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SUMMARY 

An alternative to the quadrupole picture of the generation of 
flow noise is given in terms of simple sources. In this view the volume of 
a moving fluid element fluctuates inversely with the loc al inertial pressure. 
and this fluctuation radiates the sound. The effective acoustic source 
strength is -'" IffJ/ Dt2. I where fO) is the pressure perturbation due to 
inertial effects and is determined as if the fluid were incompressible. The 
sources, although individually non-directional, jointly yield a directionality 
for the radiated sound from jets; it arises in part from convection of the 
sources as reflected in the character of their two-point covariance with 
retarded time . Further directionality arises from refraction of the sound 
field by the mean shear flow. These features are illustrated by examples. 

For unbounded low speed flows the equivalence of the simple
source integral and Lighthill' s quadrupole integral is examined by means 
of a momentum balance. For bounded flows (e . g . , the flow about a rod 
producing Aeolian tones) the volume integral of simple sources still des
cribes the primary radiated sound; on the other hand, the volume integral 
of quadrupoles must be supplemented by a surface integral of dipoles. 
Similarity considerations for low speed jets recover not only the famous 

US law for total noise power (U = nozzle velocity) but also the newer laws 
describing the distribution of noise energy emission with distance x. along 
the jet: these go as XO (constant) in the mixing region with a transition to 
i 7 in the fully developed jet . 

The power of the formalism employing the source covariance 
with retarded time - indicated in the first paragraph - is further demon
strated by additional examples . Calculations for a simulated jet show how 
narrow frequency bands of the source spectrum appear greatly broadened 
by convection of the sources past the observer. Corresponding calculations 
for the radiated sound field automatically produce the correct Doppler
shifted frequencies without implicit introduction of the shift . A final 
example for simulated static and subsonically moving jets yields com
parative directional intensity plots for supersonic nozzle flow speeds: 
for the moving jet the directional peak is swept back the expected amount. 
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, 1. INTRODUCTION 

The mechanism of flow noise was first put on a firm theore
tical basis by M. J. Lighthill in fundamental papers published in 1952 and 
1954 (Ref. 1). He demonstrated that the sound field could be regÇl.rded as 
generated primarily by fluctuations of momentum flux in the flow. In this 
view the nine components of momentum flux p u-~ lLj. CtI, J = 1, 2~ 3) 
in an element of fluid each radiate sound like an acoustic quadrupole. 

The basic formalism of the theory is widely accepted as 
correct. Moreover a simplified dimensional analysis based on the equa
tions was highly successful: it led to the U8 law relating noise power to 
jet velocity which has been widely confirmed by experiment. On the other 
hand a more detailed development accounting for eddy convection was faulty 
in predicting powers higher than U8

• Furthermore, attempts to explain 
the observed directionality in terms of superpositions of the four-Ieaf
clover pattern of a quadrupole have not been wholly satisfactory (Refs. 1, 2) . 

Many have found the concept of quadrupole noise generation 
difficult to visualize correctly. It is true th at the fluid elements must dis
tort with virtually no change in volume in a low-speed eddying flow. This 
gives, for example, the picture of an element being squeezed in at the 
"waist" and buIging out at the top and bottorn . Such a deformation is 
essentially equivalent to an acoustic quadrupole . This, however, is not 
the basic Lighthill quadrupole of strength PUi. u,j . The former is deter
mined by löcal velocity gradients, the latter by loca~ velocity alone. 
(Lighthill transforrned the basic quadrupole into another compounded of 
pressure and shear: this quadrupole does correspond in part to the simple 
deformation) . 

~ The conceptual complexities of the quadrupole mechanism 
together with some of the shortcomings of the theoretical development 
motivated the search for a simpler picture. This led to the discovery 
(Ref. 3) that a source-like pulsation of the moving fluid elements can be 
regarded as generating the sound. The pulsation or fluctuating compression 
is proportional to the local fluctuating pressure in the flow. * To a suffic
ient accuracy this pressure may be attributed solely to inertial effects: 
it may be determined as though the fluid were incompressible . 

* The gen,eration of flow noise in terms of simple sources 
corresponding to the pressure fluctuation rate was first implied in the 
work of Meecham and Ford (Ref. 4). It was shown explicitly in ~ develop
ment of Corcos and Broadwell (Ref. 5) and in independent work of the 
present authdr (Ref. 3). Reference 3 brought the density fluctuations 
into the picture and gave the physical interpretation. 
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A simple source at rest radiates sound with spherical 
symmetry. How then, can we explain the more-or-less heart-shaped 
emission pattern of a jet in terms of a pattern of sourees and sinks? 
The related problem of directionality from an array of loudspeakers or 
antennas supplies a partial answer: we know thai a proper phasing of 
sinusoidal source arrays can provide lobes in chosen directions. In 
effect, such a phasing is provided by the convection of the sound-emitting 
eddies in a jet. It was found (Ref. 3) that the convection can be introduced 
into the function describing the statistics of the fluctuating acoustic source 
strength. This avoids the Lighthill moving-axis technique as well as 
alleviating the increase over the Ua law predicted by that technique. 

The statistical convection approach yields increased 
emission in the downstream direction for subsonic speeds. This is 
hardly the heart-shaped emission pattern of a jet. To explain the down
stream dimple in the heart we must consider the refraction of the emitted 
sound by the velocity gradients of the mean jet flow: the sound rays are 
turned away from the jet axis to produce (qualitatively at least) such a 
dimple. 

These departures from the concepts of the Lighthill theory 
were developed with extreme brevity in Reference 3 cited above. The 
present paper is an attempt at a fairly cornprehensive account of this new 
viewpoint and of the associated mathematical formalism. Moreover, the 
theory is developed further in several directions. An important refine
ment is the generalization of the acoustic source strength - D'fO)/DP 
herein so that the derivative D lot follows the instantaneous fluid motion 
rather than the mean motion as in Reference3. 

IL GOVERNING EQUATIONS AND PRIMARIL Y LOW -SPEED APPLICA TIONS 

The basic equations governing flow noise are derived in 
Section 2. 1. In later sections convection of the acoustic sources (elernents 
of the "eddies ") by any mean flow is neglected although self-convection is 
allowed for. This effectively restricts the applications in the present 
chapter to low-speed flows although the limitation is stretched in the 
treatment of jets. 

The main acoustic features - in the absence of surfaces -
are exhibited by a fluid without viscosity and heat conduction and with 
uniform initial entropy. Such a fluid wil! be postulated in the rnain text 
(except Section 2. 5) and slight approximations will be made to simplify 
the analysis. A treatrnent for a gener al fluid and of greater rigor is 
given in Appendices A and B. 
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2.1 Governing Equations 

Lighthill Equation - Choose a frame of reference at rest 
in the quiescent fluid outside the disturbed flow. For the specified fluid 
the exact equations of a continuity and :rnomentum may be combined to give 

. (Ref. 1 and Appendix A herein) 

ei eUt-u
k I a l.i - 04-o· -~I 

. (2. 1) 

Here p is the density, ~ the p~e.ssure, and u~ is the ith component of 
the fluid velocity; the indices Ii. ~ are summed over 1, -2, 3 when repeated. 
Postulation of the small disturbance form of the equation of state 

yields approximately 

Lighthill 
Equation 

p (2. 2) 

(2. 3) 

(The speed of sound C has been replaced by its time-average Co, and 
higher order terms arising from derivatives of C have been ignored). 

Equation (2.3) is an approximate form of Lighthill's 
equationgoverning flow noise (cf. Appendix A. 1). Math~matically the 
expression is of the form of the acoustic wave equation for a spatial 
distribution of sound sourees whose strength per unit volume is given 
by the right-hand -sidel OJ.~U, u"j /o~, 0'11. It is equally valid, if the :fluid is 
unbounded, to regard the sound field ~s generated by quadrupoles of -
strength PUL (.tj (Ref, 1). The equivalence results from the fact that 
the souree strength has the mathematical form of a double divergence. 
(The equivalence can be demonstrated by two applications of the diver
genee theorem to the solutiön of Eq. (2.3) in terms of simple sourees 
(Ref. 6); the procedure is- not quite straightforward: see Appendix B. 1. ) 

Simple Souree Equation - Lighthill's effective acoustic 
souree strength êfpu,; U,f 7 ,,~. 0 ~j involves in general nonnegligible 
gradients of the de.o.sity p. Tnese can be eliminated if we reformulate 
Eq. (2. 1) to refer to a volume element moving with the fluid, in a frame 
moving with the element (cf. Appendix A. 2): 

Moving 
Frame - ' \71~ = (2.4) 
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The expression on the right hand side designates 'the value of 01 G>u.~ u,j I 
o~ ~ o~. in the moving frame in terms of velocities LLi referred to the 

stahonkry frame; this is effected by setting U i = ui = 0 after the differen
tiation. 

a/ot to 
Conversion to a stationary frame changes the operator 

D/Dt = O/"bt + Lij, O/O~L 

stationary 
frame 

The space gradients, being instantaneou s values, are unchanged. 

(2. 5) 

If the fluid were incompressible (but not necessarily of 
uniform density) the density derivative DP /Dt following the fluid motion 
would vanish . We shall, however, specialize further to a uniform density 

po . For such a fluid 

[ 

-::..1. (0) (O)J v u· u· 
Po o Li.'OI,f.J 

0' OJ u, = 0 

(2. 6) 

where the superscript (0) designates values as modified by the postulated 
inc om pre ssibility . 

Now the turbulent component of a jet flow behaves almost 
incompressibly up to even low supersonic Mach numbers of the mean flow 
if shock waves are avoided . This is because the turbulent velocities are 
an order of magnitude smaller than the mean flow speed. Therefore the 
velocity gradients and the density appearing on the right-hand side of 
Eq. (2.5) - in the acoustic source term - may be replaced by incom
pressible-flow values. That is, the right- hand sides of Eqs. (2. 5) and 
(2.6) may be taken to be equal. (A consideration of the error entailed 
is given in Appendix A. 4) . It follows that 

QE 
W 

Now write the pressure and density as * 

(2 .. 7) 

*See note following Eq. (2 . 3) and compare the more accurate Eq. (2. 2). 
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t to + 
pro) 

+ 1/') 

p = Po + plO) + pI') 

p(o) C;2. 1'(0) (2.8) 
-

f 
(I) 

- é.o2 ,V') 

where to, Po are the arobient values far from the disturbed region, f(O) 
satis-fies the incompressible flow eguation (2.6). and t<l) is the remaining 
increment of pressure which c01'ltains all of the compressibility effects. 
(The definition of a compression fa) in terms of a pressure 1>(0) for an 
incompressible flow may seem odd; it is, however, the first step in an 
iteration procedure for evaluating a weakly compressible flow). Eg. (2. 7) 
reduces to 

(2. 9) 

or 
-L rtll." _ 1 ,4,1" _ _ '~~' c: Dt z V r - w I D

1f:> 
C;D (2. 10) 

In the absence of a mean flow ( U = 0) the convective 
derivative DZ/Dt"" on the left-hand side of Eg. (2. 10) accounts for the 
erratic convective-refractive effects of an eddying flow on sound waves 
passing through it; i. e., it accounts for scattering of the sound by turbu
lence. This scattering is probably small for jet flow since the wave
lengths tend to be ~> the eddy sizes. In any event it can be treated by 
alternate methods (see e. g., Refs. 7 - 10). We can suppress this 
scattering by replacing D2 /DtZ on the left-hand side by "z. /atz in the 
case U = 0 or by iSz /Bt~ in the more general case of a mean flow 

U(~2'~l) alongthe ~,-axis: . 

(2.11) 

where 

The operator D lot allows for the effects of the mean 
flow when U 1= 0 . These take the form of refraction and diffraction of 
the sound field together with modifications of the Doppler freguency shift. 
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Equation (2. 10) in the form of the approximation Eq. (2.11) 
is the governing relation in terms of simple sources for the sound radiated 
by quasi-incompressible flows .* Mathematically the expression has the 
form of a modified wave equation for a spatial distribution of sound sources 
whose strength per unit volume is given by - D~rO) / Dt2. or its equal . 
- C;1 D2.f'/Dt2. . This single source term replaces the nine terms of 
Lighthill's expression <Yp u. ui / o~ ó 0di or alternatively the nine 
quadrupoles r u: Uj . 

The first form of Eq. (2 . 11) remains valid for more 
gener al flows involving viscosity and even added body forces and sources of 
matter and heat (see Appendix A . 3) . The viscous stresses and other 
disturbances affect the compressible and incompressible flows similarly: 
they add virtually identical terms to the respective right-hand sides of 
Eqs. (2.5) and (2.6) that cancel in the subtraction. (The second form of 
Eq. (2. 11) requires an added entropy term in the case of heat addition). 

Physical Interpretation and Discussion - The pertur
bation pressure within the turbulence and nearby - the acoustic near field -
is dominated by ,ff0~ the pressure calculated as though the flow were in
compressible. The weak co.rnpressive part of the pressure, ~(I), attenu
ates more slowly with distance than ~O) (Appendix B . 2) so that 111

) ultimately 
dominates the acoustic far field. Eq. (2. 9) states, . in effect, that the far 
field noise (dominated by pW) is driven by the essentially incompressible 
near field noise (dominatea VO) ). . 

The effective strength of simple sources per unit volume -
insofar as the far field is concerned - has been determined as - c=z D

1fï 
Dt1. or its equal - D1 pco'/Dt1 

• The physical interpretation of this 
reverts to an intuitive notion that was abandoned for the more sophis
ticated picture in terms of quadrupoles: the moving fluid elements simply 
pulsate (very minutely) and it is this source-like pulsation or dilatation 
that generates the sound. 

The physical reasoning is this . The assumption of uni
form density (incompressible flow) yields the field of perturbation pre
ssures t(O); these pressur es result solely from inertial effects but with
in the flow they closely approximate the actual pressures . The neglected 

;ft Equations (2 . 7) and (2. 10) are evidently equivalent (see also Appendix 
B. 1), although (2 . 10) appears the more useful. Similar equations, but 
with D2!Pt2. approximated as ö2./~V have been presented previously 
(Refs. 3 - 5: see footnote p . 2 ) 
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density perturbations are restored infirst approximation by putting 
p(O) = C;;Z fO) according to the isentropic la w. One need proceed no 

further in this iteration procedure: in the actual slightly compressible 
flow f'-E'o is approximated by tiC) to the same order of accuracy as p-po 
is approximated p(O). A moving element of fluid experiences a rate of 
dilatation or expansion given by -D pOYDt divided by the total density: 
this is attributable jointly to the inerti.al effects of the flow and to the 
fluid compressibility. The same dilatation would be produced in a uni
form medium at rest by a rate of mass addition (matter source strength) 

- op(OiDt. This dilatation corresponds to an acoustical source 
strength - D\iO)/Dt; the time derivative of the matter source strength; 
this is the quantity arrived at in our formal analysis. 

We can sum up and iUustrate as foUows. Inertial effects 
in au eddying flow give rise to regions of high and low pressure (Fig. 1). 
These are also, respectively, regions of compression and rarefaction. 
The volume of a moving fluid element fluctuates with time (as the pattern 
of pressure changes) and with position (as it moves from a rarefied region 
to a compressed region) . The latter aspect is illustrated and enlarged 
upon in Fig. 2 . Both aspects are included in the relation 

.J2t0) 
Dt 

~) 
- ot 

oeCO
) + u. ~ , "d' 

As a matter of generality it is noted that the acoustic 
source term allows for non- acoustic or steady aerodynamic compressi
bility effe cts . Thus in a steady flow of speed U along ~I plus perturbations" 
the term reduces essentiaUy to - U2 

a"pCO) /0 ~,l or - 'M2 a2 beo) lo~: . 
The left-hand side of Eq. (2. 10) reduces to just the Lapladan, g~ving 

-M 2 o~f;' 
~ , 

Solution of this equation for, say, the flow over a wavy wall would con
stitute the first step in iteration procedure to 'aUow for M =I O . The same 
equation would result from the weU known linearized equation of steady 
compressible flow (Ref. 11). 

In conclusion, it is emphasized that the acoustic source 
term pzp(O)/Dt2 = - C;2 Ifp(O) I Dt1 yields only the far~fi.eld 
pressure r(I). Knowledge of the near-field pressure fO) within the flow 
and nearby is a prerequisite. In the present state of knowledge of tur
bulent flows neither ~tb) nor the associated velocity field LL~O) is weU 
known: either could be taken as the primary variable. In case u[O) 
is taken as the primary (hypotheticaUy known) variabie it is necessary 
to revert to Po u{")ut (quadrupoles) or to a2 ee u..~O)uÇO) lot; adl ("diver-
geilCe" sources) for ca1culation of F(O'. (see AppenJices B. 2 and B. 3 and 
Refs. 12, 2). 
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Ma nitude of Self-Convection Source Terms - The acoustic 
source strength - D~('o/ D Z may be written in expanded form as 

p~(':) 01Ç) 
- Dt = - 0 (2 . 12) 

In the absence of a mean flow U~ and Uj result ,solely from the unsteady 
flow. The last two terms of Eq. (2. 12) represent dilatational effects 
(effective acoustic sourees ) due to convection of fluid from regions of 
rarefaction to regions of compression by this eddying flow. 

In earlier presentations (Refs. 3 - 5) only the term 
- 0" (/) lot 'l. was in effect employed: the eddy self-convection terms were 
neglected. Let us estimate the relative orders of magnitudes of the ne
glected terms which have now been restored. Take a typical Fourier 
component of the density field ~O) as 

W - 2lrf 
k 2Tf/L 

Then the ratios of the added terms to are approximated by 

(2 . 13) 

where J is a typical frequency and L is the associated length scale in the 
turbulence. . 

The quantity u.1 JL is a sort of reciprocal Strouhal 
number (cf. Ref. 13); its value is estimated in Appendix C from consid
erations concerning the two-point space covariance of pressure or 
velocity, using data of Richards and Williams (Ref. 14). A typical value 
for the jet mixing region is 

ft = 0(%) (2. 14) 

Upon insertion of this value in Eqs. (2. 13) it appears that the added terms 
are quite comparabIe in magnitude with 02 ~) / otl Thus their 
omission cannot be justified for jet flows. 
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This assessment refers to turbulent shear flows such as 
boundary layers and jets; the order-of-magnitude estimate does not apply 
to homogeneous turbulence. 

2.2 Radiated Sound Pressure and Spectrum 

Mean Square Pressure - It will be recalled that the 
perturbation pressure is divided here in into an "incompressible" part plO) 
and a "compressible" part tIl). The part plO) dominates within the basic 
aerodynamic flow but attenuates rapidly (as x- 3) with distance (Appendix 
B.2). The part -pc,) attenuates more slowly (as x- 1) with distance and so do
minates at large distances from the flow. We call 'Ir the radiated sound 
pressure. 

For the low speed flows of this chapter the mean speed U 
may be neglected in the operator 15/i5t = o/àt + U O/~~I . The 
governing equation (2. 11) for the radiated sound pressure pi> reduces to 

_, 0"·//> _ n1.h ClJ _ 

C: ~ v r - , rYtDJ 

C:D l 
(2. 15) 

This is the acoustic wave equation for a spatial distribution of sources 
given by the right-hand side. The solution for the pressure f} at point 
X. and tim e t reads 

Strictly speaking. the integral is over all space. but in practice it may be 
limited to an effective volume V of the disturbed region - the aerody
namic flow. At distances large compared with the dimensions of V this 
reduces to 

Far 
Field (2. 17) 

The apprnximation~ I X -!f I ~ X is made in the denominator but not in 
the retarded tim et. 

The corresponding mean square pressure at large distances may be 
written* 

* The superscript (I) has. been dropped for simplicity. since t eb is the 
sole surviving pressure perturbation in the far-field. 



Far 
Field 
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the average being over time. The adjective "far-field" applies if we make 
the additional restriction that 2 Tfx» wave length of sound. In th is case 
the plane-wave relations are valid, and < t 2 >A?acoustic intensity / PoCo. 

It will be convenient to change variables . Let t be the 
midpoint between the two points l' and t, and let ~ be their separation: 

(2 . 19) 

The integration limits are again infinite in.!J and ~ . In practice the 
limit on ..Ij- may be reduced to the effective 'flow volume V while retaining 
(for convenience in calculation) the infinite limits on ~. The mean square 
pressure now reads f 

where 

,(,~.'<' 1 d11 R (~,'è ; fdf.. 
(2. 20) 

< 0- ( 1 + f../z I t') (f(l- ~/l J t")AV 

Here R is the two-point covariance of the source strength* (J" _ DzfïDtZ; 
R is a function of the space separationb of the two points, the time 

separation or delay 1; and the midpoinCt- . The time relay 1; is given by 

/ 

(2.21) 

= (r'~ r')/C" 

fItis assumed in what follows that the flow field is a statistically 
stationary (not necessarily random) prdcess; that is, long-term time 
averages do not vary with time. 

*" A factor of - c;z has been omitted for simplicity in indentifying (T 

with the source strength. 

.. 



" Since x rand rare 
-/- -

essentially parallel at 
inclination ij to the XI 

axis, the construction 
in Sketch 1 shows that * 

L (b, e) ~ Cc-' I t -f I COC1" 

~ c;' é. CDS r-
or 

0 

-~ ~ -, . .! /xCo 1 (2. 22) 

(11) 

-'1/1 

Sketch 1. Determination of Time Delay 't 

Thus to a close approximation the time delay'[; equals Co-I times the com
ponent of the space separation.L. in the direction of propagation. 

Autocovariance and Spectrum. - The antocovariance 
< rf!~vof the far-field sound pressure at a point ~ is the time average 
< pct) tct+ 't')AV)where the time delay'[;' is held fixed. We proceed 

now to evaluate the autocovariance as a step toward determining the 
pressure spectrum. 

The derivation of (bz> Eqs.(2.18) to.(2. 20») is generalized 
t~ yield < p·f>,.v by addition of the a~bitrary time delay'T? to the value of 
t'. This yields the autocovariance in the form ' 

(2.23) 

where't remains the time for sound to travel the projected distance 
". :!./x. (Sketch 1 and Eq.(2. 22).) 

The spectral density or spectrum function may be written 
as 

* The points o,f 'f', and ~ do not, .in general, lie in the same plane. 
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tew) (2. 24) 

This form illustrates the property 

(2.25) <t')AV = r~(w)dw 
o 

Physically, ~(w)dw is the contribution to the mean square pressure 
<tl.ivfrom angular frequencies in a band dw centered about W where W=2nJ. 

It is well-known that the spectral density and autocovariance 
are simply Fourier eosine transforrns of each other (cf. e. g., Ref. 15) 
Thus in a shorthand nota tion 

1fM4v = ~(w) = ~'l [ < ?f('t/)~; lA)} (2.26) 

< t p'('t')~v == 3c ( pC w); 7::') 
or writt~n out 

00 

~r = p(w) = * 1 (H'Ct') ~y Cos Lul:;' d:J:,' (2 . 26') 

(tFt'»,., = r PC "") Ces wt' d,w 

The fir;st of Eqs . (2 . 26) or (2. 26') is the desired relation for the spectrGll 
density. A prerequisite is the evaluation of the autocovariance, Eq.(2. 23). 
(In a variation of this approach ~(to)is given by an integral of the form of r 
Eq. (2 . 23) with R thereinreplaced by its (complex) Fourier transform, 
the two-point cross-spectral density of the souree strength with retarded 
time (poef. 3). The present approach appears, however, to simplify the 
integréj.tioris involved). 

Since < tttO)AlliS just <f'~v' the second of Eqs. (2.26') 
includes Eq. (2 . 25) as a special case . 

The use of these equations is illustrated in Section lIl . 

Correlation and Correlation Volume - For sorne applica
tions it wiU be convenient to replace the covariance"R. by the nondimensional 
'correlation' R , given by* 

* The function R is more convenient . for the present purpose than the 
true correlation < (nr')AV / [< (f2\V < (J,z>AV JYz ; they differ only for 
nonhomogeneous turbulence, for whichR rnay exceed unity. 
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(2. 27) 

Eq. (2 . 20) becomes 

(2 . 28) 

The inner integral has the dimensions of a length L cubed and may be 
called the "correlation volume": if the two-point correlation R were unity 
within this volume (i. e . • R= < (f~2.>AV therein) and zero outside. the noise 
radiation would be the same. 1'hus Eq. (2.28) may be written in the form 

(2.29) 

whereT 

L' = L' ( ~ J ,! / x) = 1 R ({, t ; ~ )J,~_ (2. 30) 

00 

Physically the correlation volume L' may be interpreted as the effective 
volume of a turbulent eddy considered as a coherently radiating entity. 
Note that the retarded time 1: introduces a dependence of l! on direction 

x/x. (see. Eq . (2. 22). 

2. 3 Are the Quadrupole and Simple Source Solutions Equivalent? 

Momentum Balance . - Lighthill's quadrupole solution 
(Ref. 1) for the acoustic density perturbation at a large distance x from 
the generating flow ( 211 x. >'> À ) is given by his Eq. (17) (Part I). The 
corresponding pressure perturbation is c!times this according to the 
isentropic law: 

,h t) :t.i-Xi J [02pU'U'J J r (x, = 41fC.2 XJ V at1 1 t Clf 

r The length L as here defined is a special scale of turbulence; it 
differs from the socalled integral scale 

L I r R ( ~" 0 , 0) dl', 

(2. 31) 

A generalization of L to allow for variation in scale for different direc
tions (nonspherical correlation volume) is given in Appendix B. 4. 
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(The superscript (I) has been dropped from the left-hand side, for simpli
city). Proud.man (Ref. 16) has pointed out that the double summation 

Xl X; Ui. Uj / xl. reduces to just u,!, the square of the velocity component 
in the direction of x. Thus the quadrupole relation Eq. (2.31) and the 
simple-source relation Eq. (2. 17) assume sornewhat parallel forms: 

quadrupole: (2.32) 

simple-source (2.33) 

Now it can be argued that Eqs. (2.32 and (2.33) should be 
equivalent since both were derived with negligible approxirnation from 
the exact equations of continuity and momentum for a fluid. However, the 
derivations were indirect and the negligibility of the approximations may 
be a matter of controversy. Therefore a fairly direct proof of the equiva
lence of the two equations would appear to be desirable. There will be no 
loss in generality if the vector x is taken to lie along the ~,-axis. Then 
the compatibility of Eqs. (2.32) and (2.33) would require tÏlat 

J (P'$O) + "lÇU,Z. ) dM.. = 0 (2. 34) 
D ~ ~t2 t f 

No direct proof of this relation has been found. However, 
if we neglect the compressibility of the fluid in t'u~ and the convective 
terms in DZf"'/Dt Z (which on one interpretation result from compressibility 
in the expansion of 01pU(Uj / a~L O~j ) there results 

J~ ( r + e.u:·')î d'r = 0 (2.35) 

This last expression can be proved by use of a momentum balance for 
incornpressible flow: this proof is given below. Since the omitted con
vective terrns in DZf°/'DtZ are comparable with the retained term (ffO)/~tz 
(see Sec. 2.1) proo of Eq. (2.35) indicates at least an order of magnitude 
agreement between Eqs. (2.32) and (2.33). 

As a control surface 
tak~ a cylinder of radius R concen
tric with the ~,-axis and with the 
face AI (given by 'l,= ~,') cutting 
through the regioIÎ V &f flow (Sketch 
2) . . The conservation equations for 
momentum and mass in an incom
pressible flow read (where the 
superscript (0) has been dropped 
from Ut for simplicity), 

A" 

t 
~l 

·v 
~I Sketch 2 

Control Surface for Momentum 
Balance 
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~ IJL~· u, d V ± ff} f + v·' + eu~)dA + 1 ~. u,urcIA -x I (2.36) 

± rf et-t,dA + jrr fourdA - 0 or constant (2.37) 

~A" Je 
where the + bf ± refers to AI, the - to A", C to the curved boundary, and 
X, is the force on the fluid (e. g., negative of ~he jet thrust), specified to 

be constant. 

It is assumed that the fluctuating terms fall oif sufficiently 
fast with distance 50 that for R - 00 I ~,'-' -q) ·the fluctuating parts of 
the integrals over C and A" approach zero. Then differentiation of 
Eq. (2.37) yields 

(2. 38) 

This holds for any location lj-,= ~I' of AI. If we multiply by d~: and integrate 
~ith respect to ~ .. the integral' can range over the volume Vo • The result 
lS 

~ Jff. f'. ", J V 0 
V. 

(2.39) 

Thus the first term in Eq. (2.36) vanishes because of conservation of mass. 

If now the differentiation cl fatz. is applied to Eq. (2.36) 
only the integral over A I will contribute: the other integrals, it has been 
noted, are zero or constant in time. The result is 

ft. IJ} f"' + p.ttt) dA "'" 0 (2.40) 

A righthand term - 7Jl.X,/~t2. vanishes because we postulate zero or constant 
thrust: this restriction is implicit in Lighthill's work (i. e., unbounded 
flow, no immersed bodies such as a jet engine which may experience 
fluctuating surface forces). 

Eq. (2.40) holds for q.ny choiceof the time; thus the 
retarded time -t may be selected. Furthermore, the differentiation may 
be carried under the integration sign since the limits are constant. Again 
we multipy by dIJ: - so that ciA d,~I' = olV - and all ow the integration to 
range over V. 'The result is 

Thus Eq. (2. 35) is proved. 
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Discussion of Lighthill Souree Term. - Appendix A. 2 
develops the following expansion of Lighthill' s acoustic souree tèrm for 
flow noise: 

(2. 41) 

Only the first term on the right-hand side may in general be approximated 
closely in terms of quantities computed for an incompressible flow. The 
density gradients in the remaining terms represent initially unknown com
pressibility effects. 

If these unknown density gradient terms are moved to the 
left- .hand side of Eq. (2 . 1) to join the equally unknown ,,1(7 / "tZ 

, the 
result is Eq. (2.5). This is a key step in the derivation of the simple
souree relation for flow noise, Eq. (2.11). 

Lighthill, on the other . hand, in effect circumvented the 
difficulty posed by Eq. (2. 41) by avoiding direct use of the simple - source 
term O~eu,iu'; / ~~; O~j' He employed transformations like those of 
Appendix B t6 obtain an integral (Eq. 2.31) involving an integrand 
ê/ PUi Uj / at 7. corresponding to a q\ladrupole distribution. It is easy 

to show that the density derivatives ~n this are negligible when U = o. 

For the case of a substantial mean flow, as in a jet of high 
subsonic speed, the density derivatives are not negligible: Lighthill's 
quadrupole inte rand can no Ion er be approximated as 01 oLé~)Ll!O) aP 
the value for anïncompressible flow. To show this we first r store the ) 
omitted directionality factor (Eq. B2. 5c) to the integrand: it is 

X~~i '0
1

E'Ui Ui 
X z> t 2 

Now rotate the ~I -axis to coincide with the K-direction which makes an 
angle 9 with the stream direction: the integrand becomes 

where 

~ PU~ 
2) t 1 

UI = U Cos e + LL; 

The formal differentiation yields 

(2.42) 

If we neglect Ll, in comparison with Ucos 9 and approximate P by fo + ëO~ 
U;by u:o/, the quasi-incompressible values, there results 
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I 

(2.43) 
'I. (0) '" 0(0) + 2 U CeS e ~ _0_,_ 
èJt ot 

J..(o)~~ (0)'2 
Now T - Po UI (neglecting the mean shear) 

whence 

and 

Thus the third term on the right-hand side .....- M2 
cosLe times the first 

term. A similar argument suggests th at the second term is smaller by 
a factor 2 u~o1u cose. It appears then that the incompressibly: ·calculated 
first term must be supplemented by at least the third when M Z cosze is 
not .c< 1. 

The above result neglects amplification of f>by the mean 
shear in a jet (see Sec. 4.2). The amplication factor in an idealized case 
is the effective nondimensionalized mean shear (4/,s)Yz. () ( U / Lt)/ àa-n 
where (f'"" an eddy scale length (Eq . 4.4'). This factor, which can 
exceed unit» may magnify the second and third terms. 

US ° -7 2. 4 Jet Acoustic Power: the 0' X , and x La ws 

The most well known result of Lighthill's quadrupole 
theory was obtained by the use of considerations of flow similarity (or, 
from another point of view, dimensional analysis) in comparing the noise 
output of jets of different nozzle diameter D and velocity UO' By these 
means he deduced the famous D2~8 law (Ref. 1). A more detaUed appli
cation of similarity considerations - again in the context of the quadrupole 
theory - has yielded the noise power emitted by successive "slices" of an 
idealized cold jet as a function ofaxial distance x downstream of the 
nozzle (Ref. 17)*. Slices of jet in the mixing region are predicted to 
emit the same noise power (xOlaw), and in the fully developed jet the 
emission of successive slices is predicted to fall off extremely fast 
(;(7 law). The present source-sink theory of jet noise leads very simply 
to the same laws. This is demonstrated below. 

* The deduction of the XO and x7 similarity laws was first reported at the 
Ann. Mtg., Acous. Soc. Amer., Washington, May 7-10, 1958. At a 
later presentation (lst. Internat . Congo Aero. Sci. (ICAS), .Madrid, 
Sept. 8-13, 1958: see Ref. 18) E. J . Richards and M. J. Lighthill took 
exception to some of the theoretical foundations. Confirmation of these 
laws has in the meantime come from independent work of Lilley (Ref. 2) 
and of Powell (Ref. 19) . Conversations with Richards and with Lighthill 
have indicated th at they no longer maintain their objections . 
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In all of the cited work and in the present section convec
tion of the sources by the mean jet flow is neglected insofar as it affects 
the sound power. This point is commented on at the end of the section. 

We return to the mean square pressure <V~vin the far field, 
Eqs. (2.29) and (2.30). The acoustic intensity I (energy flow in the x direc
tion per unit time per unit area normal to !.) is (t&.)AV / Po Co • The total 
power P is the integral over a sphere of radius x; this introduces a factor 
41[i and yields 

p J Jti?: 2 ) 21f~c.' Jv L' < ( Dt')~ A' dt (2. 44) 

if as a simplifying approximation the time delay 1: is ignored. (lf "t is 
retained the correlation volume or effective source size ~ is a function of 
direction x, and an average value must be used . Further consequences of 
the neglect of 't - and of source convection - are discussed at the end of 
this section) . 

\ 

For the purpose of developing similarity laws write Eq. 
(2.44) in differential form, omitting the proportionality constant and 
writing the volume element dt as d.V 

L3 IY"t0) 2) d 
ei P ~ e.,C/; < ( D ~ ) t Av V (2. 45) 

Thus elP is the acoustic power emitted by a volu.me element dN. Now in an 
idealized model of a jet there exist two regions where the profiles of mean 
and turbulent velocities are invariant with x when expressed nondimensionally; 
at corresponding points of these regions {i. e ., along certain rays) the tur
bulent and mean velocities maintain a fixed proportionality: < uiL >AV V"" Uz . 
A similar proportionality applies to corresponding points of two complete 
jets. Also (Refs. 12, 2) 1>(0) V' fout ~ f'o U2 (similar regions)* and accord
ing to Lighthill's ideas typlcal frequencies are proportional to uiL, whence 

à/ot I./"' U / L (similar regions) 

Accordingly Eq. (2.45) yields 

ctp ..-. 
6 

fa U JV (similar regions) 
c/L 

(2.46) 

Eq. (2.46) is the basic relation for comparing similar regions and it is 
identical with Eq. (14) of Ref. 17(a) and Eq. (2) of Ref. 17(b) . The equa
tion may be applied as shown in Table I (the integral form is used in 
column 1). 

* An amplification factor representing the nondimensionalized mean shear 
has been omitted (cf. last paragraph of Sec. 2.3) since it is invariant for 
similar regions. 



TABLE I 

Complete Jet L Annular Mixing Region . Fu~ly Developed.Region 

o < x ~ 4 D 8D<x<00 
As.s um-ed .similariiy.;" Assumed similarity. Assumed similarity. 

J dV D
3 tiV X Dcix JV V'" xZdx (circle) '-""' \./' 

(annulus) 

LAV 
'-"'" D L '-""" X- L '--""' X 

U "-"'"' U" U \./' Uo 
U "-"'"' U. Djx. 

e 8 1-
P> poUc8D(~ )-7d x: 

P V"I oU. D eLP L/'\ E>oUo D dx dP \../"' 

c/ cS" CS D 
0 • 

dP e USD elP u8 
7 

ctX \.../"' o o. = (constant) dx \./' Po .D(~J 
"0 Co) D 

8 -7 (U Law) (XO Law) (X Law) 
0 

i 

These results are, in part, exhibited in Fig. 3. Slices of jet within four diameters 
of the nozzle are predicted to emit the same noise power ( eLP / cix. :: constant: X

O law); and be 
yond eight diameters the emission decreases like x - 7 . The area under the curve represents 
the noise power emitted by the entire jet, and t his is proportional to U~ . . 

, 

I 

-~ 
co -
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The nonuniform turbulent properties across each slice of 
the jet are bypassed (but not violated) in the foregoing derivation of the 

U08
, XO and x-1 laws. A more detailed derivation employing functional 

expressions for the profiles of the turbulent properties is given in Ref. 17(a); 
the starting point is likewise Eq. {2.45) 

The present derivation shares with Lighthill's original 
deduction of the US law the neglect of convective and refractive effects of 
the mean flow including (cf. remarkfollowing Eq. (2.44» suppression of 
the time retardation in the integrals. It is shown later in the present 
paper how these effects yield the directionality of the jet noise (in part via 
a dependence of l! on direction). The computations a re, however, too 
idealized to determine whether the convective effect notably enhances the 
emitted power. The excellent agreement of the Lt law with experiment 
(Ref. 20) suggests the enhancement effect is either constant with speed 
(Ref. 21) or small (Ref. 22). Theoretical arguments are given in the cited 
references. 

2.5 Effects of Bounding Surfaces in the Flow 

The prirnary sound field radiated by an aerodynamic flow 
can be represented in terms of simple sources alone regardless of the 
presence or absence of bounding surfaces. The expression Eq. (2.17) for 
the primary sound field in terms of simple sources is unaf/ected by sJch 
surfaces: this is proved in Appendix B3*. 

On the other hand, the sound generated can be represented 
in terms of quadrupoles alone only if the fluid is unbounded. If bounding 
surfaces are present surface distributions of sources and dipoles must be 
added; the appropriate expressions have been derived by CurIe (Ref. 6). 

The surface source-dipole distribution on the quadrupole 
theory by itself yields the dominant far-field radiation for low speed flows, 
but a misleading nonzero result near the surfaces. T Of course, the acoustic 
energy flux must approach zero close to a fixed surface: the energy flux 
is the product of the normal component of perturbation velocity near the 
surface - which vanishes - and the perturbation pressure. 

* Bounding surfaces or obstacles serve, however, to reflect and diffract 
(scatter) the incident sound derivable from the simple source distributipn. 
Added terms to describe this scattering are included in the derivation of 
Appendix B3. 

r However, when taken together with the quadrupole distribution the resul
tant radiation is physically correct and it presumably exhibits a zero value 
at the surface. 
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The sound actually origLllates in a more or less extended 
region bounded by the surface. but not from the surface itself. The proof 
lies jointly in two facts: first. the (primary) sound field is given by an 
integral of simple sources over the extended region; second. the simple 
sources may be interpreted physically as directsources of sound (Sec. 2.1). 

When the influence of the surface is dominant (i. e .• Aeolian 
tones. boundary layer noise) the mam virtue of the simple-source formu
lation may perhaps be limited to th is physical interpretation. For calcu
lation purposes for such flows the CurIe surface dipole term s by them
selves give a good approximation to the resultant sound field at a distance. 
provided the flow is of low speed. The surface terms. moreover. have 
a neat interpretation in terms of surface stresses a nd are mathematically 
simpie. 

From the comparison it is observed that Lamb's expressions 
for the acoustic radiation from a fluctuating force or surface stress (Refs. 
23. 24) - although derived for a medium at rest - have a wider applicability. 
They give the correct far field whether the surface stress es arise from 
motion of a surface in a fluid otherwise at rest, or from unsteady motion 
of a fluid opposed by a stationary surface. In the latter case. however, 
they give the false result of nonzero radiation a.t the surface. and must on 
this account be supplemented by a quadrupole integral to provide the near 
field. 

lIl. MOVING SOURCES IN A STATIONARY FLUID: 'CONVECTIVE' 
EFFECTS ON SOUND DIRECTIONALITY AND SPECTRA 

3 . 1 Relationship to Jet Noise 

The sound sources in a jet - the turbulent eddies - are con
vected along by the mean flow. The effects on the directionality of the 
radiated sound are two-fold. A convective effect arises from the motion 
of the sound sources with respect to the quiescent fluid outside the jet. 
A refractive effect is due to gradient of the mean velocity within the jet. 

These effects are not linearly superposable. However. it 
will be illuminating to look at the convective aspect separately in an ideal
ized situation: we consider the jet turbulence to be replaced by a pattern 
of acoustic sources of strength 0"" moving through Huid at rest~ The mean 
jet flow that in a real jet transports the pattern does not then figure in the 
governing equations and the refractive aspect is suppressed. 

*" A factor - C;2 is omitted for simplicity in referring to 0- as the "source 
strength" here and later on. 
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The examples refer to a random distribution of acoustic 
sources but not necessarily to a possible turbulent flow; that is, the 
chosen covariance of the source strength Ij' is not necessarily compatible 
with dtr>/Dtl. ina realizahlè fluid motion*. The form of the covariance ' of 

(J" has been chosen largely for mathematical simplicity . As a special 
feature functions with regions of negative covariance have been avoided 
because they complicate the otherwise simple picture of 'convective' effects 
on sound directionality and spectra. The degree to which this picture can 
be applied to jet noise can only be speculated on in the absence of experi
mental values of the (j covariance, and in view of the remarks of the 
first two paragraphs. 

3.2 Convected Volume Pattern of Sources: Example 

Consider a random pattern of acoustic sources of strength 
O"C'j-,t») homogeneous and isotropic within a volume V • but vanishing out

side. The pattern is continuously created at the left face. moves continu
ously through V with the uniform speed U, and is destroyed at the right 
face (see inset, Fig. 4). The picture is rather like that of the moving 
pattern of clouds seen through an airplane window. a two-dimensional 
anolog of the volu:me V. 

The statistics of the source pattern govern the sound 
radiation according to 

(2.20) 

in terms of the parameter R. Here Ris the two-point space-time cov
ariance of the source strength 

R = < (nr')AV - < ~(.T + tfr I t +rr) 6' Ct-i ~, t )AV 

the average being over the time t. A hypothetical form for R that allows 
both for convection and fluctuation of the pattern is 

* It is known that the covariance of the ~ in the first example is incom
patible with a real flow when () is identified with èl"t<o'l lIt.. . Such an 
identification was implied as an oversimplification m Ref. 3. 
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R = -< 62>A~ exp [- d (Çl- U'tt - a}( ~Z2 + ~$l) - Ä
2 

a~U~rc] 
(3. 1) 

convection fluctuation 

With this choice of the covariance ~, and with the time delay inserted 
according to L = !. . .2f... / X. CO.J integration of Eq. (2. 20) yields an explicit 
result for <fZ(X»Av ' It isT 

where 
m 

A -
B -

M -
e 

-~ -~ 
(r°-t-m2)(Am2

- Bm + I) (m 2 +5m +A) 

e-::o (I + ~. M2.+ 'Ml 
- 2 MYX 

e -0/2 (I + "CfV12.+ M2.+ 2.MfYz 

[Cl -A)/BJ - [I + d-At/E/]~ 
I -t ~z M' + M' - 2 M C05 e 
2M ~;n e 
ui Co 

angle between x and U, the latter 

being taken in the x, direction; thus 
cos Q = ~ Ix. 

(3 . 2) 

Equation (3 . 2) provides the mean square sound pressure at 
a radial distance x and an angle Q from the direction of source-motion U . 
A polar plot of <,p2~,/X2 versus Q is shown in Fig. 4. The different cur-;es 
correspond to different Mach nurnbers M = U/Co forrned from the speed U 
of souree motion or "convection" . For supersonic convection speeds the 
sound pressure peaks in a direction normal to the Mach cone 
(e." = coS-I '/M). The peak is directly downstream (Q-fJ = 0) at the 
sonie speed and for lower speeds becomes progressively less pronounced 
in the same direction. 

T Because of the symmetry about the x, axis, it sufïices to limit ~ to the 
"X'J12 plane . With "X3 = 0 I ~ = ( ç, cose + Ç2SÎI')€J) CD • Insertion of 

this value into Eq. (2 . 20) yields cross-product terms l;,E.z.; these are 
elirninated by a suitable transformation of coordinates - essentially a 
rotation ~ simplify the integration. The detailed procedure is exhibited 
in the more general case of Chap. V, and is obtained by setting Mo == 0 

therein. 
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The source-pattern fluctuation parameter ti... was taken as 
O. 1 in Fig. 4. This implies {cf. Eq. (3. 1) that the effective length of a 
coherent source patch or teddy' (- I/a-) is one-tenth its decay length 
(....- '/,J..o.} In other words for ol... = 0.1 an teddy' travels about ten times its 
length before the pattern fluctuation has altered it very greatly. This 
appears to be about the right order of magnitude for the eddies in a boun
dary layer (Ref. 25). Recent data suggests a better value for the mixing 
region of a jet is ol. V" ·2 or ·25 (Ref. 14; see Appendix C herein). 

If the fluctuation pa.rameter ol... were taken zero ("frozen" 
convected source pattern) the directionality peaks normal to the Mach 
cone in Fig. 4 would become infinite. This is exhibited in Fig. 5 for the 
special case of sonic speed of source motion, M = I . The downstream 
lobe with peak at 9peak = 0 grows to infinity aso( is decreased progressively 
from 1 to O. It is clear that pattern fluctuation is a moderating influence, 
reducing and rounding off the otherwise infinite peaks. 

Lighthill has already predicted intensity peaks normal to 
the Mach cone in terms of his Mach-number factors (Ref. 1). However, 
those factors fail to allow for pattern fluctuation and yield only infinities 
at the peaks. It is implicit in his derivation that each correlation volume 
(i. e., "eddy volume") has existed since minus infinity in time without 
decay due to fluctuation: the finite lifetime of the eddies is not taken into 
account. 

In summary, the source mean motion or "convection" in 
conjunction with the time retardation rr(~ ,9) , as expressed in the source
pattern space-time covariance R , account for the strong directionality 
of the sound radiation in the example. The directionality is softened by 
pattern fluctuation, specified by d..t O. The ability to allow for pattern 
fluctuation provides a large reduction of the convective enhancement of 
power. 

The primary purpose of this example was to show how the 
motion of a random pattern of acoustic sources through a stationary fluid 
can give rise to pronounced directionality of the radiated sound. A very 
simple choice for the pattern covariance R was made (Eq. 3.1) to ease 
both the mathematics and the physical argument (which follows later). 
The exarnple constitutes an idealization of a . real flow wherein the mean 
motion of the fluid is suppressed. Thus no account is taken of refraction 
by the gradients of the mean velocity (cf. Chap. IV). 



(25) 

3.3 Effects of Pattern Convection on Directionality 

Mathematical Interpretation of Peak at M cos Q = 1 

The function U<. is essentially the correlation* of acoustic 
souree strength () at two points separated in space and time. The space 
separation is t: and the time separation is 1;. The correlation must be 
unity at the origin (~ = T = 0) and must approach zero at large separa
tions (but not necessarily monotonically). A hypothetical case is 
sketched in Fig. 6 as a plot of contours of constant ~ in the ~,. 1:' plane 
(for convenience rr is replaced byUrr:. ). 

The choice of 0(0 here is that of a Gaussian function in both 
'C--, and ut (Eq. 3.1 ). Thus the contour plot of a stationary pattern r epre
sents a hill or ridge; the l ong axis is alongUt by the choice 0( -.::::: ·2 . 
This implies the teddy ' length is about 0.2 the decay length. Convection 
of the souree pattern with uniform velocity U is introduced by the change 

ROC't;I;t) ,. RO(~I-U't, --r) . The contour plot (Fig. 6) shows 
the long axis of the ridge has been sheared over to a 450 inclination 
with the U't axis. 

We shall employ the convected form of R as the integrand 
in a one - dimensional version of Eq . (3.1) for the mean square radiated 
sound pressure. The path of integration follows a radial time-delay line 

U'T = Cl M cos G whose inclination depends on Mand Q; several possibili
ties a r e shown dotted for M = 1. It is evident that the value of the integral 
depends likewise on Mand Q. The particular choice M cos Q = 1 
(or U't = ~l) ' by traversing the long axis of the ridge, maximizes the 
integral. T In other words, the mean square radiated sound pressure is 
a maximum in the direction normal to the Mach cone, Q = COS-I VM . 

* More precisely, we distinguish between the dimensional covariance 
R = (o-cr'>AV and the nondimensional correlation «j(r'>A,,/[<crL~v<(fll>AIIJYl 

~ A similar observation has been made by Lighthill (Ref. 1) with regard 
to the integrand of the integral for the density perturbation (not its mean 
square) in the far field. In that case the ridge line was taken as infinitely 
long, corresponding to an infinite eddy lifetime. (The integral for M cos = 
1 was therefore infinite, which explained the infinite pressure peak at that 
value of Q). 
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Thus we have an explanation of a kind for the directional 
properties exhibited in Fig. 4 for the sound radiated by a convected ran
dom pattern of acoustic sources. The one-dimensional example shows 
qualitatively how the pattern convection (at Mach numberM ) and the time 
delay respectively determine the yaw of the ridge line (range of large 
values) of the integrand and the path of integration. The dependence of 
the path or time-delay on the direction Q of the observer gives rise to a 
pronounced dependence of the integral - the mean square sound pressure -
on 9. 

Physical Interpretation of Peak at M cos 9 = 1. - In Figure 
7 an intermittent sound souree has moved from left to right across the 
volume V with supersonic speed, emitting puls es at the points marked x. 
The two sketches portray the sound field at .an early time ti and at a later 
time tz. In each case the sound waves toward the left# having been emitted 
earlier, have grown larger. Note how the sound waves coelesce to form 
an envelope - an annular segment of a supersonic Mach cone. The sound. 
intensity is maximum in the directions norm al to the Mach cone (e = coS-' J.M). 
(Since a transient event has been considered an observer at e:: e05-' I/M . 
will experience only a single sound pulse as the envelope moves past him). 

The wave pattern grows even af ter the sound source has 
died, enveloping "upstream" points P as weil as "downstream" points p' 
Thus there is no zone of silence as in steady supersonic flow. The 
difference lies in our use of a stationary frame of reference that does not 
foilow the rnoving source. Further, the finite lifetime of the source 
accounts for the truncation of the Mach cone. 

The situation of Fig. 7 is an idealization of the convection 
of a continuous random fluctuating pattern of sources through the volume V . 
The continuous pattern will provide a succession of wave trains, not just 
the single growing pattern portrayed. Points like Q, P, p' will each receive 
a continuous fluctuating sound pressure instead of one or several pulses. 
Further, the strength fluctuation in time - but not the randomness in spacé ':' 
will tend to smear out or impair the sharpness of the envelope at er = COS-'YM • 
This wiU reduce an otherwise infinite intensity peak at BI> which would occur 
for a nonfluctuating pattern. It is again noted that Lighthiil's Mach number 
factors imply the latter situation (cf. last footnote) . 
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3.4 "Convected' Single-Frequency Sources: Example 

Near Field Spectrum: Convection Broadening . - Consider 
just a single Fourier component (in the time dom~in) of a convected random 
pattern of acoustic sources: that is, consider a pattern that is random in 
space but sinusoidal in time. Furthermore~ we specify a one-dimensional 
pattern distributed along a line segment rather than within a volume: this 
simplifies the mathematics without, it is thought, sacrificing the essential 
physical features. . , 

y 

Sketch 3 . Line Distribution of Acoustic Sources 

The pattern is taken to be a stationary (homogeneous) 
random function in space and time. The assumed two-point source 
strength covariance < rJ(J')AV is 

Dz-tOJ 

(j = D 2 (3 . 3) 

where () is the source strength at ( ti ,t ) and 0" is the source strength at 
('l-i+ t./ I t +"t'). The randomness in space is described by thE;? exponei1tial 
fa~tor, with ct-I serving as the length scale or average "eddy" length . The 
strength of the pattern oscillates through positive and negative values by 
means of the sinusoidal factor ceS wo't: the entire pattern oscillates in 
phase. 

Equation (3,3) is referred to a stationary frame of reference 
with respect to which the pattern is convected with velocity U (toward the 
right in the sketch). In the corresponding equation for an observer mov
ing with the pattern the argument (~, - ut) in the exponential function would 
be replaced by ~, alone . . 

It is evident that the moving observer hears just the single 
source frequency Wo: for him the frequency spectrum is just a single line* . 
The question now arises: what sort of spectrum does a stationary observer 
record:? To answer this we employ the formalism 

* The angular frequency W = 21fx frequency is for brevity referred to as 
the "frequency" in this section. 
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Spectrum function \,/" Fourier transform of time covariance ('SI = 0» or 
more specifically 

(3.4) 

In the present _ case this is 

(3.5) 

This Fourier cosine transform may be evaluated by means of Eqs. (1. 1-3) 
and (1. 4-11) of Ref. 26. The result is 

clj!'\v = i~2k \ exp [- CW

4+
W
:/] + e~~ [- (~-w~:)~]} 

where U 
Wc. = 0;1 

speed 
eddy size 

(3. 6) 

The spectrum Eq. (3.6) seen by a stationary observer is 
plotted in Fig. 8 for sever~l ratios of Wo/Wc.. When w. = 20 Wc the 
apparent frequency Wc. produced by convection of eddies of size 0;1 at 
speed U past the observer is relatively small compared with the pattern 
oscillation frequency Wo. The corresponding spectrum function in Fig. 8 
is very nearly the Ó -function or single line seen by a moying observer. 
By virtue of the added convective frequencies the line has been broadened 
to a band width ........ 2 Wc , but it is still narrow. 

When W = 2 Wc the ' frequency produced by pattern oscillation 
is comparable with the apparent frequencies produced by pattern convec" 
tion. The corresponding curve of Fig. 8 shows how the apparent con
vective frequencies, by addition and subtraction fr om Wo, have broadened 
the spectralline at w/w. = I so that it is now a peaked broad-band spec
trum. 

When Wo =10- Z Wc. the apparent frequencies produced by 
pattern convection completely dominate over the oscillation frequency Wo. 

The curve in Fig. 8 is that of a broad band spectrum with no discernible 
peak at the pattern osciallation frequency Wo. In this case the trlyle time 
fluctuations of the pattern are so slow as to be unimportant: the frequen
cies seen by the observer are essentially produced by the convection 
past him of a random space pattern. 

/.1 



(29) 

The last-described case, that of the convection of a "quas i
frozen" pattern of sourees, appears to approximate best the turbulence 
in a boundary layer (Ref. 25) or in a jet (Ref. 14; see Appendix C herein). 

Far Field Spectrum: Doppier Shift 

In Section 2. 2 an expression is worked out for the auto
covariance of the sound pressure in the far field. We modify this three
dimensional result to apply to the one-dimensional case of this section 
wherein the acoustic sourees are distributed along a line of length Y . 
The modified form of Eq. (2. 23) reads 

< h1 / ~ cr') y
1

a:
Z J

Y

' d J<O R- (~ "[ + 'r')c{r r r AV I ! = Ibl(Co' X' 0 ~I _dJ "I I 71 

with 

,,,;~:, p~, (~, . 't + T)ds, 
-co 

:I,. . ~./ c. 1. 
' U 
-C- F ccs Q 

• /1 

(3 . 7) 

The factor yl á Z 
in the first integral serves in effect to convert souree , 

strength/unit volume into souree strength/unit length. The particular 
combination of physical length Y and 'eddy scale' cel is one that arises 
naturally in the corresponding integral in three dimensions for sources in 
a volume y3. 

The desi red spectrum function is the Fourier eosine trans
form of the auto- correlation: 

'(3. 8) 

Eqs . (3 . 7) and (3 . 8 ) are eval uated in Appendix D for the case thatTt has the 
form of Eq. (3 . 3). The resulting spectrum function is (Eq . (D7»: 

r-/ 

<()2) y3 
(52 

ctjgÀY e 4«(f!J S ( w - I~I) 
I 92 lf* a,3 C; X' ® 

(3. 9) 

where ~ 
Wo e.ej g (8) - I - M Co~ e 

Co 

" Eq. (3 . 9) shows that the spectrum is a single line at angular 
frequency W</® == w./! 1- MC05 e! . Thus a frequency Wo in the 
sound souree pattern moving at Mach M (moving observer) produces sound 
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of frequency Wo /1 I-tv1 cos el , the Doppler-shifted frequency, in the 
far field (stationary observer). On physical grounds this result could have 
been written down without analysis. The fact th at the Doppler shift results 
automatically from the mathematics is a testimony to the power of the 
correlation formalism when 'convection' and time-delay are inc1uded. 

3. 5 'Convected' Randomly Fluctuating Sourees: Example 

Choice of the Souree Strength Covariance. - The single
frequency line distribution of acoustic sourees of Sec. 3.4 was by hypo
thesis just a single Fourier component of a pattern randomly fluctuating 
in time. The two-point space-time covariance of this more general 
pattern in a stationary reference frame may be written 

< cr(f'\v = 'R, = w (Wo) R d-w. (j ~ D ~ (3. 10) 

J
aO - ïi fO) 

o 
I'J 

where '3Gis the single - frequency covariance Eq. (3.3) and W(W:)is some 
weighting function. Suppose we choose wC w.)so that 

where 

Then 'R. = < <J(J"'11'1 has the value 

stationary < ()cr') = ëd"(s,-urri 
frame All 

(3. 11) 

l 2 ,. < (f )'\y cl e - uJ(r 
12 wt oT'" 

(3. 12) 

(A reverse procedure was actually used, with Eq. (3.12) specified at the 
outset; then Eq. (3.11) was obtained as an inverse eosine transform with 
use of Eq. (1. 1- 5) of Ref. 26). 

Motivation for Choice of Souree Covariance. - The form 
of the souree covarianee, Eq. (3. 12~ for this example was originally 
chosen on the basis of 0- being defined as 5 2 f>/ï5t2. (Ref. 3). This defini
tion has now been superseded so that the motivation is no longer very 
relevant. The reasoning on the basis of (J = rtf·yot:. is, however, set . 
forth below as a matter of interest. In the later applications, the new 
definition 0- = D~ fYDtl. is to be understood. 

(Thefactor Zl1ot+ e- wt'T,2. inEq. (3. 12) providesa 
region of negative covariance. Such a negative region, while satisfactory 
in the present one-dimensional example, can lead to absurd results 
(i. e., directions of negative < f>M) in the three-dimensional case. 
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Since the two-point covariance arises from the process of squaring an 
integral, any function whose integral over covariance space (with or 
without retarded time) is negative is not an admissible covariance}. 

The significanee of Eq. (3. 12) is best displayed by shift
ing to a moving reference frame: S,- U'C is replaced by ~I to give 

(3. 13) 

Now BIDt - à/ot in the moving frame, whence 

o'Z.t O

) o't O

)/ 

((f(f/>AV = < ö 7. o' )"V 
in that frame. If we postulate that the pressure pattern _. be a station
ary random function in time (i. e., time averages that are nonzero 
approach a fixed limit for infinite averaging time) it can be shown that 

((,p(o) Cf ~&) I . 

<?5P ~~v = (3. 14) 

Thus Eq. (3.13) is compatible with 

(3. 15) 

The left- hand side reduces to Therefore 

<: (1
).411 

12W{ - (3. 16) 

and Eq. (3. 15) may be written in the alternative form 

(3 . 15') 

Sound Souree Strength Spectrum (Moving Frame). - The 
frequency spectrum of the pattern of sound souree strength is the Fourier 
eosine transform of the covariance in the time domain (~, = 0 I rr t 0) 

d<f?-)"" == ~ !1 [YJ (1: 0) . w] a; LU . 7[ Tc u\. I I 

(3. 17) 

The frame of reference for the spectrum is the same as that for R : in 
this case we choose a frame m 'oving with the velocity U of the pattern. 
With use of Eq. (3 . l3 .:) for'(( the result is 
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<ö1
\...; w+ 

12 fif wt (3. 18) 

This source strength spectrum is shown in Fig. 9 for later comparison 
with the radiated sound field. The value of cJ.. is taken as O. 1. 

_ Far-Field Pressure Spectrum (Stationary Frame). - In 
Section 3.4 we saw that a~ingle-frequency line pattern of acoustic 
sources wit:t~Variance ~ (Eq. 3.3) radiates a far-field pressure 
spectrum d.< ~ v (Eq. 3.9). It follows that the superposition 

R = r W( wo) j[ JoJo (3.10) 

o 

, 
which represents the chosen random source pattern will y~eld a far-
field pressure spectrum 

Jit>., r WC w.) d.iE>,. dw, (3.19) 

The values of WCw~andd.<r~jdw are obtained from Eqs. (3.11) and (3.9), 
respectively. The integration yields 

4rt <crl) y3 ®4- + w
L @~ + ([J)' w e-liJf 4- I - '9 2.1(

2cèC/ XL Wl 
where eB) I - tv1 C()sG (3. 20) 

®I J..... M cos G 

V>f o(~U 

The radiation spectrum Eq. (3.20) is compared with the 
acoustic source spectrum Eq. (3.18) in 'Fig. 9. A particular case is 
chosen: pattern convection speed U = .5 speed of sound Co, axial 
direction (9 = 0), and,J..., = O. 1 ('eddy' length ~ O. 1 decay length). The 
abscissa scale is wiwfwhere WJ :: .,(aU is a characteristic f:requency 
associated with fluctuation of the pattern. The ordinate scale is -
arbitrary. 

The radiation spectrum displays the same functional 
shape as the source spectrum, but stretched toward higher frequencies. 
In the graph this stretch (with particular reference to the displacement 
of the peaks) is labelled as the "Doppler shift". 

-, 
, 
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Comparison of the arguments of the exponential 

VS. 

shows the label is only approximate: the actual scale factor . 
[<EP' + ®12] -I/Z is slightly less than the Doppler factor CBT'. The 

reason lies (see below) in a progressively decreasing efficiency of 
radiation wit~ increasing frequency . Functionally, this modifies the 
spectrum very much like a Doppier shift via the argument 

2 ze tAl C-e-5 
=-----4 eX c.~ 

Since Jfflct is a scale L of the source pattern, 

Thus the radiation attenuates as the wavelength À- becomes smaller in 
comparison with the teddy size' L 

The physical explanation of the inefficiency of high
frequency sound radiation can be discerned from an alternative deriva
tion of Eq. (3.20) by a more direct process (integration of 'Rd1;, over 
-;;, followed by the Fourier transform operation). It is found that when 
a coherent sound source ('eddy') is not negligibly small compared with 
a wavelength of the emitted sound there may be phase cancellation of 
the sound emitted from different parts of the source. The phenomenon 
bears some similarity to the cancellation effects underlying diffraction 
of waves through an aperture (Ref. 27). In the case plotted in Fig. 9 
the choice oIv= O. 1 implies that the eddy size« than the characteristic 
wave length so that the effect on the apparent Doppler shift is small. 

1 Turbulence, Pressure Spectrum (Both Frames). - An 
ideal microphone* within the 'turbulence' of our one ~dimensional 

example would record essentially ;ij'). On the other hand, the acoustic 
source strength is proportional to the second time derivative following 
the fluid motion D~f>jDt2 . The frequency spectrum of the latter is 
exhibited in Fig. 9, and we seek now to obtain the frequency spectrum 
of t(O\tself. 

* Such a pressure transducer presents a development problem since an 
ordinary microphone will interfere with the flow; e. g., a microphone 
facing upstream will read stagnation pressure. A successful static 
pressure microphone with good frequency response is claimed. in Ref. ,28. 
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The difficulties force us to approximate 

() ;: 1) f)/Dt/ = ( ~t + Ui ?/of ~ )l fO) 6y ë)f7DtZ -= ( ~t + U%d,r fO) 
that is, we neglect the eddy self-convection, even though the terms are not 
negligible. To this approximation the space-time covariance of A50) in our 
example is given by Eq. (3. 15) when the reference frame moves tvith the 
source-pattern speed U . Transformation to a stationary frame is effected 
by replacernent of~, therein by 'S 1- u1/. Finally the covariance in the 
time domain alone (autocovariance) is obtained by setting 'S, = 0 in both 
cases. This yields 

moving < f(O) ft»)AI/ et) ( fO)l>AV e -()frr~ 
frame 

stationary < f9 1 fOJ' \~ er) < fO)~)AII e- Cwi + w.')IT
Z 

frame 

where W j = eZaU, u) = a-U 
c. 

The frequency spectrum is given by the Fourier eosine 
transform 

d < reo
» AV 

ciw 
2 ~ {< ,tt',bce)'>. ('t) t UJ 1 
'T[ Je r f AV I ) 

The results for the two frames may be written 

rnoving 
frame 

stationary d,< f(O)/tV 

frame ctW 

(3 . 21) 

(3. 22) 

(3. 23) 

(3.24) 

(3. 25) 

Fluctuation versus convection. - It is seen that the 
'turbulence' pressure spectrum in our one-dimensional example has the 
same form in either frame: only the scale-factor changes. This is a 
fortuitous consequence of the form of covariance chosen and our approxi
mations, since the two spectra are governed by different phenomena: the 
moving-frame spectrum is dorninated by the randomness of the pattern in 
time (fluctuation) whereas the stationary-frame spectrum rnay be dorninated 
by the randomness of the pattern in space (the Teddy' space structure). 
In fact, E . (3.25) shows that for w 1« W 1 (of..L < <. I , fluctuation 
of the pattern (typical frequency Wf ) contributes negligibly to the frequency 
recorded by a stationary observer: he sees effectively a frozen convected 
pattern. The case ,/..,1-« I is tentatively thoughtlo be characteristic of a 
boundary layer (Ref. 25) or of a jet (Ref. 14). 
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The two frequency spectra are compared in Fig. 10 for the 
case ;.: = • 0 I ( uJf/ w"" = . Ol). It is seen that the moving-frame 
spectrum is concentrated at the low-frequency end, whereas the convective 
effects stretch the stationary-frame spectrum one-hundred-fold . 

. Comparison with far- _f'ield spectrum. - A stationary ideal 
microphone* in or near the 'turbulence' would record the stationary frame 
spectrum of Fig. 10. A second microphone at a large distance would record 
the radiation ~pectrum of Fig. 9. These two spectra may be compared as 
constituting the (very) near-field and the far-field of the same 'turbulence' 
noise field. The two spectra behave quite differently as the frequency 
approaches zero: the near-field spectrum level approaches a constant 
value whereas the far-field level approaches zero. In this respect the 
situation resembles that of jet noise although the example is over idealized: 
in particular, the assumption of a homogeneous source pattern along a line 
is far from reality . 

IV. MOVING SOURCES IN A JET FLOW: REFRACTIVE EFFECTS ON 
SOUND DIRECTIONALITY 

4. 1 Introduction and Governing Equation 

The applications in Section II do not allow for any mean 
motion of the fluid as in a jet. Section III improves the situation by allow
ing the turbulence pattern to move with velocity U through fluid at rest. In 
this way certain convective effects on jet noise directionality and on Doppler 
shifts of frequency are allowed for f . The mean motion that transports the 
turbulence pattern is, however, still neglected. In the present chapter the 
mean motion is brought into the picture, with particular attention to the 
mean shear~ the shear enhances the noise generation and it provides a 
refractive effect on the directionality . 

The mean motion appears explicitly in the operator 
iS(Dt = à/ot + U "O/o,!1 of the fundamental equation Eq. (2. 11): 

* see footnote page 33. 

T This allowance is only approximate. The "convective" effects calculated 
herein in this manner (by motion of acoustic sources through fluid at rest) 
are oversimplified in the use of a time delay"t in the integrand that does 
not allow for convection of the sound waves by the mean flow. Inc1usion of 
such an allowance is expected to modify the predicted directionality and 
Doppler shift in the vicinity of 9-0. A further discussion is given in 
Sec. 4.4. 

- --------- -- -
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_, . Ef{'! ,,2.h(1! 
Co" IJ' -Yr = (2. 11) 

In what follows (except Sec. 4 . 2) we shall deal with solutions of this equa
tion. (Insertion of U = 0 will recover the simplified equation 

-'- ;tf'! - V l J., (I) _ c: ~ ~ r-
employed in earlier chapters. ) 

j D"to

, - --C:p 1 

4 . 2 Amplifying Effect of Mean Shear 

(2 . 15) 

Eq. (2.11) serves for the computation of tO
) in terms of the 

acoustic sources of strength - C: .. D'f"/ Dt... The far-field sound 
pressure tb liJ is essentially driven by the pressure fOJ that dominates within 
and near the turbulent field. It will be shown how the shear in the mean 
flowamplifies the amplitude of f·) and thereby the amplitude of f'! 

The expanded form of Eq. (2.6) governing f) reads 
(Appendix A. 2, Eq. (A16»: 

- vfO) = p. ( ~ iJu. + 011, Otli) (4. 1) 

° °dL °di °di dij 
where superscripts (0) are to be understood as applying to u~, Ui (omitted 
for, ~implicity) . Allowance for a mean flow* U( d" d) along tt, "is made by 
wrl tmg I 0 . 

l'{'~ - U ~L + LVL b1i = I ~ = I 
(4 . 2) 

u· 
Î 

=0 

where u( ,IL; is the unsteady part of the velocity. If the cross -stream 
gradients oi U» any gradients of u[ the first term on the right-hand side 
of Eq. (4. 1) dominates, giving approximately 

_ nzh(o) _ 2 0 0 U ~U; 
Y r \0 ~j o{, (4.3) 

This may be written _ ~ J./o) . oU oir 
V T 2('0 on ~ (4.3') 

where n has the direction of the cross-stream gradient of U and lf is the 
unsteady component of velocity in the direction of n. This equation is 
due to Kraichman (Ref. 12): he considered itto be a good approximation in a 
turbulent shear flow .7: 

* In a jet flow there is also a weak dependence of U on ~,: this is neglected 
for simplicity, as well as very weak mean flow components in the ~z and . 
~j directions . . 

F Mollö-Christensen (Ref. 30) and O. M . .y.Pillips (lecture) recognized that 
for turbulent shear flow the term 2fo "%n ~ Ï<'~I is the dominant part of 
oZT;j /Od' 0d; , considered as the source term of Lighthill's equation. 
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Kraichman solved Eq. (4.3') for an idealized model consist
ing of a certain homogeneous turbulence superposed on a uniform shear flow. 
He obtaiiled 

< ~(O)'>AV _ 4 l ("dU)z < z\ ~-2 T iSE'o ~ U'/A" U (4.4) 

(4.4') 

where (Jis an inverse length scale of the turbulence (Ref. 12; see also Ref. 2) 
The corresponding re sult in the absence of a shear flow is 

(4.5) 

where Batchelor (Ref. 29) obtained cl. = 0.34 and Kraichm.an (Ref. 12) 
obtained Cl = 1. 00. Thus with this flow model amplification will result 
when the effective nondimensional mean shear Cf's)X o(U/~v~(o,,) 
exceeds C. The criterion alters with other flow models (Ref. 12). 

4.3 Green's Function Describing Refraction and Diffraction from Point 
Source 

Formulation of the Problem. - The governing equation for 
aerodynamic sound sources in a mean flow, Eq. (2. ll»may be solved by 
a familiar technique: the right-hand-side isseplaced by a b-function to give 

(4.6) 

and a solution of this subsidiary equation is sought (.!f is replaced by x in 
the opera tors Dipt and V Z

). This solution, the Green' ~ function, repres ents 
the pressure ;b(I) at a point x and time t due to a unit point source at * emiL-

ting impulsively at time tinto unbounded space. Suppose the Green'~ func
tion is written 

(4.7) 

where t' = t' (x, l., t) = known function . 

Then the desired solution of Eq. (4.6) would read 

t (IJ = (4.8) 

(4.9) 
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where Co may be eoCr as in a hot jet or jet of foreign fluid. 

Now what can we say about the Green's function G short of 
actually solving for it? Outside the jet where U has fallen to essentially 
zero Eq. (4.6) reduces to theinhomogeneous wave equation. By Kirchoff's 
formula the sound pressure radiated outside some control surface SI enclos
ing the jet may be determined by (ReL 31) 

rCbO = 4~ J} H~ + ~~ f. + c.'r ~~ l t Jt. eLs' 
(4. 10) 

that is, as the emission (into air at rest) from a certain virtual distribution 
of sources and dipoles on 5' . To an observer at a sufficiently large dis
tance x from the centroid the surface 5' . seems essentially like a point at 
x = O. The pressure ,6 radiated by the surface distribution falls off like X-I 

and depends also on the direction of x . Thus we may write 

) (4. 11) 
radius of 

wave length 

where 9 is the angle of ~ with the jet axis, with x restricted to the XI X2 

plane . (This restriction imposes no loss in generality in view of the axial 
symrnetry of the jet) . 

Qualitative Effects on Directionality. - The factor K (~!f) 
of the Green's function describes the directional distribution of sound 
pressure in the far - field radiated from a point acoustic souree at point t 
in a specified jet flow: thc refractive and diffractive effects of the flow 
are embodied in this directionality function. The analytical determina- . 
tion of K(e.~) is a formidable task (see Reis. 32 and 33 for similar pro
ble:ms) and only idealized cases have been treated (Refs. 34, 35). 

Thus cónsider a two-dimensional oscillating acoustic line 
souree lying cross-stream in an infinite plane jet (jet width» wave 
length). Such a souree can be built up from plane waves disposed radially 
like the spokes of a wheel (Refs . 36, 37) . Previous papers (Refs. 38, 39) 
show that these waves are refracted outward and forward (upstream), 
leaving a wedge - like zone of silence opening downstream. In a real jet the 
diffraction due to the great reduction in jet size/wave length must greatly 
weaken the refraction. The wedge (cone in thc axisymmetric case) is 
thus perhaps reduced to just a de ep inward dimple in the directionality 
curve as 9-0. 
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Dr. P. Gottlieb (Ref. 34) has obtained an analytical solu
tion for the closely related problem of an acoustic line souree in a semi
infinite plane flow: the souree lies cross -stream and parallel to the 
interface*. Figure 11 shows the directional distribution of the refracted 
sound pressure at large distances from this souree. The curve segments 
labelled À = cO / À = Z1fh I À = rrh lie in the wedge of silence; they . 
represent diffractive "leakage" of sound into this zone at small distances 
h from the interface. It is expected (in the absence of further curves on 
Gottlieb's figure) that the penetration must approach zero as À. - o. 

For a point souree centered in a round jet the qualitative 
directionality pattern may resemble a figure of revolution developed 
from Fig. 11. For off-center souree positions the pattern will be dis
torted. A common feature will, however, be the inward dimple, or 
reduced intensity, as 9-0. Such a dimple in the downstream direction is 
characteristic of jet noise. 

4.4 Mean Square Pressure Integral and Acoustic Time Delay Therein 

Use of the approximate Green's function for large x, 
Eq. (4. 11) simplifies Eq. (4. 9) to 

fl'>(I,t) = '~ J[-2 "if K(g'rl ], dJ 
i (~ '1.t) 

(4. 12) 

this is the generalization of Eq. (2. 17) to allow for a mean flow. The 
corresponding generalization of Eq. (2.20) for the mean square pressure 
yields 

<~{'h»AV= 1('~1.{ C: 4 ,. L K (e, r-Sf:z) K (e,~ -5/') l? (~,îi cLj- (4.13) 

If the geometrie average of K at ± ~/2 may be approximated by the value 
of K at the midpoint .;. = 0, then 

(4. 14) 

where 

The functional dependenee of the time delay.rr requires 
further discussion. Formally rr is determined as the difference in the 

I .1 
times for sound to travel fro:m points ..!f and ~ to the observer at.x. 

* Similar analyses for a line souree in a plane jet and a point souree in a 
cylindrical jet have very recently been published by Moretti and Slutsky 
(Ref. 35). They were apparently unaware of Gottlieb's work. 
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where (4. 15) 

In the absence of a mean flow this reduces to Eq. (2.22) 

'1; r-- .$ .:!:. / X Co (2.22) 

But the presence of a mean flow gives rise to a more complicated func
tional dependenee described by t'- til. The t function cannot be determined 
from a simple geometrical consideration as in Sketch 1: it arises instead 
as part of the solution of Eq. (4.6) for the Green's function . 

As a matter of interest a crude approximation to the effects 
of the jet flow on tand 't' are worked out in Appendix E. 

4 . 5 Pressure· Autocovariance and Spectral Density 

A simple extension of the expression, Eq. (4. 14»)for the 
mean square pressure is effected by inserting a time delay "'[;' : 

(·PCbf)rC!, i +1:')"v '" 1C;~'x' 1 c;+ KZ Co, '() 4tl 0( (~, T+1;'; r)d~ (4.16) 
V 00 

If we abbreviate the left-hand-side as <tf>AV (rr' ;~) the Fourier eosine 
transform reads 

(4.17) 

Eq. (4.16) gives the autocovariance of the sound pressure in the far field 
and Eq. (4. 17) gives the corresponding spectral den,jlity, (Note that 

<;E (w ; .x) may be written as d<p>,.,v ~ aLU whence 1 ~ (w ji) c:Lw = < f>AII). 
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V. MOVING SOURCES IN A UNIFORM STREAA:SIMULATION OF A 
MOVING JET 

5. 1 Fundamental Solution for Subsonic Stream 

The sound field of a jet on an aircraft in flight as recorded 
by an observer in a companion aircraft may be of interest. The technique 
of employing, in effect, moving sources in fluid at rest (Chap. lIl) may be 
generalized to allow for uniform motion of the medium. ,, ' 

The governing equation is Eq. (2. 11) in the form 

(5. 1) 

Wh en the stream speed Uo is limited to subsonic values this has the solu
tion (see, e. g .• Ref. 40., Eqs. (3.5.0) and (3.5.2»: 

~ f (I~ = - 4~4' J CJ(f: r) df (5. 2) 

\ where 
'r ~ 

t Mil,- f') t - + 
, c~: c ~2 (1 ~ 

" J (1 1- 1Y- ~: [(:(~ -tY + (13- ~JfJJ. 
(5.3) 

r + 

11 1\ 

The me:an square pressure in the far-field) where rll >"> I~ I ,/ 
may be written (dropping the superscript <,) ) 

< f'CI) = 

where !, 0 , 
given by 1 

1,1[~4?' IJ < lr( 1',Î') lr(f.f") >~, o.t df' (5. 4) 

and ~ (to be introduced later) are "reduced coordinates" 

" i " "XI XJ x, p"X l , ~oX3 ~ I 

1\ /I 11 

ï' ï~ I IJ I' , ~&!~ ~D (J (5.5) 

1\ 1\ " ~, I Sl ) ~J ~, I ~·SJ. ~.S> . 
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Put " " " re = t '- t" (5. 6) ~ = (1' + i ) /2 
I ~ = ~' - t" I 

as in Sec. 2.2. Then 

<f{!) = "~'é~' 1 ,,-tl IU~ , ,y ;fd~ 
where V is the effective volJme of eddying flow. 

(5. 7) 

1?Js-,1 ; f = < (f Ci+?/z, ~'+i) 0-(7-5Iz J")AV (5,8) 

and the average i~over ~(f ' . - By procedures similar to those of Appendix E 
it can be established tha i for 1,&/» /11 J 

~ " " -\ /" ~o Cl) ~ := -· Mo~, + ~.~ J. (5. 9) 

approximately. 

5.2 Example: F luctuating Sources Moving with Speed U in Stream of 
Speed Uo 

Take for the covariance'R the same form assumed in 
Section 3. 2: 

(( = < ( 1 )AV 0;(,h _al [~,- ui /+ s: + S3z + ttC~u ~1/ ] 
r 'conll'ec-tlon" .f./t/e,fvqfto'7 

(5 . 10) 

Then to evaluate < 11) > Eq. {5. 7)1 we require 

, I =JJr1((~ , t)d,<;,d~ld~ (5. 11) 

-DO 

By virtue of the symmetry about the X,-axis it will suffice to limit ~ to the 
x,,'Xzglane. With X;==O,Eq. (5. 9)reducesto 

~o2 Co r! := Çl ( Gos eó- Mo) + ~1 ~ ~I'n et) (5.12) 

where tt:tn Bo = ~ ~ e = ~ t.~/x., (5.13) 

" ' The insertion of't into Eq. (5 . 10) will be simplified if we 
transform coordinates so that 

f t, :..- ~,( e>S e.- M.)+ q.~;" 8'1 ft;,= ~(C"fi,M.)~@.P;hê. 
\ ~ = -s, ~.~" e. + sJ cos e.-M.) J 1 J:,= ~'~' ~:"Q. + S,(Ct6G.-M.) -<5 , 14) 

l <Ç~ = çj ~I~ + ç: ~ J ( ~~ + f,: ) 
where the J acobian J is 

J (tw. eo - MIJt + ~.l. ~;n 1 eo 

(I - Mo CM Get 
(5. 15) 

" . 
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Then 

I JIf T' R (~,1)J,~, d~ tt~ 
_GO 

(5 . 16) 

wherein, af ter reduction, 

R = «(jL)Av ett _J-'Ov2 
[ Ao~~+~~2+ J~~ + Bo~'~J] (5.16' ) 

with Ao, Bo functions given in Eq. (5.20). 

The cross-product term may be eliminated by means of 
the transformation 

(5. 17) 

where 

with the result 
(5 . 18) 

[( IY'>AV exf -J-I à [ R,r,' + R,r:+ ~. J} (I+m')dr,dr.d{, 

where RI) Rz are constant for the integration (given in Eq. (5.20». 

The variables are now separated and the integration of 
Eq. (5.16) can be carried out readily. With use of Eq. (5.7) the final 
result for (f >AV is 

< Ó1
)!lV V 

I " 1['" c.. ~ ol X. 2 (5.19) 
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M. 
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moZ + R WI A IJ. "l. + • 

I + (I ~u(L)JMl(->:4-' _ 2M~.-Z(Ct;t()o- Mo) 
I . 

2. M~: /l...J 90 (5.20) 

( I - tt1. c..~ 9.)Z-

sour ce speed U/speed of sound 

flow speed Uo/speed of sound ) 
Eqs. (5. 19) and (5.20) give the mean square prèssure 

radiated by acoustic sources characterized by the covariance Eq. (5. 10) 
moving with speed U through a certain volume V in a uniform stream of 
speed Uo • The source speed U simulates the effects of eddy convection 
by a jet. In a numerical exarnple we compare the case M. = 0 (...,.. jet noise 
in fluid at rest) wUh the case Mo = 0.8 (..,.. jet noise in a stream with 
Ma = O. 8) for a constant difference betweensource speed (-- jet flow speed) 
and stream speed: M - Mo = 2. O. The results are exhibited in Fig. 12 as 
curves of < t lo > versus 9 for a fixed radial distance x. 

The interesting feature is the sweepback of the peak of the 
lobe from ee = 600 at M. = 0 to 9 ~ 33.50 * at M. = 0.8. The peak at Se 
is norm al to the Mach cone and satisfies (M - M.)c"s ge :: I . The angle 9 
of the M = 0.8 peak appears to be related f to the angle et of the M = 0 
peak by the construction shown in Sketch 4 . 

* The graph is faired improperly so as to show the peak at 9 :::::: 31 o . 

f This relation has been checked by careful numerical computation for 
one case at 0( :: 0 (no source fluctuation). It may be that when 0( is not 
« I the two peaks are shifted slightly. 



origin 

(45) 

observer local normal 
to Mach cone 

effective origin 

Sketch 4. Sweepback of the Noise Peak 

The sweepback results from the convection of the wave pattern. Calcu
lation gives 

(5. 21) 

, 
VI. ASSESSMENT AND RESUME OF MAJOR POINTS 

In this chapter a number of the more important matters 
relevant to or dealt with in the theory are summed up from a critical 
point of view. There is no attempt at completeness: this is left to the 
Summary. 

6.1 Pulsating Fluid Elements as Sound Sources 

The quadrupole picture of the mechanism for generation 
of flow noise is correct but not unique. A much simpIer picture is 
afforded in terms of simple sources. The volume of a moving fluid ele
ment fluctuates inversely with the local pressure, and this fluctuation 
radiates the sound. 

The volume, density, and pressure fluctuations are 
related by 

DëO) ___ ,_ Dt cO ) 

Dt - c,!. D 
(6. 1) 

where the derivative follows the fluid motion. Any of these is equivalent 
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to a virtual strength of matter sources in fluid at rest. A second time 
derivative yields an effective strength of acoustic sources per unit volume: 

flow noise 
source strength 

__ , D~O) 
Co'- D a. 

(6. 2) 

To a sufficient accuracy the pressure rnay be attributed 
soleiy to inertial effects in the eddying flow; it may be determined as 
though the fluid were incompressible. This has been anticipated in the 
use of fCO) in the equations. 

For bounded flows (e. g., the flow about a rod producing 
Aeolian tones) a volume integral of the simple sources of Eq. (5.2) still 
describes the primary radiated sound. On the other hand, the volume 
integral of quadrupoles must be supplemented by a surface integral of 
dipoles (Refs . 1, 6). 

The simple-source formulation shows that the sound 
originates in a more or less extended region bounded by the surface, but 
not from the surface itself. The dipole integral on the other hand implies 
a finite sound emission from the surface; addition of the quadrupole 
integral is required to bring the predicted surface sound emission to zero. 
This fact has more conceptual than practical significance since the dipole 
integral will dominate at large distances from low speed flows. 

6.2 Cornparisons with Quadr upole Theory. 

For low speed flow the sound pressure at a large distance x 
from the region V occupied by the flow may be expressed in the alternate -
for.ms 

t 
t I J 1/~(·) 

C.2. X 1)""fL d V 
V 

quadrupole theory (6.3) 

simple source theory (6.4) 

where ll:t. is the component perturbation velocity along x. Which should be 
used in particular applications is }thusdust a matter of-convenience or pre
ference. 

Either of the above expressions leads) on neglect of convec
tive effects, to 

dP (6. 5) 

\. 
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as the relative acoustic power emitted by a turbulent volume element J..V 
for similar flows . The famous Uo! la~ for the total noise power of 
a jet follows at once. Simple similarity considerations lead to laws 
describing the power emitted by successive slices of a jet as a function 
of distance x (not to be confused with the field point x referred to earlier) 
from the nozzle: these go as x ° (constant) in the mixing region with a 
transition to 'l-7 in the fully developed jet. 

6.3 Amplifying Effect of Mean-Flow Shear 

The effect of the strongly sheared '. mixing region in a jet 
in intensifying the generation of flow noise was first pointed out by 
Lighthill (Ref. 1). He reexpressed his quadrupole integrand as essentially 
the product of the shear and the time derivative of the pressure. Thus 
the presence of a mean shear » the fluctuating shear provides an ampli
fication. 

In the simple source theory the amplification is indirect. 
The near field pressure kJO)is amplified, which augments the simple-source 
strength ~ D'V' / DtL

• The far-field pressure is amplified in the same 
proportion. The amplification of f(D) is exhibited in the term 2 Po (7JU/7Jn) 

(7Jtr / 7J ï') : this term dominates the pressure source strength ~~(/. ut '1·) 
/ êJ1" 01j when the mean shear ou~n» the fluctuating shear. 

6.4 Convective and Refractive Effects of the Mean Flow 

The mean jet flow convects the acoustic sources and 
refracts oE'distorts their individual sound fields. We have approximated 
the convective aspect by calculating the sound emission from sources 
effectively moving through fluid at rest. The formalism actually employs 
sourees at rest; the effective motion is imparted by replacing C;, by ~I- Ut 
in the source-strength covariance. Allowance is also made for fluctuation 
of the source strength with time (through a term in the covariance) and 
for the time delays of emission from different points. 

Computations using this formalism yield sound directionality 
curves; they show gene rally enhanced downstream emission due to the 
source motion. However, the infinite enhancement predicted by Lighthill 
at M = 1 is reduced to a bounded value by the fluctuation term. (It is,in 
fact, implicit in Lighthill's formulation via moving axes that the source 
pattern is convected without fluctuation). 

Arefinement would replace thenominal emission time t - r/co 
in the integrand by a value approximately corrected to allow for convec -
tion of the sound waves. The effect of this correction may be important 
for directions approaching the jet axis. 
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A further refinement would use the accurately computed 
emission time and would correct for refraction by the shear flow: the 
spherically symmetrie radiation term in the integrand would be multiplied 
by a suitable directionality factor. This modified source term (Green's 
function) and its emission time present a formidable computation problem 
and have not been worked out. Calculations of the Green's function for 
idealized models of jet flow have been made by Gottlieb (Ref. 34) and by 
Moretti and Slutsky (Ref. 35). 

6. 5 Role of the C ovarianc e 

The central element of the formalism is the covariance of 
the acoustic souree strength at two points with fixed separation in space 
and time - the time average of the products of the two source strengths. 
If the functional form of this covariance were known formal integrations 
would yield the mean square noise pressure and other properties . How
ever, experimental determinations have not been carried out and theore
tical guides are limited. Resort has therefore been had herein to purely 
speculative assumptions for the form of the covariance. 

The computed results are in certain respects sensitive 
to the assumed functional form. It is quite possible to obtain the im
possible result of negative < ''f>AV for certain directions by a choice of 
covariance function that has extensive negative regions. This must be 
construed as a fault of the assu.med covariance rather than of the method. 
The covariance formalism applies equally as weU with Lighthill's quad 
rupoles as it does with simple sources, so the difficulties cannot be 
associated with the kind of elementary source. In the classical treat 
ment (Ref. 1), in fact, the difficulties were s uppressed by postulating a 
c ovariance equivalent to perfect correlation. and zero time delay within 
a cubical box a nd zero correlation outside: there were by hypothesis 
no negative regions. 

6.6 Convection vs. Fluctuation in the Near Field 

A observer rnoving with a non-fluctuating or "frozen" 
random pattern of convected acoustic sources would record zero frequency . 
On the other hand the spa.tial variations of the same pattern moving past 
a stationary observer will appear to him as variations with time: he wiU 
record a broad band of frequencies. The covariance formalism herein 
provides the mathematical apparatus for .making the co.mparison. "Frozen" 
patterns and those with arbitrary a.mounts of fluctuation .may be treated. 

T he cOrJt'esponding cornparison for a single-frequency 
convected pattern (single-Fourier-component of a random pattern) is 
illuminating. The moving observer sees, of course, the single frequency -
a line. The stationary observer sees, by calculation with the covariance 
technique , a lLJ.e broadened by addition and subtraction of the apparent 
frequencies due to convection (a band). If the true frequency is relatively 
low compared with the apparent convective frequencies ("semi- frozen l

' 

pattern) the liue is submerged in a broad-band convective spectrum. 
(see Fig. 8). 
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The foregoing remarks are concerned with the spectrum 
of the sound source strength - c.z D" fJ / Dt,z . Similar cornpari-
sons apply to the pressure fO> within and near the turbulent flow. 

6. 7 Doppler Shift 

It has been noted earlier that the use of moving axes to 
account for source-convection effects (Ref. 1) effectively suppresses 
fluctuation of the source pattern. The covariance formalis:m herein, on 
the other hand, allows for arbitrary amounts of fluctuation: both the 
convection and the fluctuation are accounted for in the form of the covari
ance function . 'This :may be either theoreticalor experimental. 

Either approach should, among other things, correctly 
predict the Doppler shift of the radiated sound spectrum. This pre
diction is implicit in the moving-axis technique. But with the cov
ariance formalis:m a calculation is required. In the example of a con
vected single-frequency source pattern the correct* Doppler-shifted 
radiation pattern emerges automatically. The power of the covariance 
approach - already demonstrated in its prediction of directionality and 
its ability to discriminate between convective and fluctuative effects on 
spectra - is confirm ed again. 

6. 8 Moving Jets 

The for:malisrn is readily extened to treat the sound field 
of a rnoving jet as recorded by a similarly moving observer. In a first 
approximation the jet flow that transports the eddy pattern - and its 
refractive effects on the sound field - was neglected. The eddy elements 
(acoustic sources) were taken to move at essentially the jet velocity 
through a parallel uniform stream of different velocity . An e,;xarnple 
has been worked out wherein the excess of the source velocity U over 
the stream velöcity Uo is supersonic: M - Mo = 2. The cases Mo = 0 
and Mo = 0.8 simulate static and :moving jets respectively. The sound 
field for Mo = 0 exhibits an intensity peak at 600 from the "jet" axis, 
i. e., normal to the Mach cone for Mach number 2. On the other hand, 
motion of the jet at Mo = 0.8 sweeps the intensity peak downstream 
closer to the axis (9 -;:::; 33 . 50 ) . The effect is simply explained by a 
vectorial composition of wave convection and propagation. 

*On the basis of the idealized model of sound sources :moving through 
fluid at rest: this model is i:mplicit in both calculations. Allowance 
for convection of thesound waves by the mean flow can in principle be 
made in the covariance integral: see Chapter IV. 
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APPENDIX A 

GOVERNING EQUA TIONS FOR SOUND PRODUCED BY UNSTEADY FLOWS 
PL US OTHER DISTURBANCES 

In the main text generality was sacrificed in the interest of. 
simplicity. The situation is reversed in this appendix. We postulate a 
general fluid possessing viscosity and heat condution. There may be body 
forces 'Fi, per unit volume and sources of heat and matter. The effects of 
heat sources, conduction, and dissipation are expressed jointly in terms 
of the entropy s for the,case that the fluid obeys an equation of state.'f 

Al. Generalized Form of Lighthill Equation 

In what follows, unless stated otherwise; the reference 
frame will be fixed in quiescent fluid outside the region of disturbed flow. 
Under the postulated assumptions the governing equations are 

continuity: 

(Al) 

The momentum equation is in Reynolds form: it differs from the usual 
form by the addition of [J;~ times the continuity equation. The dependence 
of the viscous stress tensor re~· on the rates of strain in the fluid is left 
unspecified for generality. Tlte equation of state is in differential form, 
which suffices for the present purpose; the reciprocal of the speed of 
sound squared, C-z , is written in place of its equal (oP/of)s . For a 
perfect gas (oP/os)f = - fier' 

The elimination of (?ui between the first two equations 
results in 

(A4) 

f An equation of state is here taken to mean a fixed functional relation 
connecting density, pressure and entropy, free of time-dependent relaxa
tion effects. Such a relation does not hold for ultrasonic frequencies. 
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where (A5) 

= instantaneous Reynolds stress plus shear stress 

With use of the symbol Sij 
alternate forms: 

[=0 G 1= i1 l =, ~::: (f this can be written in the 

(A6) 

Eq. (A6) is Lighthill's equation governing flow noise plus additional terms 
accounting for body forces G and mass addition m. • . Equation (A7) is an 
equivalent equati on with pressure ~ replacing density e as the dependent 
variable. Neither equation involves the restrictive assumption that the 
fluid obeys an equation of state; thus they have maximum generality. 

Equation (A6) may be written as 

(A8) 

where R. H . S. signifies "r ight-hand-side". This is of the form of the 
inhomogeneous wave equation, with R. H. S. interpretable as astrength 
distribution of simple acoustic sources per unit volume. Lighthill 
examined the terms in R. H. S . anp showed that for unbounded flows* (a) 
a simple-source strength-oF.:/o~, /unit volume is equivalen! to a dipoly . 
strength - h"/unit volume; (b) ~ simple source strength "0 TiJ / ~~i 0'J!/ urut 
volume is equivalent toa quadrupole strength li.j /unit volume. The 
equivalence can be demonstrated by the methods of Appendix B. 

For most cases of interest the fluid obeys an equation of 
state. For these cases it wil! be convenient to introduce the entropy .5 into 
the formulation. Thus insertion of Eq. (A3) into either Eq. (A4) or Eq. (A7) 
yields approximatelyf •. 

* For bounded flows the volume distribution of simple sources ciT.· /O~.o~i 
is equivalent to the sum of a volume distribution of quadrupoles Til plus a 
surface distribution of dipoles. The present author believes that Doak 
(Ref. 40) errs in failing to include this surface distribution in hls expres
sion for boundary layer noise. 

f The local values of c (speed of sound) and (~p /05)+ have been replaced 
by their mean values Co and «è>p/os)+~v' respectively, and higher order 
terms arising from their derivati-Jes have been neglected. 
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I «( ot) 0
2
5 OFi àm 

-c:: ~tM~ - óf + ~ 
heat body 

addition forces 
mass 

addition 

(A9) 

(A5) 

The labels appended to Eq. (A9) show the interpretation of the terms of 
the right-hand-side as sources of sound. The term in T.j lumps together 
the effects of momentum flux PUilt} and shear stress rrtj. The term , in 

03.5/àt l lumps together direct heat addition, viscous di~sipation, and heat 
conduction; for low Mach numbers and the audible frequency range the 
latter two win be unimportant. The terms ~m/ot - "Om,u- L 101ft 
appear to account for the mass addition. However, as win be seel.Jt later 
(Eq. Al8~ additional terms in In are implicit in the density gradients of 
the lIJ term (these gradients also include secondary effects of heat addition). 
With inc1usion of the terms implicit in the Tij term the acoustic source 
strength associated with mass addition becomes DmjDt (Eq. A20). 

A2. Expansion of Lighthill Source Term 

In this section Lighthill's source term CfT~j /~~, "O~i 
will be expanded to exhibit non-negligible density gradients. Since 
lij, = rU..U.f T 'll( is dominated by f u't!tj except near surfaces, we shan 
deal first with cl f Ut, u.. i / '01 i "0 ti · The first step in the expansion is 

L [ ll~ ~ + {QJ~:~)(? u.] 
"0 1- d ~ t \ (; ~ / 1 

(AlO) 

Elim~ate '0 ~Uj/o~ i by me~ns of the contin~it! equation (Al),. ca~ry out 
the dlfferentlahon, then agaln use (Al) to ellnllnate OU../O{L; thlS ylelds 
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In our efforts to simplify this equation m will be considered 
sufficiently small so that m2 and products mu.iorjo~L and m }t/'J't can be neglected. 
To this accuracy we can use Eq. (A1. .. ) to esta13lish the useful identity 

(AI3) 

(AI4) 

The left-hand-side thus replaces the four terms marked • in Eq. (A12) 
That equation may now be written to a consistent order of accuracy as 

dm 
+ Ui" + 

af ter slight simplification. 

u u· (lP 
~ 1~~i 

(AIS) 

Suppose O'eUi U. /O~; o~· were evaluated in a frame of 
reference following the motidh of a il~id element, but with u, still referred 
to the stationary frame. The space derivatives OU; IOYi etc . , being 
instantaneous, will be unaffected by the motion. But tfhe terms multiplied 
by Ui vanish, since Ui must be replaced there by the zero velocity of the 
element in the moving frame. If in addition there were no matter sourees 
(m = 0) èl fUiUJ lot O~j would reduce to 

moving 
frame, 

m=o 

Accordingly Eq. (AI5) may be written in the useful form 

(AI6) 

Since lij = (Ju; U · + lij , it remains to deal with the 
shear stress tensor 'tj. The ve{ocity gradients in '"tij will be unaltered 
in the moving frame, änd the viscosity gradients can be neglected in 
either frame. Therefore we can take rrij as unaltered in the moving frame. 
Thus finally 
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where the subscript U-i = 0 (to be applied afier'the::diff.e'rentiation) desig
nates the value following the motion of a fluid element. 

Equation (A18) is the required expansion of Lighthill's 
source term. The relative magnitude of the density derivatives wiU be 
considered later. 

A3 . Generalized Form of Simple Source Equation 

Case (a)-Body Forces and Matter Sources Accountèd for 
in the Incompressible Flow. - If the expanded form Eq.(A18) of 
Lighthill's source term is inserted in Eq. (A4) there results 

This may be written as 

.2È 
Dl/ [ ~li' ] _ 

'0 .'0 ' ~ lli:= nt,.:. 0 
(A20) 

If the fluid we re incompressible but not necessarily of 
uniform density the density derivative foUowing the fluid motion would 
vanish. (It is for this reason that the convective parts of pae 7 pt:l were 
put into evidence in the expansion of the Lighthill source term). This 
yields the equation 

_ V Z ,bCO) = [''>TfJ ' è:}L [D rtt_~(O) r o~ià; _ _ - 2) 'i i + CDr) (A21) 
o q Ui - t)t- 0 0 

where the superscript (0) designates values as modified by the postulation 
of incompressible flow. 

It is evident from Eqs . (A20) and (A21) that the body forces 
and matter sources tn are accounted for in the incompressible flow as 
weU as in the compressible flow. This leads to results of great formal 
simplicity, which are developed below. An alternate treatment in which 
Ft and m, are omitted from the incompressible flow is given in the later 

case (b). 
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Subtraction of the second equation from the first yields 

-U \7~;h = - \;7"thCO ) - [ 0
1

(-: ~ -fir)] (A22) , r r "0 ~ , d! L(,. :: m = 0 

The difference between 1.:1 and TT arises from the compressibility of the 
fluid; the difference is small for the postulated low speeds of the unsteady 
components of the flow. In what follows, we shall neglect the affected 
terms completely, the justification being given in Appendix B2. The 
result is 

By virtue of the equation of state this is approximately 

~: lJt. - v't = - 17',1""' , < (OP) > ris e 05 r Av Dt>. 

(With heat conduction and viscous dissipation neglected and with no 
external heat addition this reduces to 

(A23) 

(A24) 

(A25) 

Eq. (A24) is useful as it stands. However, it simplifies 
if we put 

(A26) 

where to is the uniform, constant ambient pressure, fO) is the pressure 
calculated as if the fluid were incompressible (i. e., via Eq. (A21»)and 
Hl) is the remaining increment in pressure, which must be attributed to 

the c0!Dpressibility. This is inserted into Eq. (A24) to yield 

i D[(I) _ 
c: D 2 

. t . o2.j/," 1 Slnce erms In - v r cance. 

(A27) 

As in the .r;nain text the (presumably weak) scattering of 
the emitted sound field by the unsteady flow is suppressed by replacing 
the convective derivative D/Dt following the instantaneous flow by the 
convective derivative BIDt following the mean flow on the left-hand side. 
This replacement yields 

..l. fJtU

) ~z.th (I) _ _ 

C:E>~ v r (A28) 
where 
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for the case of a mean flow U( ~~ .t) along the ti axis. 

The equations may be simplified ti the viscosity and heat 
conduction are neglected (they are small anyhow for low Mach numbers 
of the unsteady motion). Then the compressible part of the pressure, 
which can be re'cognized as the radiated sound field, is isentropic. All 
of the entropy perturbation results from heat addition and may be com
binecl with the pressure perturbation to define a density perturbation 

(A29) 

Equation (A28) then reduces to 

-L 02 f' z. (I) 'Dt((» 

c.'!. 15 ,. V f = - D 1 
(A30) 

Equation (A30) is the equation governing flow noise in its 
simplest form. lts physical interpretation is this. The radiative sound 
field f' obeys an inhomogeneous modified wave equation corresponding 
to a spatial distribution of simple sources of strength - DJ..()/DtZ. per unit 
volume. The quantity p.) is the "zero-order" density perturbation in the 
fluid: it is related to the pressure 130

' (calculated as though the fluid were 
incompressible) through the equation of state. Sources of heat, sources 
of matter, body forces, and hydrodynamic effects are all included 
implicitly in f!": the heat sources via the entropy term; and the matter 
sources, body forces and hydrodynamic effects through their influence 
on r(O}. In summary, Eq. (A30) states that the radiation of sound from 
the interior of a fluid originates sole~y from loc:;tl first-order density 
perturbationS'! it is immaterial how these perturbations were produced, 
whether f~om dynamical floweffects, body forces, matter sources or 
heat sources. 

Case (b): Body Forces and Matter Sources Excluded from 
the Incompressible Flow. - The primary virtue of Case (a) is its con
ceptual and formal simplicity. It does not obviate the need for explicit 
introduction of the body forces and matter sources in the prior compu
tation of ,b<O). In practice it is far easier to calculate the direct acoustic 
(i. e., coJnpressibility) effects of body forces and matter sources than to 

* A density perturbation rate DflDt ,would produce a dilatation rate 
div.!f- in a fluid free of matter sources m according to 'D~o'/Dt + r.ciiV g., = 0 

approximately. Thus the sound radiation from density perturbations in the 
actual fluid (governed by - D'p'OïDt") is as thou~h the sound were pro
duced by equivalent dilatations (via the term Dót(ediv.~) in a source-free 
fluid. (We distinguish here between pco, associated with sound generation I 
and (associated with sound propagation). 
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determine these effects indirectly via an incompressible flow. The direct 
approach constitutes the present , Case (b). 

In Eqs. (A20) and (A21) the effects of body forces G and 
matter sources mare seen to be linearly additive to the effects of flow U;.. 
Therefore we dele te these terms and consider them later separately. .~his 
gives 

(A31) 

(A32) 

where D/Dt has again been aPtroXimated as biDt on the left-hand side. 
~ ..th ,h(O) [IJ Once more put T = -r. + T + , and follow procedures parallel to those 

of Case (a) . The final result is 

lth (J) - V r (A33) 

The value of ëO)may include the effects of heat addition via the entropy 
relation Eq. (A29). The pressures t, tbee

) and f), however apply to a flow 
with F. = l'Yl = o . The effects of ft ancl m can now be restored by generaliz
ing f to 

rml (A34) 

where 

(A35) 

(A36) 

. (cf. Appendix B) 

A4 Examination of Neglected Term in Sirnple Source Equation 

In the derivation of Eqs. (2.7) and (2.10) of the main text and 
Eqs. (A24) and (A28) of this Appendix a term representing distributed 
acoustic sources was neglected. With the inc1usion of viscosity this term 
may be written as 

(A37) 

\ 

f 
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where 

(A38) 

The use of a reference frame following the local instantaneous fluid motion .. 
designated by u.~ = 0 above, is a source of difficulty. In what follöws we 
shall assume that 

[ 
0" T~ ' J 

°lj à~i U = m = 0 
(A39) 

where the reference frame follows the mean motion U , is of comparable 
order of magnitude. (It should certainly be as large or larger). 

The neglected term may, perhaps, contribute significantly 
to f'in the near-field, since 'a&/oljt Olfj '» c;:z èf/ot 1 there. However, 
it is the far-field behaviour of fl)fItha~ is of major interest. Lighthill's 
analysis (Ref. I ) shows that a volume distribution of simple SOl,1rces of 
strength 

(A40) 

yields a pressure disturbance 

I J (Xt- ~J( Xj- ~) [O~iil d 
4lfCoZ. r3 0 2 ~ 

V ~~~ 
(A41) 

at distances r = I.I-Ji/ that are at least a few acoustic wave lengths from 
all parts of V . d 

This formalism is no longer va lid when the source strength 
is 

(A39) 

i. e., when O~/O~;{)~i is applied following the mean motion. However, it 
seems reasonablJ to infer from Eq. (A41) that the effect of this source 
term on pressure in the far field goes more or less as 
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(A42) 

that is 

I Óf')1 [ ~~ (I) J 1"t (I) 

due fo :~;~~1 U=rrl=o 

"0 .' 
ot~ Ua

m:o(A43 ) \./' 

Illf"l d,u.e to [O~Ti' ] öz-n . 

()!iO~ U = rrt= 0 W- U ~ I"f\::.D 

The shear stresses '1:4 in lij are unimportant compared with 
rlUUj except near surfaces; thereforVe they' will be neglected . Accordingly Tir reduces in the moving frame to 

[ I .. (IJ] _ () I ( (0)' (o!' 
(A44) IlJ U:: 11t .. 0 - \ Ui UI - Po Ui Ui 

where ut' ,!t; are perturbations from the mean velocity U. This may be 
expanded as 

(0) I (0/ 

eo Ui Ut (A45 ) 

A typical component term is 

(A46) 

Thus 

[ -r .. (I)] -
~1 U = m ':; 0 -

1 o ( Pa /L(O) !-tl/ J) 
(A47) 

(A48) 

C om pare with 

(A49) 

o ( ul Po [ u,c°)J ) (ASO) 

, I. ,/11/1 Under the low- speed condition tto,« speed of sound, it follows that vo.-

111°)1/« I; accordingly 

effect of retained term 
« effect of neglected term 

(A51 ) 



(60) 

APPENDIX B 

SOLUTIONS OF THE FLOW NOISE EQUATIONS WITH MEAN FLOW NEGLECTED 

The equations with which we have to deal are of the form 
"(iJ, tt - y-zt 1 CJfI t) (BI) 

This is the inhomogeneous wave equation: the right-hand-side represents 
sourees of sound of strength CV per unit volume. The solution for t at 
point ~ and ti.rn e t in an unbounded fluid is 

fCd) = 4~ J.,+ ~ (*,0 d-r + con stOvnt (B2) 

In the integral r is the distance between the point -x. and the vo~urne element dt and the souree strength CV is evaluated at the earlier time t == t - r / Ct) . 

When the fluid is bounded either internally or externally by 
surfaces 5 the solution takes the form (Ref. 6, Eqs. (2.4) and (2. 13» 

t Cd) = 4~ L +t,( T' t)d!j- + ~Tr L ~r.(~)11i dS + 4'vk~\ l..~S (B3) 

If ~ has the form of a divergence or a Laplacian certain 
transformations of the integral can be made. These are dealt with in later 
sections. 

BI. Equalit 

It may be öf interest to demonstrate that the respective 
integral solutions of the equivalent equations (2. 7) and (2. 10) are likewise 
equivalent. The proof is given below. 

zoel) lt' ")/-,.1.'1. 
It has been argued th at replacement of D \. / D z. by af/OT; 

(for the case no mean flow, U = 0) merely suppresses turbulent scattering 
and is permissible. With this change Eqs. (2.7) and (2.10) read, since 

e ~ f 0 + r (0) +(' , 

~O) _ 

D 2-
~ ot 2 - V2t - V'2fO) (B4) 

~()) 

V) f" == 
D2.e ro; 

{} t" Dt z 

or 
?/p "lr = 

-,/t-tO)_ ( ti c/ ) (0) w 15fz --w f 
(B5) 

02e") V1f') = o"'ec
<» (Dl. c/) eCO) 

o t Z of' 
- Dt% - --w-
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With use of eLf;:;; c._ Z dt and sorne abbreviations these are 

where 

2), l.h (0) -\lr = -V r - " 

-% 
u \72J.f'1 -L ..,. ... t(l) -

C: '0 1 V r 

~/ 

(J" 

• 

(j' (J" - c: - C/ 

°1(0) 
"0 • 

(~. -~ )fO) 

to + fO) + t (I) 

(B6) 

and tb> is a solution of - V:lPO) = [o:l.T,F> / 0t i à ~j ] «, . ~ 0 . By compari
son with Eqs. (BI) and (B2). their respéctive soluÜons are 

f = p. (B7) 

tel) = 
(BB) 

or 

(By virtue of the definition of rf" above, Eq. (BB) can be 
recognized as Eq. (2. 16) of the rnain text). It will be of interest to demon
strate the equivalence of Eqs. (B7) and (B9); it will afford an alternative 
proof of the equivalences of Eqs. (2.7) and (2. 10). 

Noting that î = ' t - r jco , r = Il.-,I, we define the 
operators 

(~J= ~\ + Un3t 
(-h\= (-k)~+ (g!)t* (BlO) 

, (fu)t- - C*\ ~ $-1 nc e or 
~ I 

-1 (~z)~ = (-k +)t + (-tri +)t 

J J 
I (u: Apply these to + (VfOI)f df = T à ~)f elf J 

ThU5 

taking for the present 



(62) 

a finite integration volume V ; later we shall require V--.o. There 
results 

1 .a:, ' 1 0 [~ 'J 1 {} r~ 'J / "F ).t T tl1 = V 3T; ("'1') T /t + V ~lo~,h /t (Bll) 

= J -h[(~~») +] cLJi + 1 (~(O)î ~ (B12) 
I 0 ~ ' " ~ OOi 4 r 

V 5 

by use of the divergence theorem on the second integral. Here 5 is the 
surface bounding V and li is the direction eosine of the normal to cts . 
drawn out of the fluid. 

A further reduction of the first in~egral is obtained by use 
of the relation (see Eq. (BlO» 

(B13) 

Application of the divergence theorem then gives 

J C4f:1 (e) J' - f '0>' , 1fO) 1"0 I ~(O) l~roJ t eL5 
ot) r d.l4: - (Jlt(T) dJ + oxj (+y-) 1~iS + '0) r 

V d V ~ 5 S (B 14) 
the integrands being evaluated at time t . 

By Eq. (B7), t-t. is just ~ 1/4Tr times the right-hand side 
evaluated with V taken as infinite. We shalllimit attention to the case 
where the unsteady flow that generates the sound is of limited spatial 
extent. Then it can be established that the integrands of the surface 
integrals attenuate like r-.for faster for large r , whence the surface 
integrals vanish in the limit r-cC. Equation (B7) becomes 

(BI5) 

The last two integrands are evaluated as follows: 
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r 

I I o2.fOJ 
Ci-y o~-

b 

Z. 
r 

L ~O)_I } 
c. ~ r 

2 o~(·) I 
C;-~7 

(B I 7) 

Thus Eq. (BI6) reduees to (B I B) 

Y"", ·1;) - f' = - 4~ L f V'(+)Jt - 4ic.·1ff.'J + "t-,dc.{~d# 
It rnay be shown* that - (Y41r) vloeYr) has the properties of a three
dimensional c:5-funetion. The integral thus reduees to the final form 

* For a flow possessing a potential 'f the divergenee theorem yields 

J v"f'dV = Jf'f dS 

wher e 11 is the normal to &taken out of the fluid . Choose <f as Yr and 
take 5 as a sphere of radius r > where r = I~ -tI. 

- 4~ f v'Cfl d.V = (4~rr·1 41ft' = I 
But vr}1) = 0 jor rl= o . Thus - (~7T")VZ( Yr) exhibits the properties of a 
thr ee - dimensional S-funetion: we ean infer that 
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This completes the transformation of Eq. (B7) into the form of Eq. (B9), 
proving their equivalence. 

B2 Tabular Comparison of the Quadrupole and Simple-Source Solutions 

It may be of interest to exhibit a number of alternative forms 
for the quadrupole and simple-source solutions for flow noise in parallel 
columns including both near-field and far-field terms. The equations 
will be restricted to the absence of heat or mass addition and of body 
forces and will apply to a low-speed flow in an unbounded fluid. In the 
quadrupole formulations the stress tensor Tii will be approximated by its 
incompressible-flow value Ti.T. 

QUADRUPOLE 

(BIg) 

The starting point is an integral 
in terms of simple "divergence" 
sources, Eq. (B20). Transforma
tions employing the divergence 
thorem yield the quadrupole form 
Eq. (B2I). Equations (B22) and 
(B23) are expanded forms of 
Eq. (B2I). 

f -t = -' 1 (7!1ij"Cf))1- df " 4-lf o~ · O · r 
0' 1 

V 

(B20) 

where r =1~-11 

(B2I) 

where 

SIMPLE SOURCE 

J (BI9') 
J, (/) 
I 

to = constant ambient 
pressure 

fOJ = dominates in the near
field (prr<.<'> .. ) 

pr'J = dominates in the far
field (2.rrr»~ 

In each of the following the first 
integral is f> and the second 
integral is f). · 

(B20' ) 

(B2I' ) 
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QUADRUPOLE SIMPLE SOURCE 

(B22') 

L 1 (0 T.. (0:, t/ ( , , ti (-1) 
+ 41[Co 'I ot1 }fl ?Jij ?Jij \..T} t rr} 

+ _I i ( ctIj\ (li-ï;)()(j-iP dr (,,'\ +~>. () t'" 7. ~ r~3 ~ J 
~ 7' 

where L f..D - 3 (X'-~i 'Xii-dY _ Óij 
)(OXj\-r7 - rS I rJ (B23) 

Eq. (B23) is essentially Eq. ( 9) of R:ef. 41 (B23' ) 

Near Field Approximation. - In the near field, charac
terized by* 2 -rr r <. <. a typical wavelength À. those terrns of Eqs . (B23) 
and (B23 ' ) whic h are -- r- I may be neglected in comparison with those 
..... (1 and~r-~ . 

(B24) (B24' ) 

* See footnote next page 
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. Now compare the time t at the point X at which t is measured and the 
earlier time t at the point 4 at which the sound was emitted: the transit 
time t -~ is srnall in the n~ar field. Thus we may approxirnate TlJYl't) 
by two terrns of a Taylor series as 

lit)(1 ,t) ~ ,/0) ( t) 
~J -t I + (oT,() ( t~t ) 

~-t I ,i; 

(TijO) r oT· ~O) 
~ + W )~ ,~ c. 

To this order of accuracy it is seen that Eqs. (B24) and (B24') are 
equivalent. 

(B25) 

(B26) 

(In the light of the last result, reexamination of Eq. (B23) 
shows that the r-z dependence is only apparent: the first two integrals 
jointly possess an r-J space dependence in terms of the source strength 
at time t ). 

Far Field Approximation. - In the far field, charact
erized by 21[r» a typical wavelength À. , those terms of Eqs. (B23) and 
(B23') which are~ ('dominate over those- r-Z(see last paragraph) and~(3; 
the latter (the near-field terms) have attenuated to negligible proportions: 

(B27) (B27' ) 

* This characterization has a precise meaning with respect to the 
acoustic disturbance from a single volume element aJ4. a distance r fr om 
the observer. When referred to a volume integral, ds above, an observer 
may be in the near field of some elements and the far field of others 
unless 21TV Jh < < À) where V is the volume . However, this condition 
is probably rnuch too stringent in view of the incoherence of the distur
bances from volu.me elements separated by more than a correlation length 
L. A sufficient condition for a point ~ to be regarded as located in the 

near field of a turbulence volume V would appear to be L < <. À. together 
with requirernent that .! lie within V or a distance <C< À. outside V . 
(Since the boundary of V is only vaguely defined the last condition is 
rather vague) . 
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If the condition 2lfr»À is supplemented by r » V'iJ , then variations in 
J4. are unimportant in the integrand except as they figure in the retarded 
time t. This yields the further simplifications 

), J I 1. ~ X' J(ctT/O

)) J 
l-t· = 41fC: 7+ ?;t1. _'(f 1 ·1 h 1 j(!fJJtJ 

T-P = 41("c'i tDF ~it 
(B28) (B28' ) 

Eqs. (B 28) and (B28') are compared in Section 2.3 of the main text by 
means of a momentum balance. 

B3 E ffects of Bodies in the Flow or Bounding Surfaces 

Solution in Terms of Co). - When a fluid is bounded 
internally, as by immersed bodies, 0 externally,Eq. (B7) must be 
supplemented by surface integrals (cf. Eq. (B3»: 

By virtue of Eq. (B14) and the definition of t ti) , 

this is 

(B29) 

The first int egral is the same as the right hand side of Eq . (B15) except 
for the finite volume of integration V. The analysis thereafter is 
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applicable on replacing 00 by V. The result is for point ~ within V , 

where fO) is a solution of the incompressible flowequation, 

(B33) 

(This is Eq. (A21) in the absence of body forces F( or mass addition rn.) 

If the surfaces are fixed (or if the surface elements move 
in their own plane) lLu,, 1:: o. This can be employed in the momentum 
equation which reads in the acoustic approximation 

~ ~u,.(I } 

l~ O~i == Po 1, ~ (B34) 

to yield i 0 : lf" = 0 en.s Thus for such surfaces the third 
integral of q. (B32) vanishes. 

Value of CO) - The general solution for the incom-
pressible part of the pres ure field in the presence of bounding surfaces 
5 is given by 

!h(O)=- I j.l(tTf) d!}+_l 0 j(·AlJ) 1.dS+ -Ilfif.ro)) tets (B35) 
T 4ïF r ClL/;O J. Jt I 41[01: 1(jt tt 1-1[" ~-~ ~ ~ r 

V d .s 5 t 

By procedures similar to those leading to Eq. (B14) this may be trans
formed to 

(B36) 

Equation (B36) is equivalent to Curle's equation following (2. 14) (Ref. 6) 
A except for the use above of the current time t in place of the reiarded time 
tin the integrands. With this difference all his later steps apply. Thus 

I 0 .l--L (DU~O) ,/0) t. ~OJ ) l. aS 
41f Oxj !S r \ • ~ + ~1 t } 

(B37) 

+ * l+~( ed~"r + tij)! l; .is 
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where ~ - =:-ti' + 0 Li is the stress tensor giving the stress . X 
(0) (0) t(o) (" 

acting i 4he -IJ d{rectio on a fluid surface element with normal in the 1 
direction. Following CurIe (Ref.6 ) 

l è> C (O) (b) b (0) 1 0 ( (0') 
i 1\ eUi Ui + r ~j ) = - i ot tUi (B38) 

and if there is zero normal velocity at the surface 5 ; that is, if 5 is 
fixed or if its motion is everywhere parallel to the surface then 

1· IA,' 
I ~ 

Therefore Eq. (B37) reduces 

where p.ro} 

~ 

o (B39) 

(B40) 

(B41) 

(B42) 

is the IJ component of the force exerted by unit area of the surface 5 on 
the fluid. 

Physical Interpretation. - The resultant pressure field 
due to a flow with bounding surfaces is given by Eq. (B32). The part fOI 
(Eqs. (B41) and (B42» is the "incompressible" field (essentially the near
field) that dominates in and near the unsteady flow, and the part IV' is the 
compressible field that dominates at large distances. In the absence of 

bounding surfaces f'iS given by ~ -' J Jtf' ~ 
- 41fC.& P L r ctt (B43) 

It is evident that this same integral in Eq. (B32) repre
sents the prirnary radiation field 1'(1) due to the unsteady flow. The first 
surface integral, from its form and from the fact it depends on--p°)rather 
than beo), represents the reflection and diffraction (scattering) ot the 
primJry sound from the bounding surfaces. The second integral (which 
vanishes if S is fixed) accounts for additional radiation if the surface is 
vibrating (this would supplement that which would arise from changes in 
t(D) due to such vibration: see last integral of Eq. (B37). 

(In cases where the surface vibration and any mean flow 
are sufficiently small to inhibit nonlinear coupling effects a simplification 
may be made: the vibratory contribution to f) is suppressed so that the 
last integral of Eq. (B32) represents the entire effect of vibration as a 
pure acoustic effect). 
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The effect of a rigid boundary does not appear explicitly 
in Eq. (B32) except in the scattering integrals. The effect is automatically 
accounted for in fO), the ftincompressible" part of the field. This is 
exhibited in Eqs. (B41) and (B42) where a part of the value of 1t is con
tributed by a distribution of dipoles over the bounding surface S: the 
dipole strength Pt') represents the incompressible flowapproximation 
to the force per unit area exerted by the surface on the fluid. (The 
"scattering" integral of Eq. (B32) provides a correction, with -fli =- pt) 
and WO)+ Piel) being the corrected force). 

B4 Remarks on the Correlation Volume 

The length L defined by Eq. (2 . 30) is an average scale 
of the turbulent property cr--. The asymmetry of the eddies may be 
accounted for by use of unequal scales along the three axes 

(B44) 

implying the eddy correlation volume is a parallelepiped; however, 
definition of the individual L"L2/ L3 poses a problem. A more precise -
but more complicated - interpretation replaces the cube L~ or paralle
piped L,Lz.LJ by a volume whose curved bounding surface is given by 

1\ 

radial distance 'S = function of direction 

Working backwards from Eq. (2.30), with 

d-.S. = S2.d,~ iJl'ne <ie af (B45) 

we obtain + ~J (9, cf) = [L R (~ , ~ i 1) iÇ dS ]eJ!f t~e~ (B46) 

and L3 - + rrr rr~J C e,Lf) A;11 e cL& af (B47) 

° 0 
1'\ 

The 'quantity S(9,t-P) may be termed the "correlation radius" in the direc-
tion e, f. It is to be noted th at ~ is ~unaltered by a revers al in direction. 
In the case of spherical symmetry (~ = constant) 

L3 = ~ 1T ~j (B48) 
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APPENDIX C 

ESTIMATION OF RATIO IOe10t-1/1 Ui oe(Oïo~l. 

. We seek to estimate the ratio (o~(o'/?Jt)'/ (Ui /}pc0/o'lJ' 
= (of/ot)'!Ui ofloïJ' , where ( )' designates the root mein 
square value. Now it can be shown that for a turbulent flow homogen
eous (i. e., statistically uniform) in space and time 

(1f)' 

(~ / O~I ) 

[ 

1. ] 1/2. l.,.,( A,(OI ),(01/ C ~ . 't) '\ 
?>T r I ':> I" v ~:: l' " 0 

CO) 

(02) 

where < -tri fCOI'~viS the two-point covariance with time-delay rr. For 
purposes of our extimate we shall ignore the complete violation of 
spatial homogeneity in or near a jet and assume 

(C3) 

(C4) 

For the purpose of Eq. (C~4), < tCD)1r)~vmust be evaluated in a frame of 
reference moving with the turbulence pattern. 

/ 
Equation fC4) .:wql be applied to the correlation R($,rc:) 

== < fCO/f01'>AI/ < 1Io)').AV for the near field of a jet as given in Fig. 20 
of Re . {/4-). INoie the notation change J -~I ) In that figure the 
ordinate is R ( $:1') and the abscissa time delay ct. Curves are plotted 
for the separation values ~I = 0, 1. 0, 1. 5, 2. 5, 4. 5, 5. 5, 7. 0 and 10 
inches. As pointed out in Ref. (14-), it is the envelope of these curves 
that constitutes the Rvs. 't curve in a frame moving with the turbulence 
pattern. Moreover, it can be seen from Fig. 6 (r.ight hand sketch) that 
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/, 

envelope 

~-------------/~4----------~~ 

Sketch 5. Space-ti:me correlations near a jet (fro:m Ref. 14) 

Thus we express Eq. C4 as 

[ ?!RJ!2 
{} 'Cl envelope (C5) 

U;u' [ {}~R. J]i 
07: ~,= 0 

However, the curvature o/?>T2 is poorly defined near'1: = O. 'Therefore we 
approximate the square root of the ratio of curvatures as the inverse 
ratio of decay times to some arbitrary fraction of R{o),assuming the curves 
are similar. The ratio for R -0 . 2 (see Sketch 5) is 3.4/18.4 or about 
1/5 . * From Fig. lof Ref. (14) the value of u' ju may be taken as Q (1 1100) 
at the specified location x/D = 1. 5, Y ID .. 1. 5 outside the jet mixing region. 
Therefore Eq. ce5 ) yields 

j et near 
field 

Of 15 ) \- Y,oo o( 20) (:C6) 

Actually values of most significance for the noise 
generation would be those within the mixing region. Here we have corre
lations of l ongitudina l velocity perturbation only, no pressure data . How
ever, an equation of the form (E5), with R = <u,I.l,'>"vjCU,)'CU(); should still 
serve to provide an estimate because of the dynamical association of 

* This ratio of decay times (which corresponds to the ratio "eddy" lengthl 
decay length) is a measure of the fluctuation parameter 0( of Eq. (3. l)and 
later equations. 



(73) 

of velocity and pressure. (A factor of two in both frequencies and wave 
numbers cancels out). Applying this to Fig. 11 of Ref. 14, with \IL'/U 
taken 0(1/6) from Figs. 5 and 6, yields 

jet mixing 
region 

o ~ ~ ) (C..,7) 
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APPENDIX D 

SINGLE-FREQUENCY PATTERN OF SOURCES ALONG A LINE SEGMENT: 
FAR-FIELD AUTOCORRELATION AND SPECTRUM 

The line distribution of acoustic sources assumed in 
Sec. 3.4 has a source-strength covariance 

9) - 0: (t; - UT+l 
K. (~,)'t+) < rr'-)AV e ' COs W.'T+ (Dl) 

This is Eq. (3. 3) with l' generalized to rr+ = 'r + ~': here U'T = M ç, 014 9 
refers to a required time delay between source points and "t' is an arbi
trary time delay between two pressure observations ~ and f' at the field 
point ~ , In terms of R the pressure autocorrelation is (Eq. (3.7»: 

, y3 -z JoO,,",-, 
101(L~2;r~ R (~, ,1:+) d~, 

_00 

(3.7) 

The following transformations will be helpful in evaluat
ing the integra~: 

1; - urr 
I 

rç, ( I - M ~s e) - U re ' 

<;, ® - ure' 

®r 
! ~, - urr'/ ® (D3) 

()Jl+ ~~, + w/t' 

U {->, + ( (»0+ lJ-)rr' 

~! + 
Wo , 
®I"[ (D4) 

where 

~ - I - Mcose 
(D5) 

~ 
W~ CDS e 

-
Co 

." 
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" "" 

The integral involviD.g sin fYt vanishes, being odd in z. The remaining 
integration yielclsthe final result for the autocorrelation: 

(D6) 

The frequency spectrum (spectral density) in the far 
field is given hy the Fourier eosine transfor.m of the autocorrelation 
(see Eq. (3.8»). Since 

.....L ~ (cos W. re' 
1f Je ® w) 

the spectrum function is 

_ o--3 yJ<(fl>,AV 

- .f921[124ll1/®1 
--4-e (D7) 

Eqs. (D6) and (D7) are the respective results of evaluat
ing Eqs. (3. 7) and (3.8) of the .main text. 
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APPENDIX E 

ROUGH ESTIMATION OF EFFECT OF JET FLOW ON TIME DELAY L 

As a first approximation to a real round jet the conical 
spreading and graduated velocity profile may be neglected: the jet is 
replaced by an infinite cylinder of diameter D (nozzle diameter) and 
uniform velocity U imbedded in fluid at rest. Such a model may serve 
for the approximation of the time delay't for the case of sound rays that 
do not make too small an inclination to the flow direction. 

For simplicity however we shall take a still cruder model, 
namely, a two-dimensional plane j et of width D. For this case we shall 
obtain an approximate value of 1: . The situation is shown in Sketch 6 . 
A species of ray acoustics will be assumed and refractioh. Will be neglected. 
The main assumption is that the acoustic disturbance is governed by a 
linear superposition of convection and propagation. 

p 

- source vi r tual 
position position 

X~ 

t 
a' 

a L 

J~ '> )(, 

U -?-

'Sketch 6. Sound rays from pair of sources in idealized plane jet. 
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By virtue of the convection an effective source separation 
~ takes over the role of the actual source separation' . By geometry 

~ ( ~e, I çez) 

~I U (tl(. - ta:) 
J 

'( 

ç, - M ~z XZ/X 1 çz 
since ta, a-/ C. t1W Q ax, /Cox 

] 
~ 

t~ a'/co ~g ~ a'x~ / c.x. 

The time delay tt is approximately given by 

'(;c.x 

Equation (E3) is the final result for rays in a plane 
normal to the jet boundary. Comparison may be made with 

) 

(El) 

(E2) 

(E3) 

(E4) 

the value in the absence of a jet. It appears that the jet convection 
deemphasizes the effect of the component ~z of the separation of the two 
sources. 

Equation (E3) is easily generalized to allow for a 
velocity gradient. In particular, if the velocity increases linearly from 
the edge of the jet 

where 10" is the Mach number half-way between the two points. The 
velocity gradient therefore further deemphasizes Sz . 

(E5) 

It is not difficult to allow in addition for refraction - if the 
angular amount is known - but the crudeness of the present model would 
not seem to justify the additional complexity. 
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FIG. 1. RAREFIED A AND COMPRESSED EB 
REGIONS IN' AN EDDYING FLOW. 
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FIG. 3. IDEALIZED STRENGTH DISTRIBUTION OF NOISE SOURCES ALONG A JET. 
Area under curve is total noise power emitted by jet. 
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FIG. 4. CALCULATED DIRECTIONAL SOUND INTENSITY EMITTED BY A 
MODEL SIMULATING FEATURES OF JET FLOW: random pattern 
of noise sources defined by covariance 1't is created continuously at 
left face of volume V, moves through V at Mach number M = U/co' 
and disappears at downstream face. Fluctuation parameter «= O. l. 
(Refraction by jet velocity field - not allowed for - should produce 
an inward dimple as g~O: see Fig. 11). 
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FIG. 5. EFFECTS OF SOURCE FLUCTUATION ON 'CONVECTIVE' SOUND 
AUGMENTATION: noise sourees of Fig. 4 rnoving at sonic speed. 

0(. = 0 ,--fluctuation/ convection = 0 ("frozen" pattern) 
0(= O.l,-fluctuation/convection = 0.1 
0<.= 1. O'-fluctuation/convection = 1. 0 

cP 



UT 
1R. = Re> (~, 1 T) 

STATIONARY 
SEMI-FROZEN 

PATTERN 

~I 

UT 
~ = OZo (~, - U l, 'L) 

PATH FOR 9 = 90° 

"CONVECTED" 
SEMI - FROZEN 

PATTERN 

/' 
,/ 

--~- @, 
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