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Preface
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Besides my friends in Lisse, Leiden, and Delft, I have the most amazing parents. My mom, my moral
support, who wrote excuse notes so I could skip PE, and my father, whom she fondly called ”een ijs-
beer” whenever he raised his voice over a mathematical equation at the kitchen table, insisting: ”Anna,
dit is de basis!”. But, if it were not for my dad, I would not be where I am today. He literally got me
through high school, especially since I was not exactly the best-behaved student. The truth is, I am
naturally lazy. Why ride a bike when you can just drive? And why fix your own tire pressure when
you can just call the ANWB? My parents already know how grateful I am for all their support, but once
again: thank you. From the bottom of my heart. I do not know what I would do without your love, your
humor, and your endless support.

This brings me to the bike lab crew at the university. Let’s be real, when it comes to practical things like
welding, 3D printing, or even sawing a broom, I am completely hopeless. A year ago, I had never even
touched an Arduino. Despite my proclaimed status as a ”grote tuttebel” with limited hands-on skills,
you were always there to help me. Whether it was fixing things or just opening the door for me because
I forgot my card again. So, a huge thank you to Bram, Marcel, Timon, and Eelco for all the help and
for the countless laughs we had over the dumbest things. I should probably apologize for constantly
distracting you. But hey, from now on, you can finally work in peace and maybe, just maybe, finish
your literature studies.

Then, my supervisors. Riender, once again, my main supervisor, I am truly glad you were not com-
pletely fed up with me yet. Through you, I met Christoph and Jason. Christoph, your support throughout
this project was incredible. During our meetings, you showed me how much you truly cared about my
work. You are such a great person, and any future Master’s student would be lucky to have you as
a daily supervisor. And then, Jason, Professor Bicycle, thank you for your guidance throughout this
project. I will miss my role as MC, and, sorry for ever thinking you were 45 years old. I was joking.
Finally, special thanks to Jules, Gabriele, Joost, Benjamin, and my golden coffee guy for always en-
suring my little fish and I had enough caffeine to survive our days. Of course, we appreciated you for
more than just the coffee.
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Abstract
Infrastructure deficiencies and problematic interactions with other road users are identified as factors
that increase the risk of cyclist crashes. This underscores the need for developing more adequate
cycling infrastructure and environments to mitigate such crashes. Microscopic simulation models pro-
vide a valuable tool for assessing the potential impact of infrastructure modifications before real-world
implementation. However, realizing this potential requires thorough investigation of cyclist behavior to
inform model development, calibration, and validation. This study contributes experimental data de-
signed to enhance the accuracy and facilitate the validation of these models.

A controlled field experiment was conducted to examine cyclist interaction behaviors across four distinct
scenarios characterized by varying encounter angles between cyclists. These scenarios were designed
to replicate unstructured, real-world interactions occurring in open-space environments, thereby simu-
lating interactions in the absence of formal traffic rules.

The participants, paired in dyads, rode instrumented bicycles, enabling the collection of kinematic data
for subsequent analysis of cyclists’ path and speed adjustments during close-proximity interactions.
The analysis indicated that cyclists predominantly adjusted their trajectories rather than their velocities
in response to these interactions. These adjustments, collectively referred to as avoidance strategies,
exhibited variation across different encounter scenarios, suggesting that cyclists modify their avoidance
behaviors based on both the behavior of the interacting cyclist and the specific encounter angle.

These avoidance strategies form the foundation of yielding behavior among cyclists. To identify the
factors influencing this behavior, a statistical model was developed incorporating predictors such as
difference in time-to-arrival (DTA), initial velocity difference, gender, and the cessation of pedaling.
The model revealed that cyclists who arrived first at the boundary of a predefined interaction area,
exhibited higher velocities, and approached from the left were more likely to yield relative to their inter-
action partner. The model demonstrated a predictive accuracy of 80%.

While this study establishes a foundational framework for the enhancement and validation of traffic
simulation models, the relatively small dataset represents a limitation. Although data augmentation
techniques could be utilized to deepen the understanding of the determinants of avoidance strategy
selection, the acquisition of additional real-world observational data is recommended. Expanding the
dataset would not only refine microscopic traffic simulations but also improve the statistical model, po-
tentially facilitating its integration into automated vehicle (AV) systems. Given the current limitations of
AVs in predicting cyclist behavior, further improvements in the model’s predictive accuracy are imper-
ative for successful AV integration.
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1
Introduction

1.1. Background and significance
As cycling’s popularity grows, its presence in cities becomes increasingly common. It is a key compo-
nent of sustainable urban mobility for the environment and public health, and an alternative to driving
cars (Nikitas et al., 2021). Notably, the Netherlands leads Europe with 27% of trips made by bicy-
cle (Buehler, 2018). Unfortunately, the rising popularity of cycling is accompanied by an increase in
bicycle-related road crashes. Due to cyclists’ vulnerability to serious injuries, riding a bike is estimated
to be seven times more unsafe than traveling by car, posing a serious concern for public health agen-
cies and practitioners (Feleke et al., 2017).

Studies identified the influence of infrastructure and problematic interactions with other users as factors
that increase the risk of cyclist crashes (Kim et al., 2012; S. Useche et al., 2018a; S. A. Useche et al.,
2018b). This highlights the need for developing more adequate cycling infrastructure and environments
to reduce cyclist crashes. Microscopic simulation models offer a powerful tool to evaluate the potential
impact of infrastructure changes and cycling policies on both traffic flow and safety before real-world
implementation (Dias et al., 2023). However, their ability to accurately represent real-world scenarios
hinges on a deep understanding of cyclist interactions with other road users. This deep understanding
involves more than just recognizing observable behaviors; it requires analyzing the underlying motiva-
tions and decision-making processes that lead to specific behaviors. To achieve this level of insight,
comprehensive research into cyclist behavior is necessary, which can then inform model development,
calibration, and validation.

Beyond evaluating the impact of infrastructure changes, these models play a vital role in the safe
integration of automated vehicles (AVs). This is particularly important because cyclist behavior, es-
pecially in conflict scenarios, is highly heterogeneous due to the influence of numerous factors. As
described by Chin and Quek (1997), traffic conflict scenarios involve observable situations where two
or more road users approach each other in space and time, creating a risk of collision if their move-
ments remain unchanged. Given the limitations of AV technology in understanding complex human
behaviors like cyclist actions, traffic simulation models can predict potential AV responses to various
cyclist maneuvers. This predictive capability helps identify potential collision scenarios and areas for
improvement in AV perception and decision-making algorithms. However, the validity of these models
relies heavily on robust validation against real-world data. By comparing simulated cyclist behavior
with observed behavior from field experiments, researchers can identify and address discrepancies,
ensuring the model’s accuracy and reliability.

The objective of this study is to contribute experimental data that can enhance the accuracy of simu-
lation models and support the validation process. To achieve this, a controlled field experiment was
designed to study the behavior of cyclists during close encounters in open-space scenarios. The study
focused on four distinct interaction scenarios characterized by varying the angle of encounter between
two cyclists. These scenarios were designed to replicate unstructured, real-world interactions in the ab-
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2 1. Introduction

sence of defined traffic rules. Instrumented bicycles were utilized to acquire comprehensive kinematic
data, encompassing both positional and rotational kinematics. This dataset served as the basis for
analyzing cyclist behavior during conflict scenarios. Furthermore, this study aims to identify the factors
influencing cyclists’ path and speed adjustments that result in yielding behavior. These findings offer
valuable insights for validating simulation models designed to enhance cyclist safety in infrastructure
design and the development of autonomous systems.

1.2. Research questions
This study comprises two parts. The first part investigates the kinematics of interacting cyclists, focusing
on analyzing their trajectories and velocity profiles. This directly addresses the first research question:

How do cyclists adjust their path and speed to avoid collisions in close inter-
actions, and how do these strategies vary across different scenarios?

(1)

The second part of this study examines the factors influencing path and speed adjustments, with a
focus on yielding behavior, to address the following research question:

What interaction characteristics underlie path and speed adjustments involv-
ing yielding behavior?

(2)

In this context, yielding is defined as the behavior of a cyclist who, in a close interaction with another
cyclist, crosses the intersection last as a result of a priority resolution process.

1.3. Thesis outline
This thesis comprises nine chapters, each contributing to a comprehensive investigation of cyclist be-
havior in interaction scenarios. Chapter 2 describes the experimental methodology, including the study
protocol and data acquisition procedures. Chapter 3 outlines the data processing methods, detailing
the pre-processing steps necessary for the subsequent analyses. Chapter 4 presents the kinematic
analysis methodology, which addresses the first research question by examining path and speed ad-
justments. Chapter 5 introduces the statistical modeling framework used to explore interaction char-
acteristics underlying yielding behavior, thereby addressing the second research question. Chapter 6
reports the results of the kinematic analysis, while Chapter 7 focuses on the outcomes of the statisti-
cal modeling. Chapter 8 critically evaluates the study’s limitations and proposes directions for future
research. Finally, Chapter 9 synthesizes the key findings, integrating insights from both the kinematic
and statistical analyses to provide a comprehensive response to the two research questions.



2
Experimental Setup

This chapter provides a detailed description of the experimental setup employed in this study. It begins
with an overview of the study participants, outlining their relevant characteristics. Subsequently, the
experimental protocol is described, detailing the procedures followed throughout the study. Finally, the
chapter presents the data collection methods, including a technical description of the instrumentation
and equipment integrated into the bicycles used in the study.

2.1. Participants
Twenty participants (10 males, 10 females) were recruited from Delft University of Technology to partic-
ipate in a cycling experiment investigating cyclist interaction behavior. The experiment was conducted
on an experimental track located behind the Faculty of Mechanical Engineering (Mekelweg 2, Delft,
Netherlands). Participants, aged 22 to 42 (mean = 25.9, SD = 2.2), interacted with another cyclist in a
semi-circular arrangement resembling an open-space environment. All participants were experienced
bicycle riders. Participants were paired to form male-female dyads, a strategy employed to address
potential biases associated with single-gender studies and to investigate possible gender-based differ-
ences (Holdcroft, 2006). Participants reported an average of 5.5 hours of cycling per week (SD = 3.3).
Their primary motivations for cycling were commuting (n = 16), recreation (n = 3), sport (n = 4), and
touring (n = 4).

2.2. Experimental protocol
In each trial, participants, paired in male-female dyads, rode bicycles, commencing from one of eight
predefined starting positions. These starting positions, designated A through H, are illustrated in Figure
2.1. These positions were clearly marked on the experimental track using cardboards to ensure con-
sistency and visibility. In each trial, one participant started on the left side of the semi-circle (positions A
through D) and traveled toward a destination on the right. Simultaneously, the other participant started
from a position on the right side (positions E through H) and proceeded toward a destination on the left
side of the semi-circle.

Throughout this study, scenarios in which participants initiated their trial from the left side of the semi-
circle are designated as 45𝐷, 90𝐶, 135𝐵, and 180𝐴. The numerical value represents the encounter
angle, and the alphabetical character denotes the starting position. Similarly, scenarios initiated from
the right side of the semi-circle are designated as 45𝐸, 90𝐹, 135𝐺, and 180𝐻. As part of the experimen-
tal protocol, participants cycled on heavy e-bikes with the electric propulsion assistance turned off and
the transmission fixed in gear 3. Prior to the experiment, participants were afforded time to familiarize
themselves with the bicycle’s dynamics and control characteristics to ensure confident and consistent
handling throughout the trials.

3
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Figure 2.1: Schematic representation of the experimental setup. Colored dots indicate the positions of cones on the ground,
forming passing ports. Letters denote participant starting positions, which weremarked on the track with corresponding cardboard
markers. The grey dotted line represents the trajectory toward the semi-circular interaction area, where colored cones defined the
passing ports. This semi-circular area constituted the open space within which participants’ paths intersected as they proceeded
to their respective destinations.

Upon receiving the start signal, a loud clap produced by striking two wooden sticks together, partici-
pants traversed a 10-meter path from their respective starting positions toward a pair of colored cones.
The trajectory of this path is indicated by the grey dots in Figure 2.1. Participants were instructed
to maintain a constant velocity of 10 km/h during this traversal, which was monitored in real-time via
their bicycle-mounted speed displays. This speed regulation ensured synchronized entry into the semi-
circular arrangement, facilitating authentic interactions between cyclists.

After participants traversed designated passing ports, marked by pairs of identically colored cones and
indicated by the colored dots in Figure 2.1, they entered a semi-circular arrangement with a 9-meter
radius. Within this shared space, participants navigated freely, adjusting their speed and trajectory
as necessary. Each participant interacted with another cyclist who was also proceeding to their re-
spective destination. Importantly, participants were not informed of each other’s intended destination,
ensuring that interactions unfolded naturally. This setup required active coordination, as participants
were instructed to navigate the space as they would in a real-world open environment, while remaining
attentive to avoid collisions. It is important to note that communication between participants was strictly
prohibited during the experiment. This restriction applied to both auditory communication (e.g., talking,
bell ringing) and non-verbal communication (e.g., hand gestures).

The experiment featured four distinct encounter scenarios with angles of 45°, 90°, 135°, and 180°,
as schematically illustrated in Figure 2.2. Each participant experienced all four scenarios from both
sides of the semi-circle, yielding eight trials. To minimize learning effects, trials were conducted in
a predetermined, counterbalanced order, with each trial performed only once. This design yielded a
sufficient dataset while mitigating potential participant fatigue.
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Figure 2.2: Schematic representation illustrates the four encounter scenarios. Grey dotted lines connecting letters to the semi-
circle depict the intended trajectories, where participants aim to maintain a velocity of 10 km/h The black arrows indicate the
direction of each participant. Subplot 1 showcases the 180° encounter scenario, subplot 2 the 135° encounter scenario, and
subplots 3 and 4 the 90° and 45° encounter scenarios, respectively. Each participant completes eight trials, alternating between
starting on the left and right sides of the semi-circle.

The angles for each encounter scenario, shown in Figure 2.2, define the relative starting positions of
the participants. These angles were deliberately chosen to ensure that cyclists crossed paths within
the semi-circle, promoting active interaction. The experimental track’s dimensions and uneven surface
characteristics, comprising two distinct tile types and a longitudinal depression, were carefully consid-
ered. To minimize surface variability during cyclist interactions, encounters were conducted exclusively
on a section of the track comprised of a single tile type, ensuring a uniform surface and preventing po-
tential confounding effects. A consistent turning angle of 110°, representing the angle between the
participant’s starting position and destination, was implemented across all scenarios to minimize vari-
ability and account for its potential influence on experimental outcomes.

As illustrated in Figure 2.2, participants’ destinations did not coincide with the starting position of the
other participant. This strategic assignment was implemented to enhance the safety of the participants.

Figure 2.3 presents two photographs captured during the experiment, illustrating the placement of
the cones previously depicted schematically in Figures 2.1 and 2.2. Additionally, the images highlight
the uneven surface of the track, particularly in the 45° scenario, where participants encountered the
longitudinal depression in the surface as they entered the semi-circle.
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Figure 2.3: Photographs of participants conducting the experiment. The images show two participants navigating the experimen-
tal setup on instrumented bicycles. The left image illustrates the 45° encounter scenario, where cones labeled 1 and 2 indicate
the starting position of the first cyclist, and cones labeled 3 and 4 indicate the starting position of the second cyclist. The right
image depicts the 135° encounter scenario, with the oval-striped area highlighting an uneven surface containing a noticeable
depression.

During the experiment, participants received instructions about their starting positions and destinations
from an information sheet attached to the rear rack of their bicycles, as presented in Tables 2.1 and
2.2. This ensured that participants had visual access to the necessary information prior to each trial,
removing the need for verbal instructions from the experimenter. By providing written rather than verbal
instructions, potential split-attention effects were minimized, aligning with cognitive load theory, which
emphasizes the limited capacity of working memory (Jong, 2009). Each interacting pair was randomly
assigned bicycles equipped with one of two distinct information sheets.

Table 2.1: Information sheet attached to the rear rack of
the first bicycle, with starting positions designated by letters
and destinations indicated by cone colors on the track.

Trial Starting position Destination

T1 B Blue

T2 G Red

T3 A Red

T4 E Green

T5 D Orange

T6 F Orange

T7 C Green

T8 H Blue

Table 2.2: Information sheet attached to the rear rack of the
second bicycle, with starting positions designated by letters
and destinations indicated by cone colors on the track.

Trial Starting position Destination

T1 G Red

T2 B Blue

T3 H Blue

T4 D Orange

T5 E Green

T6 C Green

T7 F Orange

T8 A Red

Tables 2.1 and 2.2 show that starting positions were labeled with letters, corresponding to the card-
boards placed on the track, while destinations were indicated by the color of the cone pairs through
which participants had to cycle. This approach was implemented to prevent confusion and ensure clar-
ity in navigation. Furthermore, no participants reported difficulties in interpreting the visual instructions
due to potential color vision deficiencies.

Following each trial, participants completed a questionnaire assessing their perceived safety during
the interaction and the ease with which they reached their destination. The questionnaire, provided
in Appendix A, was affixed to the bicycle’s rear rack, along with a pencil. After each trial, participants
dismounted and completed the questionnaire before commencing the subsequent trial.
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Upon completing all eight trials and filling out the questionnaire after each trial, participants were in-
structed to cycle the experimental track without any interaction with another cyclist. This required them
to repeat the eight trials under identical conditions, but in the absence of another cyclist. These tra-
jectories, referred to as reference trajectories, serve as baseline measurements, representing cyclists’
natural trajectories and velocity profiles in the absence of external interactions. Each participant com-
pleted these reference trajectories twice to ensure consistency and reliability in the baseline data.

2.3. Data collection
This study employed two independent data acquisition systems, mounted on the rear racks of Gazelle
Chamonix HMSbicycles, to collect kinematic data. Additionally, self-reported data was obtained through
structured questionnaires, enabling the assessment of participants’ subjective experiences.

2.3.1. Kinematic data collection
Position and velocity data were captured using the Piksi Multi Evaluation Kit (Swift Navigation, San
Francisco, USA). Hereafter, this system is referred to as the Piksi Multi system. This system utilizes
Global Navigation Satellite System (GNSS) technology for high-precision positioning and incorporates
an onboard MEMS inertial measurement unit (IMU) for additional motion sensing. The Piksi Multi sys-
tem consists of an evaluation board connected to a GNSS antenna and is powered by an external
power supply. To minimize potential GNSS signal disruptions, the GNSS antenna was mounted on
a 10 cm wooden pole. Raw GNSS data, sampled at 10 Hz, and IMU data, sampled at 100 Hz, were
recorded to a micro SD card. To enhance the accuracy of raw GNSS data for subsequent analysis, real-
time kinematics (RTK) was employed. RTK, a high-precision GNSS technique, leverages correction
data from a reference base station. The details of this processing procedure are presented in Chapter 3.

The second data acquisition system, referred to as the cadence system, comprised a magnetic reed
switch to detect cyclists’ pedaling activity and a MPU-9250 Breakout IMU (SparkFun, Niwot, USA). For
the cadence system, a magnet was affixed to the pedal, and a corresponding reed switch was mounted
on the bicycle frame. Both the reed switch and IMU were interfaced with a Teensy 4.1 microcontroller
(PJRC, Sherwood, USA). Data were sampled at 100 Hz. This microcontroller unit, powered by an ex-
ternal supply, was securely mounted on the bicycle’s rear rack.

Figure 2.4 illustrates the experimental bicycle setup for data acquisition, featuring the custom-designed
housing for the Piksi Multi system and the cadence system. To ensure consistency in data collection,
both bicycles used in the experiment, along with the measurement systems mounted on their rear
racks, were identical. The left image highlights the housing for the Piksi Multi system and the cadence
system. Instructions, outlined in Tables 2.1 and 2.2, are affixed to the top along with the questionnaire,
which will be discussed in the following subsection. The right image provides a clearer interpretation of
the setup by incorporating numerical labels for the various components of the data acquisition system.
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Figure 2.4: Experimental bicycle setup used for data acquisition. The left image shows the data collection systems housed and
mounted on the bicycle’s rear rack. The right image provides amore detailed view of the data acquisition systems. The numbered
labels indicate the individual components: 1) Teensy 4.1 microcontroller, 2) SparkFun MPU-9250 Breakout IMU, 3) evaluation
board, 4) GNSS antenna, and 5) external power supply. The left subfigure illustrates the housing of the data acquisition systems
and their attachment to the rear rack of the bicycle. Notably, the GNSS antenna is mounted on a wooden to minimize potential
GNSS signal disruptions.

2.3.2. Self-reported data collection
As previously mentioned, in addition to kinematic data collection, this study also gathered participant-
specific information through a series of questionnaires. Participants completed a pre-experiment ques-
tionnaire assessing demographics and cycling experience, followed by a post-experiment questionnaire
evaluating their overall experience with the study. As detailed in Section 2.2, after each trial, partici-
pants completed a short questionnaire, rating the perceived safety and intuitiveness of the interaction.
This questionnaire consisted of closed-ended questions, with responses recorded on a five-point scale.
It is important to note that a score of 5 represented a high level of comfort and the perception of an easy
interaction, whereas a score of 1 indicates the lowest level of comfort and the perception of a difficult
interaction. All questionnaires are provided in Appendix A.



3
Data Processing

Following data collection, appropriate data processing is required. This chapter begins with the data
preparation phase, detailing the procedures used to process and refine the raw data obtained from the
measurement systems, ensuring its suitability for subsequent analysis in Python. This is followed by a
detailed description of the time synchronization process, which aligns the data from the two independent
data acquisition systems to a common timeframe, ensuring temporal consistency.

3.1. Data pre-processing
As described in Section 2.3, the Piksi Multi system acquired both position and velocity data. Due to
the distinct characteristics of these data types, separate pre-processing methodologies were employed.
The subsequent subsections detail the pre-processing procedures applied to the position data, followed
by those applied to the velocity data.

3.1.1. Position data
The Piksi Multi system records raw GNSS data in .sbp (Swift Binary Protocol) format, a communi-
cation protocol for Swift Navigation devices. However, despite the meter-level accuracy of this data,
centimeter-level accuracy is required for high-resolution analysis of cyclist interaction behavior. This is
achieved through RTK, which enhance positional accuracy by compensating for GNSS signal errors.
The correction process compares signals received at a precisely known reference station with those
recorded by the Piksi Multi system. The discrepancies between these signals are then used to adjust
the position data, reducing measurement errors (Li et al., 2022). In this study, the TU Delft GNSS
Fieldlab, within the Faculty of Electrical Engineering, Mathematics, and Computer Science, served as
the reference station. The high-rate RINEX data from the reference station were downloaded from the
TU Delft GNSS website.

RTK processing was performed using RTKLIB 2.4.3 (Takasu, Tokyo, Japan). RTKLIB generated cor-
rected position data, containing geographic coordinates and epoch timestamps, in .pos (Position) for-
mat. These files were then imported into Python 3.8 (Python Software Foundation, Beaverton, USA).
The position data was segmented to retain only trajectory segments within the defined semi-circular
region of interest.

To precisely define the boundary of the semi-circle, an experimental procedure was conducted. A
measuring tape was anchored at the center of the semi-circle, and the Piksi Multi system was system-
atically moved along the arc four times, recording GNSS coordinates at each pass. These recorded
positions were then processed using the same differential correction methodology described earlier.
To establish a representative boundary, the corrected coordinates were averaged, resulting in a single
set of geographic coordinates defining the semi-circle’s edge.

9
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3.1.2. Velocity data
In contrast to position data, velocity data did not necessitate differential corrections. Horizontal velocity
data and corresponding timestamps were recorded in .csv (Comma-Seperated Values) format, facili-
tating direct import into Python without format conversion. However, time synchronization was required
to align velocity and position data.

Velocity timestamps are recorded in Coordinated Universal Time (UTC), whereas position data are
recorded in GPS time, which is 18 seconds ahead of UTC (Kumar et al., 2021). To synchronize both
datasets, 18 seconds were added to each UTC timestamp in the velocity data file, aligning it with the
GPS time used for position data. This adjustment ensures that both datasets correspond to the same
point in time, expressed in GPS time. Finally, in accordance with the position data processing pro-
tocol, the velocity data was segmented to isolate the trajectory segments located within the defined
semi-circular area region of interest.

3.2. Time synchronization
In addition to synchronizing positional and velocity data, it is essential to ensure time synchronization
between the two independent measurement systems, the Piksi Multi system and the cadence system.
This synchronization is crucial for accurately integrating data collected from both systems, which were
mounted on each of the bicycles. To achieve this, a unified timeframe must be established across all
systems and bicycles, ensuring temporal alignment for consistent and reliable data analysis.

The cadence system operates on a relative timescale, where data logging begins at an arbitrary ref-
erence point. In contrast, the Piksi Multi system utilizes high-precision GPS time, with a resolution
of 0.00001 ms (Swift Navigation, 2024). This high accuracy is derived from a network of synchro-
nized atomic clocks onboard GPS satellites (Ramsey, 1983). Since both the Piksi Multi system and
the cadence system incorporate an IMU, the x-axis gyroscope data, corresponding to the bicycle’s roll
axis, is used as the basis for time synchronization. This choice is due to the distinct peaks generated
during a pre-calibration maneuver, in which a brief, controlled shaking motion is applied to the bicycle
while both systems are mounted on the rear rack. The induced motion generates identifiable sinusoidal
peaks in the x-axis gyroscope data from each IMU, facilitating subsequent synchronization during post-
processing.

The time synchronization process involves first truncating the longer IMU signal, either from the Piksi
Multi system or the cadence system, to match the length of the shorter signal. Next, the signals are
shifted in time relative to each other, and for each time shift, the error between the two signals is com-
puted as the Euclidean norm of their difference. The optimal time shift is then determined by identifying
the shift that results in the lowest error.

Figure 3.1 illustrates the time synchronization process, where the upper plot displays the initial unsyn-
chronized gyroscope data, and the lower plot presents the synchronized signals following the applied
procedure. The time synchronization process was implemented in Python, ensuring precise alignment
between the two independent measurement systems. The synchronization methodology is based on
the approach used by Moore (2012).



3.2. Time synchronization 11

Figure 3.1: Illustration of the time synchronization process for the Piksi Multi system and the cadence system, based on their
respective IMU gyroscope data. The top panel displays the gyroscope signals prior to synchronization, while the bottom panel
presents the synchronized signals after applying the synchronization procedure. A time shift of 19.74 seconds was identified as
optimal.

As a result of the synchronization procedure, data from the Piksi Multi system and the cadence system
can be seamlessly integrated, as both systems now operate within a shared timeframe. This process
only ensures synchronization between the two independent systemsmounted on a single bicycle. Since
the objective of this study is to analyze interactions between two cyclists, synchronization across both
bicycles is also required. However, as both Piksi Multi systems operate on high-precision GPS time, no
additional synchronization steps are necessary. The timestamps recorded by the Piksi Multi systems
on both bicycles are inherently aligned, enabling direct comparison of the data collected from the two
cyclists without requiring further adjustments.



4
Kinematic Analysis

Following the data collection and processingmethodologies detailed in preceding chapters, this chapter
presents the kinematic data analysis designed to address the first research question. The analysis is
organized into six sections. The initial two sections focus on the analysis of position data, while sections
three, four, and five examine velocity data. The concluding section outlines the methodology used to
analyze avoidance strategies, which involved classifying path adjustments and velocity modifications
across various encounter scenarios and evaluating their interdependence.

4.1. Path adjustment metric
To quantify cyclist path adjustments, average orthogonal deviation was selected as the primary metric.
This measure offers a robust representation of trajectory behavior by capturing deviations across the
entire interaction segment, rather than focusing on isolated extremes. By accounting for the accumu-
lation of small, consistent deviations, it offers a more comprehensive and nuanced assessment of path
variability. The metric was computed by taking the mean of the perpendicular distances between each
point on the interaction trajectory and the corresponding points on a reference trajectory. Since each
participant has two reference trajectories, this calculation was performed separately for both, yielding
two average deviation values. The computation is represented by the following equations:

𝑃int1,𝑘 =
1
𝑁

𝑁

∑
𝑖=1

|𝑑int1,𝑘,𝑖|

𝑃int2,𝑘 =
1
𝑁

𝑁

∑
𝑖=1

|𝑑int2,𝑘,𝑖|

(4.1)

In these equations, 𝑃int1,𝑘 represents the average orthogonal deviation between the first reference tra-
jectory and the interaction trajectory for a participant in trial 𝑘, where 1 ≤ 𝑘 ≤ 8. Likewise, 𝑃int2,𝑘 denotes
the average orthogonal deviation relative to the second reference trajectory. The term |𝑑int1,𝑘,𝑖| denotes
the absolute orthogonal distance from the 𝑖-th point on the first reference trajectory to the corresponding
point on the interaction trajectory. Since 𝑑int1,𝑘,𝑖 can take positive or negative values depending on the
direction of deviation, information not considered in this part of the analysis, the absolute value is used.
To ensure a consistent geometric basis for computing 𝑃int1,𝑘 and 𝑃int2,𝑘, all perpendicular distances
were calculated by projecting points from the reference trajectories onto the respective comparison
trajectories.

To ensure consistency across trials, the number of points 𝑁 was standardized to 100 by interpolating
the coordinates within the semi-circle to equally spaced points. This interpolation density was empiri-
cally determined to be sufficient. An analysis of the participant with the longest trajectory confirmed that
the average orthogonal deviation stabilized beyond 100 points, with no appreciable changes observed
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at higher resolutions. This normalization step facilitates direct comparison of trajectories independent
of individual cycling speed.

Similarly, for each participant, the average orthogonal deviation between the first and second refer-
ence trajectories in trial 𝑘 was calculated using the following equation:

𝑃ref,𝑘 =
1
𝑁

𝑁

∑
𝑖=1

|𝑑ref,𝑘,𝑖| (4.2)

In this equation, |𝑑ref,𝑘,𝑖| denotes the perpendicular distance from the 𝑖-th point on the first reference
trajectory to the second reference trajectory in trial 𝑘. All perpendicular distances were calculated by
projecting points from the first reference trajectory onto the second reference trajectory.

Figure 4.1 illustrates the computation of 𝑃int1,𝑘 and 𝑃ref,𝑘. For visual clarity, only 20 dashed lines are
shown to represent the orthogonal distances 𝑑int1,𝑘,𝑖 and 𝑑ref,𝑘,𝑖, rather than displaying the full set of
100.

Figure 4.1: Illustration of orthogonal deviation. The left panel visualizes the orthogonal distances between two reference tra-
jectories. The right panel depicts the orthogonal distances between the reference and interaction trajectory. The orthogonal
distances, indicated by black dashed lines, are summed and averaged to compute the average orthogonal deviation. The grey
dashed line represents the semi-circular arrangement.

Subsequently, 𝑃int1,𝑘 and 𝑃int2,𝑘 were compared to 𝑃ref,𝑘 across all participants for each of the eight
trials. This comparison aimed to assess whether path adjustments observed in interaction scenarios
differed significantly from those in non-interaction scenarios.

4.1.1. Analysis
For the analysis of average orthogonal deviation, the data were organized into 16 distinct datasets.
These included eight interaction scenarios, each comprising 20 observations of 𝑃int1,𝑘 corresponding
to the 20 participants. Similarly, the dataset included eight non-interaction scenarios, each containing
20 observations of 𝑃ref,𝑘.

A one-way repeated measures ANOVA was chosen for the analysis, as the repeated measures design
involved each participant contributing data across all eight trials in both conditions. The primary objec-
tive was to determine whether average orthogonal deviation differed significantly between interaction
and non-interaction scenarios. In addition, separate analyses were conducted to assess differences
among the interaction scenarios and among the non-interaction scenarios. Accordingly, three one-way
repeated measures ANOVAs were performed.

When a large proportion of the 16 datasets exhibit substantial deviations from normality, repeated mea-



14 4. Kinematic Analysis

sures ANOVAmay not be the optimal statistical test. The Shapiro-Wilk test, a statistical test appropriate
for small datasets, was used to evaluate the normality of the data distributions (King & Eckersley, 2019;
Shapiro & Wilk, 1965). The test evaluates the conformity of the sorted sample values to a normally
distributed population, calculating the test statistic,𝑊, as follows:

𝑊 =
(∑𝑛𝑖=1 𝑎𝑖𝑥(𝑖))

2

∑𝑛𝑖=1(𝑥𝑖 − 𝑥̄)2
(4.3)

In this equation, 𝑥(𝑖) denotes the 𝑖-th order statistic, meaning the 𝑖-th smallest value in the sample after
sorting the data in ascending order. In contrast, 𝑥𝑖 refers to the 𝑖-th value in the original dataset. The
term 𝑥̄ represents the sample mean. The constants 𝑎𝑖 are weights that reflect how a sample from a
normal distribution is expected to behave when sorted. These weights are calculated based on the
expected values and covariances of the order statistics from a standard normal distribution (Shapiro
& Wilk, 1965). The sample size, 𝑛, was 20, indicating the number of observations per dataset. The
resulting 𝑊 statistic quantifies the degree of normality, with values closer to 1 indicating a stronger fit
to the normal distribution.

The Shapiro-Wilk tests revealed that 3 out of 16 datasets deviated from normality. Although this finding
could raise concerns about the validity of ANOVA, this method is recognized for its robustness to mod-
erate violations of normality, especially within repeated measures designs (Ito, 1980). Consequently,
ANOVA was deemed appropriate for this analysis.

Following the three separate one-way repeated measures ANOVAs, post-hoc pairwise comparisons
were conducted to explore specific differences. Given that 3 out of 18 datasets exhibited deviations
from normality, the Wilcoxon signed-rank test was used for post-hoc analyses. While ANOVA is robust
to normality violations due to its analysis of global patterns, pairwise comparisons in post-hoc tests are
susceptible to skewing from slight deviations. Therefore, the Wilcoxon signed-rank test, which does
not assume normality, was chosen to ensure the validity of post-hoc inferences (Wilcoxon, 1945).

Pairwise testing within the interaction scenarios yielded 28 comparisons. Similarly, pairwise testing
within the non-interaction scenarios resulted in 28 comparisons. A Bonferroni correction, dividing the
significance level of 𝛼 = 0.05 by 28, produced an adjusted significance level of 𝛼 = 0.0018 (Dunn,
1961). Pairwise comparisons between interaction and non-interaction scenarios involved eight tests,
leading to an adjusted significance level of 𝛼 = 0.0063.

It is important to note that the primary analysis presented in the main body of the thesis is based
on comparisons between 𝑃int1,𝑘 and 𝑃ref,𝑘. A parallel analysis comparing 𝑃int2,𝑘 and 𝑃ref,𝑘 was also
conducted, with the results presented in Appendix C.

4.2. Path adjustment correlation
To investigate correlations in path adjustments between interacting cyclists, paired average orthogonal
deviation values (𝑃int1,𝑀1, 𝑃int1,𝑀2) were compiled into a dataset. The index 𝑀 (1 ≤ 𝑀 ≤ 10) denotes
each of the 10 cyclist pairs in the study, while the subscript identifies the individual cyclist within the
pair. The direction of each cyclist’s path adjustment is defined by the sign of 𝑃int1,𝑀1 and 𝑃int1,𝑀2. Due
to the smooth nature of the trajectories, this direction is determined by the sum of signed orthogonal
distances. For instance, if ∑𝑑int1,𝑘,𝑖 = −2, the sign of 𝑃int1,𝑀1 is assigned as negative. An example of
a negative average orthogonal deviation is shown in Figure 4.1. To ensure consistent ordering, data
were structured such that 𝑃int1,𝑀1 > 𝑃int1,𝑀2 within each pair. This ordering facilitates the computation
of the Pearson correlation coefficient, using the following formula:

𝑟 =
∑10𝑀=1 (𝑃int1,𝑀1 − 𝑃int1) (𝑃int1,𝑀2 − 𝑃int2)

√∑10𝑀=1 (𝑃int1,𝑀1 − 𝑃int1)
2
⋅ √∑10𝑀=1 (𝑃int1,𝑀2 − 𝑃int2)

2
(4.4)
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Here, 𝑃int1 and 𝑃int2 represent the mean average orthogonal deviations for the cyclist in each pair with
the larger and smaller path adjustment, respectively, calculated across all 10 pairs and 8 trials. This
dataset, totaling 80 observations, served as the basis for the correlation analysis.

While the Pearson correlation coefficient provides insight into the directional relationship between cy-
clists’ path adjustments, it does not capture differences in magnitude. To address this, a path adjust-
ment ratio was computed for each cyclist pair in the four encounter scenarios, defined as:

Path adjustment ratio𝑀,𝑠 = |𝑃int1,𝑀1,𝑠| ∶ |𝑃int1,𝑀2,𝑠| (4.5)

where 𝑠 represents the encounter scenario, and the values are ordered such that |𝑃int1,𝑀1| < |𝑃int1,𝑀2|.
Unlike the correlation coefficient, which considers directionality, the adjustment ratio focuses exclusively
on the magnitude of deviation by using absolute values. By normalizing |𝑃int1,𝑀1| and |𝑃int1,𝑀2| with
respect to |𝑃int1,𝑀1|, the path adjustment ratio is defined as:

Path adjustment ratio𝑀,𝑠 = 1 ∶ 𝑋 (4.6)

For each scenario 𝑠, 20 path adjustment ratios were computed. Differences in these ratios across sce-
narios were examined using a one-way repeated measures ANOVA.

By incorporating both the Pearson correlation coefficient and the adjustment ratio, the analysis pro-
vides a more comprehensive understanding of both the direction and magnitude of path adjustments
during interactions.

4.3. Velocity metric
Examination of the velocity data showed that participants exhibited a relatively stable velocity through-
out the experimental period. Based on this observation, average velocity was chosen as the primary
metric. It is acknowledged that using average velocity could have resulted in the loss of valuable infor-
mation if substantial velocity variations had been present.

Prior to computing the average velocity, a second-order low-pass Butterworth filter with a cutoff fre-
quency of 2 Hz was applied to the raw velocity data. To facilitate the detection of high-acceleration
hard braking maneuvers, the cutoff frequency was deliberately set to a value above the typical cycling
frequency, which is generally below 1.5 Hz (Al-Naime et al., 2020). The effect of Butterworth filtering
on raw velocity data is illustrated in detail in Appendix B.

The average velocity for each participant in trial 𝑘 was calculated as:

𝑣int,𝑘 =
1
𝑁

𝑁

∑
𝑖=1

𝑣int,𝑖 (4.7)

where 𝑣int,𝑖 represents the velocity at sample point 𝑖. 𝑁 represents the number of data points within the
trial, which may vary between participants and across trials. Similarly, the average velocities for each
participant’s two reference trajectories were computed using the following equations:

𝑣ref1,𝑘 =
1
𝑁

𝑁

∑
𝑖=1

𝑣ref1,𝑖

𝑣ref2,𝑘 =
1
𝑁

𝑁

∑
𝑖=1

𝑣ref2,𝑖

(4.8)
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Here, 𝑣ref1,𝑖 and 𝑣ref2,𝑖 denote the velocities at sample point 𝑖 for the first and second reference trajec-
tories, respectively. Subsequently, 𝑣int,𝑘 was compared to both 𝑣ref1,𝑘 and 𝑣ref2,𝑘 across all participants
and for each of the eight trials. This comparison aimed to evaluate whether average velocities during
interaction scenarios differed significantly from those observed in non-interaction scenarios.

4.3.1. Analysis
Consistent with the path adjustment analysis presented in Subsection 4.1.1, the investigation of veloc-
ity selection modifications employed the same statistical framework. The Shapiro–Wilk test indicated
that only 1 out of the 16 datasets deviated from normality, supporting the suitability of ANOVA for the
analysis.

The primary objective of this analysis was to determine whether average velocity differed significantly
between interaction and non-interaction scenarios. Additionally, separate analyses were conducted to
examine differences among the interaction scenarios and among the non-interaction scenarios. Ac-
cordingly, three one-way repeated measures ANOVAs were performed. For post-hoc comparisons,
Wilcoxon signed-rank tests were conducted, followed by a Bonferroni correction to control for multiple
comparisons.

It is important to note that the primary analysis presented in the main body of the thesis is based
on comparisons between 𝑣int,𝑘 and 𝑣ref1,𝑘. A parallel analysis comparing 𝑣int,𝑘 and 𝑣ref2,𝑘 was also
conducted, with the results presented in Appendix D.

4.4. Velocity selection correlation
Expanding upon the path adjustment correlation analysis, this study also examines the relationship
between the velocity selections of interacting cyclists. The aim is to determine whether a reduction in
velocity by one cyclist corresponds to an increase in velocity by the other, indicating potential reciprocal
behavior. To quantify this relationship, the absolute difference between the average velocity of the
interaction trajectory and that of the first reference trajectory was calculated for each participant and trial.
The same procedure was repeated for the second reference trajectory. This relationship is expressed
as follows:

Δ𝑣int1,𝑘 = 𝑣int,𝑘 − 𝑣ref1,𝑘
Δ𝑣int2,𝑘 = 𝑣int,𝑘 − 𝑣ref2,𝑘

(4.9)

Δ𝑣int1,𝑘 represents the difference in average velocity between the first reference trajectory and the inter-
action trajectory for a participant in trial 𝑘. Δ𝑣int2,𝑘 denotes the difference in average velocity between
the second reference trajectory and the interaction trajectory. 𝑣int,𝑘 and 𝑣ref,𝑘 denote the average ve-
locity of the participant in trial 𝑘 for the interaction and reference trajectories, respectively.

For the investigation of velocity selection correlations between interacting cyclists, paired difference
in average velocity data, (Δ𝑣int1,𝑀1, Δ𝑣int1,𝑀2), was structured into a dataset. The index 𝑀 (1 ≤ 𝑀 ≤ 10)
represents each cyclist pair, indicating the 10 pairs that constituted the study cohort. The numerical
subscript denotes the specific cyclist within each pair. To ensure consistency and avoid arbitrary or-
dering effects, the data was systematically arranged such that Δ𝑣int1,𝑀1 > Δ𝑣int1,𝑀2 for each pair. This
facilitates the calculation of the Pearson correlation coefficient via the subsequent formula:

𝑟 =
∑10𝑀=1 (Δ𝑣int1,𝑀1 − Δ𝑣int1) (𝑣int1,𝑀2 − Δ𝑣int2)

√∑10𝑀=1 (Δ𝑣int1,𝑀1 − Δ𝑣int1)
2
⋅ √∑10𝑀=1 (Δ𝑣int1,𝑀2 − Δ𝑣int2)

2
(4.10)

Here, Δ𝑣int1 and Δ𝑣int2 represent the mean differences in average velocities for the cyclist in each pair
with the larger and smaller magnitudes of velocity changes, respectively, calculated across all 10 pairs
and 8 trials. This dataset, totaling 80 observations, served as the basis for the correlation analysis.
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Negative values of Δ𝑣int1,𝑀1 and Δ𝑣int1,𝑀2 indicate that participants selected a lower velocity in inter-
action scenarios compared to non-interaction scenarios, whereas positive values indicate that partici-
pants increased their velocity during interactions.

In addition to examining the directional relationship, the velocity selection ratio was calculated for each
cyclist pair to quantify the relative magnitude of velocity adjustments during interaction. This ratio is
defined as:

Velocity adjustment ratio𝑀,𝑠 = |Δ𝑣int1,𝑀1,𝑠| ∶ |Δ𝑣int1,𝑀2,𝑠| (4.11)

Velocity selection ratios were determined for interacting cyclists in pair 𝑀 within each of the four en-
counter scenarios 𝑠. These adjustments are represented by the difference in average velocity Δ𝑣int1,𝑀1,𝑠
and Δ𝑣int1,𝑀2,𝑠, organized such that |Δ𝑣int1,𝑀1,𝑠| < |Δ𝑣int1,𝑀2,𝑠|. By normalizing |Δ𝑣int1,𝑀1,𝑠| and |Δ𝑣int1,𝑀2,𝑠|
with respect to |Δ𝑣int1,𝑀1,𝑠|, the path adjustment ratio is defined as:

Velocity selection ratio𝑀,𝑠 = 1 ∶ 𝑌 (4.12)

For each encounter scenario 𝑠, a total of 20 velocity adjustment ratios were calculated, based on data
from 10 cyclist pairs, each completing two trials. Differences in these ratios across scenarios were
examined using a one-way repeated measures ANOVA.

4.5. Braking and acceleration patterns
The previous section examined the selected velocities of participants across different scenarios, focus-
ing on average velocities. However, analyzing average velocities alone may overlook critical dynamic
aspects of participant behavior. To gain a more comprehensive understanding, this analysis evaluates
individual variations in acceleration profiles. Average absolute acceleration was selected as a key met-
ric to quantify the intensity of speed fluctuations throughout each trial. By taking the absolute value of
acceleration, both increases and decreases in velocity contribute positively to the measure, avoiding
cancellation effects that can occur with net acceleration. This ensures that even subtle variations in
speed are captured.

Acceleration was calculated from the Butterworth-filtered velocity data acquired from the Piksi Multi
system. The average absolute acceleration for trial 𝑘 was computed by summing the absolute accel-
eration values of the participant’s trajectory, as defined by the following equation:

𝑎int,𝑘 =
1
𝑁

𝑁

∑
𝑖=1

|
𝑣int,𝑖+1 − 𝑣int,𝑖

Δ𝑡
| (4.13)

𝑣int,𝑖 represent the velocity at point 𝑖, and Δ𝑡 is the constant sampling interval of 0.1 seconds. 𝑁 repre-
sents the length of each participant’s dataset for each trial, which varies due to differing velocity dataset
lengths.

Similarly, the absolute average acceleration for each participant in each of the two reference trajec-
tories was calculated as follows:

𝑎ref1,𝑘 =
1
𝑁

𝑁

∑
𝑖=1

|
𝑣ref,𝑖+1 − 𝑣ref,𝑖

Δ𝑡
|

𝑎ref2,𝑘 =
1
𝑁

𝑁

∑
𝑖=1

|
𝑣ref,𝑖+1 − 𝑣ref,𝑖

Δ𝑡
|

(4.14)
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Subsequently, 𝑎int,𝑘 was compared to 𝑎ref1,𝑘 and 𝑎ref2,𝑘 across all participants for each of the eight
trials. This comparison sought to determine whether acceleration patterns in interaction scenarios
were significantly different from those in non-interaction scenarios.

4.5.1. Analysis
Consistent with the path adjustment and velocity selection analysis described in Subsection 4.1.1 and
4.3.1, the analysis of braking and acceleration patterns followed the same statistical approach. The
Shapiro-Wilk test indicated that 4 out of 16 datasets deviated from normality, supporting the suitability
of ANOVA for the analysis.

Three separate one-way repeated measures ANOVAs were conducted to determine whether average
absolute acceleration differed significantly between interaction and non-interaction scenarios across all
eight trials, and to explore differences among interaction scenarios and among non-interaction scenar-
ios separately. Accordingly, three one-way repeated measures ANOVAs were performed. For post-hoc
comparisons, Wilcoxon signed-rank tests were conducted, followed by a Bonferroni correction to con-
trol for multiple comparisons.

It is important to note that the primary analysis presented in the main body of the thesis is based
on comparisons between 𝑎int,𝑘 and 𝑎ref1,𝑘. A parallel analysis comparing 𝑎int,𝑘 and 𝑎ref2,𝑘 was also
conducted, with the results presented in Appendix E.

4.6. Avoidance strategies
The methodology for computing path adjustment and velocity selection metrics was presented in prior
sections. However, the operational definitions for classifying these actions as significant adjustments
or modifications were not specified. This section addresses this gap by defining these criteria. It then
proceeds to describe the framework used to define and analyze collision avoidance strategies across
the four encounter scenarios.

4.6.1. Classification criteria
In this study, a path adjustment was identified when both 𝑃int1,𝑘 and 𝑃int2,𝑘 for each participant and trial 𝑘
exceeded a threshold. This threshold was defined as the mean of all 𝑃ref,𝑘 values across all participants
and trials 𝑘, plus one standard deviation (𝜎). Thus, a path adjustment was deemed significant when:

Path adjustment =min(𝑃int1,𝑘, 𝑃int2,𝑘) > 𝑃ref + 𝜎𝑃ref
Path adjustment =min(𝑃int1,𝑘, 𝑃int2,𝑘) > 0.25 + 0.09

(4.15)

As evident from Equation 4.15, cyclists exhibiting an average orthogonal deviation from their refer-
ence trajectories exceeding 0.34 m were classified as having adjusted their path. The rationale for
this threshold methodology stems from the observed smoothness of path trajectories and the infre-
quent occurrence of sharp evasive maneuvers. The threshold was established to account for natural
variability among cyclists, thereby reducing the likelihood of false positives while avoiding excessively
conservative cutoffs. This approach offers a balanced and interpretable means of differentiating normal
trajectory variability from intentional path adaptations during interactions.

Figure 4.2 visually demonstrates the criteria for classifying path adjustments. The two small dashed
lines in each subplot illustrate the threshold used for this classification. It is important to clarify that this
figure is intended for visualization purposes only, as the threshold in this study is a single numerical
value, not a continuous line. The aim is to provide an intuitive understanding of the magnitude of path
adjustments that are considered significant.
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Figure 4.2: Visual depiction of how a path adjustment is defined. In the left subplot, the participant is classified as having adjusted
their path during interaction with another cyclist. In the right subplot, the participant is not classified as having adjusted their path
in the interaction scenario.

Similarly, a cyclist’s velocity selection was classified as modified when both |Δ𝑣int1,𝑘| and |Δ𝑣int2,𝑘| ex-
ceeded a predefined threshold. To determine this threshold, the absolute difference in average veloc-
ities between the two reference trajectories was first calculated for each participant in every trial, as
follows:

Δ𝑣ref,𝑘 = |𝑣ref1,𝑘 − 𝑣ref2,𝑘| (4.16)

The threshold was subsequently determined by computing the mean of Δ𝑣ref,𝑘 across all trials and
adding one standard deviation (𝜎). This relationship is expressed mathematically as:

Velocity selection =min(|Δ𝑣int1,𝑘|, |Δ𝑣int2,𝑘|) > Δ𝑣ref + 𝜎Δ𝑣ref
Velocity selection =min(|Δ𝑣int1,𝑘|, |Δ𝑣int2,𝑘|) > 0.15 + 0.066

(4.17)

As evident from Equation 4.17, if cyclists exhibited a modified velocity selection exceeding 0.216 m/s
compared to their reference trajectory, the cyclist was classified as having modified their selected ve-
locity. A visual representation of this classification is provided in Figure 4.3. It is crucial to clarify that
this figure serves only for visualization, as the threshold is a single numerical value, not a continuous
line. The aim is to provide an intuitive understanding of the magnitude of velocity selections considered
significant.

Figure 4.3: Visual illustration of the criteria used to define amodified velocity selection. The left subplot demonstrates a participant
classified as having altered their velocity selection, in contrast to the right subplot, which shows a participant not classified as
having made such a change.
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4.6.2. Analysis
The final analysis aimed to assess the relationship between collision avoidance strategies and en-
counter scenarios. For each encounter scenario, the collision avoidance strategy implemented by
each cyclist pair was identified, yielding 10 possible strategy combinations. Each cyclist could perform
one of four actions: combined path adjustment and velocity selection modification (PA & VS), path ad-
justment alone (PA), velocity selection modification alone (VS), or no adjustment (NO). The frequency
of each strategy combination within each encounter scenario was then compiled into a contingency
table, as shown in Figure 4.4.

Figure 4.4: Empty contingency table displaying the frequency of avoidance strategies, categorized by the four different encounter
scenarios. Although the table initially contains only zeros, it will later be populated with the observed counts for each avoidance
strategy. For instance, the column labeled ’PA & VS, PA & VS’ indicates instances where both cyclists in a pair modified both
their path and velocity.

After populating the contingency table with the observed counts of each collision avoidance strategy
across the different encounter scenarios, a Chi-square test was conducted. The observed frequencies,
𝑂𝑖𝑗, reflecting the actual strategy choices, were arranged based on the four encounter scenarios (𝑖)
and the ten strategy categories (𝑗). The Chi-Square test then calculates the expected frequencies, 𝐸𝑖𝑗,
under the null hypothesis of uniform strategy distribution across the four scenarios. 𝐸𝑖𝑗 is calculated as
follows:

𝐸𝑖𝑗 =
(Row Total𝑖) ⋅ (Column Total𝑗)

Grand Total (4.18)

where Row Total𝑖 equals 20, representing 10 cyclist pairs completing 2 trials per encounter scenario,
and Grand Total equals 80. Subsequently, the deviation of each observed frequency (𝑂𝑖𝑗) from the
expected frequency (𝐸𝑖𝑗) was calculated using the following formula:

𝜒2 =
4

∑
𝑖=1

10

∑
𝑗=1

(𝑂𝑖𝑗 − 𝐸𝑖𝑗)2

𝐸𝑖𝑗
(4.19)

A large 𝜒2 means there is a large difference between the observed frequencies 𝑂𝑖𝑗 and the expected
frequencies 𝐸𝑖𝑗 under the null hypothesis of independence.

It is important to note that a significant Chi-Square test result indicates an association between scenario
and avoidance strategy, but does not specify which scenarios differ. To identify specific differences,
pairwise Chi-Square tests are required. A Bonferroni correction was applied, adjusting the significance
threshold by dividing the conventional 𝛼 level by the six pairwise comparisons.
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Yielding

To examine the interaction characteristics that influence yielding behavior, a statistical model was de-
veloped to estimate the probability of yielding. This chapter first provides a detailed discussion of the
factors included in the analysis, along with the rationale for their selection. Next, the potential impact of
collinearity among model variables is assessed to ensure the reliability of the statistical estimates. The
chapter concludes with an overview of the model selection process and an evaluation of the model’s
predictive performance.

5.1. Model variables
As previously stated, the primary objective of the model is to estimate the probability of yielding. In
this study, yielding is defined as the behavior of a cyclist who, in a close interaction with another cy-
clist, crosses the intersection last as a result of a priority resolution process. However, this definition
may also include passages where neither cyclist adjusts their motion, rather than true interactions that
involve active yielding. Some interactions may instead be classified as passages, where the cyclist
crossing last is merely arriving later rather than actively yielding (Haperen et al., 2018). A passage,
as defined in this study, occurred when both cyclists in the interacting pair did not adjust their path or
modify their selected velocity, based on the classification criteria outlined in Subsection 4.6.1.

Yielding behavior is determined based on position data from the Piksi Multi system, which provides
precise timestamps for each cyclist’s trajectory. At the intersection point where their paths cross, the
timestamps of the interacting cyclists are compared. The cyclist with the later timestamp is identified
as the one who yields. In the statistical model, yielding is designated as the dependent variable and is
represented as a binary outcome, capturing the presence or absence of yielding behavior.

The independent variables in this study were selected based on prior research, focusing on factors
presumed to influence yielding behavior. These variables were chosen to ensure a consistent predic-
tive horizon across all predictors. In this study, the predictive horizon is defined as the point at which
cyclists enter the semi-circle, representing the spatial context in which yielding decisions are made.
This approach ensures that predictions are based on a standardized reference point rather than vary-
ing temporal intervals, as the time elapsed between cyclists entering the semi-circle and their paths
intersecting differs for each interacting pair.

The first factor analyzed is the difference in time to arrival (DTA), which quantifies the temporal disparity
between cyclists as they approach the semi-circle. Previous research by Mohammadi et al. (2023) has
identified DTA as a significant predictor of yielding behavior in cyclist-vehicle interactions, suggesting
that this metric may also be relevant in cyclist-cyclist interactions. DTA is derived from position data
by examining the timestamps at which cyclists enter the semi-circle. For example, if one cyclist arrives
0.3 seconds earlier than another, the earlier cyclist has a DTA of +0.3 seconds, while the later cyclist
has a DTA of -0.3 seconds. A negative DTA, therefore, indicates that a cyclist arrives later than their
interacting counterpart.

21
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Additionally, Mohammadi et al. (2023) demonstrated that the initial velocities of both vehicles and cy-
clists significantly influence yielding decisions. To assess the relevance of this factor in cyclist-cyclist
interactions, the initial velocity difference was included as a variable in this study. While participants
were instructed to maintain a constant velocity of 10 km/h upon entering the semi-circle, data anal-
ysis revealed that velocity differences were still present, underscoring the importance of accounting
for these variations. For example, if two interacting cyclists have initial velocities of 2.9 m/s and 2.7
m/s, respectively, the first cyclist would have an initial velocity difference of +0.2 m/s, while the second
cyclist would have an initial velocity difference of -0.2 m/s. Similar to DTA, initial velocity differences
were computed using velocity data sourced directly from the Piksi Multi system.

This study pairs male and female participants to examine potential gender differences in yielding be-
havior. Gender information was collected through a pre-study questionnaire. In addition to considering
gender as a potential predictor of yielding behavior, this study investigates the direction of approach
to the semi-circle as a factor that may influence yielding decisions. Previous research has indicated
that cyclists often follow informal traffic norms, even in areas where explicit traffic regulations are ab-
sent (Wexler & El-Geneidy, 2017). Building on this hypothesis, the perceived approach direction is
expected to influence yielding behavior. In the Netherlands, traffic regulations mandate that road users
approaching from the right have the right of way. Based on this rule, it is hypothesized that cyclists
approaching from the left are more likely to yield to those approaching from the right. This implies that
cyclists in the 45𝐸, 90𝐹, 135𝐵, and 180𝐴 scenarios may perceive themselves as the right-approaching
cyclist.

Grigoropoulos et al. (2022) identified cadence, specifically the cessation of pedaling, as a potential fac-
tor influencing a cyclist’s yielding behavior when interacting with motorized vehicles. In this research,
they found that cyclists ceasing pedaling is an indicator of yielding when interacting with a motorized
vehicle. Therefore, cessation of pedaling may also be a predictor in cyclist-cyclist interactions.

The final independent factor investigated was the encounter angle. However, the encounter angle itself
was not a suitable predictor, as yielding occurred in 50% of observations within each encounter sce-
nario. Consequently, incorporating this predictor would not enhance model fit or predictive capability,
as it does not provide any signal to differentiate yielding behavior. The interaction between encounter
angle and approach direction was, nevertheless, explored, recognizing that approach direction may
have a more pronounced impact in specific encounter scenarios. Additionally, the interaction between
DTA and initial velocity difference was examined to understand the dynamic evolution of relative posi-
tions. An overview of the independent variables is provided in Table 5.1.
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Table 5.1: Overview of the independent factors included in the model. The first column lists the factors, while the second and
third columns provide their types and descriptions, respectively.

Independent factor Type Description

DTA Continuous Represents the temporal difference between cyclists reach-
ing the semi-circle. Cyclists who approach the semi-circle
earlier exhibit a positive DTA, while those who arrive later
have a negative DTA.

Gender Binary All participants in this study self-identified as either female
or male. Gender was recorded as a binary variable, with 0
representing female and 1 representing male.

Initial velocity
difference Continuous The initial velocity difference represents the relative veloc-

ity between participants at the moment they enter the semi-
circle. A positive value indicates that the participant is mov-
ing faster than their interacting counterpart, whereas a neg-
ative value signifies that the participant is moving slower.

Approach direction Binary Participants starting from positions A, B, E, and F are clas-
sified as approaching from the right and are coded as 0,
whereas those starting from positions C, D, G, and H are
classified as approaching from the left and are coded as 1.

Cadence Binary At the onset of entering the semi-circle, participants’ be-
havior is encoded as follows: a value of 0 indicates that the
participant stopped pedaling, while a value of 1 indicates
that the participant continued pedaling.

Encounter angle Categorical The four distinct approach angles, 45°, 90°, 135°, and
180°, were categorically represented by the numerical val-
ues 1, 2, 3, and 4, respectively.

5.2. Model collinearity
Collinearity in statistical modeling, particularly in regression analysis, occurs when two or more pre-
dictor variables exhibit a high degree of correlation (Dormann et al., 2012; Montgomery et al., 2010).
Such relationships can compromise the model’s ability to accurately estimate the individual effects of
predictors, as the regression algorithm struggles to disentangle their shared contributions to the out-
come variable.

To assess the potential presence of multicollinearity among predictor variables, the variance inflation
factor (VIF) was calculated for each independent variable. The VIF quantifies the extent to which the
variance of a regression coefficient is inflated due to collinearity with other predictors (Senter, 2008).
Following standard guidelines, a VIF value below 5 was considered indicative of an acceptable level of
collinearity, suggesting that the predictor variables did not exhibit substantial multicollinearity concerns
(Montgomery et al., 2010).

5.3. Model selection
Yielding behavior was modeled as a binary outcome, thereby supporting the use of logistic regression
for analysis. Given the repeated-measures design, where each participant completed eight trials, it
was necessary to account for potential within-subject dependencies. Some individuals may exhibit
consistent tendencies in their yielding behavior, with certain cyclists demonstrating a higher propensity
to yield than others. To address the hierarchical structure of the data, the model incorporates random
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effects at the participant level. This approach captures individual variability and adjusts for correlations
within participants, thereby enhancing the accuracy and generalizability of the model’s estimates.

The inclusion of random effects, and consequently the use of a multi-level model, requires careful
evaluation to ensure their necessity. To select the most appropriate model, the influence of random ef-
fects is systematically assessed. This evaluation involves comparing the performance of a single-level
logistic regression model with that of a multi-level logistic regression model to determine whether the
additional complexity introduced by random effects is justified.

A logistic regression model assumes that the target variable follows a Bernoulli distribution, where
it takes values of 0 (no yielding) or 1 (yielding). Rather than modeling probabilities directly, it models
the log-odds of the outcome:

log(
𝑝

1 − 𝑝
) = 𝛽0 +

𝐾

∑
𝑘=1

𝛽𝑘𝑥𝑘 (5.1)

where the left-hand side of the equation represents the log-odds of the binary outcome. On the right-
hand side, 𝛽0 denotes the intercept, representing the log-odds of the outcome when all predictor vari-
ables are set to zero, while 𝛽𝑘 quantifies the effect of the 𝑘𝑡ℎ predictor variable on the log-odds of
the outcome. If 𝛽𝑘 is not significantly different from zero, the corresponding predictor variable does
not have a significant influence on the log-odds. The model can incorporate any number of predictor
variables, denoted as 𝐾, to evaluate their combined effects on the binary outcome. Both 𝛽0 and 𝛽𝑘
are estimated using the Maximum Likelihood Estimation (MLE) method, which identifies the set of pa-
rameters that maximizes the likelihood of observing the given data under the specified model. This
approach ensures that the estimated parameters provide the best fit to the data, effectively capturing
the relationship between the predictor variables and the binary outcome.

Multi-level logistic regression models extend the single-level approach by incorporating random ef-
fects to account for hierarchical or nested data structures. This allows the model to capture variability
among participants and their preferences for yielding. The relationship is represented as:

log(
𝑝

1 − 𝑝
) = 𝛽0 +

𝐾

∑
𝑘=1

𝛽𝑘𝑥𝑘 + 𝑢𝑖 (5.2)

where 𝑢𝑖 represents the random intercept for participant 𝑖, modeling the variability in log-odds across
participants. This term accounts for differences between participants and is assumed to follow a normal
distribution, 𝑢𝑖 ∼ 𝒩(0, 𝜎2𝑢), with a mean of zero and variance 𝜎2𝑢 .

After fitting both the single-level and multi-level models, the intraclass correlation coefficient (ICC) is
calculated to assess the degree to which participants differ in their baseline tendencies to yield, after
accounting for other predictors in the model. An ICC greater than 0.50 indicates that a substantial pro-
portion of the variability in yielding behavior is attributable to differences between participants. In such
cases, a multi-level model is more appropriate, as it accounts for this clustering and better captures the
hierarchical structure of the data. Furthermore, a likelihood ratio test (LRT) is conducted to compare the
fit of the two models. This test assesses whether the inclusion of random effects significantly enhances
the model’s fit. A p-value less than 0.05 indicates that the random effects are statistically significant
and should be retained in the model.

To ensure consistency and facilitate model comparison, all statistical modeling was performed in R
4.4.2 (R Core Team, Vienna, Austria).
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5.4. Model evaluation
The Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC) are widely recognized
statistical tools for evaluating and comparing models, particularly in logistic regression and related
fields. Both criteria assess the trade-off between model fit and complexity, penalizing models with
excessive parameters to promote parsimony and mitigate the risk of overfitting. AIC, introduced by
Akaike (1974), emphasizes predictive accuracy by estimating information loss, while BIC, proposed
by Schwarz (1978), adopts a more conservative approach by incorporating the sample size into the
penalty term, favoring simpler models in larger datasets. These criteria are complementary, providing
robust insights into model selection for different goals, such as prediction or inference (Akaike, 1974;
Schwarz, 1978).

Although AIC and BIC are valuable for evaluating model fit and complexity, assessing predictive perfor-
mance is equally essential. Therefore, alternative models were implemented and evaluated alongside
the model favored by AIC and BIC, ensuring a comprehensive comparison of their performance. It is
important to highlight that if random effects are not warranted, indicating minimal variability between
participants, the single-level and multi-level logistic regression models are expected to yield similar re-
sults.

To assess predictive accuracy, leave-one-out cross-validation (LOOCV) was employed. LOOCV is
a rigorous cross-validation technique that is particularly well-suited for smaller datasets (Mohammadi
et al., 2023). Given that this study’s dataset consists of 160 observations, and datasets with fewer than
1000 observations are generally considered small, cross-validation is a recommended validation tech-
nique (Safonova et al., 2023). LOOCV ensures that every observation is used in the training process
while also serving as a test case exactly once. This methodology maximizes the utility of the available
data and provides a robust and comprehensive evaluation of the model’s performance (Arlot & Celisse,
2010). In addition to employing LOOCV to compare statistical models, their performance was also eval-
uated against a baseline, such as a dummy classifier. A dummy classifier does not take independent
variables into account but instead makes predictions for the target variable, yielding, solely based on
the class distribution. In this study, the class distribution is perfectly balanced. However, with LOOCV,
the model is trained 159 times, leaving out one observation in each iteration. As a result, the class
distribution in each training set becomes slightly imbalanced. Comparing the statistical models to the
dummy classifier allows for evaluating whether it offers a significant improvement in predictive power
beyond random benchmarks (Bishop, 2007; Vehtari et al., 2016).
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Kinematic Analysis Outcomes

This chapter presents the findings of the kinematic analysis introduced in Chapter 4, organized into
four main sections. The first covers path parameters, including trajectory visualizations and average
orthogonal deviations across scenarios. The second focuses on velocity, analyzing both overall distri-
butions and scenario-specific averages. The third section examines the avoidance strategies used by
interacting cyclist pairs and how these vary across the four encounter scenarios. Finally, the chapter
concludes with an analysis of perceived comfort levels and their differences between scenarios.

6.1. Path analysis
This section analyzes path parameters, starting with trajectory plots for each encounter scenario. Sub-
sequently, average orthogonal deviations are presented for each of the interaction and non-interaction
scenarios.

6.1.1. Trajectory plots
Figure 6.1 illustrates the participants’ trajectories, differentiating between interaction and non-interaction
scenarios. As outlined in Chapter 4, interaction scenarios involve cyclists navigating the semi-circle
while interacting with another cyclist, whereas non-interaction scenarios correspond to reference tra-
jectories, in which participants cycled the track without the presence of another cyclist.

The non-interaction scenarios include 80 trajectories per subplot, derived from 20 cyclists, two travel
directions, and two reference trajectories. In contrast, the interaction scenarios contain 40 trajectories
per subplot, based on the same 20 cyclists and two travel directions, but with only a single interaction
trajectory.

In order to compute the average trajectory among participants who traveled at varying speeds, each
participant’s data were parameterized by the distance traveled. First, the cumulative distance from
the starting point was calculated for each participant. A common distance axis was then established,
extending from zero up to the smallest maximum distance covered by any individual participant. Next,
each participant’s latitude and longitude measurements were interpolated onto this shared distance
axis, thereby ensuring consistent alignment with respect to distance traveled. This procedure facili-
tated the straightforward calculation of average trajectories across all participants.

In addition to illustrating the average trajectory for each encounter scenario, Figure 6.1 includes light-
shaded areas representing the standard deviation, capturing approximately 68%of the data distribution.

26
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Figure 6.1: Mean trajectories of all participants, with standard deviations represented by shaded areas. Solid lines indicate the
average trajectory for each group. The left column illustrates non-interaction scenarios, while the right column depicts interaction
scenarios. The rows represent different encounter angles: 45°, 90°, 135°, and 180°. The circles denote the starting positions.

Figure 6.1 illustrates greater trajectory variability in interaction scenarios, as indicated by the broader
shaded regions compared to those observed in non-interaction scenarios. The raw trajectory plots for
each participant across the different scenarios, excluding the shaded regions, are presented in Ap-
pendix G.

Another noteworthy observation is that in both the 45° and 90° encounter scenarios, the point of inter-
section appears shifted to the right, potentially indicating that cyclists approaching from the right tend
to cross first. However, this inference cannot be confirmed from the figure alone, as velocity is not
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accounted for. In the 135° scenario, the intersection point remains consistent between interaction and
non-interaction conditions. In contrast, the 180° scenario shows a leftward shift in the intersection point,
which could suggest that cyclists in the 180𝐴 condition generally cross first. However, this interpretation
relies on the assumption of equal velocities and simultaneous entry into the semi-circle, conditions that
were not examined in the present analysis.

6.1.2. Path adjustments
Figure 6.2 presents box plots comparing average orthogonal deviations between interaction and non-
interaction scenarios.

Figure 6.2: Box plots comparing path adjustments in interaction and non-interaction scenarios based on average orthogonal
deviation. The upper plot represents trials where participants started on the left side of the semi-circle, while the lower plot
represents trials where participants started on the right side. Horizontal black lines denote medians.

Figure 6.2 reveals that, based on the median, the most pronounced path adjustments occurred in the
45𝐷 scenario, while the least pronounced adjustments were observed in the 135𝐵 scenario. Addi-
tionally, interaction scenarios consistently exhibited greater average orthogonal deviations in partici-
pant trajectories compared to non-interaction scenarios. To assess the statistical significance of the
observed differences in average orthogonal deviation, three separate one-way repeated measures
ANOVAs were performed. The results of these analyses are presented in Table 6.1.
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Table 6.1: Summary of results from three separate one-way repeated measures ANOVAs examining average orthogonal devia-
tion across interaction and non-interaction scenarios.

ANOVA analysis F (df1, df2) P-value 𝜂2

Interaction scenarios 0.60 (7, 133) 0.76 0.030

Non-interaction scenarios 1.74 (7, 133) 0.11 0.084

Interaction vs non-interaction scenarios 58.04 (1, 19) 0.0008 0.75

According to Table 6.1, there were no significant differences in average orthogonal deviations within
either the interaction or the non-interaction scenarios. In contrast, a significant difference was found
between the interaction and non-interaction scenarios. The calculated 𝜂2 of 0.75 represents a large
effect size, signifying that 75% of the variance in average orthogonal deviation values is attributable to
the difference between interaction and non-interaction scenarios.

Pairwise post-hoc comparisons revealed that in seven out of eight trials, with the exception of 135𝐵,
the average orthogonal deviation was significantly greater in interaction scenarios compared to their
non-interaction counterparts.

6.2. Velocity analysis
This section examines velocity, beginning with velocity plots for each encounter scenario. Subse-
quently, average velocities for both interaction and non-interaction conditions are presented. The
section concludes with a detailed analysis of braking and acceleration patterns across the different
scenarios.

6.2.1. Velocity plots
Figure 6.3 presents the velocity profiles for all participants, depicting horizontal velocity as a function
of distance traveled. Consistent with the approach used in the trajectory plots, a standardized distance
axis was established, ranging from zero to the shortest maximum distance covered by any participant.
Each participant’s velocity data was subsequently interpolated onto this shared distance axis to ensure
comparability.

The shaded regions around each line in Figure 6.3, color-coded by condition, represent one standard
deviation, encompassing approximately 68% of the data.
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Figure 6.3: Velocity profiles of all participants, with standard deviations represented by shaded areas. The grey dashed lines
represent the average velocities for the reference trajectories, while the purple line depicts the average velocity profile for the
interaction scenario. The rows correspond to different encounter angles: 45°, 90°, 135°, and 180°.

Figure 6.3 illustrates that the 45𝐸 scenario is associated with the greatest variability in velocity, as
reflected by the larger shaded region. Additionally, the figure indicates that, excluding the 45𝐸 sce-
nario, average velocities at the point of semi-circle entry consistently exceeded the instructed speed
of 2.78 m/s (equivalent to 10 km/h). This observation suggests that participants may have perceived
the prescribed speed as overly restrictive or unrepresentative of their natural cycling behavior, instead
self-selecting a velocity that better reflected their habitual or comfortable riding pace.

It is observable that the velocity increases at the end of the semi-circle in the 180° encounter sce-
nario. This behavior can be attributed to the uneven surface of the experimental track. In this scenario,
the colored cones were positioned just beyond a small depression in the track, resulting in a temporary
acceleration.
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6.2.2. Velocity selection
Figure 6.4 displays box plots illustrating the comparison of average velocity between the interaction
and non-interaction scenarios.

Figure 6.4: Box plots illustrating the average velocities of all participants. The upper plot represents trials in which participants
started on the left side of the semi-circle, while the lower plot corresponds to trials where participants began on the right side.
Horizontal black lines denote medians.

Figure 6.4 demonstrates a high degree of similarity in median cyclist velocities between interaction and
non-interaction scenarios. To statistically assess potential velocity differences, three one-way repeated
measures ANOVAs were conducted. The results are presented in Table 6.2.

Table 6.2: Summary of results from three separate one-way repeated measures ANOVAs examining average velocity across
interaction and non-interaction scenarios.

ANOVA analysis F (df1, df2) P-value 𝜂2

Interaction scenarios 3.21 (7, 133) 0.0036 0.15

Non-interaction scenarios 0.39 (7, 133) 0.91 0.020

Interaction vs non-interaction scenarios 5.76 (1, 19) 0.027 0.23
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Table 6.2 shows that the analyses identified significant differences in average velocities across the eight
trials within the interaction scenario. The corresponding 𝜂2 value of 0.15 suggests that only 15% of the
variance in average velocity can be attributed to differences between trials. The analysis also revealed
a difference between interaction and non-interaction scenarios. However, the associated 𝜂2 value of
0.23 indicates that 23% of the variance in average velocity is explained by scenario type, which does
not reflect a large effect size.

To examine pairwise differences among trials within the interaction scenario, 28 post-hoc tests were
performed. Despite these tests, no statistically significant differences were found after applying Bon-
ferroni correction. Likewise, pairwise comparisons between interaction and non-interaction scenarios
did not reveal any significant differences after Bonferroni correction.

6.2.3. Braking and acceleration patterns
Figure 6.5 displays horizontal acceleration profiles as a function of distance traveled for all participants.
The shaded regions, color-coded accordingly, represent one standard deviation, encompassing ap-
proximately 68% of the data distribution
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Figure 6.5: Acceleration profiles of all participants, with standard deviations represented by shaded areas. The grey dashed
lines represent the average accelerations for the reference trajectories, while the purple line depicts the average acceleration
profile for the interaction scenario. The rows correspond to different encounter angles: 45°, 90°, 135°, and 180°.

Figure 6.5 indicates that no substantial differences in acceleration were observed across scenarios.
Acceleration variation appears low, with most values clustered between -0.5 and 0.5 m/s2. However,
the figure presents averaged data, potentially masking subtle braking and acceleration patterns. Minor
acceleration fluctuations, likely due to natural pedaling dynamics, are consistent across scenarios and
are not expected to affect the overall findings.

Table 6.3 summarizes the statistical tests used to assess differences in average absolute accelera-
tion between interaction and non-interaction scenarios.
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Table 6.3: Summary of results from three separate one-way repeated measures ANOVAs examining average absolute acceler-
ation across interaction and non-interaction scenarios.

ANOVA analysis F (df1, df2) P-value 𝜂2

Interaction scenarios 1.24 (7, 133) 0.28 0.062

Non-interaction scenarios 0.69 (7, 133) 0.68 0.035

Interaction vs non-interaction scenarios 0.81 (1, 19) 0.37 0.041

The three separate ANOVAs, as presented in Table 6.3, failed to demonstrate significant differences in
average absolute acceleration values across scenarios. It is crucial to acknowledge that this analysis
considered participants as a group, not individually. Consequently, the lack of significant findings does
not indicate the complete absence of acceleration and braking events.

6.3. Relation path and velocity parameters
This section begins with a systematic analysis of the avoidance strategies employed by cyclist pairs
across different scenarios. It then extends the analysis by evaluating correlation coefficients for path
adjustments and velocity selections. Finally, the path adjustment ratio and velocity selection ratio are
introduced to quantify the extent of these behaviors within each pair.

6.3.1. Avoidance strategies
The contingency table in Figure 6.6 visualizes the distribution of avoidance strategies employed by
cyclist pairs, specifically differentiating between path adjustments and changes in selected velocity.
The cells of the table contain numerical values indicating the frequency of each strategy

Figure 6.6: Contingency table displaying the frequency of avoidance strategies, categorized by the four different encounter
scenarios. For instance, the row labeled ’PA & VS, PA & VS’ represents instances where both cyclists in a pair implemented
both path adjustments and velocity selection modifications.

Figure 6.6 shows that the 90° scenario is marked by a high frequency of cases where one cyclist adjusts
both path and velocity while the other remains passive, suggesting a potential imbalance in collision
avoidance responsibility. In contrast, the 180° scenario showed no instances of path adjustment by
only one cyclist, unlike the other three encounter scenarios where such cases were present. Addition-
ally, one instance of a passage, defined as neither cyclist making adjustments, was observed. This
observation can be attributed to the DTA of approximately four seconds, which eliminated the necessity
for the cyclist to make path adjustments.



6.3. Relation path and velocity parameters 35

The Chi-Square test of independence demonstrated a statistically significant association between en-
counter scenarios and the collision avoidance strategies employed (𝜒2(21) = 33.97, 𝑝 = 0.037). Pair-
wise Chi-Square tests were conducted to identify specific scenario differences in collision avoidance
strategies. However, none remained significant after Bonferroni correction.

6.3.2. Correlation coefficient
Table 6.4 presents Pearson correlation coefficients for path adjustments and velocity selections, as well
as the correlation between path adjustments and modifications in selected velocity.

Table 6.4: Pearson correlation coefficients and corresponding p-values for path adjustments, velocity selections, and the rela-
tionship between path adjustments and velocity selections.

Path adjustment Velocity selection Path and velocity adjustment

Pearson -0.47 -0.29 0.030

P-value 9.21e-6 0.0097 0.77

Table 6.4 reports a moderate but statistically significant negative linear relationship of -0.47 for path
adjustments. This indicates that when one cyclist adjusts their path to the right, the interacting cyclist
tends to adjust their path to the left. For velocity selections, a negative correlation of -0.29 was ob-
served, indicating a weak inverse linear relationship between the velocity choices of two interacting
cyclists. This suggests that one cyclist selects a velocity higher than that of their first reference tra-
jectory, while the other chooses a lower velocity in comparison. Additionally, no statistically significant
linear relationship was identified between path adjustments and velocity selections, highlighting the
complexity and variability of cyclist interaction dynamics.

6.3.3. Path adjustment and velocity selection ratios
As previously discussed, the Pearson correlation coefficient does not capture the magnitude of these
adjustments. To address this limitation, path adjustment ratios and velocity selection ratios were com-
puted for each cyclist pair across different encounter scenarios. The results are presented in Table
6.5.

Table 6.5: Path adjustment and velocity selection ratios between two cyclists across different encounter scenarios. The ratios
represent the relative magnitude of adjustments made by both cyclists.

45° 90° 135° 180°

Path adjustment ratio 1 : 3.9 1 : 4.2 1 : 2.6 1 : 3.5

Velocity selection ratio 1 : 14.3 1 : 10.0 1 : 11.9 1 : 6.7

Across all encounter scenarios, the path adjustment ratios indicate a consistent pattern in which one cy-
clist exhibits greater path adjustments than their counterpart. The most pronounced imbalance occurs
in the 90° scenario, where, on average, one cyclist adjusts their path four times more than the other.
In contrast, the smallest path adjustment ratio is observed in the 135° scenario. A one-way repeated
measures ANOVA, F(3, 57) = 0.67, p = 0.57, revealed no significant effect of encounter scenario on
path adjustment ratios.

Velocity selection ratios indicate an even greater disparity between interacting cyclists, with most sce-
narios exhibiting highly imbalanced ratios. This suggests that a single cyclist predominantly assumes
responsibility for velocity adjustments during these encounters. The one-way repeated measures
ANOVA, F(3, 57) = 0.44, p = 0.73, revealed no significant effect of encounter scenario on velocity
selection ratios.
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It is noteworthy to mention that the velocity selection ratios may be misleading. Upon closer examina-
tion of the data, it becomes evident that the absolute velocity differences are generally small, leading
to disproportionately large ratios. For example, if one cyclist exhibits a velocity difference of 0.01 m/s
while the other shows a difference of 0.1 m/s, normalization yields a velocity selection ratio of 1 ∶ 10. In
absolute terms, the actual velocity difference between the cyclists is only 0.09 m/s, a relatively minor
change that is likely imperceptible to human observers. Therefore, while the ratio suggests a notable
disparity in velocity selection, the practical impact of these differences may be minimal.

6.4. Comfort levels
This study examined the relationship between participants’ perceived safety and difficulty levels across
different encounter scenarios. Table 6.6 presents a summary of the data, where a rating of 1 indicates
the lowest perceived safety or the highest perceived difficulty, and a rating of 5 indicates the highest
perceived safety or the greatest ease.

Table 6.6: Perceived safety and difficulty levels across the eight different trials. The table presents mean scores for safety
perception and difficulty perception.

Scenario Safety perception Difficulty perception

45𝐷 4.30 4.80

45𝐸 4.15 4.20

90𝐶 4.60 4.50

90𝐹 4.45 4.50

135𝐵 4.55 4.60

135𝐺 4.50 4.60

180𝐴 4.55 4.60

180𝐻 4.55 4.70

Table 6.6 indicates that the 45𝐸 scenario was associated with the lowest perceived safety and the high-
est perceived difficulty. A one-way repeated measures ANOVA, F(7, 133) = 1.31, p = 0.25, revealed
no significant differences in perceived safety across the various encounter scenarios.

In contrast, a separate one-way repeated measures ANOVA, F(7, 133) = 133, p = 0.0058, identified a
significant effect of scenario on perceived difficulty. However, post-hoc Wilcoxon signed-rank tests did
not reveal any statistically significant pairwise differences between specific trials.
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This chapter presents the results of the statistical modeling introduced in Chapter 5, with a focus on
understanding cyclist behavior, particularly in relation to yielding decisions. The chapter begins with an
overview of the model selection process, followed by a detailed presentation of the modeling results,
highlighting key determinants such as DTA, initial velocity differences, approach direction, and cyclist
gender. The chapter concludes with a comprehensive evaluation of themodel’s predictive performance.

7.1. Model selection
As outlined in Chapter 5, the initial step in statistical modeling involves selecting an appropriate model.
The model includes five independent variables, as previously presented in Table 5.1, to predict the
probability of yielding for each of the 20 participants across a total of 160 trials. In logistic regression
analysis, a minimum of ten events per variable is a commonly recommended criterion for sample size
considerations (Smeden et al., 2016). Data analysis revealed that in 13 instances, participants ceased
pedaling upon entering the semi-circle. With 11 instances of yielding when pedaling ceased and only
2 instances of non-yielding behavior, the scarcity of non-yielding cases poses significant statistical lim-
itations (Ogundimu et al., 2016). Consequently, due to insufficient data, the cadence predictor is not
included in the model.

The interaction term between approach direction and encounter angle was also limited by insufficient
event counts, failing to meet the minimum of ten events per variable. Specifically, for right-approaching
cyclists, yielding occurred in fewer than ten instances across all encounter scenarios, impacting statis-
tical power and potentially leading to random significant results. Therefore, this interaction term was
not included in the model.

To address potential participant-level variability, both single-level and multi-level logistic regression
models were implemented. The multi-level logistic regression model yielded an ICC of 0.058, indicat-
ing that only 5.8% of the variation in the likelihood of yielding can be attributed to differences between
participants. Additionally, the LTR was conducted to compare the fit of the single-level logistic re-
gression model and the multi-level logistic regression model. The LRT yielded a test statistic of 1.16,
suggesting an improvement in model fit with the inclusion of random effects. However, the associated
p-value of 0.28, which exceeds the standard significance threshold of 0.05, indicates that the inclusion
of random effects in the multi-level logistic regression model does not significantly enhance the model’s
fit.

As previously discussed, evaluating the AIC and BIC alongside the LRT offers a more comprehen-
sive assessment of model performance. Table 7.1 presents a comparison of the AIC and BIC values
for the single-level and multi-level logistic regression models.

37
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Table 7.1: Comparison of AIC and BIC values for single-level and multi-level logistic regression models to evaluate model fit and
complexity.

AIC BIC

Single-level logistic regression model 175.48 190.83

Multi-level logistic regression model 176.33 194.74

Table 7.1 demonstrates that the single-level logistic regression model has both lower AIC and BIC
values compared to the multi-level logistic regression model. The higher AIC and BIC values for the
multi-level model suggest that the inclusion of random effects does not sufficiently improve model fit to
justify the added complexity. These findings are consistent with the results of the LRT, which indicated
that the random effects were not statistically significant. Given the low ICC, the higher AIC and BIC
values, and the results of the LRT, the single-level logistic regression model is selected for this analysis
as it achieves a more optimal balance between model fit and simplicity.

While statistical metrics such as AIC, BIC, and LRT are invaluable tools for model selection, practi-
cal considerations, including predictive accuracy and generalizability, must also be taken into account
to determine the most suitable analytical approach. Accordingly, in addition to the single-level logis-
tic regression model, the multi-level logistic regression model was implemented to further investigate
potential heterogeneity in yielding behavior. These models and their results are discussed in detail in
Section 7.4 .

7.2. Model collinearity
The VIF values for all predictors are explored and summarized in Table 7.2.

Table 7.2: VIF values for the independent factors, along with their interpretation in terms of multicollinearity risk.

Independent factor VIF Interpretation

DTA 1.77 No collinearity

Gender 1.03 No collinearity

Initial velocity difference 1.33 No collinearity

Approach direction 1.86 No collinearity

Table 7.2 shows that all VIF values are below 1.86, indicating the absence of significant collinearity
issues among the predictors, as VIF values exceeding 5 are typically considered indicative of multi-
collinearity concerns. Consequently, model coefficients can be considered robust and reliable.

7.3. Model coefficients
Figure 7.1 presents the estimated coefficients for the independent variables in the single-level logistic
regressionmodel. These coefficients correspond to the 𝛽𝑘 values as defined in Equation 5.1. Predictors
whose confidence intervals cross the null-effect line are considered not statistically significant, as their
effects cannot be reliably distinguished from zero. Conversely, predictors with confidence intervals
that do not overlap the null-effect line are statistically significant, indicating a meaningful effect on the
outcome.
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Figure 7.1: Forest plot of the independent variables included in the single-level logistic regression model. The purple bars
represent the 95% confidence intervals, and the dots indicate the mean estimates. The grey dashed line represents the null
effect.

As depicted in Figure 7.1, the coefficients for DTA, approach direction, and initial velocity difference are
statistically significant, as their confidence intervals do not overlap with the null-effect line.

In addition to presenting the model coefficients, it is beneficial to include the multiplicative change in
odds for the predictor variables. This approach converts the log-odds coefficients into a more intuitive
scale through the exponentiation of the 𝛽𝑘 values. This provides a clearer understanding of the effect
size. A detailed overview of the multiplicative changes in odds is provided in Table 7.3.

Table 7.3: Multiplicative change in odds for predictor variables, along with confidence intervals and corresponding p-values,
derived from the single-level logistic regression analysis.

Variable Multiplicative change in odds 95% 5% P-value

Intercept 3.54 7.05 1.78 0.00032

DTA 0.54 0.32 0.89 0.016

Gender 0.76 0.36 1.62 0.48

Approach direction 0.10 0.046 0.24 6.51e-8

Initial velocity difference 0.20 0.070 0.52 0.0011

DTA : Initial velocity difference 0.22 2.61 2.08 0.66

Table 7.3 offers a detailed interpretation of the effects of predictor variables on the likelihood of yielding
behavior. The model intercept represents the baseline log-odds of yielding, corresponding to the prob-
ability of yielding when all predictor variables are set to their reference levels. For the binary variables,
specifically gender and approach direction, the baseline corresponds to being female and approaching
from the right. Continuous variables, such as DTA and initial velocity difference, are assumed to be
zero at baseline. Under these baseline conditions, the odds of yielding are estimated to be 3.54 times
greater than the odds of not yielding. The p-value of 0.00032 indicates that this estimate is statistically
significant. The predictor variables in the model will further influence the overall probability of yielding.

The DTA is associated with a statistically significant multiplicative change in odds of 0.54, indicat-
ing a 46% reduction in the odds of yielding for each one-unit increase in DTA. This result implies that
cyclists who enter the semi-circle earlier relative to their interacting opponent exhibit a lower likelihood
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of yielding.

Similarly, approach direction is associated with a pronounced multiplicative change in odds of 0.10,
reflecting a 90% decrease in the odds of yielding for cyclists approaching from the right. Initial velocity
difference also exerts a significant influence, with a multiplicative change in odds of 0.20, indicating
that higher initial velocities relative to the interacting opponent are associated with a lower likelihood of
yielding.

In contrast, the gender variable exhibits a p-value exceeding the conventional threshold of 0.05, in-
dicating that its effect on the odds of yielding is not statistically significant in this analysis. Similarly,
the interaction term between DTA and initial velocity difference does not significantly influence yielding
behavior. This finding suggests that the combined effect of these two variables is insufficient to provide
meaningful insights beyond their individual contributions.

Although the interaction term between approach direction and encounter angle could not be included in
the model, a quantitative assessment of their combined effect on yielding behavior was conducted. Fig-
ure 7.2 shows yielding counts across encounter scenarios, categorized by approach direction, allowing
for differentiation between the effects of encounter angle and approach direction.

Figure 7.2: Yielding counts for the 45°, 90°, 135°, and 180° scenarios, categorized by whether the yielding cyclist approaches
from the left or right side of the semi-circle.

Figure 7.2 suggests that approach direction may influence different encounter scenarios. To statistically
validate this, a Chi-Square test was performed. However, no statistically significant association was
found between encounter scenario and approach direction (𝜒2(3) = 7.3, p = 0.064).

7.4. Model performance
Although the single-level logistic regression model was deemed most appropriate for this analysis, a
multi-level logistic regression model was also implemented to assess model performance and enable
a comprehensive comparison.

Table 7.4 presents a detailed comparison of the predictive accuracy of the single-level logistic regres-
sion model, the multi-level logistic regression model, and the dummy classifier. As described in Chapter
5, LOOCV was utilized to assess the models’ predictive performance.
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Table 7.4: Comparison of the predictive accuracy of the single-level logistic regression model, the multi-level logistic regression
model, and the dummy classifier.

Statistical model Predictive accuracy (%)

Single-level logistic regression 76.57

Multi-level logistic regression 77.51

Dummy classifier 48.01

Table 7.4 shows that the multilevel logistic regression model achieved a marginally higher accuracy
compared to the single-level logistic regression model. Additionally, the table shows that both models
outperform the dummy classifier. The superior performance of the logistic regression models indicate
their ability to capture underlying data patterns rather than relying on random guesses or simple heuris-
tics.

It is worth noting that the predictors deemed significant in the single-level logistic regression model
remained significant in the multi-level logistic regression model.
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Discussion

This chapter provides a critical evaluation of the study’s findings and limitations while also proposing
directions for future research. It begins with an in-depth assessment of the kinematic data analysis,
followed by a thorough examination of the statistical modeling approach.

8.1. Kinematic data analysis
The findings of this study suggest that cyclists primarily relied on trajectory adjustments rather than
speed modulation when interacting with another cyclist. This preference for path adjustment can be
attributed to several factors. Firstly, trajectory changes are generally more energy-efficient, as fre-
quent acceleration and deceleration involve greater metabolic cost than maintaining a consistent speed
(Vansteenkiste et al., 2017). Secondly, adjusting one’s path allows for smoother andmore stable control
of the bicycle, which is particularly advantageous given the potential balance disturbances associated
with abrupt speed changes or riding at low velocities. Furthermore, lateral movements serve as salient
social cues, allowing interacting cyclists to more effectively interpret each other’s intentions. In contrast,
subtle velocity changes are less visually apparent, making them a less reliable medium for non-verbal
coordination in dynamic encounters.

Observational data further revealed that participants frequently looked at each other before entering
the semi-circle, indicating that anticipation and real-time assessment of the other cyclist’s behavior
play a critical role in shaping avoidance strategies. The overall Chi-Square test supported the idea that
avoidance strategies depend on the specific encounter scenario. However, the absence of significant
differences in pairwise comparisons suggests a need for larger datasets to robustly detect scenario-
specific effects. This raises a discussion regarding the threshold-based classification employed in this
study. While this binary approach, which classified path adjustments and velocity modifications based
on predefined thresholds, provides analytical clarity, it introduces limitations. The use of hard thresh-
olds may oversimplify the continuous and dynamic nature of human movement, potentially overlooking
subtle but meaningful variations. When applying a higher threshold, as shown in Appendix G.2, the
outcomes change and a greater number of interactions are classified as passages. Interestingly, all
identified passages again occur within the 135° encounter scenario and are, once more, associated
with larger DTA values. A possible explanation for why this occurs exclusively in the 135° scenario is
that it was the first scenario encountered by participants. Some participants may have been uncertain
about the situation and thus delayed mounting their bicycles, resulting in larger DTA values and the
absence of real interactions. However, this explanation remains speculative. These findings clearly
demonstrate that threshold selection influences both the distribution of outcomes and the interpretation
of strategy patterns across scenarios. Employing alternative methods, including continuous variable
analysis, or clustering techniques, could yield more detailed and informative results.

It is also important to note that cyclist interactions are inherently dynamic. Unlike studies that use
a robotic or dummy cyclist behaving identically across trials, this study examined the interaction be-
tween two independently navigating individuals. As a result, behavioral variability is expected. A more
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controlled setup might produce more consistent avoidance patterns, but it would also limit the eco-
logical validity of the findings. Therefore, understanding the decision-making processes in naturalistic
cyclist interactions requires a more nuanced approach that accounts for mutual adaptation and unpre-
dictability.

While acknowledging the natural variability inherent in human movement, consistent patterns emerged
from the data. These patterns are visualized in Figure 6.1 but are more distinctly evident in the raw
trajectory data provided in Appendix G. In the 45° and 90° scenarios, yielding cyclists frequently cut
inward toward the center, taking a more direct route through the intersection, while non-yielding cyclists
adjusted their trajectories outward. In contrast, this pattern is reversed in the 135° and 180° scenarios,
where the non-yielding cyclists are more likely to take the inward, direct route, and the yielding cyclists
veer outward. This shift in strategy can be explained by the spatial dynamics of each scenario and the
role of the yielding cyclist, which in this study is defined as the cyclist who crosses the intersection last,
after the resolution of the interaction. As a result, the yielding cyclist always passes behind the non-
yielding cyclist’s path. In the 45° and 90° encounters, this spatial relationship allows the yielding cyclist
to efficiently cut inward behind the other cyclist without creating conflict. However, in the 135° and 180°
scenarios, which involve more frontal approaches, an inward path by the yielding cyclist would lead to
a potential head-on interaction. In these situations, the yielding cyclist adapts by veering outward,
thereby creating space for the non-yielding cyclist to take the more direct path through the center of the
interaction area. This behavior reflects a consistent spatial strategy in which the cyclist who crosses
first maintains a more efficient, straight-line trajectory, while the yielding cyclist adjusts their path to
accommodate the other. This directional asymmetry helps explain the unequal path adjustment ratios
observed in this study. Furthermore, the pattern reinforces the idea that collision avoidance strategies
are shaped not only by social roles and scenario geometry but also by the temporal sequencing of
the interaction. This complementary movement strategy is further supported by the negative Pearson
correlation coefficient, suggesting a systematic, mutual adjustment aimed at maintaining a comfortable
interpersonal distance.

The 90° scenario offered particularly compelling insights into social expectations and cultural norms.
Here, 18 out of 20 participants approaching from the left yielded, suggesting a shared understanding of
right-of-way dynamics. This behavior aligns with Dutch traffic regulations, where cyclists approaching
from the right are generally granted priority. Because the 90° scenario closely resembles a standard
intersection, participants appeared to apply real-world traffic norms to this experimental context. This
highlights how prior experience, traffic culture, and environmental familiarity can influence decision-
making in dynamic interactions.

Interestingly, the study observed an absence of hard evasive maneuvers, even in more acute-angle
scenarios such as the 45° scenario. Lee et al. (2020) demonstrated that cyclists generally prefer to ad-
just their path when feasible, resorting to braking only when no alternative is available. Highly evasive
maneuvers are generally observed in situations where cyclists have limited reaction time before reach-
ing a conflict zone. One way to simulate such urgency would have been to introduce a visual shield in
the experiment, restricting participant’s ability to see each other until they entered the semi-circle. This
reduced visibility would have shortened the available reaction time, likely resulting in more abrupt and
decisive avoidance maneuvers. The absence of such behaviors may also be attributed to the fact that
the instructed speed of 10 km/h, which cyclists were asked to maintain until reaching the semi-circle,
may have been too low to elicit these avoidance patterns. Moreover, in more acute-angle encounters,
such as the 45° scenario, participants were observed to select velocities exceeding 10 km/h. This is
particularly noteworthy given the expectation that this scenario would elicit the highest level of discom-
fort, an expectation that was confirmed by participant responses in the questionnaire. Consequently, it
was anticipated that cyclists would exhibit greater caution by reducing their speed. However, the find-
ings indicate that, even under conditions presumed to be the most challenging, cyclists did not perceive
a need to decrease their velocity. This may also be the reason why there were no differences found
between interaction and non-interaction scenarios within the velocity selection analysis.

As previously mentioned, since each participant had two reference trajectories, all statistical analy-
ses presented in the main body of the thesis were conducted twice. The corresponding results based
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on the second reference trajectory are included in the Appendix. Notably, these additional analyses
did not reveal any significant differences compared to those reported in the main text, suggesting that
participant behavior in terms of trajectory and velocity in non-interaction scenarios is largely consistent
across both reference trajectories.

In several cases, the primary statistical tests, whether ANOVA or Chi-square, indicated a significant
overall effect, whereas subsequent post hoc analyses did not identify any significant pairwise differ-
ences. This discrepancy may be attributed to relatively small and distributed effects that contribute to
overall variance but are not individually strong enough to reach significance following Bonferroni cor-
rection. This outcome likely reflects limited statistical power, influenced by both the conservative nature
of the correction and the sample size. Future research with larger datasets or the application of less
conservative post-hoc procedures may provide greater clarity regarding these effects.

8.2. Statistical modeling
The primary objective of the statistical model in this study was to identify the characteristics that underlie
yielding behavior. In this study, yielding behavior was represented as a binary variable. Haperen et al.
(2018) distinguished between four types of yielding: taking, getting, forcing, and receiving. Had this
approach been adopted, yielding would have been categorized as a categorical variable rather than
a binary one. However, the dataset’s size limited the feasibility of this approach, potentially reducing
statistical power due to small category sizes and potential imbalances. To mitigate these issues and
maximize statistical power, a binary definition of yielding was employed.

The single-level logistic regression model identified three significant predictors of yielding behavior:
approach direction, DTA, and initial velocity difference. Approach direction exhibited a strong effect,
with a 90% decrease in the odds of yielding for cyclists approaching from the right. This dominant
influence likely reflects cultural yielding norms. However, the influence of approach direction warrants
further discussion, as it may vary based on participant demographics. In the Netherlands, road users
approaching from the right have the right of way. In other countries, such as the United Kingdom, the
rule is reversed, granting priority to those approaching from the left. In this study, most participants
grew up in the Netherlands, which may have influenced their behavior. This highlights the need for
future research to explore whether the impact of approach direction varies for individuals from different
countries with differing traffic regulations.

Silvano et al. (2016) argued that the relationship between DTA and yielding probability aligns with
the expectation that the road user arriving first at an intersection is more likely to proceed first. This
finding aligns with the results of this study. Cyclists with a negative DTA, indicating a later arrival, are
more likely to yield. Furthermore, Mohammadi et al. (2023) noted that cyclists rely on physical effort to
propel their bikes and tend to preserve their momentum. Consequently, individuals traveling at higher
velocities are less likely to yield, making a lower yielding probability expected among faster cyclists.
The observation that cyclists entering the semi-circle at lower velocities relative to their opponent are
less likely to yield is consistent with the findings reported by Mohammadi et al. (2023).

The results indicated a slight tendency for males to have a lower probability of yielding. French studies
suggest a gendered aspect of risk perception, where males tend to overestimate their cycling abilities,
while females overestimate their caution (Félonneau et al., 2013). This may explain the observed ten-
dency for lower yielding probability among males. However, gender was not identified as a significant
predictor of yielding behavior in this study. Similarly, Mohammadi et al. (2023) also found no significant
effect of gender on cyclists’ yielding behavior when interacting with a vehicle. This may be because
gender is associated with variations in behavior and physiology that influence decision-making, aspects
that were not explicitly captured in this study (Stipancic et al., 2016). It is important to mention that due
to the study’s reliance on female-male interactions, the effect of gender on yielding behavior could not
be fully isolated, as a baseline comparison is lacking. To address this, future investigations should
incorporate male-male and female-female interaction pairs. This would facilitate a more rigorous anal-
ysis of gender’s influence, potentially revealing instances where male participants exhibit consistent
yielding tendencies across female-male and male-male interactions, thereby demonstrating a lack of
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gender-specific variation.

It is important to note that model performance can be enhanced by adopting a shorter prediction horizon.
Instead of using the semi-circle entrance as the predictive horizon, a smaller radius to the semi-circle’s
midpoint could theoretically bring the prediction closer to the intersection point, potentially enhancing
behavioral indicator sensitivity. However, model performance was not the main focus of this study.

Beyond examining the underlying characteristics of yielding behavior, models like the one presented in
this study could have future applications in AV technology. However, for such models to be effective in
this context, they must be developed specifically for interactions between cyclists and AVs rather than
cyclist-cyclist interactions. Additionally, predictive algorithms for human behavior in AV systems must
achieve significantly higher performance than the model presented in this study, as incorrect predic-
tions in real-world traffic scenarios could be catastrophic and pose serious risks to cyclists.

A promising avenue for future research is the development of a predictive model for cyclists’ collision
avoidance strategies. However, the dataset used in this study, consisting of 160 observations, lacks the
richness necessary for such an endeavor. Predicting cyclist behavior requires distinguishing between
path adjustments and velocity modifications while also determining the directionality of these changes,
increases the complexity of the modeling process. To achieve this, a categorical classification model
would be necessary to categorize cyclists’ actions effectively. However, given the dataset’s limitations,
constructing a reliable predictive model would require either a significantly larger dataset to ensure suf-
ficient variability and model robustness or the implementation of data augmentation techniques. One
widely used augmentation approach for handling imbalanced datasets is the Synthetic Minority Over-
sampling Technique (SMOTE). SMOTE generates synthetic samples by interpolating between existing
observations, thereby enhancing data diversity and reducing bias in model training (Matharaarachchi
et al., 2024). As observed in Figure 6.6, avoidance strategies are imbalanced within the dataset, in-
dicating that the application of SMOTE could improve model performance and generalizability. Future
studies should explore this technique in combination with advanced categorical modeling approaches
to better capture cyclist behavior in collision avoidance scenarios. Similarly, SMOTE could be adopted
to potentially include model predictors like cadence and the interaction term of approach direction and
encounter angle, which were excluded due to insufficient event counts.



9
Conclusion

This study comprises two parts. The first part focused on examining the kinematics of interacting
cyclists, specifically addressing the following research question:

How do cyclists adjust their path and speed to avoid collisions in close interactions,
and how do these strategies vary across different scenarios?

The findings indicate that cyclists predominantly relied on path adjustments rather than changes in ve-
locity when avoiding collisions. Cyclists generally moved away from one another to preserve space,
and there is also evidence suggesting that when one cyclist reduced speed, the other tended to in-
crease theirs. Together, path adjustments and velocity modulation constitute key components of colli-
sion avoidance strategies. While the results suggest that these strategies may vary across encounter
scenarios, additional data are needed to increase statistical power and draw definitive conclusions, as
post-hoc analyses did not reveal statistically significant differences.

The second part of this study aimed to investigate the factors influencing path and speed adjustments,
with a particular focus on yielding behavior. This section addresses the following research question:

What interaction characteristics underlie path and speed adjustments involving yield-
ing behavior?

The single-level logistic regression model identified DTA, differences in initial velocity, and approach
direction as significant predictors of yielding behavior. Specifically, cyclists who entered the semi-circle
later, had lower initial velocities, and approached from the left were more likely to yield than those
who did not. To more robustly link yielding behavior to the collision avoidance strategies employed,
additional data or the application of data augmentation techniques may be necessary.
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A.1. Questionnaires

Figure A.1: Questionnaire on perceived safety and trial difficulty. Participants assessed their perception of safety and the ease
of each trial. They were required to complete the corresponding questions after each trial.
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Figure A.2: Rider characteristics questionnaire. Participants were required to complete this questionnaire prior to the commence-
ment of the experiment.



A.1. Questionnaires 53

Figure A.3: Experiment experience questionnaire. Participants were required to complete this questionnaire upon completion of
the experiment.
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B.1. Butterworth filter

Figure B.1: Impact of a second-order low-pass Butterworth filter on raw velocity data, using a cutoff frequency of 2 Hz. Solid
colored lines represent filtered velocity data, while striped lines represent unfiltered velocity. The upper two lines depict velocity
in the reference trajectories, and the lowest line shows the interaction trajectory.
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C.1. Path adjustment box plots

Figure C.1: Box plots comparing path adjustments in interaction and non-interaction scenarios based on average orthogonal
deviation. The upper plot represents trials where participants started on the left side of the semi-circle, while the lower plot
represents trials where participants started on the right side. Horizontal black lines denote medians.
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C.2. ANOVA path adjustment analysis
Table C.1: Summary of results from three separate one-way repeated measures ANOVAs examining average orthogonal devia-
tion across interaction and non-interaction scenarios using the second reference trajectory. Statistically significant p-values are
shown in bold.

ANOVA analysis F (df1, df2) P-value 𝜂2

Interaction scenarios 1.68 (7, 133) 0.12 0.082

Non-interaction scenarios 0.64 (7, 133) 0.72 0.033

Interaction vs non-interaction scenarios 0.81 (1, 19) 0.00 0.75

C.2.1. Post-hoc analysis

Table C.2: Overview of the statistical tests conducted to assess differences in average orthogonal deviation between interaction
and non-interaction scenarios. The first column lists the encounter scenarios. The second column specifies the effect size for
both analyses, using the first and second reference trajectories, respectively. Negative signs indicate that average orthogonal
deviations were lower in non-interaction scenarios compared to interaction scenarios. A significance threshold of 𝛼 = 0.00625
was used, adjusted for multiple comparisons. P-values from pairwise comparisons using both the first and second reference
trajectories are reported. Statistically significant p-values are shown in bold.

Scenario Effect size P-values

45𝐷 -0.86, -0.84 0.0000, 0.0000

45𝐸 -0.71, -0.79 0.0001, 0.0007

90𝐶 -0.82, -0.73 0.0004, 0.0005

90𝐹 -0.74, -0.82 0.0003, 0.0000

135𝐵 -0.79, -0.45 0.0001, 0.0000

135𝐺 -0.58, -0.83 0.0083, 0.044

180𝐴 -0.69, -0.60 0.0012, 0.0056

180𝐻 -0.76, -0.83 0.0002, 0.0000

C.3. ANOVA path adjustment ratio
Table C.3: Path adjustment ratios between two cyclists across different encounter scenarios. The ratios represent the relative
magnitude of adjustments made by both cyclists.

45° 90° 135° 180°

Path adjustment ratio 1 : 3.6 1 : 4.2 1 : 3.0 1 : 3.2
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Table C.4: Results of a one-way repeated measures ANOVA examining differences in path adjustment ratios across four en-
counter scenarios. This table presents the analysis based on the second reference trajectory, which was used to compute the
average orthogonal deviation for each cyclist pair. The corresponding ANOVA results based on the first reference trajectory are
reported in the main text. Both ANOVAs revealed no significant differences in path adjustment ratios across the four encounter
scenarios.

ANOVA analysis F (df1, df2) P-value 𝜂2

Interaction scenarios 0.96 (3, 57) 0.42 0.13

C.4. Correlation coefficients

Figure C.2: Correlations between path adjustments and velocity selections using the first reference trajectory. The left panel
illustrates correlations among path adjustments within each cyclist pair. The right panel illustrates correlations among velocity
selections within each cyclist pair.
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D.1. Velocity selection box plots

Figure D.1: Box plots illustrating the average velocities of all participants. The upper plot represents trials in which participants
started on the left side of the semi-circle, while the lower plot corresponds to trials where participants began on the right side.
Horizontal black lines denote medians.
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D.2. ANOVA velocity selection analysis
Table D.1: Summary of results from three separate one-way repeated measures ANOVAs examining average velocity across
interaction and non-interaction scenarios using the second reference trajectory. Statistically significant p-values are shown in
bold.

ANOVA analysis F (df1, df2) P-value 𝜂2

Interaction scenarios 2.09 (7, 133) 0.049 0.099

Non-interaction scenarios 0.41 (7, 133) 0.90 0.021

Interaction vs non-interaction scenarios 17.14 (1, 19) 0.00060 0.47

D.2.1. Post-hoc analysis

Table D.2: Overview of the statistical tests conducted to assess differences in average velocities between interaction and non-
interaction scenarios. The first column lists the encounter scenarios. The second column specifies the effect size for both
analyses, using the first and second reference trajectories, respectively. Negative signs indicate that average orthogonal de-
viations were lower in non-interaction scenarios compared to interaction scenarios. A significance threshold of 𝛼 = 0.00625
was used, adjusted for multiple comparisons. P-values from pairwise comparisons using both the first and second reference
trajectories are reported. Statistically significant p-values are shown in bold.

Scenario Effect size P-values

45𝐷 -0.31, -0.42 0.064, 0.18

45𝐸 -0.50, -0.43 0.053, 0.024

90𝐶 -0.19, -0.21 0.55, 0.41

90𝐹 -0.15, -0.075 0.76, 0.55

135𝐵 -0.49, -0.56 0.011, 0.027

135𝐺 -0.33, -0.26 0.26, 0.23

180𝐴 -0.25, -0.35 0.12, 0.28

180𝐻 -0.30, -0.26 0.28, 0.19
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Table D.3: Overview of statistical tests conducted to assess differences in average velocities within interaction scenarios. P-
values are reported, using a significance threshold of 𝛼 = 0.00178. Statistically significant p-values are shown in bold.

45𝐷 45𝐸 90𝐶 90𝐹 135𝐵 135𝐺 180𝐴 180𝐻

45𝐷 - - - - - - - - - - - - - - - - - - - - - - - -

45𝐸 0.96 - - - - - - - - - - - - - - - - - - - - -

90𝐶 0.019 0.027 - - - - - - - - - - - - - - - - - -

90𝐹 0.014 0.021 0.33 - - - - - - - - - - - - - - -

135𝐵 0.18 0.39 0.002 0.001 - - - - - - - - - - - -

135𝐺 0.14 0.35 0.67 0.47 0.019 - - - - - - - - -

180𝐴 0.96 0.84 0.058 0.0083 0.33 0.23 - - - - - -

180𝐻 0.13 0.29 0.52 0.19 0.083 0.78 0.25 - - -

D.3. ANOVA velocity selection ratio
Table D.4: Velocity selection ratios between two cyclists across different encounter scenarios. The ratios represent the relative
magnitude of adjustments made by both cyclists.

45° 90° 135° 180°

Velocity selection ratio 1 : 15.1 1 : 9.8 1 : 12.2 1 : 9.7

Table D.5: Results of a one-way repeated measures ANOVA examining differences in velocity selection ratios across four en-
counter scenarios. This table presents the analysis based on the second reference trajectory, which was used to compute the
difference in average velocity for each cyclist pair. The corresponding ANOVA results based on the first reference trajectory are
reported in the main text. Both ANOVAs revealed no significant differences in velocity selection ratios across the four encounter
scenarios.

ANOVA analysis F (df1, df2) P-value 𝜂2

Interaction scenarios 0.66 (3, 57) 0.72 0.09
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E.1. ANOVA absolute acceleration analysis
Table E.1: Summary of results from three separate one-way repeated measures ANOVAs examining average absolute acceler-
ation across interaction and non-interaction scenarios.

ANOVA analysis F (df1, df2) P-value 𝜂2

Interaction scenarios 0.69 (7, 133) 0.68 0.035

Non-interaction scenarios 1.97 (7, 133) 0.064 0.094

Interaction vs non-interaction scenarios 0.77 (1, 19) 0.39 0.039
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F.1. Distribution average orthogonal deviations

Figure F.1: Histograms representing the distribution of average orthogonal deviation values in various interaction and non-
interaction scenarios. The threshold for path adjustment classification is indicated by the vertical dashed lines.
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F.2. Distribution average velocity

Figure F.2: Histograms representing the distribution of average velocity values in various interaction and non-interaction sce-
narios. The threshold for path adjustment classification is indicated by the vertical dashed lines.
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G.1. Raw trajectory plots

Figure G.1: Raw trajectory plots for each of the four encounter scenarios. Circles indicate starting positions. Thick lines represent
yielding cyclists, and thin lines represent non-yielding cyclists.
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G.2. Contingency table with increased thresholds

Figure G.2: Contingency table presenting the distribution of avoidance strategies across four encounter scenarios. A threshold
of Δ𝑣ref + 2𝜎Δ𝑣ref for velocity and Δ𝑃ref + 2𝜎Δ𝑃ref for path adjustments was used. Under these conditions, four passages were
detected, all occurring within the 135° encounter scenario. This highlights the impact of the applied thresholding method. A
Chi-square test confirmed that avoidance strategies and encounter scenarios were significantly dependent, 𝜒2(27) = 43.15,
𝑝 = 0.025. Post hoc comparisons revealed no significant differences across the encounter scenarios.

G.3. DTA distribution

Figure G.3: The distribution of DTA values for each participant across all trials. The histogram indicates that the highest occur-
rence of DTA values is within one second. Although the histogram may appear asymmetric, this is due to four instances where
cyclist pairs exhibited a DTA of zero. The maximum DTA observed is approximately four seconds, corresponding to the detected
passage described in the main text. This large DTA value resulted from a participant experiencing difficulty mounting the bicycle,
which eliminated the need for significant path adjustments or modifications in selected velocity. An average DTA of 0.6 seconds
was found.
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