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Abstract
The contact mechanical response of various polymers is controlled by the vis-
coelastic behavior of their bulk and the adhesive properties of their interface.
Due to the interplay between viscoelasticity and adhesion it is difficult to predict
the contact response, even more when surfaces are rough. Numerical modeling
could be of assistance in this task, but has so far mostly dealt with either
adhesion or viscoelasticity and focused on simple geometries. Ideally, one
would need a model that can concurrently describe viscoelasticity, surface
roughness, and interfacial interactions. The numerical technique named Green’s
function molecular dynamics (GFMD) has the potential to serve this purpose.
To date, it has been used to model contact between adhesive elastic bodies with
self-affine surfaces. Here, as a first step, we extend the GFMD technique to
include the transient contact response of frictionless viscoelastic bodies. To this
end, we derive the constitutive equation for a viscoelastic semi-infinite body in
reciprocal space, then integrate it using the semi-analytical method, and find the
quasi-static solution through damped dynamics of the individual modes. The
new model is then applied to study indentation as well as rolling of a rigid
cylinder on a frictionless isotropic half-plane that follows the Zener model when
loaded in shear. Extension of the method to a generalized viscoelastic model is
straightforward, but the computational effort increases with the number of time-
scales required to describe the material. The steady-state response of the rolling
cylinder was provided analytically by Hunter in the sixties. Here, we use his
analytical solution to validate the steady-state response of our model and pro-
vide additionally the transient response for bodies with various shear moduli.
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1. Introduction

The contact mechanics of viscoelastic materials is relevant, among other things, in the application
of tires [1–3], pressure sensitive adhesives [4–6], conveyor belts [7, 8], and metrological devices
[9–11]. In the presence of viscoelasticity the contact mechanical problem is significantly more
complex compared to elasticity, since the material response is time-dependent [12]. The time
dependence is responsible for phenomena that are not yet fully understood and controllable, such
as adhesional hysteresis [13, 14], dissipative friction (e.g. viscoelastic dissipation) [2, 15] and
the nonlinear leak rate of seals, o-rings and gaskets, near the contact percolation state [16]. The
main challenge in tackling contact problems between viscoelastic bodies is that they involve a
broad range of length- and time-scales that are difficult to deal with both experimentally and
theoretically. The length-scales relate to the wavelengths required to describe the rough surfaces in
contact, while the time-scales relate to the relaxation times of the viscoelastic materials, which
span from milliseconds to hours.

Analytical solutions exist only for rather simple contact problems, e.g. frictionless
indentation and rolling of Hertzian punches with smooth (no roughness) surfaces on vis-
coelastic bodies with mostly a single relaxation time [17–20]. To consider roughness and
more sophisticated viscoelastic models, group renormalization theory [21, 22] and bearing-
area models [15, 23] are used. The main drawback is that these approaches are only exact
either at full or infinitesimal contact and that they do not account for adhesive interfaces. A
feasible approach to describe accurately both the contact geometry, viscoelasticity at any
relative contact area and interfacial interactions is to use numerical simulations.

Most numerical models involving viscoelasticity are restricted to studying the steady-state
response under constant loading rate of frictional contacts [22, 24–30], while the most inter-
esting phenomena are related to the transient response under reciprocating mixed-mode loading
of adhesive contacts. While adhesive contact between elastic bodies is already extensively
studied, e.g. [31–34], there is certainly a need for efficient computational techniques to model
multi-length-scale roughness and viscoelasticity while accounting for interfacial interactions. To
move a first step in this direction, we extend here the numerical technique known as Green’s
function molecular dynamics (GFMD) [35] to study the transient response of viscoelastic
bodies. We choose the GFMD method because it gives a quick converging static solution for
rough surfaces under contact loading [35, 36] and treats interfacial interactions simply through
inter-atomic potentials [37]. This means that it forms an ideal platform to study adhesive
viscoelastic contact problems under generic loading. An additional interesting feature of GFMD
is that it can be used, similarly to the work by Pastewka and Robbins [38], to study contact
problems where the surface is modeled through molecular statics and the rest of the body is
modeled as a continuum. GFMD is used to simulate finite height slabs [39], compressible solids
[40], contact between explicitly modeled deformable bodies and their interaction through a
mixed-mode coupled cohesive zone model [41]. It is already extended to study the steady-state
rolling of a viscoelastic half-space on a rigid rough surface [22]. However, the transient
viscoelastic response is not yet incorporated.

Taking into account the transient response is computationally very demanding because it
requires to keep track of all time-scales that describe the material. Additionally, the numerical
time-step must be sufficiently small to capture the occurrence of sudden events, e.g. peeling
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of small-scale asperities [14]. Koumiet al [42] studied the frictionless transient rolling
contact of a rigid smooth Hertzian on a semi-infinite half-space with the boundary element
method. More recently, Bugnicourt et al [43] were successful in modeling the transient
response for the rolling of a viscoelastic material on a rough rigid surface using the fast
Fourier transform boundary value method. They managed to predict the friction coefficient
due to dissipative losses inside the viscoelastic bulk in tyre-road contact. Here, we focus on
describing the trajectory of the surface grid points with higher accuracy than Bugnicourt et al
[43] relying on the semi-analytical (SA) method [44] to integrate the equation of motion
instead of the backwards Euler method [44]. This is achieved without a significant increase in
computational cost.

In this work, the Green’s function is obtained for an incompressible isothermal viscoe-
lastic half-space loaded normally by a rigid cylinder. The constitutive equation is integrated
through the SA method and the quasi-static solution is found through damped dynamics. As
demonstrative case studies, we select the indentation and rolling of a rigid cylinder. This
allows us to validate our model by comparison with the commercial finite-element software
ABAQUS [45] and Hunter’s analytical solution [18]. The finite element method is well suited
for problems involving smooth contacts, while it becomes less appropriate than the model
presented here for rough surfaces, as a large number of discretization points are needed. For
the rolling cylinder the transient dissipative friction (caused by viscoelastic losses) and
interfacial load are given for different rolling speeds and viscoelastic moduli.

2. Problem definition

A viscoelastic half-space is indented by a rigid punch, as schematically drawn in figure 1. The
methodology presented in this section is valid for a punch with generic two-dimensional
rough surface, although the examples solved subsequently in this work include only a
cylindrical punch with smooth surface, treated in two-dimensions by means of a plane-strain
analysis.

The contact mechanical problem, at time t, is governed by the following boundary
conditions at the surface:

s
s

= + Î W
¹ Î W
= Ï W

u x y t h x y u t x y t
x y t x y t

x y t x y t

, , , , for , ;
, , 0, for , ;
, , 0, for , , 1

z c

c

c

( ) ( ) ( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( ) ( )

Figure 1. Schematic representation of a rigid punch indenting a viscoelastic half-space.
Here, u x y t, ,( ) is the normal displacement of the rigid surface and s x y t, ,( ) the
normal contact stress at time t.
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where u tz ( ) is the indentation depth, h(x, y) the surface of the rigid punch andW tc( ) the region
in contact. Moreover, there is no externally applied shear traction so the only tangential
traction is caused by the viscoelastic nature of the body.

The differential constitutive equation of a generic viscoelastic material at a given
temperature reads

å å
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¶= =
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where σ(t) and ò(t) are the stress and strain history tensor, and p q,i j( ) are the material
constants [46]. Decomposing the stress and strain history tensors in a hydrostatic s ,0 0( ) and
deviatoric s e,ij ij( ) part one can write
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The four sums over the material constants are often expressed through symbolic operators
PK(t), QK(t), PG(t), QG(t) of the type

å å=
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Here we assume that our viscoelastic material is elastic in dilatation and is described in shear
by the Zener model [46]. The time-dependent shear modulus G t( ) is defined by the Prony
series expansion as

åº +
¢

=

-
G t G G e . 5

l

n

l

t
T0

1

l( ) ( )

The instantaneous shear modulus Gt 0, the adiabatic shear modulus Gt→∞, the relaxation
time ºT T1 z and the retardation time Qz are:

h
h= + = = Q = + ¥G G G G G T

G G G
; ; ;

1 1
, 6t t0 0 1 0 z
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0 1
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where G0 and G1 are the shear moduli and η the viscosity in the Zener model [46]. Combining
equations (3)–(5), allows us to give the material constants as:
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where K is the bulk modulus. Therefore, equation (3) takes the form:

s
h h

= + = +
+

K s t
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s t G e t
G G

G
e t3 , and 2 2 . 8ij ij ij ij0 0

1
0

0 1
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The rheological representation of the Zener model is given for reference in figure 2.
In Laplace space the equivalence between integral and differential expression of the

constitutive relation allows one to relate the shear and bulk moduli to the symbolic operators
as follows:
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where the Laplace transform = t s• •{ ( )} ¯( ) of t•( ) is indicated by the over-bar, with s the
complex frequency. P sG¯ ( ) and Q sG¯ ( ) have the same coefficients as the material constants in
equation (3). For the Zener model G s¯ ( ) is:

=
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+
G s
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q q s
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3. Solution through GFMD

In the GFMD technique, the surface of the deformable solid is discretized with nx×nx
equi-spaced grid points that interact with each other through an effective stiffness [35]. When
the grid points are displaced by the indenter to a new configuration, the static elastic solution
to the boundary value problem is obtained numerically in reciprocal space through damped
dynamics [35, 36, 47]. The advantage of working in reciprocal space is that the stiffness
matrix is symmetric and diagonal [41], so that each mode can be damped independently. For
an elastic solid the areal elastic energy reads [47]:

å= q qv t
E

u t
4

, , 11
q

el
2

*
( ) ∣ ∣∣ ˜( )∣ ( )

where = x q• •{ ( )} ˜( ) is the Fourier transform of x•( ), with wave vector q. As usual,
n= -E E 1 2* ( ) is the effective modulus with E the elastic modulus and ν the Poisson’s

ratio. The elastic normal stress corresponding to the wave vector q at time t is

s = -q q qt
E

u t,
2

, . 12
*

˜ ( ) ∣ ∣ ˜( ) ( )

Instead of an elastic material we here consider a solid elastic in dilatation and viscoelastic in
shear. One can substitute E* in equation (12) with the corresponding expression in terms of
shear modulus G(t) and bulk modulus K,

n=
+

=
-
+

E t
KG t

K G t
t

K G t

K G t

9

3
, and

3 2

6 2
. 13( ) ( )

( )
( ) ( )

( )
( )

Figure 2. Rheological representation of the Zener model with shear moduli G0 and G1,
and viscosity η.
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We further assume that the solid is incompressible, so that n= -  ¥K E 3 6( ) , and
therefore:

s = -q q qt G t u t, 2 , . 14˜ ( ) ∣ ∣ ( ) ˜( ) ( )
In virtue of the extended elastic–viscoelastic correspondence principle [48], we can find the
solution to our viscoelastic boundary value problem relating the analytical Laplace transform
of equation (14) and G s¯ ( ) in equation (10) as follows:

s+ = - +q q qp p s s q q s u s2 , 2 , . 15G G G G
0 1 0 1( ) ˜̄ ( ) ∣ ∣( ) ˜̄ ( ) ( )

Substituting equation (7) of the Zener model in equation (15), taking the analytical inverse
Laplace transform, and assuming that stress and displacement vanish for t�0, we write the
differential formulation for a given wave vector q at time t as

s
h
s

h
+ = - +

+
q q q q qt

G
t G u t

G G

G
u t, , 2 , , . 16

1
0

0 1

1
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⎝⎜

⎞
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To use a more compact notation, we define C1,2,3,4 as the coefficient to the stress s q t,˜ ( ) and
displacement qu t,˜( ), obtaining:

s s+ = - +q q q q qC t C t C u t C u t, , 2 , , , 171 2 3 4˜ ( ) ˜̇ ( ) ∣ ∣( ˜ ( ) ˜̇ ( )) ( )
with C1=1 for the Zener model. The exact numerical integral solution of equation (17)
requires the storage of the whole history of stresses and displacements and therefore becomes,
with time, progressively more demanding in terms of memory and computational time. To
reduce the computational effort, we opt for integrating the equation using the SA method. In
the SA method, the simulation time is divided into n equal time periods of duration Δt over
which equation (17) is integrated exactly, while the displacement rate is assumed to be
constant [44, 49]. The stress in equation (17) can then be expressed as:

òs s
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where dτ is the differential of time t,
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The integration scheme for a given wave vector q is
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When numerically evaluating the exponents on the right-hand side of equation (20), we use the
Taylor-series expansion of the oth-order to prevent numerical rounding errors for small Δt/C2.

The advantage of this method over exact numerical integration is that one only has to
save the displacement qu tn˜ ( ) and stress s q tn˜ ( ) across time-steps, contrary to saving the whole
history of stresses and displacements. An alternative method to save computational resources
is the backwards Euler process [44]. Our preference goes to the SA method because it has a
second-order and up local error, where the backward Euler method has a zeroth-order and up
error for the same Δt, as long as hD D = +t t G Gmax 0 1( ) [44]. The local error is defined
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as the difference over a given time-step Δt between the Taylor-series expansions of the exact
and integrated analytical solution. Note that the computational time required for the SA
method is negligibly different from that required for the backward Euler method, since the
only time difference is given by the one-time evaluation of the Taylor-series expansion.

The quasi-static solution at time + Dt tn is obtained by solving the equation of motion
for each mode with a unit mass in reciprocal space over a dimensionless time-step Δt*via the
position (Störmer-)Verlet (pSV) algorithm [50]. Note that the dimensionless time-step Δt* is
a numerical operator without any physical meaning while Δt has the dimension of time. The
quasi-static solution is found quickest by critically damping each mode in reciprocal space.
Hereby, we prevent overdamping the equation of motion through a non-monotonous adia-
batic critical damping coefficient:

= - Dq qc G G t2 2 2 . 21cr 0 0
*∣ ∣ ∣ ∣ ( )

In the limit D t 0* , the critical damping coefficient for the pSV is equivalent to that of an
harmonic oscillator. When the a priori calculated dimensionless equilibrium time tequil

* is
reached, the stresses and displacements in reciprocal space are saved as input for the next
dimensional time-step. A hard-wall boundary condition is applied in real space to prevent
inter-penetration at the interface. The pseudo-code used to obtain the numerical results is
presented in the appendix.

4. Numerical results: indentation by a rigid smooth cylinder

In this section, we aim at validating the newly developed viscoelastic GFMD method through
comparison with results obtained using the commercial finite-element software ABAQUS
[45]. Note that the finite element method is well suited to study the contact response of
smooth bodies in contact, while for rough surfaces, where many discretization points are
needed, the GFMD technique is computationally more efficient.

Simulations are performed in two-dimensions for a rigid smooth cylinder of radius
= R 4, where  is the periodic width of the simulation unit cell. The parabolic profile of

the cylinder is

r
r

=h
R

R2
, 22

2

( ) ( )⎜ ⎟
⎛
⎝

⎞
⎠

where ρ is the distance from the vertical axis of symmetry.
The rigid indenter displaces as follows:

= - <
- >





u t

t
h T t t T

h t T

0, for 0;
, for 0 ;

, for ,
23z 0 z z

0 z

( ) ( ) ( )
⎧
⎨⎪
⎩⎪

where the load h0 is defined as = - h u t Tz0 z( ) . The maximum indentation depth is
= - u 0.05z

max , in the small strain regime. In figure 3, we give the schematic representation
of the case studied here.

The viscoelastic solid is taken to have height zm large enough so that we can approximate
its response as that of a semi-infinite solid. The average normal displacement of the surface
um is

n
n

n
=

+
-

-
u

E
pz

1

1

1 2
, 24m m¯ ( )
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where p̄ is the mean contact pressure [51]. For the incompressible solids in this work the
average displacement of the surface um is zero. Therefore, the GFMD simulations are
performed assuming that the center-of-mass mode does not move. The surfaces in the GFMD
simulations are discretized with =n 2x

14 equi-spaced grid points. The FEM simulations are
performed, instead, for a finite sized unit cell of height = zm , periodic in x-direction. The
boundary of the square ´  domain is discretized at the top with 213 equi-spaced nodes.
The elements are irregular quadrilaterals and their shape and aspect ratio changes gradually
depending on the region they discretize. In the region where the stress gradients are expected
to be large the mesh is very fine and comprises elements with aspect ratio close to one. This
zone has a1.5 max width at the top, where amax is the contact area at maximum indentation
depth, and has the same maximum depth, with a parabolic shape at its lower boundary. From
there, the size of the elements increases gradually and reaches a larger aspect ratio at the
bottom where the stress is homogeneous. The borders of the unit cell are discretized with 29

nodes, the bottom with 27 nodes.
The instantaneous shear modulus Gt 0 is from now on indicated as ¥G and the adiabatic

shear modulus Gt→∞ as G0 according to their respective frequency response. The ratio
between instantaneous and long-time response to a step-load, ¥G G0 is taken to be 10, unless
otherwise specified and the relaxation time Tz=0.01 s. Time in GFMD is discretized using
D D =t t 50max( ) . This is sufficient to ensure convergence of the results. The isotropic
rate-dependent material behavior in ABAQUS is described through the small-strain time
domain viscoelastic material model (see [45]). The viscoelastic material is defined by a Prony
series expansion of the dimensionless relaxation modulus, where the strain components are
interpreted as state variables that control the stress relaxation. An a priori user-defined 0.001
strain error tolerance across dimensional time-steps is given [45, 46].

The change in relative contact area, defined as º a arel act , and the reduced pressure
=p p G g4r 0 r* ¯ ( ¯ ), where gr̄ is the root mean square gradient over the contact area aact, are

reported in figures 4(a) and (b) as a function of time for the loads h0=0.005, 0.01,
0.02and0.05. A good correspondence between the GFMD and FEM results is observed for
loads up to h0=0.02. For larger loads the discrepancy is given by the fact that the FEM unit
cell has a large but finite height. When the cylinder is held constant for t�Tz the contact area
becomes constant while the pressure decreases up to t/Tz≈6. At the hold the contact area

Figure 3. Schematic representation of the initial configuration and indentation by the
rigid smooth cylinder to indentation depth u tz ( ) and contact area aact .
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does not change. This is in line with the analytical solution provided by Christensen[10] for
the indentation by a rigid Hertzian.

Figure 4(c) shows the proportionality coefficient k = a pr rel r
* as a function of the nor-

malized time t/Tz for the three loads for which there is agreement between FEM and GFMD.
The figure contains also the analytical values for the limiting cases of the instantaneous and
steady-state proportionality coefficients, k =¥G G 0.147r 0 [52] and κr=1.471, which
show good correspondence with the numerical results. The method is thus validated for both
its adiabatic and transient response.

4.1. Numerical results: rolling of a rigid cylinder

The second problem we will consider is the frictionless rolling of a rigid cylinder on a
semi-infinite incompressible viscoelastic solid, as depicted in figure 5. The steady-state

Figure 4. (a) The relative contact area arel, (b) the reduced pressure pr
*, and (c) the

proportionality coefficient kr as a function of the normalized time t/Tz for the loads
h0=0.005, 0.01, 0.02, 0.05.
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analytical solution with which our results are compared was provided by Hunter [18]. The
transient response is here given for the first time.

A far-field normal load,

p
=L

G a

R
, 25n

0 0
2

( )

is applied such as to ensure a relative adiabatic contact area arel=a0/R=1/4. The radius
= R 10 is selected to ensure no interaction between neighboring indenters. During rolling,

the viscoelastic semi-infinite body experiences a displacing normal load but no tangential
tractions, given that the interface is frictionless. However, due to the viscoelastic nature of the
material, the displacements and the stress fields at any given moment depend on the tangential
velocity ux˙ . Therefore, a time-dependent tangential load Lt resists the frictionless sliding of the
indenter. The tangential load is inferred from the local load balance as

ò s r
r
r

r=
¶
¶

L
h

d , 26
a

t
act

( ) ( ) ( )

where aact is the contact area. The dissipative friction coefficient μ is defined as the ratio
between the tangential and normal loads, i.e. m º L Lt n/ . Note that here friction is only
intended as the viscoelastic resistance of the bulk. Following Hunter [18], the normalized
friction coefficient mR a0 can be expressed as a function of the dimensionless velocity
Qu ax z 0˙ . Furthermore, we choose similarly to Hunter [18] the shear moduli

=¥G G 2, 5, 100 and prescribe the velocity =U t H t ux x˙ ( ) ( )( ˙ ), where H(t) is the
Heavisidestep-function.

In figure 6(a), the scaled steady-state normal load L/L0 is presented as a function of x/a0
for a cylinder moving with velocity Q »u a 1x z 0˙ on viscoelastic half-planes with constants

=¥G G 1, 2, 5, 100 . Here, L is the normal load on the surface at a given x-position and L0
is the adiabatic Hertzian normal load at x-position ρ=0. The shear modulus ratio

=¥G G 10 corresponds to the adiabatic case, i.e. no viscous dissipation. The rolling
direction is indicated by the black arrow pointing to the right.

The eccentricity of the load profile is found to increase with increasing ¥G G0, so does
the maximum value of the normal load. The results are in agreement with the analytical
solution of Hunter 1961 [18], shown in figure 6(a) for =¥G G 20 .

Notice that for the simulations just presented the contact area is not ever increasing with
time, which is a necessary condition to invoke the elastic–viscoelastic correspondence
principle that we used in section 3. The solution presented in section 3 can, however, also be
obtained through the Boussinesq’s equation in [43], which does not have the requirement of
an ever increasing contact area, and can therefore be used also here.

Figure 5. Schematic representation of the initial contact and subsequent rolling of the
rigid smooth cylinder with tangential velocity ux˙ .
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In figure 6(b), the normalized friction coefficient μR/a0 is shown as a function of the
dimensionless velocity Qu ax z 0˙ . We observe good correspondence between all numerical
results (colored diamonds) and the analytical result (black lines) by Hunter [18]. In line with
the results in figure 6(a), the dissipative friction increases with increasing ¥G G0. Further-
more, as expected [18, 24], the maximum dissipative friction is attained for Q »u a 1x z 0˙ , see
for instance the point indicated with No. for =¥G G 20 . The other two points indicated
on the same curve have the same friction coefficient at steady-state, but their transient dis-
sipation is far from similar. This can be seen in figure 7(a), where μR/a0 is given as a function
of t/Θz for the rolling velocities Qu ax z 0˙ corresponding to the points Nos. , and in
figure 6(b). Constant dissipative friction coefficients are achieved after t/Θz≈5. These are
the steady-state values in figure 6(b). By increasing velocity ux˙ from to the maximum
transient dissipative friction μmax increases and the time t/Θz at which the maximum is
observed, decreases.

In figure 7(b) the loads L/L0 corresponding to the maximum transient dissipative friction
μmax, indicated in figure 7(a) by colored circles, are presented as a function of x/a0. The
maximum normal load on the surface as well as the eccentricity of the load profile L x a0( )
increase with increasing velocity ux˙ (from to ). This agrees once more with the increase in
the maximum transient dissipative friction μmax from the normalized time to and down to
normalized time in figure 7(a).

For all rolling velocities and shear moduli studied here it is found that: (1) The maximum
transient dissipative friction coefficient μmax increases with velocity Qu ax z 0˙ for all shear
moduli ¹¥G G 1;0 (2) The maximum transient dissipative friction coefficient μmax is larger
than the steady-state friction coefficient for all velocities Qu ax z 0˙ studied. The maximum
observed in the transient friction coefficient μmax corresponds to the stiction spike observed in
the analytical work presented by Persson and Volokitin [21] and in the simulations of

Figure 6. (a) The scaled steady-state normal load L/L0 as a function of the normalized
x-position x/a0 with Q »u a 1x z 0( ˙ ) for =¥G G 1, 2, 5, 100 and the analytical result
by Hunter 1961 [18] for =¥G G 20 . (b) Steady-state normalized friction coefficient
μR/a0 as a function of the dimensionless velocity Qu ax z 0( ˙ ) for various

=¥G G 1, 2, 5, 10, 200 . The black (dashed) lines are the analytical results by
Hunter [18], the colored diamonds are numerical results and the colored dashed lines
are guides to the eye.
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Bugnicourt et al [43]. The maximum is caused by the sudden increase in rolling velocity at
time t=0, and is largest for the largest initial velocity step. A similar increase in the static
friction coefficient, although in the presence of adhesion at the surface, was measured in the
experiments of Roberts and Thomas [53]. In their work, soft polymers show a large increase
in friction coefficient compared to hard polymers. The authors observed a strong contribution
of viscoelasticity to the overall frictional response for soft polymers. In our work, since the
interface is frictionless, the only contribution to friction is provided by the viscoelastic
response of the half-plane.

5. Concluding remarks

There is the need for efficient computational techniques to model multi-length-scale rough-
ness and viscoelasticity while accounting for interfacial interactions. As a first step in this
direction, we derive the Green’s function for a quasi-static incompressible isothermal vis-
coelastic half-space. We implement the SA method as time-integration scheme [44] to obtain
a fast and accurate solution of the equations of motion. The extension to the GFMD method
provided in this work allows one to predict the transient and steady-state response of fric-
tionless contacts.

The model is here applied to study the frictionless indentation and rolling of a smooth
infinitely long rigid cylinder on a viscoelastic half-plane. These simple problems provide the
means of validating the new method through comparison with results obtained by the finite
element method and Hunter’s analytical work. Additionally, the transient response upon
rolling of the cylinder is here given for the first time.

The GFMD method presented and validated in this work provides a platform to model
adhesional contacts in future work. This is needed as most interesting phenomena are related
to the transient response under reciprocating mixed-mode loading of adhesive contacts, e.g.
peeling of pressure sensitive adhesives.

Figure 7. (a) Normalized friction coefficient μR/a0 as a function of t/Θz with
=¥G G 20 and Qu ax z 0( ˙ ) indicated in figure 6(b) by Nos. , and . The data

points are shown with colored diamonds only up to t/Θz=0.1 for clarity. (b) The
scaled normal load L/L0 as a function of x/a0 for t/Θz indicated in (a) by , and .
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Appendix. Viscoelastic GFMD pseudo-code

(i) Setup rigid indenter with initial surface topography =h x ;t 0n
( )

(ii) Determine damping coefficient c qcr ( ) such that all modes are critically damped and
calculate the dimensionless equilibrium time tequil

* for a given dimensionless time-
step Dt ;*

(iii) Loop over n iterations with time-step Dt until tfinal is reached. Give the location of the
rigid indenter as = - ++D +D = +Dh x h x u ut t t t

x
t t t

zpunch
0n n n n

( ) ( ) , where +Dut t
z
n

and +Dut t
x
n

are the
normal and tangential displacement of the indenter at time + Dt tn .
(a) Loop over Dt* until the dimensionless equilibrium time tequil

* is reached;
1. Discrete fast Fourier transform (DFFT) surface displacement +Du x t t

now
n

( ) using the
FFTW3 library [54];

2. Calculate viscoelastic restoring force:
¬ D+D +DF q u q u q F q tFunction , , , ;t t t t t t

viscoelastic now
n n n n

˜ ( ) { ˜ ( ) ˜( ) ˜ ( ) }
3. Add external force and interfacial force,

= + ++D +D +D +DF q F q F q F qt t t t t t t t
total viscoelastic ext if
n n n n

˜ ( ) ˜ ( ) ˜ ( ) ˜ ( ) ;

4. Add damping forces, = -
-

D+D +D
+D +D

F q F q c q
u q u q

t
;t t t t

t t t td total
cr

now old

n n

n n

*
˜ ( ) ˜ ( ) ( )

˜ ( ) ˜ ( )

5. Use pSV to solve equation of motion,
= - + D+D +D +D +Du q u q u q F q t2 ;t t t t t t t t

new now old d 2
n n n n

*˜ ( ) ˜ ( ) ˜ ( ) ˜ ( ) ( )
6. Assign ¬+D +Du q u qt t t t

old now
n n

˜ ( ) ˜ ( ) and ¬+D +Du q u q ;t t t t
now new
n n

˜ ( ) ˜ ( )
7. Reverse DFFT displacement +Du q t t

now
n

( ) into real space, and scale displacement

+Du x t t
now
n

( ) with 1 ;
8. Implement the hard-wall ¬+D +D +Du x u x h xmin , ;t t t t t t

now now punch
n n n

( ) { ( ) ( ) }
9. Calculate interfacial force ¬+D +D +DF x u x h xFunction ,t t t t t t

if now punch
n n n

( ) { ( ) ( ) } and

DFFT to +DF q t t
if
n

˜ ( ) .
(b) DFFT displacement +Du x ;t t

now
n

( )
(c) Save ¬ +Du q u qt t t

now
n n

˜ ( ) ˜ ( ) and ¬ +DF q F qt t t
total

n n
˜ ( ) ˜ ( ) .
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