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Abstract
Bayesian optimisation is a rapidly growing area of
research that aims to identify the optimum of the
black-box function, as it strategically directs the
optimisation process towards promising regions.
This paper provides an overview of the theoret-
ical background used by the Entropy Search al-
gorithms under study, mainly Predictive Entropy
Search, Max-Value Entropy Search, and Joint En-
tropy Search. Furthermore, we empirically anal-
yse the performance and sensitivity of the algo-
rithms in different environment settings. In particu-
lar, we discuss the impact of function shape, batch
size, noise level, and the number of input dimen-
sions on the final simple regret metric. The results
show the weak spots of the information-theoretic
methods. However, the algorithms perform better
for batch optimisation, demonstrating the advan-
tage when considering the information on the max-
imum function value.

1 Introduction
Black-box optimisation is a strategy that does not use deriva-
tive information to find the optimal point of a function of
many dimensions that is often expensive to evaluate (in terms
of time or resources). A common solution to this challenge is
to use Bayesian optimisation (BO). This technique involves
building a probabilistic model of the black-box function, fol-
lowed by applying an acquisition function. The acquisition
function helps to determine which point (or group of points)
to sample next in such a way as to find the location of the op-
timal point of the function, x∗ = argmaxx∈X f(x), where
X is the function domain. One metric that quantifies the suc-
cess of BO is simple regret τT = f(x∗) − f(xT ). Here, xT

is the best estimate, after T timestamps, of the location of the
optimal point.

Traditionally, the points for the evaluation of the functions
are chosen sequentially, which can lead to a slow optimisa-
tion process, especially if the evaluation of the functions is
time-consuming. On the contrary, batch point selection, also
known as parallel optimisation, allows the simultaneous se-
lection of multiple points. This concept is particularly rel-
evant to our study as it can significantly speed up the opti-
misation process with respect to wall-clock time. Further-
more, it is an attractive choice for real-world applications
where the function can be evaluated simultaneously in differ-
ent systems, such as optimising machine learning model hy-
perparameters, drug development, or robotics [2]. Although
there have been recent efforts to extend classical acquisition
functions, such as Probability of Improvement, Expected Im-
provement, or Upper Confidence Bound, to the parallel set-
ting, they often suffer from a myopic behaviour, where the
algorithm does not consider the long-term effects of the se-
lected batch of points. [16; 7]

Entropy Search (ES) is a class of algorithms that describes
a selection policy that is non-myopic by design. ES is based
on mathematical concepts introduced by Claude Shannon:

information gain and information entropy [15]. With each
new selection, ES aims to increase the information gained
about the position of the global objective maximise. The
existing literature has contributed significantly to expanding
the ES approach by developing different efficient approxima-
tions and providing robust implementations for the ES algo-
rithm, such as Predictive Entropy Search (PES) [8], Paral-
lel Predictive Entropy Search (PPES) [14], Max-value En-
tropy Search (MES) [21], and Joint Entropy Search (JES) [18;
9].

Although there have been recent advances in ES algo-
rithms, it is important to address existing knowledge gaps.
One such issue is the need for a systematic study on the per-
formance of (P)PES, MES, and JES in parallel optimisation
across various environment settings, such as different batch
sizes, function dimensions, and types of objective functions.
Additionally, understanding how these algorithms work in
different situations can improve their performance in real-
world scenarios, leading to better results and increased effi-
ciency.

The central research question of the paper is: How do En-
tropy Search algorithms perform under various environment
specifications, and what are the factors influencing their per-
formance?’ with a particular focus on the value of the regret
function and compute time, as well as a comprehensive com-
parison in the efficiency of the three algorithms.

This study underscores the superiority of entropy search-
based acquisition functions in batch Bayesian optimisation
compared to the greedy function qEI, particularly when deal-
ing with unimodal functions. Despite their robustness, the
adverse effects of noise in high-dimensional spaces require
effective countermeasures. These findings map the capabil-
ities and challenges of these methods, deepening our under-
standing of their operation.

2 Background Information
In this section, we elaborate on the mathematical underpin-
nings of our research and provide an overview of the theoret-
ical background used by Bayesian optimisation and the meth-
ods employed in the field. We also provide an outline of the
ES algorithms under study, mainly PES, MES, and JES, and
discuss the specifics of their application in the batch specifi-
cation.

2.1 Bayesian Optimisation and Acquisition
Functions

The surrogate model, typically a Gaussian process (GP), is
at the heart of Bayesian optimisation [13]. Given a dataset
Dn = {(Xn, Yn)} = {(xi, yi)

n
i=1}, where yi = f(xi) + ϵi

are the noisy scalar evaluations of the black box function
f : X → R, X ⊂ Rd, and ϵi ∼ N (0, σ2

ϵ ) i.i.d., a GP
constructs a probabilistic model of the true objective func-
tion, assuming that the observed data are generated by an un-
known function that is drawn from the GP prior. The condi-
tional probability of a new function value, given the observed
data, is then defined as p(y|Dn) = N (y|Dn, β), where β is
a set of hyperparameters. As such, we can derive the poste-
rior function model f̃ : X → N (µ(X ), σ2(X )), which out-



puts the mean µ and the confidence σ in the predicted value
for each point in our domain. The GP utilises kernel func-
tions, such as the squared exponential kernel or the Matern
kernel, to model the correlations between input points. The
kernel contains hyperparameters that significantly affect the
properties of the resulting function. For example, the length
scale influences the smoothness of the function, and the sig-
nal variance controls the overall variability of the function
values. These hyperparameters are typically inferred from
the data by maximising the logarithmic marginal likelihood,
a measure of the probability of the observed data given the
posterior prediction of the GP, L = log p(Yn|Xn, β) =

log
∫
p(Yn|f̃)p(f̃ |Xn, β)df̃ .

In Bayesian optimisation, acquisition functions are instru-
mental in selecting subsequent query points. They are heuris-
tics that leverage the probabilistic model built by the GP
to measure the improvement gained by evaluating a (set of)
points. Classic examples of acquisition functions are Proba-
bility of Improvement (PI) (1), Expected Improvement (EI)
(2), and Upper Confidence Bound (UCB) (3) [20]. These
functions aim to achieve an optimal balance between ex-
ploration and exploitation: exploration involves probing ar-
eas with high uncertainty, while exploitation involves select-
ing points that yield high expected objective value. Con-
sequently, acquisition functions are indispensable tools for
locating the optimum of the black-box function, as they
strategically direct the Bayesian optimisation process towards
promising regions.

αPI(x) = P (f(x) ≥ f∗) = (1)

= Φ

(
µ(x)− f∗

σ(x)

)
αEI(x) = E[max(0, f∗ − f(x))] = (2)

= (f∗ − µ(x))Φ

(
f∗ − µ(x)

σ(x)

)
+ σ(x)ϕ

(
f∗ − µ(x)

σ(x)

)
αUCB(x) = µ(x) + βσ(x), (3)

where β > 0 is a parameter that controls the
exploitation-exploration trade-off

Figure 2: Acquistion functions for Probability of Improvement (PI),
Expected Improvement (EI), and Upper Confidence Bound (UCB).
Here, f∗ denotes the optimum value obtained so far, Φ(·) is the nor-
mal cumulative distribution function (CDF), and ϕ(·) the probability
density function (PDF).

Although traditional acquisition functions such as PI, EI,
and UCB have been shown to be effective in sequential point
selection, they face specific issues when used in batch selec-
tion. Extending these functions directly to batch selection
complicates the process and can result in less effective re-
sults. One solution proposed to address these difficulties is
to use the Markov chain Monte Carlo (MCMC) method to
approximate the estimation of the acquisition function to se-

quentially populate the selection set [16]:

αPI−MCMC(x|{xq′}qq′=1) =

=

∫
X q

[αPI(x|Dn ∪ {xq′ , yq′}qq′=1)

p({yq′}qq′=1|Dn, {xq′}qq′=1)dy1..dyq]

is the expected gain in evaluating x after evaluating
{xq′ , yq′}qq′=1. However, this approach leads to a problem
known as the ”double greedy” selection process [14]. This
occurs because acquisition functions are inherently greedy
when choosing a single candidate that is expected to give
the most utility when considering the simple next-step re-
gret. Furthermore, the MCMC approach greedily populates
the batch set St one by one using the output of the acquisition
function. This parallel optimisation algorithm often results
in a set of similar or identical points, reducing the effective-
ness of the evaluation. Therefore, while MCMC may help
overcome some issues of batch selection, it is not the most
optimal solution and introduces its challenges.

2.2 Entropy Search and Information-Theoretic
Acquisition Functions

Information-Theoretic acquisition functions aim to maximise
the gain in information about the global maximiser from the
next observation. By focusing on information gain instead of
immediate improvement, it encourages the selection of a di-
verse set of points, effectively mitigating the ”double-greedy”
issue in batch selection.

The authors of [9; 11] propose an efficient, albeit subopti-
mal, batch selection procedure for information-theoretic ac-
quisition functions that does not introduce any conditional
terms between the selected sampling points. This extension
is achieved simply by summing the acquisition values of each
point within the batch:

α({xq}Qq=1) =

Q∑
q=1

α(xq)

where the previously selected points are ’fantasized’ to be
part of the training data. Remarkably, the summed quantity
provides an upper-bound approximation of the true acquisi-
tion function, thus enhancing the versatility of information-
theoretic methods in Bayesian optimisation. As such, we will
only consider the case of a single input when referring to
the acquisition functions of information-theoretic algorithms.
Nevertheless, it is important to remember that the function
can easily be extended to a batch setting.

One popular approach is Entropy Search (ES), which cal-
culates the expected gain in information about the location of
the global maximiser x∗ when querying a new point x. The
information gain is measured in terms of the reduction in the
differential entropy H[·] of the distribution over the global
maximizer:

αES(x) = H[p(x∗|Dn)]−
Ep(y|Dn,x)[H (p(x∗|Dn ∪ {x, y}))] (4)



While this formula is conceptually straightforward, it is
computationally intractable due to non-analytic entropy cal-
culations and the requirement to calculate the probability dis-
tribution of the maximum given an extended dataset.

2.3 Predictive Entropy Search
Predictive Entropy Search (PES) is an evolution of the ES
acquisition function, which is moving towards a more analyt-
ically tractable formulation. While ES seeks to directly min-
imise the entropy of the global optimum’s distribution upon a
potential observation, PES is designed to compute the change
in the entropy of the predictive distribution at the global op-
timum’s location. This adjustment arises from the utilization
of mutual information in the derived equation 4:

αPES(x) =

= H[p(y|Dn, x)]− Ep(x∗|Dn,St)[H (p(y|Dn, x, x
∗))]

The PES formulation gives rise to two easier-to-calculate
terms given the statistical model derived from the GP.
As such, the first term, which describes the entropy
of the predictive distribution, can be calculated analyti-
cally using the model inference variance H[p(y|Dn, x)] =
0.5 log(2πe(σ(x) + σ2

ϵ )), where σϵ is the variance of obser-
vation noise.

However, the second term poses more challenges due to its
reliance on calculating the entropy over the GP’s posterior,
given the expected location of the global maxima: p(x∗|D) =
p(f(x∗) = maxx∈X f(x)|Dn). PES resorts to a series of
approximations that effectively reduce this second term to a
Gaussian model to manage its complexity.

The first step makes use of Brochner’s theorem to build an
estimate of the GP kernel that is based on its Fourier dual
[4]. This allows efficient sampling of a function path fs ∼
p(f̃ |Dn) from the GP model. Let x∗

s = argmaxx∈X fs(x)
be the global maximum argument of the sampled function.
Then, expectation propagation is used to construct a Gaussian
posterior distribution that is conditioned on the new maxi-
mum location, as well as the belief that fs(x∗

s) is the opti-
mum function value [10]. As such, the expected entropy can
be calculated using the predictive variance that results from
the approximation, σ(x|x∗

s).
In the original description of the algorithm given in [8],

the authors marginalise over a set of M GP hyperparameters
to obtain a Bayesian treatment of the global maxima location
expectation, as well as to account for uncertainty in the model
parameters. Let β denote a vector of hyperparameters that
includes any kernel parameters, as well as the noise variance
σ2, then, the Monte Carlo method of slice sampling is used
to draw M samples {β(i)}Mi=1 from p(β|Dn) [19].

The final PES acquisition function becomes:

αPES(x) =

=
1

2M

M∑
i=1

(
log(σ(i)(x) + σ2(i)

ϵ )− log(σ(i)(x|x∗(i)) + σ2(i)
ϵ

)
The PES approximation is feasible since most of the terms

do not depend on the input and can be precomputed. Fur-

thermore, it is suitable for gradient search optimisation, en-
abling for such methods to identify the point x that maximises
αPES .

2.4 Max-value Entropy Search
Max-Value Entropy Search (MES) is a robust and efficient
improvement in ES, particularly with regard to the imple-
mentation of PES [21]. The MES algorithm works by con-
sidering information regarding the maximum function value,
y∗ = f(x∗), rather than approximating the distribution of
the optimum position. The former variable resides in a one-
dimensional space, thus greatly simplifying the calculations
compared to the multidimensional scenario of PES.

This simplification also provides the basis for the MES ac-
quisition function:

αMES(x) =

= H[p(y|Dn, x)]− Ep(y∗|Dn)[H(p(y|x,Dn, y
∗))]

The first term is shared with the PES formula and consists of
the entropy of the predicted Gaussian distribution. The sec-
ond term is the entropy of a truncated Gaussian distribution,
taken over the expected distribution of the maximum function
value, based on the assumption that y∗ is the global maximum
of the function.

At first glance, it may seem that an information increase
about the function’s maximum value does not also help in
finding its position. However, the formula favours points that
reduce the tail probability of the maximum function value
p(y∗|Dn). By strategically selecting points expected to sig-
nificantly reduce uncertainty about the highest value, the al-
gorithm successfully identifies the location of the optimum
more efficiently than its counterparts.

MES begins with a fitted GP model following a similar im-
plementation path as PES. To approximate the second term
of the acquisition function, it becomes necessary to sam-
ple the maximum values of the functions of K from this
model, Y ∗ = {(y∗k)}Kk=1, where y∗ = maxx∈X f̃(x) is
the maximum value of a function sampled f̃ GP (µ, σ|Dn).
The authors of [21] describe two methodologies that can
be employed for this process: the Gumbel or Monte Carlo
(MC) techniques, each providing distinct advantages. Subse-
quently, the tractable implementation marginalises these sam-
ples to compute the acquisition function.

αMES(x) ≈
1

K

∑
y∗∈Y ∗

[
γy∗(x)ϕ(γy∗(x))

2Φ(γy∗(x))
−log(Φ(γy∗(x)))]

where ϕ is the probability density function and Φ the normal
cumulative density function, and γy∗ = y∗−µ(x)

σ(x) . Notably,
when using only one max sample, MES becomes equivalent
to the Probability of Improvement (PI) strategy. [21; 22]

MES proves to be a more robust approach to PES that is
easier to implement and faster. In practise, MES often out-
performs PES.

However, despite these benefits, MES has its limitations.
Later studies show that it can overestimate the information



gain of points in noisy settings, as it assumes a noiseless envi-
ronment. This drawback requires careful consideration when
applying MES in real-world scenarios [12].

2.5 Joint Entropy Search
Joint Entropy Search (JES) presents a more accurate algo-
rithm in the domain of information-theoretic acquisition func-
tions, combining ideas from PES and MES [18; 9]. JES con-
structs a joint probability distribution over both the input and
output space by incorporating information about the distri-
bution of the maximum position and the maximum function
value. As such, JES offers a maximally informed heuristic
for determining the next sampling point.

αJES(x) =

= H[p(y|Dn, x)]−Ep(x∗,y∗|Dn)[H(p(y|Dn∪(x∗, y∗), x, y∗))]

JES follows a clear implementation path. First, it gener-
ates a set of optimal pairs {(x∗

l , y
∗
l )}Ll=1, where each y∗l is the

maximum point of a function sampled from the GP model.
Given the current information about the function, this helps
to estimate both the distribution of maximum values and their
position. The algorithm marginalises these two distributions
by then computing a new conditional posterior distribution of
L GP models, each including an optimal pair in its training
data Dn ∪ {x∗

l , y
∗
l }. However, it is necessary to truncate the

new probability that imposes f(x) <= y∗i to maintain the
belief that the value is maximal.

αJES(x) ≈

≈ log(σ(x)+σ2
ϵ )−

1

L

L∑
l=1

log(σ2
ϵ+σf |y∗

l
(x;Dn∪(x∗

l , y
∗
l )))

The entropy of the estimated term is calculated using the
variance σf |y∗

l
(x;Dn ∪ (x∗

l , y
∗
l )) = σT (y

∗;µl(x), σl(x))

where σT (α;µ, σ) is the variance of the Gaussian distribution
truncated at α, and µl(x) and σl(x) are the mean and covari-
ance of the GP conditioned on the optimal pair (x∗

l , y
∗
l ).

JES not only discerns the probable sites for the optimal
value, but also estimates the likely minimum and maximum
bounds of that optimal value, thereby providing valuable in-
formation for subsequent enquiries.

3 Methodology
This research investigates the performance of information-
theoretic acquisition functions in batch Bayesian optimisation
(BO). Specifically, it focuses on three critical aspects: the
type of objective functions, the input data dimensions, and
the noise levels in the evaluations. Additionally, the study in-
vestigates the interaction of these variables with batch size,
thereby uncovering performance nuances under different set-
tings.

Batch BO has received significant attention, especially in
areas where the parallel evaluation of black-box functions of-
fers a significant advantage in reduced evaluation time. No-
table examples include A/B testing and hyperparameter tun-
ing of algorithms. The premise that larger batch sizes could
accelerate the optimisation process with respect to the wall

clock time is theoretically appealing. However, it often re-
sults in compromised performance compared to sequential
selection of the same number of points, as quantified by the
immediate regret metric (5). This limitation is attributed
to the inherent bias in the batch selection procedure, where
the points are selected based on the model generated by GP
which can be inaccurate. To assess the performance of the
algorithms in different parallel settings, the study considers
batches of sizes 2, 5, 10, and 25.

This study recognises that the types of problems with
which BO deals are inherently complex. They often come
with limited training data, no gradient information, and po-
tentially noisy evaluations. GPs are robust tools for modelling
these problems, as they can approximate any arbitrary func-
tion. However, different types of objective functions could
compromise their inference efficacy. Therefore, this study
includes a diverse set of objective functions to explore this
aspect. The chosen objective functions include Griewank,
Zakharov, Easom, Ackley, the sum of different powers, and
Schwefel. These functions span various functional land-
scapes, from unimodal to complex multimodal, representing
a broad spectrum of real-world challenges. For instance, Ea-
som poses the problem of a flat outer region with a maximum
that occupies a small proportion of the search space. Mean-
while, Griewank presents a complex multimodal landscape
with numerous local maxima. Schwefel, in contrast, requires
a balance between exploration and exploitation, thereby ne-
cessitating a balanced approach from the acquisition function.

Another factor that is present in real-world applications is
the presence of noise in the evaluation process. Noise, quan-
tified as a percentage of the range of values of the objective
function, can obscure the actual value of the objective func-
tion and present significant challenges to the optimisation al-
gorithm. Noise levels ranging from a noiseless setting to 5%,
10%, 20%, and 40% are considered to assess the robustness
of the acquisition functions in various noise conditions.

The input data dimension is another important aspect in-
vestigated in this study. The ’curse of dimensionality’ is a
common concern in high-dimensional problems, where an in-
crease in the input dimensions can drastically increase the
complexity of the problem. Therefore, this study considers
different input dimensions of 2, 5, 10, 25, and 50 to eval-
uate the effectiveness of acquisition functions and ascertain
the feasibility of these methods in high-dimensional settings.

Given the extensive computational requirements of the al-
gorithms, the study adopts a fractional factorial design ap-
proach [3]. This method allows selecting a subset of the com-
plete experimental setup while maintaining a comprehensive
understanding of the performance implications of the chosen
parameters. A complete description of how the technique was
applied can be found in A.

The algorithms evaluated in this study include qPredictive-
Entropy-Search, qMax-Value-Entropy-Search, and qJoint-
Entropy-Search, as they are implemented in the BOTorch
Python framework [1]. A simple random agent is
also included for baseline comparison, along with the
popular qExpected-Improvement method, a classical ap-
proach to balance computational efficiency and perfor-
mance. The testing environment was implemented us-



Figure 3: A 2-dimensional representation of the functions used for
evaluating the acquisition functions, each presenting its challenges.
Notably, Griewank, Schwefel, and Ackley are more difficult to op-
timize multimodal functions; Sum of Different Powers, Zakharov,
and Easom are unimodal. Easom stands out for its small global min-
imum area relative to its search space. Source [17]

ing the jit env and BBOx codebases [6; 5]. The
agent implementations, testing environment, obtained re-
sults, and methods used to analyse the data can be
found, in their entirety, at https://github.com/ahautelman/
entropy-seach-batch-global-optimiation-performance. Fi-
nally, the tests were performed and averaged over five iter-
ations to ensure the reliability and impartiality of the results.

The performance of the algorithms was evaluated using
two metrics: simple and cumulative regret (5). Simple re-
gret compares the optimal solution with the best solution dis-
covered. Cumulative regret offers an accumulated disparity
between the optimal and chosen points over iterations, mea-
suring the overall quality of decisions. High cumulative re-
gret values can also suggest that the algorithm performs sig-
nificant exploration; however, as long as the simple regret
remains minimal, the algorithm’s performance is considered
adequate.

τ cumulative
t = τ cumulative

t−1 +
∑
St

[f(x∗)− f(x)] (5)

4 Results

In this section, the study empirically analyses the perfor-
mance and sensitivity of information-theoretic algorithms in
different environment settings. In each case, we discuss the
impact of each individual parameter on the final simple re-
gret metric: function shape, batch size (q), noise level, and
the number of input dimensions (D); then, remarks are of-
fered as to the interaction between them. Finally, we analyse
the runtime behaviour of the algorithms and make concluding
remarks about their performance.

It is important to note that the benchmarks for the qPES
function were not fully conducted due to the significant com-
putational resources, particularly in terms of RAM and/or
GPU, required to execute the algorithm. The intensity of
these resource demands posed considerable challenges during
the execution of the test cases. The limited memory capacity
of the testing machines resulted in frequent failures and com-
promised the integrity of the obtained results. Consequently,
qPES could not be included in most of the benchmarks due to
these practical limitations.

Griewank (q=2, D=2, varying noise) [Figure 4] The
Griewank benchmark did not pose a difficulty to the perfor-
mance of any of the algorithms. Even at a high noise level
of 40%, the acquisition functions could rapidly converge to-
wards the global maximum within a few iterations. It is note-
worthy that despite the inherent complexity of the Griewank
function, which is characterised by many widespread local
minima, the function exhibits a general unimodal appearance
when disregarding the oscillations of the function’s values.
Consequently, all acquisition functions successfully identi-
fied reasonable candidates for this low-dimensional bench-
mark.

https://github.com/ahautelman/entropy-seach-batch-global-optimiation-performance
https://github.com/ahautelman/entropy-seach-batch-global-optimiation-performance


Figure 4: Griewank run

Agent Noise - Simple regret correlation

qEI 0.939
qPES 0.3715
qMES 0.8729
qJES 0.8633

Table 1: Correlation between the four noise levels (0, 5%, 10%,
20%, 40%) and simple regret, after 20 points evaluation, for bench-
mark Griewank (q=2, D=2)

Figure 5: Sum of Different Powers run

Figure 6: Performance of acquisition functions in high-dimensional,
unimodal function as measured by cumulative regret after 50 itera-
tions of 5 batch size. Information-theoretic methods have an overall
better performance for noiseless batch optimisation. However, the
inference of the optimal value decreases rapidly with the introduc-
tion of noise.

Sum of Different Powers (q=5, D=10, varying noise)
[Figure 5] The sum of different powers benchmark is a rea-
sonably simple unimodal problem with a steady slope to-
wards the optimal position. This test investigates the ef-
fect of noise coupled with a high-dimensional space. No-
tably, in a noiseless setting, the information-theoretic algo-
rithms demonstrated remarkable effectiveness in approach-
ing the maximum function, even within the high-dimensional
problem space. The results presented in Figure 6 highlight the



final cumulative regret, indicating the overall superior quality
of the selected batch of points for information-theoretic meth-
ods for the run without noise. However, it should be noted
that as the noise level increased, the functions encountered
difficulties in accurately inferring the position of the optimal
value, not even surpassing the performance of the random
agent.

Easom (q=2, varying input dimension, noise=5%) [Fig-
ure 7] Unfortunately, the Easom benchmark proved difficult
for BO, the acquisition functions struggled to find the small
optimum area, even in a two-dimensional setting. In partic-
ular, MES and JES managed to do so more consistently than
the other ES method, showing the advantage of considering
the information of the maximum function value.

Figure 7: Easom run

Ackley (q=5, varying input dimension, noise=10%)
[Figure 8] The evaluation of the Ackley benchmark is tricky
due to the presence of numerous evenly distributed local min-
ima. In low-dimensional scenarios, all acquisition functions
can approximate the local optima with reasonable accuracy.
However, as the problem’s dimensionality increases, the ac-
quisition functions’ performance deteriorates. Among the ac-
quired functions examined, qJES stands out because it ex-
hibits greater resilience to the expansion of the input space. It
consistently approaches a maximum even in 25 dimensions,
showcasing its robustness in tackling higher-dimensional set-
tings.

Figure 8: Ackley run

Zakharov (varying batch, D=2, noise=0%) [Figure 9]
The low-dimensional, noise-free, unimodal function did not
pose significant challenges for any acquisition functions ex-
amined. In particular, the batch selection strategy exhibited
remarkable effectiveness, facilitating rapid convergence to-
wards the minimum of the function. It is worth noting that a
positive correlation emerged between the size of the batch and
the magnitude of the simple regret 2. However, such an out-
come was expected, and the observed regret increase proved
insignificant compared to the output range of the Zakharov
function.

Agent Batch - Simple regret correlation

qEI 0.723
qMES 0.936
qJES 0.929

Table 2: Correlation between the four batch sizes (2, 5, 10, 25) and
simple regret, after 100 point evaluations, for benchmark Zakharov
(D=2, noise=0%).

Schwefel (varying batch, D=10, noise=20%) [Figure 10]
The performance evaluation of the acquisition functions using
the Schwefel benchmark further emphasises the detrimental
effects of a high noise level, particularly in conjunction with
a high-dimensional search space. In this complex multimodal
setting, the batch selection strategy proved ineffective. High
noise levels significantly contaminated any potentially help-
ful information for the model, impairing its ability to identify
optimal solutions accurately.

In our evaluations, the runtime of the information-theoretic
methods was found to be considerably longer than that of



Figure 9: Zakharov run

Figure 10: Schwefel run

Agent Noise - Simple regret correlation

qEI 1.14
qPES 13.62
qMES 3.13
qJES 24.92

Table 3: Average runtime in seconds of the studied algorithms over
all runs.

their classical counterparts, with qMES being the lone excep-
tion [3]. It is important to consider, however, that the results
for the qPES agent, which was tested using GPU acceleration,
are not entirely definitive. Generally speaking, PES tends to
have a longer runtime compared to the other two acquisition
functions [18].

This investigation of entropy search-based acquisition
functions in batch Bayesian optimisation has highlighted their
effectiveness and robustness across various input dimensions.
In particular, qJES and possibly qPES (pending further test-
ing) showed an increased resistance to greater input dimen-
sions, as it results from the Ackley [8] and Sum of Differ-
ent Powers settings [5]. The information-theoretic methods
performed at least as well as, if not better than, qEI in most
batch optimisation scenarios. The study has especially high-
lighted their proficiency in pinpointing optimum functions
within batch settings, even under complex circumstances,
with significant efficiency when optimising unimodal func-
tions with discernible slopes. However, the results also high-
light the detrimental impact of noise, especially within high-
dimensional spaces, necessitating the deployment of noise re-
duction strategies or alternative methods in situations where
noise interference is inevitable.

5 Responsible Research
This research was committed to integrity, transparency, and
social impact. The primary objective was to ensure repro-
ducibility and facilitate validation, advancement, and innova-
tion by the wider academic community.

In particular, the open-source philosophy underpins the en-
tire methodology. All the code used in the investigation,
from data collection to analytical stages, is publicly acces-
sible through the provided GitHub link. Second, we have en-
sured that all datasets used in our research are available in the
public domain. By making these datasets publicly accessi-
ble, we allow for further exploration and the opportunity for
peer feedback, thereby ensuring continuous improvement in
the quality of research in the field.

Our methodological approach to implementing
information-theoretic acquisition functions and data analysis
is explained in-depth within the paper. This approach
facilitated a clear understanding of the analysis steps and the
foundations of our conclusions.

Research on the performance of information-theoretic ac-
quisition functions for batch BO offers critical insights for
researchers and industry practitioners. This knowledge will
empower informed decision making when using information-
theoretic algorithms for optimisation, potentially improving



operational efficiency and improving products and services,
thus affecting societal progress.

6 Conclusions and Future Work
Investigating entropy search-based acquisition functions
within batch Bayesian optimisation has identified vital in-
sights. This research confirms the superiority of these meth-
ods compared to the greedy acquisition function, qEI, in
terms of efficacy, but also their robustness across various in-
put dimensions. Significantly, their proficiency in identifying
the optimum function within batch settings was consistently
demonstrated, even under complex conditions.

The potency of entropy search methods is particularly ev-
ident when optimising unimodal functions, provided the ex-
istence of a discernible slope to navigate the input space ef-
fectively. In particular, the research sheds light on the harm-
ful impact of noise on the optimisation process. Its influence
is accentuated, particularly within high-dimensional spaces,
underscoring the critical need for deploying noise reduction
strategies or alternate methods in circumstances where noise
interference is inevitable.

In summary, this research successfully maps out the virtues
and constraints of entropy search methods within the frame-
work of batch Bayesian optimisation. These invaluable in-
sights significantly enhance our understanding of the dynam-
ics shaping their performance.

In light of this revision, future studies can explore more
complex scenarios. Settings with input-dependent noise, mis-
specified environments, or multiobjective optimisation are a
promising direction for future research. Specifically, environ-
ments where rewards are delayed pose a prevalent real-world
optimisation problem, making them critical areas for further
exploration. Studying the performance of these algorithms
under such challenging conditions will be instrumental in re-
fining and enhancing their robustness and reliability, making
them practical in a broader range of scenarios.
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A Fractional Factorial Design

A full factorial design is one in which all possible combina-
tions of all levels of all factors are tested. However, this can
be very resource intensive. To alleviate this, a fractional fac-
torial design approach can be employed, enabling testing of
only a select fraction of all conceivable combinations.

A prevalent form of fractional factorial design can be repre-
sented as 2n−k, where n represents the total number of factors
and k means the fraction of the entire factorial that is deliber-
ately omitted. For the experimental design in this study, four
factors are considered: function type, batch size, noise level,
and number of input dimensions. Each of these factors is as-
signed two levels: low (-) and high (+) noise levels and small
and large batch sizes. The complete factorial design matrix,
which presents all permutations of these factors, is shown in
4.

Subsequently, a generator is selected as the guiding column
to determine the combinations retained in the fractional fac-
torial design. The choice of generator is often based on the
factor assumed to have the least impact on the results. In this
investigation, the function shape is chosen as the generator.

Finally, the XOR operation is performed between the cho-
sen generator column and the remaining columns to finalise
the combinations to retain in the fractional factorial design.
These retained combinations represent the parameter settings
that will be subjected to further experimentation in this study.
The chosen combinations are indicated in red in the factorial
design matrix.

Some combinations were excluded due to the constraints
of the testing environment, which only presents six functions:
we omitted (- + + +) and (+ + - +).

In addition, we systematically cycle through the values of
a single parameter, which provides us with the opportunity
to analyse its impact on the test set. As such, the complete
testing environment can be found in 5

Function
Type

Batch Size Input Dimension Noise Level

- - - -
- - - +
- - + -
- - + +
- + - -
- + - +
- + + -
- + + +
+ - - -
+ - - +
+ - + -
+ - + +
+ + - -
+ + - +
+ + + -
+ + + +

Table 4: Factorial design table

Function Type Batch Size Input Dimension Noise Level

Different Powers 5 10 0
Different Powers 5 10 5
Different Powers 5 10 10
Different Powers 5 10 20
Different Powers 5 10 40

Easom 2 2 5
Easom 2 10 5
Easom 2 25 5
Easom 2 50 5

Zakharov 2 2 0
Zakharov 5 2 0
Zakharov 10 2 0
Zakharov 25 2 0
Griewank 2 2 0
Griewank 2 2 5
Griewank 2 2 10
Griewank 2 2 20
Griewank 2 2 40
Schwefel 2 10 20
Schwefel 5 10 20
Schwefel 10 10 20
Schwefel 25 10 20
Ackley 5 2 10
Ackley 5 10 10
Ackley 5 25 10
Ackley 5 50 10

Table 5: Testing setup
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