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SUMMARY

An alternative to the quadrupole picture of the generation of
flow noise is given in terms of simple sources. In this view the volume of
a moving fluid element fluctuates inversely with the local inertial pressure,
and this fluctuation radiates the sound. The effective acoustic source
strength is « D$“/Dt* , where A” is the pressure perturbation due to
inertial effects and is determined as if the fluid were incompressible. The
sources, although individually non-directional, jointly yield a directionality
for the radiated sound from jets; it arises in part from convection of the
sources as reflected in the character of their two-point covariance with
retarded time. Further directionality arises from refraction of the sound
field by the mean shear flow. These features are illustrated by examples.

For unbounded low speed flows the equivalence of the simple-
source integral and Lighthill's quadrupole integral is examined by means
of a momentum balance. For bounded flows (e. g., the flow about a rod
producing Aeolian tones) the volume integral of simple sources still des-
cribes the primary radiated sound; on the other hand, the volume integral
of quadrupoles must be supplemented by a surface integral of dipoles.
Similarity considerations for low speed jets recover not only the famous

U® 1aw for total noise power (U = nozzle velocity) but also the newer laws
describing the distribution of noise energy emission with distance x along
the jet: these go as x°(constant) in the mixing region with a transition to
X" in the fully developed jet.

The power of the formalism employing the source covariance
with retarded time - indicated in the first paragraph - is further demon-
strated by additional examples. Calculations for a simulated jet show how
narrow frequency bands of the source spectrum appear greatly broadened
by convection of the sources pastthe observer. Corresponding calculations
for the radiated sound field automatically produce the correct Doppler-
shifted frequencies without implicit introduction of the shift. A final
example for simulated static and subsonically moving jets yields com-
parative directional intensity plots for supersonic nozzle flow speeds:
for the moving jet the directional peak is swept back the expected amount.
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fluctuation parameter, Eq. (3. 20)
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vector separation in two-point covariance
components of separation

transform of £, Eq. (5.5)

instantaneous density (() =0, + (.>‘°’ 5 9"’)

time-average density

2

'incompressible' component of density (p” » C',:Z/P(o))

. : ) -2
'compressible' component of density ( e = G /P )
parameter proportional to acoustic source strength per
unit volume (¢ = D*®/ Dt*) ; also an inverse length
scale in one instance
difference in emission times for two source points of
separation & in fluid at rest; value for simultaneous
reception by observer given by Eq. (2.22)
generalization of T for moving stream

arbitrary increment to the T of Eq. (2.22)

viscous stress tensor: stress in j direction on area
with normal in i direction

angular frequency (w=2T¢)
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computed as though flow were incompressible (except )

g increment due to compressibility

328 associated with single-frequency source pattern
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Other
< w. time average

Note: other symbols of limited use are explained in the text.
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I. INTRODUCTION

The mechanism of flow noise was first put on a firm theore-
tical basis by M.J. Lighthill in fundamental papers published in 1952 and
1954 (Ref. 1). He demonstrated that the sound field could be regarded as
generated primarily by fluctuations of momentum flux in the flow. In this
view the nine components of momentum flux e w, w, (v.j =1,2,3)
in an element of fluid each radiate sound like an acoustic quadrupole.

The basic formalism of the theory is widely accepted as
correct. Moreover a simplified dimensional analysis based on the equa-
tions was highly successful: it led to the U8 law relating noise power to
jet velocity which has been widely confirmed by experiment. On the other
hand a more detailed development accounting for eddy convection was faulty
in predicting powers higher than U® . Furthermore, attempts to explain
the observed directionality in terms of superpositions of the four-leaf-
clover pattern of a quadrupole have not been wholly satisfactory (Refs. 1, 2).

Many have found the concept of quadrupole noise generation
difficult to visualize correctly. It is true that the fluid elements must dis-
tort with virtually no change in volume in a low-speed eddying flow. This
gives, for example, the picture of an element being squeezed in at the
"waist'" and bulging out at the top and bottom. Such a deformation is
essentially equivalent to an acoustic quadrupole. This, however, is not
the basic Lighthill quadrupole of strength Pu,u,. The former is deter-
mined by local velocity gradients, the latter by local velocity alone.
(Lighthill transformed the basic quadrupole into another compounded of
pressure and shear: this quadrupole does correspond in part to the simple
deformation).

The conceptual complexities of the quadrupole mechanism
together with some of the shortcomings of the theoretical development
motivated the search for a simpler picture. This led to the discovery
(Ref. 3) that a source-like pulsation of the moving fluid elements can be
regarded as generating the sound. The pulsation or fluctuating compression
is proportional to the local fluctuating pressure in the flow. * To a suffic-
ient accuracy this pressure may be attributed solely to inertial effects:
it may be determined as though the fluid were incompressible.

* The generation of flow noise in terms of simple sources
corresponding to the pressure fluctuation rate was first implied in the
work of Meecham and Ford (Ref. 4). It was shown explicitly in a develop-
ment of Corcos and Broadwell (Ref. 5) and in independent work of the
present author (Ref. 3). Reference 3 brought the density fluctuations
into the picture and gave the physical interpretation.
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A simple source at rest radiates sound with spherical
symmetry. How then, can we explain the more-or-less heart-shaped
emission pattern of a jet in terms of a pattern of sources and sinks ?

The related problem of directionality from an array of loudspeakers or
antennas supplies a partial answer: we know that a proper phasing of
sinusoidal source arrays can provide lobes in chosen directions. In
effect, such a phasing is provided by the convection of the sound-emitting
eddies in a jet. It was found (Ref. 3) that the convection can be introduced
into the function describing the statistics of the fluctuating acoustic source
strength. This avoids the Lighthill moving-axis technique as well as
alleviating the increase over the U® 1aw predicted by that technique.

The statistical convection approach yields increased
emission in the downstream direction for subsonic speeds. This is
hardly the heart-shaped emission pattern of a jet. To explain the down-
stream dimple in the heart we must consider the refraction of the emitted
sound by the velocity gradients of the mean jet flow: the sound rays are
turned away from the jet axis to produce (qualitatively at least ) such a
dimple.

These departures from the concepts of the Lighthill theory
were developed with extreme brevity in Reference 3 cited above. The
present paper is an attempt at a fairly comprehensive account of this new
viewpoint and of the associated mathematical formalism. Moreover, the
theory is developed further in several directions. An important refine-
ment is the generalization of the acoustic source strength - D'¢”/pt?
herein so that the derivative D/pt follows the instantaneous fluid motion
rather than the mean motion as in Reference 3.

II. GOVERNING EQUATIONS AND PRIMARILY LLOW-SPEED APPLICATIONS

The basic equations governing flow noise are derived in
Section 2. 1. In later sections convection of the acoustic sources (elements
of the "eddies') by any mean flow is neglected although self-convection is
allowed for. This effectively restricts the applications in the present
chapter to low-speed flows although the limitation is stretched in the
treatment of jets.

The main acoustic features - in the absence of surfaces -
are exhibited by a fluid without viscosity and heat conduction and with
uniform initial entropy. Such a fluid will be postulated in the main text
(except Section 2. 5) and slight approximations will be made to simplify
the analysis. A treatment for a general fluid and of greater rigor is
given in Appendices A and B.



2.1 Governing Equations

Lighthill Equation - Choose a frame of reference at rest
in the quiescent fluid outside the disturbed flow. For the specified fluid
the exact equations of a continuity and momentum may be combined to give
(Ref. 1 and Appendix A herein)

v KRG, R W 1 2.1
i Syoy o

Here ¢ is the density, the pressure, and u; is the ith component of
the fluid velocity; the indices v, . are summed over 1, 2, 3 when repeated.
Postulation of the small disturbance form of the equation of state

P - 6 = (p-h) (2.2

yields approximately

Lighthill ) T
Equation _'f ig — VZP = M (2.3)

(The speed of sound C has been replaced by its time-average C,, and
higher order terms arising from derivatives of ¢ have been ignored).

Equation (2. 3) is an approximate form of Lighthill's
equation governing flow noise (cf. Appendix A.1). Mathematically the
expression is of the form of the acoustic wave equation for a spatial
distribution of sound sources whose strength per unit volume is given
by the right-hand side, 3'u; u,j/ a?ibil- . It is equally valid, if the fluid is
unbounded, to regard the sound fie cli as generated by quadrupoles of
strength Qu; u; (Ref, 1). The equivalence results from the fact that
the source strength has the mathematical form of a double divergence.
(The equivalence can be de monstrated by two applications of the diver-
gence theorem to the solution of Eq. (2. 3) in terms of simple sources
(Ref. 6); the procedure is not quite straightforward: see Appendix B.1.)

Simple Source Equation - Lighthill's effective acoustic
source strength oPu;w;/ oy. oy involves in general nonnegligible
gradients of the density 0. These can be eliminated if we reformulate
Eq. (2.1) to refer to a volume element moving with the fluid, in a frame
moving with the element (cf. Appendix A. 2):

Moving ;
Frame %;ez o sz) - G[M—] (2.4)
. : u'a'. =0

% 0%
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The expression on the right hand side designates the value of 2*Qu;w;/

BIQLB . in the moving frame in terms of velocities u, referred to the
sta ionéry frame; this is effected by setting u = u; =0 after the differen-

tiation. S

Conversion to a stationary frame changes the operator

o/ot to D/pt = 0/ot + w d/oy;

stationary D g 2 o [ o' u, u; (2. 5)
trame B S B e

The space gradients, being instantaneous values, are unchanged.

If the fluid were incompressible (but not necessarily of
uniform density) the density derivative DP/Dt following the fluid motion
would vanish. We shall, however, specialize further to a uniform density

Po - For such a fluid

2 . (0) ©)
LopEe Fu _,w_J (2. 6)
13 po [bl{,ibm T

where the superscript > designates values as modified by the postulated
incompressibility.

Now the turbulent component of a jet flow behaves almost
incompressibly up to even low supersonic Mach numbers of the mean flow
if shock waves are avoided. This is because the turbulent velocities are
an order of magnitude smaller than the mean flow speed. Therefore the
velocity gradients and the density appearing on the right-hand side of
Eq. (2.5) - in the acoustic source term - may be replaced by incom-
pressible-flow values. That is, the right-hand sides of Eqgs. (2.5) and
(2. 6) may be taken to be equal. (A consideration of the error entailed
is given in Appendix A.4). It follows that S

%‘g — Vb = —v4” . i 0

Now write the pressure and density as *

*See note following Eq. (2. 3) and compare the more accurate Eq. (2. 2).
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where 130 , P, are the ambient values far from the disturbed region, 43"”
satisfies the incompressible flow equation (2.6), and #° is the remaining
increment of pressure which contains all of the compressibility effects.
(The definition of a compression ¢” in terms of a pressure ? for an
incompressible flow may seem odd; it is, however, the first step in an

iteration procedure for evaluating a weakly compressible flow). Eq. (2.7)
reduces to

6)U)

2 . (o)

D* ") w D

) S P 2 ©
LB - - BE .- 4BE e

In the absence of a mean flow (U = 0) the convective
derivative D?/Dt* on the left-hand side of Eq. (2. 10) accounts for the
erratic convective-refractive effects of an eddying flow on sound waves
passing through it; i. e., it accounts for scattering of the sound by turbu-
lence. This scattering is probably small for jet flow since the wave-
lengths tend to be >> the eddy sizes. In any event it can be treated by
alternate methods (see e. g., Refs. 7 - 10). We can suppress this
scattering by replacing D?*/Dt* on the left-hand side by 2*/2t?> in the

case U=0 orby D’°/Dt* in the more general case of a mean flow
U(ljz,?;) along the 4 -axis:

or

CHU AR s R IR R A

-—

where ‘g—f — —gf+ U—g?‘

The operator D/Dt allows for the effects of the mean
flow when U # 0 . These take the form of refraction and diffraction of
the sound field together with modifications of the Doppler frequency shift.
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Equation (2. 10) in the form of the approximation Eq. (2. 11)
is the governing relation in terms of simple sources for the sound radiated
by quasi-incompressible flows. ¥ Mathematically the expression has the
form of a modified wave equation for a spatial distribution of sound sources
whose strength per unit volume is given by - D'¢”/pt* or its equal
- ¢t pf”/pt? . This single source term replaces the nine terms of
Lighthill's expression 20 u, uy / 8%6 at(“ or alternatively the nine
quadrupoles Qu;u g

The first form of Eq. (2. 11) remains valid for more
general flows involving viscosity and even added body forces and sources of
matter and heat. (see Appendix A.3). The viscous stresses and other
disturbances affect the compressible and incompressible flows similarly:
they add virtually identical terms to the respective right-hand sides of
Eqgs. (2.5) and (2. 6) that cancel in the subtraction. (The second form of
Eq. (2.11) requires an added entropy term in the case of heat addition).

Physical Interpretation and Discussion - The pertur-
bation pressure within the turbulence and nearby - the acoustic near field -
is dominated by (°’, the pressure calculated as though the flow were in-
compressible. he weak compressive part of the pressure, 4", attenu-
ates more slowly with distance than §? (Appendix B. 2) so that /P‘" ultimately
dominates the acoustic far field. Eq. (2. 9) states, in effect, that the far

field noise (dominated by $“) is driven by the essentially incompressible
$7).

near field noise (dominated

The effective strength of simple sources per unit volume -
insofar as the far field is concerned - has been determined as - ¢;? D* “7
Dt* or its equal - D'*¥”/Dt? . The physical interpretation of this
reverts to an intuitive notion that was abandoned for the more sophis-
ticated picture in terms of quadrupoles: the moving fluid elements simply
pulsate (very minutely) and it is this source-like pulsation or dilatation
that generates the sound.

The physical reasoning is this. The assumption of uni-
form density (incompressible flow) yields the field of perturbation pre-
ssures b; these pressures result solely from inertial effects but with-

in the flow they closely approximate the actual pressures. The neglected

A Equations (2. 7) and (2. 10) are evidently equivalent (see also Appendix
B. 1), although (2. 10) appears the more useful. Similar equations, but
with D?/pt* approximated as 2’/2t* have been presented previously
(Refs. 3 - 5: see footnote p. 2)
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- density perturbations are restored in first approximation by putting

@ = ¢;*p?  according to the isentropic law. One need proceed no
further in this iteration procedure: in the actual slightly compressible
flow @-¢, is approximated by ©” to the same order of accuracy as p-p.
is approximated . A moving element of fluid experiences a rate of
dilatation or expansion given by —D ¢°/pt, divided by the total density:
this is attributable jointly to the inertial effects of the flow and to the
fluid compressibility. The same dilatation would be produced in a uni-
form medium at rest by a rate of mass addition (matter source strength)

- Dp”/pt . This dilatation corresponds to an acoustical source
strength — D'¢”/Dt? the time derivative of the matter source strength;
this is the quantity arrived at in our formal analysis.

We can sum up and illustrate as follows. Inertial effects
in an eddying flow give rise to regions of high and low pressure (Fig. 1).
These are also, respectively, regions of compression and rarefaction.
The volume of a moving fluid element fluctuates with time (as the pattern
of pressure changes) and with position (as it moves from a rarefied region
to a compressed region). The latter aspect is illustrated and enlarged
upon in Fig. 2. Both aspects are included in the relation

D(O)_bo')
ot "S'tii *“»?g‘

As a matter of generality it is noted that the acoustic
source term allows for non-acoustic or steady aerodynamic compressi-
bility effects. Thus in a steady flow of speed U along , plus perturbatlons
the term reduces essentially to - U?2e®/2y? 1 a’f"”/a
The left-hand side of Eq. (2. 10) reduces to Just the Laplac g‘évmg

P Bl

Solution of this equation for, say, the flow over a wavy wall would con-
stitute the first step in iteration procedure to allow for M # 0. The same
equation would result from the well known linearized equation of steady
compressible flow (Ref. 11).

In conclusion, it is emphasized that the acoustic source
term - DP7/pDt’ = -’ Dp° /Dt yields only the far-field
pressure 4”. Knowledge of the near-field pressure f” within the flow
and nearby is a prerequ1s1te In the present state of knowledge of tur-
bulent flows neither A nor the associated velocity field w” is well
known: either could be taken as the primary variable. In case u{®
is taken as the primary (hypothetically known) variable it is necessary
to revert to @, u” uJ‘°’ (quadrupoles) or to  2°@, u{”u® /dy, dy; ("diver-
gence' sources) for calculation of p®. (see Appendices B. 2 and B. 3 and
Refs. 12, 2).
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Magnitude of Self-Convection Source Terms - The acoustic
source strength - D'¢®/Dt? may be written in expanded form as

y %§)= _g;g»_@r) —Zu;% w Wujg_‘g:i (2.12)

In the absence of a mean flow U; and u; result solely from the unsteady
flow. The last two terms of Eq. (2.12) represent dilatational effects
(effective acoustic sources) due to convection of fluid from regions of
rarefaction to regions of compression by this eddying flow.

In earlier presentations (Refs. 3 - 5) only the term
-2 Q@’/b‘tz was in effect employed: the eddy self-convection terms were
neglected. Let us estimate the relative orders of magnitudes of the ne-
glected terms which have now been restored. Take a typical Fourier
component of the density field 0 as

¢ = Aexpi(wt+kj) .

w = 2TT)(
kR = /L

Then the ratios of the added terms to d° e“”/bt' are approximated by

w2 /oy ot
a; w/a%z|

e LG 3
Ww

= 1

(2.13)

luwzYeud (&2
|az(jo)/ atz“ w )

Il
==
ey
t—|8
e T

where J[ is a typical frequency and L is the associated length scale in the
turbulence.

The quantity W / }L is a sort of reciprocal Strouhal
number (cf. Ref. 13); its value is estimated in Appendix C from consid-
erations concerning the two-point space covariance of pressure or
velocity, using data of Richards and Williams (Ref. 14). A typical value
for the jet mixing region is

;T R SR

Upon insertion of this value in Egs. (2. 13) it appears that the added terms
are quite comparable in magnitude with  2? @/ ot? . Thus their
omission cannot be justified for jet flows.
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This assessment refers to turbulent shear flows such as
boundary layers and jets; the order-of-magnitude estimate does not apply
to homogeneous turbulence.

2.2 Radiated Sound Pressure and Spectrum

Mean Square Pressure - It will be recalled that the
perturbation pressure is divided herein into an "incompressible' part
and a "compressible' part 4. The part P~ dominates within the basic
aerodynamic flow but attenuates rapidly (as x~3) with distance (Appendix
B.2). The part 4)‘" attenuates more slowly (as x~ ) with distance and so do-
minates at large distances from the flow. We call p" the radiated sound
pressure.

For the low speed flows of this chapter the mean speed U
may be neglected in the operator b/pt = 2/t + Ud/2y, . The
governing equation (2. 11) for the radiated sound pressure g" reduces to

_C”I%;gl, _VI’PU): . CLI% (2.15)

This is the acoustic wave equation for a spatial distribution of sources
given by the right-hand side. The solution for the pressure /’) at point
x and time t reads

Pl o ol J 20%) 4y o= DF/OE
G - -71" = ’c—l_x—%l/c°

Strictly speaking, the integral is over all space, but in practice it may be
limited to an effective volume V of the disturbed region - the aerody-
namic flow. At distances large compared with the dimensions of V this
reduces to

Far h
Field 1) (l,t): —4—1'('CX J 0_'(%(_ t)d%_ (2.17)

The approxunatlon | X~ %| X is made in the denominator but not in
the retarded time .

The corresponding mean square pressure at large distances may be
written*

* The superscript ® has been dropped for simplicity, since 1)‘ is the
sole surviving pressure perturbation in the far-field.
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the average being over time. The adjective 'far-field" applies if we make
the additional restriction that 27x > wave length of sound. In this case
the plane-wave relations are valid, and < 192 Jan~acoustic intensity/Q,c, .

It will be convenient to change variables. Let 4 be the
midpoint between the two points _ij,’ and %’ , and let & be their separation:

_?_ — % (_;_' te o #_:/)
{2.19)
2= y- o
The integration limits are again infinite in Yy and & . In practice the
limit on may be reduced to the effective flow volume V while retaining

(for convenience in calculation) the infinite limits on & . The mean square
pressure now reads F

<Cpan, = ,—Cfmja? R(EY; P

R = (o*(%+£/2,%')0‘(%—5-/2,?:"»”

where (2. 20)

Here R is the two-point covariance of the source strength* o = D‘P"’/ pt?*;
R is a function of the space separation & of the two points, the time
separation or delay T and the midpoint_* . The time relay T is given by

T = TIE, ) = 1=1" : r'=|£|=|5—5u|
(2.21)

= (1~ v, N 1"|_—_|L—_F|

T It is assumed in what follows that the flow field is a statistically
stationary (not necessarily random) process; that is, long-term time
averages do not vary with time.

» A factor of - C;° has been omitted for simplicity in indentifying o
with the source strength.
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Since X, L’ and _L”are

essentially parallel at

inclination @ to the Xx, X
axis, the construction

in Sketch 1 shows that »

T(E0) = c,,"l,gl-yﬁlcw?

= R E Y

or

' = _§~_1_/zc,

Sketch 1. Determination of Time Delay T

Thus to a close approximation the time delay T equals ¢ times the com-
ponent of the space separation & in the direction of propagation.

Autocovariance and Specirum. - The autocovariance
< Pf:),,,,of the far-field sound pressure at a point  is the time average
< (t) '1.)(1; + U))yWhere the time delay 7’ is held fixed. We proceed
now to evaluate the autocovariance as a step toward determining the
pressure spectrum.

The derivation of < p’> Eqgs. (2.18) to (2 20) is generalized
to yield < Pff)’),w by addition of the arbitrary time delay T’ to the value of
This yields the autocovariance in the form

<1’P/(1'T")>Av = m@jdﬂ‘[ﬂ(é,'ﬁ*‘f',‘?}t)d& (2.23)

where T remains the time for sound to travel the projected distance
&'X/x (Sketch 1 and Eq. (2.22).)

The spectiral density or spectrum function may be written
as

%* The points O ,%’, ”, and x do not, in general, lie in the same plane.
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Al
$(w) = Tg_ (2. 24)
This form illustrates the property s
o0

Physically, P(w)dw is the contribution to the mean square pressure
{/p"),from angular frequencies in a band dw centered about w where w:Zﬂ'f_

It is well-known that the spectral density and autocovariance
are simply Fourier cosine transforms of each other (cf. e.g., Ref. 15)
Thus in a shorthand notation

d<%>4y = Bl = _12(_3C{</P/P'(q;')2,; w} (2. 26)
R = 3( 4 )

or written out

A<¢I£’}‘, = P(w) = _TZT_J ()fyf;'(’t'))Aycos wl'dv (2,26')
<’F1”CT’)>,,V e r (w) cos W' dw

The first of Eqs. (2.26) or (2. 26'") is the desired relation for the spectral
density. A prerequisite is the evaluation of the autocovariance, Eq. (2.23).
(In a variation of this approach @(w)is given by an integral of the form of
Eq. (2. 23) with R therein replaced by its (complex) Fourier transform,
the two-point cross-spectral density of the source strength with retarded
time (Ref. 3). The present approach appears, however, to simplify the
integrations involved).

Since < '(,o))AVis just df’z}m: the second of Eqs. (2.26")
includes Eq. (2. 25) as a special case.

The use of these equations is illustrated in Section III.
Correlation and Correlation Volume - For some applica-

tions it will be convenient to replace the covarianceR by the nondimensional
'correlation' R , given by*

* The functionR is more convenient for theyz present purpose than the
true correlation <00"),, L1k s 0D 1 ; they differ only for
nonhomogeneous turbulence, for whichR may exceed unity.
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2/ (o)
R = (O'*’)A, B <(%€’7)%>AVR (2. 27)

Eq. (2. 20) becomes

(D) = .ewq4x=J<(th >Avd%J RCET WAL (3. 28

The inner integral has the d1mens1ons of a length L cubed and may be
called the "correlation volume if the two-point correlation R were unity
within this volume (i.e. >Av therein) and zero outside, the noise
radiation would be the same. %hus Eq. (2. 28) may be written in the form

5 | 21.00) )
(P0),, = e Jv< (‘S-@%)%u L 0{7} | (2. 29)

where:F

P = U(y, %) = JR(;,I;%)A; (2. 30)

Physically the correlation volume ¢ may be interpreted as the effective

volume of a turbulent eddy considered as a coherently rad1at1ng entity.

Note that the retarded time T introduces a dependence of L* on direction
X/x (see Eq. (2.22).

2.3 Are the Quadrupole and Simple Source Solutions Equivalent?

Momentum Balance.- Lighthill's quadrupole solution
(Ref. 1) for the acoustic density perturbation at a large distance x from
the generating flow ( 2T X > A ) is given by his Eq. (17) (PartI). The
. . N Z ix . .
corresponding pressure perturbation is C;times this according to the
isentropic law:

'f)(Lt)= 47;;;})(7J [alg"t;‘i‘rj% 0[?_ : % =t - r’/Ca (2.31)
v

7 The length L as here defined is a special scale of turbulence; it
differs from the socalled integral scale

L J R(¢g, 0,0 dg

A generalization of L to allow for variation in scale for different direc-
tions (nonspherical correlation volume) is given in Appendix B. 4.
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(The superscript ™ has been dropped from the left-hand side, for simpli-

city). Proudman (Ref. 16) has pointed out that the double summation o
% u, u; / x* reduces to just Uz, the square of the velocity component

in the direction of x. Thus the quadrupole relation Eq. (2. 31) and the

simple-source relation Eq. (2. 17) assume somewhat parallel forms:

quadrupole: '13 = 14#'&,14[ [a;(gté)]% 6{% (2.32)
v

simple-source )F e AW!‘TJV[_%T)J% c{% (2.33)

Now it can be argued that Eqs. (2.32 and (2. 33) should be
equivalent since both were derived with negligible approximation from
the exact equations of continuity and momentum for a fluid. However, the
derivations were indirect and the negligibility of the approximations may
be a matter of controversy. Therefore a fairly direct proof of the equiva-
lence of the two equations would appear to be desirable. There will be no
loss in generality if the vector x is taken to lie along the y,-axis. Then
the compatibility of Eqs. (2. 32) and (2. 33) would require that .

2 2(0) 3 2
J(Rﬂ + 28 )% A%_ & 10 (2.34)

D{? oT!

No direct proof of this relation has been found. However,
if we neglect the compressibility of the fluid in Qu; and the convective
terms in D’ @’/ Dt* (which on one interpretation result from compressibility
in the expansion of a’euiuj / alji 3% ) there results

J%}( “ 1+ g U 4% = 0 (2. 35)

This last expression can be proved by use of a momentum balance for
incompressible flow: this proof is given below. Since the omitted con-
vective terms in D’ “’/th are comparable with the retained term o /ot?
(see Sec. 2.1) proof of Eq. (2. 35) indicates at least an order of magnitude
agreement between Eqgs. (2.32) and (2. 33).

As a control surface ’
take a cylinder of radius R concen- T
tric with the \#'—axis and with the 4 A/ R
face A' (given by X,:z,') cutting A _j_
through the region V of flow (Sketch
2). The conservation equations for
momentum and mass in an incom- %
pressible flow read (where the
superscript® has been dropped %” Y Sketch 2
from u; for simplicity),

<

Control Surface for Momentum
Balance
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(/P-i- f;‘°’+ eur)dA +J @u,urc{A = A 18 8
; c

o <

° LA
4 ﬂ@u'dA ¥ U@“r‘m = O  or constant (2.37)
A’ C

where the + of T refers to A', the « to A", C to the curved boundary, and
X, is the force on the fluid (e.g., negative of the jet thrust), specified to
be constant.

It is assumed that the fluctuating terms fall off sufficiently
fast with distance so that for R— < , y'— -0 the fluctuating parts of
the integrals over C and A" approach zero. Then differentiation of

Eq. (2.37) yields
%F Jj (A7 dA = 0 ' (2. 38)
Ia

This holds for any location %: " of A'. If we multiply by d\&,’ and integrate
with respect to tj,’ the integral can range over the volume V,. The result

is
%‘Em pwdV =0 (2. 39)
4

Thus the first term in Eq. (2. 36) vanishes because of conservation of mass.

If now the differentiation az/ ot? is applied to Eq. (2. 36)
only the integral over A' will contribute: the other integrals, it has been
noted, are zero or constant in time. The result is

A righthand term - 92X / 2t* vanishes because we postulate zero or constant
thrust: this restriction is implicit in Lighthill's work (i.e., unbounded
flow, no immersed bodies such as a jet engine which may experience
fluctuating surface forces).

Eq. (2.40) holds for any choice of the time; thus the
retarded time £ may be selected. Furthermore, the differentiation may
be carried under the integration sign since the limits are constant. Again

we multipy by dy’ - so that dA ol\d, = dV - and allow the integration to
range over |/. '‘The result is

[ %047+ ewdydv = o
V

Thus Eq. (2.35) is proved.



(16)

Discussion of Lighthill Source Term. - Appendix A, 2
develops the following expansion of Lighthill's acoustic source téerm for
flow noise:

b‘?uiuf e a‘uiu‘ Z by >
2t = ——1-‘ — ui—E_B-E - i 40 2.41

Only the first term on the right-hand side may in general be approximated
closely in terms of quantities computed for an incompressible flow. The
density gradients in the remaining terms represent initially unknown com-
pressibility effects.

If these unknown density gradient terms are moved to the
left- hand side of Eq. (2.1) to join the equally unknown 2°¢/2t* , the
result is Eq. (2.5). This is a key step in the derivation of the simple-
source relation for flow noise, Eq. (2.11).

Lighthill, on the other. hand, in effect circumvented the
difficulty posed by Eq. (2.41) by avoiding direct use of the simple-source
term 2©w;u; /2y .dy., He employed transformations like those of
Appendix B to obtain an integral (Eq. 2. 31) involving an integrand

2 ewu; /at? corresponding to a quadrupole distribution. It is easy
to show that the density derivatives in this are negligible when U=0.

For the case of a substantial mean flow, as in a jet of high
subsonic speed, the density derivatives are not negligible: Lighthill's
quadrupole integrand can no longer be approximated as ', uu;” /at?
the value for an ‘incompressible flow. To show this we first réstore the
omitted directionality factor (Eq. B2.5c) to the integrand: it is

Xt 0°QU; Uy
. L R

2

Now rotate the lé' -axis to coincide with the x-direction which makes an
angle @ with the stream direction: the integrand becomes

eu’
i i

where i Ues 0044 o,

The formal differentiation yields

2(oy? 2w L 24 2 :
D_g_%t&.l = P 4 Zu'ﬂLo—’g" an uv?Ef (2.42)

If we neglect u,in comparison with Ucos 6 and approximate © by P P‘oi
u,’ by u:"/ , the quasi-incompressible values, there resulis
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’

2 (0ul) v s 2u®” 21 cos 0 207287 L rigg SO 2.43
212 & Se 5 adts s S RS 2

=2
Now /1)(”) ~ POLL,(O) (neglecting the mean shear)

-2 2
whence U 07000 g O G

2 o 2 2 2 )*
and U cOs’ng_g;) o %-f (cos @) g_gﬁ

Thus the third term on the right-hand side — M* cos*0 times the first
term. A similar argument suggests that the second term is smaller by
a factor 2u,°/Ucos6.It appears then that the incompressibly calculated
first term must be supplemented by at least the third when M?cos’6 is
not << 1.

The above result neglects amplification of (o’by the mean
shear in a jet (see Sec. 4.2). The amplication factor in an idealized case
is the effective nondimensionalized mean shear (4'/15)’ﬁ 2( U/u)/ad'n
where 07~ an eddy scale length (Eq. 4.4'). This factor, which can
exceed unity, may magnify the second and third terms.

8 o
2.4 Jet Acoustic Power: the Uo, xo, and 17Laws

The most well known result of Lighthill's quadrupole
theory was obtained by the use of considerations of flow similarity (or,
from another point of view, dimensional analysis) in comparing the noise
output of jets of different nozzle diameter D and velocity U, By these
means he deduced the famous D?"U..‘\8 law (Ref. 1). A more detailed appli-
cation of similarity considerations - again in the context of the quadrupole
theory - has yielded the noise power emitted by successive "'slices" of an
idealized cold jet as a function of axial distance x downstream of the
nozzle (Ref. 17)*. Slices of jet in the mixing region are predicted to
emit the same noise power (x°law), and in the fully developed jet the
emission of successive slices is predicted to fall off extremely fast
(x7law). The present source-sink theory of jet noise leads very simply
to the same laws. This is demonstrated below.

* The deduction of the x° and x”similarity laws was first reported at the
Ann. Mtg., Acous. Soc. Amer., Washington, May 7-10, 1958. At a
later presentation (1st. Internat. Cong. Aero. Sci. (ICAS), Madrid,
Sept. 8-13, 1958: see Ref. 18) E. J. Richards and M. J. Lighthill took
exception to some of the theoretical foundations. Confirmation of these
laws has in the meantime come from independent work of Lilley (Ref. 2)
and of Powell (Ref. 19). Conversations with Richards and with Lighthill
have indicated that they no longer maintain their objections.
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In all of the cited work and in the present section convec-
tion of the sources by the mean jet flow is neglected insofar as it affects .
the sound power. This point is commented on at the end of the section.

We return to the mean square pressure<p’),in the far field,
Egs. (2.29) and (2.30). The acoustic intensity I (energy flow in the x direc-
tion per unit time per unit area normal to E) is ¢ /P‘)Av / 6C, . The total
power P is the integral over a sphere of radius x; this introduces a factor
4’ and yields

i —'J 4 <(%zf=—w); >,w d% (2. 44)
v

—_— 2 Te Cf

if as a simplifying approximation the time delay T is ignored. (If T is
retained the correlation volume or effective source size |’ is a function of
direction x, and an average value must be used. Further consequences of
the neglect of T - and of source convection - are discussed at the end of
this section).

For the purpose of developing similarity laws write Eq.
(2. 44) in differential form, omitting the proportionality constant and
writing the volume element dé{_ as dV

£ D\’
o (B,

Thus dP is the acoustic power emitted by a volume element dV. Now in an
idealized model of a jet there exist two regions where the profiles of mean
and turbulent velocities are invariant with x when expressed nondimensionally;
at corresponding points of these regions (i.e., along certain rays) the tur-
bulent and mean velocities maintain a fixed proportionality: <, v 45

A similar proportionality applies to corresponding points of two complete
jets. Also (Refs. 12, 2) 4« Qu «~ gU? (similar regions)* and accord-
ing to Lighthill's ideas typical frequencies are proportional to U/ L, whence

2fot ~ U /|_ (similar regions)

Accordingly Eq. (2.45) yields

8
dPp < % dV (similar regions) (2. 46)
Eq. (2.46) is the basic relation for comparing similar regions and it is
identical with Eq. (14) of Ref. 17(a) and Eq. (2) of Ref. 17(b). The equa-
tion may be applied as shown in Table I (the integral form is used in
column 1).

* An amplification factor representing the nondimensionalized mean shear
has been omitted (cf. last paragraph of Sec. 2.3) since it is invariant for
similar regions.



TABLE I

Complete Jet

..Annular Mixing Region

Fully Developed Region

Assumed similarity:

fav S Ay

( U°6 Law)

0< x £ 4D
Assumed similarity:

AV s - % Ddx

(annulus)

dP Po_goj_Ddx

dP AN

4

e 5 = (constant)

(x° Law)

8D < X < e
Assumed similarity

dV v x*dx (circle)
L «~ x
u « U D/x_

e.UD
d =
dP e U, °D
dx .t (D)
-7
(X Law)

These results are,

in part, exhibited in Fig. 3.

Slices of jet within four diameters

of the nozzle are predicted to emit the same noise power ( dP/dx = constant: x°law); and be-

yond eight diameters the emission decreases like x~(

The area under the curve represents

the noise power emitted by the entire jet, and this is proportional to U

(6T)
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The nonuniform turbulent properties across each slice of
the jet are bypassed (but not violated) in the foregoing derivation of the
U2, x° and x7 laws. A more detailed derivation employing functional
expressions for the profiles of the turbulent properties is given in Ref. 17(a);
the starting point is likewise Eq. (2.45)

The present derivation shares with Lighthill's original
deduction of the U. law the neglect of convective and refractive effects of
the mean flow including (cf. remarkfollowing Eq. (2.44)) suppression of
the time retardation in the integrals. It is shown later in the present
paper how these effects yield the directionality of the jet noise (in part via
a dependence of | on direction). The computations are, however, too
idealized to determine whether the convective effect notably enhances the
emitted power. The excellent agreement of the U, law with experiment
(Ref. 20) suggests the enhancement effect is either constant with speed
(Ref. 21) or small (Ref. 22). Theoretical arguments are given in the cited
references.

2.5 Effects of Bounding Surfaces in the Flow

The primary sound field radiated by an aerodynamic flow
can be represented in terms of simple sources alone regardless of the
presence or absence of bounding surfaces. The expression Eq. (2. 17) for
the primary sound field in terms of simple sources is unafflected by such
surfaces: this is proved in Appendix B3%*.

On the other hand, the sound generated can be represented
in terms of quadrupoles alone only if the fluid is unbounded. If bounding
surfaces are present surface distributions of sources and dipoles must be
added; the appropriate expressions have been derived by Curle (Ref. 6).

The surface source-dipole distribution on the quadrupole
theory by itself yields the dominant far-field radiation for low speed flows,
but a misleading nonzero result near the surfaces.* Of course, the acoustic
energy flux must approach zero close to a fixed surface: the energy flux
is the product of the normal component of perturbation velocity near the
surface - which vanishes - and the perturbation pressure.

* Bounding surfaces or obstacles serve however, to reflect and diffract
(scatter) the incident sound derivable from the simple source distribution.
Added terms to describe this scattering are included in the derivation of
Appendix B3.

7 However, when taken together with the quadrupole distribution the resul-
tant radiation is physically correct and it presumably exhibits a zero value
at the surface.
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The sound actually originates in a more or less extended

region bounded by the surface, but not from the surface itself. The proof
lies jointly in two facts: first, the (primary) sound field is given by an
integral of simple sources over the extended region; second, the simple
sources may be interpreted physically as directsources of sound (Sec. 2. 1),

When the influence of the surface is dominant (i.e., Aeolian
tones, boundary layer noise) the main virtue of the simple-source formu-
lation may perhaps be limited to this physical interpretation. For calcu-
lation purposes for such flows the Curle surface dipole terms by them-
selves give a good approximation to the resultant sound field at a distance,
provided the flow is of low speed. The surface terms, moreover, have
a neat interpretation in terms of surface stresses and are mathematically
simple.

From the comparison it is observed that Lamb's expressions
for the acoustic radiation from a fluctuating force or surface stress (Refs.
23, 24) - although derived for a medium at rest - have a wider applicability.
They give the correct far field whether the surface stresses arise from
motion of a surface in a fluid otherwise at rest, or from unsteady motion
of a fluid opposed by a stationary surface. In the latter case, however,
they give the false result of nonzero radiation at the surface, and must on
this account be supplemented by a quadrupole integral to provide the near
field.

III, MOVING SOURCES IN A STATIONARY FLUID: '"CONVECTIVE'
EFFECTS ON SOUND DIRECTIONALITY AND SPECTRA

3.1 Relationship to Jet Noise

The sound sources in a jet - the turbulent eddies - are con-
vected along by the mean flow. The effects on the directicnality of the
radiated sound are two-fold. A convective effect arises from the motion
of the sound sources with respect to the quiescent fluid outside the jet.

A refractive effect is due to gradient of the mean velocity within the jet.

These effects are not linearly superposable. However, it
will be illuminating to look at the convective aspect separately in an ideal-
ized situation: we consider the jet turbulence to be replaced by a pattern
of acoustic sources of strength 0" moving through fluid at rest® The mean
jet flow that in a real jet transports the pattern does not then figure in the
governing equations and the refractive aspect is suppressed.

* A factor -C."is omitted for simplicity in referring to o as the "source
strength' here and later on.
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The examples refer to a random distribution of acoustic
sources but not necessarily to a possible turbulent flow; that is, the
chosen covariance of the source strength 0” is not necessarily compatible
with b@/D't‘ ina realizable fluid motion*. The form of the covariance of

0 has been chosen largely for mathematical simplicity. As a special
feature functions with regions of negative covariance have been avoided
because they complicate the otherwise simple picture of 'convective' effects
on sound directionality and spectra. The degree to which this picture can
be applied to jet noise can only be speculated on in the absence of experi-
mental values of the 0 covariance, and in view of the remarks of the
first two paragraphs.

3.2 Convected Volume Pattern of Sources: Example

Consider a random pattern of acoustic sources of strength
o (_l#_,t)) homogeneous and isotropic within a volume V , but vanishing out-
side. The pattern is continuously created at the left face, moves continu-
ously through V with the uniform speed U, and is destroyed at the right
face (see inset, Fig. 4). The picture is rather like that of the moving
pattern of clouds seen through an airplane window, a two-dimensional
anolog of the volume V.

The statistics of the source pattern govern the sound
radiation according to

Dy = dy| R(ZT5y)de (2. 20)

16TCx?
4

in terms of the parameter R . Here R is the two-point space-time cov-
ariance of the source stirength

< a ¢ 0‘(%"-}59 N +’T)°"(%"Ji§/t)>/\v

the average being over the time W hypothetical form for R that allows
both for convection and fluctuation of the pattern is

* It is known that the covariance of the 0 in the first example is incom-
patible with a real flow when 0 is identified with 2p“/8t" . Such an
identification was implied as an oversimplification in Ref. 3.
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R= <o ep[-2 (- UT) - a’(g + &) - L U] (3. 1)
convection fluctuation

With this choice of the covariance (R, and with the time delay inserted
according to T= &' X /x €., integration of Eq. (2. 20) yields an explicit
result for (/P‘(X»AV . It isT

s (1 +m)(Amt = Bm + 1) (m*+ B +A)"
2 ke AV —_— LNAZ | inA2 '%.
</F(X)>AV=W 6—0 (1+ LM+M—2M) &

o—Th (1 + &*M*4 M4 M) * (3.2)

i = [G-ays) -[1+a-a/p)"

m

A = I + LM + M — 2Mcosb
B = 2M 4in 6

M= Ulc

2

= angle between x and U, the latter

being taken in the x, direction; thus
cos 0 = x, /x.

Equation (3. 2) provides the mean square sound pressure at
a radial distance x and an angle 8 from the direction of source-motion U.
A polar plot of <$*),/x* versus 0 is shown in Fig. 4. The different curves
correspond to different Mach numbers M= U/C. formed from the speed U
of source motion or '"convection'". For supersonic convection speeds the
sound pressure peaks in a direction normal to the Mach cone
(9 = cos™! I/M ) The peak is directly downstream (8, = 0) at the
sonic speed and for lower speeds becomes progressively fess pronounced
in the same direction.

7 Because of the symmetry about the X, axis, it suffices to limit x to the

X,,% plane. With =0 T = ( g,cose +&,sin g)/l.C . Insertion of
this value into Eq. (2.20) yields cross-product terms &,&, ; these are
eliminated by a suitable transformation of coordinates - essentially a
rotation r:simplify the integration. The detailed procedure is exhibited
in the more general case of Chap. V, and is obtained by setting M, = O
therein.
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The source-pattern fluctuation parameter X was taken as
0.1 in Fig. 4. This implies (cf. Eq. (3. 1) that the effective length of a -
coherent source patch or 'eddy' (~ !/a ) is one-tenth its decay length
(— '/,(a). In other words for £ = 0.1 an 'eddy’ travels about ten times its
length before the pattern fluctuation has altered it very greatly. This
appears to be about the right order of magnitude for the eddies in a boun-
dary layer (Ref. 25). Recent data suggests a better value for the mixing
region of a jet is o ‘2 or -25 (Ref. 14; see Appendix C herein).

If the fluctuation parameter &£ were taken zero ('frozen"
convected source pattern) the directionality peaks normal to the Mach
cone in Fig. 4 would become infinite. This is exhibited in Fig. 5 for the
special case of sonic speed of source motion, M=l . The downstream
lobe with peak at @pegk = 0 grows to infinity as« is decreased progressively
from 1 to 0. It is clear that pattern fluctuation is a moderating influence,
reducing and rounding off the otherwise infinite peaks.

Lighthill has already predicted intensity peaks normal to
the Mach cone in terms of his Mach-number factors (Ref. 1). However,
those factors fail to allow for pattern fluctuation and yield only infinities
at the peaks. It is implicit in his derivation that each correlation volume
(i.e., "eddy volume") has existed since minus infinity in time without
decay due to fluctuation: the finite lifetime of the eddies is not taken into
account.

In summary, the source mean motion or "convection" in
conjunction with the time retardation T(£ .8) , as expressed in the source-
pattern space-time covariance K , account for the strong directionality
of the sound radiation in the example. The directionality is softened by
pattern fluctuation, specified by £#0 . The ability to allow for pattern
fluctuation provides a large reduction of the convective enhancement of
power.

The primary purpose of this example was to show how the
motion of a random pattern of acoustic sources through a stationary fluid
can give rise to pronounced directionality of the radiated sound. A very
simple choice for the pattern covariance R was made (Eq. 3.1) to ease
both the mathematics and the physical argument (which follows later).
The example constitutes an idealization of a real flow wherein the mean
motion of the fluid is suppressed. Thus no account is taken of refraction
by the gradients of the mean velocity (cf. Chap. IV).
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3.3 Effects of Pattern Convection on Directionality

Mathematical Interpretation of Peak at M cos 0 = 1

The function R is essentially the correlation* of acoustic
source strength ¢ at two points separated in space and time. The space
separation is € and the time separation is T . The correlation must be
unity at the origin (£ =T = 0) and must approach zero at large separa-
tions (but not necessarily monotonically). A hypothetical case is
sketched in Fig. 6 as a plot of contours of constant R in the §,, T plane
(for convenience T is replaced byUT ).

The choice of K, here is that of a Gaussian function in both
'5, and UT (Eq. 3.1). Thus the contour plot of a stationary pattern repre-
sents a hill or ridge; the long axis is alongUT by the choice £ =~ -2 .
This implies the 'eddy' length is about 0. 2 the decay length. Convection
of the source pattern with uniform velocity U is introduced by the change

R,(T,T) R,(&-UT,T) . The contour plot (Fig. 6) shows

the long axis of the ridge has been sheared over to a 45° inclination
with the UT axis.

We shall employ the convected form of K as the integrand
in a one-dimensional version of Eq. (3.1) for the mean square radiated
sound pressure. The path of integration follows a radial time-delay line

UT = & Mcos® whose inclination depends on M and 6; several possibili-
ties are shown dotted for M = 1, It is evident that the value of the integral
depends likewise on M and 8. The particular choice Mcos 8 = 1
(or UT=Z%,), by traversing the long axis of the ridge, maximizes the
integral. ¥ In other words, the mean square radiated sound pressure is
a maximum in the direction normal to the Mach cone, 8 = cos™' VM A

* More precisely, we distinguish between the dimensional covariance
R = <00’), and the nondimensional correlation <0'0">Av/[< T b

7 A similar observation has been made by Lighthill (Ref. 1) with regard
to the integrand of the integral for the density perturbation (not its mean
square) in the far field. In that case the ridge line was taken as infinitely
long, corresponding to an infinite eddy lifetime. (The integral for M cos =
1 was therefore infinite, which explained the infinite pressure peak at that
value of 0).
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Thus we have an explanation of a kind for the directional
properties exhibited in Fig. 4 for the sound radiated by a convected ran-
dom pattern of acoustic sources. The one-dimensional example shows
qualitatively how the pattern convection (at Mach number M) and the time
delay respectively determine the yaw of the ridge line (range of large
values) of the integrand and the path of integration. The dependence of
the path or time-delay on the direction @ of the observer gives rise to a
pronounced dependence of the integral - the mean square sound pressure -
on 6.

Physical Interpretation of Peak at Mcos 6 = 1. - In Figure
7 an intermittent sound source has moved from left to right across the
volume V with supersonic speed, emitting pulses at the points marked x.
The two sketches portray the sound field at an early time 1) and at a later
time U, . In each case the sound waves toward the left, having been emitted
earlier, have grown larger. Note how the sound waves coelesce to form
an envelope - an annular segment of a supersonic Mach cone. The sound
intensity is maximum in the directions normal to the Mach cone (0= cos™ '/ﬂd) .
(Since a transient event has been considered an observer at 6 = cos™ I/M
will experience only a single sound pulse as the envelope moves past him).

The wave pattern grows even after the sound source has
died, enveloping "upstream' points P as well as "downstream" points P’ .
Thus there is no zone of silence as in steady supersonic flow. The
difference lies in our use of a stationary frame of reference that does not
follow the moving source. Further, the finite lifetime of the source
accounts for the truncation of the Mach cone.

The situation of Fig. 7 is an idealization of the convection
of a continuous random fluctuating pattern of sources through the volume V.
The continuous pattern will provide a succession of wave trains, not just
the single growing pattern portrayed. Points like Q, P, P’ will each receive
a continuous fluctuating sound pressure instead of one or several pulses. 4
Further, the strength fluctuation in time - but not the randomness in space -
will tend to smear out or impair the sharpness of the envelope at 6, = Cos"}/M ;
This will reduce an otherwise infinite intensity peak at 6p which would occur
for a nonfluctuating pattern. It is again noted that Lighthill's Mach number
factors imply the latter situation (cf. last footnote).
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3.4 "Convected Single-Frequency Sources: Example

Near Field Spectrum: Convection Broadening. - Consider
just a single Fourier component (in the time domain) of a convected random
pattern of acoustic sources: that is, consider a pattern that is random in
space but sinusoidal in time. Furthermore} we specify a one-dimensional
pattern distributed along a line segment rather than within a volume: this
simplifies the mathematics without, it is thought, sacrificing the essential
physical features. ‘

Sketch 3. Line Distribution of Acoustic Sources
The pattern is taken to be a stationary (homogeneous)
random function in space and time. The assumed two-point source
strength covariance < 0 ¢')y is
2 210
) 2 "'a'z(al— Y ) 2 2?-
R(TE) = <o € cswT ; 0=7F (3. 3)
Where (T is the source strength at (y,,t) and 0" is the source strength at
t +'Tf) The randomness in space is described by the exponential
tor w1th &' serving as the length scale or average "eddy'' length. The
strength of the pattern oscillates through positive and negative values by
means of the sinusoidal factor co$S w,¥: the entire pattern oscillates in
phase.

Equation (3. 3) is referred to a stationary frame of reference

with respect to which the pattern is convected with velocity ) (toward the
right in the sketch). In the corresponding equation for an observer mov-
ing with the pattern the argument ( i UT)in the exponential function would
be replaced by &, alone.

It is evident that the moving observer hears just the single
source frequency W, : for him the frequency spectrum is just a single line*.
The question now arises: what sort of spectrum does a stationary observer
record? To answer this we employ the formalism

* The angular frequency W = 2[[x frequency is for brevity referred to as
the "frequency'' in this section.
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S pectrum function ~Fourier transform of time covariance (¢, = 0) ,or
more specifically

%%Zm =%5tc{'f{(’t,0);u)} (3. 4)

In the present . case this is

%@M “ %{y)ﬂi cos w, T ; w} (3.5)

_aj_uzr[:l
. e
This Fourier cosine transform may be evaluated by means of Egs. (1.1-3)
and (1.4-11) of Ref. 26. The result is ;

A - (5] ¢ gl 2] ao

N speed

Wk W MOt e edc?y size

The spectrum Eq. (3.6) seen by a stationary observer is
plotted in Fig. 8 for several ratios of W./w.. When w, =20 W, the :
apparent frequency W. produced by convection of eddies of size &’ ' at
speed U past the observer is relatively small compared with the pattern
oscillation frequency W.. The corresponding spectrum function in Fig. 8
is very nearly the 0 -function or single line seen by a moving observer.
By virtue of the added convective frequencies the line has been broadened
to a band width~2 w, , but it is still narrow.

When w = 2w, the frequency produced by pattern oscillation
is comparable with the apparent frequencies produced by pattern convec-
tion. The corresponding curve of Fig. 8 shows how the apparent con-
vective frequencies, by addition and subtraction from w,, have broadened
the spectral line at w/w, = | so that it is now a peaked broad-band spec-
trum.

When w, =0-2 W, the apparent frequencies produced by
pattern convection completely dominate over the oscillation frequency w, .
The curve in Fig. 8 is that of a broad band spectrum with no discernible
peak at the pattern osciallation frequency w.. In this case the trye time
fluctuations of the pattern are so slow as to be unimportant: the frequen-
cies seen by the observer are essentially produced by the convection
past him of a random space pattern.
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The last-described case, that of the convection of a "quasi-
frozen' pattern of sources, appears to approximate best the turbulence
in a boundary layer (Ref. 25) or in a jet (Ref. 14; see Appendix C herein).

Far Field Spectrum: Doppler Shift

In Section 2. 2 an expression is worked out for the auto-
covariance of the sound pressure in the far field. We modify this three-
dimensional result to apply to the one-dimensional case of this section
wherein the acoustic sources are distributed along a line of length Y .
The modified form of Eq. (2. 23) reads

<ﬂ3’ 20T x)ad J dy, J R(z T+T)de,

l(ﬂ[ e

(3.7)
3

- JR(E TT) dE,

IGTICX‘
with T = Zxfex = T,é,cos@

The factor Y &’ in the first integral serves in effect to convert source.
strength/unit volume into source strength/unit length The particular
combination of physical lengthY and 'eddy scale’ is one that arises
naturally in the corresponding integral in three dlmensions for sources in
a volume Y~

The desired spectrum function is the Fourier cosine trans-
form of the auto-correlation:

il A AR )

Eqgs. (3.7) and (3. 8) are evaluated in Appendix D for the case that® has the
form of Eq. (3.3). The resulting spectrum function is (Eq. (D7)):

2

o 5
d<Py = <1 o Tigok:
L= Samhacr® € 6( w—1g@r) i
where (3 e, w, cos © . @ = | - Mcos 8

Co

Eq. (3.9) shows that the spectrum is a single line at angular
frequency w,,/® = W./! T Mcwe[ . Thus a frequency w, in the
sound source pattern moving at Mach M (moving observer) produces sound
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of frequency W, /I | = Mcos 9‘ , the Doppler-shifted frequency, in the
far field (stationary observer). On physical grounds this result could have
been written down without analysis. The fact that the Doppler shift results
automatically from the mathematics is a testimony to the power of the
correlation formalism when 'convection' and time-delay are included.

3.5 'Convected' Randomly Fluctuating Sources: Example

Choice of the Source Strength Covariance. - The single-
frequency line distribution of acoustic sources of Sec. 3.4 was by hypo-
thesis just a single Fourier component of a pattern randomly fluctuating
in time. The two-point space-time covariance of this more general
pattern in a stationary reference frame may be written

[ =] i 2 (G)
<60")ME R = J W(w,) R, gl,wb . 5 = %‘tl‘ (3.10)

(]

~S
where T is the single-frequency covariance Eq. (3.3) and W(wo, is some
weighting function. Suppose we choose W(w.)so that

o0 ot
A ; | (A)o 4 -—o"z 2 _d(g_u"t)-x.
<60 >Av 2 j 12 T we ( W;) 8.1 . @ )e : cos w,T dw, (3.11)
st Peipp et UL
W (wy) R
where Wy = Lal
Then K = (0“0"}“ has the value
s 2 2 2,2
stationary o oK UTEL 6 By Bt g 3.12
frame e >AV— . 12 w;" At : )

(A reverse procedure was actually used, with Eq. (3. 12) specified at the
outset; then Eq. (3. 11) was obtained as an inverse cosine transform with
use of Eq. (1. 1-5) of Ref. 26).

Motivation for Choice of Source Covariance. - The form
of the source covariance, Eq. (3.12) for this example was originally
chosen on the basis of 0 being defined as 52#”/5{72 (Ref. 3). This defini-
tion has now been superseded so that the motivation is no longer very
relevant. The reasoning on the basis of 0 = D’}°/Dt* is, however, set
forth below as a matter of interest. In the later applications, the new
definition ¢ = D F”/Dt‘ is to be understood.

(The factor J/att b 6 in Eq. (3.12) provides a
region of negative covariance. Such a negative region, while satisfactory
in the present one-dimensional example, can lead to absurd results
(i.e., directions of negative < 19‘),“,) in the three-dimensional case.
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Since the two-point covariance arises from the process of squaring an
integral, any function whose integral over covariance space (with or
without retarded time) is negative is not an admissible covariance).

The significance of Eq. (3. 12) is best displayed by shift-
ing to a moving reference frame: £ —-UT is replaced by g, to give

B Y i 1 i T —wtt
oM = e Zoof > e (3. 13)

Now D/bt — b/bf in the moving frame, whence

: bz (o) al (0
<6O.>AV - <a‘z aéu >AV

in that frame. If we postulate that the pressure pattern . be a station-
ary random function in time (i.e., time averages that are nonzero
approach a fixed limit for infinite averaging time) it can be shown that

G = LGP @10

Thus Eq. (3. 13) is compatible with

ol e’ = 151:. 2 —wi T
<¢7[T}” >Av o <0 nv ea)_; (3.15)

12 wt
|

o)
The left-hand side reduces to <4 )>Av on setting § =T=0. Therefore

L% <( %%:))L>m/

SHELY - K
v |zw{‘ = —W— (3.16)

and Eq. (3. 15) may be written in the alternative form
(9) | coy . (0)? —a‘§‘ RS
KD s K00 5 B

Sound Source Strength Spectrum (Moving Frame). - The
frequency spectrum of the pattern of sound source strength is the Fourier
cosine transform of the covariance in the time domain (g, ng " O)

%’(,gﬂ =%3;{R(’t,o);w} (3. 17)

The frame of reference for the specirum is the same as that forR : in
this case we choose a frame moving with the velocity U of the pattern.
With use of Eq. (3.13)) for R the result is
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w’l.
MAV s i 61>m/ (A)+ e" 4_(,0;‘

dw 12T wy*

(3.18)

This source strength spectrum is shown in Fig. 9 for later comparison
with the radiated sound field. The value of & is taken as 0. 1.

Far-Field Pressure Spectrum (Stationary Frame). - In
Section 3.4 we saw that a gingle-frequency line pattern of acoustic
sources with covariance & (Eq. 3.3) radiates a far-field pressure
spectrum A w’” (Eq. 3.9). It follows that the superposition

R = j W (w) K duw, , (3. 10)

which represents the chosen random source pattern will yield a far-
field pressure spectrum

%ﬁl :J W(w.) di?” dw, (3. 19)

The values of W(wy)and d<F>AV/du) are obtained from Egs. (3.11) and (3. 9),
respectively. The integration yields

My _ Ledvv @t W w @'+ @
C”A) |921[’aé6"o‘1‘ w}s €

where @

®,
U)‘I' = ALa U

| — M cos9

(3. 20)
AM cos ©

Il

The radiation spectrum Eq. (3. 20) is compared with the
acoustic source spectrum Eq. (3.18) in Fig. 9. A particular case is
chosen: pattern convection speed U = .5 speed of sound ¢,, axial
direction (8 = 0), and £ = 0.1 ('eddy' length =~ 0.1 decay length). The
abscissa scale is w/aw where wy = £al is a characteristic frequency
associated with fluctuation of the pattern. The ordinate scale is
arbitrary.

The radiation spectrumdisplays the same functional
shape as the source spectrum, but stretched toward higher frequencies.
In the graph this stretch (with particular reference to the displacement
of the peaks) is labelled as the "Doppler shift'.
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Comparison of the arguments of the exponential

W w

_4_—“)_‘;’- vs. —4\%}7:(@*@')

shows the label is only approximate: the actual scale factor

[6° + @,z]-'/z is slightly less than the Doppler factor @ '. The
reason lies (see below) in a progressively decreasing efficiency of
radiation with increasing frequency. Functionally, this modifies the
spectrum very much like a Doppler shift via the argument

w'® W ces’o
% w}‘ i qac
Since Jﬁ/a, is a scale L of the source pattern,
2 z
w cos'® L .
sz m = foa —T( x ces“0

Thus the radiation attenuates as the wavelength)u becomes smaller in
comparison with the 'eddy size' L

The physical explanation of the inefficiency of high-

30 frequency sound radiation can be discerned from an alternative deriva-
Fiy - tion of Eq. (3. 20) by a more direct process ;(integration of Kd&, over

e €, followed by the Fourier transform operation). It is found that when
& a coherent sound source ('eddy') is not negligibly small compared with
4 a wavelength of the emitted sound there may be phase cancellation of
b the sound emitted from different parts of the source. The phenomenon
' bears some similarity to the cancellation effects underlying diffraction
of waves through an aperture (Ref. 27). In the case plotted in Fig. 9
the choice o{= 0.1 implies that the eddy size << than the characteristic
wave length so that the effect on the apparent Doppler shift is small.

s
ek

'Turbulence' Pressure Spectrum (Both Frames).- An
ideal microphone* within the 'turbulence' of our one-dimensional
example would record essentially /fw . On the other hand, the acoustic
source strength is proportional to the second time derivative following
the fluid motion D'$”/Dt* . The frequency spectrum of the latter is
exhi}))ited in Fig. 9, and we seek now to obtain the frequency spectrum
of /7 itself.

* Such a pressure transducer presents a development problem since an
ordinary microphone will interfere with the flow; e. g., a microphone
facing upstream will read stagnation pressure. A successful static
pressure microphone with good frequency response is claimed in Ref. 28.
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The difficulties force us to approximate
0 = D‘f)m/Dt‘ = (%t + W %;Ql/?f” Ey D?%")t‘: ( %t + U%Z,)l ,ﬁm

that is, we neglect the eddy self-convection, even though the terms are not
negligible. To this approximation the space-time covariance of /t: in our
example is given by Eq. (3. 15) when the reference frame moves with the
source-pattern speed U . Transformation to a stationary frame is effected
by replacement of &, therein by §,-UT . Finally the covariance in the
time domain alone (autocovariance) is obtained by setting &, = 0 in both
cases. This yields

moving A, o —ap T’
Bame = PP = e (3.21)
3 - T
stationary P M N (Y < H®” (w it (3.22)
frame </}) 7) >A' ?) A¥
where wj( = AaU, W= al
The frequency spectrum is given by the Fourier cosine
transform
d-< (a>l>AV 2 (o) ‘z
R o2l ‘ 3.23
L = 33 (s o] e

The results for the two frames may be written
moving A7) < E(o)'> i
AV 4wi
frame 7‘L = & e f 3.24
w oy T ( )
stationar d,(?@‘ (0)* P U D
frame : 3 = ﬂ% e alwfsw) (3. 25)
w w’ UJ’
[T

Fluctuation versus convection. - It is seen that the
'turbulence' pressure spectrum in our one-dimensional example has the
same form in either frame: only the scale-factor changes. This is a
fortuitous consequence of the form of covariance chosen and our approxi-
mations, since the two spectra are governed by different phenomena: the
moving-frame spectrum is dominated by the randomness of the pattern in
time (fluctuation) whereas the stationary-frame spectrum may be dominated
by the randomness of the pattern in space (the 'eddy' space structure).
In fact, Eq. (3.25) shows that for w << w.? Lt 2 ) , fluctuation
of the pattern (typical frequency Wy )’contributes negligibly to the frequency
recorded by a stationary observer: he sees effectively a frozen convected
pattern. The case £*<«| is tentatively thoughttobe characteristic of a
boundary layer (Ref. 25) or of a jet (Ref. 14).
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The two frequency spectra are compared in Fig. 10 for the
case s WS oA w‘/w;‘ = '0'). It is seen that the moving-frame
spectrum is concentrated at the low-frequency end, whereas the convective
effects stretch the stationary-frame spectrum one-hundred-fold.

Comparison with far-field spectrum. - A stationary ideal
microphone* in or near the 'turbulence' would record the stationary frame
specirum of Fig. 10. A second microphone at a large distance would record
the radiation spectrum of Fig. 9. These two spectra may be compared as
constituting the (very) near-field and the far-field of the same 'turbulence'
noise field. The two spectira behave quite differently as the frequency
approaches zero: the near-field spectrum level approaches a constant
value whereas the far-field level approaches zero. In this respect the
situation resembles that of jet noise although the example is over idealized:
in particular, the assumption of a homogeneous source pattern along a line
is far from reality.

IV. MOVING SOURCES IN A JET FLOW: REFRACTIVE EFFECTS ON
SOUND DIRECTIONALITY

4.1 Introduction and Governing Equation

The applications in Section II do not allow for any mean
motion of the fluid as in a jet. Section III improves the situation by allow-
ing the turbulence pattern to move with velocity U through fluid at rest. In
this way certain convective effects on jet noise directionality and on Doppler
shifts of frequency are allowed forT. The mean motion that transports the
turbulence pattern is, however, still neglected. In the present chapter the
mean motion is brought into the picture, with particular attention to the
mean shear: the shear enhances the noise generation and it provides a
refractive effect on the directionality.

" The mean motion appears explicitly in the operator
Dbt = a/bt + U ?/33, of the fundamental equation Eq. (2.11):

* see footnote page 33.

¥ This allowance is only approximate. The "convective" effects calculated
herein in this manner (by motion of acoustic sources through fluid at rest)
are oversimplified in the use of a time delay T in the integrand that does
not allow for convection of the sound waves by the mean flow. Inclusion of
such an allowance is expected to modify the predicted directionality and
Doppler shift in the vicinity of 8—=0. A further discussion is given in
Sec. 4.4.



| ﬁnl A , D(")
Co‘% —Vf’ = 'Tﬁf‘ (2.11)

In what follows (except Sec. 4. 2) we shall deal with solutions of this equa-
tion. (Insertion of U = 0 will recover the simplified equation

| 1. U] 2 ) ()
2h -V i —é:r—f;g : (2.15)

employed in earller chapters. )

4.2 Amplifying Effect of Mean Shear

Eq (2. 11) serves for t)he computation of " in terms of the
acoustic sources of strength - C; bt 2 ¢ P/Dt‘ . The far-field sound
pressure ﬁ is essentially driven by the pressure  that dominates within

and near the turbulent field. It will be shown how the shear in the mean

Q) om

flow amplifies the amplitude of and thereby the amplitude of /1)
The expanded form of Eq. (2.6) governing i) reads
(Appendix A. 2, Eq.(A16)):

e ou; 5“ U, -
!
where superscripts ” are to be understood as applying to U, , (omitted
Y (1 {
for simplicity). Allowance for a mean flow¥* U(X :f ,) along «J s made by
writing
W; = Us; + w &= | L

(4. 2)
U

/
= Ud; + u =0 )
S L i 7
where u u is the unsteady part of the velocity. If the cross -stream
grad1ents of U > any gradients of M the first term on the right-hand side
of Eq. (4. 1) dominates, giving approx1mately

U B(L
ol WY oM . o Sy 4.3)
This may be written oy U
y - VY = 2 s %’ (4.3")

where N has the direction of the cross-stream gradient of U and v is the
unsteady component of velocity in the direction of n . This equation is

due to Kraichman (Ref. 12): he considered it to be a good approximation in a
turbulent shear flow."

* In a jet flow there is also a weak dependence of U on y, : this is neglected
for simplicity, as well as very weak mean flow components in the IJ and
t} directions.

¥ Molla-Christensen (Ref. 30) and O M 1111ps (lecture) recognized that
for turbulent shear flow the term 2(’ , is the dominant part of
‘az‘ﬁ}- /375 B?} , considered as the source term of Lighthill's equation.
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Kraichman solved Eq. (4.3') for an idealized model consist-
ing of a certain homogeneous turbulence superposed on a uniform shear flow.
He obtained

< (°)>AV i |5 e ( ) <u,)” (4. 4)
4 2 U 2 L 7 2
T T8 [%‘2} <uw'y, (4.4")

where (0~ is an inverse length scale of the turbulence (Ref. 12; see also Ref. 2)
The corresponding result in the absence of a shear flow is

P o= o fcu (4. 5)

where Batchelor (Ref. 29) obtained ¢’ = 0. 34 and Kraichman (Ref. 12)
obtained C°= 1.00. Thus with this flow model amphflcatlon will result
when the effective nondimensional mean shear (4/,5) Z(U/m,)/é(f h)
exceeds ¢ . The criterion alters with other flow models (Ref. 12).

4.3 Green's Function Describing Refraction and Diffraction from Point
Source

Formulation of the Problem. - The governing equation for
aerodynamic sound sources in a mean flow, Eq. (2. 11)) may be solved by
a familiar technique: the right-hand-side is.replaced by a -function to give

S BE - v = sy st .0

and a solution of this subsidiary equation is sought ( y is replaced by x in
the operators D/ﬁt and V?). This solution, the Green'§ function, represents
the pressure f)‘ at a point x and time t due to a unit point source at Y emit -
ting impulsively at time t into unbounded space. Suppose the Green—zfunc-
tion is written

/f:"’z #G(l,#,t)é(’c—t') (4.7)

where t' = t! (_}5, Y t) = known function,

Then the desired solution of Eq. (4. 6) would read

b < 7}”[[ < f)c,(_,?t)é(t t)d?dt (4. 8)
v
i Z%j[ 26 (x4, t)] d (4. 9)

£
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where C, may be C,,C%) as in a hot jet or jet of foreign fluid.

Now what can we say about the Green's function G short of
actually solving for it? Outside the jet where U has fallen to essentially s
zero Eq. (4. 6) reduces to theinhomogeneous wave equation. By Kirchoff's
formula the sound pressure radiated outside some control surface S’ enclos-
ing the jet may be determined by (Ref. 31)

l [ | 2 or .fl AP ;

¥ = — S (4. 10)

f(“'t) 4T T8 Tise Rt GT on o ] . as
SI .L -éa

that is, as the emission (into air at rest) from a certain virtual distribution

of sources and dipoles on S'. To an cbserver at a sufficiently large dis-

tance x from the centroid the surface S' seems essentially like a point at

x = 0. The pressuret radiated by the surface distribution falls off like i
and depends also on the direction of x. Thus we may write

il : /
vy K ( 9%) X radius of S e
2[lx >>  wave length

Wh re O is the angle of x with the jet axis, with x restricted to the x, 1,
plane. (This restriction imposes no loss in generallty in view of the axial .
symmetry of the jet).

Qualitative Effects on Directionality. - The factor K(é #’
of the Green's function describes the directional distribution of sound
pressure in the far-field radiated from a point acoustic source at point #
in a specified jet flow: the refractive and diffractive effects of the flow
are embodied in this directionality function. The analytical determina- -
tion of K (86, )is a formidable task (see Refs. 32 and 33 for similar pro-
blems) and only idealized cases have been treated (Refs. 34, 35).

Thus consider a two-dimensional oscillating acoustic line
source lying cross-stream in an infinite plane jet (jet width >> wave
length). Such a source can be built up from plane waves disposed radially
like the spokes of a wheel (Refs. 36, 37). Previous papers (Refs. 38, 39)
show that these waves are refracted outward and forward (upstream),
leaving a wedge-like zone of silence opening downstream. In a real jet the
diffraction due to the great reduction in jet size/wave length must greatly
weaken the refraction. The wedge (cone in the axisymmetric case) is
thus perhaps reduced to just a deep inward dimple in the directionality
curve as 6—0.
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Dr. P. Gottlieb (Ref. 34) has obtained an analytical solu-
tion for the closely related problem of an acoustic line source in a semi-
infinite plane flow: the source lies cross-stream and parallel to the
interface*. Figure 11 shows the directional distribution of the refracted
sound pressure at large distances from this source. The curve segments
labelled A= «© , A = 2th, A =Th lie in the wedge of silence; they
represent diffractive '"leakage' of sound into this zone at small distances
h from the interface. It is expected (in the absence of further curves on
Gottlieb's figure) that the penetration must approach zero as X —0.

For a point source centered in a round jet the qualitative
directionality pattern may resemble a figure of revolution developed
from Fig. 11. For off-center source positions the pattern will be dis-
torted. A common feature will, however, be the inward dimple, or
reduced intensity, as 6—0. Such a dimple in the downstream direction is
characteristic of jet noise.

4.4 Mean Square Pressure Integral and Acoustic Time Delay Therein

Use of the approximate Green's function for large x,
Eq. (4. 11) simplifies Eq. (4.9) to

") = g |[E B Keay),
Z.i,

this is the generalization of Eq. (2.17) to allow for a mean flow. The
corresponding generalization of Eq. (2. 20) for the mean square pressure
yields

By, = -,4,:(—1 et al% K(e, %+_§/2) K(e,%-é/z)}?(é,”[;i) dg_ (4.13)
v 0

t)d% . (4.12)

If the geometric average of K at ps 5/2 may be approximated by the value
of K at the midpoint £ = 0, then

A0y, = = | oK e, Wy | RET 945 (4. 14)

v co
where "[:’T(_Z,%;)

The functional dependence of the time delay ‘T requires
further discussion. Formally(t is deter.mine'd as the difference in the
times for sound to travel from points %’ and % to the observer at x.

* Similar analyses for a line source in a plane jet and a point source in a
cylindrical jet have very recently been published by Moretti and Slutsky
(Ref. 35). They were apparently unaware of Gottlieb's work.




In the absence of a mean flow this reduces to Eq. (2.22)

AR o WA (2. 22)

But the presence of a mean flow gives rise to a more complicated func-
tional dependence described by -1 . The? function cannot be determined
from a simple geometrical consideration as in Sketch 1: it arises instead
as part of the solution of Eq. (4.6) for the Green's function.

As a matter of interest a crude approximation to the effects
of the jet flow on  and T are worked out in Appendix E.

4.5 Pressure Autocovariance and Spectral Density

A simple extension of the expression, Eq. (4.14) for the
mean square pressure is effected by inserting a time delay T’ :

i e \ ;
<4D(_X,f)¢)(_l,{,+’t)>/w =~ ot VC,,4K (9,%) d% ﬁ(g,‘tfl,' })dé (4. 16)

If we abbreviate the left-hand-side as (1)?’),“, (’t' ,‘1) the Fourier cosine
transform reads

$(w;x) = %—5& {</pfo’>”(‘75',l) j w} (4.17)

Eq. (4. 16) gives the autocovariance of the sound pressure in the far field
and Eq. (4.17) gives the corresponding spectral dengity, (Note that
& (w; x) may be written as d<ff)m, /dw whence j $(w;Ddw = < 19‘),“, ).

o



(41)

V. MOVING SOURCES IN A UNIFORM STREAM: SIMULATION OF A
MOVING JET '

5.1 Fundamental Solution for Subsonic Stream

The sound field of a jet on an aircraft in flight as recorded
by an observer in a companion aircraft may be of interest. The technique
of employing, in effect, moving sources in fluid at rest (Chap. HI) ‘may be
generalized to allow for uniform motion of the medium.

The governing equation is Eq. (2. 11) in the form

& (% +U% /f> w Wi (0; . 0~_=_gf) (5.1)

/7

When the stream speed U., is limited to subsonic values this has the solu-
tion (see, e.g., Ref. 40, Egs. (3.5.0) and (3. 5. 2)):

A
ARl e S e

. where A =
| T = bt M°(1“9) 5
C(j C,P.,

A - Ty (5. 3)

r= - 7,)‘ s [(1,—71) +(75'7;)] :

B= 1-ule = 1=M

The mean square pressure 1n the far-field, where lll > l%l Y
may be written (droppmg the superscript )

<1> W) = ,WC‘,QZ ”<¢r(1 ) 0(7 £ d%d% (5. 4)

where Q , and g (to be introduced later) are "reduced coordlnates
given by »

A A A\ A

& s Wy My Ky 7(,/ (5,11 : (507(3

‘2" 4 T 70' ﬁ’?u @o?i = (5.5)
=£|/§;; :gll(s'g"/@‘gj’

> s>
I
=~=>
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Put %=(%’+%L')/z ; §=%’—7[ . & Sk (5. 6)
as in Sec. 2.2. Then

k6> = e [a] R(E2 g 6.7

where V' is the effective volume of eddying flow,

R = <0 (gezh, 14%) 0 (45 b (5.8)

and the average is over @” By procedures similar to those of Appendix E
it can be established that for (2] > |?1 ;

BieT =-MZ+ g2 /3 (5. 9)
approximately. 4

5.2 Example: Fluctuating Sources Moving with Speed U in Stream of

Speed U,
Take for the covarianceR the same form assumed in
Section 3. 2:
2 Sl 2 2 S LT
B W ex/?)—a, [(«:,—UT)+ Fok o gl ] (5.10)
‘convection’ Flvetvation ‘

Then to evaluate < /}73 g, £5. 7)1 we require
I =JJFR (£.1) d€ g, d8, (5. 11)

By virtue of the symmetry about the x-axis it will suffice to limit X to the
X, X, plane. With X;=0,Eq. (5. 9) reduces to

(g,’c,’% = T (cosO6~M,) + 51(3,0"" 6, (5.12)
where 'tqn 90 = ﬁnetowe T @‘Zz/x' (5.13)

A e
The insertion of ‘T into Eq. (5. 10) will be simplified if we
transform coordinates so that

(£ = & (e 0-M) + € oty l fj@: Z(cos6-M)-E B, 00,
< £ == B.tn0,+ T (cos0-M,) JE=Ep #in0, + T (cus6-M,) Y5+ 14)
= 5 Hene-s

where the Jacobian J is
2 2
J = (CD& 9, —_ Mo) -+ éfﬁ;n 9,

: (5. 15)
0 e Mo Cod 90)
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Then

§ 7 I”j]" R (£ T)4E dE ”‘55 (5. 16)

wherein, after reduction,

.08 ex}; I [ AL+ T+ +BEE, ] (5.16")

~

with A, B, functions given in Eq. (5. 20).

The cross-product term may be eliminated by means of
the transformation

Vo

Z, = T, #, 1

a = -1 + mr, (5.17)
where

Bm,= 1-A.— v B*+ (1-A,)

with the result (5.18)

Rdg, dg_dg; — {(G’-}AV ZXf _J"’a} [K,r.z“" Rzr:—{-’g}l ]}(IWl)dﬁa/GaZ

where R, ’ Rz are constant for the integration (given in Eq. (5. 20)).

The variables are now separated and the integration of
Eq. (5.16) can be carried out readily. With use of Eq. (5. 7) the final
result for (1;‘)/“, is

2z 61> V Moz+ ’
Gy = S X, (5. 19)
/1) . et a2’ 2 ,r_—glgz
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where

P A W AR b2 Ol S K ) \

A:MiulaBm o]

_m N>
I

= moz g f)oma -+ Ao

| Gl B IM T~ 2MB (e B )
) é !

e ZMﬁ, p’ 9, (5. 20)

(| — M) - >

i |- A. .
, = A=A i

arc tan ((50 tan 0)
VI — M,

source speed U/speed of sound

~N

> X
!

S Y9 &
li

°

@
I

o

g
I

=
Il

M = flow speed U,/speed of sound }

Egs. (5.19) and (5. 20) give the mean square pressure
radiated by acoustic sources characterized by the covariance Eq. (5.10)
moving with speed U through a certain volume V in a uniform stream of
speed U,. The source speed U simulates the effects of eddy convection
by a jet. In a numerical example we compare the case M. = 0 (~ jet noise
in fluid at rest) with the case M,=0.8 (~ jet noise in a stream with
M, = 0.8) for a constant difference betweensource speed (- jet flow speed)
and stream speed: M — M,= 2.0. The results are exhibited in Fig. 12 as
curves of { /P‘) versus 0 for a fixed radial distance x.

The interesting feature is the sweepback of the peak of the
lobe from 6. = 60° at M, = 0 to @~ 33.5% at M, =0.8. The peak at O
is normal to the Mach cone and satisfies (M-M,)cesB, = | . The angle 6
of the M = 0. 8 peak appears to be related T to the angle 6, of the M =0
peak by the construction shown in Sketch 4 .

% The graph is faired improperly so as to show the peak at 8 = - g

T This relation has been checked by careful numerical computation for
one case at &£ = 0 (no source fluctuation). It may be that when £ is not
<< ) the two peaks are shifted slightly.



(45)

observer local normal
to Mach cone

origin effective origin

Sketch 4. Sweepback of the Noise Peak

The sweepback results from the convection of the wave pattern. Calcu-
lation gives

(I — Moz)A\‘ne
VI — MJain’0 —M,co0 6

Ain 96 ==

(5.21)

VI. ASSESSMENT AND RESUME’ OF MAJOR POINTS

In this chapter a number of the more important matters
relevant to or dealt with in the theory are summed up from a critical
point of view. There is no attempt at completeness: this is left to the
Summary.

6.1 Pulsating Fluid Elements as Sound Sources

The quadrupole picture of the mechanism for generation
of flow noise is correct but not unique. A much simpler picture is
afforded in terms of simple sources. The volume of a moving fluid ele-
ment fluctuates inversely with the local pressure, and this fluctuation
radiates the sound.

The volume, density, and pressure fluctuations are

related by
D vol /, D™ | DAY 6.1
ﬁ"ﬁ?vo_l' i L (6.1)

where the derivative follows the fluid motion. Any of these is equivalent
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to a virtual strength of matter sources in fluid at rest. A second time
derivative yields an effective strength of acoustic sources per unit volume:

flow noise D 2/ ¢o)
& o
source strength byt > e My < (6.2)

To a sufficient accuracy the pressure may be attributed
solely to inertial effects in the eddying flow; it may be determined as
though the fluid were incompressible. This has been anticipated in the
use of £”in the equations.

For bounded flows (e.g., the flow about a rod producing
Aeolian tones) a volume integral of the simple sources of Eq. (5. 2) still
describes the primary radiated sound. On the other hand, the volume
integral of quadrupoles must be supplemented by a surface integral of
dipoles (Refs. 1, 6).

The simple-source formulation shows that the sound
originates in a more or less extended region bounded by the surface, but
not from the surface itself. The dipole integral on the other hand implies
a finite sound emission from the surface; addition of the quadrupole -
integral is required to bring the predicted surface sound emission to zero.
This fact has more conceptual than practical significance since the dipole
integral will dominate at large distances from low speed flows.

6.2 Comparisons with Quadrupole Theory.

For low speed flow the sound pressure at a large distance x
from the region V occupied by the flow may be expressed in the alternate
forms

u
/t) L _’l_x BD('E')‘ ) AV quadrupole theory (6.3)

r ®
’15 b c,,zix -D,fz av simple source theory (6.4)

v

where Uxis the component perturbation velocity along x. Which should be
used in particular applications is thus,just a matter of convenience or pre-
ference.

Either of the above expressions leads,on neglect of convec-
tive effects, to

4 4 5
i O LA L S (6.5)
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as the relative acoustic power emitted by a turbulent volume element dV
for similar flows . The famous U5 law for the total noise power of

a jet follows at once. Simple similarity considerations lead to laws
describing the power emitted by successive slices of a jet as a function
of distance x (not to be confused with the field point x referred to earlier)
from the nozzle: these go as x°(constant) in the mixing region with a
transition to 27 in the fully developed jet.

6.3 Amplifying Effect of Mean-Flow Shear

The effect of the strongly sheared . mixing region in a jet
in intensifying the generation of flow noise was first pointed out by
Lighthill (Ref. 1). He reexpressed his quadrupole integrand as essentially
the product of the shear and the time derivative of the pressure. Thus
the presence of a mean shear >> the fluctuating shear provides an ampli-
fication.

In the simple source theory the amplification is indirect.
The near field pressure /E:’is amplified, which augments the simple-source
strength — D'p”/Dt* . The far-field pressure is amplified in the same
proportion. he amplification of p” is exhibited in the term 2, (aU/an)
(2v /oy,) : this term dominates the pressure source strength 2°(, u;"’u;"‘
/ 3.3: 3‘};‘ when the mean shear BU/bn >> the fluctuating shear.

6.4 Convective and Refractive Effects of the Mean Flow

The mean jet flow convects the acoustic sources and
refracts ordistorts their individual sound fields. We have approximated
the convective aspect by calculating the sound emission from sources
effectively moving through fluid at rest. The formalism actually employs
sources at rest; the effective motion is imparted by replacing &, by £ -UT
in the source-strength covariance. Allowance is also made for fluctuation
of the source strength with time (through a term in the covariance) and
for the time delays of emission from different points.

Computations using this formalism yield sound directionality
curves; they show generally enhanced downstream emission due to the
source motion. However, the infinite enhancement predicted by Lighthill
at M = 1 is reduced to a bounded value by the fluctuation term. (It is,in
fact, implicit in Lighthill's formulation via moving axes that the source
pattern is convected without fluctuation).

A refinement would replace thenominal emission time ¢ - F/Co
in the integrand by a value approximately corrected to allow for convec-
tion of the sound waves. The effect of this correction may be important
for directions approaching the jet axis.
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A further refinement would use the accurately computed
emission time and would correct for refraction by the shear flow: the
spherically symmetric radiation term in the integrand would be multiplied
by a suitable directionality factor. This modified source term (Green's
function) and its emission time present a formidable computation problem
and have not been worked out. Calculations of the Green's function for
idealized models of jet flow have been made by Gottlieb (Ref. 34) and by ’
Moretti and Slutsky (Ref. 35). /

6.5 Role of the Covariance

The central element of the formalism is the covariance of
the acoustic source strength at two points with fixed separation in space
and time - the time average of the products of the two source strengths.
If the functional form of this covariance were known formal integrations
would yield the mean square noise pressure and other properties. How-
ever, experimental determinations have not been carried out and theore-
tical guides are limited. Resort has therefore been had herein to purely
speculative assumptions for the form of the covariance.

The computed results are in certain respects sensitive
to the assumed functicnal form. It is quite possible to obtain the im-
possible resuit of negative </P‘>Av for certain directions by a choice of
covariance function that has extensive negative regions. This must be
construed as a fault of the assumed covariance rather than of the method. ]
The covariance formalism applies equally as well with Lighthill's quad-
rupoles as it does with simple sources, so the difficulties cannot be
associated with the kind of elementary source. In the classical treat-
ment (Ref. 1), in fact, the difficulties were suppressed by postulating a
covariance equivalent to perfect correlation and zero time delay within
a cubical box and zero correlation outside: there were by hypothesis
no negative regions.

6.6 Convection vs. Fluctuation in the Near Field

An observer moving with a non-fluctuating or "frozen"
random pattern of convected acoustic sources would record zero frequency.
On the other hand the spatial variations of the same pattern moving past
a stationary observer will appear to him as variations with time: he will
record a broad band of frequencies. The covariance formalism herein
provides the mathematical apparatus for making the comparison. "Frozen"
patterns and those with arbitrary amounts of fluctuation may be treated.

The corresponding comparison for a single-frequency
convected pattern (single-Fourier-component of a random pattern) is
illuminating. The moving observer sees, of course, the single frequency -
a line. The stationary observer sees, by calculation with the covariance
technique, a line broadened by addition and subtraction of the apparent
frequencies due te convection (a band). If the true frequency is relatively
low compared with the apparent convective frequencies (''semi-frozen"
pattern) the line is submerged in a broad-band convective specirum.

(see Fig. 8).
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The foregoing remarks are concerned with the spectrum
of the sound source strength - ¢’ D*4°/ Dt? . Similar compari-
sons apply to the pressure )rf“’ within and near the turbulent flow.

6.7 Doppler Shift

It has been noted earlier that the use of moving axes to
account for source-convection effects (Ref. 1) effectively suppresses
fluctuation of the source pattern. The covariance formalism herein, on
the other hand, allows for arbitrary amounts of fluctuation: both the
convection and the fluctuation are accounted for in the form of the covari-
ance function. This may be either theoretical or experimental.

Either approach should, among other things, correctly
predict the Doppler shift of the radiated sound spectrum. This pre-
diction is implicit in the moving-axis technique. But with the cov-
ariance formalism a calculation is required. In the example of a con-
vected single-frequency source pattern the correct* Doppler-shifted
radiation pattern emerges automatically. The power of the covariance
approach - already demonstrated in its prediction of directionality and
its ability to discriminate between convective and fluctuative effects on
spectra - is confirmed again.

6.8 Moving Jets

The formalism is readily extened to treat the sound field
of a moving jet as recorded by a similarly moving observer. In a first
approximation the jet flow that transports the eddy pattern - and its
refractive effects on the sound field - was neglected. The eddy elements
(acoustic sources) were taken to move at essentially the jet velocity
through a parallel uniform stream of different velocity. An example
has been worked out wherein the excess of the source velocity U over
the stream velocity U, is supersonic: M - My = 2. The cases My = 0
and M, = 0. 8 simulate static and moving jets respectively. The sound
field for Mg, = 0 exhibits an intensity peak at 60° from the "jet" axis,
i.e., normal to the Mach cone for Mach number 2, On the other hand,
motion of the jet at M, = 0.8 sweeps the intensity peak downstream
closer to the axis (8 = 33.5°). The effect is simply explained by a
vectorial composition of wave convection and propagation.

*On the basis of the idealized model of sound sources moving through
fluid at rest: this model is implicit in both calculations. Allowance
for convection of the sound waves by the mean flow can in principle be
made in the covariance integral: see Chapter IV.
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APPENDIX A

GOVERNING EQUATIONS FOR SOUND PRODUCED BY UNSTEADY FLOWS
PLUS OTHER DISTURBANCES

_ In the main text generality was sacrificed in the interest of.
simplicity. The situation is reversed in this appendix. We postulate a
general fluid possessing viscosity and heat condution. There may be body
forces FL per unit volume and sources of heat and matter. The effects of
heat sources, conduction, and dissipation are expressed jointly in terms
of the entropy s for thecase that the fluid obeys an equation of statef

Al. Generalized Form of Lighthill Equation

In what follows, unless stated otherwise, the reference
frame will be fixed in quiescent fluid outside the region of disturbed flow.
Under the postulated assumptions the governing equations are

continuity:
% oeu;
momentum:
; 2Pu; 2 0p .
=t t T((j}(()“i“'*"fcj)*# Feufite . (42)
state:
: il v i
(where applicable) de o CZO(’F £ (B-Se)f, ds (A3)

The momentum equation is in Reynolds form: it differs from the usual
form by the addition of W;times the continuity equation. The dependence
of the viscous stress tensor U on the rates of strain in the fluid is left
unspecified for generality. TH}e equation of state is in differential form,
which suffices for the present purpose; the reciprocal of the speed of
sound squared, C?%, is written in place of its equal (bP/afa )5 . Fora

perfect gas (5(3/25);, = —-(’/Cf> ;

The elimination of Qu; between the first two equations
results in

o &l T i '
B-hogg oo w

T An equation of state is here taken to mean a fixed functional relation
connecting density, pressure and entropy, free of time-dependent relaxa-
tion effects. Such a relation does not hold for ultrasonic frequencies.



where T; = Puauj-f-h[:a} (A5)

= instantaneous Reynolds stress plus shear siress
=0 L %
With use of the symbol 55} =1

} ] this can be written in the
alternate forms:

v =

b? v it 1[‘[ C "'Cbl )5‘ . h
G b 0 «Lgyfby;‘e . S;H 3¢ _lag;?) i
| 2%

i e e ¥ T 49 ) b e 3k g am > (mu) (an)
o >0 o2 S i : ot :
2 4’ 57@%’ c, ot bzb i7 e Y:

Eq. (A6) is Lighthill's equation governing flow noise plus additional terms
accounting for body forces F. and mass addition M. Equation (A7) is an
equivalent equation with pressure p replacing density P as the dependent
variable. Neither equation involves the restrictive assumption that the
fluid obeys an equation of state; thus they have maximum generality.

Equation (A6) may be written as
J 2
% — dve = RH.S. (A8)

where R.H. S. signifies "right-hand-side'. This is of the form of the
inhomogeneous wave equation, with R. H.S. interpretable as a strength
distribution of simple acoustic sources per unit volume. Lighthill
examined the terms in R. H. S. and showed that for unbounded flows* (a)
a simple=-source strength—bﬂ/b . / unit volume is equivalent to a dipol
strength - TF/unit volume; (b)l simple source strength 3xTi}‘ / %by; unit
volume is equivalenttoa quadrupole strength Tii /unit volume. e
equivalence can be demonstrated by the methods of Appendix B.

For most cases of interest the fluid obeys an equation of
state. For these cases it will be convenient to introduce the entropy S into
the formulation. Thus insertion of Eq. (A3) into either Eq. (A4) or Eq. (A7)
yields approximately T

e

* For bounded flows the volume distribution of simple sources b“l’;‘a- /o ;bgi
is equivalent to the sum of a volume distribution of quadrupoles T;; plus a
surface distribution of dipoles. The present author believes that Doak
(Ref. 40) errs in failing to include this surface distribution in his expres-
sion for boundary layer noise.

T The local values of ¢ (speed of sound) and (39/39 have been replaced
by their mean values C, and <( be/bs‘)fZV’ respectively, and higher order
terms arising from their derivatives have been neglected.
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am o(muy)

l' —
T - ¥t - 3—7 -—*<($ﬁ) NT (7 AT a9
flow heat body mass
noise addition forces addition
where
'T]}- = PU.;U]' + TL/ (A5)

The labels appended to Eq. (A9) show the interpretation of the terms of
the right-hand-side as sources of sound. The term in |;; lumps together
the effects of momentum flux Pu;u; and shear stress Tj; The term. in
az5/ at? lumps together direct heat addition, viscous d1£s1pation, and heat
conduction; for low Mach numbers and the audible frequency range the
latter two will be unimportant. The terms 3m/2t — 2mu; /2
appear to account for the mass addition. However, as will be seeh later
(Eq. A18) additional terms in m are implicit in the density gradients of
the Tjj term (these gradients also include secondary effects of heat addition).
With fnclusmn of the terms implicit in theTij term the acoustic source
strength associated with mass addition becomes Dm/Dt (Eq. A20).

A2. Expansion of Lighthill Source Term

In this section Lighthill's source term & T /blj 3?’
w111 be expanded to exhibit non-negligible density gradlents Since
= Cu; uf (} is dominated by W;U; except near surfaces, we shall
deal first'with ' 2" u; u; /'b% ’I}he first step in the expansion is

bbg;ubi';é L 'SL‘}[ u; _bf?&’r + (%—;;:)P“;J (A10)

Eliminate 2Pu; /2 i by means of the continuity equation (A1), carry out
the differentiation, then again use (A1l) to eliminate 3“6/3‘};; this yields

%:-u? +—f-[ %bg)—é-—ﬁ]+3£@1)ﬁh

5;?'% 5’9(33)—“ ('?e)e @EM ?@#%‘?u




(53)

In our efforts to simplify this equation m will be considered
sufficiently small so that m* and products mu;b?/b . and m X’/o¢ can be neglected.
To this accuracy we can use Eq. (Al ') to establish the useful identity

Sb it . D of
e - G - FryF o) ww

{i
~ (';[(%’)‘ %, & ui%%‘% + Me“} %5%%] (A14)

The left-hand-side thus replaces the four terms marked ®in Eq. (A12)
That equation may now be written to a consistent order of accuracy as

Youu; _ ou du; . dU, au») s >
=4 = P&+ L 0o ) 2y, — Uu L
oy a; o '}‘:L,, (A15)

after slight simplification.

/L. ™

Suppose B‘(’u;w /37:5‘4' were evaluated in a frame of
reference following the motio41 of a {dd element, but with U; still referred
to the stationary frame. The space derivatives a“) /3 : Tete., being
instantaneous, will be unaffected by the motion. But the terms multiplied
by U; vanish, since U; must be replaced there by the zero velocity of the
element in the moving frame. If in addition there were no matter sources
(m =0) % Fu;lla /33; b‘aj would reduce to

moving [ b’fu:u'

frame, } -~ P oU; u: + ow b"f) (A16)
04i i Ju=m=o

3}.’ BZI by: B]JT

Accordingly Eq. (A15) may be written in the useful form

M ___{M] RS T o L{;U&%;-F uibm, . DA

! s ‘ : P
2:3 a‘h 37‘271 Uy =m=o 22"% 32' yt (A17)

Since T = (uu; + T , it remains to deal with the
shear stress tensor T;;. The veiocity radients in‘l;; will be unaltered
in the moving frame, gnd the viscosity gradients can'be neglected in
either frame. Therefore we can take ’Ti}' as unaltered in the moving frame.
Thus finally

ms=0
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2T, =[ b"rt'] g —’C k-G + ML (a15)
Bj\‘bj a}.bl b 53;5’6 a y B] ;

where the subscript U; = 0 (to be applied after-thediffergntiation) desig-
nates the value following the motion of a fluid element.

Equation (A18) is the required expansion of Lighthill's
source term. The relative magnitude of the density derivatives will be
considered later.

A3. Generalized Form of Simple Source Equation

Case (a)-Body Forces and Matter Sources Accounted for
in the Incompressible Flow, - If the expanded form Eq. (A18) of
Lighthill's source term is inserted in Eq. (A4) there results

a’ 2 2 2
—1§+zu-ﬁ-§+wu.ﬂ@_vz =[a\]__ A, om  yom
2 v Y. J Dy ol + +*+
BZ't 167‘ {i F ‘j‘a By =m=0 ? o 2] (A19)
This may be written as

o ~vh = 5] - % PR )

where D/D‘L‘ = 3/515 W, a/b and [3 €uu /b? 331].4:0

both designate operations following he fluid motlon

If the fluid were incompressible but not necessarily of
uniform density the density derivative following the fluid motion would
vanish. (It is for this reason that the convective parts of D’/ Pt* were
put into evidence in the expansion of the Lighthill source term). This
yields the equation

2 .(.o) ©
5 VZ (& % [ P Tw ] e b o
/F Bz.bga b i ) (A21)

where the superscript 2 designates values as modified by the postulation
of incompressible flow.

It is evident from Eqs. (A20) and (A21) that the body forces

and matter sources m are accounted for in the incompressible flow as
well as in the compressible flow. This leads to results of great formal
simplicity, which are developed below. An alternate treatment in which
F. and m are omitted from the incompressible flow is given in the later
case (b).
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Subtraction of the second equation from the first yields
z o ’az i "(0)
Dz ¥ v/}> ——Vj:" = [ (T‘}a T})] (A22)
3?; ‘j’ u;,=m=0
The difference between Tij and Tcio) arises from the compressibility of the
fluid; the difference is small for the postulated low speeds of the unsteady

components of the flow. In what follows, we shall neglect the affected
terms completely, the justification being given in Appendix B2. The

result is
DI:E 2 : 2) (°) .

By virtue of the equation of state this is approximately

i D

= ob V/F v c‘<<a())1,>,w (st

(With heat conduction and viscous dissipation neglected and with no
external heat addition this reduces to

F,: gzz 1 VZ/F et Vz#(o) ) (A25)

Eq. (A24) is useful as it stands. However, it simplifies

/}: = 4: + f>(°’+ /?z"’ (A26)

where P, is the uniform, constant ambient pressure, 19(” is the pressure
calculated as if the fluid were incompressible (i.e., 'via Eq. (A21))and
f” is the remaining increment in pressure, which must be attributed to
the compressibility. This is inserted into Eq. (A24) to yield

—CL:%’—E) o V; 0] i ol %TDZU Ll <(_g)f ¥ Dt (A27)

if we put

pu 2 (o
since terms in — V'?J cancel.

As in the main text the (presumably weak) scattering of
the emitted sound field by the unsteady flow is suppressed by replacing
the convective derivative D/Dt following the instantaneous flow by the
convective derivative D/Dt following the mean flow on the left-hand side.
This replacement yields

=t () ©)
J&g;—vﬁf;”’=— é——f =~ <( )]SA\,DT;

where B P o

PUacT *a‘ﬁ*‘Uay,

(A28)
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for the case of a mean flow U( lg, l‘};) along the LJ, axis.

The equations may be simplified if the viscosity and heat
conduction are neglected (they are small anyhow for low Mach numbers
of the unsteady motion). Then the compressible part of the pressure,
which can be recognized as the radiated sound field, is isentropic. All
of the entropy perturbation results from heat addition and may be com-
bined with the pressure perturbation to define a density perturbation

d«(f’) - O;z A/f)a» ¥4 < (_gsﬁ)f’ >,w dS | (A29)

Equation (A28) then reduces to
2 (0)

1 %’g' " Vl/f’mz - D (A30)

Equation (A30) is the equation governing flow noise in its
simplest form. Its physical interpretation is this. The radiative sound
field 4" obeys an inhomogeneous modified wave equation corresponding
to a spatial distribution of simple sources of sirength —-D‘?‘ ”/ Dt* per unit
volume. The quantity ¢ is the "zero-order" density perturbation in the
fluid: it is related to the pressure /8" (calculated as though the fluid were
incompressible) through the equation of state. Sources of heat, sources
of matter, body forces, and hydrodynamic effects are all included
implicitly in @ : the heat sources via the entropy term; and the matter
sources, body forces and hydrodynamic effects through their influence
on $”. In summary, Eq. (A30) states that the radiation of sound from
the 'interior of a fluid originates solely from local first-order density
perturbationsf it is immaterial how these perturbations were produced,
whether from dynamical flow effects, body forces, matter sources or
heat sources.

Case (b): Body Forces and Matter Sources Excluded from
the Incompressible Flow. - The primary virtue of Case (a) is its con~-
ceptual and formal simplicity. It does not obviate the need for explicit
introduction of the body forces and matter sources in the prior compu-
tation of ”. In practice it is far easier to calculate the direct acoustic
(i. e., compressibility) effects of body forces and matter sources than to

ol 8 density perturbation rate DPF’/Dt .would produce a dilatation rate

div.w in a fluid free of matter sources m according to DP”/Dbt +Qdivw = O
approximately. Thus the sound radiation from density perturbations in the
actual fluid (governed by - D'P“/Dt*) is as though the sound were pro-
duced by equivalent dilatations (via the term D%Dt( Rdivik) in a source-free
fluid. (We distinguish here between (” associated with sound generation
and (J"’ associated with sound propagation). :
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determine these effects indirectly via an incompressible flow. The direct
approach constitutes the present = Case (b).

In Eqs. (A20) and (A21) the effects of body forces E and
matter sources m are seen to be linearly additive to the effects of flow . i
Therefore we delete these terms and consider them later separately. This
gives

(t_)gl%l

S [ o s
— Vp = [a_‘rf;j] AL (A32)
’}7 33;331 u, =m=90

where D/Dt has again been approximated as 5/513 on the left-hand side.
Once more put = ] /ﬁ"’ and follow procedures parallel to those
of Case (a). The final result is

.9

—C'br %if:b = V*?)") =- 3¢r (A33)

The value of Q(o)may include the effects of heat addition via the entropy
relation Eq. (A29). The pressures ,j:"’ and /f)"), however apply to a flow
with F, =m = 0. The effects of F. and m can'now be restored by generaliz-

ing p to
b o g wso
/F"’ = = z’-n— ( 'aai)t d% o zlf[(g—'g)id% (A35)

(_fi)ea(% ¥ T'T(f(%ﬂ dy (A36)

where

Il
|
;4;1_
;(1QJ
: iR

" (cf. Appendix B)

A4 Examination of Neglected Term in Simple Source Equation

In the derivation of Eqs. (27) and (2.10) of the main text and
Eqgs. (A24) and (A28) of this Appendix a term representing distributed
acoustic sources was neglected. With the inclusion of viscosity this term

may be written as
0]

[%T‘” ] (A37)
b%.‘b J W, =m=o
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where

>

i T i "-'_(")

/ j
(Pwiw +’T:,‘) - (ﬁu;‘"uf' + Tt]‘m)

The use of a reference frame following the local instantaneous fluid motion,
designated by W; = 0 above, is a source of difficulty. In what follows we

shall assume that
[ o Tis ]
i’ A39
B(jl. b } U=m=o0 ( )

where the reference frame follows the mean motion U , is of comparable
order of magnitude. (It should certainly be as large or larger).

The neglected term may, perhaps, contribute significantly
to A”in the near-field, since b’/az\- blzt’ >> ¢;? #/2t* there. However,
it is the far-field behaviour of p“%ha't is of major interest. Lighthill's

analysis (Ref. | ) shows that a volume distribution of simple sources of
strength
OT: ] ]
[ b?ia'ﬁ m=o (A40)

yields a pressure disturbance

Affb(z,fi) o (- ‘v;;)(;j— ‘,f;)[ 52—’7;} 0% (A41)
Cih

4TC,
v

at distances [ = '1-%_' that are at least a few acoustic wave lengths from
all parts of V.

This formalism is no longer valid when the source strength
is
[ >T J
Blrsz U=m=0 (A39)

i.e., when bz/ 2 .‘331' is applied following the mean motion. However, it
seems reasonable’ to infer from Eq. (A41) that the effect of this source
term on pressure in the far field goes more or less as




th Tt i g
,AT) ] due to ['%ﬁ%hpmw e \%TJ_ L'="\=0(A43)
Ti
'Af) ' due to [W]U & 33 A e

The shear stresses Ty in —[_L are unimportant compared with
@Uiu; except near surfaces; therefo theyt will be neglected. Accordingly
"’&educes in the moving frame to

[T{U]U % °= Puu i u(o)ut (A44)

where U, U’# are perturbatlons from the mean velocity U. This may be
expanded as

( Po 4 (D(o) B er:))Can;/+ ui(n)’)( M](O)’-f- Mju,/) Lk @o (,Li(”/(,( (o)/

{ (A45)

A typical component term is

e, %f"’lbl;w’ (A46)
Thus
[ T;jﬂ)]U=m o o O(e u 'um) it
[%’J s i AUV et (A48)
Compare with
[Tij]U=m=o b O ((Jo[wwljt) (A49)
T a5 : i
[bt‘i]uzmw— 0 (w A[uT]) (A50)

Under the low-speed condition U< speed of sound, it follows that ' w’/
|U’[<<|; accordingly

i
effect of neglected term i I a{zi ' U=m=o0 k1]

effect of retained term ¥ )
l ?frl |U=m=0 (A51)
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APPENDIX B

SOLUTIONS OF THE FLOW NOISE EQUATIONS WITH MEAN FLOW NEGLECTED

The equations with which we have to deal are of the form
| 2
=5 - vb = q4b o

This is the inhomogeneous wave equation: the right-hand-side represents
sources of sound of strength 7/ per unit volume. The solution for/r at
point 2 and time 1 in an unbounded fluid is

/#)(_x_t) = _Z-‘TTJT”@(%%) d_% + constant (B2)

In the integral I is the distance between the point X and the volume element
d_? and the source strength Ci/ is evaluated at the earlier time t =1 - l'/Co :

When the fluid is bounded either internally or externally by
surfaces O the solution takes the form (Ref. 6, Eqgs. (2.4) and (2. 13)')

/};(z,t) = Z%JV—}T/(%@M% + ﬁL%ﬂrz)@ [ 4S5 + %’rj(%&)g l'és e

S
If 4, has the form of a divergence or a Laplacian certain

transformations of the integral can be made. These are dealt with in later
sections.

| _ . l 2] (0)
Bl. Equality of ﬁj[ _'r Vz'f)( )0[_11 and, If)m— ATCE {- T %f% dy
T T U T { e 2 J v 0

It may be of interest to demonstrate that the respective
integral solutions of the equivalent equations (2. 7) and (2. 10) are likewise
equivalent. The proof is given below.

It has been argued that replacement of DIGUVDt‘ by b’e%i‘
(for the case no mean flow, U = 0) merely suppresses turbulent scattering
and is permissible. With this change Eqgs. (2.7) and (2. 10) read, since

({}]

0= +p7+¢"

z~(?) 2.0) % :

e - 2 -V = -7 (B4)
BE L el e
atz V —_— D‘t‘

or
2

2

ﬂ? B vz% & —Vz’f)w— (%,— %zt’_)e(o)

200 50 2/(6) z 37-
W o- - - - (-

(B5)

©)
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With use of d(’ x Ca'ZG{’P and some abbreviations these are

I_b’m RO (R o’
ok VR Lo g o T

O.,/ 3 #} (BS)
= >
2 2 3
e L

b= g

and /P"’is a solution of - V’f;"’) = [b‘Tc'm/Z ; BZ
son with Eqgs. (B1) and (B2),' their respective solu

2 [ ' A
RN ST
m _ | 2/ © it
P = 'Tr“c?f(‘g{&)@_'rdj} = ﬁrﬁf@)@ &
b " | 2/ (9 !
T b b b | () s j(;{)@ dyeo
(By virtue of the definition of ¢’ above, Eq. (B8) can be

recognized as Eq. (2. 16) of the main text). It will be of interest to demon-

strate the equivalence of Eqs. (B7) and (B9); it will afford an alternative
proof of the equivalences of Eqs. (2.7) and (2. 10).

| ¥ - Ty 2) @ 3
. T M Mol
0._,/

where

g ] ey By compari-
ions are

N )
Noting that tw 1§ - F/C. , ¥= ‘Z-?{_I,we define the
operators

(_337 e (%)3_}“ (%)t%f ey

e 1) = ()t (B

1 1] () ’ 21 *A -
Apply these to j—r(v,f) )@ d_} = J—,— 3-;%),\ 5{% , taking for the present
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a finite integration volume V; later we shall require \V/—- There
results

V(%zg;)t—:’— d% = ax [( ) ] a; [( Jt,f{% (B11)
= [ 37| (2 (:))_—;Ld% + j (;é’(.ﬁ)ﬂ I‘A,S(}) R

by use of the divergence theorem on the second integral. Here S is the
surface bounding \/ and 1 is the direction cosine of the normal to d 5
drawn out of the fluid.

A further reduction of the first integral is obtained by use
of the relation (see Eq. (B10))

(ég?)@-% _ %{;fﬁi))@ + <%'}7—/}LM),E (B13)

Application of the divergence theorem then gives

the integrands belng evaluated at time t

By Eq. (B7), /P 13. is just - 1/47 times the right-hand side
evaluated with V/ taken as infinite. We shall limit attention to the case
where the unsteady flow that generates the sound is of limited spatial
extent. Then it can be established that the integrands of the surface
integrals attenuate like I*or faster for large r , whence the surface
integrals vanish in the limit r—, Equation (B7) becomes

/f:(xﬁ) /P J az( )dﬁjt_ —Z//?C: Ti':'qé?{_ék (B15)

o0

This may be expanded as <Wf g_x = —"< ) s )

peb-f.- wﬁwﬂr“j.%%w¥#mw

The last two integrands are evaluated as follows:

Y =Y. g / &g
Eo-etREh . 32 -




) gg SN g z%x Vil gg'_l_
vt Sletayl AL T r TR T

Thus Eq. (B16) reduces to . (B18)

Faih o] i e B ek

It may be shown¥* that - '/41]’) V‘(/r) has the properties of a three-
dimensional d-function. The integral thus reduces to the final form

/T)(Lt)-/f% = 7= z%;—j%zf)(—}) c{% i 446:J o 0131 (B9)

* For a flow possessing a potential ¢ the divergence theorem yields
g g b §

V('de /bn

where N is the normal to éﬁ taken out of the fluid. Choose ‘-F as %‘ and
take S as a sphere of radius r , where r= lg-%l,

4—'T[ V) dv = (leT) 41T = |

But Vz(%)z O {or r£0. Thus - (%LTI')VZ( Vr) exhibits the properties of a
three-dimensional §-function: we can infer that

% 7J;(;;,%> vipav = [f@ bl = fab
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This completes the transformation of Eq. (B7) into the form of Eq. (B9),

proving their equivalence.

B2 Tabular Comparison of the Quadrupole and Simple~-Source Solutions

It may be of interest to exhibit a number of alternative forms
for the quadrupole and simple-source solutions for flow noise in parallel

columns including both near-field and far-field terms.

The equations

will be restricted to the absence of heat or mass addition and of body

forces and will apply to a low-speed flow in an unbounded fluid.

In the

quadrupole formulations the stress tensor Tc} will be approximated by its

incompressible-flow value TLJ :

QUADRUPOLE

SIMPLE SOURCE

/T, E— /F(L)t) (B19)

The starting point is an integral

in terms of simple "'divergence"
sources, Eq. (B20). Transforma-
tions employing the divergence
thorem yield the quadrupole form
Eq. (B21). Equations (B22) and
(B23) are expanded forms of

Eq. (B21).

aT?’(ai)
J b? ’a% ) dﬂ’

(i

(B20)

w/were

r=|[x— %I

and, % =

1) = /p(z,ﬁ)
= pr pT T

. = constant ambient
pressure
/#)(a) = dominates in the near-
field urr«X)
’ = dominates in the far-
field (zmr>»N

(B19')

where

a

In each of the following the first
integral is 4 and the second
integral is 4% .

p~p.=ar J*ﬁ—aagi 7 4y
4T(C j(—z-ti) r j} (B20")

t —r/e,

|8 T2 ) ¥
/13- D=Z’1_Tbxiaij A i

(B21)

10—1>°=z'7(%55ﬁ”( ,t)d%

(o)

— e IKDt )*t + 4 + ®217)
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QUADRUPOLE

SIMPLE SOURCE

/F_f’e" ZLJT“( JE)'a;(a;ff< )d%

b= 2| TGO

4 Z!{'['J 3772;1( al (7’) }— % WJJF(%?)%@ d
4 _’J_L vr,,"%@
ATC oX; D #(B22) (B22')
b-p = a7 L T (%)%)m( )dy (1) H~=47r_ﬁi;(w(}'“>%fj(”'f)d; )
i "*J‘f—fj ot );tr?b‘: % )4 6] | - Wa,Taff S (.%ﬂ%—'rdf (S
¢ ' v

+

\ ' T =4 (=Y, .
e L (3 ;’j%f%_# A ¢ ')

Wherz 2 —'-):i.(.&:.‘};ﬁp#_&"
'BZ;BX}' r 15 r!’ (B23)
Eq. (B23) is essentially Eq. (9) of Ref. 41 (B23'")
Near Field Approximation. - In the near field, charac-
those terms of Eqs. (B23)

terized by* 2T r << a typical wavelength A,

and (B23') which are — r' may be neglect

— r*and-r” .
TL'{O)
’F“’FFI'TJV(T tE | b
*%azJ(—:'—) 4
(B24)

See footnote next page

e
xR

ed in comparison with those

b ?'TFL(’E;) )7 5 z ) df
(B24')
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Now compare the time 't'at the point X at which p is measured and the
earlier time T at the point y at which the sound was emitted: the tr{gnsit
time t-T is small in the nbar field. Thus we may approximate T[} (? 1)

by two terms of a Taylor series as

‘(0) 2l () A j 'ﬁm A
Ty (%.f) = T°'J C%,’C) i (%3—)7'%(’?’0) (B25)

(Tc}" o C_r %‘; )%% (B26)

IR

To this order of accuracy it is seen that Eqs. (B24) and (B24') are
equivalent.

(In the light of the last result, reexamination of Eq. (B23)
shows that the r dependence is only apparent: the first two integrals
jointly possess an - space dependence in terms of the source strength
at time t).

Far Field Approximation. - In the far field, charact-
erized by 2Tr>> a typical wavelength A , those terms of Eqs. (B23) and
(B23') which are —~ r''dominate over those- r?(see last paragraph) and ~ Gl
the latter (the near-field terms) have attenuated to negligible proportions:

% Y OG-y y n
e e 200 4 | el 4

(B27) (B27")

* This characterization has a precise meaning with respect to the
acoustic disturbance from a single volume element dy a distance r from
the observer. When referred to a volume integral, ds above, an observer
may be in the near field of some elements and the far field of others
unless 21V W A : where V/ is the volume. However, this condition
is probably much too stringent in view of the incoherence of the distur-
bances from volume elements separated by more than a correlation length
L . A sufficient condition for a point X to be regarded as located in the
near field of a turbulence volume V would appear to be L << A together
with requirement that X lie within V or a distance <<\ outside V .
(Since the boundary of V is only vaguely defined the last condition is
rather vague).
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If the condition 2T r>A\ is supplemented by I >> VZ‘ , then variations in
are unimportant in the integrand except as they figure in the retarded

time T . This yields the further simplifications
y (0) 2 /(o
L) 4 4 /?)_ s @f
b-h.- Z_f J ) + b. = 7o |(o8) f;}‘
5 7
(B28) (B28")

Eqgs. (B28) and (B28') are compared in Section 2. 3 of the main text by
means of a momentum balance.

B3 Effects of Bodies in the Flow or Bounding Surfaces

Solution in Terms of /t)“). - When a fluid is bounded
internally, as by immersed bodies, or externally,Eq. (B7) must be
supplemented by surface integrals (cf. Eq. (B3)):

16(1#)—/;;0:_# & ?>%—'Ld = ﬁ (‘fri)ad
Jy 5 {3’
i3 4—;( zi(_@ [ dS + T;rj(%&)@l;ﬁ (B29)

m ( )
By virtue of Eq. (B14) and the definition of /P ,?) = f?d‘ 4"’"19
this is

pad- b = -7 J(*'r:gd-y { jﬁ‘(i)) I xdriz L4 +[S (%g})furi}

\%

i 4_'“_ [L bazi(?co;r/‘%") 2 A5 _‘_J (B(H;:bw? Z 6{5} (B30)

/F(l'{)—h:;ﬁ?ﬁﬁd%n—"([%(% a“‘HTbe ), 5 ﬁ

t

(B31)

The first integral is the same as the right hand side of Eq. (B15) except
for the finite volume of integration V. The analysis thereafter is
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applicable on replacingeo by V . The result is for point X within % 5

/t’(l't)" )f"= '1)(”— 4—4“7 J(%g);‘lrd +%r ” '?W;('t‘")%lic{S + L @-;;j%l'#} (B32)

where /ﬁo) is a solution of the incompressible flow equation,

- A [%{ihi i (B33)

(This is Eq. (A21) in the absence of body forces FL or mass addition m.)

If the surfaces are fixed (or if the surface elements move
in their own plane ) 1&“;‘ 0. This can be employed in the momentum

equation which reads in the acoustic approximation
(II

(]

L5 Rl 1 (B34)
to yield ), =) on O . Thus for such surfaces the third
integral of . (B32) vanishes.

Value of 4)"’ . - The general solution for the incom-

pressible part of the pressure field in the presence of bounding surfaces
S is given by
g

J —T)f dfﬁ%i(v‘?’)fledsﬂ“#fs(ifllf—s A

By procedures similar to those leading to Eq. (B14) this may be trans-
formed to

o T T

+ T'L az,(T‘J +478), L4

Equation (B36) is equivalent to Curle's equation following (2. 14) (Ref. 6)
A except for the use above of the current time t in place of the retarded time
tm the integrands. With this difference all his later steps apply. Thus

)F(o>= 4% J(—;—i dv + Z—ITFTX] ((3 W w ;"’)tl} 43

¥ qq'TL %—((’T;’—t—ff 1 4

(B37)
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where i;w = ’T;w + pV8 is the stress tensor giving the stress
acting i 4he—L direction on a fluid surface element with normal in the }
direction. Following Curle (Ref.6 )

B Cousf™ 47) = =1 3e(e) @0 .

and if there is zero normal velocity at the surface S - that is, if S is
fixed or if its motion is everywhere parallel to the surface then

Lu; = 0 (B39)
Therefore Eq. (B37) reduces
pe el [ 4+ HE[FEIGS oo
- & 33:37 JV LY 4 - = L (Lff)t AS B41)
where PLM /F e bt

is the v component of the force exerted by unit area of the surface S on
the fluid.

Physical Interpretation. - The resultant pressure field
due to a flow with bounding surfaces is given by Eq. (B32). The part
(Egs. (B41) and (B42)) is the "incompressible' field (essentially the near-
field) that dominates in and near the unsteady flow, and the part “is the
compressible field that dominates at large distances. In the absence of

bounding surfaces is given by ®
I s | 0(
i SPONRY - . B 7} (B43)

It is evident that thls same integral in Eq. (B32) repre-
sents the primary radiation field " due to the unsteady flow. The first
surface integral, from its form and from the fact it depends onf rather i
than f"’ , represents the reflection and diffraction (scattering) of the
primdry sound from the bounding surfaces. The second integral (which
vanishes if S is fixed) accounts for additional radiation if the surface is
vibrating (this would supplement that which would arise from changes in
® due to such vibration: see last integral of Eq. (B37).

(In cases where the surface vibration and any mean flow
are sufficiently small to inhibit nonlinear coupling effects a simplification
may be made: the vibratory contribution to p” is suppressed so that the
last integral of Eq. (B32) represents the entire effect of vibration as a
pure acoustic effect).
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The effect of a rigid boundary does not appear explicitly
in Eq. (B32) except in the scattering integrals. The effect is automatically
accounted for in /”, the "incompressible" part of the field. This is
exhibited in Eqs. (B41) and (B42) where a part of the value of 4!" is con-
tributed by a d1str1but10n of dipoles over the bounding surface S : the
dipole strength P; represents the incompressible flow approximation
to the force per unit area exerted by the surface on the fluid. (The

"scattering' integral of Eq. (B32) provides a correction, with —§"; =

and P”+ P” being the corrected force).

(l)

B4 Remarks on the Correlation Volume

The length | defined by Eq. (2. 30) is an average scale
of the turbulent property ¢ . The asymmetry of the eddies may be
accounted for by use of unequal scales along the three axes

L’ = L,L,L; (B44)

implying the eddy correlation volume is a parallelepiped; however,
definition of the individual L, L l_5 poses a problem. A more precise -
but more complicated - 1nterpretat10n replaces the cube L* or paralle-
piped L L,L; by a volume whose curved bounding surface is given by

N
radial distance ’5 = function of direction

Working backwards from Eq. (2.30), with
AdE = E*dE 4inb db dyf (B45)

weobtain L 2(0q) = [[R(E ¥ PTE], 4 B46)
and P = TJ J§(9 §) 4in © d6 d (B47)

A (] o
The quantity £(0,4) may be termed the "'correlation radius" in the direc-
tion 0,4 . It is to be noted that £ is unaltered by a reversal in direction.
In the case of spherical symmetry ( § = constant)

[y e ey (B48)
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APPENDIX C

ESTIMATION OF RATIO la(J“’V ot | / | u; af“”/aﬁl.
We seek to estimate the ratio (o¢"/at) /(u; 2¢“
= (2 m/bt) /(u 2 "’/b , wWhere ( " des1gnateé the/ root m/ZZn

square value Now it’can be shown that for a turbulent flow homogen-
eous (i.e., statistically uniform) in space and time

CEY = [pp s D
Ay - [Bareo: | e

] iz

d= o (Cl)

where < ’PW/PM Jvis the two-point covariance with time-delay T . For
purposes of our extimate we shall ignore the complete violation of
spatial homogeneity in or near a jet and assume

b(")bt/ B(o) 2/
(o) b/ L

(u2%04:)’ " (2°/24)

l:%?( 1’@) b l>Av‘l’/z (C4)
(%f [53%:,( f;to) P@)’)?]%:o‘: s

For the purpose of Eq. (C4), < /P(” 2’y ,must be evaluated in a frame of
reference moving with the turbulence pattern.

Equatlon (c4) will be applied to the correlation R(8,7)

t'm W>,W/ < 44, for the near field of a jet as given in Fig. 20
of Ref. (14). {Note the notation change 6 —=7T, ) In that figure the
ordinate is R( §,T) and the abscissa time delay T . Curves are plotted
for the separation values &,=0, 1.0, 1.5, 2.5, 4.5, 5.5, 7.0 and 10
inches. As pointed out in Ref. (14 ), it is the envelope of these curves
that constitutes the R vs. T curve in a frame moving with the turbulence
pattern. Moreover, it can be seen from Fig. 6 (right hand sketch) that

2 R : BI—'
GR)..~ G
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Sketch 5. Space-time correlations near a jet (from Ref. 14)

Thus we express Eq. C4 as

R 1k
(24" /o) ey [ 5] eneloe (C5)
(“‘i-af) ’/'a‘};) U [S;’g‘]}ifcr)

However, the curvature 373'[’ is poorly defined near‘T = 0. ‘Therefore we
approximate the square root of the ratio of curvatures as the inverse

ratio of decay times to some arbitrary fraction of R(o))assuming the curves
are similar. The ratio for R —0. 2 (see Sketch 5) is 3.4/18. 4 or about
1/5.% From Fig. 1 of Ref. (14) the value of u'/U may be taken as 0 (1/100)
at the specified location x/D = 1.5, y/D = 1.5 outside the jet mixing region.
Therefore Eq. (C5) yields

; @/ 1) /
v <%§‘”§;L)>' - 0f /,5) = 0(20) o

Actually values of most significance for the noise
generation would be those within the mixing region. Here we have corre-
lations of longitudinal velocity perturbation only, no pressure data. How-
ever, an equation of the form (E5), with R = <u,w>,, / M) @;)" should still
serve to provide an estimate because of the dynamical association of

le

* This ratio of decay times (which corresponds to the ratio "eddy' length/
decay length) is a measure of the fluctuation parameter o< of Eq. (3. 1)and
later equations.
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of velocity and pressure. (A factor of two in both frequencies and wave
numbers cancels out). Applying this to Fig. 11 of Ref. 14, with ‘u,'/U
taken (Q(1/6) from Figs. 5 and 6, yields

jet mixin (a it f)/ V
; It‘egion r (u‘. 3%@4—270' P O (7%‘) == O (%) (C7)
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APPENDIX D

SINGLE-FREQUENCY PATTERN OF SOURCES ALONG A LINE SEGMENT:
FAR-FIELD AUTOCORRELATION AND SPECTRUM

The line distribution of acoustic sources assumed in
Sec. 3.4 has a source-strength covariance

?Z(&,{t*) = <(Y’>AV e_al(z'_UT+)cos 1k (D1)

This is Eq. (3. 3) with T generalized to T*=T+7’ : here UT = M ca b
refers to a required time delay between source points and T’ is an arbi-
trary time delay between two pressure observations p and p’ at the field
point x . In terms of R the pressure autocorrelation is (Eq. (3.7)):

<lﬁ>’> (T 1y = %{wﬁ(ﬁ ,T*) dg, (3.7)

The following transformations will be helpful in evaluat-
ing the integral:

Z-UT = %,(1-Meas0)— UT’

=20 - ul
- @?
} e Z, — UT’/@ (D3)

W e éfl + T

— (5} - (wo—l- %)T

Wy )
= (_S} -+ 0 T (D4)
where
O = | — McosB
(D5)
(5 e W, cos B
= “Co



Therefore

a Y ¢85, e
V Uk ) o Dy "d@ ¥
Cod — An w
<M’ b lé'rr X (c‘”@j b Wil il Tk )é*% d]
The mtegral involving sin vanishes, being odd in z. The remaining
integration yieldsthe final result for the autocorrelation:
~~ -3 V5 2 Ul LT
</}; iy T Ky e %% s i
1 92“—77_ C,,Lf[@l : ®

The frequency spectrum (spectral density) in the far
field is given by the Fourier cosine transform of the autocorrelation
(see Eq. (3.8)). Since

%5& <C"Sqw4)“ﬁ' ; w) = é(w—‘(%)
the spectrum function is
<Py | Ve SE o
v T Tk re © 5w~ Tgr)

Eqgs. (D6) and (D7) are the respective results of evaluat-
ing Egs. (3.7) and (3. 8) of the main text.

(D7)
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APPENDIX E

ROUGH ESTIMATION OF EFFECT OF JET FLOW ON TIME DELAY T

As a first approximation to a real round jet the conical
spreading and graduated velocity profile may be neglected: the jet is
replaced by an infinite cylinder of diameter D (nozzle diameter) and
uniform velocity U imbedded in fluid at rest. Such a model may serve
for the approximation of the time delay T for the case of sound rays that
do not make too small an inclination to the flow direction.

For simplicity however we shall take a still cruder model,
namely, a two-dimensional plane jet of width D . For this case we shall
obtain an approximate value of T . The situation is shown in Sketch 6
A species of ray acoustics will be assumed and refraction will be neglected.
The main assumption is that the acoustic disturbance is governed by a
linear superposition of convection and propagation.

LS =

1= =z
r'a

1
L
= a s
L - )
- - )
1 L v I
i
£\
-
. 4
/l Lv 4 v

source virtual

\

N

=

{

position position

Sketch 6. Sound rays from pair of sources in idealized plane jet.
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By virtue of the convection an effective source separation
£ takes over the role of the actual source separationf . By geometry

Il

e (e, 0eY

= c, = U(ta,—ta:) » fz

— il - qu Zz/x 7y tz (El)

R | N P

ti = a'fe,amd = a'x,/Cx (E2)

The time delay ‘U is approximately given by
Fo, % e RN
iy 5,1. ¥ Méxz JC,/)(, i3 ézz'l
iy o P E e MZ,/X) (E3)

Equation (E3) is the final result for rays in a plane
normal to the jet boundary. Comparison may be made with

oL .= “hxiEokw (E4)

the value in the absence of a jet. It appears that the jet convection

deemphasizes the effect of the component T, of the separation of the two
sources,

Equation (E3) is easily generalized to allow for a

velocity gradient. In particular, if the velocity increases linearly from
the edge of the jet

e

Ex, 4. Tx{ |=29 z,/x) (E5)

where M is the Mach number half-way between the two points. The
velocity gradient therefore further deemphasizes T, .

It is not difficult to allow in addition for refraction - if the
angular amount is known - but the crudeness of the present model would
not seem to justify the additional complexity.
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FIG. 3. IDEALIZED STRENGTH DISTRIBUTION OF NOISE SOURCES ALONG A JET.
Area under curve is total noise power emitted by jet.
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FIG. 4. CALCULATED DIRECTIONAL SOUND INTENSITY EMITTED BY A
MODEL SIMULATING FEATURES OF JET FLOW: random pattern
of noise sources defined by covariance R is created continuously at
left face of volume V, moves through V at Mach number M = U/c,,
and disappears at downstream face. Fluctuation parameter o= 0. 1.

(Refraction by jet velocity field - not allowed for - should produce
an inward dimple as 8-»0: see Fig. 11).



FIG. 5. EFFECTS OF SOURCE FLUCTUATION ON 'CONVECTIVE' SOUND
of Fig. 4 moving at sonic speed.

AUGMENTATION: noise sources

ol =0 «~fluctuation/convection
oK = 0. Inafluctuation/convection
o= 1. 0—fluctuation/convection

0 (""frozen'" pattern)
0.1
1.0
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FIG. 6. JOINT EFFECTS OF SOURCE MOTION AND RETARDED TIME OF EMISSION.
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FIG. 7. PHYSICAL INTERPRETATION OF INTENSITY PEAK AT M cos 0 = 1.
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FIG. 9. CALCULATED EXAMPLE OF RADIATED PRESSURE SPECTRUM
SHOWING DOPPLER SHIFT DUE TO SOURCE MOTION.
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FIG. 11. IDEALIZED EXAMPLE OF REFRACTION OF SOUND BY A JET FLOW:
transmitted directionality pattern for oscillating line source near a
velocity discontinuity. (Supplied by P. Gottlieb from ms. of Ref. 34b).
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'JET' AXIS

COMPARISON OF DIRECTIONAL SOUND PATTERNS OF SIMULATED
STATIONARY AND MOVING SUPERSONIC JETS: M = speed of con-
vection of acoustic source pattern (''eddies'') through volume V,

M, = speed of external uniform stream (»~motion of jet). Other details
as in Fig. 4.



