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Executive summary

Immersion of tunnels is an often used technique in rivers and canals. The transport of tunnel
elements can be done under offshore conditions, but immersing the elements under these
conditions is not common practise. The tunnel elements of the Busan-Geoje Fixed Link in South
Korea were immersed in such a situation.

During this process, several loads act on the element and the equipment, such as current and wave
loads. Wave loads consist of relatively long waves (swell waves) and short waves (wind waves). The
wave induced motions of the tunnel element are restricted during immersion due to serviceability
limit state conditions.

In this study, the influence of swell and wind waves on the immersion configuration is analysed. In
order to solve this problem, equations of motion are composed and solved to analyse the dynamic
behaviour.

In the first step, the natural frequencies of the configuration are determined, and in the next step the
total response is analysed. The latter is given in response amplitude operators, that represent the
ratio between motion of the tunnel element and height of the wave per frequency. Using this
methodology, locating the resonance peaks in the graphs is straightforward. Rough estimations of
added mass and damping values cause some uncertainty in the results.

One of the findings is that some natural frequencies of the configuration are close to the frequency
of swell waves. Especially the frequency of the rotation of the tunnel element is close to the
frequency of swell waves. The influence of wind waves on the forces in the immersion cables is
negligible.

Large motions of the element and high forces in the cables may be expected during resonance. This
should be avoided by adjusting the immersion configuration, for example by decreasing the cross
section of the floaters. This will result in larger natural periods.

The main conclusion is that the influence of swell waves on the forces in the cables is significantly
larger than the influence of wind waves.
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List of symbols

In Table | the most important parameters which are used in this report are summarized.

Symbol | Description Value Sl-unit

A Cross section - m?

A Added mass matrix - kg

C Hydrodynamic damping matrix - Ns/m

d Position of the TE measured from the water surface on the z-axis 1 m

dr, Draft of the pontoons - m

E Young’s Modulus 105-103 N/mm?

E Eigenmatrix - N

F Force - N

g Gravitational acceleration 9.81 m/s?

H Wave height - m

h Immersion depth 23 m

he Height of the tunnel element 9.97 m

hpa Height of the pontoon deck 2.5 m

H; Significant wave height - m

Je Mass moment of inertia of the tunnel element - kgm?

Jp Mass moment of inertia of the pontoon 3.74-10° kgm?

K Stiffness matrix 2.75- 108 N/m

k. Stiffness of the contraction cables 2.29-10° N/m

ki Stiffness of the mooring cables 1.41-10° N/m

kg Stiffness of the suspension cables 5.63-108 N/m

ky, Restoring coefficient of the water 4.34-10° N/m

L, Length of the tunnel element 180 m

L, Length of the pontoon/ floaters 36 m

M Mass matrix - kg

me Mass of the tunnel element 4.965 - 107 kg

m, Mass of the pontoon 1.4-10° kg

p Pressure - N/mm?

t Time - S

T, Wave period - S

Ty Natural period - S

W, Width of the tunnel element 26.46 m

W, Width of the pontoon 42.5 m

X; Displacement of degree of freedom i = 1,2,4,5 (translation) — m

X; Velocity of degree of freedom i = 1,2,4,5 (translation) - m/s

X Acceleration of degree of freedom i = 1,2,4,5 (translation) — m/s?

Xi Displacement of degree of freedom i = 3,6 (rotation) - rad

X Angular velocity of degree of freedom i = 3,6 (rotation) - rad/s

X Angular acceleration of degree of freedom i = 3,6 (rotation) - rad/s?

Y, Distance from fixation of the suspension cables to the edge of the TE 0.665 m

Y, Distance from the edge of the pontoon to the point where the resulting 3 m
restoring spring coefficient acts

a. Angle in contraction cables 15-7/180 rad

A Angle in mooring cables 10-1/180 rad

¢ Damping ratio - -

¢ Wave amplitude - m

K Wave number - m1

p Density of water 1025 kg/m3

o Tension - N/mm?

W Frequency — rad/s

Wy Natural frequency - rad/s

Table I: most important parameters.



Introduction and problem definition

Immersion of tunnel elements in offshore conditions is seldom applied. Nowadays there are some
projects where tunnel elements are immersed in such conditions. An example is the immersed
tunnel in the Busan-Geoje Fixed Link in South Korea, which is used as reference project in this study.

Offshore wave and weather conditions act on the tunnel element during transport and immersion.
loads consist of swell waves with a period of approximately 8 seconds, wind waves with a period of
approximately 4 seconds, currents and wind loads.

The wave loads result in motions of the tunnel element. Too high motions can result in high forces in
the cables which connect the tunnel element and the pontoons. Damage to the tunnel elements will
occur when the velocity of the tunnel element is too high at the moment the tunnel element reaches
a previous installed element.

Before the immersion operation takes place it should be clear what the response is of the tunnel
element and the pontoons to the offshore wave conditions.

The aim of this study is to predict the dynamic behaviour of a tunnel element during the immersion
process. A contractor can use this information in the tender-phase of a future project. Conclusions
can be drawn whether it is useful to have an extended analysis on basis of the results obtained in this
report, before the immersion operation takes place.

The main problem can be divided into three sub problems:
- What are the natural frequencies of the system?
- Whatis the response of the system to different wave loads?
- What are the forces in the cables due to wave-induced loads?

In order to answer these questions a model is composed where the response of the immersion
system is determined. As reference project, the characteristics of the tunnel in the Busan-Geoje Fixed
Link are used.

For the analysis of the motions of the tunnel element during immersion boundary conditions are
composed. The most important restrictions are:

- Three degrees of freedom are studied. Only the sway (horizontal translation), heave
(vertical translation) and roll motions (rotation in the sway and heave plane) are in this
thesis analysed. This means that only the motions, which are present in the z-y plane, are
studied.

- The wave loads act perpendicular on the tunnel element as a result of the previous
condition.

- The tunnel element is assumed to be a stiff box, so deformations of the tunnel element
during immersion are ignored.

- Rotations are assumed to be small, so the following assumption is made:



sin(p) = tan(p) = ¢

- A linear differential equation is used to calculate the dynamic behaviour of the tunnel
element. Non-linear effects are linearised.

- The dynamic behaviour of the tunnel element will be calculated for the position of one
meter below the water level, measured on the z-axis. This means that the distance
between the deck of the tunnel element and the water surface is one meter.

Chapter 1 - 4 consists of a literature study.

A simple estimation of the natural frequencies is done in chapter 5. The motions were decoupled in
this phase, which means that each time only one degree of freedom (DOF) is studied. Only mass
contributions and restoring properties of the water are taken into account in the estimation. The
stiffness of the cables is assumed to be infinite.

Hereafter an extended model with the complete stiffness of the system is taken into account. The
motions are coupled in this phase and influences each other. The immersion system is described by a
2 mass-spring system which consists of six degrees of freedom. The natural frequencies are hard to
determine by hand and are therefore calculated in a Maple-sheet.

The response of the system is calculated in the frequency domain. This is described in chapter 6.

In chapter 7 the forces in the cables between the tunnel element and the pontoons are analysed.
This is performed for two specific wave loads, which are the swell waves and the wind waves.

Finally, a small sensitivity study is performed where some modifications of the immersion system are
given to change the response of the system. This is described in chapter 8.

Conclusions are drawn in the last section of this thesis.
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1.1

Immersed tunnels in a nutshell
In this chapter a general introduction is given about immersed tunnel topics.

Tunnels can be distinguished according to the applied construction method. Roughly speaking, these
are: techniques for rock, shield-driven, cut-and-cover or immersed tunnel techniques.

In order to compare the different kind of crossings, selection criteria are set up. The most important
criterion is the physical possibility of building certain structures in certain situations. Thereafter the
construction, operating, maintenance, repair and user cost are of importance. The last criteria are
the safety, the inconvenience and the environmental impact during both construction and use
(Glerum 1988).

Immersed tunnels

An immersed tunnel consists of prefabricated elements that are transported floating to the site and
installed one by one. An immersed tunnel is installed in a trench that has been dredged previously in
the bottom of a waterway (Grantz and Saveur 1997).

The first immersed tunnel for road transport in the Netherlands was the Maastunnel, which was built
in Rotterdam and completed in 1943. Nowadays immersed tunnel techniques have become more
widely used. Two examples of a cross section of an immersed tunnel are given in Figure 1-1.

! 24770 Ql 29800 |
C ) C ) = © @

MAASTUNNEL 1940 VLAKE TUNNEL 1975

ROTTERDAM VLISSINGEN

Figure 1-1: Cross section of the Maastunnel and the Vlaketunnel

An immersed tunnel is not always a road or railway tunnel, it can also be a service tunnel. The latter
includes tunnels for conveyor belts, high- and low-voltage cables, utility pipelines, cooling water
intakes and outfalls, sewer culverts and siphons (Rasmussen 1997). Two examples of a cross section
of a service tunnel are shown in Figure 1-2.

| 6500 l
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SERVICE TUNNEL 1973 SERVICE TUNNEL 1986
HOLLANDSCH DIEP PULAU SERAYA
(THE NETHERLANDS) SINGAPORE

Figure 1-2: Examples of a cross section of immersed service tunnels



1.2 Tunnel elements
Tunnel elements are prefabricated in a casting basin or in a drydock. Construction of the elements
can take place next to the immersion location or far away from it. The elements will be constructed
in the dry. Thereafter, the casting basin will be flooded to allow the elements to float out and taken
away (Ingerslev and Saveur 1997).
The tunnel elements are made buoyant by installing temporary bulkheads at the element ends.

In addition to providing proper structural strength and controlling the weight of the element, the
main design and construction point of a tunnel is to provide a watertight structure (Rasmussen
1997).

Construction of concrete tunnel elements is relatively straightforward. However, great care is
required in order to meet durability requirements. Also attention must be paid to avoid cracks in the
concrete.

In the past, tunnel elements were made as a monolith structure with a length of about 100 meter.
Problem with such a long tunnel element is that cracks in the concrete can occur due to shrinkage,
temperature fluctuations and unequal settlements in longitudinal direction. Due to the cracks,
problems can occur with the water tightness of the structure.

Therefore the monolith elements were replaced with elements divided in segments with expansion
joints. This construction technique reduces the tensile stresses in the structure.

The elements are prestressed during construction stages. Once the elements are resting on their final
foundation, the prestress is removed, so that the tunnel forms a flexible chain of segments (Glerum
1995).

As a remark on this it must be mentioned that crack width control is also possible by partially
prestressing of the structure. One can use reinforcement bars on places in the structure where
tensile stresses are expected.

A tunnel element normally consists of 4-8 segments. The traditional casting sequence of a segment is
‘bottom-walls-roof’. Nowadays it is possible to cast a segment in one batch. The segments are
approximately 15-25 m long.

The segments of the @resund tunnel, which connects Denmark with Sweden, are poured in a
fabrication plant. Once a segment was finished, the segment was pushed forwards to make space for
a new segment. Once eight segments were casted, they were prestressed and pushed a further
100 m, so that the whole element was located within a bunded dock area. A sliding gate was closed
between the element and the factory. Finally the dock was flooded which allows the elements to
float out.

Whilst the completed element was being immersed, the factory was able to continue with
construction of a new element. As a result of this process, there were no breaks in production
(Marshall 1999).
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1.3 Ancillary works and immersion equipment
Some ancillary work has to be done in order to proceed with the immersion process. Below, the basic
equipment and additional works required for the immersion operation are given (Rasmussen 1997).

In order to float up or immerse a tunnel element, a water ballasting system is installed in the tunnel
element.

After immersion, the temporary ballast tanks are replaced by permanent solid ballast. The
permanent ballast can be placed inside and/or outside the tunnel element.

In order to allow precise and controlled immersion of a tunnel element one needs floating bodies
with a water cutting cross section. The function of the floating body is to keep the element stable
during immersion. Often pontoons are used to immerse tunnel elements. Two types of pontoon-
configuration are more explained in detail.

The commonly-used configuration is the catamaran-type. A second possibility is deck-mounted
pontoons. The advantage of the catamaran-type configuration is a larger correcting moment in
comparison with the deck-mounted configuration. The latter has the advantage of a smaller width in
comparison with the catamaran-type configuration. The two mentioned pontoon configurations are
shown in Figure 1-3.

One can also use other floating equipment to immerse a tunnel element, such as floating cranes.

CATAMARAN TYPE RIG DECK_MOUNTED PONTOONS

Figure 1-3: Pontoon configuration

Deck-layout, such as bollards, lifting lugs, pulling jacks and positioning system such as a beam and
catch construction are installed in order to proceed with the immersion process.

Temporary alignment/ survey towers are mounted at each end of the tunnel element. One of the
alignment/ survey towers can be used as an access shaft. This allows the entry of personnel or
equipment to the interior of an immersed tunnel while submerged.
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1.4 Immersion of tunnel elements
The four following main activities are related to the immersion process of a tunnel element
(Molenaar 1988):
- Towing the element to the immersion location;
- Anchoring the element in order to allow precise manoeuvring;
- Ballasting the element to bring it down to the bottom;
- Connecting the element to the previous one.
The four activities are explained more in detail hereafter.

The elements must be transported from the casting yard or a mooring location to the immersion site.
In some cases the casting yard has not enough space to cast all the elements in one batch. In order to
proceed with the construction process of tunnel elements, the finished tunnel elements can be
moored temporarily at a mooring location.

Nowadays the most tunnel elements are towed afloat, when the final ballast weight is not yet
installed. A second possibility, which is not common anymore, is by hanging the elements under
pontoons when the final ballast is already placed.

For offshore tunnels, the elements must be designed in such a way that the element and the
immersion equipment can withstand the forces resulting from currents, wind waves and swell waves.
The bulkheads, installed at the element ends, have to resist these forces as well.

When the tunnel element is towed to the immersion location, the next step is to anchor the element
in order to allow precise manoeuvring. Anchors are installed on the bottom of the waterway. Cables
are connected between the anchors and the tunnel element and immersion equipment. Relative
heavy cables and anchors are required for offshore conditions involving high, strong currents.

For these tunnels, it is not difficult to imagine the complicated anchoring system that is required
when the influences of wind waves and swell waves are added.

As an example, the mooring and immersion arrangement of the Elbe tunnel is shown in Figure 1-4.
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Figure 1-4: Mooring and sinking arrangement used for the Elbe tunnel
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The next step in the immersion process is to fill the built-in ballast tanks with water in order to bring
the tunnel element to the bottom. The ballast tanks are shown in Figure 1-5.

With the ballast tanks it is possible to change the buoyancy of the tunnel element. Positive buoyancy
indicates that the element wants to float. This can be achieved by emptying the ballast tanks.
Negative buoyancy means that the weight is greater than the buoyancy: the tunnel element wants to
sink.

The element is lowered stepwise onto the foundation pads or the gravel bed. The position of the
element is continuously monitored during the entire immersion operation. The foundation pads can
be seen in Figure 1-4.

The disadvantage of a temporary ballast-system is that the ballast water has to be replaced by ballast
concrete. The transport of ballast concrete to replace ballast water can cause logistical problems.
Additionally to this issue, the casting of ballast concrete is time consuming and costly (Molenaar
1988).

Temporary bulkhead Pontoon
__us —
| . J SRS

Temporary ballast is
=====§  pumped into element
1 allowing it to sink

Figure 1-5: Ballast tanks

Once placed, the elements are joined. This is the last step in the immersion process. The elements
are first joined together by bringing the rubber gasket into contact with the previously placed
element. This rubber gasket, the Gina gasket: one of the most characteristic details of immersed
tunnels, is explained more in detail hereafter.

The second phase in the connecting procedure is to empty the immersion joint. As a result of this the
full hydrostatic water pressure on the tunnel cross-section is mobilized, which compresses the Gina
gasket to get a watertight connection. This process can be seen in Figure 1-6.

Hydrostatic
pressure diagram

Elastic rubber
board

767 1m0/t
P

Soft rubber

VAN

b4~ final R.C. sealing structure

Temporary —
watertight ¥} |F— H
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'/ |- Connection- grooves =

2L

hatie e B b o o b o b b i o s e b gl b g b o g g db 4

Unbalanced
unilateral

Length of one lowered section hydrostatre
| pressure

Figure 1-6: Joining procedure of the tunnel element
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1.5 The Gina and Omega gasket
The Gina gasket consists of a rubber section able to transfer large compression forces, and a soft
nose able to provide an initial seal under low compression forces. The gasket provides a temporary
seal and compression contact face during immersion installation, and may provide a permanent seal
at flexible joints.
Later on, a second gasket is installed: the Omega gasket. It may form a secondary permanent seal or
it may become the primary seal. Because of its shape, it can sustain large longitudinal and transverse
movements at the joint (Ingerslev and Saveur 1997).
The Gina and Omega gasket are shown in Figure 1-7. In the upper figure the uncompressed Gina
gasket is shown. The lower figure shows the compressed Gina gasket and the rubber Omega Gasket.

Rubber gasket
190,148

Protecting
“ /] concrate
4

Asphale
membrane

: I- ?‘ z ,// N e g
7, 7 }ub_",‘!“ff'/ '\ watertighthess
M/

: Concrate cast after tinking
ine  monolithic with element on
t fotnc the right
After closure

Figure 1-7: Gina gasket before and after closure

1.6 The trench and foundation of the tunnel element
The space between the trench bottom and the bottom of the tunnel element can be a previously
prepared gravel bed or it can be sand bedding (Rasmussen 1997).

If the tunnel is to be founded on a jetted sand foundation, the element will be placed on temporary
foundation blocks, close to the previously placed tunnel element. The foundation blocks are placed
beforehand. Four heavy steel rams, activated by cylinders from inside the tunnel element is the
original solution.

A solution which is common nowadays is that the front pair of cylinders is substituted by one or two
brackets on the previously placed tunnel element.

14



1.7

When the tunnel element is immersed on its temporary supports, a sand-water mixture is pumped
through openings in the floor slab into the gap between the underside of the element and the
bottom of the trench. The water flows away and the grains of sand settle, forming a kind of circular
‘pancake’ around the injection point. As soon as a pancake is formed, the sand-water mixture is
pumped through another opening. A pattern of overlapping ‘pancakes’ is formed which provides a
good foundation. This process is monitored carefully by the hydraulic jacks or a survey system. As
soon as the forces in the hydraulic jacks decreases, the sand package forms a good foundation. The
principle of sand-jetting is shown in Figure 1-8 (Glerum 1995).

A: SUCTION UNIT

B SAND BARGE

C PONTOON

O: DRAGLINE

E PIPELINE CONNECTIONS

G: WATERTIGHT BULKHEADS

H: INJECTION OPENING WITH VALYE IN FLOOR SLAB

R=%m R=12Zm
. N i ¥

T EIRICICICIE CICICICICIEL

n 250 m 1
1

Figure 1-8: Sand-flow system (Vlaketunnel): equipment and pattern of sand cakes

A second possibility is to immerse the tunnel element on a previously prepared gravel bed. In this
case there is no need for temporary supports or sand-jetting under the tunnel element.

The demands on the gravel bed are very high. Tolerances in the construction height are in order of a
few centimetre. Therefore, the construction of the trench is a very difficult operation.

Complementary works

The trench is backfilled when the tunnel element rests on its permanent foundation. Protecting
mattresses and armour rock are also placed. The latter has as purpose to protect the permanent
foundation and the backfill from scour and protect the tunnel element from falling objects, such as a
falling anchor. In Figure 1-9 one can see the different types of layers to protect the tunnel element.

The complementary works can be divided in two groups: civil works and mechanical and electrical

works. The civil works consists of for example removal of the ballast tanks and bulkheads, casting of
the permanent ballast concrete or asphalting of the roadway.

15



The mechanical and electrical works consists of the installation of a permanent lightning en
ventilation system, a drainage system, a fire-protection system and a traffic control system
(Rasmussen 1997).

| . |

- _—

R. C. MATTRESS

SAND FILL

Figure 1-9: Backfilling of the tunnel trench
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2 The immersed tunnel for the Busan- Geoje Fixed Link
In this chapter the tunnel project of the Busan- Geoje Fixed Link is described.

The Busan- Geoje Fixed Link, with a total length of 8.2 kilometre, is a major infrastructural project in
South Korea. The project consists of two bridges with a length of 1650 meter and 1865 meter and
also includes an immersed tunnel with a length of 3380 meter and a maximum foundation level of 48
meter below main sea level. The entire link has two lanes in each direction for car traffic (Heijmans
and Meijnhardt 2008).

The immersion has to take place at deep depth, deeper than any immersion project before.

Dense ship traffic is predicted across the tunnel due to the completion of the Busan New Harbour
which requires a water depth of at least 20 meter.

The area is prone to seismic activity. The tunnel will therefore be designed in accordance with Korean
standards (Chang, et al. 2006), (Heo, et al. 2006).

An overview map of the project is shown in Figure 2-1.

.
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Cable stayed
bridges
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Figure 2-1: Overview map of the Busan - Geoje Fixed Link

The contractor is GK Fixed Link Construction Consortium with Daewoo Engineering and Construct as
representing company. The Design Contract has been awarded to COWI from Denmark and Daewoo
Engineering for design of the immersed tunnel works. The technical service for the immersion is
provided by TEC from the Netherlands.

Commissioning authority is Busan Metropolitan City together with the Province of Gyeongnam. A 40-
year contract has been concluded for the construction and operation of the link.
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2.1

Strukton Afzinktechnieken has been awarded with a part of the engineering and the execution of the
floatation, transport and immersion of the tunnel elements. This work will be carried out by a
subsidiary of Strukton called Mergor Underwater Construction.

The tunnel elements

The immersed tunnel in the Busan — Geoje Fixed Link consists of 16 ordinary elements and 2
elements with a climbing lane. The elements with a climbing lane are element 17 and 18, which can
be seen in the vertical alighnment in Figure 2-2.

The total length of the immersed tunnel is 3380 meter. The tunnel elements are build in a pre-cast
yard. The pre-cast yard has space to build 4 or 5 elements at a time. The elements are stored at a
mooring location, close to the pre-cast yard and 36,4 kilometre away from the immersion location.
The latter is shown in Figure 2-1.
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Figure 2-2: Vertical alignment

The width of one of the ordinary tunnel elements is 26.46 meter, the two elements with the climbing
lane are 28.46 m. The height of all the elements is 9.97 m. The cross section of an ordinary tunnel
element can be seen in Figure 2-3.
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Figure 2-3: Cross section of an ordinary tunnel element
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2.2

2.2.1

Offshore conditions for transport and immersion

The tunnel elements are moored, transported and immersed in offshore conditions. These offshore
conditions consists of wind, waves and currents, which act on the tunnel and the immersion
equipment.

Most waves are generated by winds in the area including tropical storms and typhoons. Waves
generated by distant storms can also reach the tunnel alignment from southerly directions. The latter
type of waves are called swell waves.

During transport from the mooring location to the immersion site and the start of the immersion
operation, the short wind waves and the longer swell-waves affect the dynamic behaviour of the
tunnel element. The tunnel element is also sensitive to swell waves on a greater depth.

Model research is done to determine the influence of the wave height and period on the entire
system. These tests are done by Marin in Wageningen.

A numerical model is set up and calibrated by scale models which are performed in a wave
simulation basin. The results of the numerical model and the predicted wave conditions determine
whether the element can be immersed in a safe way.

The model tests are performed for two situations. The first situation is when the element is located
at a distance of one meter below the sea level. The influence of the waves in this situation is
significant for the forces in wires, tunnel motion and bending moments in the element. The main
design criteria for this situation are the maximum forces in the wires.

The second situation is when the tunnel is located at a distance of 0.5 meter from the bottom of the
immersion trench. The accepted motions of the element are restricted in this situation, because the
element is in proximity of the previous immersed element. The forces in the wires are lower
compared to the first situation because the influence of the waves at a greater depth decreases
(Groot and Jille 2009).

Immersion of the tunnel

The tunnel elements are prepared for the immersion operation at the mooring location, which can
be seen in Figure 2-1. Prior to the transport, two immersion pontoons are positioned over the tunnel
element. The pontoons are of the catamaran type. This type of pontoons is shown in Figure 1-3. The
pontoons consist of a main deck (size of 42,5 x 24 x 2.5 meter) and two floaters (36 x 6 x 6 meter
each) (Vlaanderen Oldenzeel, Groot and Reijm 2010).

The deck-layout, consisting of bollards, lifting lugs and a landing tower are installed on the tunnel
deck in the mooring location. Also the guide beams are installed on the primary side of the element
and the catches on the secondary side. The guide beam and catches are used to guide the element
during the last phase of the immersion operation.

The first tunnel elements are immersed with an access shaft mounted on the element. At a greater
depth the use of an access shaft is not possible anymore. As a result of this, the equipment in the
tunnel element is remote controlled. However, sometimes it might be necessary to enter the
element during the immersion process. This can be done by using a self propelled diving bell (SPDP),
which can be connected to the element on the landing tower (Groot and lJille 2009).
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2.2.2

2.2.3

As soon as predicted weather and wave conditions are within the limits, the total system is
transported to the immersion location.

Wires

Three types of wires can be distinguished. The mooring wires are connected between the anchors
and the pontoons. These wires are used for positioning of the immersion pontoons above the
alignment. The contraction wires run from the pontoon, through a pool on the deck, over the tunnel
element to the anchors. These wires are used for positioning the tunnel element sideways and in
longitudinal direction. Suspension wires are connected between the pontoons and the element.
These wires carry the overweight of the tunnel element. The wires are shown in Figure 2-4.
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Figure 2-4: Immersion spread

External Positioning System

An innovative solution is used to connect the element on a safe way against the previous placed
element, without the influence of the waves.

The External Positioning System (EPS) consists of two large portal constructions which are placed
over the primary and secondary sides of the tunnel element. The tunnel element is immersed on the
gravel bed with a distance of 0.5 meter from the previous placed element. Thereafter the tunnel
element is lifted by the EPS and pulled towards the previous placed element.

Hydraulic jacks push the legs of the EPS out and it starts to lift the tunnel element just above the
seabed for connection to the previous element. The EPS steps the complete element towards the
previous element for connection, with no risk of damaging the previous element by wave induced
motions. The EPS is shown in Figure 2-5 (Vlaanderen Oldenzeel, Groot and Reijm 2010).
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2.2.4

Figure 2-5: The External Positioning System

Summary

Traditionally, immersed tunnels have been installed as river crossings or in areas with protection
against offshore conditions. The tunnel in the Busan — Geoje Fixed Link is constructed in an area
which is prone for wind and wave conditions that in certain periods prevent immersion of tunnel
elements.

Model tests and numerical simulations are carried out to determine what the effects are of the wave
loads on the dynamic behaviour of the entire system and the loads in the wires and the bending
moments in the tunnel element. The structural strength of the element is determined by the
numerical models and the model tests.

The structural capacity of the element and the immersion equipment is in combination with a wave
forecast system the basis to determine whether the immersion operation can take place or not.
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3 Experiences of tunnel elements in offshore conditions

3.1

The immersed tunnel in the Busan — Geoje Fixed Link is the first tunnel which is immersed in offshore
conditions. These harsh conditions for an immersed tunnel have never been seen before (Heo, et al.
2006). As a result of this there is not much experience gained about immersion of tunnel elements in
off-shore conditions. In the past however, there are some examples in which tunnel elements are
transported in off-shore conditions.

The experiences of tunnel elements in offshore conditions is the topic of this chapter.

For the design of an immersed tunnel, which is transported and/or immersed in offshore conditions,
geological, hydraulic and meteorological surveys must be performed during all phases of the tunnel
project. For offshore tunnels such surveys can be decisive for the design.

The required hydraulic survey should include information on current velocities and directions, tides,
height and frequencies of wind and swell waves and the difference in specific weight of the water.
The behaviour of the surf is also of importance in coastal zones (Molenaar 1988).

On the basis of the above survey, conclusions can be reached about the following aspects of
construction:

- The procedure for and timing of immersion;

- The forces on the tunnel elements and the equipment;

- The type of equipment to be used;

- The ballasting of the tunnel elements.

A meteorological survey is required when the hydraulic aspects are influenced by the weather
conditions.

For economic reasons, procedures and equipment are not designed to withstand extreme weather
and wave conditions. Therefore, the weather and wave conditions, which influences the hydraulic
aspects, must be studied continuously (Molenaar 1988).

Transport of tunnel elements in offshore conditions

In the past, some tunnels were transported in offshore conditions. For example, the tunnel elements
of the Second Downtown Tunnel, which crosses the Elizabeth River in Norfolk and Portsmouth,
Virginia, were fabricated in Corpus Christi, Texas. Eight elements were transported, two at a time, for
the long 3000 km voyage through the Gulf of Mexico, across Florida and up to Norfolk (Hakkaart
1997).

Immersed tunnels are designed to be placed on prepared foundations. The only large, permanent,
loads on the tunnel are the soil and water pressure and possible differential settlements in the soil.
During floating however, more loading cases can result from factors such as: the weight of the
bulkheads, the equipment mounted for immersion and the off-shore wave height and period. These
factors must be taken in account into the design of the element and provisions for the method of
transport. The amount of prestressing in the elements is determined using these factors.

Tunnel elements under tow must withstand loading conditions comparable to ordinary ships. These
include wave-induced transverse, longitudinal and torsion moments. Local loads, which act at the
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3.2

tunnel elements as well, consist of wave forces which act on the bulkheads or collisions with floating
objects, for example.

The magnitude of these forces depends largely on the expected sea conditions during transport and
the length of time of exposure during transport.

Once these conditions have been determined, the next part of evaluation starts. The tunnel elements
must be designed in such a way that overstresses do not occur. An envelope of moments for all load
cases must be developed. Based on that, the configuration of the towing system can be evaluated
(Hakkaart 1997).

In the Netherlands, the elements of the Wijker Tunnel have been transported over a distance of 70
km over the North Sea. The main challenge of maritime transport lies in the exposure of a tunnel
element to waves (Zitman 2003).

Probabilistic design procedure for transportation of Wijker Tunnel

In the design procedure of the elements of the Wijker Tunnel was not focused on achieving a high
degree of seaworthiness. Transportation of the elements could only take place during periods of
moderate wave and weather conditions.

Scale models provided the design necessary to ensure that tunnel elements would be able to
withstand certain wave conditions.

The critical design criteria was the amount of pressure in the joints between the segments. Leakage
of the elements can occur when wave-induced moments become so large that the pressure in the
joints is disappeared. The minimum pressure in the joints was set on 0,3 N/mm?.

The required minimum pressure in the joints was transformed into a requirement for a probabilistic
approach.

A safety level has been defined for the offshore transport of elements of the Wijker Tunnel. The
latter was focused on preventing leakage in the joints.

A tool that has been developed shows for any wave forecast whether the non-exceedance
probability of the minimum allowed pressure in the joints is larger or less than the predefined
criteria. If it is larger, transport of the element needs to be postponed (Zitman 2003).

The results are shown in Figure 3-1. The encircled numbers are the conditions in which the elements
are transported. The swell heights are represented by the lines in the graph in Figure 3-1.
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Figure 3-1: Curves reflecting the wave forecasts for which the safety level is only satisfied

With the graph in Figure 3-1 a manageable probabilistic tool has been obtained. With this tool, one
can evaluate the forecast of wave conditions whether the safety level set for transporting of tunnel
elements will be satisfied (Zitman 2003).

Immersion of tunnel elements in offshore conditions

The immersion of large-scale tunnel elements is one of the most important procedures of immersed
tunnel construction.

Up to now, there is not so much literature related to the dynamic behaviour of a tunnel element
which is exposed to offshore conditions during immersion. However, some research is done (Chen,
Hou, et al. 2009), (Chen, Wang and Wang 2009).

Equation of motion
The dynamic behaviour of a tunnel element can be described by Newton’s Second Law:

6 6 6 6
Z My;1jj = — ZAkjﬁj _Z Cieinj _Z Kiejnj + Fr
j=1 j=1 j=1 j=1

(k,j=12..6)

In which the complex displacement is given by:

This system of equations describes the dynamic behaviour of the tunnel element in all 6 degrees of
freedom. The mass matrix is given by M. The damping of the system is given in matrix C. The matrix
K represents the stiffness of the entire system and the forces are given in vector F.

The matrix A is the added mass matrix.

The term 7, represents the motion amplitude of the tunnel element in the jth mode.

Under only wave loading, the loads acting on the tunnel element are relatively large near the water
surface and they decrease with the increase of immersing depth. The motion responses of the tunnel
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3.3.2

element are also generally large near the water surface and decrease as the immersing depth
increases.

Hydrodynamic coefficients

The calculation of added-mass and damping coefficients, which are called the ‘hydrodynamic
coefficients’, are important for determining of the tunnel motions.

Several methods are developed to approximate the hydrodynamic coefficients. The coefficients are
not straightforward to determine. Several researchers have already paid special attention to it
(Guedes Soares and Ramos 1997).

The hydrodynamic coefficients are related to the shape of the cross-section. In the past, research is
done to determine the hydrodynamic coefficients for ships (Oortmerssen 1976). Rectangular shapes
have also been studied.

Results are used which are obtained by previous research (Vugts 1971), (Newman 1979).
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4.1

4.1.1

Dynamic behaviour: theory

In the previous chapters literature is studied with the purpose to find a method wherein the dynamic
behaviour of tunnel elements during the immersion operation can be determined. In this chapter the
method is defined.

Equation of motion
Motions, such as translations or rotations, of the tunnel element and the pontoons can be described
with a linear equation of motion, derived from Newton’s Second Law. For translations (heave, sway
or surge) the equation of motion holds (Journée and Massie 2000):

M+A)-X+C-x+K-x=F

In which:

M = solid mass of the cylinder [kg]

A = hydrodynamic mass coefficient [kg]

C = hydrodynamic damping coefficient [kg/s]
K = restoring spring coefficient [kg/s’]

F = Force [N]

x = Displacement [m]

The terms A - X and C - x are caused by the hydrodynamic reaction as a result of the movement
of the cylinder with respect to the water.

Free decay test
The equation of motion which describes free decay of a cylinder in heaving is given by:
M+A) - Xi+C-x+K-x=0

When the cylinder is given an initial displacement at time t = 0 and thereafter is released, the
cylinder oscillates in water and the motion can die out freely.

During the oscillation of the cylinder, waves are generated, which propagate from the cylinder. These
waves transport energy, so they withdraw energy of the oscillated cylinder. As a result of this the
motion of the cylinder will die out.

This so-called wave damping is proportional to the velocity x of the cylinder. The coefficient C is
called wave or potential damping and has the dimension of mass per unit of time.

In an actual viscous fluid however, also other phenomena with respect to damping are present.
Vortices and separation phenomena for example are mostly described in the equation of motion in
non-linear contributions (Journée and Massie 2000).

The hydro mechanical part A - X is proportional to accelerations that are given to the water particles
near the oscillated cylinder. This part of the hydro mechanical forces does not dissipate energy from
the system.

The coefficient A is called hydrodynamic mass or added mass and has the dimension of mass.
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4.1.2

4.1.3

4.2

When the system is linear the motions of the cylinder can be seen as a superposition of the motions
of the cylinder oscillating in still water and the forces on the restrained cylinder in waves. This
principle is shown in Figure 4-1.

The hydro mechanical parameters are determined by oscillating the cylinder in still water. The wave
loads which result in forces on the cylinder are determined by restraining the cylinder in waves.

z(t) Z(t)

motion oscillation restrained
In waves in still water 1n waves

Figure 4-1: Superposition of hydro mechanical and wave loads

Frequency domain

Only linear contributions are taken into account in the equation of motion, which is given in
paragraph 4.1. In reality however, also non-linear contributions are present. For example quadratic
damping, forces and moments due to currents, wind, anchoring and second order wave loads have a
non-linear contribution in the equation of motion.

Although the linear equation of motion does not describe reality very accurate, it has an advantage
to use the linear equations of motion instead of an equation of motion with the added non-linear
contributions. If the system is linear, then the behaviour of the system can be studied in the
frequency domain. This means that, at each frequency, the different ratios between the motion
amplitudes and the wave amplitudes are constant. Doubling the wave amplitude results in a doubled
motion amplitude (Journée and Massie 2000).

Time domain

If the equations of motion are non-linear, then the superposition principle, which is used in the
frequency domain, is no longer valid. However, it is possible to solve the non-linear equation of
motion in the time-domain.

If the behaviour of a cylinder in irregular waves is analysed, all the possible wave combinations
should be taken into account, which is time-consuming.

Waves

Ocean surface waves consist of wind waves and swell. Wind waves are irregular and are generated
by the local wind field. High waves are followed unpredictably by low waves.

Swell waves are waves which are propagated out of the local wind field in which they are generated.
Swell waves are no longer dependent on the wave field and can propagate for hundreds of
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4.2.2

kilometres through areas were the wind is calm. Individual waves are more regular then wind waves.
The wave height of swell waves is also more predictable.

The surface elevation can be described with a Normal Distribution. The wave amplitude (or the wave

height) is given in a Rayleigh distribution.
The probability density function of the normal distribution is defined as (Journée and Massie 2000):

00 = ——-e(~(-25))

x) =———=exp| —[——=
g-V2-m P -2

The probability density function of the Rayleigh distribution is equal to:

flx) = %- exp <_ (U .x\/i)2>

In which x is the variable being studied and ¢ is its standard deviation.

Significant wave height
It is obvious to define the wave height H as the vertical distance between the highest and the lowest
surface elevation in a wave. In a wave record with N waves, the mean wave height H is defined as

(Holthuijsen 2007):
N

S

=1

H =

=2

Where i is the sequence number of the wave in the record.

The significant wave height is defined as the mean of the highest one-third of waves in the record:
N/3

= . H.
N j
/3 j=1

Where j is the rank number of the wave, based on the wave height.

The significant wave height is close to the value of the visually estimated wave height. The significant
wave height can also be estimated from the wave spectrum, which will be explained in paragraph
4.2.3.

Wave spectrum

The wave elevation can be seen as a superposition of many simple, regular harmonic wave
components. Each single sine wave consists of an amplitude, length, period or frequency and
direction of propagation, which is shown in Figure 4-2 (Holthuijsen 2007).
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Figure 4-2: An irregular sea can be approximated by a sum of many simple sine waves

The wave elevation can be reproduced as the sum of a large number of harmonic wave components
with a Fourier analysis. Therefore, one should have a time record segment, which is called N, which
contains many waves (Journée and Massie 2000).

N
((t)=Z(an'cos(kn'y_z'n'fn't+an)
n=1

Can, &, and k, are respectively the amplitude, the phase and the wave number. f,, is the frequency
of wave n. The record N is exactly reproduced by substituting these parameters in the equation
above. If enough Fourier series terms are added the entire time record at that point can be
reproduced using this set of values.

In practice, the exact water level at some time t is not of importance, because this is already history.
More useful are the statistical properties in terms of frequency and amplitude.

The variance of the wave elevation is equal to:

0'52=<
N

N
1 2 1 2
= — = . A
N Z(n N - At Z(n t

n=1
1 T 1 T
:_.f((t)z.dt:_.f
T Jo T Jo

2

1
N
{Z(an-cos(kn-y—Z-n-fn-t+an) dt
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4.2.3

2
: Can

N =

N
n=1

The wave amplitude can be expressed in a wave spectrum:

wn+Aw

1
Se(wn) B = D = Can(w)’

The energy per unit of area of the waves is given when this expression is multiplied with p - g. By
letting Aw — 0 the definition of the wave energy spectrum becomes:

1 2
S{(wn) dw = 2 “Can

The variance of the water surface elevation is equal to the area under the spectrum (Journée and
Massie 2000).
(00
0.2 = f S¢(wy) dw =mq
0
Estimation significant wave height from a wave spectrum

The amplitude of waves are Rayleigh distributed. With a =%-H and 02 = m,, the transferred

Rayleigh distribution in terms of wave height is given by (Holthuijsen 2007):
H) = H H?
p N 4 * mO exp 8 ¢ mO

The mean value of the highest one-third of the waves is defined as the significant wave height. This
fraction can be determined from the Rayleigh distribution. The wave heights that are involved in this

fraction are defined by:
foo (H)dH—fm i 2 ) gy =
R ) amy TP\ T8 m ) T3

Where H* is equal to:

i 1
H* = —8-1n<§)-m0

The mean values of this wave heights is by definition the significant wave height. The significant
wave height can be determined as an expected value, with the zeroth- and the first order moments
of the highest third of the Rayleigh distribution:

f H-p(H)dH f H-p(H)dH

Hipp = o=

| ij(H)dH :

Substituting the expression for the Rayleigh distribution in the equation above, will result in:
Hmo = 4’.004’ et ﬂmo
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4.3

Or, for all practical purposes (Holthuijsen 2007):

Hmo = 4 - /mg

So, the significant wave height can be estimated from a wave spectrum.

Waves in Korea

The waves in Korea can be described with a double peaked Jonswap spectrum, because two types of
waves can be distinguished. These are swell waves and wind waves. The Jonswap (Joint North Sea
Wave Project) spectrum describes the waves in the North Sea but also fits the situation in Korea.

The spectral density of the Jonswap spectrum at wave frequency w is given in Sg(w).

w\ 4 _(w-wp)?
S((O)) =qa- gz . w_s . exp <—1_25 . (w_) > . yexp( 2'0'2'(1)02)
0

{O’a forw < wo}
o =
oy forw> wg

wy is the peak frequency and the gravitational acceleration is given with g. y, g, and g, are
parameters of the Jonswap spectrum and are respectively 3.0, 0.07 and 0.09.
The factor a is chosen such, that the following relation is fulfilled:

H1/3=4'f S(((l))d(l)=4“1[m0
0

Wave loads

The wave force follows from the integration of the water pressure on the body in the undisturbed
waves. This force is called the Froude-Krylov force.

The deepwater pressure, which is caused by waves is:

p=p-g-Ca-exp(k-z) cos(w-t—K-y)
The Froude-Krylov force follows from the integration of the pressure over the body:

FFKzf pdA:(a-f p-g-exp(k-z)-cos(w-t—k-y) dA =, Frx(w)
A A

Frx = g - Frx(w) - exp(i - (w - t — K - ¥))

Actually however, a part of the waves will be diffracted. This requires a correction of the Froude-
Krylov-force. Using the relative motion principle, one finds additional force components. The
diffraction can be described by:

Fp(w) = (mA(w) - w* + C(w) " i - w) - ¢

The diffraction forces are corrections on the Froude-Krylov force due to diffraction of the waves by

the presence of the body in the fluid. The water particle acceleration and velocity at an arbitrary

depth is given by ¢ and ¢.
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The total wave force is equal to the Froude-Krylov force and the diffraction force:
FW = FFK + FD

4.4 Response amplitude operator (RAO)
The equation of motion is given by:
(M+A4) - i+C-%+K-x=Fpeg+Fp

The wave elevation { is a sine function, so the response function x is also assumed to be a sine
function. The complex response function is given by:
x=x,-exp(i-w-t)-exp(—i-k-y)

Also the wave elevation can be expressed in complex notation:
(=(,-exp(k-z)-exp(i-w-t)-exp(—=i-Kk-y)

The motion of a cylinder in heave can be described with:
M+A)-¥+C-%+K-x=Feg+Fp=0-0"+C-{"+A-{*

Where O is the cross section of the cylinder.
When the diameter of the cylinder is assumed to be small, relative to the wave length (k -y = 0).
Then, {* is equal to:

(F={,-exp(k-z)-exp(i-w-t)

The equation of motion can be rewritten in:
(K+i-w-C—w?- (M+A4) x4 -exp(i-w-t) =
O+i-w-C—w?-A)-{,-exp(k-z)-exp(i-w-t)

ra0 = Yo _ O+i-w-C—w? A
B G A orr e G vanyy

The response amplitude operator is defined as x,/{,. Doubling the wave amplitude results in a
doubled motion amplitude.

4.5 Motion in irregular waves
The wave energy spectrum is derived in paragraph 4.2.2 and is equal to:

S d L.
(W) - w =24 (@)

Analogous to this, the energy spectrum of a response can be defined:

1
Su(@) - dw =5+ x,* (@)

Xg 21
S OIER A
’ S¢(w) - dw

24 (w)
"
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The response spectrum of a motion can be found by using the transfer function of the motion and
the wave spectrum (Journée and Massie 2000).

Su(w) = ’g—Zm) ’

: S{(wn)
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5 Natural frequencies

In this chapter the natural frequencies are determined. The aim of this analysis is to compare the
frequencies of the waves with the natural frequencies of the system. Resonance can occur when one
or more natural frequencies of the system are equal or close to the frequency of the load.

The response of the system is not determined in this chapter. Actually, the response of the system
during resonance is not of great importance, because resonance need to be avoided anyway.

5.1 Approach
The theory to determine the natural frequencies and response of the tunnel elements during
immersion is described in chapter 4. This theory is used in this chapter to determine the natural
frequencies.
This has been done using the following steps:

Schematisation of the immersion system into a model. This is done in paragraph 5.2.

Determining the natural frequencies with a simple estimation (paragraph 5.3). Only one degree of
freedom is studied per calculation, which means that the motions are decoupled. Only restoring
properties of the water and structural mass contributions are used. Added mass is not taken into
account in these simple hand calculations.

Determining the natural frequencies with a coupled model (paragraph 5.4). In this model the
stiffness of the cables is taken into account. A Maple-sheet is used to analyse the natural frequencies.
Added mass contributions are not taken into account in this step.

Including of added mass contributions at the coupled model (paragraph 5.5). The natural frequencies
are determined with added mass contributions included.

5.2 Schematisations
In this thesis is focused on a water depth of 23 m. and the position of the tunnel element at 1 m.
below water surface. The wave forces have a maximum influence when the tunnel element is 1
meter below water surface. This position of the tunnel element is shown in Figure 5-1.

i T H
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Figure 5-1: Tunnel element at 1 meter below water surface
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Motions are restricted when the tunnel element is close to the bottom. This position of the tunnel
element is shown in Figure 5-2.

i o H
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The symbols, which represents different lengths are shown in Figure 5-3.
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Figure 5-3: Symbols with respect to length

The width, W, and height, h,, of the tunnel element are equal to respectively 26,46 m and 9,97 m.
The width of the pontoon, W, is equal to 42,5 m and the height of the pontoon deck, hyq, is 2,5 m.
The distance measured from the edge of the pontoon to the place where the resulting reaction force
of the water is located is called y;, and is equal to 3 m. The distance measured from the edge of the
tunnel element to the place where the suspension cables are mounted is called y, and is equal to
0,665 m.

The degrees of freedom are shown in Figure 5-4. These degrees of freedom are taken into account in
the model.
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Figure 5-4: Degrees of Freedom

The names of the translations and rotations are defined in Figure 5-5.

Ky ™

Pitch Heave

Y
Sway

Figure 5-5: Six Degrees of Freedom

The parameters for the model are derived and given in Appendix A. These includes for example the
derivation of the spring stiffness of the cables.

5.3 Estimation natural periods
A first step in the determination of the natural frequencies and periods of the motions is to estimate
them with a very simple hand calculation. In a later stage of the calculation process the results of the
more extensive analyse can be compared with the results which are obtained from this calculation.
In this simple calculation, only the mass of the tunnel element and the restoring coefficient of the
water is taken into account. Forces, added mass and damping are in this analysis ignored.

The first natural period which is estimated is shown in Figure 5-6. This is the vertical motion of the
tunnel element.
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Figure 5-6: Vertical motion of the tunnel element

The spring stiffness in Figure 5-6 is equal to:
k=2-k, =2-4343868 = 8687736 N/m

The natural period is equal to:
T

2 2-m 2+
TO = = = =15s
W \/E [8687736
m 49650000

The rotation of the tunnel element is shown in Figure 5-7.

A
v
A
v

Figure 5-7: Rotation of the tunnel element

The rotation stiffness is equal to:

, W, 2 425  \ .
ko =2 ky-L =2-kw-(7—ye) :2'4340000'(7_3> - k, = 2.89-10° Nm

The natural period of rotation of the tunnel element is equal to:
2-m

2.1 2.1
= = = =71s
@ k ,2.89 -10°
@ X T
-— 3.74 - 10°
Je

The vertical motion of the pontoon is shown in Figure 5-8.

To
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5.4

ki/2 k2
ka/2 Ku/2

Figure 5-8: Vertical motion of the pontoon

The pontoon is connected to the tunnel element by the suspension cables.
The stiffness of the springs is equal to:

k k
k=2 75 + 2 7‘” = 563000000 + 4340000 = 5.67 - 108 N/,

The natural period of the vertical motion of the pontoon becomes:
2.1 2.1

To =
w /5.67 - 108
1400000

The rotation of the pontoon is shown in Figure 5-9.

=032s

Figure 5-9: Rotation of the pontoon

The rotation stiffness of the pontoon is equal to:

kw Wo N ks (W
=25 (o) +23(Fn) =

42.5 2 26.46 2
4340000 - (T - 3) + 563000000 - (T — 0.665) =9.03-10° Nm

The natural period of the rotation of the pontoon is:
2.7

2.m _ 2T
w k 9.03 - 1010
® 2o AV
]— 2.75-108
p

Natural frequencies coupled model without added mass and damping
The next step in the analysis is to take the stiffness of the entire system into account. The latter

To = 0.35 sec

consists of the stiffness of the water and the stiffness of the cables.
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The equations of motion are derived with Newton’s second Law. The forces on the system are
derived with the displacement method and are given in Appendix B. The equations of motions are
linear. This means that the non-linear effects are neglected.

A flexible structure in nodal coordinates is represented by the following second-order differential
equation (Gawronski 2004):
M-X+C-x+ K-x=F

In this equation x is the displacement vector, x is the velocity vector and X is the acceleration vector.
The mass matrix is given by M, C is the damping matrix and K is the stiffness matrix. The forces are
given in vector F.

5.4.1 Analysis of the natural periods
The theory to determine the natural frequencies of a system with linear equations of motions is
described in Appendix C.1. The equations of motion which govern small vibrations are derived in
Appendix B.

The mass matrix and the stiffness matrix are derived from the equations of motions (see Appendix
B). The mass matrix is defined as:

m, 0 0 0 0 0
0 m, 0 0 0 0
0o 0 J, 0 0 0
M=to 0o 0 2-m, 0 0
o 0 0 0 2m O
0 0 0 o0 0 2-]

When the parameters in the mass matrix and stiffness matrix are changed with numerical values, the
following matrices are obtained (see Appendix B):

[4.965 - 10 0 0 0 0 0

| o 4.965 - 107 0 0 0 0 |

M= 0 0 3.74 - 10° 0 0 0 |

| o 0 0 2.8-10° 0 o |

|0 0 0 0 2.8-10° o |

L o 0 0 0 0 5.5 - 10°]
[1.129-10° 0 0 ~1.13-10° 0 0 1
| o 4272-105 —3.644 - 107 0 0 0 |
K=l 0 —3.644-107 1.782- 10! 0 0 ~1.779 - 1011}
-1.13-10° 0 0 1.14 - 10° 0 0 |
| o 0 0 0 2.741-105 —1.713-107 |
L 0 0 ~1.779 - 1011 0 “1713-107 1.809 - 10 J

The natural frequencies can be obtained by calculating the determinant of (K — w?-M) = 0. in
which w? is the Eigenvalue and w is the natural frequency. This condition leads to a polynomial of
degree n in w?, which is called the characteristic polynomial.

For systems with more than two degrees of freedom, it is possible to formulate the characteristic
equation by hand, but the determination of the roots is often not possible without numerical
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5.4.2

methods. Therefore, a computer program is used for finding the solution of the Eigenvalue problem
for systems with more than two degrees of freedom (Spijkers, Vrouwenvelder and Klaver 2006).

The matrix of natural frequencies is defined by:

[20.728 0 0 0 0 0 1

| O 0.414 0 0 0 0 |

0 = | o 0 19.383 0 0 0 |

1o 0 0 0277 0 0o |

|[ 0 0 0 0 1.030 0 Jl

0 0 0 0 0 0.831
The natural periods, which are equal to (2 - m)/w; are given by:

[0.303 0 0 0 0 0 1

| O 15.167 0 0 0 0 |

7 =] 0 0 0324 0 0 0 |

0 | 0 0 0 22707 0 0 |

0 0 0 0 6.101 0
l 0 0 0 0 0 7.559J
The mode shapes, which are given in the Eigenmatrix are:
[ 0.056 0.710 0 0 0 0 1
| O 0 —0.000 0.996 -0.010 0.058 |
E= [ o 0 0.143 0.013 0.014 —0.048]|
|-0.998 0704 0 0 0 0

| 0 0 0.016 0.086 —0.999 —0.996I
l 0 0 —0.990 0.013 0.013 0.047 J

In this analysis, the entire stiffness of the system is taken into account. The motions are now coupled.
Natural frequencies, which are obtained by this analysis, are almost equal to the estimated
frequencies which are given in paragraph 5.3.

In the estimation of the heave and roll motion of the tunnel element, the assumption is made that
the stiffness of the suspension cables is infinite stiff. In the extensive model the stiffness of the cables
is approached by calculating them.

As mentioned before, the results of both computations are quite comparable. The influence of the
suspension cables on the accuracy of the results is analysed in paragraph 5.4.3.

Validation equations of motion
The static equilibrium is determined to validate the equations of motion. The corresponding maple
file is given in Appendix F.

The equation of motion of the completely submerged tunnel element and the pontoons in vertical
direction (heave) is derived by adding all the forces which act on the tunnel element and the
pontoons:

Mme-X+2-my,-X=mg-g+2-my-g—F, —Fyp—2-k,-x

Where m, is the mass of the tunnel element, m,, is the mass of the pontoon, x is the displacement, ¥
is the acceleration, F is the buoyancy force, Fyp are the hydrodynamic forces and the restoring
coefficient is given by k,,.
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54.3

The connection between the tunnel element and the pontoons is assumed to be infinite stiff in this
paragraph. Therefore, there is one equation of motion to describe the heave motion of the combined
system.

The displacement is given by a static part and a dynamic component for each degree of freedom. This
is for the heave motion of the element and the pontoons given by:

x(t) =zo + Zdyn(t)

The displacement is substituted in the equations of motion:
Mg Zagyn +2 My Zgyn=Me-g+2-my-g-F,—Fyp—2-ky -20—2-ky *Zgyn

This can be rewritten into:
me -Z'dyn+2 ‘mp 'Zdyn = _FHD - Z'kw 'Zdyn
Where:
2-ky-zg=me-g+2-m,-g —F,

The static displacement of the combined system can be found by:
Mme-g+2-my-g—F
ZO =
2k,

In reality, the static displacement of the tunnel element and the pontoons are not exactly the same,
because the connection between tunnel element and pontoons is not infinite stiff.

The contributions m,, - g, F}, are added by the equation of motion which describes heave of the
tunnel element. 2 - m,, - g is added by the equation of motion which describes the heave motion of
the pontoons. Thereafter, twelve initial conditions are defined. For each equation of motion the
initial displacement and velocity is given at time t = 0.

The initial displacements are set at x; = 0.1. The initial velocities are set at x; = 0.

When the initial displacements and velocities are equal to zero, some degrees of freedom are already
in equilibrium. Therefore, all the initial displacements are set at x; = 0.1 m.

Damping is applied to determine the steady-state solution. The static displacement is given by the
steady state solution and is a straight line, because the transient motions are died out.
The amount of damping is not of importance as long as c is greater than 0.

The equations of motion are validated with this method. One should expect that the static
displacement of both heave motions is greater than 0. The static displacement of the sway motions
and the rotations are expected to be exactly 0.

Parametric study influence stiffness suspension cables

The stiffness of the suspension cables is determined as 563.000 kN/m.
The influence of this model parameter can be validated by varying it. Therefore a second analysis is
performed. In this calculation the natural frequencies are re-calculated with a lower stiffness of the

suspension cables of 100.000 kN/m.
The results of this analysis are:
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The matrix of natural frequencies is:

895 0 0 0 0 0

[ 0 0407 0 0 0 0 ]

0=10 0 8406 0 0 0 |

| o 0 0 0275 0 0o |

[ 0 0 0 0 1022 0 J

0 0 0 0 0 0817

The natural periods are:

[0.702 0 0 0 0 0

| 0 15450 0 0 0 0 |

T | o 0 0.747 0 0 0 |

o=l o 0 0 22807 0 0 |

ll 0 0 0 0 6.148 0 Jl

0 0 0 0 0 7.689

The Eigenmatrix is:

[ 0054 0723 0 0 0 0 1
0 0 —0.001 0996 0.009 —0.070
E=| 0 0 0.134 0.014 -0.012 0.055|
[-0.999 0.691 0 0 0 o |
| o 0 0.087 0.086 1 0.995 |
| 0 0 —-0987 0013 —0.011 0.051J

One can see that only two frequencies are significantly changed when the frequencies are compared
with the ones which are obtained in paragraph 5.3. The changed frequencies are related to the heave
and roll motion of the pontoons (respectively w;; and ws3).

The natural heave and roll frequencies of the pontoon are dominated by the stiffness of the
suspension cables, which is shown in Figure 5-8 and Figure 5-9. Therefore it is expected that these
frequencies decrease when the stiffness of the cables is reduced.

The natural periods of the heave and roll motion are not changed. This means that the stiffness of
the suspension cables have a negligible influence on these frequencies.

This can be explained by calculating the stiffness of the element in heave motion. The springs are
attached in series to the tunnel element, which can be seen in Figure 5-6.

The stiffness of the suspension cables is equal to 563.000 kN /m which is more stiff with respect to
the restoring spring coefficient of the water (4340 kN/m). Therefore, the spring stiffness of the

tunnel element in heave motion is equal to:

1 1 4 1 1 4 1 K=k
_——= — > i 4 =
k ks k, o k, W

The natural frequencies of the heave and roll motion of the element can be determined accurate,
because these motions are not affected by the stiffness of the cables. The only parameters which are
relevant are the restoring spring stiffness of the water and inertia properties of the tunnel element.
The natural periods of the tunnel element, which are estimated in paragraph 5.3, are in fact accurate
values.
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5.4.4

5.5

5.5.1

The influence of the suspension cables on the motions of the tunnel element is small. The forces in
the cables are a function of the stiffness and the elongation. Larger dynamic forces in the cables are
introduced when the stiffness of the cables is enlarged.

Non-linear contributions of the cables to the equation of motion

The equations of motion which are used are linear, which means that all non-linear terms are
neglected.

In reality the suspension cables affect the horizontal motions between the tunnel element and the
pontoons.

The suspension cables are elongated when the tunnel element and the pontoon have a difference in
horizontal shift between each other. The elongation will result in a force in the suspension cables,
which can be divided in a horizontal and a vertical component.

In the linear equations of motion only the vertical forces in the suspension cables are taken into
account. It is possible to take the horizontal reaction forces also into account by adding non-linear
contributions in the equation of motion.

This equations are given in Appendix B.5 but are not solved.

Natural frequencies coupled model with added mass
The equation of motion, which describes the motions of a body oscillating in water, consist partially
of hydrodynamic terms.

M+A)-X+C-x+K-x=F
The term A(w) is the added mass and C(w) is the hydrodynamic damping. Both parameters are
frequency dependent.

Added mass

The added mass coefficients should be determined for the heave, sway and roll motion of the tunnel
element and the pontoons.

One can see in Figure 5-10 the added mass coefficients for a rectangular cylinder in heave motion,
determined by Vugts. These coefficients are determined for floating bodies. Vugts calculated the
hydrodynamic coefficients for rectangular cross-sections with a strip theory (Vugts 1971).
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Figure 5-10: Added mass coefficients for heave motions

The added mass coefficient for a tunnel element in heaving is estimated with the graph of Vugts,
despite the fact that the tunnel element is submerged instead of floating.

The graph gives an approximation of the coefficients. Better values of the added mass coefficients
can be obtained by model tests or extensive computer simulations. Computer software should take a
lot of factors into account such as the shape of the tunnel element, the influence of the bottom and
the frequency of the oscillation.

The breadth over draught ratio (B/T) of the body of 8 is represented by the upper line in Figure
5-10. A B/T ratio of 4 is given in the central line and a B/T ratio of 2 is represented by the bottom
line. The tunnel element has a B/T ratio of 2.6.

The added mass coefficients are given per unit length. The small figures in the graph represent
results of model proofs which are performed by Vugts.

The added mass coefficient with a B/T ratio of 2 reaches asymptotic a value of approximately 1. The
heave frequency of the tunnel element without added mass is equal to 0.414 rad/s:

= 0.48

The following relation holds, according to Figure 5-10:
6l,ZZ

=~ 1
p-A

The added mass of the tunnel element in heaving is approximately the submerged volume of the
tunnel element multiplied with the density of the water.
a1 =1-A-L-p=1-997-26.46-180-1025 = 4.87 - 107 kg

A similar graph is available for sway motions, which is given in Figure 5-11.
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Figure 5-11: Added mass coefficients for sway motions

One can see that at high frequencies the added mass coefficient for sway reaches zero. In this graph,
the B/T ratio of 8 is the bottom line. A B/T ratio of 2 is shown in the upper line and the central line
represents a B/T ratio of 4.

The sway frequency of the tunnel element is equal to 0.227 rad/s, which results in:

The sway added mass coefficient for the tunnel element is equal to:
al
—2Y ~1.25
p-A

The added mass for the sway motion of the tunnel element is approximately:
Ay, =p-A-L=125-997-26.46-180-1025 = 6.08 - 107 kg

Added mass coefficients for roll motions are also studied by Vugts. These results are shown in Figure
5-12.

The symbols represents different fixed roll angles. The little squares represent a roll angle of 0.20,
the circles represent an angle of 0.10 and the triangles represent a fixed roll angle of 0.05.

The roll frequency is equal to 0.831 rad/s.

0.831 -

The added inertia coefficient for the roll motion is given by:

!

a
025 = — 2%
0.025 A

The roll added inertia is equal to:
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Q33 = 0.025-p-A-B?-L=0.025-1025-9.97 - 26.46 - 180 - 26.46% = 8.52 - 108 kgm?
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Figure 5-12: Added mass coefficients for roll motions

The motions of the pontoons are also affected by the added mass. The first step to determine the
added mass coefficients for the pontoons is to calculate the B /T ratio.

The draft of the floaters can be determined by dividing the forces, which act downwards on the
pontoon, by the restoring spring stiffness of the pontoon.

The draught of the floaters is:

o _q_F _2:1400-1000-9.81 +0.02-180 - 2646 -9.97 1025981 _
ELEYT 2 - 4343868 = mebm

The width of one floater is equal to 6 m, which gives a B/T ratio of 1.3. The lines which represent a
B /T ratio of 2 are used to determine the added mass coefficients.

Added mass coefficients for the pontoon motions are estimated with the graphs which are obtained
by Vugts. The added mass coefficients for heave motions are shown in Figure 5-10.

The heave frequency of the tunnel element is 20.73 rad/s:

6
2-981

20.73 - =11.46

This value is not shown in the graph. Since the line in Figure 5-10 is asymptotic and converges, a
value of 1 is used:
a,ZZ

p-A

=1

The heave added mass for one pontoon consists of the added mass of two floaters and is equal to:
A44=2-1-p-T-B-L=2-1025-426-6-36 =1.89-10° kg



The sway added mass coefficients are shown in Figure 5-11. The corresponding frequency of the
pontoon is equal to 1.03 rad/s:

)}

1.03 - = 0.57

[\
©
o
—_

In the graph in Figure 5-11, one can see that at 0.57 the added mass coefficient is approximately
1.25.

The added mass for the pontoons in sway motion is:
ass =2-125-p-T-B-L=2-125-1025-4.28-6-36 = 2.37 - 10° kg

The roll motion of the pontoon can be described as two cylinders in heave motion, which oscillates
opposite to each other. The floaters itself do not roll.

The added inertia coefficients of the roll motion can be determined by multiplying the added mass
coefficients of the heave motion with the distance measured from the rotation centre of the

pontoon to the point where the reaction force of the water acts, which is shown in Figure 5-3.

The roll frequency of the pontoons is equal to 19.4 rad/s:

)}

19.4 - =10.73

2.

o

81

The corresponding added mass coefficient is approximately 1, according to Figure 5-10. The added

mass for one floater becomes:

? 1
p-A~

a=1-p-dr,-B-L=1-1025-4.28-6-36=9.45-10° kg

2 2
a66=2-<%—y) ca= 2-(ﬁ—3) -9.45 - 10% = 6.32 - 108 kg m?
2 P 2 ' '

The added mass matrix A is assembled by substituting the previous determined values in matrix A.
One can see in the added mass matrix that only the diagonal terms are non-zero. In reality the cross-
coupling coefficients such as a;, and a,3 are non-zero, implying that the hydrodynamic force differs
in direction from the acceleration (Newman 1977).

Vugts calculated also coupling coefficients of sway into roll and roll into sway (Vugts 1971).These
coefficients are small in comparison with the diagonal coefficients and are therefore neglected.

[@11 0 0 0 0 0 1
0 ay O 0 0 0
A_Io 0 az; O 0 0 |
“lo 0 0 2-ay O 0 |
[0 0 0 0 2-ag 0 J
0 0 O 0 0 2-ag
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[4.9 - 107 0 0 0 0 0

| o 6.1-107 0 0 0 0 |
P 0 8.52 - 108 0 0 0
0 0 0 3.79 - 106 0 0
0 0 0 0 4.74 - 10° 0

0 0 0 0 0 1.26 - 10°

5.5.2 Natural periods with added mass
The method which is given in Appendix C.1 is used to determine the natural frequencies of the
system.
det(K—w?-(M+A4))=0

The matrix of natural frequencies is:

(13576 0 0 0 0 0 7
| 0 0203 0 0 0 0 |
0=l 0 0 11748 0 0 0 |
| 0 0 0 018 0 0 |

0 0 0 0 0741 0
L o 0 0 0 0 0576

The natural frequencies are changed, because the added mass is taken into account. Therefore a
second iteration is done to determine new added mass values.

The heave frequency of the tunnel element is 0.293 rad/s

26.46

0.293 - 2981

= 0.34

The graph in Figure 5-10 gives still a value of 1, so this added mass coefficient for the heave motion
of the tunnel element is unchanged.

The frequency of the sway motion is changed to 0.186 rad/s.

26.46
2-9.8

0.186 - = 0.22

[ury

Figure 5-11 gives a value of 1.25 which is the same as the value which is determined earlier.

The frequency of the roll motion of the tunnel element is equal to 0.567 rad/s.

26.46
2-9.81

0.576 - = 0.97

The graph in Figure 5-12 gives a value of 0.035, which is different than the value of 0.025, which is
found earlier.
The added mass for the roll motion is changed in:

as; =0.035-p-A-B?-L=0.035-1025-9.97 - 26.46 - 180 - 26.46% = 1.19 - 10° kgm?
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The heave frequency of the pontoons is equal to 13.57 rad/s.

6

13.57 - 2981

= 7.50

Figure 5-10 gives a value of 1, which is equal to the value which was found earlier.
The frequency of the sway motion of the pontoon is equal to 0.74 rad/s.

0.74 - =0.41

2-9.81

The graph in Figure 5-11 gives a value of 1,5, which is more than the value which is determined
earlier.
ass =2-15-p-T-B-L=2-15-1025-428-6-36 =2.84-10% kg

The frequency of the roll motion of the pontoon is equal to 6.47 rad/s.

11.7 - = 6.47

2-9.81

The graph in Figure 5-10 gives a value of 1. This means that the added mass for this motion is
unchanged.

The new added mass matrix is equal to:

[4.9 - 107 0 0 0 0 0
| 0 6.1- 107 0 0 0 0 |
a2l 0 0 1.2-10° 0 0 o |
| o 0 0 3.8+ 106 0 o |
l 0 0 0 0 5.7 - 10° 0 J
0 0 0 0 0 1.26 - 10°
The matrix of natural frequencies is:
13.576 0 0 0 0 0
[ 0 0.293 0 0 0 0 ]
0=l 0 0 11635 0 0 0 |
I 0 0 018 0 0 |
[ 0 0 0 0 0719 0 J
0 0 0 0 0  0.545
The natural periods are:
[0-462 0 0 0 0 0
| 0 21450 0O 0 0 0 |
7| 0 0 0.540 0 0 0 |
° =1 9 0 0 33807 0 0 |
l o 0 0 0 8470 0 |
| 0 0 0 0 0 11.52J

The Eigenmatrix is:
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5.6

0.066 0.710 0 0 0 0 ]

0 0 —0.001 0996 0066 —0.016
p=| © 0 0341 0012 —0.096 0.013 |
—0.998 0.704 0 0 0 0
0 0 0014 0086 0989 1
0 0 —0940 0012 -0.095 0.013

A third iteration is also performed, but the added mass values are during this process unchanged.

Conclusions natural frequencies

The natural frequencies and periods of the roll and heave motions without added mass, can be
determined relative accurate. These frequencies are dependent of the restoring coefficient of the
water and inertia properties of the system. These parameters can be determined precisely, which
results in natural frequencies which has to be accurate as well.

When added mass contributions are included, the accuracy of the results decreases. The method
which is used to determine the added mass values is rough, which results in uncertainty in the
results.

The influence of the stiffness of the suspension cables on the roll and heave frequencies is negligible
small. The natural frequencies obtained by the estimation and the natural frequencies determined by
the coupled model are almost equal to each other. From the stiffness contributions only the
restoring coefficient of the water is of importance for the heave and roll motions.
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6 Response amplitude operators

6.1

6.2

In this chapter the response of the system to wave loads is determined. Results are presented in
response amplitude operators (RAO). In dynamics, these functions are better known as frequency
response functions (FRF), where the ratio between the dynamic deflection over the static deflection
is determined.

Approach

In chapter 5, the structural mass matrix M, added mass matrix A and stiffness matrix K are derived.
To determine the response of the system damping parameters (C) and force contributions (F) have
to be added to the model.

The response of the system is determined using the following steps:

Determining of the damping values. Damping values are only of importance for motions which have a
frequency close or equal to one of the natural frequencies of the system. This is described in
paragraph 6.2.

Determining of the force contributions. For the force contribution only the Froude-Krylov is taken
into account. The Froude-Krylov Force is the integration of the undisturbed wave pressure over the
tunnel surface. Diffraction forces are not taken into account. This is described in paragraph 6.3.

Determining of the response amplitude operators. All the necessary contributions are determined.
The structural mass matrix M, added mass matrix A and stiffness matrix K are already derived in
chapter 5.

Damping

The tunnel element and the pontoons are during the motion affected by damping. Damping can be
defined as the dissipation of vibration energy from the system.

In principle, there are two ways in a system where energy may disappear from a vibration. The first
one is conversion into heat and the second way is emission to the surroundings.

The energy dissipation is a complex phenomenon in which a large number of dissipation mechanisms
are involved. Usually the damping which is applied in a model is a simple approximation of a much

more complex reality.

Constant damping implies that the damping is proportional to the velocity:
Fd =c-u

This damping force is added by the equation of motion and approximates the energy dissipation in
the system.

The reason that the damping force is often described as F; = c - u, is that it leads to a linear
differential equation, which can be solved easy.
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6.2.1

In case of quadratic damping the damping force is dependent of the square of the velocity:

Fy=tocou-al
g =5 cou-li

Often, quadratic damping is expressed to an equivalent damping factor, because then a linear
mathematical model is obtained, which has mathematical advantages.

When for example a 1-DOF mass-spring-damper system is loaded with a harmonic load, than the
approximation of the damping constant needs to be accurate for frequencies in the vicinity of the
natural frequency. In this cases damping becomes important, because mass terms and spring terms
neutralize each other. This is shown in Figure 6-1.
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Figure 6-1: Frequency areas with respect to motional behaviour

Damping in the system
In this thesis several damping mechanisms are involved. The two most important damping
mechanisms are potential (or wave) damping and viscous damping.

Potential damping is caused by the generated waves which dissipate energy from the moving system.
This damping mechanism can be described with a linear contribution in the equation of motion.
Viscous damping consists of viscous effects, such as skin friction or vortices. In the equation of
motion these contributions are often described as quadratic terms and need to be linearised when
solved in the frequency domain.

In most cases viscous effects are neglected in motion calculations of offshore structures. The major
part of the damping is caused by potential damping. Viscous damping contribution are in these cases
of minor importance (Journée and Massie 2000).
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6.2.2

However, there are examples where the viscous damping components can be significant for a certain
motion. For example viscous damping can be significant for rolling ships. This is because a circular
cylinder rotating about its centre does not generate waves. So, the potential damping in this case is
relative small. The viscous damping contributions can be significant due to the presence of for
example bilge keels. In this example the viscous damping contributions are relative large compared
with the potential damping contributions (Journée and Massie 2000).

In this thesis it is questionable whether potential damping is of major importance compared with the
viscous damping.

It is assumed that the tunnel element itself, while oscillating does not generate waves at the water
surface. So the potential damping in this case is relative small. The viscous damping contributions are
of major importance for the tunnel element.

The pontoons generate waves when they oscillate. Here, the potential damping components are of
major importance.

The damping in this thesis consists of many mechanisms that dissipate energy from the system, that
it is almost impossible to calculate or simulate it with a computer model sufficiently accurate. An
extra factor which makes it hard to determine the parameters is that the motions are coupled. This is
one of the reasons why often model tests are performed in a water basin.

The damping parameters are not analysed in this project. It is too time consuming to determine
these coefficients sufficiently accurate.

The damping in a system is described as a percentage of the critical damping. This percentage is

called the damping ratio:
c c

S Cr 2-VEk-m

In which the critical damping is defined as (Spijkers, Vrouwenvelder and Klaver 2006):

Cor =2-Vk-m

Four damping ratios are analysed, { = 0, ¢ = 0.01, { = 0.03 and ¢ = 0.05. The first damping ratio is
the undamped situation. The colours of the lines which represents the different damping ratios in the
graphs are respectively black, red, blue and green.

It is assumed that the damping is governed by this values. Nevertheless, it is strongly recommended
that this damping rations are analysed in another project. One way to determine these parameters is
to perform model tests in a water basin.

Damping in an N-DOF system

If the response of an N-DOF system is analysed, damping has to be taken into account. In almost all
cases the orthogonal relation is not valid for the damping matrix. This means that the equations of
motion are coupled which leads to time-integration.

In practice the response is determined with the assumption that the system is uncoupled. For each
mode a modal damping factor is defined. The estimation of this values is problematic when the
system has various damping mechanisms. Often, the modal damping forces commonly used for the
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single degree of freedom system are assumed and estimated conservatively. Exact estimation of the
damping, when relatively small, is not of great importance, because resonances needed to be
avoided anyway (Spijkers, Vrouwenvelder and Klaver 2006).

6.3 Froude Krylov force
The Froude Krylov force follows from an integration of the pressures on the body in the undisturbed
wave (Journée and Massie 2000).

6.3.1 Trajectories
Water particles carries out an oscillation in the y- and z- directions due to passing waves. The
trajectories of water particles are ellipses in general case. For long waves in shallow water the
trajectories are shown in Figure 6-2 (Journée and Massie 2000).
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Figure 6-2: Trajectories of water particles in long or shallow water waves

The trajectories for short waves in deep water are shown in Figure 6-3.
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[Source: Groen and Dorrestein, 1958]

Figure 6-3: Trajectories of water particles in short or deep water waves

6.3.2 Forces
The wave-induced pressures are used to determine the force on the tunnel element and the
pontoons.
The wave pressure at an arbitrary place in y and z direction and at time t is equal to:
H cosh(x - (h + 2))
p=—-p ccos(w-t—k-y)

2 P g cosh(k - h)

Or, in complex notation:
H cosh(;c -(h + Z))
2 P9 cosh(x - h)

p= cexp(i-w-t) -exp(—i-k-y)
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The wave pressures which act on the tunnel element are shown in Figure 6-4.
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Figure 6-4: Wave pressures on tunnel element

The wave forces and moments follow from an integration of the pressure p over the submerged

ﬁ=—ff p-ndS
s

M’:—f p-(#-7)dS
as

In which 71 is the outward normal vector on surface dS and 7 is the position vector of surface dS in

surface S of the body:

the coordinate system (Journée and Massie 2000).

6.3.3 Tunnel element heave
The heave force on the tunnel element can be determined by:
We
H cosh(k - (h—d)) cosh(x-(h— (d+ he)) Z
F. = . =L | - . ot = . d
TER =P g 75" ke < cosh(x - h) + cosh(x - h) f_gcos(w - y)dy

Or, in complex notation:

Frgn =

. cosh(ic - (h —d)) cosh(k - (h—(d +h,))
Py e'<_ cosh(k - h) cosh(x - h) >

We
T . .
f_wexp(l cw-t)-exp(—i-k-y)dy
2

The vertical axis in the coordinate system is positive in downwards direction, see Figure 5-4.
Therefore, a positive amplitude or translation is downwards directed.
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When these equations are integrated, one can see that the wave force is dependent of the wave
height H, the wave number k, the time t and the frequency w. All other parameters in the equations
are constants.
The equations are solved in the frequency domain, so the time related parts can be removed from
the equations. The wave height is given in the wave spectrum. This means for the equations above
that the part H/2 can be removed.
The wave number k is related to the frequency by the dispersion relationship:

w? = k- g -tanh(k - h)

This means that the wave force is only dependent of the wave frequency w.

6.3.4 Tunnel element sway
The sway force which act on the tunnel element can be determined on a similar way.
The wave induced pressure is equal to:

he
y cosh(;c-(h—d—7+z)>

p=p-g-5- cosh(e 1) ~exp(i-w-t) - exp(—i-Kk-y)

The sway, or horizontal, force follows from the integration of the pressure over the tunnel height.

Frgs =

H . . W . W
p-g-E-Le-exp(l-w-t)-(exp(z-x-—)—exp(—t-K-—))-

2 2
he
cosh K-(h—d—7+z>
f dz

cosh(x - h)
6.3.5 Tunnel element roll
The roll force follows from the integration of the pressure multiplied with the distance vector.

>
o

eI

FTET‘ -
H L cosh(k - (h — d)) COSh(K (h—(d+ he))
Py e'< cosh(k -h) cosh(x - h) )
We

2 H
fWey-exp(i-w-t)-exp(—i-x-y) dy—p-g-E-Le-exp(i-w-t)-

2
h
he An—g_Ce
( ( VVe) ( . VVe)) IT cosh(;c (h d > +z))d
expli-k > exp|—i-x > _%z cosh(x - ) VA

6.3.6 Froude Krylov forces on tunnel element
The Froude Krylov forces which act on the tunnel element are shown in Figure 6-5. The red line
represents the force in vertical direction (heave), the green line represents the horizontal force
(sway) and the moment (roll) is given with the blue line.
The x-axis of the graph represents the frequency w of the wave. The y-axis of the graphs gives the
maximum force per wave amplitude { in Newton (N).
The graph in Figure 6-5 gives the maximum forces for a wave amplitude which is 1 m high (H =
2 m). When for example the wave height doubles, the forces will double too.
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FK-forces on tunnel element per wave amplitude {
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Figure 6-5:Froude Krylov Forces on Tunnel Element. Red=horizontal force, green=vertical force, blue=moment

6.3.7 Pontoon heave

The Froude Krylov force which act on the pontoon is determined by adding the forces which act on

the floaters of the pontoon.

The first step is to determine the draft of the pontoon. The floaters of the pontoons carry the dead

load of the pontoons itself and 2% overweight of the tunnel element.

F_(Z-mp+0.02-me)-g

drp=z

2k,

The pressures which act on the pontoons are given in Figure 6-6.

A

Figure 6-6: Wave pressures on pontoon
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The total heave force which act on the pontoons is equal to:
Fpp =
H cosh(K < (h— drp))
cg-—-2-L. - . Cew ) -
P93 p < cosh(x - h) exp(i-w-t)

Wp Wp

2 t2p 2

Wp exp(—i-k-y)dy + pr ; exp(—i-k-y)dy
2 2 4

6.3.8 Pontoon sway
The horizontal force which act on the pontoon does not influence the motions of the tunnel element.

This can be seen in the Eigenmatrices which are given in paragraph 5.4.1 and paragraph 5.5.2.

Also, a good approximation of the force is hard to determine. The approach which is used to
determine the sway force for the tunnel element is not valid for this situation, because it is not valid
for points which are above the still water line (z > 0).

6.3.9 Pontoon roll
Only the heave-contribution is taken into account by the roll moment. The sway force is not
determined for the pontoon and gives therefore also no contribution to the wave induced moment
which act on the pontoons.

Fp, =
cosh (K . (h — drp))
—pg—-2-L. - . e e 1)
P95 p cosh(x - h) exp(i- - 1)
_Tp+2'yp @
f_@ y-exp(—i-k-y) dy+f@_2.ypy-e><p(—l-x-y) dy

6.3.10 Froude Krylov forces on pontoons
The Froude Krylov which acts on the pontoons are shown in Figure 6-7. The x-axis represents the
wave frequency and the y-axis gives the forces in Newton per wave amplitude {. This is explained in

paragraph 6.3.6.

58



6.3.11

FK-forces on pontoons per wave amplitude
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Figure 6-7: Froude Krylov Forces on pontoons. Red=horizontal force, blue=moment

Diffraction force
A part of the waves will be diffracted, requiring a correction of the Froude-Krylov force. One finds the
additional components by using the relative motion principle. One component is proportional to the
acceleration of the water particles and one is proportional to the velocity of the water particles
(Journée and Massie 2000). The total force on the tunnel element is the Froude-Krylov Force and the
diffraction force, which is given by:

F=Feg+A)-{+C(w)-¢

The diffraction force consists of added mass coefficients, damping coefficients multiplied with
respectively accelerations and velocities of water particles.
The acceleration of a water particle is equal to (Journée and Massie 2000):

cosh(rc -(h+ z))

. L2
U= sinh(k - h)

ssin(w-t—kKx-y)

sinh(K -(h+ Z))
' sinh(x - h)

2

ccos(w-t—K-y)

Generally it can be said that the diffraction part of the total force is small for waves with low
frequencies (long waves). At higher frequencies there is an influence of diffraction on the wave force.
In other words, diffraction forces can be significant when the sectional dimensions of the tunnel
element are a substantial fraction of the wavelength.
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6.4

6.5

The diffraction force is not taken into account in this report.

Definition response amplitude operators
The response of the system can be calculated by determining the response amplitude operators
(RAO).

The equation of motion is given by:
(M+A)-£+C 2 +K-x=F()

The load function and the response function are given by respectively:
Fit)=F-exp(i-w-t)
x(t)=Z-exp(i-w-t)

Substituting of the load function and the response function in the equation of motion gives:
(—w? (M+A)-R+i-w-C-2+K-%)-exp(i-w-t)=F-exp(i-w-t)

This can simplified into:
(—w?  M+A)+i-w-C+K)-2=F

The response amplitude operator is defined as:
£2=(Cw? M+A)+i-w-C+K)-F

This analysis is very simple to understand and to perform. The disadvantage of this method is that
the inverse operation in the previous equation is hard to calculate for systems with many degrees of
freedom.

When this strategy is used some strange phenomena occurs in the output of the analysis. The
computer software which is used (Maple) is apparently unable to determine the inverse in a good
way. This is an essential step in the solving strategy and it lead to problems in the output of the
results (see Appendix E). It is not analysed why Maple cannot handle with this command. It is
assumed that another software package, for example Matlab, is able to solve the problem.

Therefore the Modal Analysis is used to determine the amplitudes. This method is explained in
Appendix C.3.2.

Results

The response amplitude operators give information about the influence of waves per frequency.
These graphs are given in Figure 6-8 to Figure 6-13. Different damping ratios are represented by the
lines in different colours. The line in black is the solution without damping (¢ = 0). The lines in red,
blue and green represent a modal damping ratio of respectively { = 0.01, { = 0.03 and { = 0.05.

In Figure 6-8 and Figure 6-9 it can be seen that the response amplitude operators of both heave
motions are almost equal to each other. This is caused by the relative stiff connection between the
tunnel element and the pontoons by the suspension cables.
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6.5.1

The response amplitude operators of the roll motions of the tunnel element and the pontoons are
also almost identical to each other, see Figure 6-12 and Figure 6-13. This is also caused by the stiff
connection between the tunnel element and the pontoons.

Different response amplitude operators are obtained at the sway motions. This is caused by the fact
that there is no direct (relative stiff) connection in horizontal direction between the tunnel element
and the pontoons. The response operators of the sway motions are given in Figure 6-10 and Figure
6-11.

The system can be divided in two separate systems which can be seen in the Eigenmatrix (see
paragraph 5.5.2). The heave motions are a separate system and the sway and roll motions are a
separate system.

These systems have respectively two degrees of freedom and four degrees of freedom. A result for
the response amplitude operators is that the graphs will have respectively a maximum amount of
two and four resonance peaks.

The graphs which represents the response amplitude operator of the heave motion of the tunnel
element and the pontoons will have a maximum amount of resonance peaks of two. The graphs
which represent the roll and sway motions of the tunnel element and the pontoon will have a
maximum amount of resonance peaks of four.

RAO of heave motions
The response amplitude operators which show the heave motions of the tunnel element and the
pontoons are given in respectively Figure 6-8 and Figure 6-9.

RAO DOF x1 (heave TE)
30-

20+

RAO=x/T[]

10+

o+H— ~ —_—
0 0.5 1 1.5
 [rad/s]

Figure 6-8: Response amplitude operator of degree of freedom x1 (heave tunnel element)
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RAO DOF x4 (heave P)
30-

20

RAO=x/T[-]]

10+

1) I N — S
0 0.5 1 1.5
 [rad/s]

Figure 6-9: Response amplitude operator of degree of freedom x4 (heave pontoons)

6.5.2 RAO of sway motions
The response amplitude operators which show the sway motions of the tunnel element and the
pontoons are given in respectively Figure 6-10 and Figure 6-11.

RAO DOF x2 (sway TE)
90-

80
70
60+

50

/T[]

40

RAO

30
20+

10+

- .
0 0.2 0.4 0.6 0.8 1
 [rad/s]

Figure 6-10: Response amplitude operator of degree of freedom x2 (sway tunnel element)
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RAO DOF x5 (sway P)
12

10+

RAO=x/T[-]
o
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o [rad/s]

Figure 6-11: Response amplitude operator of degree of freedom x5 (sway pontoons)

6.5.3 RAO of roll motions
The response amplitude operators which show the roll motions of the tunnel element and the

pontoons are given in respectively Figure 6-12 and Figure 6-13.
RAO DOF x3 (roll TE)

0.8+

0.6

RAO= x/T [rad/m)]

0.4 1

0.2+

) l k

T T T T |. T T T
0 0.5 1 15 2
 [rad/s]

Figure 6-12: Response amplitude operator of degree of freedom x3 (roll tunnel element)
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6.5.4

6.5.5

RAO DOF x6 (roll P))

0.8+

o
[<)]
1

RAO= x/T [rad/m]

o
=
1
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Figure 6-13: Response amplitude operator of degree of freedom x6 (roll pontoons)

Analysis of the results
It can be concluded that the heave motions of the tunnel element and the pontoons are relative

small, when the frequency of the waves is higher than 0.45 rad/s. This is equal to a natural period
To which is smaller than 14 s.

In reality there is a second peak in the graph at w ~ 13.6 rad/s (which is equal to T, = 0.46 s). This
peak is only theory, because in reality damping is present. A relative small amount of damping causes
the complete vanishing of the peak which belongs to the high frequency.

This high frequency corresponds to the mode where the heave motion of the pontoons dominates.

Three different peaks can be distinguished in the response amplitude operators of the sway and roll
motions (see Figure 6-10 to Figure 6-13). The fourth peak is a high frequency, which is not plotted.
The high frequency corresponds to the mode where the roll motion of the pontoons dominates. This
frequency is observed at w =~ 11.6 rad/s, which is approximately equal to Ty =~ 0.54 s.

As said before, it is almost impossible to obtain resonance in this high frequencies, because the peak
in the graphs are vanished when damping is added. A second reason that it is hard to get resonance
in these frequencies is that a wave field with waves with a period of T < 0.6 s do not exist at the
immersion site. The two high frequencies have no effect on the motions of the system. Therefore

these frequencies are neglected.

Frequency range for resonance

Resonance can occur in the frequency range between approximately 0.2 rad/s and 0.8 rad/s. Four
of the in total six frequencies are located in this range. The two other frequencies are higher than
11.5 rad/s and are not of importance, which is explained in paragraph 6.5.4.

The corresponding periods of this frequency range is approximately 8.5s < Ty < 22 s.
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6.5.6

6.6

Wave fields with a large amount of relative high waves should be avoided in this frequency range,
when this is possible. This can be concluded on the basis of two results: the response amplitude
operators and the matrix of natural frequencies which is given in paragraph 5.5.2.

Motion in irregular waves

The response spectrum of a motion can be found by using the transfer function of the motion and
the wave spectrum. This is described in paragraph 4.5.

The response spectrum can be calculated by the wave spectrum multiplied with the square of the
response amplitude operator.

The variance of the motion spectrum is given by the integration of the motion spectrum. The
significant motion amplitudes are defined as the mean value of the highest one-third part of the

X1/3 =2+ v/ Mox

The significant motion amplitudes are not determined.

amplitudes (Journée and Massie 2000):

The variances of the six motion spectrums are:
[mo;xl'l 0.000574
| Mosx2 | 0.000862
|Mo;x3| _ [0.0000343 |
|mo;x4| — 0.000571 |
|mo;x5 [ 0.00411 J
lmo;xGJ 0.0000335

Conclusions response amplitude operators
The response of the system is dependent of mass, damping, stiffness and force contributions.

Damping, added mass and force contributions contain a certain amount of uncertainty. For the
added mass contributions this is already described in paragraph 5.6.

Damping parameters are the most difficult parameters to determine accurate for hydro mechanical
problems. Model tests or computer simulations can provide good estimations for one mass-spring
systems. However, in this thesis the motions of the pontoons and tunnel element are coupled, which
is a complicating factor to determine damping parameters accurate.

Three critical damping ratios are assumed for determining the response of the system. It is
recommended that accurate damping parameters need to be determined in another thesis or
project.

It must be mentioned that damping parameters are only relevant during resonance. When the
motions are determined for frequencies which are not in the vicinity of the natural frequencies,
damping is not of importance.

Force contributions consists in this model only of the Froude-Krylov force. The influence of the
diffraction force is assumed to be negligible small.
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7 Forces in suspension cables

7.1

When the tunnel element is lowered and is located close to the bottom, motions of the tunnel
element are restricted. Damage can occur when a tunnel element collides with a previous installed
tunnel element. Therefore, the motions are limited when the tunnel element is close to the bottom.

In the beginning of the immersion operation, the tunnel element is close to the water surfaces. Here,
motions (displacements, velocities or accelerations) of the tunnel element itself are not problematic,
because the tunnel element can oscillate without any risk of colliding to a previous installed tunnel
element. However, the forces in the cables need to transfer the forces which act on the immersion
system. The forces in the cables are restricted to a minimum and a maximum allowed value.

In this chapter the focus is on the forces in the suspension cables which are caused by wave-induced
loads.

In paragraph 7.1 the method to determine the forces in the cables is described. This theory is used to
determine the forces in the suspension cables. The wave-induced forces in the contraction and
mooring cables are not analysed in this report. Also currents and other loads are ignored.

Method to determine the forces in the cables
The forces in the cables are derived by:
Feabie = k-x

The force in the cable is equal to the stiffness [N /m] multiplied with the relative displacement [m].

Xs
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Figure 7-1: Forces in cables

The forces in the cables s1, s2 c1, c2 m1 and m2 are respectively (see Figure 7-1):

We
Fg1 = kg - xl—x4+(x3—x6)‘(7—3’e>

W,
FsZ ks : <x1 — X4 + (_x3 + x6) : (76_ Ye)>
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7.2

N|§

he
Foq=k.- (x1 - (1 —sin(a,)) + x;, - cos(a;) — x3 - ( -tan(a.) + 7) -cos(a.) — x4)

N|§

he
Fo, =k, - (x1 - (1 —sin(a,)) — x;, - cos(a;) + x5 - ( -tan(a,) + 7) -cos(a.) — x4)

NS

Fpi=kny - (—x4 - sin(a,,) + x5 - cos(ay,) — X¢ ( -tan(a,,) + hpd) . cos(am))
o
2

Foo =k, - (—x4 - sin(a,,) — x5 * cos(ay,) + xg ( -tan(a,,) + hpd) . cos(am))

The displacements are determined from the displacements which are determined in the frequency
domain in paragraph 6.5. The displacements for a specific frequency can be determined by:
x =Re(X-exp(i-w-t))

The force in the suspension cables consists of a constant tension force related to the overweight of
the tunnel element and a force which is related to the wave-load.

The overweight of the tunnel element is transferred to the pontoons by 4 suspension cables. The
tension force in one suspension cable is equal to:

p _002:g:-p-V _002:981-1025 (180 2646 9.97)

= 2387 kN
d . 2 387 k

The minimum force in a suspension cable should be 500 kN in the serviceability limit state. The
maximum force should be 5000 kN. The restrictions to the minimum and maximum forces in the
cables are given in Appendix A.3.

Two different kind of waves are analysed. The first wave is a wind wave with a period of T = 4 s and
a wave height of H = 0.8 m. The second wave is a swell wave with a height of H = 0.4m and a
period of T = 8 s. Both wave loads are also summarized.

Damping is assumed to be 3 percent of the critical damping.

Results

In Figure 7-2 the force in the suspension cable s1 (see Figure 7-1) is plotted which is caused by waves
with a height of H = 0.8 m and a period of T = 4 s.

The force in suspension cable s1 is also determined for a wave load with a period T = 8 s and a wave
height of H = 0.4 m. These forces are shown in Figure 7-3. A summation of both forces is shown in
Figure 7-4.
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Force in suspension cable s1 (H=0.8m, T=3.9s)
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Figure 7-2: Force in suspension cables by a wave load (H=0.8m, T=3.9s)
Force in suspension cable s1 (H=0.4m, T=8s)
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Figure 7-3:Force in suspension cables by a wave load (H=0.4m, T=8s)
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7.3

Force in cable s1 (H=0.4 m, T=8s & H=0.8 m, T=3.9)

5000

4000

3000+

Force in cable [kN]

20004

1000+

0 T T 1
0 50 100 150
time [s]

Figure 7-4: Force in suspension cables by a wave load (H=0.4m, T=8s and H=0.8m, T=3.95s)

The minimum force in the cables by a wave with a period of T=3.9s and a wave height H=0.8 m is
2150 kN. The maximum force is equal to 2600 kN.

The minimum and maximum force in the cable for the wave with a period of T=8 s and a wave height
of 0.4 m are respectively 1750 kN and 3150 kN. For the summation of the cable forces, the minimum
and maximum forces are respectively 1500 kN and 3250 kN.

When the forces in Figure 7-2 and Figure 7-3 are compared it can be seen that short wind waves have
a small influence on the total force in the cables. Longer swell waves cause higher forces in the
cables, even when the wave height of the swell waves is half the wave height of the wind waves.

It can be seen in the matrix of natural frequencies, which is given in paragraph 5.5, that one of the
natural frequencies of the system is almost equal to 8 s. During resonance, relative high forces in the
cables are expected. Very low frequencies and very high frequencies of waves have a negligible
influence on the forces in the cables, because they are not in the vicinity of one of the natural
frequencies.

Design criteria

In the graphs which gives the forces in the suspension cables no safety philosophy is applied. This is
not a main topic of this report, so the theory is briefly described.

For design of the immersion equipment, wave combinations should be studied which are
representative for design criteria. In this study only the influence of the periods of wind waves and
swell waves is analysed. Wave heights are in the analysis not of importance, because the system is
linear. Doubling the wave amplitude result in a doubled amplitude of the response of the motion.

For design of the immersion equipment a maximum wave height should be determined. Also a safety
factor for the strength should be applied.
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7.3.1

Maximum wave heights follow a Rayleigh distribution. A possibility to determine the wave height for
design in SLS conditions is given in paragraph 7.3.1.

Maximum wave height

It is often desirable to make a statistically-based guess of the highest wave that can be expected in a
storm. One reasoning is to assume that the chance that this wave will be exceeded is zero. The wave
height which belongs by a probability of 0 is H = co m. This is not a practical result for engineers.

A pragmatic method is to choose the maximum wave height that will be exceeded once in every
1000 waves. It will take at least 3 hours for 1000 waves to pass by in a storm. By that time the worst
peak of a storm will probably be past.

The corresponding rule of thumb for H,,,, is derived hereafter (Journée and Massie 2000).

The wave amplitudes will follow a Rayleigh distribution (see paragraph 4.2). The probability density
function of the Rayleigh distribution is given by:

flx) = %. exp <_ (0 .Xﬁ)2>

The probability that a wave amplitude {, exceeds a certain threshold value a can calculated by:

PG> = | Tf dx
=%-Loox-exp<—(a -x\/f)2> dx
a?
o)

In paragraph 4.2.3 it is described that the significant wave height can be derived from the standard

deviation:
H1/3 - 4’ -0

It follows that (Journée and Massie 2000):

P(H H) = 2 H 2
(w> )—exp - <H1/3>

With P(H,, > H) = 1/1000, H becomes:

N 2\ 1
eXp Hy;) |~ 1000

i (r505)
-2

Which van be rewritten in:

H=H1/3' =1.86‘H1/3

70



7.3.2

7.4

7.5

The wave height which can be expected with an exceeding probability of 1/1000 is equal to
1.86 * H1/3.

Maximums according to Longuet Higgins
The most probable maximum can be determined according to the following formula of Longuet
Higgins, which is equal to the maximum wave height which is determined in paragraph:

Xmax = Xmean + 0 "/ 2 -In(N)

Where x;,04n is the average value, o is the standard deviation and N is the number of oscillations of
a considered period.

The expected maximum in a span of time is subject to a statistical distribution. The Rayleigh
distribution, where the most probable maximums are determined, is such that there is still a chance
that the largest outcome will exceed this value.

There is a method to determine extreme values including a so-called risk parameter a to reduce the
probability of exceedance. With this method not the most probable maximum is considered but a
higher design value. For small @ and N this design value can be calculated by:

N
Xmax = Xmean + 0+ [2+1n (;)

A common value in the Serviceability Limit State condition for the risk parameter a is 1%. In the
Ultimate Limit State condition a lower risk parameter of 0.01% can be used.

Safety factor for strength

A safety philosophy for the strength of the materials should be applied. Different strategies can be
used to determine the safety factor of the strength. A simple way is to apply an overall safety factor
of for example 1,5. It is also possible to split up the safety factor in different components. With this
method a lower safety factor can be achieved.

Comparison with the Marin model

In the beginning of this thesis it was intended to compare the results with the outcome of the Marin-
model. Unfortunately, the outcome of the Marin model differs from the outcome in this report.
Natural frequencies of the system and response amplitude operators where desired in order to
compare. The results of Marin are determined in a time-domain simulation with an irregular wave
field. It is not possible to compare the time-domain results with the frequency response functions
which are obtained in this thesis.
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8 Sensitivity study

8.1

8.2

The response of the tunnel element and the pontoons to certain wave conditions can be modified by
changing some model characteristics of the immersion system. This can be useful when waves with a
certain frequency, which is close or equal to the natural frequency, often occur at the immersion
location. The natural frequencies can be changed to avoid resonance. In this chapter some possible
modifications of the immersion system are given to change the natural frequencies and the response
of the system.

Floaters
The restoring coefficient of a pontoon, which consist of two floaters, is given by:
kW = 2. p- g A

Where A is the cross section of the floaters in the x- y- plane.
When the cross section of the floaters changes the stiffness k,, also changes. Enlarging the cross
section A will result in a higher restoring coefficient.

The natural periods of the motions will decrease as a result of a higher restoring coefficient.

2.m
Toz_
k

m

The natural period decrease with a factor v/2 when the cross-section A of the floaters is doubled.

Mass of the tunnel element

The tunnel element has an overweight of 2 percent during immersion. This overweight is carried by
four suspension cables. The dynamic load causes a change in the force in the cables.

It is required that there is always a tension force in the suspension cables. The tunnel element is
uncontrollable, when the prestress force in the suspension cables is completely disappeared.

The force in the cable consists of a static part and a dynamic part:

Fiotal = Fstatic + denamic(t)

The static force is always a tension force (positive) and is not dependent of time. The dynamic force
can be negative too. A negative dynamic force means that the total force in the cable will decrease.

The total force in the suspension cables should not exceed a maximum value in the Serviceability
Limit State. Both criteria can be summarized in the following requirement, which must be fulfilled

during immersion.

The force in the suspension cables should not exceed the Ultimate Limit State (ULS) conditions:
0 < Fs;cable(t) < Fs;ULS
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8.3

In fact always a safety margin is present, which leads to the following condition in the Serviceability
Limit State (SLS):
Fs;min < Fs;cable (t) < Fs;SLS

This means that the total force in the cable is limited by a lower bound and an upper bound.

The force in the cable caused by the wave load can be so large that the prestress force in the cables
is disappeared. The prestress force in the cable can be enlarged by increasing the overweight of the
tunnel. This can be done by filling the ballast tanks with more water.

The force caused by the dynamic load in the cable is allowed to be larger as a result of a higher
prestress force in the cables. It must be mentioned that this is only true for the lower bound. The
extra prestress force can cause problems to the maximum allowed force in the cable.

Cables

The function of the suspension cables is to transfer the overweight of the tunnel element to the
pontoons. The forces consist of a force caused by a static load and a force caused by dynamic loads.
The total tension force in the cables should not exceed a minimum value and a maximum value. This
is explained in the previous paragraph.

The stiffness of the cables is derived with Hooke’s Law:
_ F-L E-A E-A

xX=—7——->F=—x > k=——

E-A L L

One can see that the stiffness increases when the Young’s Modulus or the cross section of the cable
increases. The stiffness decrease when the length of the cable is increased.

More overweight leads to an increase of the forces in the cable. Therefore, a cable is necessary which
can handle the required maximum force. However, enlarging the diameter of the cable will increase
the force in the cable caused by the dynamic load.

The maximum allowed force in the cable is proportional to the cross-section A of the cable.

Enax = Omax * Acabie

Enlarging the diameter of the cable is not by definition sufficient when the maximum capacity of the
cable is not large enough, because due to the higher stiffness larger forces are introduced.
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Concluding remarks

In the previous sections the dynamic behaviour of tunnel elements during immersion is studied. In
the introduction the research questions are stated. In this section the main conclusions of this study
are summarized.

During the research it is found that the natural frequencies are reliable when added mass values are
determined accurate. The stiffness of the cables, restoring properties of the water and inertia
properties can be determined accurate. Added mass values contain some uncertainty, resulting in
natural frequencies which are less accurate.

It is also found that the influence of the suspension cables on the natural frequencies of the system is
small. When only the natural frequencies of the immersion system are analyzed, a simple hand
calculation can be performed to estimate the natural frequencies.

Frequencies of swell waves are in the vicinity of one of the natural frequencies of the system, which
means that swell waves have more influence on the motions of the system compared to the
influence of wind waves.

For motions which are described during resonance, damping parameters need to be accurate.
Damping is hard to describe in this problem, because several damping mechanisms can be
distinguished which extract energy of the system.

The influence of the swell waves on the forces in the suspension cables is also larger compared to the
influence of the wind waves, which is in accordance with the swell and wind wave induced motions.
To avoid resonance the system can be adjusted. This must be done in advance.

The response of the immersion system can partly be determined in a tender-phase of an immersed
tunnel project with the theory and model which is described in this thesis. The analysis in this report
provides a method to estimate the dynamic behaviour.

For a complete view of the response of the system, professional research should be done. Complex
phenomena such as the response to oblique waves are for example not studied in this thesis.

The hydrodynamic coefficients in this study contain a lot uncertainty. It is recommended that these
values are analyzed in following research in order to obtain reliable results of the response of the
system during resonance. Especially the damping parameters need extra research. Added mass
values contain also uncertainty and needs to be analyzed as well.

In the beginning of the research is was intended to compare the results with the model composed by
Marin. Unfortunately, it was not possible to compare, because the results of the model of Marin did
not contain the required information, such as the natural frequencies of the system and the response
amplitude operators.

In order to give the accuracy of the results it is recommended that the results of this model are
compared to the Marin data or data which is measured during immersion.

It is recommended to use Matlab instead of Maple, when the dynamic behaviour of a tunnel element
is studied in a following project.
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Appendix A Constraints and schematisations
In this Appendix the constraints are given and the schematisations for the model are derived. The
first part of this appendix is related to the constraints.

Position

During the immersion of a tunnel element two positions of the tunnel element are considered
governing.

The first position is when the tunnel element is approximately 1 m. below surface. Here, the tunnel
element has a maximum influence from wave and current forces. The second position is when the
tunnel element is close (0,5 m) to the gravel bed. In this position the constraints consists of minimum
movements which are acceptable.

Immersion spread
Two different immersion spreads are studied in the pre-phase of the project in Korea. The first model
tests, which are done by Marin, are carried out with the immersion spread as shown in Figure |.

Suspension

MCJF{—"_'_' l\ /Contraction
— I:Iclj:lbl:i — /Mooring Z

30°
25° Y
250, M6 M1 M2
I
Cc3
L2a ! C1
M5\
Longitudinal | ) Y
\ L2 L1*
PE SE
X
L2b
ca Cc2
M8 M7 M4 M3

* L1 will be attached to the previous element

Figure I: The initial immersion spread

In the results of these model tests was concluded that the mooring and contraction lines should be
installed less steep to decrease the vertical component of the force in these lines. Therefore a second
immersion spread is set up. The tunnel elements in Korea are immersed according to the new
immersion spread. Model tests and numerical simulations are also performed for the new immersion
spread.

As a result of the larger length, the stiffness of the cables will be lower. Marin concluded that the
latter will result in lower peak forces, but increases the movements of the pontoons and the tunnel
element.

The second immersion spread, which is given in Figure Il is also used to determine the motions of
the tunnel elements in this study.
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Figure II: Immersion spread which is used for immersing of the elements in Korea

A.1.2 Water depth
The water depth is the height between the bottom of the waterway and the water level. The depth
of the trench is not included in this value.
Three average water depths can be distinguished. These are 12 meter, 23 meter and 32 meter.
Approximately four tunnel elements must be immersed in the shallow part of 12 meter in the trench.
These are the elements which are located near the land abutments (element 1, 2, 17, 18).
Half of the remained elements (element 3-9) must be immersed in the average water depth of 23
meter and the other (element 10-16) in an average depth of 32 meter. An overview of the positions
of the tunnel elements is shown in Figure 2-2.
Marin assumed that a depth of 23 meter will result in governing forces as result of shorter lines with
respect to a depth of 32 m. Therefore two critical depths can be distinguished, namely 12 and 23
meter.

With the two different positions and the two different average water depths, four combinations can
be made which can be used for the numerical input of the model:

- Water depth of 12 m., tunnel element at 1 m. below surface;

- Water depth of 12 m., tunnel element at 0.5 m. above gravel bed;

- Water depth of 23 m., tunnel element at 1 m. below surface;

- Water depth of 23 m., tunnel element at 0.5 m. above gravel bed.

In this study is focused on the third combination, a water depth of 23 m. and the position of the
tunnel element at 1 m. below surface, which is shown in Figure II.
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A2

A2.1

Schematisations
The stiffness of the cables is given by Hooke’s Law. This relation between force and displacement is
only valid when the cables are prestressed.

In reality however, the spring stiffness of the cables is non-linear, because the elasticity module of
cables is non-linear (Feyrer 2007).

The cables consists of strands which are twisted around a core. The strands consists of wires. For the
immersion operation 6x36 Warrington Seale cables with a steel core are used. This means that the
cables consist of 6 strands and that the strands consist of 36 wires. The cross-section of a 6x36
Warrington Seale cable can be seen in Figure IIl.

Figure llI: Cross section of a 6x36 Warrington Seale cable

Cross-section of the cables

The ratio between the sum of the nominal metallic cross-section areas A of all wires in the rope and
the circumscribed area A, of the rope, based on its nominal diameter d, is called the fill factor f
(Feyrer 2007).

The nominal cable diameter is the diameter of the circle circumscribing the rope cross-section.

The nominal metallic cross-sectional area A (sum of the wire cross-sections) is given by:
A=C-d?

With nominal metallic cross-sectional area factor C:
T
C=f-—
f 4
The nominal metallic factor of the 6x36 Warrington Seale cables is 0.46.

The diameter of the contraction cables is 54 mm. The mooring cables have a diameter of 40 mm and
the suspension cables are 58 mm.

80



A.2.2 Young’s modulus of the cables
The elongation effect of materials under the effect of mechanical stresses is described by the
elasticity module. The elongation of a wire rope depends on the elasticity module of wire materials.
However, the wire rope elasticity module describing wire rope elongation differs from the wire
elasticity module. The rope stress-extension curve is not linear. Therefore, the wire rope elasticity
module is not constant but depends on the tensile stresses (Feyrer 2007).

As an example, the graph in Figure IV shows the increase of tensile stress as the rope extends of a

Warrington 8x19-IWRC-sZ cable. For rope wires with a core (for example steel) progressive increase
and hysteresis loops for loading and unloading occurs.

Warrington 8 x19-IWRC-sZ
rope diameter d = 16.3 mm
1004  met. cross-section A = 122.9 mm? 4800
nominal strength R, = 1770 N/mm?
measuring length L = 2000 mm
kN N

80 /

1. loading ~

60

g

V
<400
residual /
40 41— extension eyqg

/ loading
. /// /% 10.unloading | ngg
pd X/ | 0

O L] T
0 2 4 6 8 10 12 % 14

rope extension &

rope tensile force S
rope tensile stress o,

Figure IV: Stress-extension curves for a stranded wire rope with steel core

The most important conclusion about the graph in Figure 1V is that the Young’s modulus is not a
constant value. One can see that the elasticity module differs with respect to the amount of loadings.
During immersion it is unknown which line is governing. Therefore it is hard to describe the elasticity
module correct, because the elasticity module is dependent on the current and previous elongation
of the wire ropes.

The design value of the elasticity module is according to the manual of the wire rope supplier® equal
to:

E=105-10*N/ .,

! Source: Mennens (1995), technisch vademecum, staalkabel-, hijs- en heftechniek, 3rd edition, page 62
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This constant value is used in the analyis. The effect of the hysteresis loops is not taken into account.

Length of the cables

The length of the cables has been determined for a tunnel element 1 m. below surface and with a
water depth of 23 m.

In Figure Il one can see that the contraction cables run from the anchor to the tunnel element,
thereafter over the tunnel deck to the pontoons. One can divide this cable in three parts.

The angle in the z-y plane is equal to 15 degrees. The length of the first part of the cable is equal to:

Z
L = ~ 3.86 -
sin(15) z

Thereafter, the cable runs over the tunnel deck. The length of this part is (given by Mergor):

L =+/8.1382 4+ 29.522 = 30.62 m

The last part of the cable runs from the tunnel deck to the pontoon. This length is equal to the
distance between the pulley on the pontoon deck and the water surface and the distance between
the water surface and the tunnel deck:

L=65+1=75m

The total length of one contraction line is equal to:
L. =386-(23—-1)+30.62+7.5=123.04m

One can distinguish two different angles in the mooring cables. These can be seen in Figure Il and
Figure V. The angle in the z-y plane is 10 degrees. The angle in the x-y plane is equal to 25 degrees.

The length of the mooring cables is according to Figure V equal to:

z 2
L = 2 ( ) ~ 6.34-
\]Z + tan(10) - cos(25) 6.34-2

The height z is dependent on the draft of the pontoons. The draft of the pontoons during the
immersion operation is 3.162 m. The height of the floaters is 6 m and the thickness of the deck of the
pontoons is 2.5 m. This results in a length of:

L, =634-(23+6+25—-3.162) =179.66 m
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| z/sin(10) 7

—\10° ztan(10) / _|
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/ z/(tan(10)cos(25))

Figure V:Length mooring line

The suspension wires are on a pulley. This means that the suspension wires consists of 13 parallel
lines on sheaves.
The length of the suspension cables measured from the pontoon to the pulley on the deck of the
pontoon is equal to:

Ly=75m

The lengths of the cables, which are given above, are not the entire length of the cables. The
remaining part of the cables is rolled on the drums. In order to move the element or the pontoons,
one can slack or haul the cables by rolling the wire rope drums.

The remaining length of the cables which is rolled on the drums is not included in the length which is
used to determine the spring stiffness of the cables.

Spring stiffness of the cables
The wires consist of an axial stiffness and a length. The ratio between these two factors is the spring
stiffness of the cables.

When the motions of the tunnel element are analysed in the z-y plane, the spring stiffness of the
contraction cables is equal to the spring stiffness of two single contraction lines. The cables are
placed one after another in the z-y plane. For example the spring stiffness of the contraction cable is
equal to the stiffness of the cables C1 and C3. This can be seen in Figure II.

=2 0.46-d2-E_2 0.46 - 0.0542 - 105 - 106 _ 22804 KN/
¢ L - 123.04 - ' m

The spring stiffness of the mooring cables consists of the equivalent stiffness of 4 single mooring
lines. This is shown in Figure Il. The cables have an angle of 25 degrees in the x-y plane, so the
stiffness is reduced by a factor cos(25)?, which can be seen in Figure VI.

046-d2-E _ 257 0.46 - 0.042 - 105 - 106
L - Rrcos 179.66

k,, = 4 cos(a)? - =1413.3 KN/,
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The stiffness of the suspension wires is equal to:

046-d?-E 2-13-0.46-0.0582 - 105 - 10°
Lg B 7.5

ke =2-13- = 563000 KN/,

x-cos(a)

Fr=k-x-cos(a)?

F,=x-cos(a) :sin(a)

Figure VI: Displacement 'x' results in a force in the spring

A.2.5 Restoring coefficient of the water
The restoring coefficient of the pontoons is equal to:

ky=2-p-g-A=2-1025-9.81-36-6 = 4343868 N/,

A.2.6 Inertia properties of the pontoons
The function of the pontoon is to guide the tunnel element during the immersion operation. The
pontoons can fulfil this demand only if the pontoons are afloat, so the pontoons must always have
freeboard left for stability.
The pontoons consists of a top deck and two floaters. The immersion equipment is installed on the
deck of the pontoons. The top deck transverses the overweight of the tunnel element to the floaters.
A buoyancy force is generated by the floaters.

The mass of the pontoons consists of the mass of the floaters, the mass of the top deck and the mass
of the immersion equipment which is installed at the top deck.

The mass of one floater is 176 - 103 kg and the mass of the top deck and the immersion equipment
is equal to 1048 - 103 kg.

The total weight of one pontoon is equal to:
my, = 1400 - 103 kg

One can also determine the mass of the pontoon by measuring the draft of the pontoons. The
amount of displaced water multiplied with the density of water is equal to the mass of the pontoon.
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The mass moment of inertia of a body with an axis passing through an arbitrary rotation centre is
given by:

] = fyzdm+ jrzdm+ Z-T-Iydm

The first term is the mass moment of inertia of an object passing through its own centre of mass. The
second term becomes m - r? and the third part is by definition zero, because the origin is at the
centre of mass. Therefore the mass moment of inertia passing through an arbitrary rotation centre
becomes:

] = fyzdm+m-r2

The mass moment of inertia of the pontoons is not straightforward to determine. One must know
exactly where the mass on the pontoon is divided.

The rotation centre of the pontoon is assumed at the centre of the horizontal axis and at the bottom
of the top deck.

The floaters are schematized as point masses. The mass moment of inertia of the floaters about the
axis passing through its own centre of mass is negligible in comparison to the moment of inertia of
the floaters through the centre of mass of the pontoon. Therefore the mass moment of inertia of one

floater becomes:
2

= .22176'103'g—3 =05862‘108k 2
Jp=mp -7 > ' gm

The top deck schematized as a beam. The dead load of the top deck and the load of the immersion
equipment is assumed to be equally distributed.
The mass moment of the top deck is equal to:

1 , 1
Jea =75 *Mea W =E-1O48-1O3-42.52 = 1.577 - 10® kgm?

The mass moment of inertia of one pontoon is equal to the sum of the moment of inertia of the
floaters and the top deck:
Jp=Jwp+ 2] = (1577 +2- 0.5862) - 108 = 2.75 - 108 kgm?

Inertia properties of the tunnel element
The tunnel element is schematized as a stiff box.

The cross section of the concrete is equal to (see Figure 2-3):
A, = 26.46-9.97 —2-10.06-7.29 — 6.6 - 2.5 = 100.49 m?

The specific weight of reinforced concrete is 2400 kg/m3.
The weight of the tunnel element is (without the weight of the bulk heads and the ballast water)
equal to:

100.49 - 180 - 2400 = 43.41 - 10° kg

During immersion the mass of the tunnel element is equal to 1.02 times the buoyancy force:
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m, = 1.02 - 26.46 - 9.97 - 180 - 1025 = 49.65 - 106 kg

The mass moment of inertia of the tunnel element is determined by calculating the mass moment of
inertia of a rectangle cross section. Thereafter three rectangles with the size of the direction lanes
and the escape gallery are subtracted.

The centre of mass is assumed in the centre of the tunnel element (at 26.46/2 and 9.97/2).

The mass moment of inertia of a rectangle is equal to:

1
— . . 2 2
] 5 m = +2z°)
1
J=7 (26.46 -9.97 - 180 - 2400) - (26.462 + 9.97%) = 7.593 - 10° kgm?

The mass moment of inertia of the direction lanes is equal to:

]:
2.

1
<E' (10.07 - 7.29 - 180 - 2400) - (10.072 - 7.292) + (10.07 - 7.29 - 180 - 2400) -

10.07 2.5\2
(T +0.6+ 7) = 3.823 - 10° kgm?

The mass moment of inertia of the escape gallery is equal to:

1
— . (25-6.6-180-2400) - (2.5% + 6.62) = 0.030 - 10° kgm?
12 g

The mass moment of inertia of the tunnel element is (exclusive ballast tanks and bulkheads):
Jo = (7.593 — 3.823 — 0.03) - 10° = 3.74 - 10° kgm?

Constraints

The constraints during immersion consist of maximum allowed forces in the wires and winches and
maximum allowed velocities. The latter consists of rotational and translational velocities.

The constraints, which are given below, are equal to the ones which are used for the model tests
performed by Marin.

The maximum forces in the wires are limited. These limitations are given in Table Il.

Line Normal conditions [kN] (SLS) Extreme conditions [kN] (ULS)
Contraction + Longitudinal 600 NA
Mooring 350 NA
Suspension max. 5000, min. 500 NA

Table II: Maximum forces in the serviceability limit state and the ultimate limit state

The suspension wires may not slacken (F = 0 kN).

The vertical angle of the suspension wires should not be more than 5% in transversal direction. This is
visualized in Figure VII.
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max. 5%

|

Figure VII: Maximum angle in transverse direction

The constraints to maximum movements, velocities and accelerations with respect to translations
and rotations are given in Table Ill.

TE lowering TE close to touchdown
Speed | 50 cm/s 0.17 cm/s
M tstoX,Yand Z . . .
ovements to an Total | Suspension wires max 5% Amplitude +/- 18.5 cm
. Speed | 1.5°/s 1.0°/s
Rotat d
otation mx, my and mz Total | 2.0° 150

Table Ill: Constraints to maximum movements and rotations
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Appendix B Stiffness matrix

The stiffness matrix is derived with the displacement method. This method is used, because it
directly provides the stiffness matrix.

The first step of determining of the stiffness of the system is to analyse the forces in the cables. The
force in the cables is calculated by multiplying the stiffness of the cable with a displacement x. The
latter is done for each degree of freedom.

Thereafter the reaction forces of the cables which act on the tunnel element and the pontoons are
determined.

B.1 Forces in cables
The forces in the cables by a displacement x; are given in Figure VIII.

’ v ’

Fsl I:c1

Fe1 F

Y

Fcl l Fcl
X1

Figure VIII: Force in the cables by a displacement x1

The forces become:
Foy =ke-x;- (1 - Sin(ac))
Fg = ks * X1

The forces in the cables by a displacement x, are shown in Figure IX.
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v 1

Fc2 FcZ
Fc2 Fc2
Fc2 | I Fc2
|_ '\
Fc2 : Fc2
: X2

Figure IX: Force in the cables by a displacement x2

The force in the contraction cables becomes:
Fey = k¢ - x5 - cos(a;)

The forces in the cables by a displacement x5 are given in Figure X.

! I f

Fs3 Fc3 Fc3 Fs3

Fc3 Fc3

Figure X: Force in the cables by a displacement x3

The elongation of the contraction cable by a rotation x3 is shown in Figure Xl and is given by:

W, h
arm-x; = (Te -tan(a.) + 7‘3) - cos(a;) * x3

1
o L tan(a)We/2
)% :

\ /2

Figure XI: Elongation of the contraction cables by a rotation x3
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The forces in the cables become:

We he
Fo3 = (7 -tan(a.) + ?) -cos(a.) “ k¢ - x3

W
F53=(T_Ye)'ks'x3

The forces in the cables by a displacement x, are shown in Figure XII.

Fm4 Fm4
T Foa Fea Fea Fsa T
Fw4 Fs4 Fc4 I:c4 Fs4 Fw4
I:c4 Fc4
Figure Xll: Forces in the cables by a displacement x4
The forces become:
Feqg = ke - x4
Fina =k * x4 - sin(ap)
Foy = kg x4
Fya =Ky * x4
The forces in the cables by a displacement x5 are given in Figure XIII.
FmS I:m5
) <+“—
| —> |
Fins :_ Xs :_ Frns

Figure XlllI: Forces in the cables by a displacement x5
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The force in the mooring cable becomes:
Fins = ki « x5 - cos(am)

The forces in the cables by a displacement x¢ are shown in Figure XIV.

Figure XIV: Forces in the cables by a displacement x6
The forces in the cables are equal to:
o
Fre = (7 -tan(a,,) + hpd) - cos(m) * km * X
We
Fge = (T_Ye)'ks'x6
o
Fye = (7_3119) Ky - Xg

B.2 Reaction forces of the cables
The reaction force of the contraction and mooring cables on the pontoon and the tunnel element is
shown in Figure XV.

Fm

. TFC

y

o
A’//, \ Gm

Fo <«
/\ac

Figure XV: Reaction Force on Tunnel Element
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The reaction force at the edge of the tunnel element of the contraction cables is shown in Figure
XVI.

F.-cos(ay) Fc

The reaction force which acts at the tunnel element is:

Figure XVI: Reaction force on the Tunnel Element
sin(a,)
CXC)
COS \ ==
(3

The reaction force of the contraction cables in the middle of the tunnel element is given in Figure
XVII.

ac

=2-Fc-sin(7)

For = F -

45°

A

Fe

Figure XVII: Reaction force on the Tunnel Element

The reaction force which is given in Figure XVII is equal to:

Fe
F=—FC% =F -2
" cos(45) ¢ V2

The reaction force of the mooring cables which act on the pontoon can be derived on a similar way
as done for the contraction cables.
The reaction force of the mooring cables on the pontoon is:

E, =2-F,-sin (‘%’“)
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B.3 Forces on the tunnel element and the pontoons
The forces which act on the tunnel and element and the pontoons are shown in this paragraph.

The forces on the tunnel element are shown in Figure XVIII when:
X1 >0, =0,x%3=0,x4 =0,x5 =0,x¢ =0

’ v |

Fsl Fcl Fcl Fsl

Fsl Fsl

Fcl\/(z) FC1V(2)

8 A 3

Feir2-sin(o/2) Fe1-2-sin(ac/2)

e

Figure XVIII: Forces when x1>0, x2=0, x3=0, x4=0, x5=0, x6=0

The forces on the tunnel element are shown in Figure XVIII when:
X1 =0, >0,x3=0,x4 =0,x5 =0,x4 =0

Fov(2)  Fov(2)

¥ P Fo2sin(as2)

Feor2-sin(o/2)

X2

Figure XIX: Forces when x1=0, x2>0, x3=0, x4=0, x5=0, x6=0
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The forces on the tunnel element are shown in Figure XX when:
X1 =0,x=0,x3>0,x, =0,x5 =0,x54 =0

F53 Fs3

Fs  FaV(2)  FeV(2) Fss

F-2-sin(o/2)
Fesr2-sin(o/2)

Figure XX: Forces when x1>0, x2=0, x3>0, x4=0, x5=0, x6=0

The forces on the tunnel element are shown in Figure XXI when:
X1 =0, =0,x%3=0,%4 >0,x5 =0,x =0

Frmas2-sin(am/2) X4 Frmas2-sin(am/2)
FT FT |ET FT
s c4 C S
T 4 4 4 T
Fuwa Fea FarV(2) Faa'V(2) Fsa Fuwa
| N/ |
Fear2-sin(o/2) Fea2-sin(a/2)

Figure XXI: Forces when x1=0, x2=0, x3=0, x4>0, x5=0, x6=0
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The forces on the tunnel element are shown in Figure XVIII when:
X1 =0,x=0,x3=0,x, =0,x5 >0,x54 =0

Frns-2-sin(0tm/2) Fms Fims Fms'2-sin(am/2)

—
Xs

Figure XXlI: Forces when x1=0, x2=0, x3=0, x4=0, x5>0, x6=0

The forces on the tunnel element are shown in Figure XXIIl when:
X1 =0, =0,x%3=0,%x4 =0,x5 =0,x =0

Frs2:sin(o,/2
Fme:2-sin(am/2) ° (am/2)

Figure XXIlII: Forces when x1=0, x2=0, x3=0, x4=0, x5=0, x6>0

B.4 Equations of motion
The equations of motion without added mass, damping and forces becomes:
me . 561 =

—2-F51—2-Fcl+2-Fcl-2-sin(%)-cos(%)+2-Fs4+2-FC4—2-FC4-2-
sin (&) - COS (%)
2 2

a2 a2
me-jc'z=—2-F62+2-FC2-2-sin(7c) +2-F63—2-FC3-2-sin(76)
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Je X3 =
2-Fcz-2-sin(%)-(%—tan(%)-%)-cos(%)+2-FCz-%—z-FC3-2-sin(%)-

VI/e aC he aC he Vl/e Vl/e
(T (3) ) cos(F) -2 R 2obe (Fome) 4 20Re (- 0e)

a a
2-mp-5c'4=2-F51+2-FC1—2-FW4—2-FS4—2-FC4—2-Fm4-2-sin(7m)-cos(7m)

Uy 2 2
Z-mp-y'c'_r,=—2-Fm5+2-Fm5-2-sin(7m) +2-Fm6—2.Fm6-2-sin(7m)

2.]p-j€'6=
W,
|4

W, a a
2-FS3-(f—ye)+2-Fm5-hpd+2-Fm5-2-sin(7’")-(7—hpd-tan(7m))-

cos(%n)_2'Fs6'(%_3’6)_Z'Fm‘s.Z'Sin(%n)'(%_hpd.tan(%n»'cos(a?m)_z.
Fm6'hpd_2'Fw6'(%_yP>

The equations of motion can be rewritten into:
me . 5("1 =

—2-kg x;+2 keox;-(2-sin(a,) —1—sin(a,)?) +2 ks x4+ 2k x4+ (1 —sin(a,))
My Xy = =2 ke x5 - cos(ac)? + kg - x5+ (W, - sin(a,) - cos(a,) + h, - cos(ag)?)

Je X3 =
k.- x, + (W, -sin(a,) - cos(a,) + h, - cos(ag)?) — kg« x5 -

w,? h.2 w. 2
(Te -sin(ac)? + W, - h, - cos(a,) - sin(a,) + % - cos (afc)2> -2 ke x3- (—e — ye) +2 k-

2
We 2
x6'<7_ye>
Z'mp'jé4=

2 kg x1+2 keoxg—2- ke xy-sin(@;) =2 kg x4 —2 ke xg—2ky x4 —2 k-
sin(ay,)? - x4

2-my, - Fs = =2 ky - cos(@m)? - x5 + k- x6 + (W, - sin(ay) - cos(am) + 2 - hyq + cos(ay)?)
2'][)'5&6:
w 2
2-kg-xg- (79 - ye) + ki - x5 - (W, - sin(ayy) - cos(@m) + 2 - hyq - cos(am)?) — 2 - ks -
(7_3’(2) 'x6_2'kw'(7_yp> 'xé_km'xé'

2
<Tp- sin(ap)® + 2 - Wy, - hyg - sin(ay,) - cos(apy) +2 - hpdz . cos(am)2>
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B.5

The stiffness of the system can be numerically approximated by:

[1.129 - 10° 0 0 -1.13-10° 0 0
| 0 4.272-10% —3.644-107 0 0 0 |
K = 0 —3.644-107 1.782-10% 0 0 —-1.779 - 1011
-1.13-10° 0 0 1.14 - 10° 0 0
0 0 0 0 2.741-10° —1.713-107
0 0 —-1.779 - 1011 0 -1.713-107 1.809 - 101

One can see that the stiffness matrix is symmetric.

Non-linear equations of motion, without added mass, damping and forces

If one wants to determine the natural frequencies and the periods with a relation between the
horizontal motions of the tunnel element and the pontoons the non-linear effect of the suspension
cables must be taken into account.

This effect is shown in Figure XXIV.

<« Fn pontoon

P

X
Fod

LS (LSZ+X2)0.5

tunnel Fi

Figure XXIV: Non linear effect of the suspension cables on the horizontal translations

The force in the suspension cable is equal to the spring stiffness multiplied by the elongation of the

Feapie = ks - <"L§ + x? _Ls>

cable:

The angle of the cable is equal to:

can ()
a = arctan|\—
Lg

The force in the cable can be divided in a horizontal and a vertical component:

; x 2 2
F, = sin| arctan ) kg-| |Ls+x%—Lg
S
x 2 2
F, = cos| arctan ) kg | |Ls+x%—Lg
S

The coupled equations of motion which are used to analyse the natural periods are linearly
dependent of the displacement x4, x5, ..., Xg. When the above mentioned effect of the suspension
cables is taken into account, the equations of motion are no longer linearly dependent of the
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displacement x. Therefore the theory, which is given in paragraph C.1, cannot be used to determine
the natural frequencies and periods.
However, it is possible to solve the equations of motions in the time-domain.

Numerical methods should be used to integrate the six equations in order to approximate the natural
periods of the system. The results of the numerical analysis should be plotted and the natural periods
can be distinguished from the graphs.

One needs 12 initial conditions for the six coupled second order differential equations. The initial
conditions consists of a deflection x and a velocity x at time t = 0 for each degree of freedom.

At t = 0 all initial conditions should be 0 except the deflection of degree of freedom i. The
displacement of degree of freedom i should be x; = 1. Thereafter, the natural period T; of motion x;
can be determined by integrating the equations of motion. The output of the analysis can be plotted
and the natural period can be read from the graph.

The integration process of the equations of motions is done with help of a computer program.

The effect of the suspension cables on the horizontal translations of the tunnel element and the
pontoons is neglected. In this paragraph the non-linear effect of the suspension cables is derived.

The equations of motion in Appendix B.4 are added with the following components, which makes the
equations non-linear:
The forces are shown in Figure XXV when:

x1=0,x>0,x3=0,x, =0,x5 =0,x5 =0

sin(tan™ (xo/Ls)-ks ((L*+%,7)>*-L) sin(tan™(xo/Ls) ke ((Ls+x,°)*>-Ly)
i I
cos(tan™ (x/Ls) ke (L7+5°)"*-Ls) - cos(tan™ (xo/Ls) ks ((Ls"+%,°) L)
cos(tan™ (x,/Ls)-ks ((L*+x,%) L) cos(tan™(xo/L)-ke ((L>+%,°)*>-Ls)
- 4—T <_T
sin(tan™(x,/Ls)- i sin(tan™(x,/Ls)-
ko (L") L) . ke ((L24%7)°5-Ly)
| X,

Figure XXV: Forces when x1=0, x2>0, x3=0, x4=0, x5=0, x6=0

The reaction forces are shown in Figure XXVI when:
x1=0,% =0,x3=0,x4 =0,x5 >0,x5 =0
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sin(tan™ (xs/Ls) ks ((Ls*+xs%)**-Ls) sin(tan™ (xs/L) ks (L +x5%)°-L)

] 7 — “ :

i_ l X5 l i_
cos(tan™(xs/Ls)-ks:((L*+x5%)**-Ls) cos(tan™(xs/L) ks ((Ls+x57)*>-Ls)
cos(tan™(xs/Ls)-ks:((Ls*+x5”)*-Ls) cos(tan™(xs/L) ks ((Ls+x52)*>-Ls)

sin(tan(xs/Ly)- —> = in(tan”(x/Ly)
ke ((L54xs)°7-L) ke (L 4x52)*%-L,)

Figure XXVI: Forces when x1=0, x2=0, x3=0, x4=0, x5>0, x6=0

The following non-linear terms are added by the linear equations of motion:
me . 56"1 =

X2 2 2 Xs 2 2
—2 - cos | arctan ) kgo| [Ls+x,%—Lg)—2-cos|arctan ) kg | [Ls+ x5% — Lg
S S

me .72'2 =
x x
—2 - sin (arctan (L—2>) kg - < /LE + x,2 — L5> + 2 - sin (arctan (L—s)) kg - < [L2 + x5% — LS>
S N
Je X3 =
x h X
2 -sin (arctan (—2)) ckeo| [L24x,2—Lg) - =—2-sin (arctan (—5>) kg | L2+ xs2—Lg |-
L. \ 2 L. \
he
2
2- mp . jé4 =
x x
2 cos (arctan (L_Z)) kg - < ’Li + x,2 — LS> + 2 cos (arctan (L—S)) kg - < [L2 + x5% — LS>
S S
2 mp . .7'C'5 =
x x
2 - sin (arctan (L—2)> -k - < /L§ + x,2 — LS> —2-sin (arctan (L—5)> kg - < /L§ + x52 — LS>
S S

2:-Jp-%=0
The equations of motions with the non-linear effect of the suspension cables are given by:
me . 5&1 =

2k x;+2kex;-(2-sin(a,) —1—sin(a)?) +2 kg x4+ 2 kex4 (1 —sin(a,)) —

X2 2 2 Xs 2 2
2 - cos|arctan ) kg-| |Ls+x3°—Ls ] —2-cos|arctan ) kg-| |Ls+ x5%—Lg
N N
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me‘jéz =

x
=2 ke xy - cos(ac)? + ke - x5 - (W, - sin(a,) - cos(ac) + he - cos(ac)?) — 2 - sin (arctan (_2)) _
S
/ X
ks - < L3 + x,2 — Ls> + 2 -sin (arctan (L—S)) <k - ( ng + x52 — Ls)
S

Je X3 =
k.- x, + (W, -sin(a,) - cos(a,) + h, - cos(ag)?) — kg« x5 -

w,? h.2 w. 2
(Te -sin(ac)? + W, - h, - cos(a,) - sin(a,) + % - cos (ac)2> -2 ks x3- (Te — ye) +2 k-
2

VVe . X2 2 2 he . X5
Xe |—=——¥e) +2-sinlarctan|—) |- ks-| L5+ x3* —Lg |-——2-sin|arctan|—) ] - ks -
2 L 2 L
h
( /L§+x52—LS>-7e

Z'mp'jé4_=

2 kg x1+2 keoxg—2-ke-xy-osin(ay) —2- kg x4 —2 ke xg—2ky x4—2 k-

x x
sin(amy)? « x4 + 2 - cos (arctan (L_z)) kg - ( /L§ + x,2 — LS> + 2 - cos (arctan (L—5)> kg -
S S
< ’L% + XSZ - LS)

2-mpy-Xs =

—2 -k - cos(am)? - x5 + ki - X6 - (W - sin(ay) - cos(ay) + 2 - hyg - cos(am)?) + 2 -
x x
sin (arctan (L_2)> -k - ( [L2 + x,2 — LS) —2-sin (arctan (L_5)> -k - < /Lﬁ + x5% — LS>
S S

2']p'5é6=

We y° . 2
2-ks-x3-(7—ye) +km-x5-(Wp-sm(am)-cos(am)+2-hpd-cos(am) )—Z-ks-
w, 2 w, 2
(7_3’6) 'xé_z'kw'(7_3/p) X — ko X6 -

2
(Tp- sin(ap)® + 2 - Wy - hyg - sin(ay,) - cos(ay) + 2 - hpdz . cos(am)2>

The Non-linear equations are only derived and are not used to determine the dynamic behaviour.
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Appendix C Modal analysis
In this Appendix the Modal Analysis is explained which is used to determine the natural frequencies
and the response amplitude operators.

Method to determine the natural frequencies

Consider free vibrations of a structure without damping and without external excitation. The

equation of motion in this case turns into the following equation (Gawronski 2004):
M-5+K-x=0

The solution of the above equation is:

x = X . el'w-t

Hence, the second derivative of the solution is:

= —w? %-elwt

1=

Introducing the latter uand ii into M - ii + K - u = 0 gives:
(K—w? - M)-£-e"*t=0

This is a set of homogeneous equations for which a non-trivial solution exists if the determinant
K — w? - M is equal to zero:
det(K —w?-M)=0

The above determinant equation is satisfied for a set of n values of frequency w. These frequencies
are denoted w1, W, ..., Wy, and their number n does not exceed the number of degrees of freedom,
i.e.n < ngy. The frequency w; is called the i™ natural frequency (Gawronski 2004).

Substituting w;in (K —w?-M)-%-e"®t =0, vyields the corresponding set of vectors
{21,22, ,gn} that satisfy this equation. The i vector %; corresponding to the i natural frequency is
called the i natural mode or mode shape. The natural modes are not unique, since they can be
arbitrarily scaled.

The matrix of natural frequencies is defined by:

wy 0 ... 0
0= 0 w, .. O
0 0 .. wy

The Eigenmatrix or matrix of mode shapes or modal matrix E, of dimensions n; x n, which consists
of n natural modes of a structure is given by (Gawronski 2004):

X11 X21 o Xm1

PPN N X2 Xoz o Xp2
E=[% £% Xn]

Xing Xong - Xnng

where £;; is the j"" displacement of the i"" mode.
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The free vibration of the system consists of the summation of the n principal modes of vibrations

=1

(Spijkers, Vrouwenvelder and Klaver 2006):
n
x(0)= ) & w(®) = E-u®)

C.2 Modal analysis
The particular solutions are also assumed to be a summation of eigenvectors.
M-E-ii+K-E-u=F(t)

Pre-multiplication of the left and right expressions by the transposed Eigenmatrix gives
ET-M-E-ii+ET-K-E-u=ET-F(t)

M*=ET-M-E

The Matrices M* and K* are defined as the Modal Mass Matrix and the Modal Stiffness Matrix:
K*=ET.K-E

The Matrices M* and K* are diagonal due to orthogonality conditions (Spijkers, Vrouwenvelder and

Klaver 2006).
The equations of motion can be rewritten into:
M*-ii+K*-u=ET-F

The following relation holds between the diagonal matrices M* and K*:
w?-M* =K*

Which can be written as (Spijkers, Vrouwenvelder and Klaver 2006):
[w? 0 .. 07]pmy; 0 .. 0 ki, O 0
2 ... 0 | 0 my .. O] |0 k3 .. O
' v 0 \_ [ O
0 m3; 0 0 0 k33

[ 0 w,? .
0 0 0 w,? 0 0
Because it concerns a fully uncoupled system, the equations above can also be written as:
mi; i+ mi - w?ow =2 - F@©) (=12..,n)

®© _ F"*(f) (i=12,..

my;

oT
_#F
M - x;

ﬂl’ + (A)iz U
C.3 Frequency Response Functions
In this paragraph the response of a harmonic load function on the system is analysed. The harmonic
load function is given by:
F)=F-exp(i-w-t)
The particular solution is assumed to be also a harmonic time function, having the same frequency as

the load function. The amplitude is unknown yet:
u(t)=u;-exp(i-w-t)
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C.3.1 Response on harmonic load (undamped)
The amplitude can be determined by substituting the load and response function in the decoupled

system. The equation of motion without damping is equal to:
M*-i+K*-u=ET-F

Substituting the load function and amplitude function into the equations of motion gives:

£7 - F-exp(i-w-t)

X
(—wz-ﬁi+wl~2-ﬁi)-exp(i-w-t)=_l T % (i=12,..,n)
M X

[t

For the amplitude follows (Spijkers, Vrouwenvelder and Klaver 2006):

1 2T - F
~ =1 — .
ui=w2_w2'£T.M.£. (l:1,2,...,n)
i X Xi

If the load vector consists of only one harmonic load and is active at degree of freedom x,,, the load

vector reads:
T
=00 .. 0 F 0 .. 0

[=»

The product &-T . E simplifies to one term:

_0_
0

T . F_ 5. % £ . £ 0f_o . »

ﬁl E_ [&11 EZL Epl Em] Fp —xpl Fp
0
ne

The amplitude ; is equal to:
1 1 x,-E
f; = L (i=12,..,1n)

. x p
= 2 T2 %T =
1— (ﬂ) wi X M-X;
a)l

The frequency response function is defined as (Spijkers, Vrouwenvelder and Klaver 2006):

HuiF ((1)) = ui(t) = & = %%# (l = 1,2, ...,TL), (p = 1,2, ,Tl)
P E,(t) E, 1 (2) w? T -M-%;
w;

i and p can assume values between 1 and n. As a result, n? different response frequencies functions

are defined:
[HU1F1 Hule Huan]
H, » =|Huzp1 Hy,p, Huzpni
ifp
|Hupey Hupr, - Hupry)

The relation between the harmonic functions i and F is
Q = Huin ) E
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C.3.2

The response formulated in the physical degrees of freedom x(t) is equal to:

x1(6)]
[ & 1 1 %-F
x(t) =1 .. |=Z&- YA AT, —-exp (i-w-t)
| = 1_(_) Wi Xp - M- X
lxn(t)J @i

The expression given above is the steady-state response. The steady-state response is the response
after the transient motion has died out.

Again, a frequency response function can be made which concerns a harmonic load at the position of
degree of freedom x, (Spijkers, Vrouwenvelder and Klaver 2006):

n
2 % Z 1 1 R %y
H (a)): a = == C— T — ( =1,2,...,n), :1,2,...,71
xXqFp Fp(t) Fp i (2)2 wiz &T .M - %; p (CI )
w;

This is the frequency response function (FRF) of degree of freedom i to the force applied to degree of
freedom p.

The frequency response function gives vertical asymptotes at the position of the natural frequencies
w; (i=12,..,n).

The frequency response matrix qupp contains n? possible combinations:

[HX1F1 Hx1F2 Hxan]
H — IHXZF]_ HXZFZ " HXZFn I
XqFp = [
Hy.r, Hxyp, - Hyyr,

The frequency response matrix quFp is symmetrical, because of Maxwell’'s Law (Spijkers,

Vrouwenvelder and Klaver 2006).

The relation between the amplitude vectors of the response and load is given by:

£=H, p -F

afp " =
Response on harmonic load (damped)
The ratio between the amplitudes of the load and the amplitude of the response is infinity at the
position of the natural frequency for the undamped frequency response functions.
In reality however, this is impossible, because damping is present.
The equation of motion with linear damping is equal to:

M-¥+C-%x+K-x=FE()

The forced vibration is assumed to be expanded in eigenvectors, which are known from the
undamped system.

x()= ) & w(®) = F-u®

=1

Multiplication with the Eigenmatrix and the transposed Eigematrix gives:
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ET-M-E-ii+ET-C-E-u+ET-K-E-u=ET-F(t)

Te modal mass and modal stiffness matrix are defined in paragraph C.2. The modal damping matrix is

defined as:
C*=ET-C-E

Until now, no special requirements have been laid upon the damping matrix C. In general, the modal
damping matrix is not diagonal, because the eigenvectors are not orthogonal with respect to the
damping matrix (Spijkers, Vrouwenvelder and Klaver 2006).

The modal analysis for damped systems does not result in a fully uncoupled system, and is therefore
in its most simple form not applicable for damped systems.

In this report, the damping matrix is assumed to be diagonal. The advantage of this assumption is
that the set of differential equations is fully decoupled:

M*-i+C*-u+K-u=ET -F(t)

The differential equation can be rewritten into:

T o +T

2 -C-% ;  E(t)
ui+%'ui+wi2'ui:/\_’;—_f\ (l=1,2,,n)

M- % Xp M-Xx

The modal damping ratio §; is defined as the relative damping ratio per uncoupled degree of

freedom.
~T ~
x: - C +X:
2:& w0 =—— (i=12,..,n)
X -M-X
The differential equation gets the following form:
oT
X - F(t
iy +20 & w0+ 0y =;T’——(2 (i=12,..,n)
X -M-X

The response of a harmonic load function is analysed. E is a vector which can be complex.
F(t)=F-exp(i-w-t)

The response function is assumed to be harmonic too, having the same frequency as the load
function, but with a phase shift ¢;.
u(t) =u;-exp(i-w-t)

The amplitude is derived by substituting the load function and response function in the equation of

motion.

A ; TE o,
u; = * L= ,,...,TL
0?4240 w it 0? BT MR

The phase shift is already included in the previous expression, because the sine function is written in
the complex notation. The phase shift can also be determined separately:
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2:8i 5
tan(<pl)—ﬁ (i=12,..,n)
1- (=
Wi
The amplitude is also equal to:
~T D
N % -F
fl, = i=12,..,n
{ —w2 R M-Z+i-w-2T-C-%+& K% ( )

If the load vector consists of only one harmonic load and is active at degree of freedom x,,, the load

vector reads:

F=[0 0 .. 0 E 0 .. 0
The product &-T . Esimplifies to one term:
-0-
0
TP =[Ry R R 2l 19 =% . F
X = X1 X2 Xpi Xni] Fp = Xpi Fp
0
ny
The amplitude in this case is equal to:
~ 1 Zpi -

U;

=
o

T —w?+2-i&w-ow+w: 2 -M-

The frequency response function Huipp (w) is defined as (Spijkers, Vrouwenvelder and Klaver 2006):

i w(t)
H,, ((U) ==
uifp E, " E®
1 -

= (i=12..,n),{pP=12..,n)

Uy
H,. w)=—== .
e, () B, —w*4+2-i-¢§ 0w w+o] 2 M-

Iz

The presence of damping causes a phase shift. The phase shift occurs in the response u;(t) with
respect to the load function Fp(t). Here the advantage of writing the sine and cosine function in
complex notation appears, because the phase shift is already included in the analysis.

The frequency response functions are summarized in a matrix:

[HU1F1 Hule Huan]
Hug, = ars fhare o Fhars
|Hy r,  Hu Hyr |

The response in the physical degree of freedom x is:
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n
1 Xpi
A pl D .
= X * . - ex l'(l)‘t
DB T e T e e

Again, a frequency response function can be made which concerns a harmonic load at the position of
degree of freedom x, (Spijkers, Vrouwenvelder and Klaver 2006):

~ n ~ A
Hy (@) = = = z ! L =12, ), (g = 1,2, m)
P E, i_l—w2+2-i-€i-w-wi+wi2 M-z

Note that when the damping factor &; is equal to 0, the response function is equal to the undamped
function which is given in paragraph .

The frequency response matrix qupp contains n? possible combinations:

[Hx1F1 Hx1F2 Hxan]
_ |Hx F, szFZ Hx F, I
Hyqr ~ | o 2 n|
\Her, Hapry, - Hapy
The total response is equal to:
2 = quFp -F
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Appendix D Maple file
The motions of the tunnel element and the pontoons are determined with Maple. The entire Maple
sheet is given in this Appendix.

restart : with(LinearAlgebra ) :
M := Matrix([[ me, 0,0, 0,0, 0], [0, me, 0, 0,0, 0], [0,0,Je, 0,0,0],[0,0,0,2-mp,0,0], [0,0,0,0,2-mp, 0], [0, 0,0,

0,0,2-Jp]]) : A == Matrix([[ all-p-We-he-Le,0,0,0,0,0],[0,a22-p-We-he-Le, 0,0,0,0],[0,0,a33 -p

-We>-he-Le, 0,0,0],[0,0,0,2-2-a44 p-Wf-drp-Lp, 0,0], [0,0,0,0,2-2-a55 p- Wf-drp-Lp, 0], | 0,0,0,0,0,2

. _ (2:mp+0.02- me)-g
J tdrp = > fow :

Wp 2
2 [T —yp) ‘p-drp-Wf-Lp- a66

[2-ks — 2-ke - (2-sin(oc) — 1 — sin(ac)?),0,0,-2-ks — 2-ke- (1 — sin(oe) ), 0,0], [0, 2-ke

Kx = Matrix[

~cos(oa:)2,—kc~(We-sin(occ) -cos(ac) + he~cos(ow)2),0, 0, 0], [0,—kc-(We-cos(ac)~sin(oa:) + he

2 2 he* 2 We 2
-sin( o )” + We-he-cos(ac)-sin(oc ) + T-cos(ac) ] +2~(T —yej ks,

'cos(ac)z),kc'( W;

2
0,0,-2-ks- [% —yej ] [-2-ks — 2-ke + 2-ke-sin( o), 0,0,2+ks + 2-kw + 2-ke + 2-km-sin(am)?, 0,

0], [0,0,0,0,2-km-cos( o), km- (Wp-sin( am) -cos(om) + 2-hpd-cos(am)?) ], [0,0,—2-1«(%
2 2 2
—ye) ,O,—km-(Wp-cos(OCm) -sin( am ) + 2'hpd'cos(00n)2),2'ks~ [% —ye) + 2-kw- [% —ypj

+km.[ Wf sin(am)? + 2-Wp-sin( om) - cos(am) - hpd + 2-hpd2-cos(m)2]m :

We := 26.46:he := 9.97: Wp := 42.5: Wf := 6:0c = ll—so-Pi:(xm = ll—é)o-Pi:hpd =25:yp:=3:km
= 1413.3-1000: ks = 563268 1000: kc := 2289.4-1000: kw := 4343868: ye := 0.665:h := 23:g = 9.81:

d:=1:p:=1025:Le := 180:Lp := 36: K = Matrix (6, 6) :

for i from 1 to 6 do for; from 1 to 6 do K[i,;] := evalf (Kx[i,j]) end end ; K;

1.12905136010° 0. 0. -1.12992971910° 0. 0.
0. 4.27207855910°  -3.64406926210 0. 0. 0.
0. -3.64406926210" 1.78167468510'! 0. 0. -1.77856630610'!
-1.12992971910° 0. 0. 1.13988776810° 0. 0.
0. 0. 0. 0. 2.74136758110°  -1.712518166107
0. 0. -1.77856630610'! 0. -1.71251816610" 1.80857169810"!

me = 1.02-p-he-We-Le : Je = 3.74-10° : mp = 1400-10° : Jp = 2.75-10° :al] = 1:a22 := 1.25:a33
= 0.035:a44 = 1:a55 = 1.5:a66 = 1:In := Matrix(6,6) :

for i from 1 to 6 do forj from 1 to 6 do In[i,j] := evalf (M[i,j] + A[i,j]) : end end ; M; 4; In;
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4.964568878107 0 0 0 0 0
0 4.96456887810 0 0 0 0
0 0 3.74000000010° 0 0 0
0 0 0 2800000 0O 0
0 0 0 0 2800000 0
0 0 0 0 0 5.50000000010° |
- 4.86722439010’ 0 0 0 0 0
0 6.08403048810’ 0 0 0 0
0 0 1.19269416010 0 0 0
0 0 0 3.79291377610° 0 0
0 0 0 0 5.68937066410° 0
0 0 0 0 0 1.26327734410°
- 9.83179326810’ 0. 0. 0. 0. 0.
0. 1.10485993710° 0. 0. 0. 0.
0. 0. 4.93269416010° 0. 0. 0.
0. 0. 0. 6.59291377610° 0. 0.
0. 0. 0. 0. 8.48937066410° 0.
i 0. 0. 0. 0. 0. 1.81327734410° |
NFsquared , Ex = Eigenvectors (K, In) :
T := Vector(6) : w := Vector(6) :
forifrom1 to 6
do w[i] = evalf (sqrt(Re(NFsquared[i]))) :
end: w; E := Matrix(6,6) :
forifrom1 to 6
do T1i] = evalf ( sqrt(Re(szvsg;ared[i])) ] :

end: T;

[ 13.57548412 |
0.2929311951
11.63499590
0.1858562629
0.7189311863
0.5452028587

[ 0.4628332405]
21.44935539
0.5400247117
33.80669130
8.739619908
11.52449076
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for i from I to 6 do forj from 1 to 6 do E[i,j] := Re(evalf (Ex[i,j])) : end:end;
E;
[ 0.06635769708 0.7100273792 0. 0. 0. 0.
0. 0. -0.0008320524674 0.9961620685 0.06638096247 -0.01632914772
0. 0. 0.3414127388  0.01245481117 —0.09624316801 0.01280203185
-0.99779589900.7041740700 0. 0. 0. 0.
0. 0. 0.01403794973 0.08576531970 0.9885834315  0.9997037622
i 0. 0. -0.9398082706 0.01226054483 —0.09504535424 0.01272221335 |
Kstarl = Transpose (E).K.E : Kstar := Matrix(6, 6) :
for i from 1 to 6 do Kstar[i,i] := Re(evalf (Kstarl[i,i])) : end:
Kstar;
- 1.28946859510° 0 0 0 0 0
0 4.53370719710° 0 0 0 0
0 0 2.94643410410"! 0 0 0
0 0 0 3.82523290110° 0 0
0 0 0 0 3.66218701010 0
| 0 0 0 0 0 2.85823535910° |
Instar] := Transpose(E).In.E : Instar := Matrix(6, 6) :
for i from 1 to 6 do Instar[i, i] :== Re(evalf (Instarl [i,i])) : end:
Instar;
7 6.99681058410° 0 0 0 0 0
0 5.28350620010’ 0 0 0 0
0 0 2.17652802310° 0 0 0
0 0 0 1.10739735510° 0 0
0 0 0 0 7.08542445010 0
| 0 0 0 0 0 9.61571845810° |
Cstar := Matrix(6, 6) :
forifrom1 to 6 do Cstar[i,i] := 2-sqrt(Kstar|[i,i] Instar[i,i]); end:
Cstar;
» 1.89970182010° 0 0 0 0 0
0 3.09540757210 0 0 0 0
0 0 5.06477892810' 0 0 0
0 0 0 4.11633467810’ 0 0
0 0 0 0 1.01878652110° 0
0 0 0 0 0 1.04850343810" |

Froude Krylov Forces
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_cosh(k-(h —d)) | cosh(k-(h — (d + he)))

FTEh = p'g-Le'( J-exp(l'w't)' int[exp( -I'xy),y=

cosh( k- /) cosh(x- /)
_We ﬂ)
2 72
FTEs := p-o-Le-ex (I-w-t)~(ex ( I-x-We ] Cex (_ I-x-We ])'int cosh(x-(h — 0.5-he — d + z)) L
P P T2 P 2 cosh(x-h) ’
_he  he |
e
FTEr = p-g-Le- cosh(k-(h —d))  cosh(x-(h — (d + he))) exp(I-0-1)- int(y-exp( Lkey) -
cosh( k%) cosh(x-4)
We We I-x-We I-x-We )
B ]—p-g'Le-exp(I'(n't)-(exp[ 3 J - exp( 3 ]J'mt[z
cosh(k-(h — 0.5-he — d + z)) he  he
: ,Z=m—— |
cosh(x-h) 2 2
FPh = p-g-2-Lp- cosh(x-(h — drp)) -exp([-co-t)-[int[exp( —I-K-y),y=—ﬂ LTS yp)
cosh( K- /) 2 2
+ int[exp( -1-x-y),y= % —2-p %j) :
FPs:=0:
FPr:=-p-g-2-Lp- COSh(K‘(h — drp)) -exp([-w-t) . [int[y-exp( —I~K-y),y=—ﬂ ..—ﬂ + 2 ypj
cosh( K- /) 2 2
+ int[y~exp( —I'K'y),y=?—2' yp %j) :

F = Vector(6) : F[1] := FTEh : F[2] := FTEs : F[3] := FTEr: F[4] := FPh:F|[5] := FPs : F[6] = FPr:x
_ abs[ Rootof ( Zg (¢7)’ = zg— o' h (e7) = ') ] .

h

L0 _plm( Re(FTEh) Im(FTEs) Im(FTEr)
' 1000 ° 1000 ° 1000
= "FK-forces on tunnel element per wave amplitud€", labels = [ "Frequency of the wave [rad/s]",
"Maximum Force on TE per wave amplitud€ [kN/m]"], labeldirections = [ horizontal , vertical ], font
= [Calibri, 1, 12], labelfont = [ Calibri, 1,10]);
Re(FPh) Im(FPr) | B . o
/ t( [ 1000 1000t ®=0.3, color= [red, blue ], thickness= 3, title
= "FK— forces on pontoons per wave amplitudel", labels= [ "Frequency of the wave [rad/s]",
"FK— forces on pontoons per wave amplitudd] [kN/m]"], labeldirections = | horizontal , vertical |, font

= [Calibri, 1, 12], labelfont = [ Calibri, 1,10]);

, ®=0..3, thickness= 3, color= [red, green, blue], title
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HuFaux = Transpose (E) : HuF ‘= Matrix(6) :

forifrom 1 to 6 do

forp from1 to 6 do

HuF[i,p] = HuFaux[i,p]/(—Instar[i, 1']-0)2 + Kstar|i, i]); end do
end do;

evalf (HuF) :

HxF = (E.HuF) :

xhead = evalf (HxF.F) :

#plot( {Re(xhead[1]), Im(xhead [1]), abs(xhead [1])}, ®=0..2, y ==2..4, numpoints = 10, color = [red, blue,
black ], title = "Response Amplitude Operator of DOF x1 (Undamped)'labels = ["o [rad /s]","RAO = x/{ [ -]
"], labeldirections = [ horizontal , vertical ], font = [ Calibri, 1, 12], labelfont = [ Calibri, 1, 10]);

#plot({ Re(xhead[2]), Im(xhead [2]), abs(xhead [2])}, @ =0..3,y ==2 .4, numpoints = 10, color = [red, blue,
black ], title = "Response Amplitude Operator of DOF x2 (Undamped)abels = [ "o [rad/s]", "RAO= xL [-]"],
labeldirections = [ horizontal , vertical ], font = [ Calibri, 1,12], labelfont = [ Calibri, 1,10]);

#plot({Re(xhead [3]), Im(xhead[3]), abs(xhead [3])}, ®=0..2,y ==0.2..0.5, numpoints = 10, color = [red, blue,
black ], title = "Response Amplitude Operator of DOF x3 (Undamped)'labels = [ "o [rad/s]",
"RAO= x/ [rad/m]"], labeldirections = [ horizontal , vertical |, font = [ Calibri, 1, 12], labelfont = [ Calibri, 1,
10]);

#plot({Re(xhead [4]), Im(xhead [4]), abs(xhead [4])}, ®=0..2,y ==2..8, numpoints = 10, color = [red, blue,
black ], title = "Response Amplitude Operator of DOF x4 (Undamped)abels = [ "o [rad/s]", "RAO =xL [-]"],
labeldirections = [ horizontal , vertical ], font = [ Calibri, 1,12], labelfont = [ Calibri, 1,10]);

#plot( {Re(xhead[5]), Im(xhead [5]), abs(xhead [5])}, ®=0..2.5,y ==2 .4, numpoints = 10, color = [red, blue,
black |, title = "Response Amplitude Operator of DOF x5 (Undamped)'labels = [ "o [rad/s]", "RAO= x/L [-1]"],
labeldirections = [ horizontal , vertical ], font = [ Calibri, 1,12], labelfont = [ Calibri, 1, 10]);

#plot( {Re(xhead[6]), Im(xhead [6]), abs(xhead [6])}, ®=0..1.5,y =0..0.4, numpoints = 10, color = [red, blue,
black |, title = "Response Amplitude Operator of DOF x6 (Undamped)'labels = [ "o [rad/s]",
"RAO= x/ [rad/m]"], labeldirections = [ horizontal , vertical |, font = [ Calibri, 1, 12], labelfont = [ Calibri, 1,
10]);
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HuFauxcl = Transpose (E) : HuFcl = Matrix(6) :
forifrom1 to 6 do
for p from 1 to 6 do

HuFcl[i,p] == HuFauxcl [i,p]/(—]nstar[i, i]'m2 + I-®-0.01- Cstar[i,i] + Kstar|i, i]); end do
end do;

evalf (HuFcl) :

HxFcl = (E.HuFcl) :

xheadcl = evalf (HxFcl .F) :

HuFauxc2 = Transpose (E) : HuFc2 = Matrix(6) :

forifrom1 to 6 do

for p from 1 to 6 do

HuFc2[i,p] == HuFauxc2 [i,p]/(—]nstar[i, z']-o)2 + I-®-0.03- Cstar[i,i] + Kstar[i, i]); end do
end do;

evalf (HuFc2) :

HxFc¢2 = (E.HuFc2) :

xheadc2 = evalf (HxFc2.F) :

HuFauxc3 = Transpose (E) : HuFc3 = Matrix(6) :

forifrom1 to 6 do

forp from 1 to 6 do

HuFc3|i,p| = HuFauxc3 [i,p]/(—]nstar[i, i]'o.)2 + I-®-0.05- Cstar[i,i] + Kstar|[i, i]); end do
end do;

evalf (HuFc3) :

HxFc3 = (E.HuFc3) :

xheadc3 = evalf (HxFc3.F) :

plot([abs(xhead[1]), abs(xheadcl [1]), abs(xheadc2 [1]), abs(xheadc3 [1])], ®=0..1.5,y = 0..30, color
= black , numpoints = 10, color = [ black , red, blue, green |, title = "RAO DOF x1 (heave TE)", labels
= ["o [rad/s]", "RAO= x/L [-]"], labeldirections = | horizontal , vertical |, font = | Calibri, 1, 12], labelfont
= [Calibri, 1,10]);
plot([abs(xhead[2]), abs(xheadcl [2]), abs(xheadc2 [2]), abs(xheadc3 [2])],0=0..1,y = 0..90, color = black,
numpoints = 10, color = [black , red, blue, green ], title ="RAO DOF x2 (sway TE)", labels = [ "o [rad/s]",
"RAO=xL [-]"], labeldirections = [ horizontal , vertical ], font = [ Calibri, 1, 12], labelfont = [ Calibri, 1, 10]);
plot([abs(xhead[3]), abs(xheadcl [3]), abs(xheadc2 [3]), abs(xheadc3 [3])], @=0..2,y =0..1.1, color = black,
numpoints = 20, color = [ black , red, blue, green |, title = "RAO DOF x3 (roll TE)) labels = [ "o [rad/s]",
"RAO= x/ [rad/m]"], labeldirections = [ horizontal , vertical |, font = [ Calibri, 1, 12], labelfont = [ Calibri, 1,
10]);
plot([abs(xhead [4]), abs(xheadcl [4]), abs(xheadc2 [4]), abs(xheadc3 [4])], ®=0..1.5,y = 0..30, color
= black , numpoints = 10, color = [ black , red, blue, green |, title = "RAO DOF x4 (heave P)", labels
= ["o [rad/s]", "RAO= x/L [-]1"], labeldirections = [ horizontal , vertical ], font = [ Calibri, 1, 12], labelfont
= [Calibri, 1,10]);
plot([abs(xhead[5]), abs(xheadcl [5]), abs(xheadc2 [5]), abs(xheadc3 [5])],0=0..1,y =0..12, color = black,
numpoints = 10, color = [ black , red, blue, green |, title = "RAO DOF x5 (sway P)", labels = [ "o [rad/s]",
"RAO=xL [-]"], labeldirections = [ horizontal , vertical ], font = [ Calibri, 1, 12], labelfont = [ Calibri, 1, 10]);
plot([abs(xhead[6]), abs(xheadcl [6]), abs(xheadc2 [6]), abs(xheadc3 [6])], ®=0..2,y =0..1.1, color = black,
numpoints = 20, color = [ black , red, blue, green |, title = "RAO DOF x6 (roll P))', labels = ["o [rad/s]",

"RAO= x/ [rad/m]"], labeldirections = [ horizontal , vertical |, font = [ Calibri, 1, 12], labelfont = [ Calibri, 1,
10]);
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a0

20 4

10 S

RA0 DOF %1 (heave TE)

a0 S

g0 +

70 S

G0+

al S

40 4

30 4

20 4

10 4

i [radys]
R&0 DOF x2 (sway TE)

o [radys]

115



Ra0= /T [rad/im]

Ra0=x/T[-]]
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R&0= /T [-]

Rio= /T [rad/im]
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(m—a)O])2
- i PR
SI=al g% exp| -125 | ——| |-y o
£orton| 35 (2]

s
26?02 )

-4
2 -5 ®
182 = o2-g7 o "rexp| —-1.25 | ——

o = piecewise (0 < w01, 6a,® > ®01,0b) : 0a = 0.07:0b := 0.09:g := 9.81:y/ := 33:92 :=3.3: w0l
— 2P o 2P
=7 1002 = o @i

Tl :=4:T72 :=8: ol := 0.00830104: 02 := 0.00013512: Hs! := 4-sqrt(int(SI, ®=0..10, numeric)) : S3 := SI
+ 82 : Hs2 = 4-sqrt(int(S2, ®=0..10, numeric) ) : Hstot := 4-sqrt(int((S3), ®=0..10, numeric)) :

plot(S3, ®=0..4, numpoints = 10, color = black, title = "Spectral Density"! labels = [ "Wave frequency o [rad/s]",
"Spectral Density [m"2s]"], labeldirections = [ horizontal , vertical ], font = [ Calibri, 1, 12], labelfont
= [Calibri, 1,10]);

Spectral Density
0.08 5

0.07 1
0.06 S
0.05 4
0.04 4

0.03 H

Spectral Density [m2%s)

0.02 4

0.01 4

I:I 1 I T | T
1] 1 2 3 g
Wave frequency w [rad/s]

Motspec = Vector(6) : forifrom1 to 6 do MotSpec[i] = abs(xheach [i]2~S3) end: ® ="'0"

118



plot(MotSpec [1], ®=0..3, numpoints = 10, color = black , color = black , title = "Motion Spectrum DOF x1,'labels
= ["w [rad/s]", "Spectral Density [m"2s]"], labeldirections = [ horizontal , vertical |, font = [ Calibri, 1, 12],
labelfont = [ Calibri, 1, 10]);

plot(MotSpec [2], ® = 0..3, numpoints = 10, color = black  title = "Motion Spectrum DOF x2!"labels = [" [rad/s]",
"Spectral Density [m"2s]"], labeldirections = [ horizontal , vertical |, font = [ Calibri, 1, 12], labelfont
= [Calibri, 1,10]);

plot(MotSpec [3], ®=0..3, numpoints = 10, color = black, title = "Motion Spectrum DOF x3'labels = [ "o [rad/s]",
"Spectral Density [s/rad2]], labeldirections = [ horizontal , vertical ], font = [ Calibri, 1, 12], labelfont
= [Calibri, 1,10]);

plot(MotSpec [4], ® = 0..3, numpoints = 10, color = black , title = "Motion Spectrum DOF x4."labels = [ " [rad/s]",
"Spectral Density [m"2s]"], labeldirections = [ horizontal , vertical |, font = [ Calibri, 1, 12], labelfont
— [Calibri, 1,10]);

plot(MotSpec [5], ® =0..3, numpoints = 10, color = black, title = "Motion Spectrum DOF x5'labels = [ "o [rad/s]",
"Spectral Density [m"2s]"], labeldirections = [ horizontal , vertical |, font = [ Calibri, 1, 12], labelfont
= [Calibri, 1,10]);

plot(MotSpec [6], ®=0..3, numpoints = 10, color = black, title = "Motion Spectrum DOF x6,'labels = [ "o [rad/s]",

"Spectral Density [s/rad”2]], labeldirections = [ horizontal , vertical ], font = [ Calibri, 1, 12], labelfont
= [Calibri, 1,10]);

Motion Spectrum DOF x1
|

0.0025 4
0.0020 4

0.0015 3

0.0010 S

Spectral Density [m®2%s5]

0.0005 3

o [rad)s]
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Spectral Density [m®2%s5]

Spectral Density [s/rad2]

0.003

0.002

0.001

Motion Spectrum DOF x2

0.0004 S

0.0003 4

0.0002 S

0.0001 S

o [radys]
Motion Spectrum DOF x3

o [radys]
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Spectral Density [m®2%s5]

Spectral Density [m"2%s5]

Motion Spectrum DOF x4

0.05 S

0.04

0.03 +

0.0z

0.01 4

o [radys]
Motion Spectrum DOF x5

o [rad)s]
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Motion Spectrum DOF X6

0.0004 S

0,000z

0.0002 4

Spectral Density [s/rad”2]

0.0001

o [radys]

sigmasq = Vector(6) :
for ii from 1 to 6 by 1 do:

sigmasq[ii] == 0.01- sum(subs(omega=0.01-kk, MotSpec [ii]), kk =1..300) :
end do:

sigmasq;

[ 0.0005741437557
0.0008622235166

0.00003430482011
0.0005705085212
0.004109889286

0.00003351226718

t="t""H=04:T:=8:0:= evalf( T j :
ks H We
Fsla == evalf[Re[T.T-exp(l-w.t). [xheadCZ [1] — xheadc2 [4] + (xheadc2 [3] — xheadc2 [6])- (T
—»¢)))):
ks H We
Fs2a = evalf[Re(T.T.exp(l-m.t)- [xheadCZ [1] — xheadc2 [4]- (xheadc2 [3] — xheadc2 [6])- (T

)
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z t[[ 2387000+ Fsla
p 1000

, 500, 5000], t=0..100,y=0..5500, color = [black, red, red ], thickness =[1, 2, 2], title
= "Force in suspension cable s1 (H=0.4m, T=8s)"Tabels = [ "time [s]", "Force in cable [kN]"], labeldirections

= [horizontal , vertical |, font = [ Calibri, 1, 12], labelfont = [ Calibri, 1, 10]);

([ 2387000+ Fs2a
plot| | 22222 1828

1000 , 500, 5000], t=0..100,y =0..5500, color = [black, red, red |, thickness =[1, 2, 2], title

= "Force in suspension cable s2 (H=0.4 m, T=8 s)'labels = ["time [s]', "Force in cable [KN]"], labeldirections

= [horizontal , vertical |, font = [ Calibri, 1, 12], labelfont = [ Calibri, 1, 10]);

Force in suspension cable s1 (H=0.4m, T=8s)

a0o0

4000

2000

Force in cable [kN]

2000

looo 4

time [5]
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Force in suspension cable 2 (H=0.4 m, T=8 s)

a0o0

4000

3000

Farce in cable [kM]

2000

l1oo0o 4

t:="""H:=08:T:=39:m:= evalf(

Fslb = evalf[Re[kTS'%'exp(l'w't)‘ [xheach [1] — xheadc2 [4] + (xheadc2 [3] — xheadc2 [6])- (&

)

Fs2b = evalf[Re(k—S'ﬂ'exp(l'm~t)- [xheach [1]-xheadc2 [4]- (xheadc2 [3] — xheadc2 [6])- (—

) |

([ 2387000+ Fslb
plot| | =000

2-Pi ]

1000 , 500, 5000}, t=0..100,y =0..5500, color = [black, red, red |, thickness =[1, 2, 2], title

= "Force in suspension cable s1 (H=0.8m, T=3.9s)"abels = [ "time [s]', "Force in cable [kN]"], labeldirections

= [horizontal , vertical |, font = [ Calibri, 1, 12], labelfont = [ Calibri, 1, 10]);

([ 2387000+ Fs2b
plot| | ——————

1000 , 500, 5000], t=0..100,y =0..5500, color = [black, red, red |, thickness =[1, 2, 2], title

= "Force in suspension cable s2 (H=0.8 m, T=3.9s))'labels = ["time [s]', "Force in cable [kN]"], labeldirections

= [horizontal , vertical |, font = [ Calibri, 1, 12], labelfont = [ Calibri, 1, 10]);
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Farce in cable [kM]

Force in cable [kN]

Force in suspension cable s1 (H=0.8m, T=3.95)

a0o0

4000

3000

2000

l1oo0o 4

D T T T T T T T 1

an
time [5]

Force in suspension cable 52 (H=0.8 m, T=3.95)

a0o0

4000 4

3000 4

2000 4

looo 4
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2387000+ Fsla + Fslb
1000

|

,500,5000|,t=0..150,y =0..5500, color = [black, red, red ], thickness

:[1927

2], title = "Force in cable s1 (H=0.4 m, T=8s & H=0.8 m, T=3.9)" labels = ["time [s]", "Force in cable [kN]'"],

labeldirections = [ horizontal , vertical |, font = [ Calibri, 1, 12], labelfont = [ Calibri, 1, 10]];

Force in cable =1 (H=0.4 m, T=8s & H=0.8 m, T=3.9)

=000

4000

3000 S

Force in cable [kN]

2000 4

1000 4

t:="t"H:=08:T:=12:m:= evalf[
H

Fslc == evalf[Re[ ks >

—))

Fs2c = evalf Re[

)
(
—))));
(
(

Fsld = evalf Re(k?
ks
2

Nim Nim

Fs2d = evalf Re(

exp(I-®-1)- (xhead[l] — xhead[4] + (xhead[3]—xhead[6])-( 2

-exp(I-®-1)- [xheaa’[l] — xhead [4]- (xhead [3] — xhead [6]) - (

1
150

all
tirme [5]
2-Pi j )
exp(l-®-1)- (xheach [1] — xheadc2 [4] + (xheadc2 [3]-xheadc2 [6])- [%
We
exp(l-w-1)- (xheach [1] — xheadc2 [4] - (xheadc2 [3]-xheadc2 [6]) - [T
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,500,5000|,t=0..100,y =0..5500, color = [ blue, black, red, red |,

s [ 2387000+ Fsle 2387000+ Fsld
p 1000 : 1000

thickness =1, 1,2, 2], title="Force in suspension cable s1,'labels = ["time [s]', "Force in cable [kN]'"],

labeldirections = [ horizontal , vertical |, font = [ Calibri, 1, 12], labelfont = [ Calibri, 1, 10]] ;

1o [ 2387000+ Fs2e 2387000+ Fs2d
p 1000 : 1000

,500,5000(,t=0..100,y = 0..5500, color = [ blue, black, red, red |,

thickness =1, 1,2, 2], title="Force in suspension cable s2)'labels = ["time [s]', "Force in cable [kN]'"],

labeldirections = [ horizontal , vertical |, font = [ Calibri, 1, 12], labelfont = [ Calibri, 1, 10]] ;

Force in suspension cable s1

=000

4000

a00o

Force in cable [kN]

2000

1000

tirme [5]
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Farce in cable [kM]

a0o0

Force in suspension cable s2

4000

3000

2000

l1oo0o 4
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Appendix E Inverse
In this Maple file the motions are determined by:
£=(C-w?>M+i-w-C+K)*-F

Maple was unable to perform this analysis, which is described in paragraph 6.
In this Appendix the Maple file which is used for this analysis is shown. The graphs in this Appendix
show strange behaviour.

restart : with(LinearAlgebra ) :
M = Matrix( [[ me’ 07 07 07 O’ 0]5 [05 me’ O’ 0’ 07 0]’ [0’ 07 Je’ 07 0’ 0]7 [07 07 0’ 2.n1p7 0’ 0]7 [07 07 0’ 07 2'mp’ 0]7 [07 07 O’

0,0,2-Jp]]) : A = Matrix[ [all-p-We-he-Le,0,0,0,0,0], [0,a22-p-We-he-Le, 0,0,0,0], [0,0,a33-p

-We>-he-Le, 0,0,0],[0,0,0,2-2-a44 p-Wf-drp-Lp,0,0], [0,0,0,0,2-2-a55 p- Wf-drp-Lp, 0], [0, 0,0,0,0,2

(2:mp + 0.02- me)-g
2-kw '

2
2 (22 =) e - at

> J 2drp =

[2-ks — 2-ke- (2-sin(oc) — 1 — sin(ac)?),0,0,-2-ks — 2-ke- (1 — sin(oe) ), 0,0], [0, 2-ke

Kx = Matrix[

'cos(oa:)z,—kc'(We'sin(ac) -cos(ac) + he-cos(occ)z),O, 0, 0], [O,—kc'(We-cos(ac)sin(ac) + he

: 2 . he* 2 We 2
-sin(oc )™ + We-he-cos(ac) -sin(oc) + ——-cos(ac)” | +2-| —— —ye | ‘ks,

2

-cos(ac)z),kc-( e > >

2
0,0,-2-ks- [% —yej ] [ ~2-ks — 2-ke + 2-ke sin(0c),0,0,2-ks + 2-kw + 2-ke + 2-km-sin(om) >, 0,

0],10,0,0,0,2km-cos(cm) >, ~km- ( Wp-sin( om) -cos(om) + 2-hpd -cos(om)?) |, [0,0,—2-@(%

2 2 We 2 Wp 2
—ye) ,O,—km-(Wp~cos(Oan)'sin(am) + 2-hpd -cos(am) ),2'ks~[7 —ye) + 2kw(T —ypj

2

+ km- [leL'sin((xm)z + 2 Wp-sin( oum ) -cos(am) - hpd + 2-hpd2-cos(oan)2m) :

We := 26.46:he := 9.97: Wp := 42.5: Wf = 6:0c = 1—80-Pi:0cm== ll—g)o-Pi:hpd:= 2.5:yp =3 :km

:= 1413.3-1000: ks := 563268 1000: kc := 2289.4-1000: kw := 4343868:ye := 0.665:h := 23:g = 9.81:
d:=1:p:=1025:Le := 180:Lp := 36: K = Matrix (6, 6) :

for i from 1 to 6 do for; from 1 to 6 do K[i,;] := evalf (Kx[i,j]) end end ; K;

1.12905136010° 0. 0. -1.12992971910° 0. 0.
0. 4.27207855910°  -3.64406926210 0. 0. 0.
0. -3.64406926210" 1.78167468510'! 0. 0. -1.77856630610'!
-1.12992971910° 0. 0. 1.13988776810° 0. 0.
0. 0. 0. 0. 2.74136758110°  -1.712518166107
0. 0. -1.77856630610'! 0. ~1.71251816610" 1.80857169810"!

me = 49.65-10° : Je == 3.74-10° : mp == 1400-10° : Jp = 2.75-10° :all = 1:a22 = 1.25:a33 = 0.035: a44
= 1:a55 :=1.5:a66 = 1:In = Matrix(6,6) :

for i from 1 to 6 do forj from 1 to 6 do In[i,j] := evalf (M[i,j] + A[i,j]) : end end ; M; 4; In;
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496500000010’

NFsquared , Ex == Eigenvectors (K, In) :

T := Vector(6) : w := Vector(6) :

fori from1 to 6
do w[i] = evalf (sqrt(Re(NFsquared[i]))) :
end: w; E := Matrix(6,6) :

forifrom1 to 6

do T[i] == evalf(

end: T;

2-Pi

sqrt(Re(NFsquared [i]))

).

13.57538243 |
0.2929250517
11.63492811
0.1858526685
0.7189291325
0.5451990299

0.4628367076
21.44980523
0.5400278583
33.80734513
8.739644872
11.52457169
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0 0 0
0 4.96500000010’ 0 0
0 0 3.74000000010° 0
0 0 0 2800000
0 0 0 0
0 0 0 0
- 4.86722439010’ 0 0 0
0 6.08403048810’ 0 0
0 0 1.19269416010° 0
0 0 0 3.79300000010°
0 0 0 0
0 0 0 0
7 9.83222439010’ 0. 0. 0.
0. 1.10490304910° 0. 0.
0. 0. 4.93269416010° 0.
0. 0. 0. 6.59300000010°
0. 0. 0. 0.
0. 0. 0. 0.

0 0
0 0
0 0
0 0
2800000 0
0 5.50000000010°
0 0
0 0
0 0
0 0
5.68950000010° 0
0 1.26330606210” |
0. 0. 7
0. 0.
0. 0.
0. 0.
8.48950000010° 0.
0. 1.81330606210” |




fori from I to 6 do forj from 1 to 6 do E[i,j] := Re(evalf (Ex[i,j])) : end:end;
E;

[ 0.06635566329 0.7100273842 0. 0. 0. 0.
0. 0. -0.0008320413753 0.9961621109 0.06638022440 -0.01632845251
0. 0. 0.3414175332  0.01245477622 -0.09624556262 0.01280185433
-0.9977960342 0.7041740649 0. 0. 0. 0.
0. 0. 0.01403787334 0.08576483734 0.9885830199  0.9997037781
0. 0. -0.9398065300 0.01226051031 —0.09504772643 0.01272203832

Kstarl = Transpose (E).K.E : Kstar := Matrix(6, 6) :
for i from 1 to 6 do Kstar[i,i] := Re(evalf (Kstarl[i,i])) : end:

Kstar;
- 1.28946403210° 0 0 0 0 0
0 4.53370725310° 0 0 0 0
0 0 2.94644793310"! 0 0 0
0 0 0 3.82523299810° 0 0
0 0 0 0 3.66234587310 0
| 0 0 0 0 0 2.85822562910° |
Instar] := Transpose(E).In.E : Instar := Matrix(6, 6) :
for i from 1 to 6 do Instar[i, i] :== Re(evalf (Instarl[i,i])) : end:
Instar;
- 6.99689065310° 0 0 0 0 0
0 5.28372788610’ 0 0 0 0
0 0 2.17656360310° 0 0 0
0 0 0 1.10744021810° 0 0
0 0 0 0 7.08577229310’ 0
i 0 0 0 0 0 9.61582078010° |
Cstar := Matrix(6, 6) :
forifrom [ to 6 do Cstar[i,i] := 0.03-2-sqrt(Kstar[i,i]-Instar[i,i]); end:
Cstar;
- 5.69912798610° 0 0 0 0 0
0 9.28641758410° 0 0 0 0
0 0 1.51944966310° 0 0 0
0 0 0 1.23492431810° 0 0
0 0 0 0 3.05650087610° 0
0 0 0 0 0 3.14552169710° |

Froude Krylov Forces
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cosh(x-(h —d))  cosh(x(h — (d + he)))

FTEh = p-g-Le-[— J-exp([-m.t). int[exp( -Ix-y),y=

cosh(x-#) cosh(x:7)
Nk
FTEs = p-g-Le-exp(I-w-t)-(exp( Lx e ] - exp(— L'k e ])-int cosh(x-(h — 0.5-he — d +z)) z=
2 2 cosh(x-7)
_the he |,
R
FTEr = pg-Le cosh(k: (h —d))  cosh(x:(h — (d + he))) exp(I-0-1)- l.m(y.exp( lkey)y =
cosh(x-#) cosh(x-#)
R NN A I T
2 . 2 p g € p p 2 p 2 z
' cosh(k-(h — 0.5-he — d + z)) Z:_h_e he | .
cosh(k-#) ' 2 72 )
FPh == p-g-2-Lp- COSh(K.(h — drp)) -exp(]-m-t)-[int[exp( —I'K'y),y=—ﬂ ..—& + 2- yp)
cosh(x-/) 2 2
+ int[exp( -I-xy),y= ﬂzlﬂ —2-yp 112/&]) :
FPs:=0:
FPr:=-p-g-2-Lp- cosh(xc (h — drp)) -exp(l-®-1)- [int[y'exp( —]'K'y),y=—ﬂ ..—ﬂ + 2 yp]
cosh( k- /) 2 2

+ mt[y‘exp( -lky),y = Tp_z. p ..—2p j) :

F = Vector(6) : F[1] := FTEh : F[2] :== FITEs :F[3] == FTEr :F[4] := FPh :F[5] == FPs : F[6] := FPr:x
= abs[ ROOtOf(_Zg (e_Z)2 — 28— U)zh (3_2)2 - mzh) ] t:=0:

h

Cmod = MatrixInverse (Transpose (E)).Cstar.MatrixInverse (E) : evalf (%) : Cstar2 = Transpose (E).Cmod.E :
x = MatrixInverse ( I + K) F:xc == MatrixInverse ( “In-& + I-® Cmod + K) Foot ="
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plot([abs(x[1]),abs(xc[1])], ®=0..1.5,y = 0..10, numpoints = 10, color = [ black, blue ], title
="RAO DOF x1 (heave TE)" labels = ["o [rad/s]", "RAO= x£ [-]"], labeldirections = | horizontal , vertical |,
font = [ Calibri, 1,12], labelfont = [ Calibri, 1, 10]);
plot([abs(x[2]), abs(xc[2])], ®=0..1,y = 0..30, numpoints = 10, color = [ black , blue ], title
="RAO DOF x2 (sway TE)", labels = ["o [rad/s]", "RAO= x/ [-]"], labeldirections = | horizontal , vertical |,
font = [ Calibri, 1, 12], labelfont = [ Calibri, 1, 10]);
plot([abs(x[3]), abs(xc[3])], ®=0..1.5,y = 0..0.6, numpoints = 10, color = [ black, blue ], title
="RAO DOF x3 (roll TE)! labels = [ "o [rad/s]", "RAO= x/ [rad/m]"], labeldirections = [ horizontal, vertical ],
font = [ Calibri, 1, 12], labelfont = [ Calibri, 1,10]);
plot([abs(x[4]), abs(xc[4])], ®=0..1.5,y =0..10, numpoints = 10, color = [black , blue, title
="RAO DOF x4 (heave P)", labels = [ "o [rad/s]", "RAO= xL [-]]"], labeldirections = | horizontal , vertical |,
font = [ Calibri, 1,12], labelfont = [ Calibri, 1, 10]);
plot([abs(x[5]), abs(xc[5])], ®=0..1.5,y = 0..4, numpoints = 10, color = [ black, blue ], title
="RAO DOF x5 (sway P)", labels = ["w [rad/s]", "RAO= x/ [-]"], labeldirections = [ horizontal , vertical |, font
= [ Calibri, 1, 12], labelfont = [ Calibri, 1, 10]);
plot([abs(x[6]), abs(xc[6])], =0..1.5,y =0..0.6, numpoints = 10, color = [ black , blue, title
="RAO DOF x6 (roll P))) labels = [ "o [rad/s]", "RAO= xL [rad/m]"], labeldirections = [ horizontal , vertical ],
font = [ Calibri, 1,12], labelfont = [ Calibri, 1, 10]);

R&0 DOF x1 (heave TE)
10 4

Ra&0=x/T [-]

m [radys]
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R&0=%/T [-]

w /T [radfm]

RAO=

a0

20 4

10 S

R&0 DOF %2 (sway TE)

0.6

e
on
1

=
I=
I

=
o
1

0.2 -

0.1 -

0z 0.4

o [radys]
R&0 DOF x3 (rall TE)

m [radss]
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Rao= /T [-]]

R&0 DOF x4 (heave P

10
o
g
&
7
1] T T T T T T 1
1] 0.5 1.5
o [radys]
R0 DOF x5 (sway P
d =
3
7
1 4
|:| T T T T T T 1
1] 0.5 1.5

o [radys]
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=€ [radim]

R&o=

0.6 -

0.5 1

0.4 -

0.3 -

0.2 -

0.1 5

R&0 DOF %6 (roll F))

o [rady’s]
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Appendix F Static equilibrium
In this maple file the equations of motions are validated whether they are consistent.

restart : with(plots) :
We = 26.46:he := 9.97: Wp := 42.5: Wf:= 6:g:=9.81:p := 1025:Le := 180:Lp := 36: ac = 115_80])1 :
10-Pi chpd == 2.5:yp := 3 :km := 1413.3-1000: ks := 563000- 1000 : kc := 2289.4- 1000 : kw

180
= 4343868: ye = 0.665: me = 1.02-We-he-Le-p : Je = 3.74-10° : mp = 1400-10° : Jp == 2.75-10°: L

=75:h:=23:d:=1:

eql = me-diff (x1(t),182) =-2-ks-xI(¢t) + 2-kc-x](t)'(2-sin(0(c) —1- sin(o«:)2> + 2-ks-x4(t) + 2-ke
x4(¢)- (1 — sin( o) ) — 8000000 diff (x1(t),t) + me-g — We-he-Le-p-g : evalf (%);
2
4.96456887810 (d—z x](t)J = -1.12851536010° xI(t) + 1.12939371910° x4(t) — 8.00000010° (% x](l)j
dr

+ 9.549494210°

eq2 = me-diff (x2(t),1$2) =-2-kc ~x2(t)-cos(0w)2 + ke ~x3(l)-<We-sin(O(c)-cos(ow) + he-cos(ac) )
— 8000000 diff (x2(1), 1) : evalf (%);
2
496456887810’ [d—z x2(t)] = -4.27207855910° x2(¢) + 3.64406926210 x3(¢) — 8.00000010° (% x2(t))
dr
2 . 2

eq3 = Je-diff (x3(1), 182) = ke -x2(t)- (We-cos(ac ) -sin(ac ) + he-cos(oc)?) — ke -x3( ).[
2 2 2
+ We-he-cos(ac)-sin(oc) + h%-cos(ac)zj - 2-( I/sze ) ks -x3(t) + 2- (& —yej ks -x6(t)
— 500000000 diff (x3 (1), t) : evalf (%);
2
3.74000000010° (% x3(t)] =3.644069262107 x2 (1) — 1.78082845310'! x3(¢) + 1.77772007410"" x6(¢)

— 5.0000000010° [% x3(t))
eqd = 2-mp-diff (x4(t), 182) =2-ks -x1(t) + 2-ke-x1(t) — 2-kc-xI(¢t)-sin(oc) — 2-ks -x4(t) — 2-kw-x4(t)
— 2-ke-x4(t) — 2-km-)c4(t)-sin(O(m)2 — 800000 diff (x4(t),t) + 2- mp-g :evalf (%);
— x4 (1)

2
2.80000010° [%xm)] =1.12939371910° x1 (¢) — 1.13935176810° x4(¢) — 8.0000010° [ C‘lit j

+ 2.74680000010’

eqd = 2-mp-diff (x5(¢),1$2) =
-cos(am)?) — 500000 diff (x5(2), ) : evalf (%);
ixm))

2
2.80000010° [d—2x5(1)] = -2.74136758110° x5 (¢) + 1.71251816610’ x6(¢) — 5.0000010° ( "
dr

—2-km-x5(t)-cos(0(m)2 + km-x6(t)- (Wp-sin(ocm) -cos(am) + 2-hpd
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We

eq6 = 2-Jp-diff (x6(t),1$2) =2-ks -x3(¢)- [T —
2 2
e ye) —2-kw-x6(t)-[lgﬂ—ypj —km-x6(t)-[

2
yej + km-x5(t)- (Wp-cos(am) -sin(am) + 2-hpd
2

lVgL-sin(Otm)z—i-2

-cos(am)2) — 2-ks-x6(t)- (T —
-Wp-sin(am) -cos(om) - hpd + 2~hpd2-cos(oan)2] — 5000000 diff (x6(t),t) : evalf (%);

d2

5.50000000010° [—2 x6(t)] =1.77772007410"" x3(¢) + 1.71251816610’ x5(¢) — 1.80772546610'" x6(¢)
dt

— 5.00000010° [% x6(t)]

soll = dsolve ([eql,eq2,eq3,eq4,eq5,eq6,x1(0)=0.1,D(x1)(0) =0,x2(0) =0.1,D(x2)(0) =0,x3(0) =0.1,
D(x3)(0)=0,x4(0) =0.1,D(x4)(0) =0,x5(0) =0.1,D(x5)(0) = )=0.1,D(x6)(0) =0, ], numeric,

maxfun = 100000) :
odeplot (soll, [t,x1(t)],0..100, numpoints = 1000, color = black , title = "Static equilibrium DOF x1'labels
["Time [s]", "Displacement[m]"], labeldirections = [ horizontal, vertical |, font = [ Calibri, 1, 12], labelfont

= [Calibri, 1, 10]);
odeplot (soll, [t,x2(t)],0..100, numpoints = 1000, color = black , title = "Static equilibrium DOF x2'labels
["Time [s]", "Displacement[m]"], labeldirections = [ horizontal, vertical |, font = [ Calibri, 1, 12], labelfont

= [Calibri, 1, 10]);
odeplot (soll, [t,x3(t)],0..100, numpoints= 1000, color= black, title= "Static equilibrium DOF x3"abels
= ["Time [s]', "Rotation [rad]"], labeldirections = [ horizontal , vertical |, font = [ Calibri, 1, 12], labelfont

= [Calibri, 1, 10]);
odeplot (soll, [t,x4(t)],0..100, numpoints = 1000, color = black , title = "Static equilibrium DOF x4'labels
["Time [s], "Displacement[m]"], labeldirections = [ horizontal , vertical ], font = [ Calibri, 1, 12], labelfont

= [Calibri, 1, 10]);
odeplot (soll, [t,x5(t)],0..100, numpoints = 1000, color = black , title = "Static equilibrium DOF x3'labels
["Time [s], "Displacement[m]"], labeldirections = [ horizontal , vertical ], font = [ Calibri, 1, 12], labelfont

= [Calibri, 1, 10]);
odeplot (soll, [t,x6(t)],0..100, numpoints = 1000, color = black, title= "Static equilibrium DOF x§'labels
= ["Time [s]', "Rotation [rad]"], labeldirections = [ horizontal , vertical |, font = [ Calibri, 1, 12], labelfont

= [ Calibri, 1, 10]);
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Staticequilibrium DOF x5

0.5 1

Displacement [m]

D- |{\'\. |ﬂl J'r‘ll'.l.-"-“\h\_/I . - . ,
1 U U W a0 100

Titne [5]
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—0.06 4 U

xI(t) == x1 :x2(¢t) == x2 :x3(¢t) := x3 :x4(t) = x4 :x5(t) = x5 :x6(t) = x6 :
solve({eql,eq2,eq3,eq4,eq5,eq6}, {x1,x2,x3,x4,x5,x6});
{x1 =4.089717557x2 =0.,x3 =0.,x4 =4.078081459x5 =0.,x6 = 0.}
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