<]
TUDelft

Delft University of Technology

Securing an Efficient Lightweight AES Accelerator

Huang, R.; Aljuffri, A.A.M.; Hamdioui, S.; Ma, K.; Taouil, M.

DOI
10.1109/TrustCom60117.2023.00121

Publication date
2023

Document Version
Final published version

Published in
Proceedings of the 2023 IEEE 22nd International Conference on Trust, Security and Privacy in Computing
and Communications (TrustCom)

Citation (APA)

Huang, R., Aljuffri, A. A. M., Hamdioui, S., Ma, K., & Taouil, M. (2023). Securing an Efficient Lightweight
AES Accelerator. In J. Hu, G. Min, G. Wang, & N. Georgalas (Eds.), Proceedings of the 2023 IEEE 22nd
International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom) (pp.
841-848). (Proceedings - 2023 IEEE 22nd International Conference on Trust, Security and Privacy in
Computing and Communications, TrustCom/BigDataSE/CSE/EUC/iSCI 2023). IEEE.
https://doi.org/10.1109/TrustCom60117.2023.00121

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

https://doi.org/10.1109/TrustCom60117.2023.00121
https://doi.org/10.1109/TrustCom60117.2023.00121

Green Open Access added to TU Delft Institutional Repository
as part of the Taverne amendment.

More information about this copyright law amendment
can be found at https://www.openaccess.nl.

Otherwise as indicated in the copyright section:
the publisher is the copyright holder of this work and the
author uses the Dutch legislation to make this work public.

https://repository.tudelft.nl/
https://www.openaccess.nl/en

2023 IEEE 22nd International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom) | 979-8-3503-8199-3/23/$31.00 ©2023 IEEE | DOI: 10.1109/TrustCom60117.2023.00121

2023 IEEE 22nd International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom)

Securing an Efficient Lightweight AES Accelerator

*Ruoyu Huang'#, *Abdullah Aljuffri’, Said Hamdioui, Kezheng Ma*, Mottagiallah Taouil
t Department of Computer Engineering, Delft University of Technology, Delft, The Netherlands,
R.Huang-4 @student.tudelft.nl, {A.A.M.Aljuffri, S.Hamdioui, M.Taouil} @tudelft.nl
¥ Silicon Integrated, Eindhoven, The Netherlands, kezheng.ma@si-in.com
* These authors contributed equally to this paper.

Abstract—The Advanced Encryption Standard (AES) is gen-
erally regarded as one of the most popular cryptographic
algorithms for ensuring data security. Typical lightweight imple-
mentations of the algorithm published in the literature focus on
area and power optimization, while neglecting the performance.
This paper presents a novel lightweight approach for the AES
algorithm and considers both encryption and decryption. In
terms of performance per unit area and performance per unit
power, our 32-bit design outperforms the state-of-the-art by
1.69x and 1.27x, respectively. These improvements become even
larger when implementing higher data-path designs, such as 64-
bit or 128-bit designs. To enhance its resilience against side-
channel attacks, we modified our design by adopting and further
improving on the most recent countermeasure, i.e., Domain-
Oriented Masking (DOM). The results demonstrate that our five-
stage and eight-stage 1°’-order DOM SBOX designs achieve a
reduction in area of 9.9% and 6.9% compared to the original
proposed design, respectively.

Index Terms—Advanced Encryption Standard, Domain Ori-
ented Masking, Lightweight Accelerator, Internet of Things, Side
Channel Attacks

I. INTRODUCTION

According to a study that was recently released in the World
Economic Forum [1], malicious attacks were launched against
1.5 billion Internet of Things devices during the first half of
2021. The number of instances of data breaches increased by
15.1% as compared to the previous year. As a consequence of
this, the security of the Internet of Things (IoT) has become
of the utmost importance and can no longer be treated as an
afterthought. This is particularly true when considering the
anticipated yearly increase in adoption of those devices, which
is expected to reach 43 billion in the year 2023 [2]. With
respect to data protection, the Advanced Encryption Standard
(AES) [3] is one of the algorithms that is most generally
recognized and utilized today. It was first presented to the
public by the National Institute of Standards and Technol-
ogy (NIST) in the year 2001. AES is currently the primary
encryption method for many applications, including cloud
computing [4] and health care [5]. Traditional implementations
of the AES use pipelining techniques in order to achieve a high
throughput [6-8]. However, as these implementations consume
a significant amount of memory and power, it is unfeasible to
use them in IoT devices that are limited by area and battery
capacity [9]. Therefore, implementations of AES should be

This work is partially funded by the “Resilient Trust” project of the EU’s
Horizon Europe research and innovation programme under grant agreement
No. 101112282.

2324-9013/23/$31.00 ©2023 IEEE 841

DOI 10.1109/TrustCom60117.2023.00121

area and power efficient, while simultaneously minimizing the
impact on throughput to the greatest degree possible.

To overcome these challenges, several lightweight AES
accelerators have been proposed, which reduce area and power
consumption by shortening the data-path from the conven-
tional 128-bit to 8-bit [10-13] i.e., reducing the number of
SBOXes from 16 to 1. Several researchers [14—16] further
pursued the reduction of area requirements at the expense
of additional cycles. In general, 8-bit data-path designs sig-
nificantly effect the throughput as at least 160 cycles are
required per encryption. More recently, 32-bit designs have
been proposed. Such designs achieve a better trade-off between
performance and energy efficiency [17]. Most of the above
articles focused or reported only on the encryption module.
Davis and John [18] considered actually both modules and pro-
posed optimizations across them. However, as will be shown
in this paper later, the shared modules have not been fully
optimized. Additionally, their reported area measurements only
consider the encryption module. To fairly evaluate the designs
and realize the best power/latency/area trade-off, it is important
to provide the overhead of both the encryption and decryption
modules.

This paper presents a novel low-area, low-power and low-
latency AES hardware accelerator. Our method takes advan-
tage of the fact that the key remains unchanged throughout a
communication session, eliminating the need for repeated exe-
cution of the key expansion module. Additionally, we integrate
an improved version of the Domain-Oriented Masking (DOM)
which is one of the most advanced countermeasures against
side channel attacks (SCAs). Our DOM-based AES design is
more area-efficient in comparison to the original DOM design.
In summary, the contributions of this paper are:

o A proposal of an novel low-area, low-power, and low-
latency design of the AES algorithm which is suitable
for IoT applications.

o A proposal of a side channel resilient version using an
improved DOM implementation.

o Evaluation of the energy consumption, area overhead and
performance of the proposed design.

This paper is organized as follows. Section II introduces the
background on AES, SCAs and DOM. Section III introduces
our proposed AES designs and its DOM security extension.
A comparison of the implementation results are provided in
Section IV. Finally, Section V concludes this paper.

Authorized licensed use limited to: TU Delft Library. Downloaded on October 02,2025 at 06:04:07 UTC from IEEE Xplore. Restrictions apply.

Plaintext Ciphertext

Round 0 ‘ AddRoundKey ‘ ‘ AddRoundKey ‘ Round 0
4& P
‘ SubBytes ‘ ‘ InvShiftRows ‘
‘ ShiftRows ‘ ‘ InvSubBytes ‘

Round 1 to N-1 Round 1 to N-1

‘ MixColumns ‘ ‘ AddRoundKey ‘
‘ AddRoundKey ‘ ‘InvMixColumns‘
‘ SubBytes ‘ ‘ InvSubBytes ‘

Round N ‘ ShiftRows ‘ ‘ InvShiftRows ‘ Round N

[AddRoundKey | | AddRoundKey |

Ciphertext Plaintext

Fig. 1. AES Encryption & Decryption Flow Diagram

II. BACKGROUND

This section provides a brief background on the AES
algorithm, SCAs, and DOM countermeasure.

A. Advanced Encryption Standard (AES)

AES is a symmetric cryptographic algorithm that is used in
the cyber world for encrypting and decrypting data to protect
them from cyberattacks. It has a fixed data block size of 128
bits, and a key length of 128, 192, or 256 bits. The key length
determines the number of rounds required: 10, 12, or 14 rounds
for 128-bit, 192-bit, or 256-bit key lengths, respectively. The
128-bit data block is divided into 16 bytes, which are mapped
to a 4 x 4 array referred to as the State array. The diagram of
AES encryption and decryption flow is presented in Fig. 1.
Each round of encryption includes four primary modules:
SubBytes, ShiftRows, MixColumns, and AddRoundKey, except
for Round 0 and the last round (see Fig. 1).

AddRoundKey module involves bit-wise XOR operations of
the round key and State array. SubBytes module is the only
nonlinear module in the AES and plays a crucial role in
defending against linear crypt-analysis [19]. When performing
SubBytes module, each byte in the state array is substituted
with another byte using SBOX. The SBOX is generated using
a combination of a multiplicative inverse in Galois Field
GF(28) and an affine transformation [20]. ShiftRows module
is a transformation that cyclically shifts the second, third,
and fourth rows of the State array by one, two, and three
bytes to the left, respectively, while leaving the first row un-
changed. The InvShiftRows module is computed by performing
the corresponding rotations to the right. The MixColumns
and InvMixColumns module perform a modular polynomial
multiplication in Galois Field GF(28) on each column of the
State array.

B. Side channel attacks (SCAs)

Side channel attacks take advantage of vulnerabilities by
analyzing unintentional physical information that is disclosed
during the device’s normal execution [21]. Side channel attacks
are capable of extracting confidential data, including crypto-
graphic keys, from a system by analyzing the information

that is unintentionally leaked. There are various physical
information of a system, such as its power consumption,
electromagnetic radiation, timing, and acoustic emissions,
which can offer insights into its internal functioning [22,
23]. Among them, power consumption is one of the most
widely abused, primarily due to its high success rate and
straightforward execution. In side channel power attacks, the
adversary performs a statistical analysis on power consumption
measurements obtained at an intermediate target, such as an
SBOX operation. These measurements will then be connected
to a leakage model [24], to obtain the secret information.

C. Domain Oriented Masking (DOM)

To protect implementations of AES against SCA attacks,
a widely used technique involves randomizing all intermedi-
ate results, known as masking schemes. However, in 2005,
Stefan et al. [25] discovered that circuits of masked gates
are vulnerable to classical DPA attacks due to glitches that
occur within the circuits. To overcome this issue, the threshold
implementation (TI) was proposed by Nikova et al. [26] to
counter SCA attacks and glitches. However, implementing TI
requires a high number of shares, which can be costly. Besides,
redesigning the non-linear components of the circuit is needed
to meet the requirements for higher-order TI, leading to a
significant increase in design effort. To provide a lower cost
of design, the DOM technique was proposed [19]. Compared
with TI, the number of required shares in DOM is reduced
without sacrificing the security level. DOM implementation
in hardware has demonstrated its resilience to SCAs up to at
least 154" order attacks [19].

In DOM, each variable is represented by d + 1 shares to
protect the circuit from d"-order SCAs. The fundamental
principle of the DOM approach is to maintain the indepen-
dence of shares within each domain. This is simple for the
linear modules of AES, i.e., MixColumns, AddRoundKey, and
ShiftRows, as there are no cross-domain calculation required
among the different shares. However, the SubBytes operation,
which is the only non-linear module in AES requires a
substantial amount of multiplications. When performing these
multiplications, shares may cross domain borders, making
it necessary to use fresh random numbers to maintain their
statistical independence.

Hannes and his team [19] proposed two multipliers named
DOM-indep and DOM-dep. First, the DOM-indep multiplier
requires that the inputs from different domains are uniformly
random and independent from each other. Take the 1°%-order
DOM-indep multiplier as an example which consists of two
share domains. Assume that the two independent inputs of
multiplier are x and y, where x = A, & B,, y =4, & B, (
”@” represents the xor operation). Furthermore, Z, denotes the
fresh random number. The output q can be expressed as (1).

q=T*y
= (Az ® Bz) (Ay ® By)
=A;Ay ® A By ® B, Ay ® BB,
= Az Ay ® (AeBy @ Z0) @ (B Ay ® Zo) @ B2 By

€y

842

Authorized licensed use limited to: TU Delft Library. Downloaded on October 02,2025 at 06:04:07 UTC from IEEE Xplore. Restrictions apply.

Hannes et al. [19] categorized the product terms into two
parts: inner-domain terms (A,B; and A,B,) and cross-
domain (A, B, and A,B,). The inner-domain product terms
do not reveal critical information since they originate from
the same domain. In contrast, cross-domain calculations can
only be performed on independent inputs to prevent leakage
of information for either = or y. A fresh random Z; value is
used to remain the statistical independence of the DOM-indep
multiplier outputs from other values. Additionally, flip-flops
are employed to prevent glitches from propagating through this
block. Secondly, Hannes et al. [19] proposed the DOM-dep
multiplier based on the structure of the DOM-indep multiplier,
which does not require the independence of inputs. However,
it requires more fresh random values and additional area.
The 1%'-order DOM-dep and DOM-indep multipliers can be
easily extended to higher order by using more shares and fresh
random values.

III. LIGHTWEIGHT AES AND DOM EXTENSION

This section presents our proposed implementation ap-
proach for AES and its protected version using DOM. We start
by motivating our approach, followed by a detailed explanation
of its design and implementation.

A. Motivation

Previous research primarily focused on implementing AES
on either an 8-bit [10-16] or 32-bit [17, 18] data-path to
reduce area and energy consumption. However, these studies
only report the area of the encryption module and neglect the
decryption part. In reality, the eleven 128-bit registers required
for the key expansion in the decryption module contribute
significantly to the overall core area. In the decryption module,
all round keys must be computed first before the decryption
can start. Shortening the data-path from 128-bit to a lower-bit
width has a much lower improvement on the area when the
decryption module is not ignored. Therefore, in our design we
focus on different data-paths in the presence of the decryption
unit and compare their performance in terms of throughput,
area, and power. Secondly, in actual applications, keys do not
change frequently. Hence, we perform the key expansion once
and store the results in the registers. As long as the key remains
the same, we can skip the key expansion step, resulting in
a significant power and latency reduction. In addition, we
reorder the sequences of Addroundkey and MixColumns in the
round function which results in further area and performance
improvements.

B. Design and Implementation of Proposed Lightweight AES

Our proposed AES designs verify whether the key changes
at the start of every encryption/decryption execution. In case
a key change is detected, we perform the key expansion
module and leave the keys inside the key registers. Otherwise,
we directly execute the round modules (i.e., AddRoundKey,
SubBytes, MixColumns, and ShiftRows). This reduces the
execution time of the decryption part by eleven cycles. To
further optimize the design area, resource sharing is employed.

843

Shared
SBOX

Shared

Input —> B
ShiftRows

>

LT

AddRoundKey

Shared
MixColumns

3
;
Enc/Dec

Fig. 2. Proposed Round Function for AES Encryption and Decryption

Key[cnt]

key register

Initially, we limit the number of registers to store the state
to a single 128-bit register that is shared in all the round
modules of both encryption and decryption. Next, we combine
the encryption and decryption modules to decrease the overall
area. The proposed scheme is depicted in Fig. 2, where cnt
represents the round index and key[cnt] denotes the key that
needs to be XORed with the State array. The boxes containing
the word “shared” represent blocks that are shared between
the encryption and decryption. An in-depth explanations of
the shared modules will be provided next, including Shared
SBOX, Shared ShiftRows, and Shared MixColumns.

1) Shared SBOX: Akashi et al. [27] proposed a new com-
posite field to optimize the structure of the SBOX, resulting in
a significant reduction of the area compared to using a Look-
up table (LUT). Thereafter, several researchers [20, 28, 29]
optimized the SBOX based on the structure provided in [27].
These papers used an SBOX which is shared by both the
encryption and decryption modules to reduce area. To the best
of our knowledge, the SBOX design described in [29] has
the lowest area. Compared with previous designs, they shared
resources in three modules: preprocess, postprocess, and scalar
square. The preprocess module performs the isomorphic map-
ping and inverse affine transformation for the decryption and
the isomorphic mapping only for the encryption. The postpro-
cess module executes the affine transformation and the inverse
isomorphic mapping for the encryption and inverse isomorphic
mapping only for the decryption. The scalar square performs a
square and multiplication with constant A = {1, 1,0, 0}, which
leads to three XOR reductions [20]. Our new SBOX is based
on the SBOX proposed in [29]; it is shown in Fig. 3. It contains
an optimized multiplier and a modified inverter. In addition, it
combines the operations of the last two multipliers proposed
in [27]. Each optimization is described next into more details.

« GF(2%) Optimized multiplier: Our optimized GF(2%)
multiplier is based on the work in [29]. That multiplier
consists of 18 XOR and 12 AND gates and its critical
path consists of 4 XOR and 1 AND gate. We simplified
the GF(2*) multiplier based on Equation (2), where
{ag, az, a1, ao} and {b3, ba, by, bo} denote the two 4-bit
inputs (see also left bottom of Fig. 3), {cs3,ca,c1,¢0}
denote the 4-bit output, and {my4, ms, ma, m1, my} are
intermediate variables defined as: my mo P mq,
m3 = ag © a1, me = az D az, My az ® ag,
and mo = a3 @ aj. Although our GF(2*) optimized
multiplier utilizes 4 more AND gates compared to [29],

Authorized licensed use limited to: TU Delft Library. Downloaded on October 02,2025 at 06:04:07 UTC from IEEE Xplore. Restrictions apply.

Input Output
[

a7-a4 c7-c4 ‘
Scalar Square P)
a7-a0 GF(2*) 3x0 GF(2') |67-00

> —~—Combined

Inverter| -
7 Multiplier

a3-a0 ~~b3-bo | GF(2Y)
Ny Optlrﬁl{ed €3-c0
Multiplier
b3-b0

Fig. 3. Proposed Shared SBOX

it requires 1 XOR gate less and more importantly has
a shorter critical path (1 AND gate and 3 XOR gates).
Surprisingly, after synthesis it turns out that the area
of this implementation is also better after synthesis. We
believe that compiler is able to extract more common
resources with this implementation.

cs = [(as®a1)&(bs®b1) P (as @ a1)&(bs ® bo) ® (a2d

a0)&(bs @ b1)] ® [(a1&b1) B (a1&bo) B (aodebi)]

= (bo&as) & (b1&(az ® a3)) ® (b2&(a1 & a3))®
(b3&(ap @ a1 @ a2 P as))
= (bo&asz) @ (b1&mz) @ (b2&mo) B (bs&ma);
= [(as®a1)&(bs®b1) B (az®ao)&(ba®bo)] B (a1&br)

(ao&bo)

= (bo&az) B (bi1&as) B (b2&(aoPaz))®(bs& (a1 Bas))

= (bo&az) D (b1&a3z)® (ba&m1) B (bz&mo);

= [(a3&b3)@(ag&bg)@(ag&be,)}@[(ay,&by,)@(az&bg)}
[e2) [(al&bl)) (al&bo)) (ao&lh)]

= (bo&',(h) (bl&(ao@(h))@(bg&(ag@ae,))@(bg&aQ)
(bo&(h) (b1&m3) (bg&mg) D (bg&ag);
[(ag&b3) (ag&bg) (a2&b3)}@[((h&bl)@(ao&boﬂ
(o&ao) (b1&(11) (bQ&ag) (&) (bg&(ag (&) ag))

= (bo&ao) (61&0,1) (bQ&ag) D (b3&m2).

@)
« GF(2%) Inverter: To decrease the area of the inverter
and make the design easier to secure (by performing
less non-linear operations), we further optimized the
inverter based on the structure that proposed in [20].
The improved design is shown in Fig. 4. The GF(2?)
Scalar Square performs a GF(22) square operation and
a scalar multiplication with the constant ¢ = {1,0}.
Equation (3) illustrates the Scalar Square calculation
of [20] (left) and our combined design (right), where
ds,dy are the inputs of Square module, es, e, denote
intermediate results between Square and Scalar module,
and f3, fo represent the outputs of Scalar module (see
Fig. 4). As can be seen, our design requires 2 XOR
operations less.

€3 = d3
ex = dz P da . fa=ds

[20] o= es@es Combmed{ o = ds 3)
fa=e3

844

d3,d2 GF(2?) 13,12 d3,d2
S
Scalar Square

v

2
d3-do 8Le0—h1no| GF) 1.3,
Input —~—» W X Combined —~Output

Multiplier
d1,do e1e0 | GF(2%)
PN N
N Multiplier| 1 7o el,e0
. f

Fig. 4. Proposed GF(2%) Inverter

a AND-XOR}—* o,

- 110

%) oo :
a5 [AND-xOR] 05
Y AND-XOR o, AND-XOR

X 1+ A
X lo

3 %P o B

X2 ¢ i

LA 2
X1 ¢ 17

Xo T ;
Xg — E o}

X1

%’_i_‘
by AND-XOR o

1
L
bt JAND-XOR 0,
et ||

b, +[AND-XOF o,
bs {ANDXOR} 0,

Fig. 5. GF(2*) Combined Multiplier

The last step of the inverter consist of two G F'(2?) mul-
tipliers. Equation (4) shows the design proposed in [20].
Our optimizations are provided after the second “=" sign
by factoring out X = h; @& hy commonly between
both multiplications. Our combined G F(2?) multiplier
achieves a reduction of 1 XOR gate and 2 AND gates,
compared with the design in [20].

:(ds&h) (d3&ho) (dg&hl):(dg&X)@(dz&hl),

x2 = (d3&eh1) ®(d2&ho);
=(€1&h1) (el&ho)@(g&hl):(el&X) (f()&h1);
:(el&hl) (eo&ho)

(C))

« GF(2%) Combined Multiplier: The last two multipliers

used in the SBOX presented in [29] were treated as two

separate multipliers. However, Ahmad [30] proposed that

these two multipliers can be merged together, resulting

a significant reduction in area as can be seen at the

most right part in Fig. 3. However, it is not clear from

the paper how this shared multiplier works. For clarity,

we combined the multipliers ourselves and provided a
detailed structure of it in Fig. 5.

2) Shared ShiftRows: Davis and John observed that the
first and third shift operations in ShiftRows and InvShiftRows
can be shared [18], as both produce the same results for the
decryption and encryption. This can be seen in Fig. 6. How-
ever, the other two rows (i.e., row two and four) have different
behavior and multiplexers are needed to select between them.

3) Shared MixColumns: We optimize the Shared Mix-
Columns based on the proposed design in paper [20], which

Authorized licensed use limited to: TU Delft Library. Downloaded on October 02,2025 at 06:04:07 UTC from IEEE Xplore. Restrictions apply.

[[Soo Soap So2 Sos |] [T Soo Soi So2 Sos |]
S11 Si2 Sz Sio S13 Sio Sii Sie
‘ 5&2 523 520 Sil ‘ ‘ 5&2 523 SZU SEJ
| S33 Sso Ssz1 Sza | S31 Sso Ssz Sspo

(a) ShiftRows (b) InvShiftRows

Fig. 6. Shift Transformation of ShiftRows and InvShiftRows

roundkey

InvMixColumns
Part |

AddRoundKey -‘1
Enc/Dec
roundkey

(a) MixColumns/InvMixColums [20]

Shared MixColumns
roundkey

1 AddRoundKey 1
In—e@ ‘ _________ | ‘ ‘ out
AddRoundKey 10 | InvMixCqumnsJ*'0 0
roundkey Enc/Dec Enc/DecT Enc/Dec T

(b) Proposed Shared MixColumns

=

:

(=)

o

c

3

2l
+

X

Fig. 7. Diagram of MixColumns [20] and Proposed Shared Mixcolumns

shares resources between MixColumns and InvMixColumns.
The design in [20] however requires an additional InvMix-
Columns calculation to rectify the roundkey (see Fig. 7(a)).
In contrast, Fig. 7(b) shows that our proposed Shared Mix-
Columns combines MixColumns and InvMixColumns, and
reorganizes the sequence of Addroundkey and Shared Mix-
Columns to avoid performing this additional InvMixColumns
calculation. This lead to further area improvements.

C. Design and Implementation of Proposed Lightweight DOM

DOM was proposed in [19] to protect AES implementations
against SCAs. The authors introduced two types of SBOXes:
a five-stage SBOX and an eight-stage SBOX. The five-stage
SBOX represents an optimized version of the eight-stage
SBOX, resulting in a savings of three cycles per round. Hence,
overall it is 33 cycles (3 cycles x 11 rounds) faster, which
is a significant performance improvement. This improvement
comes with only a minor increase in the overall area, from
2.6k Gates to 2.8k Gates, as documented in [19]. Therefore,
we chose to start from the five-stage SBOX and integrate it into
our optimized design. Note that a 1%*-order DOM can be easily
scaled into a higher order DOM without redesigning com-
ponents [19]. Therefore, without loss of generality, we focus

Shared 1 Shared
ShiftRows AddRoundKey ‘O MixColumns AddRoundKey ‘1 A
I MR N out
DOM

SBOX

I

Shared
ShiftRows

Enc/Dec

in—*

B —
m

Enc/Dec

key register

I AddRoundKey I

Shared
MixColumns

AddRoundKey

Fig. 8. Proposed Design for DOM Encryption and Decryption

845

on the optimization of the 1¢-order DOM. As our proposed
low-area design considers both encryption and decryption with
shared resources (see Fig. 2), the lightweight DOM AES was
implemented in the same manner, diverging from the original
design that concentrated only on encryption [19]. Fig. 8 shows
the main part of our lightweight DOM design, where A,
B, represent the input shares, and A,,:, B,y the output
shares. As discussed in the background, the independence of
d+1 shares within linear modules can be ensured by employing
d+1 identical modules. However, the non-linear SBOX module
requires to be carefully designed. Our design is based on the
lightweight DOM SBOX proposed in [19]. In comparison
to that design, our approach shares the resources between
encryption and decryption parts using the preprocess and
postprocess functions. In addition, we optimize the DOM-
indep and DOM-dep multipliers based on our simplified and
shared multipliers to further reduce the area.

Fig. 9 depicts our design of the 1%t-order five stages
lightweight DOM SBOX, where Ag;, and By;, denote the
input shares, and A,,,; and Bg,,; denote the output shares. In
the figure, Zy, 21, ..., Zg and A,q, B,9, ..., A.3, B,3 are fresh
random values of the simplified DOM-indep and DOM-dep
multipliers, respectively. The flip-flops with dotted boxes are
optional registers that are only necessary in pipelining scenar-
ios. For example, when the data-path is less than 128 bits, the
SBOX needs to be reused multiple times within one round,
causing the input to change before the round is completed.
In this case, the dotted flip-flops are necessary to ensure the
design’s functional correctness. Fig. 9 also highlights the parts
that we improved in red, i.e., the DOM multipliers. Compared
to the original DOM multipliers (see [19]), we replaced their
multipliers with our simplified multipliers (see (2)) and shared
multipliers (see Fig. 5), resulting in a reduction in power
and area. In addition, multiplexers are used to select between
inputs for the encryption and decryption units.

Fig. 10 illustrates our changes made to the 1%*-order Dom-
dep multiplier [19]; we refer to it as simplified DOM-dep
multiplier. In the figure, A,, B,, Ay, By are the inputs, while
A, and B, correspond to the outputs. A., B, and Z;, are
random numbers that are used to ensure the independence of
shares. In contrast to the design proposed in [19], our proposed
simplified DOM-dep multiplier utilizes a simplified version of
the DOM-indep multiplier and merges the right two multi-
pliers, resulting in significant area reduction. The simplified
DOMe-indep multiplier is based on the simplified multiplier
shown in Equation (2). Equation (5) illustrates the expression
of our DOM-dep multiplier, where M=(A,®B;,) B (A.® B.).
We denote that a= A, ® B,, b= A, ® By, 2= A, ® B,, and
g= Ay @ B,. In the equation, Ay; and By; are the outputs of
simplified DOM-indep multipliers. The combined multiplier
(see Fig. 5) is utilized for the calculation of (A, *M @ B, *M)
to further reduce area. The shared DOM-indep/DOM-dep mul-
tiplier modules in Fig. 9 are implemented with the simpilified
DOM-indep/DOM-dep multipliers (see Fig. 10(b)). We share
the common resources between these two multipliers to further
reduce the area.

Authorized licensed use limited to: TU Delft Library. Downloaded on October 02,2025 at 06:04:07 UTC from IEEE Xplore. Restrictions apply.

8 bit 1
0 1
L

Enc/Dec !

Z‘>—> GF(2*) simplified GF(2%) simplified
0| DOM-dep Multiplier 5! 1| DOM-dep Multiplier B

B

’hS bit A
=l

Enc/Dec

GF(2?) Shared
—1 DOM-dep Multiplier

GF(2*) Shared
DOM-indep
Multiplier

Enc/Dec
8 bit
ostprocess
lﬂ B

Fig. 9. Structure of the 15%-order five-stage DOM SBOX Module (modified based on [19])

A8, A.B, A B, A A B A By
| - &
o= P ‘ b
P i i FE|bFF
L b
—»‘& FF 4’\&@—»
~
[P e v
bomin Simplified
-indep | DOM-indep — 7 Combined
Multiplier ZU Multiplier ? r\;lerthi;l)Tieer
f Ayl [By
‘ PR A
A, B, Aq Bq

(a) DOM-dep [19] (b) Simplified DOM-dep

Fig. 10. DOM-dep Multiplier [19] and Our Simplified DOM-dep Multiplier

ax*xb
=ax(b®z)Daxz
=(Aa @ Ba) (A ® By ®A. §B.)® (Aa @ Ba) (A2 @ B>)
=(Aa*M ® Box M) P (Agi ® Byi)
= (AG*MEBAW‘)EB(BG*M@BW')
= Aq ®B;=¢
(5)
IV. EXPERIMENTAL RESULTS

This section presents the experiment setup and the results.

A. Setup

For the majority of IoT applications, the maximum payload
size for each packet is between 1600 bytes (e.g., NarrowBand-
IoT [31]) and 256 megabytes (e.g., Message Queue Telemetry
Transport(MQTT) [32]). Taking the lower limit into consid-
eration, we assume that the key will stay the same during
the communication session of at least one hundred encrypt-
ing/decrypting operations. For that reason, we assumed a fixed
key for 100 encryption and decryption operations.

TABLE I
AES PERFORMANCE ANALYSIS AT S0MHz

. Data- Freq. Area Area Cycle
Design path (M]—?z) (um?) | Ratio Cycle Rthio

[18] 32 50 174156 1 11100 1
Proposed 32 50 139415 0.8 8211 0.74
AES 64 50 151677 0.87 4211 0.38
128 50 178674 1.03 2211 0.2

To compare with the start-of-the-art, we reimplemented the
state-of-the-art AES design proposed by Davis and Jones [18]
and compared it with ours. All designs are synthesized using
TSMC CMOS 180 nm technology. The total area and power
consumption of each design are evaluated Using Synopsys
Design and Power Compiler. We took the same approach with
respect to the DOM design originally proposed in [19].

B. AES Performance Evaluation

In this section we compare our AES SBOX design proposed
in Section III.B with the SBOX proposed in [29]. Note that
this paper limited itself to only an SBOX implementation. The
synthesis results show that the area of our proposed SBOX
design is 8.2% lower than the design in [29]. The actual area
numbers are 2558 vs 2788 jm?, respectively.

We compare our complete non-DOM AES design proposed
in Section III.B with the design proposed in [18].Tables I and
IT show the results for both designs synthesized at 50 MHz
and maximum frequency, respectively. . From the first table,
we can see that our 32-bit data-path implementation needs
20% less area than the design proposed in in [18]. Actually,
our 128-bit data-path design is comparable in size to their 32-
bit data-path design, while being 5x faster. When we look at
Table II we see similar trends. Comparing both 32-bit data-
path designs, our design has 14% less area, needs 26% less
cycles and can run at 18% higher frequency.

846

Authorized licensed use limited to: TU Delft Library. Downloaded on October 02,2025 at 06:04:07 UTC from IEEE Xplore. Restrictions apply.

TABLE II
AES PERFORMANCE ANALYSIS AT THE MAXIMUM FREQUENCY

Desien Data- Freq. Freq. Area Area Cycle Cycle
Sie path | (MHz) | Ratio | (um?2) | Ratio 4 Ratio
(18] 32 103.1 1 196857 1 11100 1
Proposed 32 121.9 1.18 169794 0.86 8211 0.74
ApES 64 117.6 1.14 195355 0.99 4211 0.38
128 112.4 1.09 236553 1.2 2211 0.2
© 21.48 _J128bit
S 0] [64-bit
. [|32-bit
& [] 32-bit
g
3
* 14.3
< 12.7
g
< 4
g 10 8.75
it 7.83
[=%
8
g 437 4.72
g 2.59
[o)
o
0
128-bit | 64-bit | 32-bit | 32-bit [128-bit | 64-bit | 32-bit | 32-bit
Proposed AES IRE) Proposed AES | a1
50MHz Max_Frequency

Fig. 11. Performance per Area Comparison vs AES Design in [18]

Figs. 11 and 12 depict the performance per area and
performance per power of our proposed AES design and the
state-of-the-art design in [18]. The figures show that among
our proposed designs, the 128-bit design achieves the highest
score in terms of performance per area and performance
per power. Our proposed 128-bit, 64-bit, and 32-bit designs
surpass the state-of-the-art [18] in terms of performance per
area by a factor of 4.90x, 3.02x, and 1.69x, respectively, when
operating at SOMHz and by a factor of 4.55x, 3.03x, and
1.85x, respectively, when operating at the maximum frequency.
They also outperform the state-of-the-art design in terms of
performance per power by a factor of 2.68x, 1.70x, and 1.27x,
respectively. Note that in Fig. 12, only the performance per
power for the 50 MHz implementation is displayed, as there
were minimal differences observed when compared to the
designs operating at their maximum frequencies.

. 50
128-bit
2 45 458 64-bit
X []32-bit
g 40 32-bit
*
ot
3 354
=
Q
< 30+ 2.88
2
o
S 254
g 2.15
3 204
é 1.69
S 15
2
[}
o
1.0 . . . 5
128-bit | e4bit | 32-bit 32-bit
Proposed AES [20]

Fig. 12. Performance per Power Comparison vs AES Design in [18]

847

TABLE III
AREA COMPARISON OF DOM SBOX
Design SBOX Type | Area (um?) | Area Ratio
[19] eight-stage 19682 1
DOM SBOX five-stage 21196 1.077
Proposed eight-stage 17735 0.901
DOM SBOX five-stage 19741 1.003
TABLE IV
DOM PERFORMANCE ANALYSIS AT 50MHZ
I Frequency Area Area Cycle
Data-path | Ny ™ | (um2) | Ratio | Y% | Ratio
128-bit 50 615172 1 10251 1
64-bit 50 445269 | 0.72 12251 1.2
32-bit 50 361582 | 0.59 16251 1.59

C. DOM Performance Evaluation

Table III shows a comparison of the area between our
proposed 1%'-order DOM SBOX and the original 1%¢-order
SBOX proposed in [19]. Compared to their design, our eight-
stage and five-stage 15t-order DOM SBOX designs achieve an
area reduction of 9.9% and 6.9%, respectively.

Although the 128-bit data-path design has the best perfor-
mance, we have implemented also 64-bit and 32-bit data-path
versions. Unfortunately, the authors in [19] focused only on
the SBOX and have not evaluated the complete AES design.
Nevertheless, to comprehensively assess the influence of these
designs on overall performance, our proposed DOM SBOX
has been incorporated into all AES configurations, encom-
passing the 128-bit, 64-bit, and 32-bit versions. Tables IV
and V present their area and latency results for an operating
frequency of 50 MHz and their maximum operating frequency,
respectively. As we mentioned in the Section III-C, we chose
the five-stage SBOX in our designs because it offers a sub-
stantial performance improvement with only minor sacrifices
in terms of area when compared to the eight-stage SBOX. Con-
sequently, the key expansion process takes 51 (5¥10+1) cycles,
while the encryption and decryption operations in the 128-bit,
64-bit, and 32-bit data-path designs require 51 (5*¥10+1), 61
(6¥10+1), and 81 (8*10+1) cycles, respectively. As a result,
it takes 10251 (51*%2%100+51), 12251 (61*2*100+51), and
16251 (81%2*100+51) cycles for these designs to perform 100
encryption/decryption operations. Tables IV and V demon-
strate that the 32-bit design exhibits a better area, whereas
the 128-bit design has a higher performance.

The DOM SBOX contains a great number of registers and
operation, resulting in a high power consumption and area.
However, lower data-path designs can significantly reduce area
and power consumption by utilizing fewer DOM SBOXes.
Fig. 13 shows the performance per area comparison of our

TABLE V
DOM PERFORMANCE ANALYSIS AT THE MAXIMUM FREQUENCY

Frequenc Frequenc Area Area Cycle

Data-path | (i o (um?) | Ratio | Yl Ratio
128-bit 188.7 1.79 698780 1 10251 1
64-bit 190.8 1.81 522844 0.75 12251 1.2
32-bit 192.3 1.83 446528 0.64 16251 1.59

Authorized licensed use limited to: TU Delft Library. Downloaded on October 02,2025 at 06:04:07 UTC from IEEE Xplore. Restrictions apply.

2.98

w
o
|

128-bit|
64-bit

32-bit 28

2.65

N
13
|

s+ um?) *107°

U,
- N
(4] o
L L

-
o
1

79 2% 085

o
o
!

Performance per area (0p/(
o

o
o

128-bit | 64-bit | 32-bit
50MHz

128-bit | 64-bit | 32-bit
Max_Frequency
Proposed DOM AES

Fig. 13. Performance per Area Analysis of our 15¢-Order DOM AES designs

by
<)
!

128-bit
64-bit
32-bit

3.77

e
3
1

3.21

I
=}
!

254 2.36

N
o
!

1.54
1.0

o
3
I

o
S)

64-bit 32-bit

Performance per power (0p/(us * uw) * 107°

128-bit

Fig. 14. Performance per Power Analysis of our 15¢-Order DOM AES
Designs

proposed DOM designs. According to the figure, the 64-bit
design performs better at both 50 MHz and the maximum
frequency. Fig. 14 illustrates a comparison of the performance
per power for our proposed DOM designs, where the 32-bit
design outperforms the others.

V. CONCLUSION

In this paper we presented a novel low-power and low-area
AES accelerator with high performance. A number of different
optimization techniques, such as key expansion bypassing,
resource sharing, and careful modules optimizations have been
proposed and implemented. According to the results, our
designs outperform the current state-of-the-art in terms of area,
power, and performance. Subsequently, we developed an effi-
cient version of the DOM side channel countermeasure using
the same optimization techniques. The results demonstrated
that also our DOM SBOX achieves a lower area than the
originally proposed design.

REFERENCES

[11 W. E. Forum, “Connected devices need better governance: Here’s how
to achieve it,” https://www.weforum.org/agenda/2023/01/connected-
devices-need-better-governance/, 2023.

[2] Mackinsey et al., “Connected devices need better governance: Here’s
how to achieve it,” https://www.mckinsey.com/industries/private-
equity-and-principal-investors/our-insights/growing-opportunities-in-
the-internet-of-things, 2023, accessed: 2023-04-15.

[3] M. Dworkin et al., “Advanced encryption standard(aes),” Federal Inf.
Process. Stds. (NIST FIPS), 2001.

848

[4]

[5]

[6]

[7]

[8]

[9]
[10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]
[23]
[24]
[25]
[26]

[27]

(28]

[29]
[30]
[31]

(32]

P. Sivakumar et al., “Securing data and reducing the time traffic using
aes encryption with dual cloud,” in IEEE ICSCAN, 2019, pp. 1-5.

M. Khader et al., “Simplified aes algorithm for healthcare applications
on internet of thing,” in 8th ICIT, 2017.

S. Mathew et al, “53 gbps native gf(2%)? composite-field aes-
encrypt/decrypt accelerator for content-protection in 45 nm high-
performance microprocessors,” IEEE J. Solid State Circuits, vol. 46,
pp. 767-776, 2011.

R. V. Kshirsagar et al., “FPGA implementation of high speed VLSI
architectures for AES algorithm,” in Fifth ICEST, Himeji, Japan, Novem-
ber 5-7, 2012.

S. Chellappa et al., “Advanced encryption system with dynamic pipeline
reconfiguration for minimum energy operation,” in Sixteenth ISQED
Santa Clara, CA, USA, March 2-4, 2015.

E. Kwarteng et al., “A survey on security issues in modern implantable
devices: Solutions and future issues,” CoRR, 2022.

M. Lu et al., “A compact, lightweight and low-cost 8-bit datapath AES
circuit for iot applications in 28nm CMOS,” in TrustCom/BigDataSE
2018, New York, USA, August 1-3, 2018.

S. N. Dhanuskodi et al., “Efficient register renaming architectures for
8-bit AES datapath at 0.55 pj/bit in 16-nm finfet,” IEEE Trans. Very
Large Scale Integr. Syst., 2020.

M. S. Wamser et al., “Pushing the limits further: Sub-atomic AES,” in
VLSI-SoC, Abu Dhabi, United Arab Emirates, October 23-25, 2017.

S. Banik et al., “Atomic-aes: A compact implementation of the AES en-
cryption/decryption core,” in Progress in Cryptology -17th INDOCRYPT
in Kolkata, India, December 11-14, 2016.

A. Moradi et al., “Pushing the limits: A very compact and a threshold
implementation of AES,” in -30th Eurocrypt, Tallinn, Estonia, 2011.
S. Mathew et al, “340 mv-1.1 v, 289 gbps/w, 2090-gate nanoaes
hardware accelerator with area-optimized encrypt/decrypt (gf(24))?
polynomials in 22 nm tri-gate cmos,” in IEEE Journal of Solid-State
Circuits, vol. 50, no. 4, 2015.

J. Yu et al., “Benchmarking and optimizing aes for lightweight cryp-
tography on asics,,” in Proceedings of the Lightweight Cryptography
Workshop, Gaithersburg, MD, USA., 4-6 November, 2019.

M.-H. Dao et al., “An energy efficient aes encryption core for hardware
security implementation in iot systems,” in 2018 International Confer-
ence on ATC, 2018, pp. 301-304.

C. Davis et al., “Shared round core architecture: A novel AES imple-
mentation for implantable cardiac devices,” in 65th IEEE MWSCAS,
Fukuoka, Japan, August 7-10, 2022.

H. GroB et al., “Domain-oriented masking: Compact masked hardware
implementations with arbitrary protection order,” JACR Cryptol. ePrint
Arch., p. 486, 2016.

X. Zhang et al., “High-speed VLSI architectures for the AES algorithm,”
IEEE Trans. Very Large Scale Integr. Syst., vol. 12, pp. 957-967, 2004.
Y. Zhou et al., “Side-channel attacks: Ten years after its publication and
the impacts on cryptographic module security testing,” JACR Cryptol.
ePrint Arch., p. 388, 2005.

G. Joy Persial et al., “Side channel attack-survey,” Int. J. Adv. Sci. Res.
Rev, vol. 1, pp. 54-57, 2011.

T.-H. Le et al., “How can signal processing benefit side channel attacks
7’ in 2007 IEEE Workshop on SAFE, 2007, pp. 1-7.

E. Brier et al., “Correlation power analysis with a leakage model,” in
CHES: MA, USA., August 11-13, 2004.

S. Mangard et al., “Side-channel leakage of masked CMOS gates,” in
Topics in Cryptology - CT-RSA, vol. 3376. Springer, 2005, pp. 351-365.
S. Nikova et al., “Threshold implementations against side-channel
attacks and glitches,” in ICICS, Raleigh, NC, USA., December 2006.
A. Satoh et al., “A compact rijndael hardware architecture with s-box
optimization,” in Advances in Cryptology - ASIACRYPT 2001, Gold
Coast, Australia., C. Boyd, Ed., December 9-13, 2001.

N. Ahmad et al., “Low-power compact composite field AES s-box/inv
s-box design in 65 nm CMOS using novel XOR gate,” Integr., vol. 46,
pp. 333-344, 2013.

Y. Teng et al., “VLSI architecture of s-box with high area efficiency
based on composite field arithmetic,” IEEE Access, vol. 10, 2022.

N. Ahmad, “New architecture of low area aes s-box/ inv s-box using
vlsi implementation,” Jurnal Teknologi, vol. 78, May 2016.

K. Mekki et al., “A comparative study of LPWAN technologies for
large-scale iot deployment,” ICT Express, vol. 5, pp. 1-7, 2019.

D. Thavamani, “Mqtt messages-an overview,” International Journal of
Mathematics and Computer Research, vol. 09, 04 2021.

Authorized licensed use limited to: TU Delft Library. Downloaded on October 02,2025 at 06:04:07 UTC from IEEE Xplore. Restrictions apply.

