussed in detail.

3.1.1. Characteristics of facades
In order to make a good approach for the design of the refurbishment and the automatization of this process
with the use of computational design. This paragraph will analyze the most common building envelope
characteristics that are to be found in a rowhouse to determine if it is feasible to preform them with
prefabricated elements and/or parametric design. After which the elements will be discussed in detail.

Basic elements
In order to enclose any space, there are three basic
elements that are always required: a floor, walls
and a roof. In the case of this thesis the focus only
lies on the elements which can be prefabricated
for the renovation of row houses. This limits the
possibilities of the basic elements and eliminates
the floor as these are generally replaced with non-
prefab system or the existing floor is insulated.
The walls of row houses are very similar in most
cases: a straight façade with openings for doors
and openings. These elements lend themselves
perfectly for renovation with prefabricated
elements. The openings can be fitted in the panels
in order to already place the windows and doors in
the panels.
For the roofs there is a clear distinction between
two types: the slanted roof and the flat roof. The
slanted roof of most row houses is already constructed out of timber although not in a prefabricated manner.
Nowadays however most slanted roofs for houses are constructed with prefabricated timber frame elements.
The roof can have different openings like a skylight which can be integrated in the element like a window is
integrated in the walls. Another common roof element are dormers, these require an opening in the roof and
are put on top of the roof on the building site after the roof itself is fixed in place. (Lubbers, 2021) Next to the
slanted roofs there are also the flat roofs. These can also be prefabricated but in practice it is more commonly
chosen to apply a complete insulation layer on top of the (existing) construction layer. As this means there
are no weak links in the insulation in the form of construction members this type of roof build-up is known as
“warm dak” which refers to the construction being on the warm side of the roof (Joostdevree, 2021).
Having discussed the basic elements there are some elements that are not used in every rowhouse but are
still commonly found. These elements will be discussed next.

Image 7: example of a pre-war rowhouse (source:
(Agentschap NL, 2011))

Thijmen Pluimers 46

Bay windows
A commonly seen addition to row houses is bay windows.
They allow for an extension of the livable space. They
consist of separate parts, there is the façade part which is
closed and can be renovated and fitted with prefab wall
panels easily. But there is also the part with the windows.
This part is more different than the windows in the normal
façade in the way that the windows are not integrated in
the façade. They are their own component as can be seen
in the image. This is done to reduce the profile and not
have the complete depth of the wall at every corner of
the bay window.

Balconies
Another commonly addition to rowhouses are balconies.
However, at the time it was common practice to not
thermally disconnect the balconies from the house its
construction. Because of that the whole balcony is a big
thermal bridge. Insulating this balcony would solve the
thermal issue but the added thickness would mean that
if there are windows or doors below ore above, they will
have to be adapted in order for them to open properly.
But it is more commonly preferred to remove the balcony
and replace it with one that is disconnected from the
structure like in the 2ND skin project. In any case this
is not a part of the project that is normally executed in
prefab timber framing and so it will not be included in
this thesis.

Porches
The last characteristic which is sometimes seen in
rowhouses is when there is a Porch. This is an area that
is outside but that is surrounded by inside areas at the
sides and on top. This case is in a way similar to a balcony
in that the construction is continued outside the thermal
barrier. But with addition of walls on the side. Which
makes it tricky to renovate considering the limited space
that is available. So also, this characteristic will not be
included in the thesis.

Conclusion
Having gone through the most frequent building envelope
characteristics it is clear that the characteristics that
lend themselves for renovation though prefab elements
should be the ones that will be designed themselves
and later turned into a computational method. These
characteristics are: Walls, slanted roofs and bay-windows.
In the end all characteristics need to be able to interact
with each other. So, the computational method will need
to allow its user to make adjustments to allow for these
connections.

Image 8: Row house with a bay-window (source: ges-
chiedenisvanzuidholland.nl)

Image 9: Row house balconies (source: (Agentschap
NL, 2011))

Image 10: Row house portal entrance (source: self
made)

Thijmen Pluimers46 47

3.1.2. Wall panels
In order to design a panel, first the design of panels has to be studied. This has partially been done in chapter
3.2.3. – Prefabricated façade renovation in this paragraph that knowledge will be elaborated on further.

3.1.2.1. The theory
The timber frame element is composed of different parts. The image below shows a load-bearing timber
frame element. The structural part of these elements generally consists of 2 parts; The framework which
provides the form and strength. And the plating, which ensures the stability of the element. The bottom
wooden member of the framework is called a Bottom plate (1), the top element a Top plate (3). These are
connected by a series of studs (2) which are commonly spaced 400mm to 600mm apart. Depending on the
structural load there will be a Lintel
above the window (4) to transfer the
forces from above the window to the
studs next to the window. Which can
be double the thickness of normal
studs like the image below to ensure
they are strong enough.

The gaps between the studs are
filled with insulation materials to
increase the resistance to thermal
conductivity. A foil to ensure vapor is
not moving from the interior of the
building into the element is placed
on the interior. While a foil that
ensures any damp that might come
into the insulation part can transfer
out without water getting in is placed
on the exterior side. Lastly the plating
is added (5) to ensure the stability of
the element. (Woude, 2004)

As already stated in the research part of this thesis the sizes of the prefab panels are dependent on different
parameters. However, most manufacturers use the transportation limitation as a general limit to the size of
their panels. As panels with a size larger than that can be transported in a normal truck increases the cost of
transport drastically. Especially considering that there are a lot of trucks needed to transport all the panels
that are made. The sizes limits of the normal transported prefab panels are a height of 3,6 meter and a length
of 6,3 meter. (Raab Karcher, 2021; Gerrits, 2008) in case of houses and especially row houses this means
that the complete width of a façade and a floor height can be covered. This also allows for the panels to be
properly mounted to the structure of the building. As will be shown in the next paragraph.

Image 11: Row house portal entrance (source: self made)

Thijmen Pluimers 48

Mounting
In order for a timber frame panel to stay in place they need to be fixed using mounting brackets. These
brackets can be placed anywhere on the panel where there is access to a supporting structure behind the
panel. But generally, they are placed at the edges of a panel. The brackets need to be fixed at a load-bearing
part of the wall. Which can be the whole wall in case the wall itself is load-bearing. But it can also be that the
interior walls are load-bearing in the other direction in which case the side of those walls and the side of the
floor slaps might be used to mount the panels to. In the case study done in paragraph 3.2.3. – prefabricated
façade renovation the project’s prefab elements are supported around the panel. In the image below these
mounts are shown. The bottom mount ensures the panel is supported in all 3 axes. The other mounts are
only there to ensure the panel does not fall out of the façade.

Image 12: Detail showing the mounting of a prefabricated element vertical (source: personal communication with De
Groot Vroomshoop)

Thijmen Pluimers48 49

The side of the panel is generally fixed at the partition wall between two houses. As panels are mostly made
to the size of a house width (in case of row houses) and level height (as anything over 4 meters requires a
special transport). The space between these panels is generally left open with such a distance that is easy to
apply proper insulation to counter any thermal bridge.
In the case of this thesis the mounting will not be as straight forward as is shown in these images, because

these elements do not need to take into consideration a façade that is already in place and that might not be
as straight and level as the panel itself. Furthermore, it also will not be mounted directly onto floor slabs and
walls. Because of this there are a couple of possibilities:

1. The panels are mounted directly on the façade as it is strong enough to transfer the forces to the
foundation.

2. A construction is made which allows the panels to transfer their vertical loads to the foundation while
relying on the façade for the vertical stability.
3. The panels are mounted directly onto the structure of the building through the means of consoles that

penetrate the outer layer of the façade.
Of course, also combination between these options is possible.

Image 13: Detail showing the mounting of a prefabricated element horizontal
(source: personal communication with De Groot Vroomshoop)

Thijmen Pluimers 50

3.1.2.2. The panel design
Now that the wall panels and their characteristics are known in this part, the
design is formulated which will be used for the thesis and which is the basis
for the parametric tool. This panel design will be a generic design as the
parametric tool is a solution not for a single façade layout. Later this design
will be tested on a case study building. In the image to the right an illustration
is shown of a simple row house façade. It has four openings, every opening
needs to be completely surrounded by one panel. This is done so that the
window and door frames can already be fitted in the factory, by doing so the
concept of prefabrication is optimally applied. This can be a challenge when
the façade openings are large and because of that decrease the stability of
the panel. However, this is generally not the case with older row houses.

The division of the panels depends on the construction of the building. If the
façade itself is strong enough to support the weight of the panels then the
penalization of the façade is only limited by the transport size and the best
way to divide the façade from a mounting and engineering point of view.
However, in most of the cases the loadbearing structure has to be addressed
in order to fix the panels. This sets the first sizing limit for the panels as
they need to be within these borders in order to properly fix them to the
construction and also be able to insulate them in a good manner.

Having determined the panel boundaries, the layout of the panels themselves
can be generated. This is similar as the panel layout that is shown in the
beginning of the paragraph. The top and bottom plate together with the left-
and rightmost stud form the outline of the panel.
The panel is filled with studs that are offset 600mm every time. Next the
studs are placed next to the openings and a sill trimmer is added to the
bottom of the window with a lintel covering the top. In this case the linter
is a normal size timber element as it does not have to support any element
resting on top of it. The bottom plate for the door is only removed on the
building site to ensure the stability of the panel during transport. However,
if it is in the way of the placement of the door it will be removed and the
stability has to be ensured by placing another temporarily element.

Image 14: Panelization of facade

Thijmen Pluimers50 51

Placement
The panels need to be mounted on the original façade. But in order to ensure enough clearance to the façade
the engineer needs to define at which point the panels are placed. Depending on the mounting method this
plane might be further away from the façade but the general consideration in the placement of the plane is
to provide a straight plane that is not affected by any irregularities in the original façade. The type of mount
used to fix the panels highly depends in the strength of the sub structure. It might be fixed to the interior
wall like shown in image 15, to the exterior wall if it is strong enough or it might need a separate structure
altogether. These different mounting strategies are however not in the scope of the thesis. The attachment
of the panel on said mounting bracket however is part of the thesis. To make sure the seams between panels
are as little as possible and to ensure a unitized connection the unitized façade anchors shown below are
used as an inspiration. As shown the brackets on top have a double connection while to bottom bracket has
a single connection. This will be used in order to mount two elements to the same bracket.

Image 15: Mounting brackets used on prefab panels by
RC-panels (Source: R. Nuñez Larios)

Thijmen Pluimers 52

The detail below shows the essence of mounting the panels. The seam between the panels has been indented
to ensure no water gets behind the panels and also prolongs the thermal bridge the seam forms for the
façade. The panels are mounted on the mounting brackets with the use of the sleeves. In order to mount a
panel first, the lower brackets are put in place. After which the panel is lower over them allowing the brackets
to slide into the sleeves. Then the bracket on top is slid into the sleeve and fastened in doing so the panel is
secure. The process is then repeated. At the ground level there is a section of rigid insulation which is water
resisted. This prevents standing water from getting in touch with the panel and in doing so damaging it.

Image 16: Detail of the panel placement and mounting (Source: self-made)

Thijmen Pluimers52 53

Window openings
The incorporation of windows in panels can be done in different ways depending on the framing system,
material, and if the frames are made by the company themselves or by different sub-contractors. As can be
seen below the connection is different for a wooden or metal frame. There is however a clear transition from
where the panel framing ends and the elements for mounting the window framing begins.

This allows for flexibility in the approach of the generation of these infills.
So rather than designing a single window framing and formulate a computational method that places it in
all panels. It is preferred that the windows can be an input to the script. That takes the window and places it
in the assigned location in the panel. To do so a standard wooden framework for triple glazing will be used
to generate the windows. To make sure the finishing looks good on the inside there will need to be some
work done on site. The detail below shows how any inequalities in the right-angles of window frames can be
solved.

Image 17: Different approaches of windows frames in prefab timber panels (source: personal communication with De
Groot Vroomshoop)

Image 18: Detail showing the integration and interior finishing of window openings (Source: own work)

Thijmen Pluimers 54

3.1.3. Roof panels
In older row houses the roof is generally not insulated as can be seen in the detail below. During the
renovation the existing roofs can be insulated both from the inside and from the outside. However, with the
selected approach the new outside face of the wall will be further offset outward. This means that if the roof
is insulated from the inside there is no good connection between the insulation of the wall and the roof, this
can lead to cold bridges. For this reason, in this thesis the exterior will be the side that will be insulated with
the prefab panels. The rest of this paragraph will go into the theory of how such roof panels can be designed
and afterwards this knowledge will be used and further specified to the design for this thesis.

Image 19: The roof detail of a pre-war rowhouse (source: (Balkuv, 2017))

Thijmen Pluimers54 55

3.1.3.1. The theory
Roofs can be made in a number of different ways, such as a rafter roof or a purlin roof which indicate the
direction of the main construction members. Both of these types of construction also have a prefabricated
form. The purlin prefab roof commonly spans from one house partition wall to the next. While the rafter
version spans from eaves to ridge. Generally, these elements are connected to their counterpart on the
other side of the roof by means of a hinge (Woude van der, 2005). In this thesis the hinge roof will be
designed further as 8 out of every 10 roofs for new build houses uses this roof (de Leeuw, 2020) and thus the
knowledge is already widely known.

Structure
The structure of a hinge roof is similar to the structure of a timber frame wall in terms of its constructional
components. The image below shows these different elements: the roof rests on a wall beam (1) that transfers
the horizontal forces from the roof into the floor and the vertical forces into the wall. The interior of the panel
is generally cladded with timber board for interior finishing. Behind this layer there is a vapor proof barrier
similar to the wall panel. The core structure consists out of rafters that are in between the insulation layer of
the panel (2). The distance between these studs depends on the weight they need to support and the span
from the eaves to the ridge. On the exterior side of the insulation layer there is a water proof barrier again
similar to the wall panel.
Depending on the panel there can be boarding on the outside as well. Onto that the structure to support
the tiles is mounted first a vertical layer of lath’s and then a horizontal layer (3). The distance between these
depends on the distance between the rafters and type of tile used for the roof. On the top of the roof there
is the hinge which gives the element its name (4). Once in place the ridge (5) is placed on site.
The sizes of these elements depend on the span and tile division but are generally limited at 10 m long and
3,6 m wide as a result of the transportation limits. (Woude van der, 2005)

1

2

3

5

4

Image 20: Detailed section of a hinge roof (source: (Woude van der, 2005))

Thijmen Pluimers 56

Openings
There are different openings that can be made into a roof panel, the four main categories are (Woude van
der, 2005):

• Construction outlets – Such as chimneys
• Installation outlets – such as ventilation, plumbing vents or connections for solar panels.
• Dormers
• Skylights

The element that is applied to
the opening after its creation is
different for each category listed
above. However, the process of
making the opening is equal in
most cases and is similar to the
generation of a wall element. In
this way the roof penalization
can be viewed separately from
the components that are applied.
Which are mostly prefab elements
from other companies such as the
building service supplier or dormers
or skylights by Velux or any other
supplier.
An opening has to be surrounded by
wooden members that transfer the load to the closest rafter as can be seen in the image. If the opening is so
big that it crosses rafters the loads need to travel to the rafters next to the opening. Because of this the size
of the wood framing around the openings might increase depending on the number of rafters that are cut.

Image 21: Construction around roof opening (Source: (Woude van der, 2005))

Thijmen Pluimers56 57

3.1.3.2. The panel design
As already mentioned in the theory survey the prefab roof elements naturally are constructed using the
same design rules as wall elements in the way that at its core it can be considered a framework. However, in
order to fulfill its functions some parts have to be modified. Starting with the exterior, Lath’s are fixed on the
outside in order to carry the tiles. The size of the tiles dictates the distance between the laths and when one
wants to do it properly the openings in the roof need to take into consideration this measurement as well to
ensure no tiles need to be cut and.

Image 22: Hinge roof (Source: https://www.joostdevree.nl/shtmls/scharnierkap.shtml)

Thijmen Pluimers 58

Eaves
The detailing at the eaves of the roof is perhaps the most complicated detailing to be found in a roof as
everything comes together here; the roof with the wall, the force transfer, the insulation line and esthetics.
Starting with the mounting of the roof. The wall beam that which is set on site supports the roof and transfers
the forces through the bracket to either the floor if it is stiff enough to handle the forces or to a mounting
bracket on the other side so the horizontal forces will get canceled out.
Next, it is clear to see where the wall element ends and where the roof element begins. However, the
intermediate space is important to design properly. In order for the thermal barrier to be unbroken and
as efficient as possible. The same goes for the water barrier. As can be seen in the detail below, there is an
overhang added to the roof for esthetical purposes. Right now, it is set but in the computational part of
the research this will be something that can be changes by its parameter. This part is not insulated as it not
between an inside and outside space. Lastly the detail contains some finishing (the gutter and some wooden
boards) these are just there as an indication of how this might be done.

Image 23: Detail of roof base (source: self-made)

Thijmen Pluimers58 59

Ridge
At the ridge the two separate panels come together and are joined by a hinge. In the image shown below
everything above the hinge lines (insulation, laths and water barrier) has to be added on site.

Image 24: Detail of roof ridge (Source: self-made)

Thijmen Pluimers 60

3.1.4. Bay-window panels
Bay-windows are a commonly used method among row-houses to extend the space in their living rooms and
sometimes they also provide a balcony.

The image above shows the two most common typologies of bay windows. They both serve the same function
however the bay window on the left is a complete layer of windows between two segments of wall. The right
image however has the windows included in the wall. The design of both cases is similar to how the wall
panels are already generated. However, the connection is different as it needs to be inclined.

The bay window on the left will have a layer of wall panels below the window frames, then the framework
elements and then another layer of panels above the window frames. These elements can only be joined
on site as otherwise the window frame might take unexpected forces. However, the elements can be
prefabricated. The bay window on the right however can be prefabricated using complete panels as the
windows can be included in the.

Image 25: Two typologies of bay-windows (Source: geschiedenisvanzuidholland.nl (L), Own photo(R))

Thijmen Pluimers60 61

Connection between panels
As only the connection between the existing panels and the bay window panels themselves is different to
the wall panel generator this part has to be designed and can then be added to the parametric method of
the wall generator.
The detail below shows how an inclined connection between two panels can be made. First the connection
between the panel of the wall and the panel of the bay window. In which the last stud of the wall panel is
kept straight to minimize the number of panels with angular members. The connection between the bay
window panels is split half to allow for a flush alignment.

Image 26: Detail showing the connection between bay window panels and normal panels (Source: self made)

Thijmen Pluimers 62

3.2. Design of the tool
As already discussed in the research phase of this thesis there is already a lot of research on how to panelize
facades in a computational way. However, the amount of research catered towards the same subject for
renovation buildings is little. The research found was mostly written by A. F. Barco such as his paper about
building renovation adopts mass customization. This paper has been an inspiration for the work done in this
thesis.
But, where their research focusses on the design of the façade as a whole with the penalization as an output
for further design (using parametric for optimization) this research focusses on the process and an output
ready for manufacturing with a high level of detail within the panels (using parametric for atomization). This by
taking the design for manufacturing and assembly principle into account in the panel generation. Therefore,
the end level of the panels detailing is exact meaning that the materials, properties and positioning of all
individual elements is at a final design stage (LOD 300). In doing so parametric method can be used to speed
up the modelling of these panels for manufacturing as mentioned in the problem statement. This chapter will
go into the process of renovation and automate the steps of engineering the panels

3.2.1. Generic tool design
Having designed the renovation method for the row houses. The next step is to take the renovation process
and automating it using a parametric tool. But before a process can be automated first the process and its
deciding factors needs to be clarified. In this chapter the steps in the renovation process will be evaluated.

Generic design process
The building process knows different stages of design. In a normal design assignment, it starts with a sketch
design in which the needs and requirements for the project site are established. In this stage the general
direction for the project is determined. In a renovation project like is the scope of this research this phase is
limited to inspecting the existing situation, and determining the demands of the new façade system as well
as making a cost estimate.
The next step is the preliminary design in which the design gets more concrete to the point where the final
design is made. The measures and their impact are determined as well as the renovation approach. In this
stage it is decided what renovation method is to be used. The outcome of this stage are the required data for
the execution of the final design such as the RC-values.
The next stage is the engineering for the execution. This is the stage where all components of the panels
are designed and where everything is made ready for manufacturing and execution. This part of the design
process where this thesis is implemented. The details and geometry of every part are engineered in this
stage. It therefore relies heavily on the predetermined requirements from the previous stages.
When the engineering is done the next stage is the manufacturing and assembly of the design. Where all de
decisions and designs come together.
The last stage of a building design is the monitoring and maintenance stage. In this stage the building is
checked and maintained accordingly to ensure a long lifespan of the building and to ensure the performance,
comfort and safety of the building.
With the generic steps of the process clear next the steps specific to the scope of this thesis and the following
steps of the renovation will be described along with the required input, its source and the output.

Thijmen Pluimers62 63

0 – Design phase
The project starts with the design phase in which the state of the building is surveyed and the goal of the
renovation is decided. With this starting point and the goal of the design is set. These are used to make the
preliminary design. This involves deciding the construction approach, required RC-values and cost estimates.

1 – Data gathering
The first step in the process of engineering the renovation panels is the gathering of data which is used to
create the elements that are used for the renovation. This can be done by referring to as-built drawings,
3D-scans or on-site measurements. As long as the measurements are accurate and any deformations are
recorded. This information is generally already gathered during the design phase of the project.

2 – Determine area to be panelized
The next step is to take the data and determine what area should be panelized and what panels should be
used (Roof or wall). The result of this step will be the contours of the surface that will be divided into panel
contours. This contour is created by taking into account the space required for connections to exterior parts
and other panels. As well as the mounting system to be used. The result is acceptable if it can be panelized
properly. Meaning the panels used to fill the surface area are according to the manufacturing standards. No
panel should be too small nor too big to be able to fill the area, the openings can be fitted and the panel can
be mounted to the surface as well as connected to other panels/exterior elements such as window openings.

3 – Create panel contours
With the surface area to be panelized known, the panel contours can be created. This is done by filling the
surface contour with panels. The goal is to fill the surface with as few panels as possible while taking into
account the maximum panel size which is based on transportation, manufacturing and assembly limits. As
well as a minimum panel size limit which is based on constructability. Furthermore, in between the panels
there needs to be space for tolerances which depend on the building method and panel sizing. The output is
a group of contours of the panels which is acceptable when the mentioned parameters are met.

4 – Create panel geometry
After the boundary of the panels are determined the infill needs to be engineered. The basis of this infill is the
framework and insulation layer. Which is created to ensure the required RC-value which was calculated in the
EPC calculation for the building and is achieved by the thickness of the insulation layer. The wooden members
in this layer provide the strength for the panel and their size is determined by structural calculations as well
as standard timber sizes. Surrounding these layers are the vapor and moisture barrier to keep the moisture
out of the panel. Then there is a layer of board that provides the stability of the panel. This layer’s dimensions
depend on the amount of shear force it needs to withstand and the standard sizing’s of the material. As a last
part the windows are engineered into the panels. The size of the window is dictated by the opening implied
with the surface contours and is dependent on the required natural light that has to enter the building. The
output of this step is acceptable if the required RC-values are met, the panels can be manufactured and the
external connections can be made.

5 – Calculations
With the panels generated their specific weight and RC-value can be calculated. This is done to ensure the
required RC-values are met and to inform the engineer about the weight of the panel for the engineering of
the mounting brackets. But also, to document the data. The output is acceptable if the panel RC-requirements
are met and the weight can be carried with the mounting brackets assigned to the panel. If not, the panel
needs redesigning.

Thijmen Pluimers 64

6 – Engineer connections
Next the connections between the panel and external components such as reveals, panel to panel connections
and the mounting brackets can be engineered. These connections depend on the geometry of the component
they need to connect and the requirements to this connection. For the mounting brackets the strength of the
bracket is a limiting factor and the number of brackets is determined by structural calculations and the weight
of the panel. For the connections between the panels building physics determines how the connections are
made. They need to be waterproof and not create a hole in the insulation.

7 – Manufacturing & transport
After the engineering is done the plans for the engineering are handed to the manufacturing site where
the panels are made along with all their attributes. When manufactured the panels are transported to the
construction site to be installed.

8 – disassemble
In order to renovate the building first the obsolete parts need to be removed such as the window openings
and existing roof panels. This so that the panels and their connections as they have been designed can be
placed. All these elements will be marked on a disassembly plan to be communicated to the construction
site workers.

9 – Mounting brackets
Next the building is prepared for the attachment of the panels by installing the mounting brackets on their
designated location. This is a very precise operation as the mounting brackets are already attached to the
panels, and so decide how the panel will be mounted. The locations of these brackets are engineered in along
with all other connections.

10 – Mounting panels
With everything ready the panels are mounted to the façade. The location of the panels on the façade
needs to be checked to ensure the panel is placed as it was intended (within the tolerances that are taken
into account during the design). Also, there connections to other panels and the reveals are installed. These
connections need to be checked as they are the “weak points” in the design because it’s the only part that
ensures a fully closed façade that is installed on site.

11 – Apply cladding
After the panels are installed, the technical renovation is completed, with the panels the house now complies
with the building regulations and the RC-value of these surfaces is sufficient for heating with low temperature
heating. However, cladding of any kind will need to be applied to comply with the aesthetic standards required
by the local aesthetics committee. Depending on the cladding material additional layers might be required.
This is the last layer to be applied to the structure.

12 – Post construction
With the cladding and finishing applied to the building envelope the renovation is complete. The building
complies with the demands set out in step 0. To ensure the performance, safety and comfort of the building
it needs to be monitored periodically and maintained to ensure it stays in a good state.

Those are the general steps in the process of renovation. The excel sheet on the next page shows the steps in
more detail along with their input and output. In order to give a complete overview of the process.

Thijmen Pluimers64 65

step Operation Comment sub-operation Parameters
Input Source Output Goal

0 Data gathering Collect and manage data from the
building

Acquire 3D scan/model/
drawing

Model of the building
envelope Inform all other steps

1 Surface area Decide what area of the surface will be
panelized

What type of panel should be
used Roof/wall Nature of the surface Decide panel generation

method Inform all other steps

Create boundary contour
External connections

Openings Locations of connections to
reveals Engineer reveal connections

Other surfaces to be
panelized

Locations of panels in other
planes Engineer connections to panels

Sizing of area Minimum panel sizes Go/No go Inform if whole area can be panelized

2 Panel contour Creates boundary contour for the panels

Create surface & opening
domains Surface contours Data step 0 Mathmathical domains Inform panel distribution

Create panel boundaries

Panel size limits
Transport size limits

Maximal panel size limit Inform panel distributionFactory size limits
Assembly size limits

Tolerances
Building method &
panel sizes Distance between panels Inform panel distriburtion
ISO/NEN 2768

3 Panel geometry Geometries of all panel members are
generated

Generate wooden members
Member sizing’s Structural calculations

earlier design stage Wooden member geometry

BIM for manufacture & assembly

Layer thickness
Generated insulation Layer thickness EPC calculation Insulation geometry
Generate solid layers Layer thickness Structural calculations Solid layers geometry

Place windows & doors
Window geometry Building plans

earlier design stage Window geometry
Window tags

4 Calculations Perform calculations to validate panel
performance

Calculate RC-value
Layer thicknesses Panel geometry step 3

RC-value panels Check and document performance
According to design stageLambda value Material property

Weight calculation
Geometry volume Panel geometry step 3

Weight panels Inform engineering of mounts
Density Material property

5 Engineer
connections Engineer connections to all exterior parts

Mounting brackets Panel weight & sub structure Structural calculations Locations and dimensions of
brackets

Inform construction site workersOpening connections Sizing & location of
connection Design & data step 0 Geometry for connection

reveal

panel to panel connections Gap between panels Tolerance step 2 Geometry of panel to panel
connection

6 Manufacturing &
transport The creation an shipping of the panels - Generate geometry panels Step 3 Fabricated panel Building site

7 Disassembly
Disassembling window frames and other
objects in the way of the to be placed
panels

- Disassembly drawing Earlier design stage Disassembled openings
ready for renovation

To be covered up with panels and reveal
connections

8 Mounting
brackets Placing mounting brackets - Locations and dimensions of

brackets Step 5 Brackets located on the
building envelope To mount the panel using the brackets

9 Mounting panels Mounting the panels to the surface and
applying all connections to external parts - Fabricated panels Step 6 Mounted façade panel To match the design

10 Apply cladding Apply cladding and finishing to the
surface - Type of cladding and

mounting procedure
Earlier design stage by
architect Finalized façade To match the design

Table 11: Engineering steps, there sub operations and the required input and expected output.(Source: self made)

Thijmen Pluimers 66

step Operation Comment sub-operation Parameters
Input Source Output Goal

0 Data gathering Collect and manage data from the
building

Acquire 3D scan/model/
drawing

Model of the building
envelope Inform all other steps

1 Surface area Decide what area of the surface will be
panelized

What type of panel should be
used Roof/wall Nature of the surface Decide panel generation

method Inform all other steps

Create boundary contour
External connections

Openings Locations of connections to
reveals Engineer reveal connections

Other surfaces to be
panelized

Locations of panels in other
planes Engineer connections to panels

Sizing of area Minimum panel sizes Go/No go Inform if whole area can be panelized

2 Panel contour Creates boundary contour for the panels

Create surface & opening
domains Surface contours Data step 0 Mathmathical domains Inform panel distribution

Create panel boundaries

Panel size limits
Transport size limits

Maximal panel size limit Inform panel distributionFactory size limits
Assembly size limits

Tolerances
Building method &
panel sizes Distance between panels Inform panel distriburtion
ISO/NEN 2768

3 Panel geometry Geometries of all panel members are
generated

Generate wooden members
Member sizing’s Structural calculations

earlier design stage Wooden member geometry

BIM for manufacture & assembly

Layer thickness
Generated insulation Layer thickness EPC calculation Insulation geometry
Generate solid layers Layer thickness Structural calculations Solid layers geometry

Place windows & doors
Window geometry Building plans

earlier design stage Window geometry
Window tags

4 Calculations Perform calculations to validate panel
performance

Calculate RC-value
Layer thicknesses Panel geometry step 3

RC-value panels Check and document performance
According to design stageLambda value Material property

Weight calculation
Geometry volume Panel geometry step 3

Weight panels Inform engineering of mounts
Density Material property

5 Engineer
connections Engineer connections to all exterior parts

Mounting brackets Panel weight & sub structure Structural calculations Locations and dimensions of
brackets

Inform construction site workersOpening connections Sizing & location of
connection Design & data step 0 Geometry for connection

reveal

panel to panel connections Gap between panels Tolerance step 2 Geometry of panel to panel
connection

6 Manufacturing &
transport The creation an shipping of the panels - Generate geometry panels Step 3 Fabricated panel Building site

7 Disassembly
Disassembling window frames and other
objects in the way of the to be placed
panels

- Disassembly drawing Earlier design stage Disassembled openings
ready for renovation

To be covered up with panels and reveal
connections

8 Mounting
brackets Placing mounting brackets - Locations and dimensions of

brackets Step 5 Brackets located on the
building envelope To mount the panel using the brackets

9 Mounting panels Mounting the panels to the surface and
applying all connections to external parts - Fabricated panels Step 6 Mounted façade panel To match the design

10 Apply cladding Apply cladding and finishing to the
surface - Type of cladding and

mounting procedure
Earlier design stage by
architect Finalized façade To match the design

Thijmen Pluimers66 67

All steps and parameters used in these steps are pieces of
information that are communicated between professionals that
each contribute to the process. Each of them needs information
from previous stages. This is shown in the table on the previous
page but to give a better overview the diagram shown here has
been made showing the flow of information from one profesional
to an other and what they do with this information. The flow
sugests a liniar flow of information however in reality a more
intergrated desgin process is prefered in which profesionals work
closely together and data flows between all steps.

Final generic tool scheme
Having composed an overview of the renovation process and the
information flow a final scheme for the computational method can
be drawn up. This scheme is composed of the scheme from the
research phase chapter 2.3.5. and the steps and in-/output of the
table is added. The end result is a scheme of on the next page.
Showing the tool input and what parameters it is based on. As well
as all the operations conducted to get from the input to a Building
Information Model. 

Image 27: Information workflow between
professionals in the renovation process

Thijmen Pluimers 68

Thijmen Pluimers68 69

Image 28: The final scheme showing the general method for the design of the tool. Which will be further specified per characteristic (Source: Own image)

Thijmen Pluimers 70

Image 28: The final scheme showing the general method for the design of the tool. Which will be further specified per characteristic (Source: Own image)

Thijmen Pluimers70 71

3.1.7. Wall generation tool
The essence of the wall generation tool is to take the input of the wall and its specifics and combine it
with the design rules provided by the user in order to provide the user with 3D models of the panels and
information about their thermal performance and weight. The process gone through is explained in this
chapter, an overview of this process has been given in the flow chart below. It is up to the user to decide if
he/she want the computational method to generate the panel contours or if he/she wants to provide them.
However, the structure in this chapter follows the chronological work order within the tool.

Image 29: Flowchart showing the general overview of the wall generation tool
(Source: own image)

Thijmen Pluimers 72

Grasshopper script
The workflow diagram above has been translated into grasshopper as can be seen on the image below.
The green groups on the left side represent the inputs per category, the purple elements are the components
that process this input, and the cyan group on the right represents the output of the script in every component’s
geometry, the panel weight and RC-value
The rest of this chapter will go into detail as to how these individual components function. The grasshopper
script can be found in appendix 7.1.

Image 30: Grasshopper file that performs the generation of wall elements (Source: own image)

Thijmen Pluimers72 73

3.1.7.1. Contour generation
To start of the generation of the timber wall panels, first their contours need to be determined. This paragraph
will first go into the inputs required for the computational method to provide said contours after which the
process of generating them will be discussed.

Input
In order for the method to operate it requires inputs, these are listed and discussed in this section.
• Edge tolerance

To take into account the tolerances required around the edge of the panels this parameter is used.
• Tolerance between panels

To ensure ample spacing between the different panels this parameter is used
• Façade curves

To generate the domains for the façade the curves are used as an input.
• Opening curves

To generate the domains for the openings the curves are used as an input.
• Stud width and plate height

These parameters are used to ensure enough spacing between panel edges and window edges
• Maximum panel dimensions

The maximum height and width a panel can have in order to keep the panels within these limits

Process
The process of generating the panels is done in three steps. The first is setting the limits of the panels by
generating domains in which they can be generated. After that the panels themselves are generated. Lastly
the generated panels are structured within the grasshopper logic. This process is chosen over an algorithm
like used in building renovation adapts mass-customization (Barco A.D., 2016) because the facades are far
less complex in their panel layout. It might even be that the user provides their own panel layout.

Domain generation - Theory
In order to properly generate the panel contours.
First the domain of the façade and the locations of
the windows within this domain are established. So,
to ensure the locations at which there cannot be any
panel boundaries. The process of the generation of
these domains is illustrated in image 31. The façade
domain (blue) shows the range within which the
panels can be generated. The opening domains (red)
show where there cannot be any panel boundaries.
These are generated for X and Y separately. This
approach works for rowhouses well because the
layout of the openings in the façade is generally
in line with each other. Meaning that openings
are positioned above each other and on the same
height rather than in other lay outs for example a
chessboard pattern on which this approach would
not work.

Image 31: The generation of façade and opening domains
(source: own image)

Thijmen Pluimers 74

Domain generation - Workflow
The workflow of the generation of the domains is displayed in the workflow diagram below the domains for
the openings (left) take into account an additional offset to ensure a stud and plate can always run around the
opening and thus support the framework. The domain of the façade has no need for additional information.

Domain generation - Grasshopper
As the generation of domains take a geometry as input and a domain as output
only a single element is used that is coded using python. The python script of
these components is added in appendix 7.1.1.

Image 32: Workflow of the process of generating domains for the windows (Source: Self made)

Image 33: Screenshot from the
grasshopper elements creating
the domains

Thijmen Pluimers74 75

Contour generation - Theory
The domains will be input for the grasshopper component that determines the positions of the corner points
of the panels. It does so in both X and Y direction separately and takes the previous determined point (in the
first iteration this point is the corner point of the panel.) as a starting point and adding the maximum panel
size to this point. It then checks if the point is in the domain of a window or outside of the façade domain. If
so, it places the point back to the last proper location. In case of an intersection with an opening the point
is placed back to the edge of the opening while taking into consideration the minimum distance it needs to
keep from this edge (in order to fit a timber frame around the window). If the generated point is both within
the façade domain and outside the opening domains the point is accepted and the component moves on to
the next point. The image on the right shows the end result of this process as the corner points are joined by
a line. The edges tolerance and tolerances between the panels can be seen in this image. For this generation
the panel size has been set in such a way that it intersects with the right windows. Which is handled by
placing the contour of the panel to the left of the opening. This process results in the blue rectangular panels
which are then clipped by the red lines to form the final panels for the façade. The final panels are shown in
the lower illustration.

Image 34: Visuallisation of the panel contour generation (Source: own image)

Thijmen Pluimers 76

Contour generation - Workflow
In order to create these panel contours the workflow shown below is used. It does so by generating a list of
x and Y coordinates is generated separately using a while loop, which means it runs until a condition is met.
In this case that condition is the last point in the generated list being the last placeable point on the façade.
When the coordinates are found they are used as corner points for the façade and thus create rectangular
panels. These panels are then cut using a panel boundary curve to fit them in the façade.

Image 35: Workflow of the panel generation (Source: own image)

Thijmen Pluimers76 77

Contour generation - Grasshopper
The workflow as shown on the previous page is executed in grasshopper the buildup is shown below, further
detailing about the components and their python scripts can be found in appendix 7.1.2. First the façade
is divided into rectangular panels, then the exterior curve of the façade is offset inward to create a panel
boundary which is used to clip or cut the panels that stick out. When this is done the gaps in the contour
created by the clipping or cutting are closed to form a continuous panel contour within the façade boundary.

Facade
devider

Panel boundary

Panel clipping
Panel capping

Image 36: grasshopper script used to generate the panel contours.(Source: own image)

Thijmen Pluimers 78

Structuring
As a last part of the contour generation and as a base of reference for the rest of the method the panels
generated and the openings provided are structured in the grasshopper tree structure in such a way that
every panel is in its own branch and that openings within those panels are assigned to the same branch
(within another tree). This enables the method and later the user to refer to the panel individually and pull
their information. The principle of structuring is shown in the workflow below.

To make this workflow function in grasshopper a python script has been used, it is added in the appendix
7.1.3. and because its size is small it’s also added below. This block first creates the two data trees for panels
and openings. After this it runs over all panels and generates a tree branch to place them in. while also
checking for openings in the panels. If there are openings, they are added in the corresponding tree branch.
If there are no openings an empty branch is generated in order for the rest of the tool to function properly.

Image 37: Workflow of structuring the panel and opening curves. (Source: own image)

structured_panels = DataTree[rg.Curve]()
structured_openings = DataTree[rg.Curve]()

for i,pan in enumerate(panels):
 myPath = GH_Path(i)
 structured_panels.Add(pan,myPath) ## adds panel to data tree
 open_in_pan = False
 for j,check in enumerate(is_inside.Branch(0,i)):
 if check == 2: ## 2 means the center point of the opening is inside the panel
 structured_openings.Add(openings[j],myPath) ## adds opening to data tree
 open_in_pan = True
 if open_in_pan == False: ## if there is no opening in the panel it generates an empty branch
 structured_openings.EnsurePath(myPath)

Block of code used to structure panels and their respective openings in grasshopper

Thijmen Pluimers78 79

3.1.7.2. Layer generation
In this chapter the generation of the different panel layers will be discussed excluding the framework which
will be discussed in the next chapter. The layers generated in this chapter are solid layers that are the size
of the panel and have openings where there are openings in the panels. In theory the number of layers can
be as much as required. For the purpose of this research, it was limited to five being: 1) interior board, 2)
vapor proof layer, 3) framework, 4) water proof layer, 5) exterior board. The process of all layers except the
framework is identical and so only the generation of one layer will be explained.

Input
In order for the method to operate it requires inputs, these are listed and discussed in this section.
• Structured panels

The structured panels are the boundary of the layers.
• Structured openings

The structured openings allow the layer generator to cut the openings out of the layer per panel.
• Layer thickness

The layer thickness provides the thickness the layer should have.
• Thicknesses of layers before

In order to get the layer in the proper location in the model it needs to be offset from the plane with the
distance of the sum of all the previous layers their thicknesses.

Process
The process of generating these layers illustrated in the image below. First the surface of the layer is generated
per panel (left). Then the windows are cut out of this surface(middle) lastly the surface is moved to the
right location within the panel using the thicknesses of all layers before and extruded using the thickness
provided(right).

Image 38: The generation of a solid layer(Source: own image)

Thijmen Pluimers 80

Layer generation - Workflow
In order to execute the process as described on the previous page the workflow diagram shown below is
used.

Layer generation - Grasshopper
To execute this process in grasshopper the script below has been used as a cluster to be reused for all layers
individually. This makes it easier for future users to modify the number of layers. The top row generates the
surface and takes out the windows after which the middle row of components moves it into position and
extrudes it to the correct thickness.

Image 39: Workflow for extruding panel layers(Source: own image)

Image 40: Screenshot of the grasshopper script for extruding panel layers. (source: own image)

Thijmen Pluimers80 81

3.1.7.3. Layer generation - Framework
The generation of the framework is more complex than the normal layer generation it still relies on the surfaces,
moving and extruding them. However, the way in which these surfaces are generated is more complex as it
needs to take into account the panels edges, openings and the wooden members of the framework itself.

Input
In order for the method to operate it requires inputs, these are listed and discussed in this section.
• Structured panels and their windows

A tree structure with all panels in a separate branch and a different tree structure with openings in the
same branch as their panels are in.

• Plane
Plane in which the façade is orientated.

• Plate height
Integer in which the height of the plate members is set.

• Stud interval
Integer in which the spacing between studs is set.

• Stud width
Integer in which the height of the stud members is set.

• Min distance between studs
Integer in which the minimum distance between studs is set, used to check if studs are not positioned to
close to studs at the end of the façade of next to windows.

• Layer thickness
Integer in which the thickness of the framework layer is described.

• Thickness layers before
Integer in which the thicknesses of all layers before the framework are added. So that the framework can
be positioned in the proper location.

Process
The process of generating the framework is divided into several different steps all of them are described per
different component generated

Boundary members - Theory
The boundary members which are the wooden
members of the framework that form the outline
of the panel. First the horizontal members are
generated as these are generally the base for the
panel or the connection surface between two
panels which need to be straight. The process of
generating these members is done by taking the
horizontal lines of the panels and offsetting them to
the inside of the panel. these lines together with the
original horizontal panel lines form the horizontal
plates that are clipped by the panel boundary and by
any opening cutting through them. Having created
the horizontal members, the curves of the panel
boundary and their offset counterparts that are
left over from the rest of the boundary members.
These members are generated in the same manner
however they are clipped by the horizontal plates
to ensure that the horizontal plates run to the edge
of the panel.

Image 41: the generation of the boundary members (Source:
own image)

Thijmen Pluimers 82

Boundary members - Workflow
The workflow used to generate these boundary members is shown below. It splits the panel contours in
horizontal and non-horizontal parts and then transforms them into boundary plates using the method
explained above.

Image 42: workflow of the boundary member generating process (Source: own image)

Thijmen Pluimers82 83

Boundary members - Grasshopper
This workflow is then scripted into rhino. It starts off with a component that splits the boundaries in horizontal
a non-horizontal part. The horizontal parts are turned into plate curves within the same component and the
non-horizontal parts are taken to a second component which makes them fit between the horizontal parts.
How this is done exactly with the python scripts can be seen in appendix 7.1.5.

Image 43: The grasshopper components used to generate the boundary members (Source: self made)

Thijmen Pluimers 84

Opening plates
Next to the boundary plates also the opening plates are generated.
These are the plates that are at the top and bottom of every window
opening. With an exception for the openings that are partially on the
edge of the panel like the door opening in this case. It uses the same
principles as the boundary members. But uses the horizontal curves
of the openings as input.
The workflow used to generate this is shown below. It takes the
horizontal lines of the opening contours, offsets them outward and
checks if it is in panel.
This workflow diagram is translated into grasshopper using the
components shown in the image at the bottom of the page. this
includes a python component of which the script can be found in
appendix 7.16.

Image 45: Workflow of the generation of the window plates. (Source: own image)

Image 46: Grasshopper script to generate opening plates. (Source: own image)

Image 44: Opening plates added to the
framework members. (Source: own image)

Thijmen Pluimers84 85

Studs - Theory
The studs are the most common members of the prefab panel
and also the most complex part to place. It does not only need
to take into account all the other members of the panel it also
needs to take into account the openings, intervals between the
members that cannot be too small and studs always need to
be right next to an opening. This process is a bit similar to the
generation of the panel contours. It generates X coordinates for
the center lines of the studs it does so by starting at the boundary
of the panel and adding the stud interval to this x coordinate. It
then checks if the location of the stud is acceptable. For the stud
to be in an acceptable location it needs to be A) within the panel.
B) not within a given proximity of an opening as is set with a
parameter to ensure there is enough space between the studs to
apply insulation properly. As can be seen in image 46 the stud on
the left side of the right window is move slightly left to ensure the
minimum distance which in this case is 100mm is met. In order to
achieve this, it checks if the coordinate is between the window
edge ± 100mm and moves it accordingly while also placing the
stud at the window edge. C) if the previous coordinate is before a
window edge and the next one is after a window edge (but both
fall out of the range if ± 100mm) instead the stud next to the
window is placed to ensure that most studs have an interval of in
this case 600mm. (the blue dashed line in the image below) D) if
the last stud is too close to the boundary member it is also placed
back with the 100mm parameter. 

Image 47: Studs added to the framework
members. (Source: own image)

Image 48: Illustration of there no studs can be placed (red) and where a stud has to be placed (blue dashed line) (Source:
own image)

Thijmen Pluimers 86

Studs - Theory
The workflow of the method which is described at the previous page is shown here. As stated, a list of
stud coordinates is generated within the domain of the panel. This while taking into account the provided
minimum proximity to the openings. These coordinates are used to generate the stud outlines which are
then cut by the plates and openings leaving studs that are all in the intended position and with the desired
length as shown in image 46.

Image 49: Workflow diagram of the generation of the studs(Source: own image)

Thijmen Pluimers86 87

Studs - Grasshopper
The workflow diagram shown on the previous page has been translated into grasshopper using the
components below. The top part takes the exterior lines of the panels. The bottom part then generates the
studs and clips them to the panels (this only happens if the panels are not rectangular). More detail about
this script and the python components used can be found in appendix 7.1.7.

Image 50: Illustration of there no studs can be placed (red) and where a stud has to be placed (blue dashed line) (Source:
own image)

Thijmen Pluimers 88

Insulation generation - Theory
The generation of the insulation is similar to the normal
generation of panels. A surface is constructed from the panel and
the openings are cut out. However, after the openings also the
wooden members are cut from the surface, in this way only the
to be insulated surfaces remain.

Insulation generation - Workflow
To generate the insulation the workflow shown at the bottom
of the page is used. First the surface of the panels is generated
and then the surface of the already generated elements (studs,
boundary members, plates and the openings) is subtracted
leaving only the insulation

Image 51: Insulation added in between the
framework members. (Source: own image)

Image 52: Workflow illustrating the generation of the insulation within the
framework layer (Source: self-made)

Thijmen Pluimers88 89

Insulation generation - Grasshopper
To generate the insulation the surfaces of the wooden members and openings are joined (cutting objects)
and subtracted from the panels surface. In this way the only surfaces left are the surfaces where insulation
needs to be applied. The grasshopper components to do this are shown below.

Image 53: Grasshopper script to generate insulation (Source: own image)

Thijmen Pluimers 90

Extruding and moving
After all the surfaces have been generated, they are moved to their
position in the panel (depending on the layers that are in front of
them) and extruded. This process is identical to the generation of
the normal solid layers. As can be seen in the workflow diagram of
this process which is shown at the bottom of the page.

Image 54: The framework extruded and moved
to the correct position. (Source: own image)

Image 55: Workflow diagram of the extrusion of framework and insulation layer. (Source: own image)

Thijmen Pluimers90 91

3.2.2.4. Panel connections
In order to create the indentation between the panels a separate component is needed. As these are created
outside the panels in the intermediate space.

Input
• Structured panels

A tree structure with all panels in a separate branch in order to
select the top and bottom line

• Plane
Plane in which the façade is orientated

• Plate height
Integer in which the height of the plate members is set

• Stud interval
Integer in which the spacing between studs is set

• Stud width
Integer in which the height of the stud members is set

• Min distance between studs
Integer in which the minimum distance between studs is set,
used to check if studs are not positioned to close to studs at
the end of the façade.

• Layer thickness
Integer in which the thickness of the framework layer is
described. Of which the tolerance between the indentation
will be subtracted and the integer will be halved.

• Thickness layers before
Integer in which the thicknesses of all layers before the
framework are added. So that the framework can be positioned
in the proper location.

Process
The process starts off with identifying the top and bottom lines
of the panels that are connected to other panels. For the top
lines the backwards indentation is then created with the same
materials as the board and framework. The dimensions are the
same as the original framework only the thickness is halved and
tolerance is taken into account. The same is done for the front
indentations. The layers are then moved to the right position and
extruded.

Image 56: A façade panel showing the indenta-
tion designed (Source: own image)

Thijmen Pluimers 92

Panel connections - Workflow
The workflow of the generation of these indentations or panel connections is shown below, it relies on the
same logic to generate plates and studs as is done by their respective components as described before only in
this case it does not need to take into account any openings and thus the studs are all spaces with the desired
interval requiring less wood and less work to get the insulation in.

Panel connections - Grasshopper
This workflow has been translated into grasshopper as shown below. First a python component generates
the framework members and their boundary. Then these are used to generate the insulation and finishing.
After which all the layers are moved in place. More detail about this can be found in appendix 7.1.8.

Image 57: Workflow diagram showing the process designed for the generation of the connections between the panels.
(Source: own image)

framework
generator

Insulation and �nishing
generator

Moving and extruding

Image 58: Grasshopper script generating the connections between panels. (Source: own image)

Thijmen Pluimers92 93

3.2.2.5. RC-calculator
To ensure the wall panels have a sufficient thermal resistance the RC value is calculated within the tool.
Input
Stage one

• Insulation thickness
Integer containing the thickness of the insulation

• Lambda of insulation
Integer containing the lambda value of the insulation

Stage two
• Framework thickness

Integer containing the thickness of the insulation layer
• Lambda of framework elements

Integers containing the lambda values of the wooden members and insulation
• Area of frame members

Area of the wooden members and insulation to determine the mean RC-value

Process
The calculations are done in two stages; the first stage is being calculated before the process of generating
the framework for the panels. It does so by dividing the thickness of the layer by the lambda value of the
specific material which is provided by the user. Which is the way to calculate Rc values for solid constructions.
(Hagentoft, 2003) This calculation gives an estimate of the upper boundary of the RC value of the panel. As
the addition of more wooden framework members (which have a lower lambda) reduces the Rc value of the
panels. As the percentage of wooden members is different for every panel due to its layout the lowest value
is selected and fed back to the engineer so that he can decide if it is sufficient. The image below shows a
panel within grasshopper giving the feedback to its user about the two calculated Rc values. The scripts used
can be found in appendix 7.1.9.

Image 59: RC-calculating components and their output (source: own image)

Thijmen Pluimers 94

3.2.2.6. Weight calculator
To enable the user of the tool to assess how much mounting points the panel needs (depending on the
weight and the strength of the supporting structure) the weight of the panels is calculated.
Input
• Density per material

Integer containing the density of the materials used
• Volume per material

Volume of the materials in the panels. Gathered from the extruded elements

Process
In order to calculate the weight of the panels all their extruded elements are taken and multiplied by the by
the user provided density. As with all the other elements in the computational script the weight is separated
in a branch per panel. A mass addition provides a simple overview of the weight per panel as shown in the
image below.

Image 60: the calculated weight per panels separated in tree
branches (Source: own image)

Thijmen Pluimers94 95

3.2.2.7. Window placement
The windows placed in prefab elements are not created
together with the panel they are generally a complete
component that is placed inside the panels. For this reason,
they are not generated in the script. They are however
moved to the proper location within the panel so that
they can be fixed in that location upon the manufacturing
of the panel.
Input
• Openings

The opening curves where the windows need to be
placed. Which will also need to be assigned a window
tag by the used.

• Frame tags
Frame tag per different Frame type so that the script can
refer to the different frames and place them accordingly.

• Weight per window
Weight per frame so that it might be added to the total
panel weight.

• Offset
Offset of the plane to place the windows in the correct
depth in the panel.

Process
This placement is done by the user assigning window tags
to openings and providing the information per unique
tag such as their geometry and the weight. The script
then takes the geometries and moves them from there
reference corner point to the reference corner point of the
opening. The placed frames can be offset to the position
desired by the design.

Image 61: Placed windows and their tags (Source: own
image)

Thijmen Pluimers 96

Window placement - Workflow
The process described on the last page is visualized by the work flow below. The user provides a list of tags
that correspond to a certain opening. The component then cross reference the tags. If there is a match the
Brep corresponding to the tag is moved to the location of the window.

Image 62: Workflow diagram of the window placement component

Thijmen Pluimers96 97

Window placement - Grasshopper
The workflow shown on the previous page is translated into grasshopper with the script below. First the
tags are assigned by the user and registered to their corresponding window using a python component. The
provided geometries and weights with the windows and their tags are processed and placed to the correct
opening by the window placer. More detail about how these components work and their python scrip can be
found in appendix 7.1.10.

tag assigning

Window placer

Information generation per tag

Image 63: Grasshopper components used for the placement of window frames (Source: own image)

Thijmen Pluimers 98

3.2.2.8. Conclusion
Those were all the individual parts that together form the computational method that allows the user to
generate wall panels. The scheme on the next page shows the integration of all the individual parts of the
method in the big picture as well as there in and output.

The inputs the user provides to the tool can be split in numerical and non-numerical inputs. The numerical
inputs such as wooden member sizing’s allows the user to change the size of all components in the panel.
The non-numerical inputs, such as the boundary contours of the façade allows the user control by which he
can dictate exactly where the panels should be generated.
The method always outputs the geometry, weight and RC-values of every panel. This method will be tested
in chapter 3.3. on a case study

Thijmen Pluimers98 99

Image 64: Overview of the process gone through in the wall generation tool (Source: self-made)

Thijmen Pluimers 100

Image 64: Overview of the process gone through in the wall generation tool (Source: self-made)

Thijmen Pluimers100 101

3.2.3. Roof generation tool
The roof generation tool is similar to the wall generation tool at the basis. It takes the same steps in the
generation of its components, however it does so at an angle which needs a different approach then used in
the wall generation tool. Non the less it is based on the same input, and methodical steps. With the addition
of the roof specific elements such as the wall beam and the laths. When gone through this process the
outcome will still be a 3D model with the information about the panels in terms of weight and RC-value. At
the start of this process the user can decide if he wants to provide the panel contours or if the tool should
generate them according to the roof size and the maximum panel sizes. After this the layers for the panels are
generated including the wall beam and the laths. Lastly the calculations and window placement are executed
to finalize scheme.

Image 65: Flowchart showing the general overview of the roof generation
tool (Source: own image)

Thijmen Pluimers 102

To execute the method the grasshopper script shown below is used. The groups on the left side are the inputs
for the components of the script. The components themselves in purple all preform a small task in generating
the roof panels and provide output to the cyan colored groups. How they perform these tasks and what
information is there output will be explained in detail in the rest of this chapter. The grasshopper script can
be found in appendix 7.2.

Image 66: Grasshopper script used for the execution of the roof generation method (Source: own image)

Panel contour generation

Layer generation - framework

Panel attachments

Layer generation

Window placer

RC-calculation

Weight calculation

Thijmen Pluimers102 103

3.2.3.1. Contour generation
In order to generate the panel and their layers first the contours need to be determined. This can be done by
the user of the tool so they can have full control and skip this step. They would then provide the contours to
the next component of the script. But they can also be generated by the tool. In that case the used provides
the maximum panel sizing and the tool will make a layout for the roof.

Input
• Roof curve

This input provides the boundary in which the panels have to be placed.
• Tolerance at edge

The edge tolerance implies the minimum distance the edge of the panel should have to de edge of the roof.
• Tolerance between panels

This tolerance implies the minimum distance every panel edge should have from the next panel edge
• Panel width

Sets the limit for the maximum panel width. Panel height is not a parameter as the panels will need to span
from the eaves to the ridge.

Process
The generation of the panel contours exists out of two steps. The first step is the generation itself. The second
step is the structuring of the data for future use in the tool. This includes assigning panels to tree branches (a
data structuring system within grasshopper) and assigning openings to the same branch.

Contour generation - Theory
The generation of these panel contours is done similar but more simplified than the wall generation. The
openings form no constraint in this. If an opening need to be in a panel the user will need to adapt the
parameters. This approach is chosen because most of the time the openings will be for dormers that are right
in the center of the roof. And as the panels need to span from top to bottom, they cannot be fitter around
openings as this would leave them too weak to carry the load. In practice the roofs are generally split in 2 as
the maximum with that is used is most commonly 3,6m as already mentioned in the research phase.

Image 67: Showing the generated panel edges of the roof panels (Source: own image)

Thijmen Pluimers 104

Contour generation - Workflow
The way in which these contours are achieved is illustrated using the workflow diagram below. It starts off
with the roof curve and generates a domain in X direction which functions as a limit for the panel contour
boundaries. This is then taken and divided using the panel width and the tolerances. The output is a polyline
curve that represents the contour of the panel that is to be made.

Image 68: Workflow diagram showing the workings of the generation of the panel contours (Source: self made)

Thijmen Pluimers104 105

Contour generation - Grasshopper
The execution of this method is done by a grasshopper python component. The code used in this component
is shown below but also in appendix 7.2.1. The code starts with the Isolation of the horizontal members of
the roof curve. Then the domain is constructed from these members. It then creates a list for the coordinates
to go in and fills it. Afterwards this list is used to generate the panel exterior boundaries. Lastly a plane is
generated that is in plane with the roof to use as a guide for the rest of the script to orient itself.
temp_roof = rg.PolylineCurve.DuplicateSegments(roof)
hor_lines = []
for line in temp_roof: ## isolates horizontal segments of the roof curve
 p1 = (rg.LineCurve.PointAtNormalizedLength(line,0))
 p2 = (rg.LineCurve.PointAtNormalizedLength(line,1))
 if abs(p1[2]-p2[2]) < 10:
 if p1[0] < p2[0]:
 hor_lines.append(rg.LineCurve(p1,p2))
 else:
 hor_lines.append(rg.LineCurve(p2,p1))
roof_dom =
[math.ceil((rg.LineCurve.PointAtNormalizedLength(hor_lines[0],0))[0]),math.ceil((rg.LineCurve.Poin
tAtNormalizedLength(hor_lines[0],1))[0])] ##constructs domain from the lines begin and end points
roof_dom.sort()
pan_cords = [roof_dom[0]+edge_tol] ##creates list for the x coordinates and adds the first

coordinate
while pan_cords[-1] < (roof_dom[1]-edge_tol-pan_w): ## generates the corner coordinates
 temp_point = pan_cords[-1]+pan_w
 temp_point2 = temp_point+betw_tol
 pan_cords.append(temp_point)
 pan_cords.append(temp_point2)
pan_cords.append(roof_dom[1]-edge_tol) ##Adds coordinate at the end of the panel

panel_contours = []
isplane = False
for i,cord in enumerate(pan_cords):
 if i%2:
 pass
 else: ##transforms coordinates in panel contours
 p1 = rg.LineCurve.PointAtLength(hor_lines[0],cord-roof_dom[0])
 p2 = rg.LineCurve.PointAtLength(hor_lines[1],cord-roof_dom[0])
 p3 = rg.LineCurve.PointAtLength(hor_lines[1],pan_cords[i+1]-roof_dom[0])
 p4 = rg.LineCurve.PointAtLength(hor_lines[0],pan_cords[i+1]-roof_dom[0])
 plp = [p1,p2,p3,p4,p1]
 panel_contours.append(rg.PolylineCurve(plp))
 if isplane == False: ##generates a plane which is used to orient the rest of the
 plane = rg.Plane(p1,p2,p4) tool to the angle of the roof.
 isplane = True
Block of code used to generate the panel contours in grasshopper

Thijmen Pluimers 106

Structuring - Workflow
As a last part of the contours and as a base of reference for the rest of the method the panels generated
and the openings provided are structured in the grasshopper tree structure in such a way that every panel
is in its own branch and that openings within those panels are assigned to the same branch (within another
tree). This enables the method and later the user to refer to the panel individually and pull their information.
Contrary to the wall generation method with the roof is might be possible for an opening to be in multiple
panels. These openings will be put in a different list as they need to be treated differently in the rest of the
script. The generation of this structing is shown in the workflow below.

Image 69: Workflow of structuring the panel and opening curves. (Source: self made)

Thijmen Pluimers106 107

Structuring - Grasshopper
To make this workflow function in grasshopper a python script has been used, it is added in appendix 7.1.3
and because its size is small it’s also added below. This block first creates the two data trees for panels and
openings. After this it runs over all panels and generates a tree branch to place them in. while also checking
for openings in the panels. If there are openings, they are added in the corresponding tree branch. If there
are no openings an empty branch is generated in order for the rest of the tool to function properly. If the
opening crosses multiple panels it is put in a separate list so it can be referred to separately later.
for i,pan in enumerate(panels):
 myPath = GH_Path(i)
 structured_panels.Add(pan,myPath) ##creates branch for every panel
 open_in_pan = False
 for open in openings:
 contain = []
 segs = rg.PolylineCurve.DuplicateSegments(open)
 for seg in segs:
 point = seg.PointAtNormalizedLength(0.5)
 contain.append(rg.Curve.Contains(pan,point,plane,0))
 if rg.PointContainment.Outside not in contain: ##put openings in branch if they are in one panel
 open_in_pan = True
 check += 1
 structured_openings.Add(open,myPath)
 elif rg.PointContainment.Inside in contain and rg.PointContainment.Outside in contain and check <
num_open:
 check += 1
 multi_pan_open.append(open) ##if the opening is in multiple panels it is put in a separate list
 if open_in_pan == False:
 structured_openings.EnsurePath(myPath)
 Block of code used to structure panels and their respective openings in grasshopper

Thijmen Pluimers 108

3.2.3.2. Layer generation
In this chapter the generation of the different panel layers will be discussed excluding the framework which
will be discussed in the next chapter. The layers generated in this chapter are solid layers that are the size of
the panel and have openings where there are openings in the panels. In theory the number of layers can be
as much as required. For the purpose of this research, it was limited to four being: 1) interior board, 2) vapor
proof layer, 3) framework, 4) water proof layer. The process of all layers except the framework is identical and
so only the generation of one layer will be explained.

Input
In order for the method to operate it requires inputs, these are listed and discussed in this section.
• Structured panels

The structured panels are the boundary of the layers.
• Structured openings

The structured openings allow the layer generator to cut the openings out of the layer per panel.
• Layer thickness

The layer thickness provides the thickness the layer should have.
• Thicknesses of layers before

In order to get the layer in the proper location in the model it needs to be offset from the plane with the
distance of the sum of all the previous layers their thicknesses.

Image 70: The generated solid interior layer (Source: own image)

Thijmen Pluimers108 109

Process
The generation of the layers is done as illustrated in the workflow diagram below. First a surface is constructed
from the panel contours. Then the openings are subtracted from this surface. Next, the surface is moved to
the correct position in the panel depending on the layers that are used before the current layer. Lastly the
layer is extruded to the correct thickness as defined by the user.

This workflow is translated into grasshopper with the components shown below. First the surfaces are formed
and the opening surface is subtracted from the panels. A python component is used to select which surfaces
are inside openings the python script can be found in appendix 7.2.2. Then the moving and extruding is
executed.

Image 71: Workflow of the method used for extruding layers (source: own image)

Substracting
opening surface

from panel surface

Moving surface to
correct position

Extruding layer

Image 72: Showing the grasshopper components used to generate the solid layers (Source: own image)

Thijmen Pluimers 110

3.2.3.3. Layer generation – Framework
In this chapter the generation of the framework layer is explained. The framework is the skeleton of the panel
and is generated in different steps. Which are shown in the grasshopper script at the bottom of the page and
will be explained further in the rest of this chapter. First the plates and rafters are explained after which the
overhang is gone over. Then the insulation generation and lastly the extruding of all these elements.
Inputs
• Panels
The panels are used as a boundary for all framework members and are the basis that is used to generate
every member of the framework
• Openings
The openings are inputted to ensure the framework is framed around the openings and thus supporting the
window frames
• Multi panel openings
Multi panel openings are similar to the openings only that they cross multiple openings. They also need
framing around them but are not mounted in the factory.
• Rafter width
Rafter width is input to generate the rafters with the desired width.
• Plane
The plane which has been generated with the generation of the panel contours is input to ensure all operations
executed by the script are done in the same plane as the roof.
• Rafter minimum distance
This minimum distance is used to check if when the rafters are generated, they have a minimum distance
between themselves.
• Rafter interval
This is the maximum distance between the rafters.
• Plate height
This is the height used to generate the plates.
• Overhang size
The offset from the lower roof boundary used to generate the overhang.
• Layer thickness
Thickness of the framework layer, used to extrude the layer.
• Thickness of layers before
Thickness of the layers before, used to move the layers to the appropriate location within the panel to ensure
no intersections.

Image 73: grasshopper script used for the generation of the framework and its insulation

Wooden plates
and Rafters

Overhang

Insulation

Extruder

Thijmen Pluimers110 111

Process
In order to generate the framework for the panel several different components need to be generated first
their contours will be generated after which they will be extruded.

Plates - Theory
The first step in generating the
wooden members are the plates
located at the ridge and eaves of
the panel. These are generated
by offsetting the horizontal curve
segments of the panels. And
connecting these curves to form
the outline of the plate.

Plates - Workflow
The method used to perform this action is
illustrated using this workflow diagram. It uses
the plate height provided by the user to offset
the horizontal members of the panel. The offset
and original members are connected to form the
outer contour of the plates.

Image 74: Contours of the boundary plates (Source: own image)

Image 75: Method used to generate the panel boundary plates
(Source: own image)

Thijmen Pluimers 112

Plates - Grasshopper
To translate the method to a functioning grasshopper scrip python coding has been used. The code is
explained in detail in appendix 7.2.3. But is also shown below.
for i in range(structured_panels.BranchCount):
 myPath = GH_Path(i)
 for pan in structured_panels.Branch(i): ## loops through every panel
 segs = rg.PolylineCurve.DuplicateSegments(pan)
 horizontals = []
 for seg in segs: ## Checks every segment
 p1 = rg.LineCurve.PointAtNormalizedLength(seg,0)
 p2 = rg.LineCurve.PointAtNormalizedLength(seg,1)
 if abs(p1[2]-p2[2]) < 10:
 horizontals.append(seg) ## Isolates horizontal segments
 for hor in horizontals: ##offsets horizontals to the inside
 t1 = hor.PointAtNormalizedLength(0)
 t2 = hor.PointAtNormalizedLength(1)
 temp1 = hor.Offset(plane,plate_height,0,rg.CurveOffsetCornerStyle.Sharp)
 temp_line = temp1[0]
 temp2 = hor.Offset(plane,-plate_height,0,rg.CurveOffsetCornerStyle.Sharp)
 point = temp_line.PointAtNormalizedLength(0.5)
 contain = rg.Curve.Contains(pan,point,plane,0)
 if contain == rg.PointContainment.Inside: ## connects the curves to form a plate contour
 t3 = rg.LineCurve.PointAtNormalizedLength(temp_line,1)
 t4 = rg.LineCurve.PointAtNormalizedLength(temp_line,0)
 bt = [t1,t2,t3,t4,t1]
 plate = rg.PolylineCurve(bt)
 plates.Add(plate,myPath)
 else:
 t3 = rg.LineCurve.PointAtNormalizedLength(temp2[0],1)
 t4 = rg.LineCurve.PointAtNormalizedLength(temp2[0],0)
 bt = [t1,t2,t3,t4,t1]
 plate = rg.PolylineCurve(bt)
 plates.Add(plate,myPath)
Block of code used to structure panels and their respective openings in grasshopper

Thijmen Pluimers112 113

Opening plates - Theory
The process of generating the
opening plates is similar to the
generation of the boundary curves,
it also takes the horizontal lines of
the curve. Which is the opening in
this case. But instead, it offsets the
lines outward as they need to be
on the exterior of the opening. It
then connects the lines to form the
contour.

Opening plates - Workflow
To generate these contour lines the
method illustrated in the workflow here
is used. It has an additional step which
checks if the plate is within the panel.
To ensure openings that are on the
boundary do not generate plates outside
the panel.

Image 76: Contours of the boundary and opening plates (Source: own image)

Image 77: Method used for the generation of the opening plates. (Source:
own image)

Thijmen Pluimers 114

Opening plates - Grasshopper
To perform the operation described on the previous page python code has been used. Which is added in
appendix 7.2.3. Also, part of this code is shown below. The code is separated into two parts, the part shown
below works for openings that are in one panel. And then there is the code that works for openings that
spans multiple panels that only generate plates within the currently selected panel. In this way no duplicates
are generated.
for open in structured_openings.Branch(i): ##runs through every opening
 segs = rg.PolylineCurve.DuplicateSegments(open)
 horizontals_open = []
 for seg in segs: ## gets horizontal segments
 p1 = rg.LineCurve.PointAtNormalizedLength(seg,0)
 p2 = rg.LineCurve.PointAtNormalizedLength(seg,1)
 if abs(p1[2]-p2[2]) < 10:
 horizontals_open.append(seg)
 for hor in horizontals_open: ## offsets segments outward generates the contour from them
 t1 = hor.PointAtNormalizedLength(0)
 t2 = hor.PointAtNormalizedLength(1)
 temp1 = hor.Offset(plane,plate_height,0,rg.CurveOffsetCornerStyle.Sharp)
 temp_line = temp1[0]
 temp2 = hor.Offset(plane,-plate_height,0,rg.CurveOffsetCornerStyle.Sharp)
 point = temp_line.PointAtNormalizedLength(0.5)
 contain = rg.Curve.Contains(open,point,plane,0)
 if contain == rg.PointContainment.Outside:
 t3 = rg.LineCurve.PointAtNormalizedLength(temp_line,1)
 t4 = rg.LineCurve.PointAtNormalizedLength(temp_line,0)
 bt = [t1,t2,t3,t4,t1]
 plate = rg.PolylineCurve(bt)
 open_plates.Add(plate,myPath)
 else:
 t3 = rg.LineCurve.PointAtNormalizedLength(temp2[0],1)
 t4 = rg.LineCurve.PointAtNormalizedLength(temp2[0],0)
 bt = [t1,t2,t3,t4,t1]
 plate = rg.PolylineCurve(bt)
 open_plates.Add(plate,myPath)

Block of code used to structure panels and their respective openings in grasshopper

Thijmen Pluimers114 115

Rafters - Theory
Having generated all the plates within the boundary of the panel the rafters can be generated. The generation
of these members is more complicated than the generation of the plates. This is due to the fact that the
rafters interfere with all other wooden elements and openings. They need to connect to the side of the
windows but cannot go through the opening. Also, there is no predetermined number of rafters as there are
with plates. Because this depends on multiple parameters.
This approach is very similar to the approach of the wall panel studs.

Image 78: Generation of rafters (Source: Own image)

Thijmen Pluimers 116

Rafters - Workflow
In order to get this, result the method shown below is used. First the panel contours are used to generate
a domain of the panel in x direction. This domain functions as a limit within which the x coordinates for the
rafters are generated. It adds the first coordinate of the loop to the list and then starts a loop that only stops
when the end of the domain is reached. For every iteration in this loop, it takes the last coordinate of the list
and adds the rafter interval, it then checks if it is close to the edge of the window. If it is to close it moves it
away to ensure insulation can properly be applied and it ensures that there is always a stud right next to the
window opening. If the new coordinate is outside the panel domain the loop is broken and the upper limit of
the domain is added. With these coordinates center lines for the rafters are generated. And cut to ensure no
lines are in openings or plates. Then the centerlines are used to generate the contours.

In order to generate these this method in grasshopper a python component is used the component layout
and its script are shown in appendix 7.2.4.

Image 79: Method used for the generation of rafters (Source: Own image)

Thijmen Pluimers116 117

Insulation - Theory
The generation of the insulation is
similar to the normal generation of
insulation in the wall panels. A surface
is constructed from the panel and the
openings and the wooden members
are cut out. In this way only the to
be insulated surfaces remain. The
overhang isn’t fitter with insulation as
is designed to be outside the thermal
boundary.

Insulation - Workflow
To generate the insulation the workflow
shown at the bottom right is used. First
the surface of the panels is generated
and then the surface of the already
generated elements (rafters, plates,
opening plates and the openings) is
subtracted leaving only the insulation.

Image 80: Insulation for the roof panels (Source: own image)

Image 81: Workflow illustrating the generation of the insulation within the
framework layer (Source: own image)

Thijmen Pluimers 118

To generate these contours the grasshopper script below is used. First the surfaces are split, after which the
surfaces are selected by checking if surfaces are within openings or wooden members.

Image 82: Grasshopper script used to generate insulation contours (Source: own image)

Surface splitter

Surface selecter

Thijmen Pluimers118 119

Extruding and moving
After all the surfaces have been
generated, they are moved to their
position in the panel (depending on
the layers that are in front of them)
and extruded. This process is identical
to the generation of the normal solid
layers. As can be seen in the workflow
diagram of this process which is shown
at the bottom of the page.

Image 83: Extruded framework members and insulation (Source: Own im-
age)

Image 84: Workflow diagram of the extrusion of framework and insulation layer (Source: Own image)

Thijmen Pluimers 120

3.2.3.4. Panel attachments – Wall beam
The wall beam is the most important structural component of the panel as it transfers all the forces from the
roof to the supporting structure below. In this chapter the generation of this element is discussed.

Input
• Panel contours

The contours of the panels are used to generate the wall beams.
• Plane

The pane which is used to ensure the wall beam is generated in the same plane as the roof panels
• Bottom of wall beam

This parameter allows the user to specify where the bottom of the wall beam should be.
• Sizing of wall beam

The size of the wall beam which can be calculated to ensure it can transfer the forces.

Image 85: The wallbeam at the bottom of the panels (Source: Own image)

Thijmen Pluimers120 121

Process
To create the wallbeam the bottom horizontal curve of the panel is isolated. This curve is then offset inwards
to the location of the bottom of the wall beam. This curve is then offset again with the height of the wall
beam to provide the top of the wall beam. These curves together from the contour which is extruded to
create the actual wall beam.
This

method is translated into grasshopper using the components shown below. The contour is generated
in python of which the script can be found in appendix 7.2.6. The extrusion is created with grasshopper
components to create a vector which is used as direction for the extrusion.

Image 86: Method used for the generation of the wall beams (Source: Own image)

Wall beam
contour

Extrudes contours

Image 87: Showing the grasshopper components used to generate the wall beam (Source: Own image)

Thijmen Pluimers 122

3.2.3.5. Panel attachments – Laths
The laths form the structure of the roof that allows for the tiles to be mounted. There are two rows of laths.
The first row is vertical and are on top of the rafters, these allow for the ventilation beneath the tiles. The
second layer are the horizontals which are the laths that allow for mounting of the tiles. Most inputs of this
tools will be focused on the horizontals as these need to be adjusted the most.

Inputs
• Panel contours

The contours which are used as a boundary for the creation of the lath’s
• Plane

The plane is used to ensure any operation done to the lath’s are done in the correct plane.
• Overhang contours

The overhang contours are added to the panel contours as there will also need to be laths in the overhang.
• Openings

The openings are used to cut away lath’s that go over openings
• Rafter centerlines
The rafter centerlines are used to generate the vertical lath’s
• Plate height

The plate height is used to ensure the vertical lath’s go up until the edge of the panel rather than stop
where the rafters stop

• Lath’s width
Used when generating the lath’s

• Lath’s interval
Used when populating the panel with horizontal lath’s

• Lath’s thickness
Used for the extrusion of the lath’s

• Thickness of layers before
Used to move the lath’s to the proper location

Image 88: The generated Laths on the roof panel (Source: Own image)

Thijmen Pluimers122 123

Process
As mentioned, the lath’s are
generated separately for the
vertical and horizontal lath’s.
This process is illustrated
using the workflow diagram
shown below. The verticals are
generated by using the rafter
centerlines which are generated
with the creation of the rafters.
These lines are extended by the
plate height to ensure they go
up until the boundary of the
panel. then they are offset to
both sides with half the lath
thickness to generate the laths
contours.
The horizontals are made similar
to the rafters by the generation
of coordinates within a domain.
However, the interval between
the lath’s is most important
as this depends on the tile
size so the laths won’t move
for the openings. When these
coordinates are generated,
they are turned into centerlines
which are cut when they are
inside a window opening. Lastly,
they are similar to the verticals
offset to both sides and turned
into contours. After this they
are moved and extruded at
the correct position which has
already been explained in the
layer generation chapter.
 

Image 89: Workflow diagram showning the process of generating laths (Source: own
image)

Thijmen Pluimers 124

This process is translated to grasshopper which is shown below. The lath contours are generated using a
python component of which the code can be found in appendix 7.2.7. Then the verticals and horizontals are
moved and extruded separately as they need to be on different level within the panel.

Image 90: Grasshopper script used for the generation of the lath’s (Source: own image)

Lath contour
generation

Move and extrude

Move and extrude

Thijmen Pluimers124 125

3.2.3.6. RC-calculator
To ensure the wall panels have a sufficient thermal resistance the RC value is calculated within the tool.
Input
Stage one

• Insulation thickness
Integer containing the thickness of the insulation

• Lambda of insulation
Integer containing the lambda value of the insulation

Stage two
• Framework thickness

Integer containing the thickness of the insulation layer
• Lambda of framework elements

Integers containing the lambda values of the wooden members and insulation
• Area of frame members

Area of the wooden members and insulation to determine the mean RC-value

Process
The calculations are done in two stages; the first stage is being calculated before the process of generating
the framework for the panels. It does so by dividing the thickness of the layer by the lambda value of the
specific material which is provided by the user. Which is the way to calculate Rc values for solid constructions.
(Hagentoft, 2003) This calculation gives an estimate of the upper boundary of the RC value of the panel. As
the addition of more wooden framework members (which have a lower lambda) reduces the Rc value of the
panels. As the percentage of wooden members is different for every panel due to its layout the lowest value
is selected and fed back to the engineer so that he can decide if it is sufficient. The image below shows a
panel within grasshopper giving the feedback to its user about the two calculated Rc values. The scripts used
can be found in appendix 7.1.9.

Image 91: RC-calculating components and their output (source: own image)

Thijmen Pluimers 126

3.2.3.7. Weight calculator
To enable the user of the tool to assess how much mounting points the panel needs (depending on the
weight and the strength of the supporting structure) the weight of the panels is calculated.
Input
• Density per material

Integer containing the density of the materials used
• Volume per material

Volume of the materials in the panels. Gathered from the extruded elements

Process
In order to calculate the weight of the panels all their extruded elements are taken and multiplied by the by
the user provided density. As with all the other elements in the computational script the weight is separated
in a branch per panel. A mass addition provides a simple overview of the weight per panel as shown in the
image below.

Image 92: the calculated weight per panels separated in tree
branches (Source: own image)

Thijmen Pluimers126 127

3.2.3.8. Window placement
The windows placed in prefab elements are not created together with the panel they are generally a complete
component that is placed inside the panels. For this reason, they are not generated in the script. They are
however moved to the proper location within the panel so that they can be fixed in that location upon the
manufacturing of the panel.
Input
• Openings

The opening curves where the windows need to be placed. Which will also need to be assigned a window
tag by the used

• Frame tags
Frame tag per different Frame type so that the script can refer to the different frames and place them
accordingly

• Weight per window
Weight per frame so that it might be added to the total panel weight

• Offset
Offset of the plane to place the windows in the correct depth in the panel.

Process
This placement is done by the user assigning window tags to openings and providing the information per
unique tag such as their geometry and the weight. The script then takes the geometries and moves them
from there reference corner point to the reference corner point of the opening. The placed frames can be
offset to the position desired by the design.

Image 93: Placed windows and their tags (source: own image)

Thijmen Pluimers 128

The process described on the last page is visualized by the work flow below. The user provides a list of tags
that correspond to a certain opening. The component then cross reference the tags. If there is a match the
Brep corresponding to the tag is moved to the location of the window.
This workflow is translated into a grasshopper script, which can be found in appendix 7.1.11.

3.2.3.9. Conclusion
Those were all the individual parts that together form the computational method that allows the user to
generate roof panels. The scheme below shows the integration of all the individual parts of the method in
the big picture as well as there in and output.

The inputs the user provides to the tool can be split in numerical and non-numerical inputs. The numerical
inputs such as wooden member sizing’s allows the user to change the size of all components in the panel.
The non-numerical inputs, such as the boundary contours of the roof allows the user control by which he can
dictate exactly where the panels should be generated.

Image 94: Workflow diagram of the window placement component (source: own image)

Thijmen Pluimers128 129

Image 95: Overview of the process gone through in the roof generation tool (source: own image)

Thijmen Pluimers 130

Thijmen Pluimers130 131

3.2.4. Bay windows
As already mentioned in the design chapter the bay windows are a variation on normal walls which in the
light of the approach for the renovation and the generation of the different methods is only a light alteration
on the existing method. So, this method is used as a basis with an alteration to the layer generation of the
framework. Which allows its vertical boundary members (meaning the left and right most stud) to be put at
an angle.

Image 96: Showing the grasshopper components used to generate bay windows (Source: own image)

Thijmen Pluimers 132

Input
In order for the method to operate it requires inputs, these are listed and discussed in this section.
• Vertical boundary members

Curves of the plate boundary members that will need to be adjusted to the angle of the boundary studs
• Horizontal boundary members

Curves of the stud boundary members that will be rotated according to the angles
• Angle a

Angle on the one side of the panel that is input user to rotate the edge of the panel.
• Angle b

Angle on the other side of the panel that is input user to rotate the edge of the panel.
• Layer thickness

Thickness of the framework layer, used to extrude the layer.
• Layers before

Thicknesses of the layers before the framework, used to put the framework layer into the correct position.
• Openings

Curves used to cut out insulation that is generated within window openings.

Process
As mentioned, the difference for bay windows is that the vertical boundary members will need to be generated
at an angle for them to be able to connect to the next panel. so, the generation of the boundary members
and insulation will need to be altered in order to make this function.

Image 97: Bay-window panel (Source: self-made)

Thijmen Pluimers132 133

Bay-windows - Workflow
These geometries are made using the workflow below. It takes in the boundary members to split them into
horizontal and vertical members. The vertical members are the boundary studs which are rotated according
to the user defined angles and the horizontals which are the plates are adapted accordingly. Then a Boundary
brep Is made to create the insulation. To do so all wooden members and openings are cut out of this brep. It
is similar to the original insulation generation however this one uses breps instead of surfaces.

Image 98: Workflow of the generation of the angular connection (Source: self made)

Thijmen Pluimers 134

Bay-windows - Grasshopper
In order to translate the workflow diagram to grasshopper the script below has been used. It takes the
verticals and horizontal members of the boundary members and uses the assigned angles to rotate the studs
and adjust the plates accordingly in the boundary plates generator. Using all these breps the insulation is
generated and a curve that represents the exterior of the framework which is used to generate the exterior
foil and finishing layer. This script can be found in appendix 7.3.

Image 99: Showing the grasshopper components used for the generation of the bay window panels
(Source: own image)

Boundary studs creator

Insulation creator

framework exterior

Boundary plates generator

Thijmen Pluimers134 135

3.3. Case study application
In this phase of the research the design of the panel and the tool used to apply it are tested on a case
study building. Also, the process of using the tool is explained. In this way the tool is tested in a different
environment than the one it was created in and this provides an opportunity to fix the last issues. This also
allows for a stepped approach that can be used to apply the tool.

To apply the tool several steps, need to be taken, in this paragraph these steps are listed and explained.

Starting point
The first step of implementing the tool is the starting point, whatever this may be, it can be a model that is
conceived from a 3D scan of the building, old digital drawings or newly generated drawings of the building’s
envelope. This information will then be transferred over to Rhino in order to be able to run the grasshopper
script. In the example using in this case the building that was also used in the research: Zero Energy Building
Refurbishment & Energy Neutral Urban Clusters in Haarlem by Faik Nebil Balkuv is used. This because it
meets all the characteristics handled in this thesis. It is a prewar rowhouse, with facades, a roof and a bay
window so every part of the tool can be tested. The RC-values and their requirements are as stated in the
chapter 3.2.2. case studies.

Table 12: Existing and required Rc-values of the case study facades (Source: (Balkuv, 2017))

Envelope part Existing New

External Wall 0,8 m2K/W 4,5 m2K/W
Roof 1 m2K/W 6 m2K/W

Image 100: Rhino model of the rowhouses located on the Hospeslaan in Haarlem (Source: self made)

Thijmen Pluimers 136

Image 100: Rhino model of the rowhouses located on the Hospeslaan in Haarlem (Source: self made)

Selecting methods
In order to generate the panels for a surface first the method for the surface has to be determined, it being a
wall, bay-window or roof. This is not an input for the tool however it does determine which script is used for
which part of the building envelope. The image below shows the visualization of this process. with the wall
panel parts shown in green, the roof in orange and the bay-window in blue.

Image 101: Different surfaces colorized by their panel generation method (Source: self made)

Thijmen Pluimers136 137

Creating contours
Next the plane on which the panels are to be generated needs to be determined. This depends on the
straightness of the wall and the minimal clearance needed between the panel and the existing wall. For
example, to mount the panels. In this thesis this distance will be 70mm as already discussed in Chapter 4.1.
Design of the panel. Onto this plane the contours of the walls and openings can then be projected theses wall
contours might need to be altered by the user to allow for better connections between the panels. In this
example this is shown at the top of the wall which leaves a gap that allows the roof to go over the wall panel.
Also, at the bay-window a gap is shown that takes into account the thickness of the wall panel.

Image 102: Wall panel and opening contours on the panel plane (Source: self made)

Thijmen Pluimers 138

Panel contour generation
With all the steps before completed the user is now ready to implement the tool. Starting with importing the
created contour curves in the correct tool. As well as providing the panel size limits and the tolerances. The
user can then check if the panel contours are correct and if the panel distribution is to his/her satisfaction.
If not the contours, tolerances or maximum panel sizes can be changed. If that doesn’t provide the correct
result. The user can decide to generate the panel contours and provide them to the next step of the tool.
For the case study building the panel heights are set to the floor height. Which results in the panel contours
shown in red in the image below.

Image 103: Showing the panel contours generated by the tool on the case study building(Source: self made)

Thijmen Pluimers138 139

Layer specific inputs
Now that the panel contours
have been made the
layers can be generated.
The information for the
generation of these elements
should be provided next. In
the wall method there are
five layers by default, they
can be removed or added
if needed. For the solid
layers the thickness of the
layers needs to be provided
in order to generate the
elements. Also, the user will
need to provide the density
of the layer’s material in
order to calculate the weight
of the panel.

Wall panels
These inputs are also required
for the framework layer and
the insulation. However, in
this layer also the minimum
and maximum distance
between the studs and their
width as well as the height of
the plate should be specified
for the generation of these
elements. The thickness of
the layer and the thermal
conductivity determines the
RC-value of the panels. As
seen below the lowest value of
all panels in 3,9 m2K/W which
for this case study is more
than sufficient as it needs
to upgrade the wall from
0,8 to 4,5 m2K/W. And with
the original wall still in place
and there being an insulated
cavity between the original
façade and the newly added
panels this requirement
will be more then met. The
layers will then be generated
as shown on the right (the
exterior layers are left out to
show the framework)

Image 104: Showing the layer input and RC-calculation (Source: Own image)

Image 105: Wall panel framework as generated on the exterior of the façade (Source:
self made)

Thijmen Pluimers 140

Bay-windows
For the generation of the bay-windows the user will also need to specify the angle of the left and right corner
of the panel to ensure the most optimal connection between the panels. As can be seen below the right side
of the bay-window has a 45-degree angle. While the left side is kept straight (0-degree angle).

Image 106: Showing the angle on the side of the bay-window panel and its method spe-
cific input (Source: Own image)

Thijmen Pluimers140 141

Roof panel
For the generation of the roof panels additional inputs are also required. So, the user has to input the next
inputs. For the eaves the size of the overhang has to be specified so that it might be generated. Along with
the location and size of the wall beam. For the tile finish the laths sizing and interval needs to be specified.
Especially the interval is important as it changes depending on the tile manufacturer and type.

Image 107: Generated roof, and its method specific inputs (Source: own image)

Thijmen Pluimers 142

Framework placement
The last input required from the user for the tool to
function is for the placement of doors and windows.
Before anything is input by the user the openings will
show that no type has been assigned to them like
below as well as the order in which they are listed
and should be assigned.

Next the user should provide a geometry, weight and
type per framework. As well as an offset distance
from the plane. This is the distance from the inside
of the panel to the inside of the framework. The user
can then Assign the types to the openings. All inputs
are shown below and the final result is shown in the
bottom right of the page.
The error log gives feedback to the user if the tags
don’t match or if to many or to little are provided.

If the user wants to add more frameworks it can
be done by duplicating the inputs of an existing
framework

Image 108: Opening with no tag assigned to their openings
yet (Source: own image)

Image 109: Inputs for the window placement
(Source: Own image)

Image 110: Showing the placed frameworks and their tags
(Source: Own image)

Thijmen Pluimers142 143

Conclusion
To further clarify the process the scheme shown below has been made. It shows the steps the user needs to
take and the steps the tool takes when provided the information. The information that needs to be provided
is also detailed.

Image 111: Workflow diagram showing the steps the user needs to take to use the tool (Source: Own image)

Thijmen Pluimers 144

The workflow shows that before the tool can be used the user needs to take steps to prepare everything.
First gather the information and transfer it to rhino in order to make the tool able to interact with it. Then
select the proper method per surface every method is made for the specific case and has limitations when
applied somewhere else. The wall tool can handle complex geometries but only in its plane. The bay window
can add angles but does not work with non-rectangular geometry. The roof allows for addition of lath’s but
only the panel width can be changed. After this the user draws the contours of the to be panelized face and
their openings. In this the user already needs to take into account where he wants the panels to stop. For
example, to cover the sides of panels that can be inside Porches. This input allows the most manipulation
within the tool as the user can mandate where the panels begin and stop. Next the user dictates maximum
panel sizes and desired tolerances so the tool might generate the panel contours. After this the layer specific
parameters are inputted and the layers are generated. If the roof or bay window tool is used, additional
input is required. Lastly the information about the windows is to be provided. After the tool is done the final
model will need to be checked. If the user wants to make improvements, he/she might change the desired
parameters accordingly.

The tools allow the user to change the sizing of all elements (framework members, exterior plating and so on)
so the user is able to control a lot. However, there are limitations, only one façade can be constructed at a
time using the methods. Also, it is not possible within the tool to change the sizing of a single object without
changing the other related objects (For example all wooden studs have the same size). Furthermore, the
connection between the façade panels has been hard coded into the script as it was designed. Lastly, inputs
such as the angles for bay-windows, the length of the overhang and the wall beam are now inputted by the
user. However, in the future it might be possible that these are automatically generated within the tool as it
becomes a more integrated tool rather than separated parametric methods.

Post tool engineering
With that the use of the tool is concluded. However, the building process does not stop there. Before
installation some other elements still need to be engineered.
One of those elements is the mounting, which has been designed in the design chapter. This isn’t implemented
in the tool so the user will need to take the weights and layout of the panels provided by the tool and
configure where the mounts will be placed and the panel and wall.
Also, head on connections of the panels will need to be covered. The tool does do provide this option, this
could also be a next step in its engineering. Before the panels can be mounted onto the façade the space
between the panels needs to be insulted. For this insulation might be attached to the wall that allows for
compression when the panel is mounted so no false cavity is created. Lastly the edges where the panel
connects to the existing structure need to be engineered and applied on site. These are: the rigid insulation
panel below the wall panels to prevent water from getting to the panel from the ground. The reveals that
need to be finished to cover the old wall. The connection between the wall panel and the roof panels and the
ridge once the roof is placed. All these elements have been discussed in the panel design chapter.

Thijmen Pluimers144 145

4. Discussion
In the research the process of engineering a prefab renovation is dissected in order to try and compose a
paramtric way of generating prefab facade panels to speed up the engineering. The steps in the process are
derived from existing research papers on the process but the process of generating a panel and generating is
a product of this paper. To determine if the tool can provide an answer to the research question and to asses
its validity a swot analysis has been made.

SWOT analysis
A SWOT analysis is a way of assessing the (S)trengths, (W)eaknesses, (O)pportunities & (T)hreats of a product.
The strengths and weaknesses address the internal positives and negatives while the opportunities and
threats cater towards the external positives and negatives.
For this thesis the scheme below shows the components of the SWOT analysis which are further discussed
in the rest of this chapter.

Table 13: SWOT analysis scheme (Source: self-made)

In
te

rn
al

Strengths Weaknesses

New & Faster approach to generating Code isn’t written as effective as possible
Customizability Overwhelming for inexperience users

Immediately visual feedback still needs to be check by the user

Ex
te

rn
al

Opportunities Threats
can be applied on millions of renovation cases Using the tool requires the user to go through a

learning curve first
Can be transferred to other applications in the

build environment
Architects can view it as generalizing the façade

design and restricting their architectural freedom
can be adapted to companies specific building

methods

Strengths
the tool sets itself apart by its new and fast approach of the atomization of prefab building envelope panels.
By this it allows a user to rapid prototype different façade layouts in order to find the best possible layout.
Furthermore, because the tool is made in grasshopper and the components are clearly divided it allows for
customization of single elements which allows it to be upgraded are changed entirely.

Weaknesses
The weaknesses of the tool are that it uses python code which is written by someone who didn’t have any
experience in python prior to starting the thesis. So, it isn’t as efficient as it possibly can be. Furthermore,
the grasshopper script and its components can seem overwhelming to inexperienced users. As there is a lot
going on, on the screen. Lastly the tool is catered towards the generation of timber frame so in this way it
is limited to generating other panels and the panels created will need to be checked by an engineer before
being transferred to manufacturing.

Opportunities
The main big opportunity for the tool is in it catering towards a fast solution for the generation of prefab
renovation panels. There are millions of houses that need to be renovated and the majority of them can be
engineer with a tool like this one. It might even be applied (with some changes) to other building typologies
or buildings outside the Netherlands. Furthermore, it might also be that the techniques used in the tool can
be translated to other applications within the build environment.

Threats
The tool automizes the application of the engineering of a certain building method. Because of this the
variation between the panels is limited (within the domains). Even though the panels that are constructed

Thijmen Pluimers 146

allow for a large variety of finishing due to the lay out this can still be limiting for the materials used for this
finishing. Also, the tool might work in a test environment and on a case study but still the implementation of
it being the maker of the tool means one knows exactly how every part works and functions. However, for
new users there will be a learning curve before the tool can be used properly.

SWOT Conclusion
As it is designed the tool does what it is supposed to do. It generates the panel 3D elements and provides the
user with instant feedback in the form of visuals and data. All while allowing for the customizability of the
input that can differ per company. With this it can help speed up the engineering of the millions of renovation
panels that need to be made. While even allowing further customization because of its transparency.
However, there are some obstacles to overcome before the tool could function on a large scale. Which are;
the code used in the tool isn’t as effective as it possibly could be so corner cases that didn’t come to light in
this research might not be solved in the correct way. This would be the next step in engineering the tool for
use in the market.
Further testing needs to be done to see if the tool provides the correct panel everything before it can be
sent directly to the manufacturing site. Rather than first be reviewed by an engineer. Also, the steps that
the engineer needs to take after the tool has done its job can be automated. This can all be part of further
research onto the implementation of the tool.

Furthermore, architects can view the panels as a generalization of the façade and feel restricted in their
architectural freedom as the materials and mounting systems to be used are limited by the panel system.
However, there is still a lot of freedom in the façade design and the façade design of the current row houses
doesn’t use any materials that cannot be used on the exterior of the panels. And with next versions of the
tool and added features the freedom of design will only increase.
Lastly the script might look overwhelming to users that do not have experience with grasshopper and even
grasshopper users will first need to find their bearings before they will be able to customize the tool. What
could help for users of the tool might be an interface rather than working with the actual grasshopper file.

Thijmen Pluimers146 147

5. Conclusion & Recommendation & Reflection

This thesis tries to provide a partial solution to the problem of having all houses disconnected from natural
gas before 2050. It does so by trying to speed up the engineering by automating it. In order to provide this
solution, the following question was composed. How can a parametric tool be designed and what parameters
are used for the renovation of poor energy performing buildings in order to provide designers and engineers
with a building information model of prefabricated adjustable building’s envelope panels?

Conclusion
The scope of the renovation of these houses is set on row houses as they consume 47% of all energy required
for heating all the houses in the Netherlands. This typology has been further narrowed down to pre-war row
houses as the research showed this is the largest energy consumer in the category with 30% of all row houses.
The Approach chosen for the renovation of these houses is the “wrap-it” approach in which the exterior of
the house will be insulated. This was chosen because it is the least interfering process for the inhabitants and
the most efficient for using prefab panels. Cases have been studied in order to generate the innitial design
which later would be translated to a computational method. To give suggestions on how this could be taken
to a parametric tool literature and case studies have been conducted. Which gave a clear indication of how
to formulate a process in order for it to be automized.
So the engineering process has been evaluated and broken down to the steps that make up the process.
Which are: 1) The preliminary design stage, in which the initial design is made and boundaries aswell aswell
as goals are set. 2) Engineering, in which the final design is engineered and made ready for production and
assembly. 3) Manufactory, in which the elements needed for the realisation are made and transported to the
building site. 4) Assembly, in which the design is executed. 5) Maintanance, the period after assembly untill
end of life in which the building is monitored and kept in prestine condition to ensure a long lifespan. This
already showed a clear flow of information in which every step is dependent on the previous steps in the
process. But, a good executable design will need communication in two directions so that the project may
be designed for manufacturing and assembly rather then trying to fix design flaws in later stages. For the
creation of a parametric tool further detail into the engineering and post engineering steps was necessary.
This in order to determine which are the steps that are to be completed in the engineering phase of the
project as well as to analyze which can be automated by a parametric method.
In order to provide an engineer with a building information model geometry and its required data needs to
be generated. For this research RC-values and weight has been deemed as required data. The research has
shown that the generation of the panels happens in two steps. First the panel contour generation which
determines within the set limit what the boundary of the panels will be. After which the panels are generated.
For the panel contour generation, the following three inputs are essentials: 1) Façade and opening contours,
in oder to be able to divide de facade into panels. 2) Maximum panel sizes, to set a limit to the size of the
panel. 3) tolerances, to ensure enough space between the panels so the design can be executed.
Together these inputs allow for adjustable panel contours. In oder to be manufactured these need to be filled
with geometry of there individual elements. For the generation of these elements the information of those
components is essential. For the solid layers this is only there thickness so that they may be created and their
density and lambda to provide the weight and RC data.
However, for the framework it is more complicated. Every component sizing’s needs to be input. All inputs for
this layer are: its Thickness, the plate sizing’s in order to generate the plates at the panel boundary and above
and below windows. The stud sizing and its minimum and maximum interval distance so they can be placed
everywhere. Also, the openings are needed here to place the wooden members at the correct position. For
these members also their density and weight and lambda are required to provide the weight and RC data.
The roof requires additional input for the length of the overhang and the location and sizing of the wall
beam so it can be generated. Furthermore, sizing’s and intervals of the lath’s are to be provided for the roof
generation. When the bay window method is used an additional input is the required angle of the wooden
boundary member at each side to be generated.
Lastly the windows placement requires the user to provide the geometry, weight and tag per window unique
window type and assign tags to openings and a preferred offset for the windows. Those are all the steps and
parameters needed to generate the building envelope renovation panels.

Thijmen Pluimers 148

To conclude with an answer to the research question:
A parametric tool can be designed by taking the rudimental steps of the engineering process which are:
determining the to be panelized area, composing the panel contours, creating the panel geometries and
calculating the panel specific data. These steps are to be automated by using the step specific parameters
which are: the panel size limit, tolerances and geometry sizing and properties. These are decided by the
engineer or are already established in the pre-engineering phase. Together they enable the tool to generate
building information models of prefabricated building envelope panels which can be adjusted by its user if
required.

Recommendation
The research shows the potential of using parametric tools for the generation of prefab renovation panels.
However it also exposed areas which need more attention. As it stands now the tool works within the design
and test environment of the research. But there are still improvements to be made before it can be applied in
the working environment especially in the following areas: robustness, user-experience and customizability.

Robustness
The tool and its code is only test on a small number of walls/facades. In order for the tool to be able to be
implemented it will need to be tested and adapted to work with all different kinds of facade sizes, orientations
and layouts. Furthermore the python coding used in this research is mostly self taught and not reviewed by
an other coder because of this unexpected bugs might occur and the script itself could be more efficient.

User-experience
The tool is a hybrid between grasshopper components and python components used within grasshopper. In
order to operate it the grasshopper script must be used. This requires users not familiar with grasshopper to
learn the basics and experienced grasshopper users to learn how the script itself functions before being able
to apply it. To cut this learning curve an user interface might be used which only allows it user to see and
alter the parameters he needs to get to the desired output rather then seeing and dealing with the complete
script all the time.

Customizability
Although the methods within the tool are build in a way that each component has its own task and these
are clearly separated in order to allow the user to update certain components. The tool as a whole does not
allow much customizability when it comes to other building components then walls, roofs and bay-windows.
Furthermore, it can only generate timber frame elements. If this building method is not chosen the tool
cannot be used as of now. If this is desired methods for the other approaches also need to be created. This
is also true for the architectural finishing of the facade. The current version of the tool requires the engineer
to input the sizings and limitations of the substructure into the tool. While doing so the engineer needs to
take into account the finishing the architect would like to use on the facade. A feature to be added might be
a component that helps the architect with adjusting the sub-structure to the aesthetical facade design.

Reflection
This research not only tries to answer the question of how a parametric tool can help an engineer speed up
the design process. It comes from a bigger interest; taking the parametric scripting which is mostly used in
the design and make it more practical. The goal of the research was not necessarily to make a tool but to
show how this process is done. Starting with analyzing the design chain and then focussing on one step of the
process. To further break it down into the steps done by the responsible person in this step and to determine
what is his input and what is it based on. And then when this is clear it provides a clear guideline for someone
to make the tool.

Thijmen Pluimers148 149

6. References

2ND skin. (2020, 12 11). 2ND skin whitepaper. Retrieved from 2ND skin: https://www.2ndskin.nl/download-
whitepaper/

Aerts, C. (2020). Automated robotic manufacturing for building prefabrication. Delft: Technical University
Delft.

Agentschap NL. (2011). Voorbeeldwoningen 2011. Den Haag: Ministerie van Binnenlandse Zaken en
Koninkrijksrelaties.

Aldanondo M., B.-S. A. (2014). Towards a BIM Approach for the High Performance Renovation of Apartment
Buildings. Paris: IFIP.

Austern G., G. C. (2018). Rationalization methods in computer aided fabrication: A critical review. Haifa,
Israel: Elsevier.

Balkuv, F. (2017). Zero Energy Building Refurbishment & Energy Neutral Urban Clusters in Haarlem. Delft:
Delft University of Technology.

Barco A.D., V. E. (2016). Building renovation adopts mass customization - Configuring insulating envelops.
New york: Springer Science.

Belzen, T. v. (2019, 10 8). Revolutionaire bouwers dolblij met stikstof: ‘Dit kan weleens dé motor van verandering
zijn’. Retrieved 11 8, 2020, from Cobouw: https://www.cobouw.nl/duurzaamheid/nieuws/2019/10/
van-stikstofnegatief-naar-biobased-en-modulair-dit-kan-weleens-de-motor-van-verduurzaming-zijn-
uw-101277340

CBS. (2013, 1 21). Twee derde van alle woningen eengezinswoningen. Retrieved from Centraal bureau
voor de statestiek: https://www.cbs.nl/nl-nl/achtergrond/2013/04/twee-derde-van-alle-woningen-
eengezinswoning#:~:text=De%20gemiddelde%20vloeroppervlakte%20van%20woningen,keer%20zo%20
groot%20als%20appartementen.

CBS. (2020, October 6). Voorraad woningen. Retrieved from CBS: https://opendata.cbs.nl/statline/#/CBS/nl/
dataset/82550NED/table?fromstatweb

CBS. (2020, 11 23). Werkenden in de bouw. Retrieved from cbs.nl: https://www.cbs.nl/nl-nl/maatwerk/2018/34/
werkenden-in-de-bouw

Chen K., L. W. (2018). Design for Manufacture and Assembly Oriented Design Approach to a Curtain Wall
System: A Case Study of a Commercial Building in Wuhan, China. Hong Kong, China: MDPI.

Colinart T., B. M. (2019). Building renovation with prefabricated ventilated facade elements: A case study.
Lorient: Elsevier.

Collins. (2020, 11 24). Collins. Retrieved from Collinsdictionary: collinsdictionary.com

de Leeuw, M. (2020, 07 20). Bouwdirecteur over verzakt dak Heesch: ’80 procent van de nieuwbouw
heeft deze constructie’. Cobouw. Retrieved from https://www.cobouw.nl/bouwkwaliteit/
nieuws/2020/07/bouwdirecteur-over-verzakt-dak-heesch-80-procent-van-de-nieuwbouw-heeft-deze-
constructie-101286818

Ebbert, T. (2010). RE-FACE: Refurbishment Strategies for the Technical Improvement of Office Façades. Delft:
Delft University of Technology. Retrieved from http://resolver.tudelft.nl/uuid:b676cb3b-aefc-4bc3-bbf1-
1b72291a37ce

Filippidou F., N. N. (2017). Are we moving fast enough? The energy renovation rate of the Dutch non-profit
housing using the national energy labelling database. Delft: Elsevier.

Gerrits, J. (2008). Draagconstructies Basis. Delft: TU Delft.

Hagentoft, C. (2003). Introduction to building Physics. Lund, Sweden: Studentlitteratur AB.

Thijmen Pluimers 150

Holzer D., H. R. (2007). Parametric Design and structural Optimisation for Early Design Exploration.
International journal of architectural computing, 625-643.

HU S.J., Z. X. (2008). Product variety and manufacturing complexity in assembly systems and supply chains.
Michigan: Elsevier.

Jingmond M., L. T. (2010). Identifying Causes of Additional Cost in Tolerance Compliances Failure in Buildings.
Salford, United Kingdom: TG65 & W065-special Track 18th CIB World Building Congress (p. 554).

Joostdevree. (2021, 02 25). warm dak. Retrieved from joostdevree: https://www.joostdevree.nl/shtmls/
warm_dak.shtml

Knaack U., C.-K. S. (2012). Prefabricated systems: principles of construction. Brickhäuser: Walter de Gruyter.

Konstantinou, T. (2014). Facade Refurbishment Toolbox: supporting the design of Residential Energy Upgrades.
Delft: TU Delft.

Künzel H.M., K. K. (1996). Calculation of heat and moisture transfer in exposed building components.
Holzkirchen, Germany: Pergamon.

Lubbers, W. (2021, 02 25). De stap naar volledige houtskeletbouw-woningen is kleiner dan je denkt. en de
urgentie is groter dan ooit. Retrieved from hout. Natuurlijk van nu.: https://www.houtnatuurlijkvannu.nl/
de-stap-naar-volledige-houtskeletbouw-woningen-is-kleiner-dan-je-denkt-en-de-urgentie-is-groter-dan-
ooit/

Majcen D., I. L. (2013). Theoretical vs. actual energy consumption of labelled dwellings in the netherlands:
Discrepancies and policy implications. Delft: Elsevier.

Mjörnell, K. (2016). Experience from Using Prefabricated Elements for Adding Insulation and Upgrading of
External Facades. Singapore: Springer Science+Business Media.

Montali J., O. M. (2018). Knowledge-Based Engineering in the design for manufacture of prefabricated
facades: current gaps and future trends. Dartford, United Kingdom: Taylor & Francis.

Nederlands Normalisatie-instituut. (1990). NEN 2881:1990 Maattoleranties voor de bouw. Delft: Nederlands
Normalisatie-instituut.

Nederlands Normalisatie-instituut. (1995). Maattoleranties voor de bouw Instructies en voorbeelden voor de
berekening. Delft: Nederlands Normalisatie-instituut.

Pihelo P., K. T. (2017). nZEB Renovation with Prefabricated Modular Panels. Trondheim: Elsevier.

Raab Karcher. (2021, 1 29). prefab beton wanden. Retrieved from Raab Karcher: https://www.raabkarcher.nl/
prefab/wanden/betonwanden

Richard, R. (2004). Industrialised building systems: reproduction before automation and robotics. Montréal:
Elsevier.

RVO. (2020, Maart 1). Energielabels woningen 2010-2019. Retrieved from Compendium voor de Leefomgeving:
https://www.clo.nl/indicatoren/nl0556-energielabels-woningen

Silvester S., K. T. (2016). 2nd skin: Zero energy apartment renovation via an intergrated facade approach.
Delft: Technical University Delft.

Sun Y., W. J. (2020). Constraints Hindering the Development of High-Rise Modular Buildings. Perth, Australia:
MDPI.

Tan T., L. W. (2020). Construction-Oriented Design for Manufacture and Assembly Guidelines. Londen, United
Kingdom: American Society of Civil Engineers.

Tan T., M. G. (2019). BIM-enabled Design for Manufacture and Assembly. Lonon, United Kingdom: University
College London.

Veld, P. O. (2015). MORE-CONNECT: Development and advanced prefabrication of innovative, multifunctional
building envelope elements for modular retrofitting and smart connections. Maastricht: ELSEVIER.

Thijmen Pluimers150 151

Vis M.W., R. P. (2014). Cascading in the wood sector. BTG biomass technology group B.V. Den Haag: Netherlands
Enterprise Agency RVO. Retrieved from http://www.btgworld.com/nl/nieuws/cascading-wood-sector-
final-report-btg.pdf

Woodbury, R. (2010). Elements of parametric design. Retrieved from http://cw.routledge.com/
textbooks/9780415779876/parametric.asp

Woude van der, D. (2005). Jellema 4A Omhulling - Prestatie-eisen/Daken. Utrecht/Zutphen: ThiemeMeulenhoff.

Woude, v. d. (2004). Jellema 3 - Draagstructuur. Utrecht/Zutphen: ThiemeMeulenhoff.

Thijmen Pluimers 152

7. Appendix

Thijmen Pluimers152 153

7.1. Wall tool script
In this appendix all individual components of the wall tool can be found.

Thijmen Pluimers 154

7.1.1. Domain generation script
This script finds the coordinates of the openings so that they can prevent panel boundaries from crossing
windows

def find_extremes(curves):
 parameter = Rhino.Geometry.Curve.DivideByLength(curves, 1, True)
 points = []
 for para in parameter:
 temp_point = Rhino.Geometry.Curve.PointAt(curves, para)
 points.append(temp_point)
 Point_X = []
 Point_Y = []
 Point_Z = []
 for point in points:
 Point_X.append(round(point[0]))
 Point_Y.append(round(point[1]))
 Point_Z.append(round(point[2]))
 Extremes_X = min(Point_X), max(Point_X)
 Extremes_Y = min(Point_Y), max(Point_Y)
 Extremes_Z = min(Point_Z), max(Point_Z)

 return Extremes_X, Extremes_Y, Extremes_Z

extremes_combined_openings = []
for open in openings:
 extreme = find_extremes(open)
 for item in extreme:
 if item[0] == item[1]:
 pass
 else:
 extremes_combined_openings.append(item)

Open_W = []
Open_H = []
for i, extremes in enumerate(extremes_combined_openings):
 if i%2 == 0:
 Open_W.append(extremes)
 elif i%2 == 1:
 Open_H.append(extremes)

Thijmen Pluimers154 155

Very similar to the last script this script finds the coordinates of the boundary of the façade.

def find_extremes(curves):
 parameter = Rhino.Geometry.Curve.DivideByLength(curves, 1, True)
 points = []
 for para in parameter:
 temp_point = Rhino.Geometry.Curve.PointAt(curves, para)
 points.append(temp_point)
 Point_X = []
 Point_Y = []
 Point_Z = []
 for point in points:
 Point_X.append(round(point[0]))
 Point_Y.append(round(point[1]))
 Point_Z.append(round(point[2]))
 Extremes_X = min(Point_X), max(Point_X)
 Extremes_Y = min(Point_Y), max(Point_Y)
 Extremes_Z = min(Point_Z), max(Point_Z)
 return Extremes_X, Extremes_Y, Extremes_Z

extremes_combined_facade = []

extreme = find_extremes(facade)
for item in extreme:
 if item[0] == item[1]:
 pass
 else:
 extremes_combined_facade.append(item)

temp_Con_W = []
temp_Con_H = []
for i, extremes in enumerate(extremes_combined_facade):
 print(extremes)
 for item in extremes:
 if i%2 == 0:
 temp_Con_W.append(item)
 elif i%2 == 1:
 temp_Con_H.append(item)
 else:
 print("more then 2 items in extremes")
Con_W = (min(temp_Con_W),max(temp_Con_W))
Con_H = (min(temp_Con_H),max(temp_Con_H))

Thijmen Pluimers 156

7.1.2. Panel contour generation script
the scripts used in the façade divider, panel boundary and clipping and capping are shown on the next pages.

Facade
devider

Panel boundary

Panel clipping
Panel capping

Thijmen Pluimers156 157

The script used to divide the façade in rectangular panels is shown below.

segs_fac =rg.PolylineCurve.DuplicateSegments(facade)
boundary_points = []
for seg in segs_fac:
 pb = seg.PointAtNormalizedLength(0)
 pe = seg.PointAtNormalizedLength(1)
 if pb not in boundary_points:
 boundary_points.append(pb)
 if pe not in boundary_points:
 boundary_points.append(pe)

boun_x = []
boun_y = []
boun_z = []
for point in boundary_points:
 boun_x.append(int(point[0]))
 boun_y.append(int(point[1]))
 boun_z.append(int(point[2]))
resultx = all(elem == boun_x[0] for elem in boun_x)
resulty = all(elem == boun_y[0] for elem in boun_y)

Con_H = [min(boun_z),max(boun_z)]
if resultx == False:
 Con_W = [min(boun_x),max(boun_x)]
 pan_depth = boun_y[0]
else:
 Con_W = [min(boun_y),max(boun_y)]
 pan_depth = boun_x[0]

##H Cords
Con = Con_H
Open = Open_H
Pan = Pan_H
Cords = [Con[0]]
while Cords[-1] < Con[1] - tol_edge: # creates facade division for X coordinates
 temp_cord = [] #new list for the temp coordinates
 for x in Open: #checks all window opening sizes
 if Pan + Cords[-1] >= Con[0] + tol_edge and Pan + Cords[-1] < Con[1] - tol_edge: #panel fits in
contours
 if Pan + Cords[-1] >= x[0] and Pan + Cords[-1] <= x[1]: #panel crosses window
 if x[0] == Cords[-1]: #if panel is smaller then window size this if statement makes sure the
while loop does not keep looping and just makes panels that are of smaller size so they can be
placed around the window
 temp_cord.append(Pan+Cords[-1])
 elif Cords[-1] >= x[0] and Cords[-1] < x[1]:
 temp_cord.append(Pan+Cords[-1])
 else:
 temp_cord.append(x[0]-open_off)
 else: #panel does not cross widow
 temp_cord.append(Pan+Cords[-1])
 else: #panel to big for contours
 temp_cord.append(Con[1] - tol_edge)

Thijmen Pluimers 158

if min(temp_cord) == Cords[-1]: #checks if while loop does not rune indefinitly
 print("panel size is to small to incorporate windows")
 break
 Cords.append(min(temp_cord)) #gets lowest value and adds it to the list for x divisions
 if Cords[-1] != Con[1] - tol_edge:
 Cords.append(Cords[-1] + 200)
H_Cords = Cords

##W Cords
Con = Con_W
Open = Open_W
Pan = Pan_W
Cords = [Con[0] + tol_edge]
while Cords[-1] < Con[1] - tol_edge: # creates facade division for X cordinates
 temp_cord = [] #new list for the temp coordinates
 for x in Open: #checks all window opening sizes
 if Pan + Cords[-1] >= Con[0] + tol_edge and Pan + Cords[-1] < Con[1] - tol_edge: #panel fits in
contours
 if Pan + Cords[-1] >= x[0] and Pan + Cords[-1] <= x[1]: #panel crosses window
 if x[0] == Cords[-1]: #if panel is smaller then window size this if statement makes sure the
while loop does not keep looping and just makes panels that are of smaller size so they can be
placed around the window
 temp_cord.append(Pan+Cords[-1])
 elif Cords[-1] >= x[0] and Cords[-1] < x[1]:
 temp_cord.append(Pan+Cords[-1])
 else:
 temp_cord.append(x[0]-open_off)
 else: #panel does not cross widow
 temp_cord.append(Pan+Cords[-1])
 else: #panel to big for contours
 temp_cord.append(Con[1] - tol_edge)
 if min(temp_cord) == Cords[-1]: #checks if while loop does not rune indefinitely
 print("panel size is to small to incorporate windows")
 break
 Cords.append(min(temp_cord)) #gets lowest value and adds it to the list for x divisions
 if Cords[-1] != Con[1] - tol_edge:
 Cords.append(Cords[-1] + tol_betw)
W_Cords = Cords

pan_contour_rec = []
temp_pan_contour = []

Rec_W = len(W_Cords) - 1
Rec_H = len(H_Cords) - 1

for i,Rec_W in enumerate(range(Rec_W)):
 if i%2 == 0:
 for j,Rec_W in enumerate(range(Rec_H)):
 if j%2 == 0:
 myPath = GH_Path(i,j)
 b1 = rg.Point3d(W_Cords[i], pan_depth, H_Cords[j])

Thijmen Pluimers158 159

 b2 = rg.Point3d(W_Cords[i + 1], pan_depth, H_Cords[j])
 b3 = rg.Point3d(W_Cords[i + 1], pan_depth, H_Cords[j + 1])
 b4 = rg.Point3d(W_Cords[i], pan_depth, H_Cords[j + 1])
 b_temp = [b1, b2, b3, b4, b1]
 bt = rg.PolylineCurve(b_temp)
 pan_contour_rec.append(bt)

##Plane constructor
p1 = rg.PolylineCurve.Point(pan_contour_rec[0],0)
p2 = rg.PolylineCurve.Point(pan_contour_rec[0],1)
p3 = rg.PolylineCurve.Point(pan_contour_rec[0],2)
plane = rg.Plane(p1,p2,p3)

Thijmen Pluimers 160

The script below is used to generate in curve that is the external curve of all panels. Used to clip the panels
made in the previous script.
new_points = []
Z_check = []
for point in panel_bound_points:
 Z_check.append(math.floor(point[2]))
for i,check in enumerate(Z_check):
 if check ==(min(Z_check)):
 new_points.append(rg.Point3d(panel_bound_points[i][0],panel_bound_points[i][1],Con_H[0]))
 else:
 new_points.append(panel_bound_points[i])

pan_bound = rg.PolylineCurve(new_points)

Thijmen Pluimers160 161

The script below uses the panel boundary to clip the rectangular panels. Both are generated with the previous
scripts.
clipped_panels = []
un_clipped_panels = []
caps = []
for rec in pan_contour_rec:
 params = []
 events = rg.Intersect.Intersection.CurveCurve(rec,facade,0,0)
 for event in events:
 params.append(event.ParameterA)
 if params == []:
 un_clipped_panels.append(rec)
 else:
 params = []
 clipped_pan = []
 events = rg.Intersect.Intersection.CurveCurve(rec,pan_bound,0,0)
 for event in events:
 params.append(event.ParameterA)
 temp = rec.Split(params)
 temp_lines = []
 for item in temp:
 point = item.PointAtNormalizedLength(0.5)
 contain = rg.Curve.Contains(pan_bound,point,plane)
 if contain != rg.PointContainment.Outside:
 clipped_pan.append(item)
 clipped_panels.append(item)
 params_caps = []
 for line in clipped_pan:
 pb = line.PointAtNormalizedLength(0)
 pe = line.PointAtNormalizedLength(1)
 params_caps.append(rg.PolylineCurve.ClosestPoint(pan_bound,pb)[1])
 params_caps.append(rg.PolylineCurve.ClosestPoint(pan_bound,pe)[1])
 temp_cap = pan_bound.Split(params_caps)
 for item in temp_cap:
 point = item.PointAtNormalizedLength(0.5)
 contain = rg.Curve.Contains(rec,point,plane,0)
 if contain == rg.PointContainment.Inside:
 clipped_panels.append(item)

Thijmen Pluimers 162

7.1.3. Panel structuring script

structured_panels = DataTree[rg.Curve]()
structured_openings = DataTree[rg.Curve]()

for i,pan in enumerate(panels):
 myPath = GH_Path(i)
 structured_panels.Add(pan,myPath)
 open_in_pan = False
 for j,check in enumerate(is_inside.Branch(0,i)):
 if check == 2:
 structured_openings.Add(openings[j],myPath)
 open_in_pan = True
 if open_in_pan == False:
 structured_openings.EnsurePath(myPath)

Thijmen Pluimers162 163

7.1.4. Solid layer generation script
For this only grasshopper components are used they are all shown below.

Thijmen Pluimers 164

7.1.5. Boundary member generation script

for i in range(len(num_panels)):
 myPath = GH_Path(i)
 for j,pan in enumerate(panels.Branch(i)):
 segs = rg.PolylineCurve.DuplicateSegments(pan)
 horizontals = []
 non_horizontals = []
 for inner in interior_plate_line.Branch(i):
 point = rg.PolylineCurve.PointAtNormalizedLength(inner,0.5)
 contain = rg.Curve.Contains(pan,point,plane)
 if contain == rg.PointContainment.Inside:
 inner_line = inner
 inner_segs = rg.PolylineCurve.DuplicateSegments(inner_line)
 inner_hor = []
 inner_non_hor = []
 for innerseg in inner_segs:
 pb = rg.LineCurve.PointAtNormalizedLength(innerseg,0)
 pe = rg.LineCurve.PointAtNormalizedLength(innerseg,1)
 if abs(pb[2]-pe[2]) < 10:
 inner_hor.append(innerseg)
 else:
 inner_non_hor.append(innerseg)
 for seg in segs:
 pb = rg.LineCurve.PointAtNormalizedLength(seg,0)
 pe = rg.LineCurve.PointAtNormalizedLength(seg,1)
 if abs(pb[2]-pe[2]) < 10:
 horizontals.append(seg)
 else:
 non_horizontals.append(seg)
 oth_ex_lines.Add(seg,myPath)
 inner_lines = []
 for line in horizontals:
 out_line = line
 inner_line_extended = []
 temp = rg.LineCurve.Offset(line,plane,plate_height,0,rg.CurveOffsetCornerStyle.Sharp)[0]
 point = rg.LineCurve.PointAtNormalizedLength(temp,0.5)
 contain = rg.Curve.Contains(pan,point,plane,0)
 if contain == rg.PointContainment.Inside:
 inner_lines = temp
 else:
 inner_lines = (rg.LineCurve.Offset(line,plane,-
plate_height,0,rg.CurveOffsetCornerStyle.Sharp)[0])
 temp =
rg.LineCurve.Extend(inner_lines,rg.CurveEnd.Both,plate_height*2,rg.CurveExtensionStyle.Line)
 params = []
 events = rg.Intersect.Intersection.CurveCurve(temp,pan,0,0)
 for event in events:
 params.append(event.ParameterA)
 temp_line = temp.Split(params)
 for obj in temp_line:
 point = obj.PointAtNormalizedLength(0.5)
 contain = rg.Curve.Contains(pan,point,plane,0)

Thijmen Pluimers164 165

 if contain == rg.PointContainment.Inside:
 inner_line_extended.append(obj)
 inner_line_cut = []
 for line in inner_line_extended:
 params = []
 temp_lines = []
 for obj in inner_non_hor:
 events = rg.Intersect.Intersection.CurveCurve(line,obj,0,0)
 for event in events:
 params.append(event.ParameterA)
 temp = line.Split(params)
 for obj in temp:
 point = obj.PointAtNormalizedLength(0.5)
 contain_pan = rg.Curve.Contains(pan,point,plane,0)
 contain_inn = rg.Curve.Contains(inner_line,point,plane,0)
 if contain_pan == rg.PointContainment.Inside and contain_inn !=
rg.PointContainment.Inside:
 temp_lines.append(obj)
 inln =
rg.LineCurve(rg.LineCurve.PointAtNormalizedLength(temp_lines[0],0),rg.LineCurve.PointAtNormali
zedLength(temp_lines[-1],1))
 #outer line
 temp =
rg.LineCurve.Extend(out_line,rg.CurveEnd.Both,plate_height*2,rg.CurveExtensionStyle.Line)
 params = []
 for obj in non_horizontals:
 events = rg.Intersect.Intersection.CurveCurve(temp,obj,0,0)
 for event in events:
 params.append(event.ParameterA)
 temp_line = temp.Split(params)
 outer_line_extended = []
 for obj in temp_line:
 point = obj.PointAtNormalizedLength(0.5)
 contain = rg.Curve.Contains(pan,point,plane,0)
 if contain != rg.PointContainment.Outside:
 outer_line_extended.append(obj)
 if len(outer_line_extended) == 1:
 outln = outer_line_extended[0]
 else:
 temp_ln =
rg.LineCurve(rg.LineCurve.PointAtNormalizedLength(outer_line_extended[0],0),rg.LineCurve.Point
AtNormalizedLength(outer_line_extended[-1],1))
 params = []
 for obj in inner_non_hor:
 events = rg.Intersect.Intersection.CurveCurve(temp_ln,obj,0,0)
 for event in events:
 params.append(event.ParameterA)
 temp_ln_sp = temp_ln.Split(params)
 for obj in temp_ln_sp:
 point = obj.PointAtNormalizedLength(0.5)
 contain_pan = rg.Curve.Contains(pan,point,plane,0)

Thijmen Pluimers 166

 contain_inn = rg.Curve.Contains(inner_line,point,plane,0)
 if contain_pan != rg.PointContainment.Outside and contain_inn ==
rg.PointContainment.Outside:
 outln = obj
 ## opening cutter
 params_in = []
 params_out = []
 for open in openings.Branch(i):
 open_segs = rg.PolylineCurve.DuplicateSegments(open)
 non_hor = []
 for seg in open_segs:
 pb = rg.LineCurve.PointAtNormalizedLength(seg,0)
 pe = rg.LineCurve.PointAtNormalizedLength(seg,1)
 if abs(pb[2]-pe[2]) > 10:
 non_hor.append(seg)
 for obj in non_hor:
 events = rg.Intersect.Intersection.CurveCurve(inln,obj,0,0)
 for event in events:
 params_in.append(event.ParameterA)
 events = rg.Intersect.Intersection.CurveCurve(outln,obj,0,0)
 for event in events:
 params_out.append(event.ParameterA)
 if params_in != []:
 in_lines = []
 out_lines = []
 temp_in = inln.Split(params_in)
 temp_out = outln.Split(params_out)
 for obj in temp_in:
 point = obj.PointAtNormalizedLength(0.5)
 contain = []
 for open in openings.Branch(i):
 contain.append(rg.Curve.Contains(open,point,plane,0))
 if rg.PointContainment.Inside not in contain and rg.PointContainment.Coincident not in
contain:
 in_lines.append(obj)
 for obj in temp_out:
 point = obj.PointAtNormalizedLength(0.5)
 contain = []
 for open in openings.Branch(i):
 contain.append(rg.Curve.Contains(open,point,plane,0))
 if rg.PointContainment.Inside not in contain and rg.PointContainment.Coincident not in
contain:
 out_lines.append(obj)
 for q,line in enumerate(in_lines):
 inb = line.PointAtNormalizedLength(0)
 ine = line.PointAtNormalizedLength(1)
 outb = out_lines[q].PointAtNormalizedLength(0)
 oute = out_lines[q].PointAtNormalizedLength(1)
 tp = [inb,ine,oute,outb,inb]
 plates.Add(rg.PolylineCurve(tp),myPath)
 else:

Thijmen Pluimers166 167

 inb = inln.PointAtNormalizedLength(0)
 ine = inln.PointAtNormalizedLength(1)
 outb = outln.PointAtNormalizedLength(0)
 oute = outln.PointAtNormalizedLength(1)
 tp = [inb,ine,oute,outb,inb]
 plates.Add(rg.PolylineCurve(tp),myPath)
 ##non horizontal boundary plates
 for line in non_horizontals:
 outer_line = line
 temp = rg.LineCurve.Offset(line,plane,plate_height,0,rg.CurveOffsetCornerStyle.Sharp)[0]
 point = rg.LineCurve.PointAtNormalizedLength(temp,0.5)
 contain = rg.Curve.Contains(pan,point,plane,0)
 if contain == rg.PointContainment.Inside:
 inner_line = temp
 else:
 inner_line = (rg.LineCurve.Offset(line,plane,-
plate_height,0,rg.CurveOffsetCornerStyle.Sharp)[0])
 plate_hr = []
 for plate in plates.Branch(i):
 segs = rg.PolylineCurve.DuplicateSegments(plate)
 for seg in segs:
 pb = rg.LineCurve.PointAtNormalizedLength(seg,0)
 pe = rg.LineCurve.PointAtNormalizedLength(seg,1)
 if abs(pb[2]-pe[2]) < 10:
 plate_hr.append(seg)
 params_in = []
 params_out = []
 for seg in plate_hr:
 temp = seg.Extend(rg.CurveEnd.Both,plate_height,rg.CurveExtensionStyle.Line)
 events = rg.Intersect.Intersection.CurveCurve(outer_line,temp,0,0)
 for event in events:
 params_out.append(event.ParameterA)
 events = rg.Intersect.Intersection.CurveCurve(inner_line,temp,0,0)
 for event in events:
 params_in.append(event.ParameterA)
 ## inner line
 if params_in != []:
 temp_lines = inner_line.Split(params_in)
 for obj in temp_lines:
 point = obj.PointAtNormalizedLength(0.5)
 contain = []
 for item in plates.Branch(i):
 contain.append(rg.Curve.Contains(item,point,plane,0))
 if rg.PointContainment.Inside not in contain and rg.PointContainment.Coincident not in
contain:
 inln = obj
 else:
 inln = inner_line
 ##outer line
 if params_out != []:
 temp_lines = outer_line.Split(params_out)

Thijmen Pluimers 168

 for obj in temp_lines:
 point = obj.PointAtNormalizedLength(0.5)
 contain = []
 for item in plates.Branch(i):
 contain.append(rg.Curve.Contains(item,point,plane,0))
 if rg.PointContainment.Inside not in contain and rg.PointContainment.Coincident not in
contain:
 outln = obj
 else:
 outln = outer_line
 inb = inln.PointAtNormalizedLength(0)
 ine = inln.PointAtNormalizedLength(1)
 outb = outln.PointAtNormalizedLength(0)
 oute = outln.PointAtNormalizedLength(1)
 tp = [inb,ine,oute,outb,inb]
 plates.Add(rg.PolylineCurve(tp),myPath)

Thijmen Pluimers168 169

7.1.6. Opening plate generation script
plate_center_line = DataTree[rg.LineCurve]()
a = []
for i in range(panel_tree.BranchCount):
 myPath = GH_Path(i)
 for pan in panel_tree.Branch(i):
 for open in openings.Branch(i):
 segs = rg.PolylineCurve.DuplicateSegments(open)
 for seg in segs:
 pb = seg.PointAtNormalizedLength(0)
 pe = seg.PointAtNormalizedLength(1)
 if abs(pe[2]-pb[2]) < 10:
 temp =
rg.LineCurve.Offset(seg,plane,plate_height/2,0,rg.CurveOffsetCornerStyle.Sharp)[0]
 point = temp.PointAtNormalizedLength(0.5)
 contain = rg.Curve.Contains(open,point,plane,0)
 if contain == rg.PointContainment.Outside:
 temp = (temp)
 else:
 temp = (rg.LineCurve.Offset(seg,plane,-
plate_height/2,0,rg.CurveOffsetCornerStyle.Sharp)[0])
 point2 = temp.PointAtNormalizedLength(0.5)
 contain = rg.Curve.Contains(pan,point2,plane,0)
 if contain == rg.PointContainment.Inside:
 plate_center_line.Add(temp,myPath)

Thijmen Pluimers 170

7.1.7. Stud generation script
stud_lines = DataTree[rg.PolylineCurve]()

for i in range(Panels.BranchCount):
 myPath = GH_Path(i)
 for panel in Panels.Branch(i):
#this part sets up the script in generating the domains for the panels and the windows
 segs = rg.PolylineCurve.DuplicateSegments(panel)
 boundary_x = []
 boundary_y = []
 boundary_z = []
 for seg in segs:
 boundary_x.append(seg.PointAtNormalizedLength(0.5)[0])
 boundary_y.append(seg.PointAtNormalizedLength(0.5)[1])
 boundary_z.append(seg.PointAtNormalizedLength(0.5)[2])
 resultx = all(elem == boundary_x[0] for elem in boundary_x)
 resulty = all(elem == boundary_y[0] for elem in boundary_y)
 pan_H = [int(round(min(boundary_z))),int(round(max(boundary_z)))]
 if resultx == False:
 pan_W = [int(round(min(boundary_x))),int(round(max(boundary_x)))]
 planex = True
 pan_d = boundary_y[0]
 else:
 pan_W = [int(round(min(boundary_y))),int(round(max(boundary_y)))]
 planex = False
 pan_d = boundary_x[0]
 pan_cords = [pan_W[0]+frame_width/2]
 cords_open = []
 for open in Openings.Branch(i):
 segs_open = rg.PolylineCurve.DuplicateSegments(open)
 for seg in segs_open:
 pb = seg.PointAtNormalizedLength(0)
 pe = seg.PointAtNormalizedLength(1)
 if abs(pb[2]-pe[2]) > 10:
 temp_seg =
rg.LineCurve.Offset(seg,plane,frame_width/2,0,rg.CurveOffsetCornerStyle.Sharp)[0]
 point = temp_seg.PointAtNormalizedLength(0.5)
 contain = rg.Curve.Contains(open,point,plane,0)
 if contain == rg.PointContainment.Outside:
 if planex == True:
 cords_open.append(int(round(point[0])))
 else:
 cords_open.append(int(round(point[1])))
 else:
 point = (rg.LineCurve.Offset(seg,plane,-
frame_width/2,0,rg.CurveOffsetCornerStyle.Sharp)[0]).PointAtNormalizedLength(0.5)
 if planex == True:
 cords_open.append(int(round(point[0])))
 else:
 cords_open.append(int(round(point[1])))
 cords_open.sort()
 while pan_cords[-1] < pan_W[1]:

Thijmen Pluimers170 171

 temp_cord = pan_cords[-1]+frame_int
 for cor in cords_open:
 if pan_cords[-1] < cor and temp_cord > cor:
 temp_cord = cor
 elif temp_cord > cor-frame_width-min_distance and temp_cord < cor:
 pan_cords.append(cor-frame_width-min_distance)
 temp_cord = cor
 elif temp_cord > cor and temp_cord < cor+frame_width+min_distance:
 temp_cord = cor
 pan_cords.append(temp_cord)
 pan_cords.pop(0)
 if pan_cords[-1] > pan_W[1]:
 pan_cords.pop(-1)

##line generation
 for cord in pan_cords:
 pb = rg.Point3d(cord,pan_d,pan_H[0])
 pe = rg.Point3d(cord,pan_d,pan_H[1])
 temp_cent_ln = rg.LineCurve(pb,pe)
 ##take out lines outside panels
 params = []
 events = rg.Intersect.Intersection.CurveCurve(temp_cent_ln,panel,0,0)
 for event in events:
 params.append(event.ParameterA)
 tmp_cl_pan = temp_cent_ln.Split(params)
 line_clipped_pan = []
 for line in tmp_cl_pan:
 point = line.PointAtNormalizedLength(0.5)
 con_pan = rg.Curve.Contains(panel,point,plane,0)
 if con_pan == rg.PointContainment.Inside:
 line_clipped_pan.append(line)
 line_clipped_plate = []
 plate_hor = []
 for plate in bound_plate.Branch(i):
 segs = rg.PolylineCurve.DuplicateSegments(plate)
 for seg in segs:
 pb = rg.LineCurve.PointAtNormalizedLength(seg,0)
 pe = rg.LineCurve.PointAtNormalizedLength(seg,1)
 if abs(pb[2]-pe[2]) < 10:
 plate_hor.append(seg.Extend(rg.CurveEnd.Both,70,rg.CurveExtensionStyle.Line))
 for line in line_clipped_pan:
 params = []
 for obj in plate_hor:
 events = rg.Intersect.Intersection.CurveCurve(line,obj,0,0)
 for event in events:
 params.append(event.ParameterA)
 temp = line.Split(params)
 for obj in temp:
 point = obj.PointAtNormalizedLength(0.5)
 contain = []
 for plate in bound_plate.Branch(i):

Thijmen Pluimers 172

 contain.append(rg.Curve.Contains(plate,point,plane,0))
 if rg.PointContainment.Inside not in contain and rg.PointContainment.Coincident not in
contain:
 line_clipped_plate.append(obj)
 line_clipped_open_pl = []
 center_lines = []
 for line in line_clipped_plate:
 params = []
 for open in Openings.Branch(i):
 events = rg.Intersect.Intersection.CurveCurve(line,open,0,0)
 for event in events:
 params.append(event.ParameterA)
 if params == []:
 center_lines.append(line)
 else:
 openings_clipped = []
 temp = line.Split(params)
 for obj in temp:
 point = obj.PointAtNormalizedLength(0.5)
 contain = []
 for open in Openings.Branch(i):
 contain.append(rg.Curve.Contains(open,point,plane,0))
 if rg.PointContainment.Inside not in contain:
 openings_clipped.append(obj)
 for obj in openings_clipped:
 params = []
 for plate in open_plates.Branch(i):
 events = rg.Intersect.Intersection.CurveCurve(obj,plate,0,0)
 for event in events:
 params.append(event.ParameterA)
 temp = obj.Split(params)
 for ins in temp:
 point = ins.PointAtNormalizedLength(0.5)
 contain = []
 for plate in open_plates.Branch(i):
 contain.append(rg.Curve.Contains(plate,point,plane,0))
 if rg.PointContainment.Inside not in contain:
 center_lines.append(ins)
 for line in center_lines:
 temp = line
 l1 = line.Offset(plane,frame_width/2,0,rg.CurveOffsetCornerStyle.Sharp)[0]
 l2 = temp.Offset(plane,-frame_width/2,0,rg.CurveOffsetCornerStyle.Sharp)[0]
 params1 = []
 params2 = []
 p1b = l1.PointAtNormalizedLength(0)
 p1e = l1.PointAtNormalizedLength(1)
 p2b = l2.PointAtNormalizedLength(0)
 p2e = l2.PointAtNormalizedLength(1)
 tp = [p1b,p1e,p2e,p2b,p1b]
 stud_lines.Add(rg.PolylineCurve(tp),myPath)

Thijmen Pluimers172 173

7.1.8. Panel connection generation script
framework_members = DataTree[rg.PolylineCurve]()
insulation = DataTree[rg.LineCurve]()
a = []
for i in range(len(num_panels)):
 myPath = GH_Path(i)
 for j,pan in enumerate(panels.Branch(i)):
 sharp = rg.CurveOffsetCornerStyle.Sharp
 myPath = GH_Path(i)
 plate_ex_curves = rg.PolylineCurve.DuplicateSegments(pan)
 pan_hor_lines = []
 pan_bound_points = []
#get horizontal lines from ever panel
 for line in plate_ex_curves:
 pb = line.PointAtNormalizedLength(0)
 pe = line.PointAtNormalizedLength(1)

 if pb not in pan_bound_points:
 pan_bound_points.append(pb)
 if pe not in pan_bound_points:
 pan_bound_points.append(pe)
 hor_int_nclip = []
 temp_lines = []
 if abs(pb[2] - pe[2]) < 10: #checks if lines are (nearly) horizontal
 pan_hor_lines.append(line)
 z_points = []
 for point in pan_bound_points:
 depth = point[0]
 z_points.append(point[2])

 pan_dom = [int(round(min(z_points))),int(round(max(z_points)))]
#check top and bottom line
 for line in pan_hor_lines:
 point = int(round(rg.LineCurve.PointAtNormalizedLength(line,0.5)[2]))
 if point == pan_dom[0]:
 bot_line = line
 elif point == pan_dom[1]:
 top_line = line
#creating top connection
 #top plate
 if (len(pan_hor_lines)) != 1:
 framework_members_curves = []
 temp_top_plate = []
 motion1 = rg.Transform.Translation(0,0,157)
 motion2 = rg.Transform.Translation(0,0,195)
 temp1 = rg.LineCurve(top_line)
 temp2 = rg.LineCurve(top_line)
 temp1.Transform(motion1)
 temp2.Transform(motion2)
 temp_top_plate.append(temp1)
 temp_top_plate.append(temp2)
 insulation.Add(top_line,myPath)

Thijmen Pluimers 174

 top_plate = []
 for line in temp_top_plate:
 params = []
 events = rg.Intersect.Intersection.CurveCurve(line,panel_bound,0,0)
 for event in events:
 params.append(event.ParameterA)
 temp = line.Split(params)
 for obj in temp:
 point = obj.PointAtNormalizedLength(0.5)
 cont = rg.Curve.Contains(panel_bound,point,plane)
 if cont == rg.PointContainment.Inside:
 top_plate.append(obj)
 if top_plate != []:
 l1pb = top_plate[0].PointAtNormalizedLength(0)
 l1pe = top_plate[0].PointAtNormalizedLength(1)
 l2pb = top_plate[1].PointAtNormalizedLength(0)
 l2pe = top_plate[1].PointAtNormalizedLength(1)
 temp_points = [l1pb,l1pe,l2pe,l2pb,l1pb]
 framework_members_curves.append((rg.PolylineCurve(temp_points)))
 framework_members.Add((rg.PolylineCurve(temp_points)),myPath)
 #beginning and ending stud
 zc = []
 begin_stud = []
 end_stud = []
 if top_plate != []:
 for line in top_plate:
 point = line.PointAtNormalizedLength(0.5)
 zc.append(point[2])
 min_ind = zc.index(min(zc))
 max_ind = zc.index(max(zc))
 insulation.Add(top_plate[max_ind],myPath)
 pbbe = top_line.PointAtNormalizedLength(0)
 pebe = top_line.PointAtNormalizedLength(1)
 pbte = top_plate[min_ind].PointAtNormalizedLength(0)
 pete = top_plate[min_ind].PointAtNormalizedLength(1)
 lbe = rg.LineCurve(pbbe,pbte)
 lee = rg.LineCurve(pebe,pete)
 pbbi = top_line.PointAtLength(plate_height)
 pebi = top_line.PointAtLength(top_line.GetLength()-plate_height)
 pbti = top_plate[min_ind].PointAtLength(plate_height)
 peti = top_plate[min_ind].PointAtLength(top_plate[min_ind].GetLength()-plate_height)
 lbi = rg.LineCurve(pbbi,pbti)
 lei = rg.LineCurve(pebi,peti)
 begin_stud.append(lbe)
 begin_stud.append(lbi)
 end_stud.append(lee)
 end_stud.append(lei)
 temp_points1 = [pbbe,pbte,pbti,pbbi,pbbe]
 temp_points2 = [pebe,pete,peti,pebi,pebe]
 framework_members.Add((rg.PolylineCurve(temp_points1)),myPath)
 framework_members.Add((rg.PolylineCurve(temp_points2)),myPath)

Thijmen Pluimers174 175

 framework_members_curves.append((rg.PolylineCurve(temp_points1)))
 framework_members_curves.append((rg.PolylineCurve(temp_points2)))
 #other studs
 temp_x = []
 temp_x.append((top_plate[min_ind].PointAtNormalizedLength(0))[0])
 temp_x.append((top_plate[min_ind].PointAtNormalizedLength(1))[0])
 cons = [min(temp_x),max(temp_x)]
 x_cords = [cons[0]]
 while x_cords[-1] < cons[1]-frame_int:
 x_cords.append(float(x_cords[-1]+frame_int))
 x_cords.pop(0)
 if x_cords[-1] > cons[1]-min_dist-plate_height:
 x_cords.pop(-1)
 x_cords.append(float(cons[1]-min_dist-plate_height))
 for cord in x_cords:
 temp_p = top_line.PointAtNormalizedLength(0)[2]
 temp_d = top_line.PointAtNormalizedLength(0)[1]
 pb = (rg.Point3d(cord,temp_d,temp_p))
 pt = pb + rg.Point3d(0,0,157)
 tline = (rg.LineCurve(pb,pt))
 stud_lines = []
 tline1_temp = rg.LineCurve.Offset(tline,plane,stud_width/2,0,sharp)
 tline2_temp = rg.LineCurve.Offset(tline,plane,-stud_width/2,0,sharp)
 for item in tline1_temp:
 stud_lines.append(item)
 for item in tline2_temp:
 stud_lines.append(item)
 p1b = stud_lines[0].PointAtNormalizedLength(0)
 p1e = stud_lines[0].PointAtNormalizedLength(1)
 p2b = stud_lines[1].PointAtNormalizedLength(0)
 p2e = stud_lines[1].PointAtNormalizedLength(1)
 temp_points_studs = [p1b,p1e,p2e,p2b,p1b]
 temp_line_stud = rg.PolylineCurve(temp_points_studs)
 framework_members.Add(temp_line_stud,myPath)
 else:
 framework_members.EnsurePath(myPath)
 insulation.EnsurePath(myPath)

Thijmen Pluimers 176

7.1.9. RC-calculation script
This script calculates the average RC-value per panel using the areas per material and their thickness and
lambda.
RC_panels = DataTree[float]()
temp_RC = []

for i in range(len(num_panel)):
 myPath = GH_Path(i)
 for item in framework_area.Branch(i):
 temp_frame_area = item
 for item in insulation_area.Branch(i):
 temp_ins_area = item
 total_area = (temp_frame_area + temp_ins_area)
 per_ins = (temp_ins_area/total_area)
 per_frame = 1 - per_ins
 RC_ins = ((layer_thickness/1000)/insulation_lambda)
 RC_frame = ((layer_thickness/1000)/framework_lambda)
 RC = round(RC_ins*per_ins + RC_frame*per_frame,1)
 RC_panels.Add(RC,myPath)
 temp_RC.append(RC)
lowest_RC = min(temp_RC)

fb_lowest_RC = "Lowest actual RC-Value is: {}m²K/W".format(lowest_RC)

Thijmen Pluimers176 177

7.1.10. Window placement script
if Run == True:
 window_frames = DataTree[rg.Brep]()
 window_weight = DataTree[float]()
 for p,gt in enumerate(goal_types):

 for j,st in enumerate(source_types):
 if gt == st:
 for i,pan in enumerate(num_panels):
 tree_branch = GH_Path(i)
 window_in_pan = False
 contain = rg.Curve.Contains(pan,goal_point[p],plane,0)
 if contain != rg.PointContainment.Outside:
 window_in_pan = True
 else:
 window_frames.EnsurePath(GH_Path(i))
 if window_in_pan == True:
 motion = rg.Transform.Translation(rg.Vector3d(goal_point[p]-source_point[j]))
 window_weight.Add(weight[j],tree_branch)
 for obj in windows.Branch(0,j):
 temp = obj.Duplicate()
 temp.Transform(motion)
 offset = rg.Transform.Translation(0,-window_offset,0)
 temp.Transform(offset)
 window_frames.Add(temp,tree_branch)

Thijmen Pluimers 178

7.2. Roof tool script
In this appendix all individual components of the roof tool can be found.

Thijmen Pluimers178 179

7.2.1. Panel contour generation script
temp_roof = rg.PolylineCurve.DuplicateSegments(roof)
hor_lines = []
for line in temp_roof:
 p1 = (rg.LineCurve.PointAtNormalizedLength(line,0))
 p2 = (rg.LineCurve.PointAtNormalizedLength(line,1))
 if abs(p1[2]-p2[2]) < 10:
 if p1[0] < p2[0]:
 hor_lines.append(rg.LineCurve(p1,p2))
 else:
 hor_lines.append(rg.LineCurve(p2,p1))
roof_dom =
[math.ceil((rg.LineCurve.PointAtNormalizedLength(hor_lines[0],0))[0]),math.ceil((rg.LineCurve.Poin
tAtNormalizedLength(hor_lines[0],1))[0])]
roof_dom.sort()
pan_cords = [roof_dom[0]+edge_tol]
while pan_cords[-1] < (roof_dom[1]-edge_tol-pan_w):
 temp_point = pan_cords[-1]+pan_w
 temp_point2 = temp_point+betw_tol
 pan_cords.append(temp_point)
 pan_cords.append(temp_point2)
pan_cords.append(roof_dom[1]-edge_tol)

panel_contours = []
isplane = False
for i,cord in enumerate(pan_cords):
 if i%2:
 pass
 else:
 p1 = rg.LineCurve.PointAtLength(hor_lines[0],cord-roof_dom[0])
 p2 = rg.LineCurve.PointAtLength(hor_lines[1],cord-roof_dom[0])
 p3 = rg.LineCurve.PointAtLength(hor_lines[1],pan_cords[i+1]-roof_dom[0])
 p4 = rg.LineCurve.PointAtLength(hor_lines[0],pan_cords[i+1]-roof_dom[0])
 plp = [p1,p2,p3,p4,p1]
 panel_contours.append(rg.PolylineCurve(plp))
 if isplane == False:
 plane = rg.Plane(p1,p2,p4)
 isplane = True

Thijmen Pluimers 180

7.2.2. Solid layer generation script
For the generation of the solid layers grasshopper components were used these are shown below

To check if a split surface is inside a opening the script below is used
for i in range(surfaces.BranchCount):
 myPath = GH_Path(i)
 for j,sur in enumerate(surfaces.Branch(i)):
 contain = []
 for point in point_at.Branch(i,j):
 for open in structured_openings.Branch(i):
 contain.append(rg.Curve.Contains(open,point,plane,0))
 for open in multi_pan_open:
 contain.append(rg.Curve.Contains(open,point,plane,0))
 if rg.PointContainment.Inside not in contain:
 pattern.Add(True,myPath)
 else:
 pattern.Add(False,myPath)

Thijmen Pluimers180 181

7.2.3. Plate contour generation script
plates = DataTree[rg.Curve]()
open_plates = DataTree[rg.Curve]()

for i in range(structured_panels.BranchCount):
 myPath = GH_Path(i)
 for pan in structured_panels.Branch(i):
 ## top and bottom plates
 segs = rg.PolylineCurve.DuplicateSegments(pan)
 horizontals = []
 for seg in segs:
 p1 = rg.LineCurve.PointAtNormalizedLength(seg,0)
 p2 = rg.LineCurve.PointAtNormalizedLength(seg,1)
 if abs(p1[2]-p2[2]) < 10:
 horizontals.append(seg)
 for hor in horizontals:
 t1 = hor.PointAtNormalizedLength(0)
 t2 = hor.PointAtNormalizedLength(1)
 temp1 = hor.Offset(plane,plate_height,0,rg.CurveOffsetCornerStyle.Sharp)
 temp_line = temp1[0]
 temp2 = hor.Offset(plane,-plate_height,0,rg.CurveOffsetCornerStyle.Sharp)
 point = temp_line.PointAtNormalizedLength(0.5)
 contain = rg.Curve.Contains(pan,point,plane,0)
 if contain == rg.PointContainment.Inside:
 t3 = rg.LineCurve.PointAtNormalizedLength(temp_line,1)
 t4 = rg.LineCurve.PointAtNormalizedLength(temp_line,0)
 bt = [t1,t2,t3,t4,t1]
 plate = rg.PolylineCurve(bt)
 plates.Add(plate,myPath)
 else:
 t3 = rg.LineCurve.PointAtNormalizedLength(temp2[0],1)
 t4 = rg.LineCurve.PointAtNormalizedLength(temp2[0],0)
 bt = [t1,t2,t3,t4,t1]
 plate = rg.PolylineCurve(bt)
 plates.Add(plate,myPath)

 for open in structured_openings.Branch(i):
 segs = rg.PolylineCurve.DuplicateSegments(open)
 horizontals_open = []
 for seg in segs:
 p1 = rg.LineCurve.PointAtNormalizedLength(seg,0)
 p2 = rg.LineCurve.PointAtNormalizedLength(seg,1)
 if abs(p1[2]-p2[2]) < 10:
 horizontals_open.append(seg)
 for hor in horizontals_open:
 t1 = hor.PointAtNormalizedLength(0)
 t2 = hor.PointAtNormalizedLength(1)
 temp1 = hor.Offset(plane,plate_height,0,rg.CurveOffsetCornerStyle.Sharp)
 temp_line = temp1[0]
 temp2 = hor.Offset(plane,-plate_height,0,rg.CurveOffsetCornerStyle.Sharp)
 point = temp_line.PointAtNormalizedLength(0.5)
 contain = rg.Curve.Contains(open,point,plane,0)

Thijmen Pluimers 182

 if contain == rg.PointContainment.Outside:
 t3 = rg.LineCurve.PointAtNormalizedLength(temp_line,1)
 t4 = rg.LineCurve.PointAtNormalizedLength(temp_line,0)
 bt = [t1,t2,t3,t4,t1]
 plate = rg.PolylineCurve(bt)
 open_plates.Add(plate,myPath)
 else:
 t3 = rg.LineCurve.PointAtNormalizedLength(temp2[0],1)
 t4 = rg.LineCurve.PointAtNormalizedLength(temp2[0],0)
 bt = [t1,t2,t3,t4,t1]
 plate = rg.PolylineCurve(bt)
 open_plates.Add(plate,myPath)
 for open in multi_pan_open:
 segs = rg.PolylineCurve.DuplicateSegments(open)
 horizontals_open = []
 for seg in segs:
 p1 = rg.LineCurve.PointAtNormalizedLength(seg,0)
 p2 = rg.LineCurve.PointAtNormalizedLength(seg,1)
 if abs(p1[2]-p2[2]) < 10:
 horizontals_open.append(seg)
 for hor in horizontals_open:
 temp1 = hor.Offset(plane,plate_height/2,0,rg.CurveOffsetCornerStyle.Sharp)
 temp_line = temp1[0]
 temp2 = hor.Offset(plane,-plate_height,0,rg.CurveOffsetCornerStyle.Sharp)
 point = temp_line.PointAtNormalizedLength(0.5)
 contain = rg.Curve.Contains(open,point,plane,0)
 if contain == rg.PointContainment.Outside:
 c_line = temp_line
 else:
 c_line = temp2[0]
 params = []
 events = rg.Intersect.Intersection.CurveCurve(c_line,pan,0,0)
 for event in events:
 params.append(event.ParameterA)
 temp = c_line.Split(params)
 for line in temp:
 point = line.PointAtNormalizedLength(0.5)
 contain = rg.Curve.Contains(pan,point,plane,0)
 if contain == rg.PointContainment.Inside:
 plate_c_line = line
 temp1 = plate_c_line.Offset(plane,plate_height/2,0,rg.CurveOffsetCornerStyle.Sharp)
 temp2 = plate_c_line.Offset(plane,-plate_height/2,0,rg.CurveOffsetCornerStyle.Sharp)
 temp_line1 = temp1[0]
 temp_line2 = temp2[0]
 t1 = temp_line1.PointAtNormalizedLength(0)
 t2 = temp_line1.PointAtNormalizedLength(1)
 t3 = temp_line2.PointAtNormalizedLength(1)
 t4 = temp_line2.PointAtNormalizedLength(0)
 bt = [t1,t2,t3,t4,t1]
 plate = rg.PolylineCurve(bt)
 open_plates.Add(plate,myPath)

Thijmen Pluimers182 183

7.2.4. Rafter contour generation script
rafter_min = rafter_min+rafter_width
studs = DataTree[rg.Curve]()
stud_center_lines = DataTree[rg.Curve]()
a = []
for i in range(structured_panels.BranchCount):
 myPath = GH_Path(i)
 for pan in structured_panels.Branch(i):
 segs = pan.DuplicateSegments()
 x_cords_pan = []
 horizontals = []
 for seg in segs:
 point = seg.PointAtNormalizedLength(0.5)
 x_cords_pan.append(point[0])
 p1 = rg.LineCurve.PointAtNormalizedLength(seg,0)
 p2 = rg.LineCurve.PointAtNormalizedLength(seg,1)
 if abs(p1[2]-p2[2]) < 10:
 horizontals.append(seg)
 dom_pan = [round(min(x_cords_pan)),round(max(x_cords_pan))]
 open_stud_cords = []
 for open in structured_openings.Branch(i):
 segs = open.DuplicateSegments()
 open_cords = []
 for seg in segs:
 point = seg.PointAtNormalizedLength(0.5)
 open_cords.append(point[0])
 open_stud_cords.append(round(min(open_cords))-rafter_width/2)
 open_stud_cords.append(round(max(open_cords))+rafter_width/2)

 for open in multi_pan_open:
 segs = open.DuplicateSegments()
 open_cords = []
 for seg in segs:
 point = seg.PointAtNormalizedLength(0.5)
 open_cords.append(point[0])
 temp_dom_min = round(min(open_cords))
 temp_dom_max = round(max(open_cords))
 if temp_dom_min > dom_pan[0] and temp_dom_min < dom_pan[1]:
 dom_min = temp_dom_min-rafter_width/2
 elif temp_dom_min <= dom_pan[0]:
 dom_min = temp_dom_min-(2*rafter_min+2*rafter_width)
 else:
 dom_min = temp_dom_min+(2*rafter_min+2*rafter_width)
 if temp_dom_max > dom_pan[0] and temp_dom_max < dom_pan[1]:
 dom_max = temp_dom_max+rafter_width/2
 elif temp_dom_max <= dom_pan[0]:
 dom_max = temp_dom_max-(2*rafter_min+2*rafter_width)
 else:
 dom_max = temp_dom_max+(2*rafter_min+2*rafter_width)
 open_stud_cords.append(dom_min)
 open_stud_cords.append(dom_max)
 stud_cords = [dom_pan[0]+rafter_width/2]

Thijmen Pluimers 184

 while stud_cords[-1] < dom_pan[1]:
 temp_cord = stud_cords[-1]+rafter_int
 changed = False
 for open in open_stud_cords:
 if temp_cord > open-rafter_min and temp_cord < open:
 changed = True
 stud_cords.append(open-rafter_min)
 stud_cords.append(open)
 elif temp_cord >= open and temp_cord < open+rafter_min:
 changed = True
 stud_cords.append(open)
 if stud_cords[-1] < open-rafter_min and temp_cord > open+rafter_min:
 changed = True
 stud_cords.append(open)
 if changed == False:
 stud_cords.append(temp_cord)
 stud_cords.pop(-1)
 if stud_cords[-1] > dom_pan[1]-rafter_width/2-rafter_min:
 stud_cords.pop(-1)
 stud_cords.append(dom_pan[1]-rafter_width/2-rafter_min)
 stud_cords.append(dom_pan[1]-rafter_width/2)
 stud_c_lines = []
 for cord in stud_cords:
 t1 = rg.LineCurve.PointAtNormalizedLength(horizontals[0],0.5)
 t2 = rg.LineCurve.PointAtNormalizedLength(horizontals[1],0.5)
 p1 = rg.Point3d(cord,t1[1],t1[2])
 p2 = rg.Point3d(cord,t2[1],t2[2])
 tline = (rg.LineCurve(p1,p2))
 params = []
 for plate in plates.Branch(i):
 events = rg.Intersect.Intersection.CurveCurve(tline,plate,0,0)
 for event in events:
 params.append(event.ParameterA)
 for plate in o_plates.Branch(i):
 events = rg.Intersect.Intersection.CurveCurve(tline,plate,0,0)
 for event in events:
 params.append(event.ParameterA)
 temp = tline.Split(params)
 for line in temp:
 point = rg.LineCurve.PointAtNormalizedLength(line,0.5)
 plate_cont = []
 open_cont = []
 for plate in plates.Branch(i):
 plate_cont.append(rg.Curve.Contains(plate,point,plane,0))
 for plate in o_plates.Branch(i):
 plate_cont.append(rg.Curve.Contains(plate,point,plane,0))
 for open in structured_openings.Branch(i):
 open_cont.append(rg.Curve.Contains(open,point,plane,0))
 for open in multi_pan_open:
 open_cont.append(rg.Curve.Contains(open,point,plane,0))

Thijmen Pluimers184 185

 if rg.PointContainment.Inside not in plate_cont and rg.PointContainment.Inside not in
open_cont:
 stud_c_lines.append(line)
 for line in stud_c_lines:
 stud_center_lines.Add(line,myPath)
 temp1 = rg.LineCurve.Offset(line,plane,-rafter_width/2,0,rg.CurveOffsetCornerStyle.Sharp)
 temp2 = rg.LineCurve.Offset(line,plane,rafter_width/2,0,rg.CurveOffsetCornerStyle.Sharp)
 temp1_line = temp1[0]
 temp2_line = temp2[0]
 p1 = temp1_line.PointAtNormalizedLength(0)
 p2 = temp1_line.PointAtNormalizedLength(1)
 p3 = temp2_line.PointAtNormalizedLength(1)
 p4 = temp2_line.PointAtNormalizedLength(0)
 bt = [p1,p2,p3,p4,p1]
 temp = rg.PolylineCurve(bt)
 studs.Add(temp,myPath)

Thijmen Pluimers 186

7.2.5. Overhang generation script
framework = DataTree[rg.Curve]()
rafter_center_lines = DataTree[rg.Curve]()
board = DataTree[rg.Curve]()

for i in range(structured_panels.BranchCount):
 for pan in structured_panels.Branch(i):
 myPath = GH_Path(i)
 ##bottom member generator
 segs = rg.PolylineCurve.DuplicateSegments(pan)
 horizontals = []
 for seg in segs:
 p1 = rg.LineCurve.PointAtNormalizedLength(seg,0)
 p2 = rg.LineCurve.PointAtNormalizedLength(seg,1)
 if abs(p1[2]-p2[2]) < 10:
 horizontals.append(seg)
 temp1 = rg.LineCurve.PointAtNormalizedLength(horizontals[0],0.5)
 temp2 = rg.LineCurve.PointAtNormalizedLength(horizontals[1],0.5)
 if temp1[2] < temp2[2]:
 eaves_line = horizontals[0]
 else:
 eaves_line = horizontals[1]
 bottom_line = (eaves_line.Offset(plane,overhang,0,rg.CurveOffsetCornerStyle.Sharp))[0]
 contain = rg.Curve.Contains(pan,bottom_line.PointAtNormalizedLength(0.5),plane,0)
 if contain == rg.PointContainment.Inside:
 bottom_line = (eaves_line.Offset(plane,-overhang,0,rg.CurveOffsetCornerStyle.Sharp))[0]
 inverse = True
 else:
 inverse = False
 if overhang >= plate_height:
 bottom_member_size = plate_height
 else:
 bottom_member_size = overhang
 if inverse == True:
 top_plate_line =
(rg.Curve.Offset(bottom_line,plane,bottom_member_size,0,rg.CurveOffsetCornerStyle.Sharp))[0]
 else:
 top_plate_line = (rg.Curve.Offset(bottom_line,plane,-
bottom_member_size,0,rg.CurveOffsetCornerStyle.Sharp))[0]
 bp1 = rg.LineCurve.PointAtNormalizedLength(bottom_line,0)
 bp2 = rg.LineCurve.PointAtNormalizedLength(bottom_line,1)
 tp1 = rg.LineCurve.PointAtNormalizedLength(top_plate_line,1)
 tp2 = rg.LineCurve.PointAtNormalizedLength(top_plate_line,0)
 bt = bp1,bp2,tp1,tp2,bp1
 bot_plate = rg.PolylineCurve(bt)
 framework.Add(bot_plate,myPath)
 ###generation of rafters
 if overhang > plate_height:
 dom = [round(tp2[0]),round(tp1[0])]
 dom.sort()
 x_cords = [dom[0]+rafter_width/2]
 while x_cords[-1] < dom[1]-rafter_width/2-rafter_int:

Thijmen Pluimers186 187

 x_cords.append(x_cords[-1]+rafter_int)
 if x_cords[-1] > dom[1]-rafter_width/2-rafter_min:
 x_cords.pop(-1)
 x_cords.append(dom[1]-rafter_width/2-rafter_min)
 x_cords.append(dom[1]-rafter_width/2)
 temp_top = eaves_line.PointAtNormalizedLength(0.5)
 temp_bot = top_plate_line.PointAtNormalizedLength(0.5)
 for cord in x_cords:

rafter_center_lines.Add((rg.LineCurve(rg.Point3d(cord,temp_bot[1],temp_bot[2]),rg.Point3d(cord,t
emp_top[1],temp_top[2]))),myPath)
 tp1 = rg.Point3d(cord-rafter_width/2,temp_top[1],temp_top[2])
 tp2 = rg.Point3d(cord+rafter_width/2,temp_top[1],temp_top[2])
 bp1 = rg.Point3d(cord-rafter_width/2,temp_bot[1],temp_bot[2])
 bp2 = rg.Point3d(cord+rafter_width/2,temp_bot[1],temp_bot[2])
 bpt = [tp1,tp2,bp2,bp1,tp1]
 rafter = rg.PolylineCurve(bpt)
 framework.Add(rafter,myPath)
 t1 = eaves_line.PointAtNormalizedLength(1)
 t2 = eaves_line.PointAtNormalizedLength(0)
 t3 = bottom_line.PointAtNormalizedLength(0)
 t4 = bottom_line.PointAtNormalizedLength(1)
 tpp = [t1,t2,t3,t4,t1]
 board.Add(rg.PolylineCurve(tpp),myPath)

Thijmen Pluimers 188

Thijmen Pluimers188 189

7.2.6. Wall beam generation script
wallbeam_curve = DataTree[rg.Curve]()

for i in range(structured_panels.BranchCount):
 for pan in structured_panels.Branch(i):
 myPath = GH_Path(i)
 ##bottom member generator
 segs = rg.PolylineCurve.DuplicateSegments(pan)
 horizontals = []
 for seg in segs:
 p1 = rg.LineCurve.PointAtNormalizedLength(seg,0)
 p2 = rg.LineCurve.PointAtNormalizedLength(seg,1)
 if abs(p1[2]-p2[2]) < 10:
 horizontals.append(seg)
 temp1 = rg.LineCurve.PointAtNormalizedLength(horizontals[0],0.5)
 temp2 = rg.LineCurve.PointAtNormalizedLength(horizontals[1],0.5)
 if temp1[2] < temp2[2]:
 eaves_line = horizontals[0]
 ridge_line = horizontals[1]
 else:
 eaves_line = horizontals[1]
 ridge_line = horizontals[0]
 el0 = rg.LineCurve.PointAtNormalizedLength(eaves_line,0)
 el1 = rg.LineCurve.PointAtNormalizedLength(eaves_line,1)
 rl0 = rg.LineCurve.PointAtNormalizedLength(ridge_line,0)
 rl1 = rg.LineCurve.PointAtNormalizedLength(ridge_line,1)
 if el0[0] < el1[0]:
 bpl = el0
 bpr = el1
 else:
 bpl = el1
 bpr = el0
 if rl0[0] < rl1[0]:
 tpl = rl0
 tpr = rl1
 else:
 tpl = rl1
 tpr = rl0
 lef_line = rg.LineCurve(bpl,tpl)
 right_line = rg.LineCurve(bpr,tpr)
 bottom_left = rg.LineCurve.PointAtLength(lef_line,bottom_of_wallbeam)
 top_left = rg.LineCurve.PointAtLength(lef_line,bottom_of_wallbeam+sizing_wb)
 bottom_right = rg.LineCurve.PointAtLength(right_line,bottom_of_wallbeam)
 top_right = rg.LineCurve.PointAtLength(right_line,bottom_of_wallbeam+sizing_wb)
 points = [bottom_left,top_left,top_right,bottom_right,bottom_left]
 wallbeam_curve.Add(rg.PolylineCurve(points),myPath)

Thijmen Pluimers 190

7.2.7. Lath’s generation script
laths_vertical = DataTree[rg.Curve]()
laths_horizontal = DataTree[rg.Curve]()

for i in range(structured_panels.BranchCount):
 for pan in structured_panels.Branch(i):
 myPath = GH_Path(i)
 ##vertical laths
 vertical_lines = []
 for line in rafter_center_lines_pan.Branch(i):
 line = rg.LineCurve.Extend(line,rg.CurveEnd.Both,plate_height,rg.CurveExtensionStyle.Line)
 vertical_lines.append(line)
 for line in rafter_center_lines_oh.Branch(i):
 line = rg.LineCurve.Extend(line,rg.CurveEnd.Start,plate_height,rg.CurveExtensionStyle.Line)
 vertical_lines.append(line)
 for line in vertical_lines:
 temp1 = rg.LineCurve.PointAtNormalizedLength(line,0)
 temp2 = rg.LineCurve.PointAtNormalizedLength(line,1)
 p1 = rg.Point3d(temp1[0]-laths_width/2,temp1[1],temp1[2])
 p2 = rg.Point3d(temp1[0]+laths_width/2,temp1[1],temp1[2])
 p3 = rg.Point3d(temp2[0]+laths_width/2,temp2[1],temp2[2])
 p4 = rg.Point3d(temp2[0]-laths_width/2,temp2[1],temp2[2])
 temppoints = [p1,p2,p3,p4,p1]
 laths_vertical.Add(rg.PolylineCurve(temppoints),myPath)
 segs = rg.PolylineCurve.DuplicateSegments(pan)
 horizontals = []
 for seg in segs:
 p1 = rg.LineCurve.PointAtNormalizedLength(seg,0)
 p2 = rg.LineCurve.PointAtNormalizedLength(seg,1)
 if abs(p1[2]-p2[2]) < 10:
 horizontals.append(seg)
 temp1 = rg.LineCurve.PointAtNormalizedLength(horizontals[0],0.5)
 temp2 = rg.LineCurve.PointAtNormalizedLength(horizontals[1],0.5)
 if temp1[2] < temp2[2]:
 eaves_line = horizontals[0]
 ridge_line = horizontals[1]
 else:
 eaves_line = horizontals[1]
 ridge_line = horizontals[0]
 el0 = rg.LineCurve.PointAtNormalizedLength(eaves_line,0)
 el1 = rg.LineCurve.PointAtNormalizedLength(eaves_line,1)
 rl0 = rg.LineCurve.PointAtNormalizedLength(ridge_line,0)
 rl1 = rg.LineCurve.PointAtNormalizedLength(ridge_line,1)
 if el0[0] < el1[0]:
 bpl = el0
 bpr = el1
 else:
 bpl = el1
 bpr = el0
 if rl0[0] < rl1[0]:
 tpl = rl0
 tpr = rl1

Thijmen Pluimers190 191

 else:
 tpl = rl1
 tpr = rl0
 left_line_temp = rg.LineCurve(bpl,tpl)
 right_line_temp = rg.LineCurve(bpr,tpr)
 left_line =
rg.LineCurve.Extend(left_line_temp,rg.CurveEnd.Start,overhang,rg.CurveExtensionStyle.Line)
 right_line =
rg.LineCurve.Extend(right_line_temp,rg.CurveEnd.Start,overhang,rg.CurveExtensionStyle.Line)
 domain = [0,int(rg.LineCurve.GetLength(left_line))]
 cords = [domain[0]+laths_width/2]
 while cords[-1] < domain[1]-laths_int:
 cords.append(cords[-1]+laths_int)
 if laths_int == 0:
 break
 hor_center_lines = []
 for cord in cords:
 pl = rg.LineCurve.PointAtLength(left_line,cord)
 pr = rg.LineCurve.PointAtLength(right_line,cord)
 temp_line =(rg.LineCurve(pl,pr))
 params = []
 for open in structured_openings.Branch(i):
 events = rg.Intersect.Intersection.CurveCurve(temp_line,open,0,0)
 for event in events:
 params.append(event.ParameterA)
 for open in multi_pan_open:
 events = rg.Intersect.Intersection.CurveCurve(temp_line,open,0,0)
 for event in events:
 params.append(event.ParameterA)
 if params == []:
 hor_center_lines.append(temp_line)
 else:
 temp_lines = temp_line.Split(params)
 for line in temp_lines:
 point = line.PointAtNormalizedLength(0.5)
 contain = []
 for open in structured_openings.Branch(i):
 contain.append(rg.Curve.Contains(open,point,plane,0))
 for open in multi_pan_open:
 contain.append(rg.Curve.Contains(open,point,plane,0))
 if rg.PointContainment.Inside not in contain:
 hor_center_lines.append(line)
 for line in hor_center_lines:
 temp1 = rg.Curve.Offset(line,plane,laths_width/2,0,rg.CurveOffsetCornerStyle.Sharp)[0]
 temp2 = rg.Curve.Offset(line,plane,-laths_width/2,0,rg.CurveOffsetCornerStyle.Sharp)[0]
 p1l = rg.LineCurve.PointAtNormalizedLength(temp1,0)
 p1r = rg.LineCurve.PointAtNormalizedLength(temp1,1)
 p2l = rg.LineCurve.PointAtNormalizedLength(temp2,0)
 p2r = rg.LineCurve.PointAtNormalizedLength(temp2,1)
 temp_points_hor = [p1l,p1r,p2r,p2l,p1l]
 laths_horizontal.Add(rg.PolylineCurve(temp_points_hor),myPath)

Thijmen Pluimers 192

7.3 Bay window script

Thijmen Pluimers192 193

	Glossary
	1. Orientation phase
	1.1. Background
	1.2. Problem statement
	1.3. Objective
	1.4. Scope
	1.5. Research question
	1.6. Methodology
	1.7. Planning

	2. Research Phase
	2.1. Which poor energy performing buildings are being considered?
	2.1.1. Current building stock analyses
	2.1.2. Energy performance
	2.1.2. Conclusion

	2.2.	What façade renovation method is being considered?
	2.2.1.	Strategies
	2.2.2.	Case studies
	2.2.3.	Prefabricated façade renovation
	2.2.4.	Conclusion

	2.3.	How is the parametric method designed for the building renovation?
	2.3.1.	Current methods
	2.3.1.	Input parameters
	2.3.3.	Tool output
	2.3.4.	Tool process
	2.3.5.	Overview of tool

	3. Design phase
	3.1. Design of the panel
	3.1.1.	Characteristics of facades
	3.1.2.	Wall panels
	3.1.3.	Roof panels
	3.1.4.	Bay-window panels

	3.2.	Design of the tool
	3.2.1.	Generic tool design
	3.1.7.	Wall generation tool
	3.2.3.	Roof generation tool
	3.2.4.	Bay windows

	3.3. Case study application

	4. Discussion
	5. Conclusion & Recommandation
	6. References
	7. Appendix
	7.1. Wall tool script
	7.1.1. Domain generation script
	7.1.2. Panel contour generation script
	7.1.3. Panel structuring script
	7.1.4. Solid layer generation script
	7.1.5. Boundary member generation script
	7.1.6.	Opening plate generation script
	7.1.7.	Stud generation script
	7.1.8.	Panel connection generation script
	7.1.9.	RC-calculation script
	7.1.10. Window placement script

	7.2.	Roof tool script
	7.2.1.	Panel contour generation script
	7.2.2.	Solid layer generation script
	7.2.3.	Plate contour generation script
	7.2.4.	Rafter contour generation script
	7.2.5.	Overhang generation script
	7.2.6.	Wall beam generation script
	7.2.7.	Lath’s generation script
	7.2.8.	Roof generation scheme

