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Abstract
This thesis introduces the “city stack” framework and the concept of the “typology grid” to
analyze and procedurally generate cities using publicly available geospatial data. It builds
upon existing urban morphology research and combines existing metrics with new metrics
to examine road networks and building footprints across 43 cities worldwide. The resulting
unsupervised clustering of road patterns produced mixed outcomes: some global road
typologies were consistently identified, while others lacked clarity or validity. Supervised
classification of building typologies showed potential for city generation applications but
faced challenges related to data quality and validation methods.
To encode the captured urban form, the typology grid was introduced, which allows for
straightforward comparison between cities and links the analysis phase with the generation
phase. While this approach simplifies complex urban patterns for better understanding, it
may oversimplify details needed for effective city regeneration, needing future research into
parameterizing the grid.
The simulated annealing optimization technique was applied to generate new city models
to produce typology grids resembling those of actual cities. It proved a promising method,
with relatively plausible results from just a few shape-based rules in the objective function.
Computation time and grid size were a limiting factor, ruling out real-time use. The road
and building generation methods based on the typology grid and city stack framework
demonstrated the approach’s feasibility but indicated that further refinement is necessary.
Further contributions by this thesis are an open source command line tool for analyzing the
urban form real-life cities based on publicly available geospatial data, a proof of concept
tool for generating cities, and a publicly available dataset of the analyzed cities.
In conclusion, the city stack framework and typology grids offer a viable method for captur-
ing and generating urban form and can be used as a starting point for future research.
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Introduction

This is a thesis about cities that don’t exist. This doesn’t mean fantasy cities from
an alternate universe or sci-fi cities from the future. Cities that don’t exist, but
look like they could exist. This topic has fascinated me personally for a long time.
Starting from age 12, I was building cities in the game Cities XL, which I later
replaced with the newer Cities: Skylines. I always found it very difficult to make a
city look realistic, especially the road network. Even the apparent simplicity of the
North American grid seemed impossible to recreate without something feeling
“off”. With this thesis, I want to give this complex but fun challenge another try
from an academic angle.

1.1 Scientific Relevance & Motivation
Generating cities is not just constrained to city-building games. In the field of
Geomatics, three-dimensional city models are an important form of urban data
that offer a way to integrate the many domains of a real-life city, including terrain,
buildings, vegetation, and road networks. These models combine both geometry
and semantics in a single framework. Increasingly, 3D city models are used in
more and more research domains, among which estimation of solar irradiation,
energy demand estimation, estimation of the propagation of noise, and compu-
tational fluid dynamics (CFD) for wind simulation (Biljecki et al., 2015).

Despite their growing application, the creation and availability of accurate 3D
city models present significant challenges. These include the limited availability
of existing models (Girindran et al., 2020), frequent geometric validity errors
(Ledoux, 2018), and the intricate, labor-intensive process of creating detailed
models (Girindran et al., 2020). While fully automatic generation using LIDAR
data is feasible, it relies heavily on data availability and can still result in invalid
geometries, which can be problematic for subsequent analysis or processing
(Peters et al., 2022).

Parametrically generated city models propose a promising solution for nu-
merous use cases. While many research topics need data on cities that exist in
real life, a wide range of domains can utilize or even benefit from models of non-
existing cities that offer parametric control over their creation. Implementing a
parametric generator allows for the rapid production of new city models (Groe-
newegen & Smelik, 2009) and the easy application of city-wide changes, such as
adjustments to building setback rules, which would be cumbersome manually.

Parametrically generated cities have diverse research and practical applica-
tions including urban and social simulations (Aschwanden et al., 2011; Badwi et
al., 2022), serving as test files for algorithms, file formats and software, as input
for parameter dimensionality reduction for Computational Fluid Dynamics (CFD)
studies, and as training data for machine learning models. Other applied use
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cases for these models include virtual reality, video games, animation, rendering,
and as tools in urban and architectural design prototyping. It is important to
clarify that these procedural cities are not intended as designs for new cities,
which would encroach on the roles of architects and urban planners. Instead, they
are realistic variations of existing cities to serve as tools in research, development,
and visualization.

Besides these use cases for parametric cities, Kim et al. (2018) suggest that
many research domains traditionally reliant on actual urban data could benefit
from procedurally generated models. One advantage is eliminating quality
issues associated with volunteered geographic information (VGI). Furthermore,
population data in these models can be detailed yet fully anonymous, avoiding
privacy issues linked with real-world data by synthesizing cities that resemble,
but are not directly connected to, real locations, buildings, or people.

Another potential application is the testing and public demonstration of con-
troversial urban plans, such as the placement of wind turbines. Using an existing
city model for such tests could provoke local opposition if residents identify their
surroundings in the test scenarios. A procedurally generated city, similar but not
identical to the real one, allows for comprehensive planning and testing without
the risk of controversy.

1.2 Problem Statement
There are numerous existing methods for parametrically generating cities or their
components, see Section 3.1 for a review. However, there are problems, which
have to be addressed for the models to serve their purpose. These methods
often lack plausibility (Groenewegen & Smelik, 2009; Kim et al., 2018) as they are
often based on generalized rule-based approaches instead of real city data. Real
cities are complex and consist of many different types of urban tissue that are
distributed within the city domain (Araújo De Oliveira, 2022). Existing methods
that incorporate city layout as part of the methodology, require input maps
created by designers or experts (Parish & Müller, 2001; Vanegas et al., 2012a).
The only existing city generation methodologies that focus on producing realistic
layouts do so based only on land use (Groenewegen & Smelik, 2009; Lechner et
al., 2006). There exists an opportunity to generate city layouts based on urban
morphology. Research exists on the study of urban tissue distribution within a city
(Fleischmann et al., 2022), but this has not been connected with city generation.
Using Inverse Procedural Modelling, the outcome of morphological analysis of
real cities can become the input of existing city generation methods.
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1.3 Research Question
To investigate solutions to this problem, I aim to develop a morphology-based
city generation framework to connect urban tissue distribution research with
existing and new methods for city generation. As a background for this investi-
gation, the proposed case study aims to generate new cities with urban tissue
characteristics similar to real-life cities.

The main research question of this thesis is:
How can a digital city model be procedurally generated to resemble the char 

acter of a real life city?

The “character” of a city is defined as the composite of various urban tissue areas
comprising the city and their spatial interrelationships.

This question is broken down into the following sub-questions:
• How can the urban form of real world cities be captured using publicly available

geospatial data?
• How can the captured urban form be encoded in a way that allows for the

comparison of different cities and the generation of new cities with similar
character?

• How can this encoded data be utilized to procedurally generate a digital city
model that resembles the form of the encoded real life city?

1.4 Proposed Framework
The hypothesis of this thesis is that the “city stack” framework offers a way to link
urban morphology analysis with city generation. The city stack describes a city
in terms of individual layers that are connected by constraints, see Figure 1. The
stack allows a city to be analyzed layer by layer, where the layout of each layer is
described using distinct locations (PoI, city center, etc.) or distinct areas (i.e., road
systems and buildings). All layers combined form the character. For example, a
location’s character could be described as a “Hilly location near the city center
with grid-like major roads, a big hospital, and an organic street pattern.”

This is a flexible approach that allows for the insertion and deletion of layers
anywhere in the stack. I focus specifically on layers that that are ambiguous to
divide into distinct categories or areas, specifically the (minor) roads layer and the
buildings layer. The approach used for this is based on research into program-
matically classifying areas of similar urban tissue (Fleischmann et al., 2022). The
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methods in this research are adapted. Notably, that classification happens sepa-
rately per layer in the city stack instead of one combined classification based on
buildings, plots, and roads.

Even though both analysis and generation often happen separately per layer,
the layout of these different layers is connected. For example, industrial buildings
might usually be close to major roads and/or waterways, the streets around
industrial buildings are more likely to have a grid or orthogonal pattern than an
organic pattern, and the city center is more likely to be next to the river than high
in the mountains. The connections can be described in multiple directions; for
example, a stadium might be placed near existing major roads, or a new major
road might be built to improve access to the stadium. These multi-directional
connections are both challenging to analyze and to take into account when
generating new cities.

Therefore this thesis proposes simplifying these constraints in the form of the city
stack. It proposes that there is a way to organize the different layers of the city in
a stack where layers higher in the stack form constraints for layers lower in the
stack, and only in that direction. Because of this single direction, city generation
can generate layers one by one by going down the stack. The constraints are
visualized by the magenta lines in Figure 1.

The generation pipeline can then be as follows:
• Analyse the city stack of real cities, layer by layer
• Encode the city stack of real cities in a standardized template
• Generate the city stack layer by layer for a new city with this template as input
User input is important in city generation (Bidarra et al., 2010). Therefore,
the layout analysis and generation must be intuitive, comprehensible, and
adjustable. Some layers are very unambiguous. For example, the location(s) of
points of interest, like airports or the planar partition of land use areas, which is
clearly divided into distinct categories. These are easy to understand. This thesis
explores how more ambiguous layers can be analyzed. These also happen to
be the layers that contribute a lot to the visual form of the city (mainly street
patterns and buildings). Research exists on how these layers can be divided into
distinct areas of similar urban tissue (Fleischmann et al., 2022). In the city stack,
each of these areas is assigned a distinct typology, which is consistent for any
city across the world and easy to understand. Examples of building typologies
could be industrial buildings and apartments, and street patterns could be grid
patterns, mountain roads, and dense cores. I test out methods using both super-
vised (classification) and unsupervised (clustering) machine learning techniques
for the determination of these typology areas, using research by Fleischmann et

5



Figure 1   Schematic representation of the city stack. Highlighted in green are the
layers that are investigated in this thesis. The magenta lines show that layers lower
in the stack form the constraints for layers higher in the stack. Figure contains
data from OpenStreetMap contributors (2017), Pesaresi (2023) and Zanaga et al.

(2021).
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al. (2022) as a starting point. Finally, the “typology grid” is introduced to encode
these typology areas in a format suitable for generating similar cities in a new
input, adjusting their context and allowing user interaction.

The typology grid forms the base for the generation phase. For each ambigu-
ous layer, a new typology grid is created that is adapted to a new context and
new user parameters, while remaining as similar in character as possible as the
original typology grid. I investigate the use of the simulated annealing optimiza-
tion technique for this step. Once the typology grid of a layer is finished, existing
methods for city generation are employed to generate the individual elements
(building footprints and road segments).

1.5 Scope
Cities are endlessly complex structures, from their general structure to the indi-
vidual bricks of a building. This thesis deliberately narrows its scope to manage
both the analytical and generative processes effectively.

The main aim is to test the feasibility of the city stack framework and the
typology grid concepts both in the analysis and generation phases. Because
the framework heavily relies on the ability to distill any city into a set of distinct
typologies, one of the main focuses is creating a pipeline for analyzing any city
across the world and encoding it into typology grids. A big part of this is testing
clustering and classification approaches to determine these typologies.

The generation step is limited to testing a proof of concept for generating new
typology grids and conceptually testing ways of adapting element generation
techniques based on existing methodologies.

The aim of this thesis is not to create a fully functional workflow from start to
finish but to lay the groundwork for a pipeline and test its feasibility.

Scope
This thesis:
• does not aim to implement the complete city stack framework. Instead, it

aims to test its feasibility through proof of concepts for the minor roads and
buildings layer.

• is restricted to 2.5D analysis, simplifying the complexity and enhancing data
availability.

• avoids methods that produce results through “black box” processes, specifi-
cally excluding the use of deep learning techniques. This does not exclude the
use of all machine learning techniques, as both clustering and classification
methods exist that offer statistical insight into why features are classified as a
certain class/cluster.
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Theoretical Background

2.1 Morphology & Urban form
To generate plausible cities, an understanding of urban structure is crucial. Urban
morphology, the study of the physical form of cities, provides a robust theoretical
foundation for this. Araújo De Oliveira (2022) explains that urban morphology
has diverse definitions. Key descriptions include:

[Urban morphology is] an approach to conceptualizing the complexity of
physical form. Understanding the physical complexities of various scales,
from individual buildings, plots, street blocks, and the street patterns that
make up the structure of towns helps us to understand how towns have
grown and developed.

— Larkham (2005)

A method of analysis which is basic to find(ing) out principles or rules of
urban design.

— Gebauer & Samuels (1981)

Araújo De Oliveira (2022) states that cities are, morphologically, extremely
complex objects. To deal with these complexities, the city is divided into distinct
elements of different scales that can be isolated from their context. He mentions
from small to large scale: the natural context, the streets system, the plots system,
and the buildings system.

Kropf (1996) defines Urban Tissue as the character of an urban environment,
which emerges from the interplay of the scale layers of the city. The nature of
urban tissue is dependent on the “resolution”, the scale we are looking at the
city. At a high resolution, the materials of individual buildings contribute, among
other factors, towards the character of the city, while at a low resolution, the urban
tissue only includes street patterns and block shapes (Araújo De Oliveira, 2022).
Urban tissue not only varies from city to city but also within different zones of the
same city.

This means the different scale layers can be analyzed separately and then
combined to define the city’s character in the form of urban tissue. Since the
urban tissue can differ within the city, this analysis is not city-wide but in terms of
zones within the city.

2.2 Clustering & Classification
Both clustering and classification are machine-learning techniques for grouping
data into distinct clusters/classes.
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Clustering does this by organizing data into groups based on similarity. For
this process, it is not necessary to decide in advance what these groups are,
and it’s also not necessary to create a training dataset where the data is already
marked to which group it belongs. This makes it an “unsupervised” technique.
In clustering, data points within the same group, or cluster, are more similar to
each other than to points in other groups. This unsupervised learning approach
is commonly applied in fields like pattern recognition, image analysis, bioinfor-
matics, and data mining (Madhulatha, 2012).

Clustering methods are categorized into several types, including hierarchical,
density-based, grid-based, and model-based approaches. Each method has
unique strengths, depending on data characteristics and the application context
(Saxena et al., 2017).

Classification on the other hand is aimed at assigning predefined labels
to data points based on learned patterns. Unlike clustering, classification is a
supervised learning approach requiring labeled training data to guide the learn-
ing process. Common classification techniques include decision trees, support
vector machines (SVM), k-nearest neighbors, and neural networks, each offering
distinct advantages depending on data characteristics and application needs
(Aized Amin Soofi & Arshad Awan, 2017).

2.3 Simulated annealing
Simulated annealing is an optimization technique inspired by the process of
annealing in metallurgy, where a heated material slowly cools to create a highly
organized structure. This process was translated by Kirkpatrick et al. (1983) into a
method for finding a global minimum in a solution space by iteratively exploring
potential solutions and occasionally accepting suboptimal ones to escape local
minima, mimicking the random energy changes in physical annealing.

This method works as an iterative process that gradually reduces a “temper-
ature” parameter. At higher temperatures, the algorithm has a high probability of
accepting worse states, helping it explore the problem space. As the temperature
lowers, the probability of accepting worse solutions declines, leading toward
convergence on an optimal or near-optimal solution. This dynamic helps the
algorithm avoid getting trapped in local minima, a common limitation in deter-
ministic approaches like gradient descent (Trosset, 2001).

The effectiveness of simulated annealing depends on the specific cooling
schedule and acceptance criteria, which are adjusted based on the problem’s
complexity and solution space characteristics (Aarts & Laarhoven, 1989).
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Related Work

3.1 City Generation
Many methods for generating (parts of) cities exist, and these can be categorized.
Kim et al. (2018) suggest categorizing procedural city generation techniques
into generative grammar, simulation-based, tensor field, stochastic, data-driven,
and inverse procedural generation. Conversely, Smelik et al. (2014) propose a
slightly different classification that includes artificial intelligence and computa-
tional geometry but excludes inverse procedural generation and tensor fields.
This thesis utilizes a hybrid of these classifications to explore the range of avail-
able methods, but excludes stochastic methods, as they are primarily used for
terrain generation (Kim et al., 2018; Smelik et al., 2014), and artificial intelligence
methods, as both are outside the scope of this thesis.

The following is a summary of notable techniques from each category.

3.1.1 Generative Grammar
Shape grammars consist of rules that define the structure of a language, which
can be used to generate geometry. For instance, Lindenmayer systems (L-
Systems) were initially developed to model organic structures (Prusinkiewicz &
Lindenmayer, 1996). Parish & Müller (2001) adapted this concept to generate
road networks from input image maps such as terrain and population density.
The process involves constructing the road network segment by segment, where
the initial angle of each new segment is influenced by global goals. Adjustments
like pruning, rotation, and snapping are applied to ensure each segment
conforms to local constraints. Originally this L-system uses string reformatting,
but Barett (2009) describes a way to efficiently implement this as an algorithm
based on a priority queue. This system produces plausible results, at first glance
looking like a road pattern that could exist in a real city, and offers the possibility
of extending it by modifying the global goals and local constraints. Downsides
include that it depends on input maps for the generation, and the limited typolo-
gies of street patterns it can generate (grid, organic, or radial). See Figure 2 for
an example of a street pattern generated with this method.

In addition to street generation, generative grammars are widely used in pro-
cedural building generation systems (Smelik et al., 2014). One basic approach
involves combining extruded primitives of varying heights (Greuter et al., 2003),
see Figure 3. Another technique employs L-systems on a rectangular floorplan,
facilitating automatic Level of Detail (LOD) generation (Parish & Müller, 2001).
Müller et al. (2006) developed the Computer Generated Architecture (CGA)
shape grammar to produce more intricate geometries.

12



Related Work City Generation - Generative Grammar

Figure 2   Example result from the L System approach from Parish & Müller (2001),
with the input water, terrain, and population map on the left (Figure from Parish &

Müller (2001))

The commercial software CityEngine integrates L-systems for street layout and
CGA for building generation (Esri R&D Center Zurich, n.d.). The major downside
of shape grammars are their complexity and the required expertise to use them

Figure 3   Example of extrusion method by Greuter et al. (2003) (Figure from
Greuter et al. (2003))
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(Smelik, 2011). This makes these methods less accessible for non-experts to use,
and therefore decreases their applicability.

3.1.2 Simulation-Based
Weber et al. (2009) combines the L-System from Parish & Müller (2001) with
traffic simulation to model city growth over time. This integration yields plausible
outcomes, though scaling to larger cities remains a challenge. Lechner et al.
(2006) employs agent-based simulation to determine land use within a raster
representation of a city domain, see Figure 4. The land use patterns generated
appear realistic, with industrial and commercial areas grouped around major
roads; however, drawbacks include significant computation time and reliance on
arbitrary rule sets based on assumptions rather than empirical data.

3.1.3 Tensor Field
Chen et al. (2008) introduce tensor fields as an intuitive and flexible framework
for generating the streets system; see Figure 5. They argue that street patterns
mostly consist of two dominant directions and they utilize the properties of tensor

Figure 4   Example of land use simulation by Lechner et al. (2006). (Figure from
Lechner et al. (2006))

14



Related Work City Generation - Tensor Field

Figure 5   Example of tensor field road generation (Figure from Chen et al. (2008))

fields to generate major and minor roads from these mathematically derived
directions. A big advantage of this method is the ease of use, as the patterns of
the tensor field are reasonably intuitive and easy to edit manually. The results look
plausible for North American gridiron city centers but are limited in plausibility
for other urban fabric types.

3.1.4 Data-Driven
Aliaga & Vanegas (2008) describe a technique that uses an existing road network
as a template to generate extended road patterns while maintaining a similar
structure; see Figure 6. Nishida et al. (2016) further this approach with their grow,
warp, and blend operations. These techniques generate plausible results for
extending an existing example but currently do not seem suitable for producing
plausible city-wide street patterns.

3.1.5 Inverse Procedural Generation
Inverse procedural generation addresses the challenge of complex input para-
meters in traditional procedural generation, which often requires specialized
knowledge and experimentation. This method determines optimal procedural
inputs based on predefined goals or examples.

It does this by deriving procedural rules from an existing model to generate
similar structures or patterns. Unlike forward procedural modeling, where prede-
fined rules create models, IPM works backward, discovering rule sets that can
reproduce or extend the structure of the input model (Aliaga & Vanegas, 2008).
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Figure 6   Example of data driven road network generation (Figure from Aliaga &
Vanegas (2008)))

Vanegas et al. (2012a) introduce such a method for city generation. One
example within this work is the user-defined target of optimized sun exposure,
where the model figures out the optimal procedural parameters to achieve this.
The main advantage of this method is that a procedural model can be reused
to optimize for new target indicators without having to reprogram the original
model.

3.1.6 Computational Geometry
A variety of geometric methods are employed for parcel generation. Generating
a Voronoi diagram based on points that represent building locations typically
yields unconvincing results. Kelly (2014) introduces a straight-skeleton method
for creating modernist parcel divisions typical of planned suburbs, which pro-
duces highly plausible outcomes but is specific to this parcel style. For other
parcel types, Kelly (2014) suggests using Object Oriented Bounding Box (OOBB)
methods. Vanegas et al. (2012b) adapt the parcel generation technique from
Parish & Müller (2001) by recursively splitting the OOBB until a user-specified
criterion is met, see Figure 7. An alternative method is proposed by Emilien et al.
(2012) and uses a multistep process of anisotropic land conquest. This method
was developed for generating rural landscapes but seems promising for urban
landscapes. It has the ability to follow predetermined rules and costs.

3.2 City Analysis
Previous work on programmatically classifying typologies and urban tissue in
cities includes analyses separately for street patterns (Section 3.2.1), buildings

16



Related Work City Analysis - Computational Geometry

Figure 7   Methodology of Object Oriented Bounding Box guided parcel gener 
ation by Vanegas et al. (2012b) (Figure from Vanegas et al. (2012b))

(Section 3.2.2), and analyses that combine multiple layers for one classification
(Section 3.2.3).

3.2.1 Street Pattern Classification
Street pattern typologies exist that are associated with specific locations and time
periods. For example, Figure 8 shows street pattern typologies specific to specific
periods of urban development in the United States (Southworth & Ben-Joseph,
2003). For city generation, however, a set of typologies is needed that can be
applied globally.

Several studies have applied clustering to identify urban form typologies
based on morphological metrics. Badhrudeen et al. (2022) and Louf &
Barthelemy (2014) have used clustering on a global scale, aggregating metrics
from individual roads within a city to articulate street pattern characteristics.
Both methods prove the applicability of clustering for identifying street patterns

Figure 8   Example of a location and time period based street pattern typology.
(Figure from Southworth & Ben Joseph (2003))
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on a global scale. However, they do not differentiate between areas within the
same city, which is a necessity for street generation. Also, the granularity of both
approaches is low, with Badhrudeen et al. (2022) identifying the classes Gridiron,
Long Link, Mixed, Organic, and Hybrid and Louf & Barthelemy (2014) identifying
four unnamed classes.

Marshall (2005) describes the ambiguousness of the street pattern and how
many ways it can be defined. City-wide descriptions can be used like from
Lynch (1981), including types like radial patterns, rectangular grid cities, and
baroque axial networks. These are the sort of typologies derived by Badhrudeen
et al. (2022) and Louf & Barthelemy (2014). A city consists of multiple patterns,
however, that can be described individually. Marshall (2005) proposes a taxon-
omy of patterns, based on both composition and configuration. Composition is
associated with geometry, including aspects like length and area ratios, and is
typically expressed in real numbers. Configuration is associated with topology,
including aspects like connectivity and adjacency, and is typically expressed in
integer numbers. The typology aims to distinguish types both in configuration
and composition. The taxonomy separates patterns with and without cells or
circuits. Since most of a city’s street pattern consists of blocks, I only consider the
cellular patterns in the taxonomy, see Figure 9.

This type of taxonomy forms a solid theoretical foundation but can be difficult
to apply in practice. A big advantage is that each type comes with its own set
of rules, which could correspond to different generation algorithms. However,
to analyze real cities by programmatically classifying streets according to this
typology, a ground truth dataset would be needed. Due to the complex nature of
street patterns, the decision as to what type a certain segment belongs to would,
in many situations, be difficult and arbitrary. Besides this point, it also offers a very
high amount of granularity in rectilinear patterns while offering little granularity
in the common “organic” pattern.

An opportunity exists to create a global, neighbourhood-scale, set of street
pattern typologies. Since the distribution of street patterns within a city is vital for
generation cities with similar character,

3.2.2 Building Classification
Previous research has taken two approaches to classifying buildings. One focuses
on deriving a new classification from data (Schirmer & Axhausen, 2015a); the
other starts from a predefined classification and applies it to a case study (Hart-
mann et al., 2016; Steadman et al., 2000; Steiniger et al., 2008; Wurm et al., 2016).

Starting with the first approach, (Schirmer & Axhausen, 2015a) uses clustering
to programmatically derive building typologies without specifying a predefined
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Figure 9   Cellular typologies of the street pattern taxonomy by Marshall (2005)
(Figure from Marshall (2005))

set of typologies. The final derived typologies are labeled as linear housing,
large-scale buildings, punctual development, and buildings with multiple wings
when clustering on buildings individually and street-aligning buildings (Fig-
ure 10.1), block-defining residential (Figure 10.4), block-filling solitaries of large
scale (Figure 10.3), and detached punctual forms that form a block (Figure 10.2)
when clustering when taking the neighborhood of each building into account.

The downside of this approach is the interpretability of the results and the
sensitivity to the input data and outliers.

The other methods use a predefined set of typologies.
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Figure 10   Example of clustering result by Schirmer & Axhausen (2015a) taking
neighborhood into account, containing street aligning buildings ([1]), block 
defining residential (4), block filling solitaries of large scale (3), and detached
punctual forms that form a block (2). (Figure from Schirmer & Axhausen (2015a))

Episcope (2014) sets up a set of building typologies for Europe with more
granular country-specific typologies and four overarching typologies: “single-
family houses, terraced houses, multi-family houses, and apartment blocks”. This
classification is not applicable to this thesis due to it only including residential
building typologies and the granularity being country specific. Steadman et al.
(2000) proposes a classification that encompasses all building types, but it is
focused on energy analysis and separates buildings based on materials, daylight,
activities, and services besides shape and use characteristics. This results in a
typology that is too granular in aspects that are not relevant for city generation.
(Poon, 2024) uses the granular country-specific (Netherlands) set of typologies
for programmatical classification and shows it’s possible to achieve accuracies
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between 60 and 98 percent. This highlights the importance of the morphological
distinction between types on classification performance, as lower accuracies
were observed in morphologically similar building typologies like variations of
different apartment buildings.

Hartmann et al. (2016) utilizes a set of typologies based on land use, the dis-
tinction between main and outbuilding, and the morphologic type. This results
in 6 residential building types (detached, semi-detached, and terraced with both
purely residential and mixed-use variants) and 20 non-residential types (i.e.,
detached transport outbuilding, undetached industrial & commerce main build-
ing). This typology offers a lot of granularity but is more focussed on land use than
on morphological character. For example, it doesn’t distinguish between a big
residential apartment block and a single detached house, or between a terraced
house and a house in an inner city block.

Steiniger et al. (2008) uses a classification that is more focused on morphology
and neighborhood characteristics. In Figure  11 you can see the 5 types, with
a distinction between industry and all other types, where the other types corre-
spond to density and urban tissue. This approach is more suitable for generation
and can be used as a starting point. These typologies are, however, more focused
on entire areas, whereas the finest level of detail in city generation would have
granularity at the building level (i.e., apartment buildings mixed with terraced
housing).

The typologies used in Wurm et al. (2016) are highly based on morphology,
separating buildings into perimeter block development, block development,
terraced/row houses, detached/semidetached, and halls (i.e. industrial). These
typologies correspond to the different building generation methods that would
be used to generate the different typologies. Still, the typology is based on
German cities and, therefore, highly specific to that location. Also, common
typologies like (slab) apartment buildings are missing, and the granularity of the
“halls” typology is low as both industrial, commercial, service, agricultural, and
more could fall within this category.
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Figure 11   Example of the building typologies from Steiniger et al. (2008) (Figure
from Steiniger et al. (2008))
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Figure 12   Example of the building typology by Wurm et al. (2016), from
top to bottom perimeter block development, block development, terraced/row
houses, detached/semidetached, and halls. (Figure from Wurm et al. (2016) with

background map from Google Earth (2024))

3.2.3 Combined Classification
Other research on classification methods does not distinguish between different
types of morphological elements (e.g., street patterns and buildings). Instead,
it aims to classify urban tissue as a whole. Examples of these are a clustering
approach based on morphological metrics (Fleischmann et al., 2022) and a
machine learning approach based on computer vision (Wang et al., 2024).

Wang et al. (2024) shows that the computer vision approach is a viable alter-
native to morphological analysis, effectively identifying different urban tissues
with multiple city case studies. However, this approach remains

Fleischmann et al. (2022) show the viability of the clustering approach, using
unsupervised learning on morphological metrics of both elements themselves
and their direct neighborhood to detect contiguous areas of the urban tissue.
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Figure 13   Results from clustering approach of Fleischmann et al. (2022)
applied to central Prague (a) and central Amsterdam (b) accompanied by den 
drograms representing the results of Ward’s hierarchical clustering (Figure from

Fleischmann et al. (2022))

Figure 13 shows how this approach can be applied to individual cities to derive
a clustering valid for that specific city.

Fleischmann et al. also introduce a software library Momepy (Fleischmann &
PySAL Developers, 2018) to reproduce the metrics used. This paper forms an
invaluable source for the applicability of deriving urban tissue areas program-
matically using open geospatial data and forms the starting point for the city
analysis in this thesis. There are, however, some downsides to this approach,
some specifically for the aim of city generation. Firstly, the fact that clusters are
not labeled with a descriptive name, and are the result of clustering on more
than 200 metrics, the comprehensibility could be improved. Areas are marked
as belonging to a different type of urban tissue, but finding out how the urban
tissue differs between the two areas would involve interpreting the differences
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between hundreds of metrics describing buildings, streets, and plots. Secondly,
even though Fleischmann et al. show that the method can be applied to derive
universal clusters across multiple cities, it has challenges for applying it on a
global scale. Since multiple morphological layers (buildings, streets, and plots)
are clustered together, there is no separation between street pattern typology
and building typology. Analysis-wise, this will likely result in a much larger amount
of needed classes to achieve the same granularity as could be achieved with sep-
arate classes for building typology and street pattern typology. Every possible
combination of building typology and street pattern typology would need a new
class in a combined typology, but with separate typologies per layer it would be
possible to make all possible combinations with a limited set of classes per layer.
Classifying layers separately has the added benefits of choosing different classi-
fication methods for each layer based on suitability and effectiveness and the
possibility of adding more layers (i.e. vegetation, land cover, etc.) without having
to recompute all combined classes and without increasing the number of classes,
even more, to keep the same granularity (i.e needing two different classes to
separate terraced housing in a gridded street pattern on predominantly concrete
and terraced housing in a gridded street pattern on predominantly grass). Finally,
specifically for city generation, it is likely that different classes within a layer corre-
spond to different generation algorithms (i.e., detached housing is generated
differently than city blocks). Separate classes per layer, therefore, also follow the
generation process more closely.

All in all, the existing work on different methods of classifying morphological
elements in cities forms a solid foundation to develop a framework for city
generation based on programmatical analysis of real-life cities.
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4 Methodology
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4.1 Overview
The three sub-questions of the thesis can be translated into three methodology
steps

Question 1: How can the urban form of real world cities be captured using
publicly available geospatial data?
Step 1: Analyse the character of real-world cities by capturing the urban form
separately for each layer in the city stack.

Question 2: How can the captured urban form be encoded in a way that allows for
the comparison of different cities and the generation of new cities with a similar
character?
Step 2: Encode the analysis results for every individual city and derived typology
in template files.

How can this encoded data be utilized to procedurally generate a digital city
model that resembles the form of the encoded real life city?
Step 3: Generate a new city, layer by layer, based on these templates

4.1.1 Analyse
How to capture the urban form for a layer in the city stack? This depends on what
layer we are talking about. The point of interest layers define specific locations
of distinct types of points of interest (i.e. a stadium or a mall), which calls for a
different analysis method than layers that are better described as areas of similar
typology. I aim to investigate the analysis of these more ambiguous typology
areas, to test if this analysis is a feasible starting point for city generation. The
layers I analyze are the buildings layer and the minor roads layer, but the same
approach can be extended for layers like major roads, highways, and possibly
vegetation & furniture as all these layers describe areas of similar character that
do not fall within a distinct unambiguous set of typologies (like land cover or land
use would).

Fleischmann et al. (2022) laid the groundwork for a programmatical approach
to determining these areas, but their approach determines these areas for all
layers combined instead of separate areas for each layer. For comparability and
generation reasons, see Section 3.2.3, I propose a method that determines areas
separately for each layer:

The hypothesis is that the urban form of each separate ambiguous city layer can
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be described by partitioning the layer domain into distinct areas of similar urban
tissue, see Figure 14. Each of these areas belongs to a distinct set of typologies
that is valid for every city, so cities can be compared globally. These typologies
are given a descriptive name to make them less ambiguous, resulting in a set
of distinct typologies describing the ambiguous layer. For example in the case
of the minor roads layer, a city in the USA might consist of areas belonging to ty-
pologies called gridded streets, curvy suburban streets, winding mountain roads,
and so on. A city in Europe might also have areas of these same typologies, and
also would include typologies that might not exist in the American city, like dense
organic streets. In the case of the buildings layer, a European city might consist of
areas of typologies called city block, terraced housing, apartment, etcetera. The
American city might predominantly consist of the detached housing typology.

Figure 14   Illustration of how an ambiguous city layer can be described by parti 
tioning the layer domain into distinct areas of similar urban tissue.

These areas are determined by analyzing the individual elements of the city
layer, following the approach followed by Fleischmann et al. (2022), but separate
for each layer. These elements are the street segments for the streets system
layer and individual buildings for the building layer. Each individual element is
assigned to belong to a distinct typology based on the characteristics of the
element itself and of the neighboring elements around it. For example, a specific
street segment is determined to be part of a gridded street pattern, or a specific
building is determined to be part of the perimeter city block pattern.

Different techniques are used for the streets layer and for the buildings layer.
In the case of the buildings layer, it is possible to predefine a list of distinct
topologies. The architectural and functional characteristics of buildings make it
possible to make clearly distinguishable typologies. For example, a detached
residential house is a clear typology and is not easily confused with a terraced
house.
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This thesis uses the following building typologies:
• Detached housing
• Terraced housing
• Filled city block
• Perimeter city block
• Irregular blocks
• Apartment buildings
• Industrial buildings
• Complex buildings
• Big commercial buildings
See Figure 47 for examples of each typology.

The set of typologies was derived from using the classifications from Steiniger
et al. (2008) and Wurm et al. (2016) as a basis and adding granularity based on
visual investigation of maps of cities across the world, using OpenStreetMap.
For example, the irregular blocks class was added to represent dense city blocks
of mostly detached buildings in a highly irregular pattern, as was observed in
multiple cities on the Asian, African, and South American continents.

Each building in the buildings layer is assigned to one of these typologies
using supervised machine learning (classification) based on a range of numerical
and categorical attributes of the building and its neighborhood. Some simple
examples of these attributes are footprint area, shared wall ratio, land use cate-
gory, and neighboring building distance. This is a distinct advantage of analyzing
layers separately, as opposed to the combined classification of Fleischmann et al.
(2022). Layers can be analyzed with different methods that are most appropriate
to that specific layer.

Street patterns are less easily distinguished, and boundaries are less clear.
Section 3.2.1 describes existing methods, like classifications for specific countries
Figure 8 or entire cities (Badhrudeen et al., 2022; Louf & Barthelemy, 2014), but
the only classification that could be applied globally at the street segment or
neighborhood level (Marshall, 2005) is unbalanced granularity wise and difficult
to apply to real data. I propose to determine a new set of street pattern typologies
instead of starting from a predefined list. To achieve this, unsupervised machine
learning (clustering) is used in order to group street patterns together that are
statistically similar. This is similar to the city-wide analyses of Badhrudeen et al.
(2022) and Louf & Barthelemy (2014), but more granular and at element scale
instead of city scale. It uses an adapter approach from Fleischmann et al. (2022),
but only for the minor roads layer. Some examples of the attributes used in
clustering are the curvilinearity of stretches of road, the distribution of street
segment orientations, and the distance to neighboring roads. The result of this
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clustering analysis is a set of unnamed clusters. The final step is to give each
cluster a descriptive name, like a gridded pattern or irregular curvy pattern. This
naming is done based on the statistical character of the attributes of each cluster.

The analysis phase results in the characterization of individual elements for every
layer. From this result, areas of similar urban form start to become visible, see
Figure 15, because the characterization of each element takes the neighborhood
into account, following the approach from Fleischmann et al. (2022).

Figure 15   Example result of building classification, showing the emergence of
areas of different typology. (Building footprint data from OpenStreetMap contrib 

utors (2017), Overture Maps (2023))

4.1.2 Encode
This interpretation is formalized in the form of the typology grid, one grid for
every (ambiguous) layer in the city stack. This grid is a gridded planar partition
of the city domain encoding a single typology for every 100x100 meter cell. The
typology of a cell is determined by the most common topology within that cell,
determined by the sum of the intersection area of the elements within that cell
of each typology. This categorical grid approach is not only comprehensible and
easy to apply in the analysis phase, but it is also adapted from landscape analysis
statistics, offering a wide range of statistical metrics to describe the resulting
patterns (McGarigal & Marks, 1995).
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Figure 16   Simple example of a typology grid, where each color signifies a
different typology.

The typology grid forms a way to encode the distribution of typologies within a
city, thereby describing the city. Besides the city, the typologies themselves also
have to be encoded.

The typologies are universal across all cities worldwide and are therefore
encoded separately from the cities. Each typology is statistically described based
on an aggregation of its numerical and categorical attributes. For example, the
description of a gridded street pattern typology could include a typical range
of intersection angles (supposedly centered around orthogonal angles) and a
regular distribution of distances between intersections.

This interpretation of the city is an oversimplification of the real structure of urban
tissue. Condensing the form of cities worldwide into a small set of worldwide
typologies is helpful for understandibility but doesn’t accurately capture the
diversity and complexity of cities.

To address the variety of urban tissue within a single typology, a finer level
of detail is added. The parameters of a typology, with a city-level, area-level,
or cell-level granularity. A simple example is density; areas within a “detached
housing” typology can range from being almost wall-to-wall to being figuratively
miles apart. More complex examples could be the aspect ratio of blocks within
a gridded street pattern, ranging from square blocks to extremely elongated
blocks. The resulting encoding of a single cell in the typology grid could, for
example, be.
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High density grid pattern with consistently sized mostly square blocks and
mostly cardinal direction.

Where the bold text is the typology, and each color represents a different para-
meter. In practice, the parameters are encoded numerically, for example, a mean
block squareness attribute with a value of 0.82.

This approach remains a simplified representation but aims to strike a balance
between encoding detailed information and making the methodology and
results comprehensible.

4.1.3 Generate
Generation of new cities uses the city stack as a framework. The heuristic is that
layers lower in the city stack form constraints for layers higher in the stack (see
Figure 1). Therefore, the city is generated layer by layer, from bottom to top. For
each new layer, the layers below it serve as input constraints for the generation
step.

In concept, different layers can use completely different generation method-
ologies. The layers implemented for this thesis follow a similar heuristic aimed
specifically at generation ambiguous city stack layers.

Step 1: Generate a new typology grid for this layer by adapting the grid from the
template city to the constraints of the new city’s lower-level layers while retaining
the original grid’s similar character.

Step 2: Generate individual layer elements following a predefined algorithm that
takes the local value of the typology grid (including parameters) and surrounding
elements of the lower-level layers as inputs.

Multiple different methods were considered for generating the typology grid
in a new context, including classification, optimization, and deep learning ap-
proaches. The method simulated annealing optimization technique Section 2.3
was chosen because of its stochastic nature while offering a lot of control. This
approximates a globally optimal typology grid that is both similar to the typology
grid from the template grid (by utilizing the aforementioned landscape statistic
metrics) and conforms to the constraints of the lower-level layers of the new city.
See Figure 17, for an example of the simulated annealing process of the typology
grid.
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(a) Simulated annealing at 0%. (b) Simulated annealing at 20%.

(c) Simulated annealing at 40%. (d) Simulated annealing at 60%.

(e) Simulated annealing at 80%. (f) Simulated annealing at 100%.
Figure 17   Simulated annealing process.

Generating individual elements for the street network uses the same method for
each of the three road system layers. The L-System approach from Parish & Müller
(2001) is adapted to use the characteristics of the local typology on the typology
grid as input parameters. The basic idea is:

1 Start from a single segment query in a queue
2 While there are segments queries in the queue
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3 Adapt the segment query to local constraints like terrain, water, and existing
segments

4 If the segment is not possible to be built, continue
5 Add the new segment to the finalized road network

6

Determine if and how many new segment queries to add at the end point
of the new segment. The probability is based on the statistics of the local
typology from the typology grid. 0 is a dead end, 1 is a continuing road, 3
is a T-intersection and 4 is an X-intersection.

7 Add the new segment queries to the queue. Set the length and angle based
on the statistics of the local typology from the typology grid.

8 End

(a) Street generation at step 10. (b) Street generation at step 400.

(c) Street generation at step 4000. (d) Street generation at step 10000.
Figure 18   Example of the street generation process.

Within the buildings layer, different methodologies are used for different typolo-
gies. Each method runs per individual block from the three combined street
system layers (only minor roads are implemented in this thesis). The methods
used are described in Section 5.5.

Finally, all layer elements are combined in a single 3D city model output file.
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4.2 Analysis
This section provides a detailed explanation of the Analyze step, as outlined in
Section 4.1.1.

4.2.1 Data Download
The first step of the pipeline involves acquiring geographic data for any city
worldwide for every layer. A set of cities was selected to have a diverse global
dataset. See Figure  19. Due to time constraints, not all selected cities were
analyzed, resulting in a final set of 43 cities.

Figure 19   Selected cities for the global dataset. Cities in red were canceled due
to computation time. Rotterdam is also included, but obstructed by other labels.

(Background map from OpenStreetMap contributors (2017))
The natural context layer involves terrain and water. For terrain height, the Coper-
nicus GLO-90 Digital Elevation Model (European Space Agency & Airbus, 2022)
is used, which gives global DSM raster coverage at a resolution of 90 meters. This
data source was selected due to its free license, easy availability via code, and
sufficient resolution. The data is stored as points - the centroid for every cell- and
the only included attribute is height data.

For water, vector data is sourced from the volunteered geographic informa-
tion source OpenStreetMap in the form of water areas and coastline features
(OpenStreetMap contributors, 2017). This data source was similarly selected
because of its permissible license, easy availability via code, global coverage and
completeness, and sufficient data quality. The data is stored as polygons and line
strings (to indicate coastlines), and it includes an attribute to distinguish between
different types of water bodies, i.e., coastline, lake, river, and so on.
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Figure 20   Example of terrain height data for (a part of) the city of Antwerp,
Belgium (Data from European Space Agency & Airbus (2022))

The produced dataset contains natural context data for future research, but I did
not use this data for any analyses in this thesis.

The road system layer involves road segments and their associated metadata.
All data for this layer was sourced from OpenStreetMap for the same reasons
as indicated in the previous paragraph. The raw data includes a high level of
granularity in the type of the road, for example distinguishing between 5 levels of

Figure 21   Example of water data, in this case from the city of Antwerp, Belgium,
with different types of water bodies narrowed down to a few categories. (Source

data from OpenStreetMap contributors (2017))
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Figure 22   The road system layer (Antwerp, Belgium) separated into 4 distinct
levels (Source data from OpenStreetMap contributors (2017))

main road, several types of special roads, and many possibilities for small streets
and paths. For this thesis, this typology has been simplified into 4 levels: highway,
major road, street, and path. Besides the street typology, the attributes include
segment length, width, tunnel true/false, bridge true/false, and intersection type
(i.e. roundabout).

The building layer involves building footprints and their associated metadata.
OpenStreetMap building footprints spatial coverage is uneven (Zhou et al.,
2022), with over 75% of cities having data completeness below 20% (Herfort et
al., 2023). Therefore, the data completeness is not sufficient for proper urban
tissue analysis. The Overture Maps Foundation offers a dataset that combines
building footprints from OpenStreetMap (OpenStreetMap contributors, 2017),
Google Open Buildings (Sirko et al., 2021), Esri Community Maps (Esri, n.d.),
and Microsoft Open Building Footprints (Microsoft, 2024). Together, the dataset
includes 2.4 billion footprints (Maps, 2023), up from the 600 million in Open-
StreetMap (OpenStreetMap Wiki, n.d.). The dataset especially offers much higher
coverage in the Global South. The main downside is lower data quality due to
many of the footprints being generated through artificial intelligence. This data
source was chosen due to good coverage, free license, availability through code,
and okay data quality.
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Figure 23   Example of building footprint data, with different colors showing the
highest quality type of height data that is available for that footprint. (Source data

from OpenStreetMap contributors (2017), Overture Maps (2023))

However, both OpenStreetMaps and Overture are missing building height
data and level data for most buildings. To complement the available data,
approximate height values from the GHSL Built-H dataset (Pesaresi, 2023) are
also added as an attribute. This dataset offers a global approximation of building
heights at a resolution of 100 meters. The value of the raster cell containing this
building is added as an attribute to the building.

The final attributes for each building footprint include real height, real levels
count, GHSL height, building roof shape, building name, building class, building
subtype, original data source, and machine learning confidence score.

Additional supporting layers are also downloaded, namely land use data
(OpenStreetMap contributors, 2017), city extents (OpenStreetMap contributors,
2017), and approximate city center location (OSM Contributors, n.d.). Land-use
has been simplfied into 6 categories (airport, commercial, industrial, residential,
retail, and unkown). This categorisation combines both the airport layer and land-
use layer from OpenStreetMap contributors (2017).

All layers are bundled together in a single GeoPackage data file.
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Figure 24   Example of simplified land use data for a part of the city of Antwerp,
Belgium. (Source data from OpenStreetMap contributors (2017))

4.2.2 Metric Computation
The second step of the pipeline involves computing a set of metrics for the
aforementioned road system and buildings layer. This section gives an overview
of the computed metrics for both of these layers. Additionally, new supporting
layers are generated that are necessary either for the computation of the metrics
or for the neighborhood aggregation step (Section 4.2.3).

Supporting Layers Generation
Two additional layers are generated, the enclosures layer and the tesselation
layer.

Enclosures are defined as areas enclosed on all sides by the road system. This
includes both big areas like city blocks and small areas like the middle of a
roundabout. The enclosures layer has a separate polygon for every enclosure
and has no additional attributes besides a unique ID.
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Figure 25   Example of generated enclosure polygons.

The morphological tesselation is an approximation of building plots. It partitions
the space by creating a Voronoi tesselation of the building footprints (Fleis-
chmann et al., 2020). An enclosed morphological tesselation builds on this by
constraining the tesselation to the aforementioned enclosures. This also signifi-
cantly improves performance and reduces memory usage.

(a) Morphological tesselation. (b) Enclosed tesselation.
Figure 26   Examples of different types of tesselation.

In this thesis, the enclosed morphological tesselation is generated based on
building groups, not on individual buildings. Essentially, a building group is a
collection of buildings that are connected; see Section  A. This simplifies the
processing of the enclosures, and also groups together buildings that naturally
belong together so they can be used for building generation method 1; see
Section 5.5.
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(a) Based on individual buildings. (b) Based on building groups.
Figure 27   Examples of different ways of generating the enclosed tesselation.

Road Node Metrics
Metrics are calculated separately for road nodes and for road segments. Appen-
dix A contains a table of all the computed metrics for road nodes, including
references to the sources they were based on.

A noteworthy change I made to an existing node metric is described in
Section A.

A Node Degree & Intersections
The node degree in a graph is defined as the number of edges connected to a
node. More specific versions include the in-degree as the number of in-edges
and the out-degree as the number of out-edges in a directed graph.

This poses a challenge for characterizing street networks since the urban form
of the three intersections in Figure 28 is different, but the degree, in degree, and
out-degree, are the same.

(a) Degree: 4
In degree: 2

Out degree: 2degreestreet: 3intersection: true

(b) Degree: 4
In degree: 2

Out degree: 2degreestreet: 2intersection: false

(c) Degree: 4
In degree: 2

Out degree: 2degreestreet: 4intersection: true
Figure 28   Three different intersections with the same node degree.
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Therefore, a redefined version of node degree was developed as the count of
unique nodes 𝑣 that have an edge to 𝑢 and/or an edge from 𝑢. This functions the
same as the node degree on an undirected graph, but then on a directed graph.
This can be mathematically defined as:

The street network is seen as a directed graph, where a one-way street is an
edge in one direction and a two-way street is an edge in both directions.

Let 𝐺 = (𝑉 , 𝐸) be a directed graph where 𝑉  is the set of nodes (vertices) and𝐸 is the set of edges. For a node 𝑢 ∈ 𝑉  , define the connected set 𝐶 as:

𝐶(𝑢) = {𝑣 ∈ 𝑉 | there exists a directed edge from 𝑢 to 𝑣or a directed edge from 𝑣 to 𝑢} 1.
The degree of streets can then be defined as the cardinality of the connected

set 𝐶.

degreestreets(𝑢) = |𝐶(𝑢)| 2.
Subsequently, any node with a street degree higher than 2 can be considered

an intersection, and any node with a degree of 1 as a dead end.

intersection = {True if degreestreets > 2False otherwise 3.
dead end = {True if degreestreets = 1False otherwise 4.

Road Segment Metrics
Table Appendix B contains an overview of all metrics for road segments,
including whether they are new or based on existing sources. Noteworthy newly
introduced metrics are described in Section A through Section F.
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A Next Segment & Forward Angle
This metric aims to select the next segment in the forward direction for each road
segment in the road system. The next segment is chosen as follows.

1 Start from current segment (u, v)
2 Calculate the bearing of segment (u, v)
3 Create a list of all outgoing segments from node v, excluding (v, u)
4 For every outgoing segment (v, w) do
5 Calculate the bearing of segment (v, w)
6 Determine the difference between the bearing of (u, v) and (v, w)
7 Normalise the difference between −180 and 180 degrees
8 End
9 If there are no outgoing segments

10 Next segment is None
11 Else if there is one outgoing segment
12 Next segment is the single outgoing segment
13 Else if there are multiple outgoing segments
14 Next segment is the outgoing segment with the smallest angle difference,

if the smallest angle difference is greater than 45°, otherwise None
15 End

This means that in road sections without intersections, the next segment does not
have an angle limit (since it belongs to the same road). After an intersection, there
is a limit of 45°, since that would most likely constitute a T-intersection instead of
a continuing road. See Figure 29 for examples.

The (u, v, key) identifier of the next segment is added as the next_segment at-
tribute to the current segment, and the identifier of the current segment is added
as the previous_segment attribute to the next segment. This allows for traversal in
both directions and is a prerequisite for the computation of other metrics.

The angle difference between the current segment and the next segment is
saved in degrees as the forward_angle attribute.
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(a) Next segment is only available for-
ward segment.

(b) Next segment is available forward
segment with smallest angle differ-

ence.

(c) No next segment, as there are mul-
tiple available forward segments, but

none below 45°. (d) Next segment is only available for-
ward segment, even though the angle

is above 45°.
Figure 29   Identified next segment in different situations with current segment in

yellow and next segment in red.

This can be formally defined as follows.

Given two consecutive road segments:
1. (𝑢, 𝑣) — the current segment.
2. (𝑣, 𝑤) — a potential next segment.
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Let the coordinates of 𝑢, 𝑣, and 𝑤 be (𝑥[𝑢], 𝑦[𝑢]), (𝑥[𝑣], 𝑦[𝑣]), (𝑥[𝑤], 𝑦[𝑤]) , and the
angle of a segment (𝑎, 𝑏) be defined with Equation 5. 𝜃(𝑎, 𝑏) = atan2(𝑦[𝑏] − 𝑦[𝑎], 𝑥[𝑏] − 𝑥[𝑎]) 5.

Then the angle difference between (𝑢, 𝑣) and (𝑣, 𝑤) can be defined with
Equation 6 Δ𝜃(𝑢, 𝑣, 𝑤) = ((𝜃(𝑣, 𝑤) − 𝜃(𝑢, 𝑣)) + 𝜋)%(2 ∗ 𝜋) − 𝜋 6.

Finally, the next segment can determined using Equation 7 

Next segment = {{{{{(𝑣, 𝑤) if len((𝑣, 𝑤)'s) = 1(𝑣, 𝑤) where min(|Δ𝜃(𝑢, 𝑣, 𝑤)|) if |Δ𝜃(𝑢, 𝑣, 𝑤)| ≤ 𝜋4None otherwise 7.
B Road Section
A road section is defined as a set of consecutive road segments between two
intersections. What constitutes an intersection is defined in Section A. For two-
way roads, the road section includes the segments in only one direction.

Each section is assigned a unique ID, which is saved in the section id attribute
of every segment belonging to the section.

The section ID is used as a prerequisite for metrics that measure something
for the whole section.

Figure 30   Example of road section ids (each color signifies a different id). Note:
Sometimes, the color of the underlying road in a different direction clips through.

(Source data from OpenStreetMap contributors (2017))
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C Road Stretches & Continuity
Continuity aims to capture how much you can keep driving straight on the same
road. To calculate this, we first must define the road stretch. A road stretch aims
to capture a stretch of continuous road segments up to a certain length limit. This
limit is imposed for comparability reasons since the length of a road stretch is
potentially infinitely big.

The stretch is computed individually for each segment. It starts from the
current segment and recursively grows in forward and backward directions. If the
angle difference between the segments is above a certain threshold, the stretch
does not grow further in that direction. If the maximum length is reached, the
stretch also stops growing. See Figure 31 for examples.

Figure 31   Examples of road stretches. A terminates on the right side because
there is no forward segment and on the left side because the forward angle is
higher than the limit. B and C terminate on both sides because there is no forward
segment. D terminates because the maximum length of 500 meters is reached.

(Source data from OpenStreetMap contributors (2017))
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The stretch can formally be defined as follows.
Let the initial segment be 𝑆0. The road stretch 𝑅 is defined as the largest set

of contiguous segments {𝑆0, 𝑆1, …, 𝑆𝑛} such that:
1. For each pair of consecutive segments 𝑆𝑖, 𝑆𝑖+1 ∈ 𝑅, the angle difference sat-

isfies:

|𝜃𝑖+1 − 𝜃𝑖| ≤ 25° 8.
2. The total length of the stretch does not exceed 500 meters:

∑𝑛
𝑖=0 𝐿𝑖 ≤ 500, 𝑚 9.

Continuity is defined as the ratio between the length of the road stretch and
the maximum possible length of a road stretch (the threshold distance). Values
approaching 0 indicate very low continuity, where this road segment does not
belong to a longer stretch of segments without having to take a significant turn.
Values near 1 indicate high continuity, where this segment belongs to a stretch
of road that is not interrupted by turns or T-intersections.

Formally, continuity can be defined as. continuity = 𝐿𝐿max 10.
 where 𝐿 denotes the length of the stretch to which the current segment belongs,
and 𝐿max is the maximum length of a stretch, in this case 500 m.

D Stretch Linearity & Curvilinearity
Stretch Linearity and Stretch Curvilinearity aim to capture the straightness and
curviness of the roads of the road system.

Momepy (Fleischmann & PySAL Developers, 2018) includes a definition of
linearity, adapted from Araldi & Fusco (2019). Here, linearity is defined as the ratio
between the shortest distance between the start and end of a line string, and the
total length of the line string. 
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linearity = 𝑙euclidian𝑙segment 11.
 Note that what Momepy refers to as a segment is equivalent to what this thesis
refers to as a road section (since segments would always have a linearity of 1.0).

Linearity can be used to determine the straightness of a segment. The curvi-
linearity could then be seen to have an inverse relationship with the linearity. Low
linearity would then signify high curvilinearity. Using this approach, however, with
the linearity of road sections, has some problems. Example Figure 32a will have
low linearity. One would, however, not classify this as a “curvy” street. Example
Figure 32b will have high linearity since the section is almost straight, but one
would instinctively see these segments as part of a “curvy” road.

(a) Example of “linear” streets with low
linearity (and therefore high curvilin-

earity).

(b) Example of “curvy” streets with high
linearity (and therefore low curvilinear-

ity).
Figure 32   Examples showing the problem of using section linearity as a measure

for curviness (Source data from OpenStreetMap contributors (2017))
To combat both of these issues, this thesis proposes an alternative to road section
linearity, namely road stretch linearity. Instead of calculating the linearity of the
road section bounded by intersections, the linearity is calculated on the road
stretch as defined in Section C. The angle threshold for road stretches is set to
a higher value of 40° to account for the possibility of sharp turns in curvy roads.
Because road stretches don’t stop at intersections, but do stop at sharp turns,
both issues from image … are addressed.

The final definition would then be an adaptation of Equation 11. linearitystretch = 𝑙euclidian𝑙stretch 12.
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Stretch curvilinearity can then be seen as an inversion of stretch linearity, see
Equation 13. curvilinearitystretch = 1 − linearitystretch 13.
 One issue remains with this approach. Curvilinear stretches with low curvature
have linearity values approaching 1.0. Therefore, they would be assigned a
curvilinearity value approaching 0. For proper clustering performance, more
separation is needed. This is addressed by using a logarithmic approach for the
linearity equation (see Equation 14). The linearity has to be capped at 0, 9999 to
prevent infinite values or NaN values because floating point imprecision can lead
to values above 1.0.

linearitystretch:simple = 𝑙euclidean𝑙stretchlinearitystretch:capped = min(linearitystretch:simple, 0.9999)linearitystretch:log = log(1 − linearitystretch:capped)log(1 − 0, 9999) 14.
The final stretch curvilinearity can be seen in Figure 33.
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Figure 33   Example of stretch curvilinearity. (Source data from OpenStreetMap
contributors (2017))

E Intersection Left Angle
The intersection left segment is the first occured segment when rotating clock-
wise from the current segment, except if this segment is the next segment, see
Section A.

The angle difference is defined using the aforementioned Equation 6 from
Section A.

The algorithm works as follows.

1 Start from segment (u, v)
2 Calculate bearing of segment (u, v)
3 For every adjacent segment (v,w) do
4 Calculate bearing of segment (v, w)
5 Calculate angle difference between (u, v) and (v, w)
6 Normalise angle difference between −180° and +180°
7 End
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8 If v is not an intersection
9 Intersection left segment is None

10 Else
11 Intersection left segment is the segment with the lowest angle difference.
12 If Intersection left segmemt is the same as the forward segment
13 Intersection left segment is None
14 End
15 End

See Figure 34 for an example of the final values.

Figure 34   Example of intersection left angle values. (Source data from Open 
StreetMap contributors (2017))

F Right Neighbour Metrics
To capture relationships between adjacent street segments, a method had to
be developed to determine the neighbouring street segment. In concept, the
neighboring segment is the first segment encountered when looking to the right
of the current segment. Similarly for major roads, it is the first major (or highway)
segment encountered to the right.

The algorithm works as follows.
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1 Start from current segment (𝑢, 𝑣)
2 Get centroid 𝑐 of segment as the point exactly in the middle of 𝑢 and 𝑣
3 Create a unit vector perpendicular to segment (𝑢, 𝑣) starting from centroid 𝑐
4 Scale the unit vector to a predefined threshold distance to get line 𝑙. 300 m is

used for right_neighbour and 1000 m is used for major_right_neighbour.

5 Find all road segments intersecting with 𝑙, only consider segments with type
category major or highway for major_right_neighbour.

6

The right neighbour is the intersecting segment with the smallest distance from𝑐, except distances below a threshold of 5 m for right_neighbour and 20 m for
major right neighbour to disregard parallel segments of the same road in the
other direction.

In addition to a reference to the right neighbor, the distance to the segment and
the angle deviation calculated with Equation 6 are saved as attributes.

Building Metrics
Appendix C shows an overview of all computed building metrics, including the
sources they originate from.

Section A through Section C highlights noteworthy changes or new metrics.

A Building Group ID
Both enclosures and certain metrics operate on collections of buildings that
are connected. The building_group_id attribute encodes these groups as an
attribute. The algorithm works as follows.

1 Perform a “touches” (Egenhofer 9-IM predicate) inner spatial join on all build-
ings with itself

2 Remove rows between a building and itself
3 Create a graph where every row is an edge, linking one building to another
4 Identify the connected components

5 Give every component a unique ID, assign this ID to all objects within that
component

B Building Group Enclosure Perimeter Coverage
This metric aims to capture what percentage of the enclosure’s perimeter (the
surrounding streets) are directly bordering this building group. This is defined as
follows:

Let 𝐸 be the enveloping enclosure of building group 𝐵. 𝑃  denotes the
perimeter linestring of 𝐸10, inset by a constant value of 10 m.
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building group enclosure perimeter coverage = Length(𝐸10 ∩ 𝐵)Length(𝐸10) 15.
C Approximate Height
As indicated in Section 4.2.1, height and level data are often missing. GHSL Built-
H data (Pesaresi, 2023) is available, but since it’s aggregated, it should be used
as a last resort. The approximate height metric aims to assign the highest-quality
height value available to every building. In case the real height is known from the
source data, that height is assigned. In case the amount of levels is known, height
is estimated by multiplying this count with a level height constant. If both height
and levels are unknown, the GHSL height is used.

heightapproximate = {{{{{heightreal if heightreal is not Nonelevelsreal × 3.0𝑚 if levelsreal is not Noneheightghsl otherwise 16.
4.2.3 Neighbourhood Aggregation
Categorizing features is very difficult without knowing their context. You can’t
know if a straight road next to an orthogonal intersection is part of a strict grid
without zooming out and looking at its neighborhood. This is where the contex-
tualizing step comes in. It gathers the neighborhood for every element and saves
aggregated metrics of that neighborhood as attributes on the element. This is
done separately for the road system layer and the buildings layer.

Road System Contextualizing
Several implementations were considered, their description and pros and cons
are listed in Appendix D.

All methods have pros and cons, but Recursive network growing (Starting from
the current segment, recursively grow 𝑛 levels deep in all possible directions in
the road graph. It is constrained to not grow past major road intersections.) was
chosen due to its not being scale sensitive and its high level of control while
capturing a logical neighborhood.

For performance reasons, to get more consistently sized neighborhoods, and
to counteract the negative effect of very short segments part of a longer (curved)
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section, the recursive network growing is done on a graph of all road sections
and not just road segments. See Figure 35 for a comparison.

(a) Based on road segments. (b) Based on road sections.
Figure 35   Example showing the difference between segment and section based
network growing (both with 𝑛 = 2). The arrow shows the starting segment, the
numbers indicate the recursive growing step. (Source data from OpenStreetMap

contributors (2017))
For road graph 𝐺(𝑁, 𝑆) with nodes 𝑁  and sections 𝑠, the road section neigh-
bourhood set 𝑆𝑛 of all reachable sections from 𝑠0 within 𝑛 steps can be defined
as follows:

𝑆𝑛(𝑠0) = {𝑠 ∈ 𝑆 | 𝑠  can be reached in 𝑛 steps from 𝑠0and is of the same class or higher as 𝑠0and does not require to cross a street of a higher class} 17.
The simple aggregations performed for every road segment on its neighbor-

hood are summarized in Table 1, and the custom aggregations in Table 2
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Figure 36   Example of the neighborhood of a road section (marked with an arrow)
based on network growing with 𝑛 = 5. The contextualization does not grow to
section X because they lie on the other side of a major road. (Source data from

OpenStreetMap contributors (2017))

Metric name Mean Std
stretch linearity X X
forward angle X X
continuity X X
stretch curvilinearity X X
intersection left angle X X
right neighbour angle deviation X X
right neighbour distance X X
forward angle (absolute) X
section_length X X

Table 1   Road neighborhood simple aggregations.
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(a) Without neighborhood aggregation.

(b) With 5 step neighborhood aggregation (mean).

(c) With 5 step neighborhood aggregation (standard deviation).
Figure 37   Examples of the effects of neighbourhood aggregation. (Source data

from OpenStreetMap contributors (2017))
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Metric name Description
angle entropy See Section A
bearing_cardinality See Section B
dead_end_sections Percentage of dead-end road segments,

weighted by segment length
continuity Weighted median by segment length, to

remove the difference between grid street
pattern with and without small service
streets within the grid

stretch_curvilinearity Weighted mean by segment length
right neighbour angle deviation Weighted mean by segment length
right_neighbour_distance Weighted mean by segment length
forward_angle_abs Weighted mean by segment length

Table 2   Road neighborhood custom aggregations.

A Angle Entropy
This metric aims to capture the uniformity (or the lack thereof) of the angles within
a street pattern. Grids would be examples of having high uniformity, and organic
patterns would have low uniformity.

To capture the lack of uniformity in the street-bearing distribution, the method
proposed by Boeing (2019) is used. In this method, the bearings of all segments
within a city are divided into 36 bins (each 10°). The bins are shifted 5° so common
bearings like 0°, 45°, 90°, etc. fall within the middle of a bin and slight offsets
like 89.9 ° and 90.1° fall in the same bin. Finally, the Shannon entropy (Shannon,
1948) of the bearing distribution is computed.

B Bearing Cardinality
This metric aims to capture in how far the street orientations follow the cardinal
directions (North, South, West, East). This is computed as the percentage of road
segments within the neighborhood that fall within 5° of any of the cardinal direc-
tions 0°, 90°, 270°, and 360°.
Buildings Contextualizing

Building contextualizing uses the Radius method from Table  9. A building’s
neighbourhood is defined as all other buildings with their centroid within 300
meters of this building. A second contextualizing method selecting all buildings
in the same enclosure was rejected due to problems handling arbitrarily big
enclosures at the edges of the city.
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Figure 38   Example of angle entropy values (Source data from OpenStreetMap
contributors (2017))

The following aggregations are performed on the neighborhood of every
building, see Table 3.

Figure 39   Example of bearing cardinality values (Source data from Open 
StreetMap contributors (2017))
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Metric name Mean Std Max Mode
area X X
building group enclosure perimeter
coverage

X X

shared walls ratio X X
shape index X X
building group elongation std X
building group area std X
equivalent_rcetangular_index X X
elongation X X
covered_area X X
alignment X X
squareness X X
approximate_height X X X
land_use_category X

Table 3   Building neighborhood aggregations.

4.2.4 Clustering & Classification
Streets Clustering

I used a Gaussian Mixture Model (GMM) as clustering model, which is a
probabilistic derivative of the k-means clustering method (Reynolds, 2009).
Fleischmann et al. (2022) identifies this model as the most suitable for this type
of clustering methodology. Besides the better sensitivity to clusters of varying
sizes and the method not only relying on squared Euclidian distances mentioned
by Fleischmann et al. (2022), this method has other advantages for my specific
research:
• It allows the application of clusters to unseen cities without needing the data

originally used to create the clusters. The parameters of the model can be
saved, and at a later moment, the model can be reconstructed from these
parameters.

• Relatively low time and space complexity. Fitting the model to more than
100 million rows took just a few minutes, whereas initial tests with HDBSCAN
(McInnes et al., 2017) and OPTICS (Ankerst et al., 1999) already took significant
time on less than 100 thousand rows.

• The road pattern typology clusters are not well defined, so density-based
methods are not well suited. GMM can create clusters in data without clear
cluster edges.
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Both the GMM method and clustering in general did however pose challenges
in seeing the impact of each of the selected metrics on the final clustering

Feature selection was based on observing street patterns in cities worldwide.
Different metrics were developed to capture the observed differences. Section A
through Section F highlight the set of metrics selected to establish a minimal set
to distinguish the vast variety of street patterns worldwide.

A Neighbourhood curvilinearity
The metric called stretch_curvilinearity::nb::weighted_mean (in the format
<metric>::neighborhood::<aggregation method>) defines the average curviness of
the roads in the neighborhood of this segment. This metric was selected as the
curvilinearity of the roads within a street pattern was observed as one of the
primary characterizing attributes.

Figure 40   Streets with high curvilinearity within major streets of low curvilinearity

B Neighbourhood continuity
continuity::nb::weighted_median defines how uninterrupted the median street
within this neighborhood is, weighted by segment length. The median was
selected instead of the mean to discard any influence from small service streets
within the overarching street pattern that does not significantly impact the urban
tissue. This metric was selected to distinguish between areas that are similar in
all other metrics, but still visually distinct. See Figure 41.
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(a) Street pattern with low median con-
tinuity. (OpenStreetMap contributors,

2017)

(b) Street pattern with high median
continuity. (OpenStreetMap contribu-

tors, 2017)
Figure 41   Two street patterns distinguished by the continuity that are visually

distinct.

C Neighbourhood angle entropy
angle_entropy::nb defines how regular the orientations of the streets in this
neighborhood are. This metric was chosen to specifically distinguish out grid
patterns, in combination with the continuity metric.

(a) Street pattern with low angle en-
tropy. (OpenStreetMap contributors,

2017)

(b) Street pattern with high angle en-
tropy. (OpenStreetMap contributors,

2017)
Figure 42   Two distinct street patterns distinguished by angle entropy.

D Neighbourhood right neighbour distance
right_neighbour_distance::nb::weighted_mean defines the average distance to
the closest street segment located to the right of the segments in the neighbor-
hood, with a limit of 300 meters per segment. This metric is scale-sensitive, and
the main distinguishing feature for density.
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(a) Street pattern with low mean right
neighbor distance. (OpenStreetMap

contributors, 2017)

(b) Street pattern with high mean right
neighbor distance. (OpenStreetMap

contributors, 2017)
Figure 43   Two distinct street patterns with vastly different right neighbor

distance.

E Neighbourhood right neighbour angle deviation
right_neighbour_angle_deviation::nb::weighted_mean defines the average differ-
ence between the angle of the current segment and that of its neighbor on the
right. This metric aims to capture to what extent streets are parallel to the one
next to it. Angle entropy already captures this for grid-like street patterns, but
parallel streets also occur in patterns that do not have regular angles across the
whole neighborhood, as can be seen in Figure 44.

(a) Street pattern with low mean
right neighbor angle deviation. (Open-

StreetMap contributors, 2017)

(b) Street pattern with high mean
right neighbor angle deviation. (Open-

StreetMap contributors, 2017)
Figure 44   Two distinct street patterns with different right neighbor angle devi 

ation.
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F Neigbourhood section length standard deviation.
section_length::nb::std defines to what extent the section lengths differ within
a segment neighborhood. This metric aims to capture a level of “regularness” in
a pattern that is not captured by any of the other metrics.

(a) Street pattern with high regularness
of section lengths. (OpenStreetMap

contributors, 2017)

(b) Street pattern with low regularness
of section lengths. (OpenStreetMap

contributors, 2017)
Figure 45   Two distinct street patterns distinguished by regularness of section

lengths.
Computing the classes using GMM requires the passing of a value for the amount
of classes 𝑘. For this thesis, clusters were computed for values of 𝑘 ranging from
6 to 18. The elbow method is a popular method for determining the optimal
amount of clusters by identifying the point with the biggest change in angle in a
curve with a number of clusters on the x-axis and a scoring metric on the y-axis.
This method was also used by Fleischmann et al. (2022) in combination with using
the Bayesian information criterion (BIC) for estimating the goodness of fit of the
model (Schwarz, 1978) to determine the optimal amount of clusters. I, therefore,
use this same methodology for estimating the optimal amount of clusters.

Buildings Classification
The classification model chosen is gradient boosting, more specifically the
CatBoost model (Dorogush et al., 2018). This model was chosen for its good
handling of complex relationships, support for missing values and categorical
data, and good performance.

First, a ground-truth dataset had to be created by labeling footprints from real-
world data. A subset of the city dataset was used, ensuring an even spread across
continents. See Figure 46. Originally, Hong Kong was also part of the dataset, but
it was discarded after the apartment typology from this data seemed to have a
negative effect on the classification performance of all other cities.
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Figure 47 shows examples of building footprints selected as ground truth for
each of the building classes.

Figure 46   Selected cities for ground truth dataset across the world. Background
from OpenStreetMap contributors (2017)

(a) big_commercial (Antwerp, Belgium) (b) filled_block (Antwerp, Belgium)

64



Methodology Analysis - Clustering & Classification

(c) perimeter_block (Berlin, Germany) (d) complex (Berlin, Germany)

(e) irregular_block (Cairo, Egypt)
.

(f) detached in (Kinshasa, Democratic
Republic of the Congo)
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(g) apartments (Denver, USA) (h) industrial (Bangkok, Thailand)
Figure 47   Examples from ground truth dataset for building typologies (Back 

grounds from OpenStreetMap contributors (2017))
Figure  48 shows a limitation of the ground truth dataset. As can be seen in
Figure 48a, the real-world area consists of filled city blocks, but Figure 48b shows
that the building footprints from sources that use AI generation do not, in fact,
form filled blocks.

The full ground truth dataset, with typologies spread across the different cities,
was used to train the CatBoost model.

4.3 Encoding
This section provides a detailed explanation of the Encode step, as outlined in
Section 4.1.2.

4.3.1 The City Template
Typology Grid Encoding

The value of a cell in the typology grid is defined as the typology whose elements
intersect the most with the area of that cell. This is more accurate than taking the
mode, as the amount of elements of a certain typology does not automatically
constitute the most dominant typology. Road segments can differ vastly in length,
and buildings can differ vastly in area.
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(a) Real world area in Montevideo,
Uruguay (Airbus, 2024; Google, 2024;
Google Earth, 2024; Maxar Technolo-

gies, 2024)

(b) Classified building footprints, with
clearly visible effect of inaccurate foot-
prints being assigned a different class.
(Source data from OpenStreetMap

contributors (2017))
Figure 48   Influence of building footprint data quality on classification.

Typology Grid Convolution
The resulting typology grid can have a noisy and mosaic-like appearance due to
small areas of different classes within larger areas of more predominant classes.
This can, for example, be caused by the dense road pattern in a parking lot. This
absence of clear and contiguous areas harms the readability of the resulting map.
It also degrades the generation performance with the simulated annealing tech-
nique, as the noisy pattern is more complex and more challenging to describe
with landscape analysis metrics. Most patch-level shape metrics, see …, will give
little to no distinguishable information for patches of just one or two cells.

A convolution process is used to counteract this noisy effect. In this process,
a 3×3 kernel is applied to each grid cell using a mode filter. This filter is highly
suitable for categorical data, as it can apply a smoothing effect on non-numerical
data by choosing the predominant category in the neighborhood for every cell.
This results in more clumped landscapes, making spatial patterns more obvious
(He et al., 2002), see Figure 78. A downside is that dominant classes become
more pronounced, while rare classes can become less prevalent (Coulston et
al., 2014).

The result is a more consistent and easier-to-interpret typology grid, but this
comes at the cost of possible overgeneralization. A high level of generalization
can still be argued to be favorable since the aim is to detect contiguous areas,
not tiny patches of suddenly different urban tissue.
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See Figure 78a and Figure 78b for the before and after.

4.3.2 The Typology Template
The typology grid describes the spatial distribution of a layer’s different typolo-
gies but does not describe the typology itself. That is where the typology
template comes in. This template consists of statistical descriptions of the
typology’s defining characteristics. These descriptions are geared towards the
specific values needed for the generation phase, where neighborhood data is
(partly) known, and the parameters need to be determined for the next element
to be constructed.

Typology templates can be defined both globally and locally. A global typol-
ogy template is constructed from the data of that typology within all analyzed
cities, while the local typology template only considers data from one specific
city.

I developed a proof of concept for typology templates for the minor roads layer
to be used in combination with the adapted Parish & Müller (2001) method for
road generation. The input parameters for this generation method are segment
angle, segment length, and a decision if the road should stop (node degree
1), continue straight (node degree 2), and it should split left and/or right (node
degree 3 or 4). The typology template was designed to follow the inverse proce-
dural modeling approach, determining the required input parameters for the
generation algorithm from the input statistics.

Firstly, the input parameters of the generation algorithm are available in the
data of the analyzed cities. Segment angle corresponds to the forward_angle
attribute, segment length to the length attribute, and node degree to the node
degree attribute. The distribution and probability of possible values for each of
these parameters can be approximated by creating a probability density function
or a probability histogram. The core of the typology template are the three
probability distributions of these input parameters. Figure 49 shows an example
distribution for the forward angle attribute of cluster 3 for a local template of the
city of Antwerp.

Visual investigation of road generation results from random sampling of
these distributions showed that just the probability of the parameter is not
sufficient for realistic results. Investigating the source data from OpenStreetMap
showed apparent correlations, like multiple short segments following each
other in curved segments or curved segments often following a consistent
curvature across multiple segments. Therefore, new attributes were added
to the analysis data to capture attributes of the “previous” segment, includ-
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Figure 49   Example probability histogram of forward angle attribute for a local
typology template.

ing previous_segment_forward_angle, previous_segment_node_degree, and
previous_segment_length.

One option for encoding the complex relationship between these “previous
segment” variables and the target parameters is to use a deep learning
approach. However, my aim in this thesis was to avoid opaque methods that
obfuscate why a certain outcome was reached. I do, however, think that many
opportunities lie in investigating deep learning approaches with possibly higher-
quality outcomes, as also Breiman (2001) states that these models can represent
reality more closely.

The approach I chose was to encode the influence of the “previous segment”
variables statistically. The histogram is divided into evenly sized bins. Then,
separately for each bin, the relationship between the value of each influencing
variable and the probability of that specific bin is encoded using a probability
density function for each influencing variable.

The probability for a bin can be defined as: 𝑃(bin) = 𝑃unweighted(bin) ∗ weightinfluence(𝑉 )weightinfluence = ∑𝑛𝑖=1 𝑃(𝐷𝑖(𝑉𝑖))𝑛 18.
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Where 𝑉  is the set of influence values for a specific context, 𝑛 is the total number
of influence values, and 𝑃(𝐷𝑖(𝑉𝑖)) represents the probability of the 𝑖-th influence
value 𝑉𝑖 under the corresponding distribution 𝐷𝑖.

Note that the final bin probabilities need to be normalized to add up to 1.0
across all bins, which is not incorporated in Equation 18.

For example, let’s take the −70° to −30° bin. In the probability histogram, it might
have a probability of 7%. The previous segment forward angle is −60°, the prob-
ability density function for this influence metric might give a much higher than
average probability (reflecting the observation that segment angles are often in a
consistent direction). Then, the previous segment length and distance to the last
intersection might have less influence, both giving a roughly average probability.
As a result, the final probability of the −70° to −30° bin might, for example, end
up as a much higher 20%, while the probability of other bins was adjusted based
on their influence probability distributions. I do not know if a similar approach
has been introduced in earlier research or if it is specific to this thesis.

The Cauchy (red) and LogNormal (blue) distributions are currently imple-
mented, where the most suitable distribution was chosen by minimizing the
Error of Sum Squares (the default scoring metric in the used library). These
distributions were chosen based on their low error with the data that was being
experimented with, but more distributions should be added. Bins with little
or inconsistent data cannot produce accurate distribution functions, these are
discarded (indicated by either of the top two statistics in the cell being red). The
top statistic is the error, and the bottom is the Kolmogorov–Smirnov statistic. The
thresholds used were a Sum of Squares error above 1.0 or a Kolmogorov-Smirnov
statistic above 0.4 and were arbitrarily chosen based on visual inspection of the
quality of the resulting distributions.

Figure Figure 50 shows a summary overview of the forward angle distribution
within the typology template.

Visual inspection of the generation results appeared to show a noticeable
improvement in realism with the addition of the influence values (see Figure 51).

Typology templates for the buildings layer were not implemented, as the proof of
concept implementation of the building generation methods does not take any
input parameters. Different building generation methods would require different
parameters, that could also be encoded in a similar inverse procedural modeling
approach. The building generation methods that place sample buildings would
also require a dataset of building footprints inside the typology template so that
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Figure 50   Overview schematic of a typology template encoding of one of the
three attributes (in this case forward angle). The top histogram shows the proba 
bility distribution of the different values of this attribute, divided into evenly sized
bins. Below, each of the influencing attributes has one probability distribution per
bin. Blue probability distributions are LogNormal distributions, while red signifies

Cauchy distributions.

representative buildings for the typology or in the case of a local template of that
specific city can be placed.

4.4 Generation
This section provides a detailed explanation of the Generate step, as outlined in
Section 4.1.3.

4.4.1 Typology Grid Generation
A process of simulated annealing is used for the grid generation.

For this proof of concept, the typology grid from the template city is taken
as a starting point for the simulation. For every simulation tick, the state of the
grid is modified. Two methods were investigated: one where the values of two
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randomly selected cells are swapped and another where one randomly selected
cell is swapped with a random neighboring cell of a different typology. If it has
no neighbors with a different typology, a new random cell is selected. Using the
original grid as a starting point limits the flexibility, and a future implementation
would benefit from being able to generate grids that are similar to the template
without needing to be the exact same size.

The objective function compares the target grid of the original city in the
template with the current grid on every tick. This is done separately for every ty-
pology class. The aim of the objective function is to score how similar the current
grid is to the original city. For this, metrics from the field of landscape analysis
are employed. The typology grid is analyzed by separating it into “patches” of
connected areas of the same typology (rooks case).

A set of metrics is computed for each patch. These metrics were selected
from the set of patch metrics from the FRAGSTATS software (McGarigal & Marks,
1995).

Patch Area is simply the area of the entire patch. AREApatch = 𝑁 × 𝐴cell 19.
 with 𝐴cell the area of a single cell of the typology grid and 𝑁  the amount of cells
this patch consists of.

Patch Core Area Index defines the ratio between the core area of a patch and
the patch area as defined by Equation 19. Where the patch core is defined as the
cells of the patch that do not lie on the perimeter.

CAIpatch = AREApatch_coreAREApatch 20.
Patch Shape Index attempts to describe the irregularity of the patch shape in

a scale-invariant way. SHAPEpatch = 0.25 × PERIMETERpatch√AREApatch 21.
By analyzing the patches of the typology grid with these metrics, it can be

compared to how similar the patches of the current state of the grid are to the
original grid.
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A problem with this approach is that cities do not have similar patterns across
their domain. Patches of city blocks are more likely to be near the city center,
while further away from the city center, they might only exist as small patches
(for example, a small historic center of an agglomerated town). Many more
complex relations can exist, like big commercial buildings being close to major
roads, and industrial buildings more likely to exist in gridded than organic street
patterns. Because the objective function of the simulated annealing method can
be designed freely, it’s possible to encode these relations in the comparison.

I investigate a statistical method to encode these relations by combining
target metrics (i.e., patch area, core area index, shape index) with a “binning
metric”. The idea behind this is that the similarity of the target metric depends
on the binning metric. For example, two typology grids might have the same
statistical distribution of patch areas of the perimeter block, but if the patch areas
are compared in bins according to distance to the city center, it might show that
one grid has most of the perimeter block around the city center while the other
has the patches scattered throughout the whole domain.

Binning is done according to an aggregation function, for example average,
sum, or max. For each class, the patches are divided into bins based on the
binning metric. All patch metric values are subsequently aggregated using the
selected aggregation function. The final result is a list of histograms for each class,
one for every metric-binning-aggregation combination.

Subsequently, each histogram is compared with the corresponding histogram
of the starting typology grid to assign a value from 0-100% similarity. Initially,
cosine similarity was considered for determining the similarity, but this was
consistently assigned too high of a similarity score due to it not being scale-
invariant. Instead, the intersection between the two histograms was computed
as the similarity. This is computed as follows: similarity(𝐴, 𝐵) = ∑𝑛𝑖=1 min(𝑎𝑖, 𝑏𝑖)max(∑𝑛𝑖=1 𝑎𝑖, ∑𝑛𝑖=1 𝑏𝑖) 22.
 where 𝐴 is the current histogram as a vector of each value per bin, and 𝐵 is the
target histogram.

The metrics that are being compared are:

Compared metric Binning metric Average Sum Max
Patch Area Patch distance to city center X X X
Patch Core Area Index Patch distance to city center X X

73



Methodology Generation - Typology Grid Generation

Patch Core Area Index Patch Area X
Patch Shape Index Patch distance to city center X

An opportunity exists to include metrics that incorporate the constraints between
different layers in the city stack, such as the passability of the terrain or the
distance to the closest river. Due to time constraints, these were not implemented
for this thesis.

The final similarity of the grid is 𝑆 = ∑𝑁𝑖=1 ∑𝑛𝑗=1 similarity(𝐴ij, 𝐵ij)𝑁 ∗ 𝑛 23.
 with 𝑁  as the number of classes and 𝑛 the number of metric-binning-aggrega-
tion combinations.

The final score is the average of all similarities of all metrics across all classes.
To determine if the new state is accepted, the difference in score between

the old state and the current state is fed to the following function, called the
Metropolis Hastings Criterium:

𝑃 = 𝑒−Δ𝑇 24.
 With 𝑃  being the probability of accepting the state, Δ being the signed differ-
ence between the old and new state, and 𝑇  being the current annealing temper-
ature. This ensures that at high temperatures, almost all states are accepted, and
with decreasing temperatures, more and more “bad” states get rejected. This
helps escape local minima.

4.4.2 Street Network Generation
The algorithm works as follows, with a segment query being a road segment
that is being considered but not finalized and a road segment being a finalized
segment in the road system. The algorithm is heavily based on the L-system
approach from Parish & Müller (2001), more specifically, the adapted priority
queue-based approach from Barett (2009).

The main change is replacing the global goals function and the way the node
degree is decided. In the original implementation, the global goals function
generated new segment queries based on a population map and a set of rules
to create a grid, organic, or radial pattern. This has been replaced by generating
new segment queries based on the local road typology from the typology grid.
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More specifically, where Parish & Müller (2001) does not adapt to the local
context in the global goals function (by design), the new approach adapts the
generated query to metrics from the previously built segment (the so-called
influence values). Section 4.3.2 describes how the segment angle and segment
length parameters of Parish & Müller’s algorithm can be derived from the typol-
ogy statistics. The same can be done to determine if the road should continue
and if a new segment should spawn to the left and or/right. Figure 51 shows the
difference between deciding these three parameters based on a simple proba-
bility distribution ()

1 Start from a single segment query in priority queue 𝑄, an empty road segment
collection 𝑆, the typology grid 𝐺, and the typology template collection 𝑇

2 While 𝑄 is not empty do
3 Get the next segment query 𝑞 from 𝑄
4 If 𝑞 intersects with any existing segment 𝑠 in 𝑆
5 Modify 𝑞 so it’s truncated to the intersection with 𝑠
6 Split 𝑠 in 𝑠1 and 𝑠2 and replace 𝑠 with the new segments in 𝑆
7 Else if the end point 𝑒𝑞 of 𝑞 is within threshold 𝑡 of an existing end point𝑒𝑠 of a segment in 𝑆
8 Modify 𝑞 so that end point 𝑒𝑞 is at the same location as 𝑒𝑠, essentially

snapping to the existing intersection.
9 End if

10 Construct segment 𝑠 from the (possibly) updated 𝑞 and add it to 𝑆
11 This marks the end of segment construction, now follows the creation of

new queries.

12
Get the influence values 𝑖previous (encoded in the struct retrieved from 𝑄),
including previous segment length, previous segment forward angle, and
distance to last proper intersection.

13 Get the closest typology grid value 𝑔 from 𝐺 and the corresponding typol-
ogy template 𝑡 from 𝑇

14 Sample next node degree 𝑑new from 𝑡 using 𝑖previous as input for the encoded
distributions.

15 If 𝑑new is 1
16 This is a dead end, Continue
17 End if
18 If 𝑑new is 2 or greater
19 Sample forward angle 𝛼new and segment length 𝑙new from 𝑡 using 𝑖previous

as input for the encoded distributions.
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20 Add a new segment query 𝑞new to 𝑄 with angle 𝛼new and segment length𝑙new.
21 End if
22 If 𝑑new is 3
23 Intersection is a T-split, randomly choose left or right. Sample segment

length 𝑙new from 𝑡. Currently, an angle of 90° is always used.

24 Add the left or right query to 𝑄 with a delayed importance value, so it will
be constructed later (as suggested by (Parish & Müller, 2001))

25 Else if 𝑑new is 4
26 Perform the same steps as for 𝑑new is 3, but in both left and right direction.
27 End if
28 End while

(a) Without influence val-
ues.

(b) With influence values. (c) Real life typology
this local typology tem-
plate is based on. (Open-
StreetMap contributors,

2017)
Figure 51   Examples showing the effect that influence values have on road

generation.

4.4.3 Building Generation
This section outlines the 5 different methods used for building generation.

Method 1 starts from an inset polygon of the city block, and recursively splits
it to derive individual building footprints until a certain area threshold is reached.
The splitting method uses an object-aligned bounding box, split at a ratio chosen
from a distribution. Both the split ratio distribution and area threshold distribution
are determined from the typology statistics.
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Method 2 uses real building footprints from the template city sampled from
the original data. These building footprints are associated with a specific area
in the typology grid of the original city. During building generation, the group
of building samples is determined from the local typology grid value. Then, the
samples are distributed along the roads of the block according to the typology
statistics.

Method 3 is based on method 1 but randomly discards finished buildings and
insets the kept buildings to produce an irregular pattern.

Method 4 also starts from an inset polygon and creates a courtyard within this
polygon using another inset.

Method 5 selects specific street segments from the block as starting points
and, at a set distance from these streets, sweeps a row of identical houses to
create a continuous row.

Method
1 2 3 4 5

Detached Housing X
Terraced Housing X
Filled City Blocks X

Perimeter City Blocks X
Irregular City Blocks X

Appartments X
Industrial Buildings X
Complex Buildings X

Big commercial buildings X
Table 4   Which generation method is used for which building typology.

For every resulting enclosure from the road generation phase, a single method
is chosen to correspond to the value of the closest cell on the typology grid. The
method chosen for each typology class is according to Table 4.

Method 1: Object-oriented bounding box splitting
This method is designed to replicate filled city blocks, consisting of often densely
connected building footprints with different aspect ratios to fill the block as
densely as possible.

This method is essentially the same as the algorithm introduced by Parish
& Müller (2001) for generating parcels within a city block, but the algorithm
is adapted for this specific use case with chosen parameters and heuristic for
stopping the recursive splitting when no longer connected to the street.
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The algorithm works as follows:

1 Start from the enclosure polygon 𝑒 and an empty list of final buildings 𝐵
2 Buffer 𝑒 with a negative distance to create a new polygon 𝑒inset with a setback

from the street
3 Add this polygon to the split_queue 𝑆
4 While 𝑆 is not empty do
5 Remove a polygon 𝑝 from the split queue

6 Calculate the object-oriented bounding box 𝑜 of the polygon (the smallest
rotated rectangle that contains the whole polygon)

7 Place a split line perpendicular 𝑙 to a point on the longest axis of 𝑜 at a
randomly chosen fraction between 30% and 70%

8 Split 𝑝 into two (or more) resulting polygons 𝑝1…𝑝𝑛 using 𝑙 as split line.
9 For every resulting polygon 𝑝𝑖 in 𝑝1…𝑝𝑛 do

10 If the area of 𝑝𝑖 is smaller than a preset threshold
11 𝑃𝑖 is a resulting building footprint and is added to 𝐵
12

Else if splitting further would result in new polygons that are
no longer connected to the exterior of 𝑒inset (and therefore not
connected to the street).

13 𝑝𝑖 is a resulting building footprint and is added to 𝐵
14 Else
15 Add 𝑝𝑖 to 𝑆
16 End if
17 End for
18 End while

Downsides of this method include a lack of control, because final results are
highly sensitive to input enclosure shape and a big contrast between small and
big buildings due to the effect of the city block aspect ratio on the splitting
procedure, see Figure 52.
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Figure 52   Example result from method 1: OOBB method

Method 2: Placement
This method was developed to produce realistic footprints in a similar character
as the template city without needing a complex grammar system like CGA from
Müller et al. (2006) that needs expert input. It works on the assumption that you
can create a similar building character by simply sampling existing buildings from
the template city and placing them in the new context.

For this proof of concept implementation, the sampling from real footprints
was not implemented. Only differently scaled squares are used, see Figure 53.

The algorithm works as follows:

1 Start from the enclosure polygon 𝑒, an empty list of final buildings 𝐵, and a
collection of sample building footprints 𝐹

2 Take the exterior line string 𝑙 of 𝑒
3 While the end of 𝑙 has not been reached do
4 Get point 𝑝 at the current position on 𝑙
5 Determine the angle 𝛼 of 𝑙 at 𝑝
6 Draw a sample building 𝑏 from 𝐹
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7 Try to place building 𝑏 at location 𝑝 with rotation 𝛼 (the building footprints
have their street access anchor at (0, 0))

8 If 𝑒 does not fully contain 𝑏
9 Discard 𝑏

10 Move the current position 3 meters further along 𝑙
11 Else if 𝑏 intersects with any finalized building in 𝐵
12 Discard 𝑏
13 Move the current position 1 meter further along 𝑙
14 Else
15 Add 𝑏 as a finalized building to 𝐵
16 Determine building spacing 𝑠 and building width 𝑤
17 Move the current position 𝑤 + 𝑠 meters further along 𝑙
18 End if
19 End while

Figure 53   Example result from method 2: Place method

Method 3: Irregular buildings
The algorithm works the same as method 1, based on Parish & Müller (2001), but
with the following changes:
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1. The algorithm does not stop splitting when a resulting polygon 𝑝𝑖 would no
longer be contained in 𝑒inset. This allows for buildings in the interior of the
enclosure that are not connected to the street.

2. A finalized building has a 30% chance of being discarded to generate gaps
in the resulting building pattern.

These changes were made to produce a similar pattern to the irregular city block
typology. From observation, this pattern often consists of buildings with consis-
tent orthogonal orientation but inconsistent aspect ratios, sizes, and spacing
between the buildings. See Figure 54.

Figure 54   Example result from method 3: Irregular method

Method 4: Inset
This very simple method was developed to create a similar urban tissue as the
perimeter block building typology. The final result is quite oversimplified, see
Figure 55, but adding further detail is non-trivial and was deemed outside the
scope of the proof of concept nature of the building generation algorithms.

The algorithm works as follows:

1 Start from the enclosure polygon 𝑒, an empty list of final buildings 𝐵, and a
collection of sample building footprints 𝐹

81



Methodology Generation - Building Generation

2 Buffer 𝑒 with a negative distance to create a new polygon 𝑏exterior as the building
block exterior with a setback from the street

3 Buffer 𝑏exterior with a negative distance to create a new polygon 𝑏interior as the
building block interior opening

4 The final building (block) 𝑏 is defined as the exterior of 𝑏exterior as outer ring and
the exterior(s) of 𝑏interior as inner ring(s)

Figure 55   Example result from method 4: Inset method

Method 5: Sweep
I developed this method to create urban tissue similar to the terraced housing
building typology. The basic idea is to create rows of connected footprints, in this
case, based on a simple rectangle shape. See Figure 56.

The algorithm works the same as Section , with the following changes:
1. The overlap predicate is used instead of the intersects predicate to determine

if a new building can be placed. This allows for buildings that touch but do
not overlap.

2. The exterior 𝑙 of enclosure polygon 𝑒 is simplified using the Ramer Douglas
Peucker algorithm (Douglas & Peucker, 1973). This is to filter out small angle
changes. Because every building is checked for overlap with all finalized
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buildings, a small change in street angle could cause two buildings that were
meant to only touch to overlap.

To improve realism, a heuristic could be developed to decide which streets
should be used for terraced housing and which should be left empty, as real-
life terraced housing areas often only have buildings on 2 out of 4 sides of a
rectangular block.

Figure 56   Example result from method 5: Sweep method
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5 Implementation
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5.1 Data and Code Availability
The GitHub repository for this project (https://github.com/OliverJPost/CityStack)
contains all code written for this thesis. The README also contains information
on how to access the produced (aggregated) data.

5.2 Overview
Part 1, “Analyze,” and part 2, “Encode,” are both executed using a command
line tool called citypy. This tool is implemented in the Python programming
language.

The Python language was chosen for these two steps for the following reasons.
• Availability of geospatial and analysis libraries, like geopandas, osmnx, and

momepy.
• Previous experience with the language by the author
• Lower performance is less of a concern due to a city only needing to be ana-

lyzed once. The quicker development possibilities outweigh the performance
concerns.

An example usage of citypy to analyze and encode a new city is as follows.
# Download all required data
citypy download "Washington DC" USA \
  --bbox="-77.505,38.697,-76.724,39.202,6.3"

# Add supplemental layers and compute all metrics
citypy process Washington_dc_USA.gpkg

# Aggregate building, road, and major road neighbourhoods
citypy contextualize Washington_dc_USA.gpkg --buildings --regular --major

# Apply road clusters 
citypy clusters apply --file Washinton_dc.USA.gpkg -l road_edges --
col "street_cluster" --clusters citypy_gmm13_road_clusters.gmm --column-
filter="type_category=street"

# Apply building classes
citypy process Washinton_dc.USA.gpkg -s building_class 

# Encode the result to a city character template and local typology templates
citypy encode Washington_dc_USA.gpkg --road-cluster-column "street_cluster"
--building-class-column building_class -o ./Washington_Template/

See Section 5.3 and Section 5.4 for implementation details.
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Part 3 “Generate” is implemented in a separate tool, called citystackgen, which
is implemented in the Rust programming language. This language was chosen
for the generation step for the following reasons:
• High performance, which is necessary for the computationally intensive simu-

lated annealing and element generation process.
• Memory safety ensures no memory leaks.
• Modern language features.
• Good interoperability with Python.
• Good libraries for generation and visualization, including geo, ndarray, and

rerun

Example usage of citystackgen to generate a city based on a template is as
follows.
citystackgen --template washington_template.npz --clusters-dir ./
Washington_Clusters

Subsequently, a Rerun (Rerun Io/rerun, 2024) window opens to show the gener-
ation process while it’s running. Rerun is a graphical user interface for real-time
data analysis. It not only allows for comprehensive insight into the generation
process, including tools to plot variables in real-time but it also can be used for
visualizing the results.

Figure 57   Example of the Rerun interface for city generation
See Section 5.5 for implementation details.
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Data Category Format Data Sources
Terrain Height Raster converted to Points OpenTopography (2021)
Water Polygons/LineStrings OpenStreetMap contributors

(2017)
Buildings Polygons Overture Maps (2023) + Pesaresi

(2023) (Building Height)
Road System LineStrings/Points OpenStreetMap contributors

(2017)
Table 5   Data source overview.

5.3 Analysis
5.3.1 Data Download
Table 5 gives an overview of the data sources used.

Height data is programmatically retrieved from the Copernicus GLO-90
OpenTopography API (OpenTopography, 2021). The usage of this API is free, but
does require users to generate their own API token. Therefore, citypy requires
users to provide their own OpenTopograpy API token.

The Python package osmnx (Boeing, 2023) is used for the download of the
OpenStreetMap data from the publically available Overpass API. This package
makes it easy to construct queries for specific data. A limitation of the Overpass
API is the 1 Gigabyte download limit per day, which was not sufficient for the
amount of data that was planned to be processed for this thesis. Therefore, a local
instance of the Overpass API was set up on a TU Delft server to run the queries.
This also sped up the download process significantly, as the public Overpass API
works with a queue system.

The OvertureMaps building footprint data is also available with a public API,
but due to timeout issues with big queries it was decided to download the entire
OvertureMaps dataset to the TU Delft server and run the queries locally. For the
GeoParquet queries, the overturemaps Python module was used.

All vector data is handled internally using the geopandas library. This came with
many advantages for reading, handling, and modifying the geospatial data, but
proved to also contribute significantly to the memory usage of the tool. Memory
usage was analyzed using memray, and gradually increases during the download
command and stays fairly constant during the entire process step. The only data
structures that remain in memory for the entirety of this step are the geopandas
dataframes (as the networkx graph is lazily constructed). A city like Berlin reached
RAM usage of up to 24 Gigabytes and the Tokyo metropolitan area reached
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above 100 Gigabytes. Future development of geopolars might bring improve-
ments to this area, but this tool is not production ready.

Raster data is handled in a custom GeoRaster class, which uses the rasterio
library internally.

All downloaded data is saved in the GeoPackage format. This format is based
on a database approach. Major advantages include that all layers can be saved
in a single file, unlike the Shapefile format, and very good performance due
to built-in spatial indexing, unlike a text based format like GeoJSON. Final file
sizes of some sample cities are as follows (note that these are file sizes after
the completion of the full pipeline, the raw data after the download command is
significantly lower).

5.3.2 Metric Computation
A system was developed to only compute metrics that are not already present in
the GeoPackage or ones that were specifically selected in combination with an
overwrite flag in the command. This proved to be a major time saver, as it allowed
for quick computation of new metrics and recalculation of failed metrics. Also,
every metric was wrapped in a try except statement, catching any potential errors
and reporting them in the summary at the end. This also proved very useful, as
edge cases caused certain metrics to error out for some cities, which otherwise
would have crashed the computation of all metrics but now could be fixed and
only that metric needed to be run again.

Streets
A starting point for the road system metrics calculation were the metrics from
the osmnx and momepy libraries. In the end many of the metrics were custom imple-
mentations of new methods, which sometimes caused them to be more compu-
tationally expensive than the polished metrics from these libraries. Upgrading
to the latest version of momepy, which was released during the timeframe of
this thesis, saw further speedups, indicating the advantage of using established
algorithms.

A significant challenge in this thesis was the performance of the right
neighbour metric. Even though the implementation utilizes the spatial index of
the geopandas dataframes, and vectorizing the operations in chunks of 1000
segments, it still slowed down significantly with increasing city size. It slowed
down to just 3 segments per second on the Tokyo metro area, meaning a total
run time of almost 300 hours for this metric. This ultimately led to cancelling the
biggest cities that were planned for analysis (Tokyo, New York, Los Angeles, and
Jakarta).

88



Implementation Analysis - Metric Computation

Other noteworthy findings include speedups of up to 3000% by storing
networkx graph attributes in a numpy array beforehand instead of accessing them
every iteration. The momepy morphological tesselation sees RAM usage spike up
to 3 times compared to the baseline, while the enclosed tesselation does not
significantly increase RAM usage. Note that these findings were with a momepy
version before 1.0.

Buildings
The available metrics on building morphology from momepy were used extensively
in this part. No noteworthy findings.

5.3.3 Neighbourhood Aggregation
The aggregation step proved to be a major computational challenge, both in
terms of time complexity and space complexity. For this reason, this is the only
part of the citypy tool that uses the polars library as a replacement for the
geopandas library. The lazy evaluation of the queries in this library, combined with
multi-threading by default, saw significant speedups. Aggregations were applied
by joining the data with every other record within the neighborhood of that
element.

Streets
The networkx library was used to implement the recursive network growing
algorithm. To achieve significant speed-ups, the road graph was first simplified to
have one joined edge per road section instead of a separate edge for every road
segment. Aggregations were later mapped back to individual segments using
the section id attribute.

By performing recursive network growth with 5 steps, a neighborhood of a
single segment quickly goes up to 200 segments. For a city like Tokyo this would
mean 4.6 billion rows in the joined table. Even if this table just contained one
64-bit float per row, this would mean 34 gigabytes of RAM usage. Therefore,
chunked processing of the data is unavoidable. Chunks of 10 thousand segments
at a time proved not to significantly raise RAM usage above the baseline.

Buildings
Building neighborhoods are defined using a radius around the current building,
in this case, a radius of 300 meters. To efficiently select the buildings belonging
to this neighbourhood, a k-dimensional tree from the scipy library was used. A
much smaller chunk size of 100 had to be used, and still, RAM usage was notice-
ably higher than the usage in the processing stage of the same city (roughly 50%
higher). Further investigation could reveal the cause, but because of the high
execution speed of this method it was chosen to simply contextualize fewer cities
at the same time.
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Originally it was also planned to define a second type of neighbourhood:
all buildings in the same enclosure. An oversight was that the maximum size of
an enclosure is theoretically only constrained by the city domain, so the neigh-
borhood might consist of an arbitrarily large amount of other elements. Even
processing in chunks of 100 still saw very significant RAM increases, and this
method was discarded.

5.3.4 Clustering & Classification
Streets Clustering

Clustering is performed as a separate command, which just outputs the cluster-
ing statistic plots and a single cluster summary file for every value of 𝑘 selected.
citypy clusters compute \
    --dir . \
    --layer road_edges \
    --filter "type_category=street" \
    -k 14 -o "streets_k14" \
    -k 16 -o "streets_k16" \
    --on "stretch_curvilinearity::nb::weighted_mean" \
    --on "continuity::nb::weighted_median" \
    --on "angle_entropy::nb" \
    --on "right_neighbour_distance::nb::weighted_mean" \
    --on "right_neighbour_angle_deviation::nb::weighted_mean" \
    --on "intersection_left_angle::nb::std" \
    --on "section_length::nb::std" 

The cluster summary file can subsequently be used to apply the clusters to any
unseen city.

Since clustering is performed on all street segments matching the provided
filter, across all analyzed cities, the RAM usage as a (geo)pandas dataframe was
projected to be too big. Therefore, the code queries the GeoPackages directly
using a database connection and SQL statements to only read the selected
columns and store the values directly in numpy arrays.

Buildings Classification
The catboost library was used for gradient boosting classification with support
for both NaN, None, and categorical values. The fitted model could be exported
to a single .cbm file for applying the classes to unseen cities. The model took
an insignificant amount of time to train, presumably due to the small manually
created dataset.
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5.4 Encoding
5.4.1 The City Template
Typology Grid Encoding

The underlying grid is generated by dividing the domain of the city into 100×100
meter cells. Subsequently, these are saved as polygon geometries in a geopandas
(Jordahl et al., 2020) dataframe. For every cell, an intersection check is made
with all geometries of the layer that is being encoded using the RTree spatial
index. The intersecting geometries are grouped by typology, and the one with
the highest intersection length/area is chosen as the typology of that cell.

Typology Grid Convolution
The 3×3 mode kernel is applied using the ndimage module from scipy (Virtanen
et al., 2020). A challenge was how to deal with None values, as currently the finer
details on the outskirts of the city get lost as they are usually a single cell wide and
surrounded by None. However, if None was not considered by the mode kernel, the
whole domain gets flooded by typologies, including river and sea areas, giving
a wrong representation of the city.

5.4.2 The Typology Template
Typology templates for the roads layer are exported as JSON files, with at
the top level the three target parameters foward_angle, segment_length and
next_node_degree. Then, each target parameter stores a list of bins, each storing
the bin bounds (minimum and maximum), bin median, bin probability (since
all bins together form a probability histogram), and influencing probability
functions. Listing 1 shows an example of a single bin in the typology template.
Influence probability distributions are either a Cauchy, LogNormal or Zero (no
influence or too little samples) distribution and are determined using the fitter
(Cokelaer, 2024) Python library. The serialization format used allows for the dese-
rialization of the distributions in the generation step.
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[
// Previous bins
{
  "bounds": [
        -135.1663886817872,
        -107.56387917170532
    ],
  "median": -114.7550481848244,
  "probability": 0.0009093664746892998,
  "influences": {
      "previous_segment_forward_angle": {
          "type": "Cauchy",
          "scale": 2.8189840800758343,
          "loc": -1.038290809078332
      },
      "previous_segment_length": {
          "type": "Zero"
      },
      "distance_to_last_intersection": {
          "type": "LogNormal",
          "s": 10.610821884860503,
          "loc": 9.952999999999998,
          "scale": 2.1808539933687663
      }
  }
},
// Next bins
]

Listing 1   Example bin from a typology template

5.5 Generation
To accommodate the flexibility of the city stack in the generation process, com-
bined with being able to substitute any generation method, I developed a code
architecture based on the builder pattern. Figure 58 shows a simplified version of
the architecture, showing only one type of CityLayer and CityLayerBuilder. The
architecture allows for an arbitrary amount of CityLayers, each with an arbitrary
choice of CityLayerBuilders.

The main advantage of this architecture is the low amount of coupling; since
layers are stored in a standardized format, the subsequent layers that depend
on the “existing” layers only depend on the CityLayer interface/trait. Also, most
classes are quite focused in regards to their responsibility. A challenge for scaling
this architecture is the dependency between different city layers, as currently,
the building layer generation algorithm starts from the minor roads CityLayer.
However, the city stack dictates that any new layer can be added to the stack, and
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Figure 58   Simplified architecture of the generation process.
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there should also be the possibility to remove layers. If a new “minor points of
interest” layer is introduced, the building generation algorithm should also take
this layer into account. This kind of extendibility is difficult to implement in the
architecture and would need further investigation.

5.5.1 Typology Grid Generation
The biggest challenge for typology grid generation was the performance of the
simulated annealing process. The larger the grid, the more iterations are needed
for the grid to converge, quickly needing millions of iterations. The following
strategies were implemented to improve performance:
• Only the metrics for the modified patches are recomputed per iteration,

including the patches that contain the modified cells and any of their four direct
neighbors (rooks case).

• The minimum and maximum row and column values for each patch are cached
to prevent iterating over the full grid for every patch.

Multi-threading proved to only increase computation time, as the biggest job
that can be split up is to update one metric per thread or compare one class
per thread. These jobs are so small that the overhead of multi-threading negates
any performance gains. The iterations of the simulated annealing cannot be
multi-threaded, as the next iteration needs the previous iteration to be finished.
Another option to enable multi-threading would be to implement the parallel
tempering technique, but this was deemed outside the scope of this thesis.

5.5.2 Street Network Generation
The adapted Parish & Müller (2001) street generation algorithm from Barett
(2009) was rewritten in Rust code. Inspiration was taken from the JavaScript
implementation by Hoof (2022) and the C++ implementation by Elinder (2017),
specifically the separation into a Segment and SegmentQuery class to separate
potential segments and finalized segments. Since every new segment needs to
be checked for any intersections with any other segment, the finalized segments
are stored in an RTree.

Distributions from the local typology template are deserialized into probabil-
ity distribution types from the RV crate (Eaves & Schmidt, 2024) since these use
more similar parameters for the scipy distributions than other available crates.

Since the subsequent layers need the street network to form a closed system
to derive enclosures, it was very important to already create a closed system
while generating. Even though a purely geometry based algorithm was used
to generate the enclosure polygons, small imprecisions in the geometry were
causing gaps in enclosure borders, leading to multiple enclosures being merged
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together. To counteract this, the street network generation algorithm builds a
graph on the go, by splitting segments when an intersection is encountered.

5.5.3 Building Generation
The implementation of the 5 building generation methods is quite straightfor-
ward, and closely follows the pseudocode algorithms. Geometry operations
were implemented using geo (GeoRust, 2023). The main challenge that was
encountered was the tolerance of the Egenhofer 9-IM operations with the relate
method of geo. The overlaps method was often giving false positives for geome-
tries that were only touching. To counteract this, operations that depended on
the overlaps predicate were slightly offset with a negative distance.
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6 Results
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This chapter shows examples of the results of both the analysis, encoding, and
generation steps.

6.1 Analysis
6.1.1 Road Clustering
The optimum amount of clusters was determined using the same methodology
followed by Fleischmann et al. (2022). The goodness of fit of the model is evalu-
ated by identifying the “elbow” of the curve of the Bayesian information criterion
(BIC). The gradient of the curve decreased significantly after 13 clusters, so the
optimum amount of clusters was determined as 13.

Figure 59 shows an example of the global clustering applied to one of the
studied cities.

Figure 59   Example of GMM clustering result applied to Delft, Netherlands.
(Source data from OpenStreetMap contributors (2017))
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Below, each cluster will be statistically and visually described to assess the validity
of the resulting clustering.

Cluster 0 “Angular streets”
Cluster 0 encompasses 9.9% of all analyzed road segments (by segment length).
Of all analyzed cities, Kinshasa, Democratic Republic of the Congo, has the
highest percentage of this cluster, with 29.7%. Z-scores (Appendix E) show signif-
icantly higher angle entropy and stretch curvilinearity and lower right neighbor
distance than average. Visual inspection shows angular street patterns with occa-
sional moderately curved streets.

(a) Example in Washington DC, USA (b) Example in Dakar, Senegal

(c) Example in Havana, Cuba (d) Example in Seoul, South Korea
Figure 60   Examples of Cluster 0 (Source data from OpenStreetMap contributors

(2017))
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Cluster 1 “Irregular grid”
Cluster 1 encompasses 14.1% of all analyzed road segments (by segment
length). Of all analyzed cities, Beijing, China has with 32.4% the highest percent-
age of this cluster. Z-scores (Appendix E) show significantly higher right neighbor
distance, and significantly lower angle entropy, stretch curvilinearity and right
neighbor angle deviation than average. Continuity is only slightly higher than
average. Visual inspection shows orthogonal street patterns with moderate but
relatively consistent spacing.

(a) Example in Barcelona, Spain (b) Example in Montevideo, Uruguay

(c) Example in Thessaloniki, Greece (d) Example in Havana, Cuba
Figure 61   Examples of Cluster 1 (Source data from OpenStreetMap contributors

(2017))
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Cluster 2 “Interupted grid”
Cluster 2 encompasses 13.6% of all analyzed road segments (by segment
length). Of all analyzed cities, Chandigarh, India has with 35.0% the highest
percentage of this cluster. Z-scores (Appendix E) show very significantly lower
angle entropy, stretch curvilinearity and right neighbor angle deviation than
average and moderately lower continuity, right neighbor distance, and section
length standard deviation than average. Visual inspection shows gridded street
patterns with interrupted streets (as suggested by the low continuity). Some out-
liers were spotted where the pattern did not appear fully orthogonal, for example
Figure 62d.

(a) Example in Dakar, Senegal (b) Example in Havana, Cuba

(c) Example in Thessaloniki, Greece (d) Example in Montevideo, Uruguay
Figure 62   Examples of Cluster 2 (Source data from OpenStreetMap contributors

(2017))
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Cluster 3 “Highly continuous streets”
Cluster 3 encompasses 11.0% of all analyzed road segments (by segment
length). Of all analyzed cities, Montevideo, Uruguay has with 34.9% the highest
percentage of this cluster. Z-scores (Appendix E) show very significantly higher
right neighbor distance and continuity than average, and significantly higher
section length standard deviation. Visual inspection shows very inconsistent pat-
terns, ranging from highly regular grid patterns in Figure 63a, to long stretches
of curved (Figure 63b and Figure 63d) or straight (Figure 63c) roads, to parallel
curved (Figure 63e) and irregular orthogonal (Figure 63f) patterns. One thing all
these patterns have in common is a high median continuity.

Cluster 4 “Undefined 1”
Cluster 4 encompasses 0.02% of all analyzed road segments (by segment
length). Of all analyzed cities, Bucharest, Romania has with 0.18% the highest
percentage of this cluster. Z-scores (Appendix E) show extremely significantly
higher section length standard deviation, and very significantly higher right
neighbor distance and continuity than average. Visual inspection yielded only
one example in 7 investigated cities, a stretch of road with both long straight
segments and slowly curving segments.

Figure 64   Example of Cluster 4 in Barcelona, Spain (Source data from Open 
StreetMap contributors (2017))

Cluster 5 “Dense core or parking lot”
Cluster 5 encompasses 8.1% of all analyzed road segments (by segment length).
Of all analyzed cities, Delft, Netherlands has with 36.9% the highest percentage
of this cluster. Z-scores (Appendix E) show lower than average scores for all clus-
tering metrics, and significantly lower right neighbor distance and continuity than
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(a) Example in Montevideo, Uruguay (b) Example in Dakar, Senegal

(c) Example in Montevideo, Uruguay (d) Example in Dakar, Senegal

(e) Example in Washington DC, USA (f) Example in Thessaloniki, Greece
Figure 63   Examples of Cluster 3 (Source data from OpenStreetMap contributors

(2017))

average. Visual inspection shows dense angular street patterns, often occurring
in dense city centers (Figure 65a), but also in parking lots (Figure 65d)
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(a) Example in Barcelona, Spain (b) Example in Thessaloniki, Greece

(c) Example in Seoul, South Korea (d) Example in Washington DC, USA
Figure 65   Examples of Cluster 5 (Source data from OpenStreetMap contributors

(2017))

Cluster 6 “Disconnected”
Cluster 6 encompasses 11.1% of all analyzed road segments (by segment
length). Of all analyzed cities, Hong Kong, China has with 26.6% the highest per-
centage of this cluster. Z-scores (Appendix E) show significantly lower continuity,
lower section length standard deviation, and higher curvilinearity than average.
Visual inspection shows scattered segments that are often disconnected from the
rest of the network of the same class (they are often only connected to major
roads). Especially cities like Hong Kong show this, that have large areas that are
mostly connected by major streets.
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(a) Example in Barcelona, Spain (b) Example in Havana, Cuba
Figure 66   Examples of Cluster 6 (Source data from OpenStreetMap contributors

(2017))

Cluster 7 “Regular grid”
Cluster 7 encompasses 9.0% of all analyzed road segments (by segment length).
Of all analyzed cities, Paramaribo, Surinam has with 20.5% the highest percent-
age of this cluster. Z-scores (Appendix E) show significantly higher continuity, and
clearly lower angle entropy and right neighbor angle deviation than average.
Visual inspection shows quite regular grid patterns (Figure 67a and Figure 67d)
with occasionally more variations in angles (Figure 67b). Outliers were found as
seen in figure Figure 67b, possibly due to the choice of weighted median for
continuity (the weighted median continuity of this neighborhood would still be
high as the small dead end streets have a low weight).
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(a) Example in Havana, Cuba (b) Example in Barcelona, Spain

(c) Example in Washington DC, USA (d) Example in Dakar, Senegal
Figure 67   Examples of Cluster 7 (Source data from OpenStreetMap contributors

(2017))

Cluster 8 “Curvy roads”
Cluster 8 encompasses 1.1% of all analyzed road segments (by segment length).
Of all analyzed cities, Sao Paulo, Brazil has with 3.77% the highest percentage
of this cluster. Z-scores (Appendix E) show significantly higher angle entropy
and right neighbor angle deviation and clearly higher stretch curvilinearity than
average. Visual inspection shows highly curved streets, sometimes mixed with
straight roads. This specific cluster was not often encountered in the 7 inspected
cities, even though they contain many curvy rural roads in the outskirts.
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(a) Example in Havana, Cuba (b) Example in Thessaloniki, Greece
Figure 68   Examples of Cluster 8 (Source data from OpenStreetMap contributors

(2017))

Cluster 9 “Undefined 2”
Cluster 9 encompasses 0.01% of all analyzed road segments (by segment
length). Of all analyzed cities, Lisbon, Portugal has with 0.34% the highest
percentage of this cluster. Z-scores (Appendix E) show extremely significantly
higher section length standard deviation, and significantly higher angle entropy
and right neighbor distance than average. Visual inspection only yielded one
example in 7 analyzed cities, which showed two small pieces of erratically curved
stretches.

Figure 69   Example of Cluster 9 in Seoul, South Korea (Source data from Open 
StreetMap contributors (2017))
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Cluster 10 “Spacious winding roads”
Cluster 10 encompasses 12.6% of all analyzed road segments (by segment
length). Of all analyzed cities, Lagos, Nigeria has with 38.1% the highest percent-
age of this cluster. Z-scores (Appendix E) show significantly higher angle entropy,
right neighbor distance, and stretch curvilinearity, and higher right neighbor
distance and section length standard deviation than average. Visual inspection
shows winding streets with relatively much space between the streets.

(a) Example in Washington DC, USA (b) Example in Seoul, South Korea

(c) Example in Dakar, Senegal (d) Example in Thessaloniki, Greece
Figure 70   Examples of Cluster 10 (Source data from OpenStreetMap contribu 

tors (2017))
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Cluster 11 “Scattered and orthogonal roads”
Cluster 11 encompasses 4.8% of all analyzed road segments (by segment
length). From all analyzed cities, Bangkok, Thailand, has with 10.3% the highest
percentage of this cluster. Z-scores (Appendix E) show higher angle entropy and
lower continuity than average. Visual inspection shows small patches of quite
orthogonal road patterns scattered throughout the city, often not very connected
to the rest of the road pattern or only connected through major streets.

(a) Example in Havana, Cuba (b) Example in Washington DC, USA
Figure 71   Examples of Cluster 11 (Source data from OpenStreetMap contribu 

tors (2017))

Cluster 12 “Structured angular”
Cluster 12 encompasses 4.5% of all analyzed road segments (by segment
length). Of all analyzed cities, Dakar, Senegal has with 12.4% the highest percent-
age of this cluster. Z-scores (Appendix E) show higher angle entropy and lower
continuity than average. Visual inspection shows angular street patterns quite
similar to cluster 0 but with slightly less curvy roads.
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(a) Example in Dakar, Senegal (b) Example in Barcelona, Spain

(c) Example in Seoul, South Korea (d) Example in Washington DC, USA
Figure 72   Examples of Cluster 12 (Source data from OpenStreetMap contribu 

tors (2017))
Figure 73 shows the dendrogram of the resulting clustering (by Euclidian dis-
tance of the cluster centroids), following the same methodology as Fleischmann
et al. (2022). Three distinct groups are visible. Further investigation of these
groups show that the ambiguous cluster 3 is grouped with the discardable clus-
ters 4 and 9. The scattered clusters 6 and 9 are grouped with the angular cluster 5
and the highly gridded cluster 2. The third group contains both very orthogonal
grids, angular networks, and organic networks. Cluster 5 is in a different group
than 0 and 12, which are visually quite similar. Therefore, I concluded that the
dendrogram grouping does not help with the comprehensibility of the clusters
and only represents Euclidian distance in a higher dimensional space without
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revealing interesting groupings. Grouping and color-coding the clusters by
dendrogram branch, as done by Fleischmann et al. (2022), was not implemented
because of this rejection of the comprehensibility of the dendrogram.

Figure 73   Ward’s linkage dendogram of the means of the computed clusters,
showing euclidean distance on the Y axis.
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Figure 74   Example showing three different clusters beig assigned to an area
which appears to have a quite homogenous road pattern. (Source data from

OpenStreetMap contributors (2017))

6.1.2 Building Classification
All attributes, including local and neighborhood versions, were used for classifi-
cation input. The only ones left out are references, ids, and other non significant
attributes like: confidence, geometry, source, and name.

Feature importance scores reveal which input features are the most and least
important for the accuracy of the classification. Computed importances (Appen-
dix F) reveal the land use category as the most distinguishing feature. Out of the
20 most important features, 17 describe the aggregated neighborhood. From
the 3 non-neighborhood metrics, land use category and subtype often directly

111



Results Analysis - Building Classification

relate to a specific building class (i.e. industrial land use to industrial building
or apartment subtype to apartment building). The last one, “covered area” still
describes a relationship with the directly neighboring buildings, so it does not
describe the building in isolation. From this, it can be concluded that the classi-
fication of building type seems to be much more dependent on neighborhood
metrics than on individual building metrics.

Training took 4 minutes with 1000 iterations, a learning rate of 0.1, and a tree
depth of 6 (the default values).

Figure 75a shows the results of the trained model applied to the city of Prague.
As can be seen, clear areas emerge from the resulting pattern. Figure 75b shows
the clustering result from Fleischmann et al. (2022), colored according to the
unnamed clusters. Clear similarities are visible, with the filled block class corre-
sponding closely with the dark red cluster in the historic center and the perimeter
block class closely corresponding with the blue cluster surrounding the historic
center. The apartments class has a significant overlap with the yellow cluster, the
detached class with the light pink cluster, and the industrial class with the grey
cluster. The classification results (Figure 75a) show a clear difference in the ability
to identify single or small groups of buildings within a larger area of another class.
Figure 76 shows how the complex class is assigned to the central train station (1),
the Národní Muzeum (2), and the Prague University of Economics and Business
(3), whereas the clustering approach from Fleischmann et al. (2022) assigns these
to the clusters of the larger surrounding urban tissue. This has both advantages
and disadvantages. The classification approach is able to reflect the presence
of unique buildings or areas that have a mix of two or more building classes.
The clustering approach is able to create more contiguous areas of urban tissue
instead of classifying individual buildings.
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Figure 76   Examples of classification results for the complex typology, highlighting
the central train station (1), the Národní Muzeum (2) and the Prague University
of Economics and Business (3). (Source data from OpenStreetMap contributors

(2017), Overture Maps (2023))
Earlier classification runs included more classes, namely “semi-detached”, “agri-
cultural”, and “tower”. Semi-detached was discarded because creating an
accurate ground truth dataset was difficult, detached houses often included
attached garages and outbuildings, and corner buildings of terraced housing
were getting classified as semi-detached. “Agricultural” was discarded because
only Antwerp out of the ground truth city contained greenhouses, industrial and
commercial buildings were getting classified as agricultural, and semantically
agricultural being marked as industrial was deemed acceptable. Finally, the
tower class was discarded because it often did not classify very tall buildings
as towers, while often classifying detached houses in the outskirts of cities incor-
rectly as towers.

Another observed effect is the impact of building footprint data quality on
classification results. Figure 77a shows on satellite imagery that the area has a
uniform building pattern, but Figure 77b shows the difference OpenStreetMap
footprints in the top left and AI generated footprints in the other areas have on
classification performance. Many of the blocks get assigned to irregular block,
while supposedly they are filled blocks.
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(a) Real world area in San Jose, Costa
Rica (Airbus, 2024; Google, 2024;
Google Earth, 2024; Maxar Technolo-

gies, 2024)

(b) Classified building footprints, with
clearly visible effect of inaccurate foot-
prints being assigned a different class.
(Source data from OpenStreetMap
contributors (2017), Overture Maps

(2023))
Figure 77   Influence of building footprint data quality on classification.

6.2 Encoding
6.2.1 City Templates
Typology grids and convoluted typology grids were created for all 43 analyzed
cities. Figure 78a shows an example output typology grid for the roads layer, and
Figure 78b shows the same typology grid with the 3×3 mode kernel applied.
The convolution process makes the typology grid more readable and reduced
noise. However, across all cities, the mode kernel caused 17.5% of all grid cells
to change value.
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Figure 79 shows a close-up of the same convoluted typology grid as Figure 78b
with as overlay the original minor streets. The organic pattern in the historic
center is mostly assigned to cluster 0 and 5 and the more orthogonal streets
around it to cluster 2. These patterns show a good characterization of the urban
tissue. What can also be seen however is the presence of many small patches of
other clusters, including small parts of the orthogonal patterns being assigned to
cluster 3, 7, and 10. Additionally, tiny patches from cluster 6 and 11 are present.
The presence of these small patches harms the comprehensibility, possibly have
a negative impact of generation of new grids based on this template, and even
if reproduced in a similar pattern might cause sudden changes of pattern in
generated road patterns.

Figure 79   Example of the minor roads typology grid of Prague, zoomed in on the
city center. The minor roads layer is added as a gray overlay. (Road source data

from OpenStreetMap contributors (2017))
Figure 80 shows an example output typology grid for the buildings layer, with
mode kernel applied. The buildings grid shows comparatively more contiguous
areas than the minor roads grid, with a clear gradient from city blocks, to apart-
ments, to detached buildings and industrial buildings radiating out from the city
center.
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Figure 80   Example of building typology grid of the city of Prague after convo 
lution.

Closer inspection in Figure 81 shows relatively clear and contiguous areas that
seem consistent with the buildings within them. Building blocks in the perime 
ter block region show clearly visible courtyards, and the typology immediately
switches to apartments at the transition from blocks to detached buildings. The
areas marked as complex sometimes reveal interesting features, for example,
the Prague Castle area (1), university area (2), and station area (3). Other smaller
patches of the complex class do not seem to reveal specific features.
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Figure 81   Example of the building typology grid of the city of Prague, zoomed
in to the city center. The buildings layer is added as a gray overlay. (Source data

from OpenStreetMap contributors (2017), Overture Maps (2023))
Besides the generation of new typology grids for morphology-based city gen-
eration, the typology grids have the potential to be used in other research
applications. Figure  82 and Figure  83 are an example of such an application,
showing the distribution of minor road typology and building typology, respec-
tively, for all analyzed cities. The addition of extra parameters on the typology
grid can broaden the possibilities for analyses.
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Figure 82   Percentage of minor roads typology for the typology grid of each
analyzed city. Clusters with less than 1% have been left out.
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Figure 83   Percentage of buildings typology for the typology grid of each ana 
lyzed city. Clusters with less than 1% have been left out.
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6.3 Generation
6.3.1 Grids
For performance reasons, simulated annealing was performed at lower resolu-
tions. Two state modification methods were investigated, firstly random swap. A
resolution of 19 th results in a grid with 300 × 300 meter cells; roughly 7000 varia-
tions can be attempted per second of a grid the size of the small city Breda (26
thousand cells). Figure 85 shows convergence at around 15:46, corresponding
to roughly 1.3 million iterations. Figure 84d shows the state of the grid shortly
after convergence, showing a realistic pattern suddenly appearing from the ap-
parent random pattern of Figure 84c. Another 1 million iterations show marginal
improvements, for example the increase in core area for the big terraced housing
area (pale green).

Figure 84a shows the starting condition, and Figure 84f shows the final output
after 2.5 million iterations with a final similarity of 95%.

Figure 85   Statistics of all similarity metrics (0 to 1) for the simulated annealing
process.

Statistically speaking, the generated typology grid is very similar to the starting
grid. Visual inspection reveals as the main flaw the presence of a lot of empty
space or “None” typology around the city center in Figure 84f compared to the
starting grid Figure 84a.

The ability of the simulated annealing process to converge appears to be
very much linked with the grid size. Going from 19 th resolution to 14 th resolution
not only slows down the simulation, it also drastically reduces the quality of
the results reaching only 63% similarity after 2.5 million iterations. Due to the
acceptance criteria being linked with the current temperature, and the cooling
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(a) Input building typology grid from
Breda (Similarity 100%).

(b) Grid at 500 thousand iterations
(Similarity 50%).

(c) Grid at 1 million iterations (Similarity
64%).

(d) Grid at 1.5 million iterations (Simi-
larity 86%).

(e) Grid at 2 million iterations (Similarity
94%).

(f) Generated building typology grid
(Similarity 95%).

Figure 84   Results from typology grid generation.
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schedule remaining the same, an interesting effect is observed. After roughly 1.5
million iterations, the grid appears to have reached a local minimum, which it only
escapes once only to reach another local minimum. The rejection rate is close to
100% for the remaining 1 million iterations.

The random walk method where a randomly selected cell is swapped with
one if its neighbors (that has a different class) performed worse than the random
swap method.

In the 19 th resolution test it ended up with 78% similarity and in the 14 th resolu-
tion test, it ended up with 56% similarity. What could be contributing to this is the
inability of this method to escape local minima. Additionally, since influencing
metrics like distance to the city center are compared in bins, small steps towards
or away from the city center will often still fall within the same bin and, therefore,
not produce a higher similarity.

6.3.2 Roads System
The performance of the road generation system was excellent, generating 300
thousand segments in mere seconds. Figure 86 shows an example area of the
output of road generation.

(a) Generated street pattern with
Antwerp’s typology grid as input.

(b) Real street pattern of the same area.
(OpenStreetMap contributors, 2017)

Figure 86   Generated street patterns compared to real data.
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Figure 86 shows an example of the results of road generation next to the street
pattern of the area that was used as an input typology grid. The urban tissue of
some areas is similar, but overall, the character of the generation results is quite
different from the real street pattern. Especially the area “Historisch Centrum” is
vastly different, with a very dense grid pattern generated in the location of the
historical center.

Borders between different typologies in the typology grid are visible, with
sudden changes in density as a result. However, even though the transition
strategy used here is very simple (no transition strategy, it switches to a different
typology as soon as the segment enters a typology grid cell of another typology),
the underlying typology grid pattern is not jarringly visible. The visibility between
changing from one to another typology seems more linked to a big difference in
density between the two typologies.

It should be noted that road generation results shown here are based purely on
the aggregated data in the typology template of the cluster across the whole
city. This was identified in Section  4.1.1 as an oversimplification, with as the
proposed solution the parameters of the typology grid cell. Since the typology
grid cell parameters are out of scope for this thesis, the road generation will not
be evaluated based on how similar a generated area is to a real life area. Instead,
each cluster is analyzed separately to assess if the road generation method is
able to generate the general character that said cluster encompasses.

Each road cluster will be generated based on 3 different local typology tem-
plates of Thessaloniki, Montevideo, and Havana respectively. These results can
then be compared with the analyzed clusters in Figure 86, as these 3 cities were
among the 7 cities analyzed in that section.

Cluster 0 “Angular Streets”
Generation of typology 0 seems to lead to wildly varying results, with Figure 87a
showing a high amount of curvy streets, Figure  87b with a very orthogonal
pattern, (reflecting the orthogonal character of Montevideo). and Figure  87c
most closely resembling the “angular streets” of cluster 0. Both Figure 87a and
Figure 87b look quite realistic, while Figure 87c shows some unrealistically small
city blocks.
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(a) Based on Thessa-
loniki, Greece

(b) Based on Montev-
ideo, Uruguay

(c) Based on Havana,
Cuba

Figure 87   Road patterns generated based on local cluster 0 typology templates
from different cities.

Cluster 1 “Irregular grid”
Generation of typology 1 also shows variation, with Figure  88a being quite
distinct from the “irregular grids” in Figure 88b and Figure 88c. Figure 88a shows
some unrealistic angles and sliver city blocks.

(a) Based on Thessa-
loniki, Greece

(b) Based on Montev-
ideo, Uruguay

(c) Based on Havana,
Cuba

Figure 88   Road patterns generated based on local cluster 1 typology templates
from different cities.

Cluster 2 “Interupted grid”
Cluster 2 generation results seem to capture the “interrupted grid” character up
to a certain degree. Figure 89a shows oriented grids that are interrupted upon
a change of orientation. Figure  89c shows a very cardinal version, with more
interruptions than the “irregular grid” from Figure 88c. Figure 89b surprisingly is
the least orthogonal of all 3 patterns, even though Montevideo consists of mostly
very orthogonal patterns.
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(a) Based on Thessa-
loniki, Greece

(b) Based on Montev-
ideo, Uruguay

(c) Based on Havana,
Cuba

Figure 89   Road patterns generated based on local cluster 2 typology templates
from different cities.

Clusters 3 and 4 are left out intentionally, as they were deemed invalid.

Cluster 5 “Dense core or parking lot”
Generation results for typology 5 seem very consistent across the 3 analyzed
cities. In all cases, they appear more curvilinear than the patterns they are based
on, with big variations in density.

(a) Based on Thessa-
loniki, Greece

(b) Based on Montev-
ideo, Uruguay

(c) Based on Havana,
Cuba

Figure 90   Road patterns generated based on local cluster 5 typology templates
from different cities.

Cluster 6 is left out intentionally, as it was deemed invalid.

Cluster 7 “Regular grid”
Generation of typology 7 seems to resemble the character of the analyzed
clusters, with orthogonal patterns and seemingly a high median continuity.
Figure  91a shows the lowest orthogonality, with occasional curvilinear roads,
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while Figure 91b and Figure 91c show a more consistent orthogonal pattern. This
corresponds with the presence of consistent grids in these cities.

(a) Based on Thessa-
loniki, Greece

(b) Based on Montev-
ideo, Uruguay

(c) Based on Havana,
Cuba

Figure 91   Road patterns generated based on local cluster 7 typology templates
from different cities.

Clusters 8 and 9 are left out intentionally, as 8 occurs only sporadically, and 9 was
deemed invalid.

Cluster 10 “spacious winding roads”
Generation of typology 10 yields interesting results. Figure 92a shows a very high
probability of dead ends, resulting in quick termination of the road generation
process in all 5 generation runs. Figure 92b starts as a pattern with high cardi-
nality, but then contains more irregular grids within this pattern. Figure 92c most
resembles the observed “spacious winding roads” from this typology, although
the density is still quite high.

(a) Based on Thessa-
loniki, Greece

(b) Based on Montev-
ideo, Uruguay

(c) Based on Havana,
Cuba

Figure 92   Road patterns generated based on local cluster 10 typology templates
from different cities.
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Cluster 11 is left out intentionally, as it was deemed invalid.

Cluster 12 “Structured angular”
Results from generating typology 12 are quite consistent across the 3 cities and
seem to resemble the character of the analyzed clusters but with higher curvilin-
earity. Patterns seem to resemble realistic organic patterns, and would also be a
good fit for cluster 5.

(a) Based on Thessa-
loniki, Greece

(b) Based on Montev-
ideo, Uruguay

(c) Based on Havana,
Cuba

Figure 93   Road patterns generated based on local cluster 12 typology templates
from different cities.

6.3.3 Buildings
The performance of building generation was also excellent, generating 178
thousand buildings (and many more rejected buildings due to intersection
checks) in less than a minute.

Since the implemented building generation methods are mostly meant as
proof of concept and have not been developed to create highly realistic results,
I will not do a deep dive into the realism of the generated buildings. Figure 94a
shows that borders between different typologies are very sudden, whereas the
real-life area shown in Figure 94b has a slower transition from one to the other
type. Generation results, as implemented for this thesis, are able to show a
change in urban tissue, but not in a realistic manner. The typology grid combined
with proof of concept building generation methods do, however, provide a good
starting point to develop a realistic implementation.
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(a) Generated building footprints
based on filled_block (top and right)
and perimeter_block (bottom left) ty-

pologies in fictional street patterns.

(b) Real street pattern of Antwerp
including filled_block (top) and
perimeter_block (bottom) areas.
(OpenStreetMap contributors, 2017)

Figure 94   Generated building footprints compared to real data.
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7.1 Concept
The representation of urban tissues as distinct areas within the typology grid
can be seen as a comprehensive simplification of a complex real-world phenom-
enon. This simplification is both a strength and a weakness of this thesis. Its major
advantage is the understandability of the approach, and that it creates a uniform
framework that applies to any city across the world. For example, Figure 82 shows
that the road patterns of a global set of cities can be described in just one page.
Also, typology grids are sufficiently understandable that they can be created
both programmatically and by hand by a designer. A downside is that it simplifies
urban tissue to such a degree that regeneration of a city is challenging, as gener-
ation is performed with just a small set of typologies based on aggregated data
across the whole city or even the whole globe. Figure 86 shows that attempts to
generate a road pattern similar to a real-world location are not very successful.
The fact that the cluster assigned to the historic center (Cluster 5) describes both
dense urban cores and parking lots highlights the importance of high-quality
clustering. Currently, the historic center is generated as a dense, elongated, and
chaotic grid.

Future research could be done into creating a higher quality set of road
pattern typologies, either by improving the clustering methodology or by
attempting a different strategy, like using supervised learning on an expert-
created set of global typologies.

7.2 Analysis
This thesis had a clear focus on reproducibility of the results, and making it
easy to generate results on unseen cities. This was achieved in the form of the
citypy command line tool, which can reproduce all results shown in the analysis
and encode step of this thesis with a few simple commands. A downside of
the current implementation is the time and space complexity, where analyzing a
major metropolis can take hundreds of hours and up to 100GB of RAM, meaning
that professional computing power is required.

A strength of this research is the sheer amount of data crunched to produce
the results, with hundreds of millions of road segments and building footprints
being individually analyzed and contextualized.

7.2.1 Metrics
A clear contribution of this thesis is the introduction of many road system metrics
that are either novel or built upon existing metrics. These metrics aim to add
to the already existing set of numerical urban morphology. Validating the full
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applicability and quality of these metrics is outside the scope of this thesis and
would need further research.

7.2.2 Contextualizing
Analyzing the effect of the contextualizing method on the quality of the clustering
and classification is a difficult task. The road contextualizing method was devel-
oped to help detect distinct borders between two differing typologies. However,
results show many sudden changes in typology, resulting in scattered patches
and a noisy typology grid. Additionally, both cluster 6 and cluster 9 seem to
specifically detect small patches of roads that only have a small “neighborhood”
due to the contextualizing method. Often, these patches are only connected to
major roads, which causes the neighborhood to stop growing. Further research is
needed in the effect of contextualizing methodologies on the quality of the clus-
tering, also including the use of different aggregation functions like interquartile
mean, interquartile range, interdecile Theil index and Simpson’s diversity index
as used by Fleischmann et al. (2022).

7.2.3 Clustering
The clustering approach aimed to produce a set of global road typologies where
such a set did not exist yet. This was achieved based on global data, considering
a wide range of street patterns in cities across the world.

The validity of the final set of clusters is, however, debatable. Clusters 1, 2, and
7 appear to identify different types of grids with decent consistency. Cluster 5,
if split in two to represent dense urban cores and parking lots seperately, also
appears distinct and unambiguous. Clusters 0 and 12 are quite similar, but if
combined, they form a clear typology. Cluster 10 is clear and quite distinct, but
visual inspection shows many roads that appear to belong to Cluster 10 being
assigned a different cluster. Cluster 8 seems quite restrictive, encompassing only
1% of all roads, seemingly identified by highly curvy roads. Clusters 6 and 11 are
common but scattered in small patches throughout the cities. They appear to be
caused by disconnected networks and low continuity. Neither seems to clearly
identify a specific road pattern. Cluster 3 is promising but very inconsistent. It
accurately captures the strict grid in Figure 63a but is also assigned to Figure 63d,
which looks more like Cluster 10, Figure 63e, which looks more like Cluster 0
or 12, and other starkly different patterns. The culprit here seems to be the
continuity metric introduced in this thesis, combined with the weighted median
aggregation method used. Investigation of the attributes show a continuity
weighted-median of 1 on the segments assigned to cluster 3, and a drastically
lower value to directly neighboring segments belonging to a different cluster.
Finally, clusters 4 and 9 are completely invalid and only describe less than 0.1%
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of all segments. Here, the culprit appears to be the section length standard devi-
ation, with Z-scores ranging as high as 9. This suggests that standard deviation is
not an appropriate aggregation method for clustering.

Besides investigating how well each cluster describes a certain road pattern,
another important aspect is the quality of detected areas with similar urban tis-
sue. Visual investigation showed that transitions between clusters often happen
quickly, even in areas of seemingly similar character. For example, Figure  74
shows 3 different typologies within the same, quite similar area. This is even
excluding tiny patches of even different clusters of the small surrounding streets,
not shown in this image. There is definitely room for improvement when it comes
to these transitions and minimizing these tiny “noise” patches. When it comes to
urban tissue analysis, more generalization is required for the bigger overarching
patterns to become visible.

All in all, results show potential for higher quality clustering by tweaking the
contextualizing methodology and clustering metrics. Future research could be
done into other clustering methods, including subspace clustering to identify
clusters that only exist in certain feature subspaces. The effect of using different
metrics as input for clustering can be tested. Finally, classification instead of
clustering for road typologies can also be attempted to compare the quality of
the results. The integration of deep learning techniques is promising, as shown
by Wang et al. (2024).

7.2.4 Classification
Classifying buildings using supervised machine learning is not novel, but this
thesis investigates the applicability of a global set of building typologies on cities
worldwide.

Results show potential for this approach. Visual investigation showed accurate
results at a smaller scale. At a bigger scale, results revealed individual incorrectly
classified buildings and ambiguousness between typologies. Feature impor-
tance statistics highlight the importance of including aggregated neighborhood
metrics in the classification features. Visual investigation also revealed the impact
of data quality on the classification performance, as footprints generated using
machine learning lead to many incorrect classifications.

Comparison with results of the combined clustering of Fleischmann et al.
(2022) show stark similarities. This highlights the viability of both approaches,
as two different methods reached similar results. It also highlights that the
combined clustering of Fleischmann et al. is predominantly based on buildings
instead of also on street patterns, validating my hypothesis that analyzing each
layer separately adds additional value.
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A major point of concern with the classification approach is the way test and
training data are split. Figure 47e shows ground truth buildings being selected in
groups of multiple buildings in the same direct area. Since test and training data
is simply split using random selection, it is inevitable that buildings from the same
selection area are both used for training and validation. This makes the resulting
accuracy metric not valid and might cause overfitting. Implementing a better
splitting method is non-trivial, as not all classes exist in every city, so one could
not simply use separate cities for training and validation without a significantly
bigger ground truth dataset. This causes this thesis not to have a solid validation
of the classification performance, leading to the inability to accurately describe
how suitable classification is for building typology detection.

Also, feature importances reveal land use category as the most important
feature, indicating that the availability of land use data has a big impact on the
quality of the classification.

All in all, the quality of the results of the current implementation is deemed
as suitable for city generation, as aggregated at a smaller scale (in the typology
grid), the classification properly captures the urban tissue of the city.

Future research could be done into a more robust classification and creating a
better dataset.

7.3 Encoding
This thesis contributes to publicly available urban morphology data by aggregat-
ing hundreds of Gigabytes of data into relatively lightweight grid representations
and making these publicly available. The complex layout of a city can be captured
in one diagram per city layer. The typology grid concept also enables quick and
comprehensive analysis, in a format that is suitable for both vector and raster
based processing. In this, it has improved usability above the purely vector based
approach from Fleischmann et al. (2022), while losing granularity. See Appendix
H for an overview of all generated typology grids.

7.4 Generation
7.4.1 Typology Grid Generation
Simulated annealing results in Figure 84 show strong potential for this technique
to be used to generate new typology grids. Even though the objective function
is just based on the patch area, core area index, and shape index, it still produces
a typology grid that plausibly resembles the starting grid. The binning method-
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ology seems able to account for complex relationships and could be tested with
more binning metrics that incorporate context and city stack constraints.

Another strength of the typology grid methodology for city generation is that
it can be edited or even created from scratch by designers or researchers. The
comprehensive nature of the grid, consisting of a set of named typologies, makes
it easy to understand and adjust.

A big challenge lies in the performance and parameters of the simulated
annealing technique. At 19 th resolution, convergence occurs after 1.3 million iter-
ations in the second smallest city of the analyzed dataset (Breda is 43× smaller
in area than the largest city in the dataset). The cooling schedule and acceptance
criteria need to be adapted for each grid size, as running the same city at 14 th
resolution with the same parameters does not converge. Even after heavy opti-
mization, speeds could not be increased past 7000 iterations per second on the 19
th resolution version of Breda. Increases in grid size correspond to big decreases
in speed. From this can be concluded that simulated annealing will not be able
to produce real-time results.

Besides looking into incorporating complex relationships in the objective
function, future research could investigate the use of machine learning models
to generate typology grids. The citypy tool combined with the tensor-like nature
of the typology grid and its parameters could be used to generate a big dataset
of typology grids across the globe.

Everything considered, the simulated annealing approach combined with the
typology grid contributes a morphology-based methodology to existing land-
use based city layout generation methods by Groenewegen & Smelik (2009) and
Lechner et al. (2006).

7.4.2 Road Generation
Figure  86 shows that, even with local typology templates, the resulting road
pattern is quite different than the real data. This could either be attributed to
invalid clusters, or to missing further parameterization of the typology grid. Visual
inspection of generation results based on a single cluster reveals more plausible
results and highlights the differences between different cities. In some cases, the
generated pattern seems very different from the typology it is based on. This
can either be explained by the typology not being distinct enough, it being
incorrectly assigned in said city, areas with wildly varying statistics (like urban
cores vs parking lots for cluster 5), and small sample sizes. In terms of realism,
the examples also show room for improvement, as they contain big changes in
density and sometimes unrealistically small enclosures. All in all, the variation
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between the examples highlights the additional value a morphological approach
provides for the street generation algorithm of Parish & Müller (2001).

Future research could look at generating road patterns based on manually se-
lected clusters instead of programmatically derived clusters to isolate the quality
of the generation from the quality of the clustering. Deep learning approaches
could be investigated for determining input parameters for road segment cre-
ation to incorporate even more complex relationships. Additionally, different
road pattern generation methodologies could be tested, like example-based
generation for an entire patch that smoothly transitions to another typology at
the patch border.

7.4.3 Building Generation
The building generation methods in this thesis are proof of concepts for their
corresponding building classes and are not parameterized at all at the moment.
This means that the ability of the building generation system to recreate real
patterns is hard to judge based on the results. Future research could attempt
inverse procedural modeling or even deep learning-based footprint generation
based on the patches on the typology grid.

All in all, procedural generation for both roads and buildings shows promising
results. City generation using “black box” artificial intelligence was ruled out of
scope for this thesis, but these models have the potential to represent reality
more closely (Breiman, 2001) and should therefore be investigated.
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This thesis introduces the city stack framework and typology grid concept, both
from the analysis and generation side.

How can the urban form of real-world cities be captured using publicly
available geospatial data?

This thesis introduces a set of new urban morphology metrics aimed at creating
a minimal set of metrics to distinguish real-world street patterns, contributing to
the urban morphology field. To test this approach, hundreds of millions of road
segments across 43 cities worldwide were programmatically analyzed.

Unsupervised learning using a Gradient Mixture Model on this dataset ap-
pears to be able to derive a global set of road pattern typologies. The validity of
the derived typologies is difficult to establish. Some clusters appear to describe
a clear road typology, showing consistent results across multiple cities. Other
clusters are either invalid or not clear (Cluster 4, 6, 9, 11). Additionally, the clus-
tering approach sometimes groups patterns together that one would not expect,
like dense European city centers and North American parking lot service roads
(Cluster 5). Some of the newly introduced metrics appear to create too much
separation in feature space, causing visually starkly different patterns to belong
to the same cluster (Cluster 3). Future research can investigate improving the
quality of the clustering or test out the viability of using supervised learning for
road pattern classification.

Supervised learning based on Gradient Boosting appears to be adequately
suitable for detecting building typologies for the use case of city generation. The
proposed set of building typologies combined with this classification approach
produced highly similar results as the combined morphological clustering
approach by Fleischmann et al. (2022), with the distinct advantages that the
classification approach includes descriptive names and can single out individual
complex buildings. This also highlights the value of analyzing the road layer
separately from the buildings layer to capture more detailed urban tissue infor-
mation, since combined clustering mainly seems to capture the urban tissue of
buildings.

How can the captured urban form be encoded in a way that allows for
the comparison of different cities and generation of new cities with a
similar character?

The city stack combined with the typology grid proves to be a comprehensible
and effective way of connecting the analysis phase with the generation phase.
The encoding allows for easy comparison across cities, and new typology grids
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can statistically be compared with typology grids from real cities to make them
as similar as possible.

Typology grid simplification proves to be comprehensible and comparable
for analysis but might be too simplified for generation, needing further detail in
the form of patch or cell-level parameters like density information.

The open source citypy command line tool simplifies the process of analyzing
and encoding any city across the world.

How can this encoded data be utilized to procedurally generate a digi-
tal city model that resembles the form of the encoded real-life city?

Results show simulated annealing as a promising way of generating typology
grids based on an analyzed city. Results show plausible patterns being generated
with only a small set of shape metrics, suggesting potential for highly plausible
patterns with the inclusion of more metrics, including metrics based on both
topology and city stack constraints. However, it can be concluded that simulated
annealing is not the appropriate methodology in time-critical applications, as
simulation times range from minutes to hours.

The road generation methodology followed in this thesis shows the potential
of generating road patterns based on the typology template concept. It also
highlights the advantages of using global typologies combined with local typol-
ogy template statistics.

The building generation methodology lists proof of concept algorithms for
generating buildings based on building typologies.

All in all, the city stack framework appears to be a viable approach for city
analysis and generation.
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Appendix A Road Node Metrics Overview
Node Metric Description Reason(s) Unit Source(s)
is intersection See Section A • Prerequisite

• Generation
statistics

- New

is major
intersection

See Section A • Prerequisite - New

node degree See Section A • Prerequisite - New
major node
degree

See Section A • Prerequisite - New

clustering The fraction of
possible
squares that
exist at each
node

• Clustering
metric

- (Lind et al.,
2005)

Table 6   Road node metrics overview

Appendix B Road Segment Metrics Overview
Segment Metric Description Reason(s) Unit Source(s) Next Segment
next segment Next segment in

the forward
direction, if any.
See Section A.

• Prerequisite - New

previous segment Segment that has
the current
segment as next
segment, if any.

• Prerequisite - New

Right Neighbour
right neighbour See Section F • Prerequisite - New
major right
neighbour

See Section F • Prerequisite - New
Sections

road section id See Section B • Prerequisite - New
road major
section id

See Section B • Prerequisite - New
Distance

distance to last
intersection

Distance from the
end point of this
segment to the
last intersection.

• Generation
influence

𝑚 New
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Segment Metric Description Reason(s) Unit Source(s)
distance to last
major
intersection

Distance from the
end point of this
segment to the
last major
intersection.

• Generation
influence

𝑚 New

previous segment
length

Length of the
previous segment

• Generation
influence

- New

section length Total length of the
road section, see
road section id

• Clustering
Metric

• Generation
statistic

𝑚 New

major section
length

Total length of the
major road
section, see major
section id.

• Clustering
metric

• Generation
statistic

𝑚 New

right neighbour
distance

Distance to right
neighbour.

• Cluster metric - New

right major
neighbour
distance

Distance to major
right neighbour.

• Cluster metric - New

Angles
forward angle See Section A • Generation

statistic
• Prerequisite
• Clustering

metric

° New

previous segment
forward angle

Forward angle of
previous_segment,
if any.

• Generation
influence

- New

bearing Compass bearing
of this segment

• Generation
statistic

° -

intersection left
angle

See Section E • Clustering
metric

• Generation
statistic

° New

major
intersection left
angle

See Section E • Clusterin metric
• Generation

statistic

° New
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Segment Metric Description Reason(s) Unit Source(s)
right neighbour
angle deviation

See Section F • Cluster metric - New

right major
neighbour angle
deviation

See Section F • Cluster metric - New

Intersections
next node degree Degree of the end

node of this
segment.

• Generation
statistic

- New

next node major
degree

Major degree of
the end node of
this segment.

• Generation
statistic

- New

dead end section True if this road
section has a
dead end on
either side

• Clustering
metric

• Generation
statistic

- New

Shape
continuity See Section C • Clustering

metric
- New

stretch linearity See Section D • Prerequisite - New
stretch
curvilinearity

See Section D • Clustering
metric

• Generation
statistic

- New

Misc.
on domain border True if within set

distance of
domain border

• Prerequisite - New

Table 7   Road segment metrics overview
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Appendix C Building Metrics Overview
Segment Metric Description Reason(s) Unit Source(s)
area Area of the

building
footprint.

• Classification
metric

• Generation
statistic

𝑚2 -

perimeter Perimeter of the
building
footprint

• Classification
metric

𝑚 -

equivalent
rectangular
index

Version of
rectangularity
that
compensates
for protrusions.

• Classification
metric

- (Basaraner &
Cetinkaya,

2017;
Fleischmann &

PySAL
Developers,

2018)
elongation The elongation

of the minimum
bounding
rectangle

• Classification
metric

- (Fleischmann &
PySAL

Developers,
2018; Gil et al.,

2011)
shared walls
ratio

Shared walls
ratio of adjacent
buildings

• Classification
metric

- (Fleischmann &
PySAL

Developers,
2018; Hamaina

et al., 2012)
neighbour
distance

Mean distance
to adjacent
buildings

• Classification
metric

𝑚 (Fleischmann &
PySAL

Developers,
2018; Schirmer

& Axhausen,
2015a)

closest road
edge id

Unique ID of
closest road
edge segment

• Prerequisite - (Fleischmann &
PySAL

Developers,
2018)

building group
id

See Section A • Prerequisite - New
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Segment Metric Description Reason(s) Unit Source(s)
building group
enclosure
perimeter
coverage

See Section B • Classification
metric

- New

building group
area std

Standard
deviation of the
area of
buildings within
this building
group

• Classification
metric

- New

building group
elongation std

Standard
deviation of the
elongation of
buldings within
this building
group

• Classification
metric

- New &
(Fleischmann &

PySAL
Developers,

2018; Gil et al.,
2011)

building group
courtyard index

Courtyard Index
of the
combined
shape of the
building group

• Classification
metric

- New &
(Fleischmann &

PySAL
Developers,

2018; Schirmer
& Axhausen,

2015a)
building
enclosure id

Unique ID of
the enclosure
this building is
in

• Prerequisite - -

form factor Form factor of
the building

• Classification
metric

- (Bourdic et al.,
2012;

Fleischmann &
PySAL

Developers,
2018)

land use
category

Category of the
land use area
this building is
in

• Classification
metric

- -

shape index Shape metric
related to area

• Classification
metric

- (Fleischmann &
PySAL
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Segment Metric Description Reason(s) Unit Source(s)
and longest
axis.

Developers,
2018)

orientation Deviation of
orientation of
the cardinal
axes (0 to 45)

• Generation
statistic

° (Fleischmann &
PySAL

Developers,
2018; Schirmer

& Axhausen,
2015a)

alignment The mean
deviation of
solar
orientation of
this building
with
neighbouring
buildings.

• Classification
metric

- (Fleischmann &
PySAL

Developers,
2018)

squareness Statistical
measure of
footprint
corners
deviating from
90 degrees.

• Classification
metric

- (Dibble et al.,
2019;

Fleischmann &
PySAL

Developers,
2018)

approximate
height

See Section C • Classification
metric

• Generation
statistic

𝑚 New

covered area The area
covered by the
footprints of the
building and its
neighbours

• Clustering
metric

𝑚2 (Fleischmann &
PySAL

Developers,
2018)

Table 8   Building metrics overview
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Appendix D Considered road contextualizing meth-
ods

Name Description Pros Cons
Radius The

neighborhood is
defined as all
segments
intersecting with
a circle of radius𝑟 around the
centroid of the
current segment.

• Simple • Unpredictable
• Scale sensitive,

the amount of
selected
features is
highly
dependant on
the scale of the
segment and
the
neighbourhood.

IDW Same as Radius,
but with inverse
distance
weighting for
neighbourhood
features.

• Simple
• More

importance for
closer features,
leading to
smoother data

• Scale sensitive
• Smooth results

do not capture
borders
between
typologies

Constrained IDW Version of IDW
where the
selection circle
cannot cross
major roads, so
features on the
other side of the
major road are
not selected.

• Importance pro
from IDW

• Due to
constraints,
more chance of
abrupt style
change
borders

• Scale Sensitive
• Complex
• Still no clear

style borders if
two styles
within the
same major
road enclosure

Grid Select all features
contained in the
same grid cell as
neighbourhood.

• Simple
• Fast

• Scale sensitive
• Unnatural

changes due to
grid cell
change

N closest features Select a specific
amount of closest
segments from

• Guarantee of
sufficient
sample size

• Simple

• Resulting
network might
be
disconnected
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Name Description Pros Cons
the current
segment.

• High level of
control

• Unrepresentative
for sparse
network, where
there are no
segments
nearby

Recursive
network growing

Starting from the
current segment,
recursively grow𝑛 levels deep in
all possible
directions in the
road graph.
Constrained to
not grow past
major road
intersections. This
methodology
was later found
to be similar to
the “2 minute
driving distance”
from Schirmer &
Axhausen
(2015b)

• Resulting
network
guaranteed to
be connected

• Not scale
sensitive

• High level of
control

• Captures
streets that
logically
“belong”
together

• Streets that are
not connected
within 𝑛 levels,
but still close,
will not be
captured.

• Size of
resulting
neighbourhood
sensitive to
segment
length

Table 9   Potential methods for road neighbourhood selection.
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Appendix E Road Clusters Z-Scores
Z-scores calculated for all 13 clusters based on a subset of all data. The subset
was created by taking 10 thousand random segments from each city, resulting in
a total of 45 thousand segments.

Metric 0 1 2 3 4 5 6 7 8 9 10 11 12
1 0.57−0.46−0.82−0.02 0.18−0.17−0.01−0.49 0.90 1.32 0.73−0.75 0.41
2−0.38 0.75−0.47 1.03 2.21−0.80 0.04−0.27 0.10 1.83 1.08−0.14−0.14
3−0.06 0.24−0.40 1.91 1.91−0.84−0.86 0.83 0.17 0.38 0.15−0.65−0.53
4 0.43−0.60−0.96−0.35−0.48−0.34 0.38−0.27 0.56 0.65 0.70 0.26−0.06
5−0.20−0.09−0.34 0.59 6.72−0.38−0.25−0.16−0.18 7.12 0.32−0.24−0.26
6−0.16−0.06−0.31 0.72 9.46−0.37−0.31−0.13−0.17 8.52 0.31−0.30−0.22
7 0.05−0.50−0.92−0.02 0.40−0.31 0.16−0.60 0.92 0.58 0.58−0.46 0.20

1: angle_entropy::nb
2: right_neighbour_distance::nb::weighted_mean
3: continuity::nb::weighted_median
4: stretch_curvilinearity::nb::weighted_mean
5: section_length::nb::mean
6: section_length::nb::std
7: right_neighbour_angle_deviation::nb::weighted_mean

Appendix F Building Classification Feature Impor-
tance

The PredictionValueChange metric from catboost shows how much on average
the prediction changes if the feature value changes. High values indicate that this
metric is very important for distinguishing between the classes, and low values
mean it doesn’t have much impact.

Feature Id Importance
land_use_category 12.67
shared_walls_ratio::nb_radius_300::mean 8.28
enclosurue_building_area_ratio 5.62
approximate_height::nb_radius_300::mean 4.39
shape_index::nb_radius_300::std 4.35
building_group_enclosure_perimeter_coverage::nb_radius_300::mean 4.25
covered_area 4.05
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covered_area::nb_radius_300::mean 3.64
equivalent_rectangular_index::nb_radius_300::std 3.15
elongation::nb_radius_300::mean 2.98
area::nb_radius_300::mean 2.72
land_use_category::nb_radius_300::mode 2.71
equivalent_rectangular_index::nb_radius_300::mean 2.57
building_group_elongation_std::nb_radius_300::mean 2.57
area::nb_radius_300::std 2.50
elongation::nb_radius_300::std 2.38
subtype 2.28
approximate_height::nb_radius_300::std 2.24
shared_walls_ratio::nb_radius_300::std 2.17
building_group_enclosure_perimeter_coverage::nb_radius_300::std 1.94
shape_index::nb_radius_300::mean 1.74
squareness::nb_radius_300::mean 1.72
approximate_height::nb_radius_300::max 1.71
orientation 1.57
area 1.55
covered_area::nb_radius_300::std 1.51
shared_walls_ratio 1.36
building_group_area_std::nb_radius_300::mean 1.22
alignment::nb_radius_300::std 1.10
building_group_enclosure_perimeter_coverage 1.09
alignment::nb_radius_300::mean 1.00
perimeter 0.98
building_group_courtyard_index 0.97
squareness 0.91
squareness::nb_radius_300::std 0.85
alignment 0.65
elongation 0.33
real_height 0.31
form_factor 0.30
shape_index 0.29
building_group_area_std 0.29
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approximate_height 0.26
equivalent_rectangular_index 0.23
class 0.20
building_group_elongation_std 0.15
real_levels 0.14
roof_shape 0.08

Appendix G Road Clustering Elbow Method

The optimal amount of clusters was determined by detecting highest change
in the second-order difference (maximum curvature). Clustering with 13 compo-
nents was detected as the optimal amount.
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Appendix H Final Typology Grids
(Grids start on the next page)
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