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Abstract: Different concrete structures (viaducts, bridges, or tunnels) in the neighborhoods of
railways may be subject to the stray current leaking from the rails. In these cases, the reinforcing
rebars embedded in concrete act as conductors, “pick up” the stray current, and can corrode. For
simulating the stray current-induced corrosion of metals, most researchers just supplied anodic
polarization on samples. However, stray current induces both cathodic polarization and anodic
polarization. This work experimentally justifies the different effects of stray current and anodic
polarization on reinforcing steel embedded in mortar. A comparison between stray current and
anodic polarization effects on the corrosion behavior of embedded steel is performed for both fresh
(24 hour-cured) and hardened matrix (28 day-cured) in chloride-free (Cl-free) and chloride-containing
(Cl-containing) environments. It is found that in all studied conditions, anodic polarization leads to a
significantly different electrochemical performance of the steel rebar compared to the stray current.
Hence, anodic polarization cannot reflect all the effects of stray current, and therefore, it has limited
significance for simulating stray current. It is also clarified that the curing regimes and starting
time of the stray current play significant roles in the formation of a corrosion product layer on the
steel surface.

Keywords: stray current; anodic polarization; corrosion; steel; mortar

1. Introduction

Currents flowing along paths not being elements of a purpose-built electric circuit are
called stray currents [1,2]. Different concrete structures (viaducts, bridges, or tunnels) in
the neighborhoods of railways may be subject to the stray current leaking from the rails.
In these cases, the concrete pore solution acts as an electrolyte, and the reinforcing rebars
embedded in concrete act as conductors, which can “pick up” the stray current and can
corrode. The mechanism of stray current induced-corrosion of steel in concrete can be seen
in Figure 1a. At the location where the stray current “enters” the steel, cathodic reaction
occurs (predominantly oxygen reduction, in the high pH environment of pore solution of
concrete matrix):

1/2O2+H2O + 2e− → 2OH− (1)

At the point where the stray current flows out from the steel into the external environ-
ment (e.g., concrete), anodic reaction takes place (i.e., steel corrosion):

Fe→ Fe2++2e− (2)

To study the effects of stray current on the corrosion behavior of steel in concrete,
various approaches have been presented in various research papers [3].

However, as reported in [2,3], most of the investigations actually reported the results
on anodic polarization rather than stray current-induced corrosion of steel in reinforced
concrete specimens.
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opposite direction. Ion migration (or its co-existence with diffusion, capillary suction, etc.) 
in cement-based materials is through the connected pores [4]. Thus, the transport process 
is related to the porosity and pore network connectivity of the bulk, which is also deter-
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Fresh concrete at a very early age is considered as a viscoelastic material [5]. From 
mixing until the initial setting time, cement hydration takes place and makes the concrete 
harden. During this period, ion migration, due to the electrical field, would additionally 
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Specifically, current flowing in the fresh cement matrix with high porosity and permea-
bility can easily lead to enhanced water and ion transport due to accelerated ion migra-
tion. Consequently, cement hydration would be enhanced, faster development of the ce-
mentitious microstructure would be at hand, and the more rapid stabilization of the pore 
solution and hydration products would occur at the steel–mortar interface. In other 
words, the curing regimes and starting time of the stray current (i.e., the stray current 
supply starts at an early age or later age) may play significant roles in the formation of a 
corrosion product layer on the steel surface. However, this aspect has not been investi-
gated before. 

Figure 1. Ion migration in reinforced concrete undergoing: (a) Stray current; (b) Anodic polarization.

Although stray current leads to the anodic locations on a steel surface, meaning that
the degradation itself is linked to anodic currents and oxidation, the influence of stray
current is not just anodic polarization. As presented in Figure 1a, the stray current effect is
composed of both anodic polarization and cathodic polarization on a steel surface. Hence,
stray current and its effects are more complex than only anodic polarization. Except
for exerting effects on the metallic conductor (steel specifically), stray current will also
trigger ion migration in a cement-based matrix. Ion migration in an electrolyte is an ion
transport mechanism that can only occur in an electrical field. As shown in Figure 1,
cations would migrate in the direction of the current, but anions (e.g., Cl−) migrate in the
opposite direction. Ion migration (or its co-existence with diffusion, capillary suction, etc.)
in cement-based materials is through the connected pores [4]. Thus, the transport process is
related to the porosity and pore network connectivity of the bulk, which is also determined
by the age/maturity of a concrete matrix.

Fresh concrete at a very early age is considered as a viscoelastic material [5]. From
mixing until the initial setting time, cement hydration takes place and makes the concrete
harden. During this period, ion migration, due to the electrical field, would additionally
influence the cement hydration process and product layer formation on the steel surface.
Specifically, current flowing in the fresh cement matrix with high porosity and permeability
can easily lead to enhanced water and ion transport due to accelerated ion migration. Con-
sequently, cement hydration would be enhanced, faster development of the cementitious
microstructure would be at hand, and the more rapid stabilization of the pore solution and
hydration products would occur at the steel–mortar interface. In other words, the curing
regimes and starting time of the stray current (i.e., the stray current supply starts at an
early age or later age) may play significant roles in the formation of a corrosion product
layer on the steel surface. However, this aspect has not been investigated before.

One of the aims of this work is to justify the different effects of stray current and anodic
polarization on reinforcing steel embedded in “fresh” (24 hour-cured) and “matured” mor-
tar (28 day-cured). Stray current and anodic polarization are both applied and monitored
in identical reinforced mortar specimens. The specimens are cured in a fog room (98%
RH, 20 ◦C) for only 24 hours (24h) to produce “fresh” bulk matrix or the standard 28 days
(28d) for hardened matrix. For a period of 243 days of conditioning, a comparison between
stray current and anodic polarization effects on the corrosion behavior of embedded steel
is performed for both fresh (24h-cured) and hardened matrix (28d-cured) in a Cl-free and
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Cl-containing environment. It is found that in all conditions, anodic polarization leads
to the significantly different electrochemical performance of the steel rebar, compared to
stray current. Hence, anodic polarization cannot reflect all the effects of stray current, and
therefore, it has limited significance for simulating stray current. It is also clarified that the
curing regimes and starting time of stray current (i.e., the stray current supply starts at age
of 24h or 28d) play significant roles in the formation of a corrosion product layer on the
steel surface.

2. Materials and Methods
2.1. Materials and Specimen Preparation

Stray current and anodic polarization were applied on reinforced mortar prisms (of
40 × 40 × 160 mm3). The specimens were cast from Ordinary Portland Cement (OPC)—
CEM I 42.5 N (ENCI, Maastricht, The Netherlands) and normed sand. The water-to-cement
(W/C) ratio was 0.5; the cement-to-sand (C/S) ratio was 1:3. Construction steel (rebar)
FeB500HKN (d = 6 mm) with an exposed length of 40 mm (with an exposed steel surface
area of 7.54 cm2) was centrally embedded in the mortar prisms. The schematics of the
specimens’ geometry is depicted in Figure 2.
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Prior to casting, the steel rebars were cleaned electrochemically by the cathodic current
of 100 A/m2, where the steel rebar was the cathode, and stainless steel was the anode.
This process was performed in a solution of 75 g NaOH, 25 g Na2SO4, and 75 g Na2CO3
(reagent water to make 1000 mL), according to ASTM G-1 [6]. After that, the 2 ends of the
rebar were covered by a heat-shrinkable tube. This aimed to avoid or minimize crevice
corrosion and confine the effect of the experimental conditions to identical geometry and
the exposed steel surface.

The two cast-in MMO (Mixed Metal Oxide) Ti electrodes (MMO Ti mesh, 40 × 160 mm2)
served as terminals for anodic polarization and/or stray current application. When anodic
polarization and/or stray current supplies were interrupted (min 24 hours before elec-
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trochemical tests), the two Ti electrodes (connected with each other) served as a counter
electrode in a general 3-electrode system. In this system, the working electrode was rebar,
and the reference electrode was an external Saturated Calomel Electrode (SCE).

The stray current and anodic polarization level was set at 0.3 mA/cm2. The current
density was calculated according to the exposed steel surface area. This current density was
chosen according to a hypothetic 10% weight loss of steel rebar, as analytically calculated
via Faraday’s law, for a period of 28 days in the relevant experimental conditions:

i = ZFrρηs/2At (3)

where t is duration of corrosion (28 days = 2,419,200 s), Z is the valence of the iron ions
(Z = 2), F is Faraday’s constant (96,500 As), r is the radius of the corroded bar (0.3 cm), ρ is
the iron density (ρ = 7.87 g/cm3), ηs is the mass loss ratio (10%), A is the atomic mass of
iron (A = 56 g), and i is the current density (A/cm2). Based on this calculation, the anodic
polarization level is 0.174 mA/cm2. Considering the fact that the supplied anodic current
may be partially limited if any resistive components in the circuit would arise within the
mortar, the current level was increased to 0.3 mA/cm2.

2.2. Curing and Conditioning

The relevant curing, conditioning regimes, and specimens designation are shown in
Table 1. After casting, all specimens were cured in a fog room (98% RH, 20 ◦C) for 24 hours
(24h) or 28 days (28d) until demolding. Next, the specimens were lab-conditioned (lab air).
The specimens were submerged in water (Cl-free) or 5% NaCl solution (Cl-containing),
with 2/3rd of height.

Table 1. Summary of curing and conditioning regimes.

Group Curing
Immersion Environment Electrical Field

Water 5% NaCl Stray Current Anodic Polarization

R-24h

24h

√

C-24h
√

S-24h
√ √

CS-24h
√ √

A-24h
√ √

CA-24h
√ √

R-28d

28d

√

C-28d
√

S-28d
√ √

CS-28d
√ √

A-28d
√ √

CA-28d
√ √

R-24h: Reference; C-24h: Corroding (NaCl medium); S-24h: Stray Current; CS-24h: Corroding (NaCl) + Stray
Current; A-24h: Anodic Polarization; CA-24h: Corroding (NaCl) + Anodic Polarization—After 24h curing; R-28d:
Reference; C-28d: Corroding (NaCl medium); S-28d: Stray Current; CS-28d: Corroding (NaCl) + Stray Current;
A-28d: Anodic Polarization; CA-28d: Corroding (NaCl) + Anodic Polarization—After 28d curing.

2.3. Experimental Methods

Electrochemical measurements were performed at Open Circuit Potential (OCP), using
an SCE as a reference electrode (the counter electrode was the MMO Ti mesh). The OCP
values were recorded at each time interval prior to electrochemical measurements.

In general, the OCP evolution provides information for transitions from passive to
active state, and vice versa. For steel embedded in a cement-based material, a threshold
value of−200± 70 mV (vs. SCE) [7] has been accepted, i.e., more anodic OCP values would
reflect a passive state, whereas more cathodic values are linked to an active (corroding)
state [8]. However, OCP only provides an indication of the corrosion state rather than
giving quantitative information, e.g., corrosion rate. Hence, more cathodic OCP values
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would not always be related to increased corrosion rates. The OCP response of the steel
can be affected by different factors, such as relative humidity, oxygen availability, and
the resistance of the layers. For instance, limited oxygen availability (as in submerged
conditions) can be reflected in a more cathodic OCP value. Hence, the interpretation of
OCP values in such conditions would be more complex, and cathodic OCP would not
indicate enhanced corrosion activity.

Linear Polarization Resistance (LPR) was conducted in the range of ± 20 mV (vs.
OCP) at the scan rate of 0.1 mV/s (= 6 mV/min). It is found that the sweep rates of
2.5–10 mV/min give reliable results (suitability obtained by comparison to gravimetric
losses, as reported in Ref. [9]). This range of scan rate makes sure the Rp achieves a constant
value (i.e., the stationary value), because within this scan rate, the recorded i (vs. E) is
already constant after the attenuation of varying current (this process is controlled by the
attenuation rate, which is governed by the time constant of the working electrode) [9,10].

This method allows the determination of polarization resistance (Rp). The Rp values
can be used for calculating the corrosion current according to the Stern–Geary equation:
icorr = B/Rp [11]. As Rp is inversely proportional to the corrosion current, the quantification
of corrosion resistance can be performed by comparing Rp values, as used and discussed
in this work.

Electrochemical Impedance Spectroscopy (EIS) was performed in the frequency range
of 50 kHz–10 mHz by superimposing an AC perturbation voltage of 10 mV (rms). As a
non-destructive electrochemical technique, EIS provides both qualitative and quantitative
information of steel reinforcement and bulk matrix. The high-frequency (HF) range (i.e.,
MHz to approximately 10 kHz) offers information for the contribution of the bulk matrix
(solid and pore network). The high to middle frequency range (10 kHz to 1 kHz) reflects the
contribution of the pore network and steel–mortar interface, while the middle (MF) to low
frequency (LF) range (<1 kHz to 10 mHz) corresponds to the electrochemical performance
of the steel [12].

For the 24h-cured specimens, both LPR and EIS tests were performed at the age of 3, 7,
14, 28, 56, 141, and 215 days. For the 28d-cured cases, LPR and EIS tests were conducted at
the age of 28 (after 1d conditioning), 35 (after 7d conditioning), 42 (after 14d conditioning),
56 (after 28d conditioning), 169 (after 141d conditioning), and 243 (after 215d conditioning)
days. In other words, the time periods of testing and conditioning for both 24h-cured and
28d-cured specimens were identical, but the hydration age of the specimens at the specific
time interval varied, reflecting the 24h and 28d curing.

For specimens undergoing stray current or anodic polarization, a 24-h de-polarization
(potential decay) was performed prior to any further testing. The experimental protocol
and the sequence of tests are meant to verify the following: (1) if the stray current indeed
flows into the steel; (2) if 24-hour potential decay is sufficient to result in stability of the
electrochemical state of steel (i.e., if a stable OCP was achieved), so that electrochemical
tests can follow after the decay. During the decay and within electrochemical tests, the
specimens were immersed fully in the relevant medium (in water or 5% NaCl). The
used equipment for electrochemical tests in this work was Metrohm Autolab (Potentiostat
PGSTAT302N), combined with an FRA2 module.

3. Results and Discussion
3.1. OCP and Rp Evolution

The evolution of OCP and Rp values (derived from LPR) for the group of 24h-cured
specimens are presented in Figures 3 and 4. Figures 5 and 6 depict the OCP and LPR
records of the 28d-cured specimens. In addition to the environment and the conditioning
regimes (stray current or anodic polarization), the following factors affect the observed
behavior: (1) the steel surface properties prior to conditioning; (2) the properties of the
mortar bulk matrix, such as the maturity and pH of the pore solution; (3) the porosity and
pore network connectivity of the mortar bulk determining ion migration, as well as water
transport and oxygen penetration.
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The steel surface property is a factor that is relevant for both 24h and 28d-cured groups.
This factor is important in the sense that a clean steel surface would be relatively more
active compared to oxide layer-covered (“as received”) steel. This factor will dominate
until a stable passive layer is formed (as in the non-corroding specimens) in the high pH
environment of the pore solution in mortar.

The effects linked to changes in cement-based material properties, together with their
influence on passive film formation, would be more significant in the 24h-cured group. If
the stray current supply (or anodic polarization) starts at very early age (e.g., at the age of
24h), water transport and leaching-out effects, due to ion migration, will be more evident,
because of the high porosity and pore network connectivity of a fresh bulk. Hence, if the
hydration process and pore network characteristics are influenced by the foregoing factors,
these will further affect the stability of the passive and/or corrosion product layer.
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3.1.1. OCP and Rp of 24h-Cured Specimens

As can be observed in Figure 3, until 28 days of age, the majority of OCP values for
specimens R-24h (reference case) and S-24h (stray current case) fall in the cathodic region
and are far beyond the passivity threshold, i.e., −200 ± 70 mV (vs. SCE) for reinforced
mortar/concrete systems. These OCP values reflect the active state of the steel for at least
the first 28 days of age. This is because of the clean surface of the embedded steel and
the fresh mortar bulk. Specifically, the electrochemical cleaning of the embedded steel
performed prior to casting results in a “bare” steel surface, which will be active in an
alkaline environment of pH > 13.5 at a very early age, until a passive layer is formed and
the pH of the environment (pore solution) stabilizes at around 12.9.

As can be observed in Figure 4, relatively low Rp values are initially recorded for the
reference specimen R-24h, and they increase to 60 kΩ·cm2 finally. This was not as expected,
although it is in line with the OCP evolution for R-24 in Figure 4. Until 141 days, higher
Rp values (in the range of 40–70 kΩ·cm2) for S-24h (compared to R-24h) are recorded. For
specimen A-24h, very low Rp values are recorded, below 10 kΩ·cm2, with an increasing
trend toward 30–40 kΩ·cm2 between 14d and 141d. A significant reduction of Rp values
for A-24h, below 5 kΩ·cm2, is observed at the end of the test (at 215 days).
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In the period of 3 days until 28 days for the 24h-cured groups, the OCP records reflect
the steel electrochemical response within a gradually refined pore network: a steel–cement
pate interface development, which is characteristic for a cement-based system at the early
hydration stage. These are in terms of pore solution chemistry alterations as well as
passive layer stabilization (for reference cases) or corrosion initiation (for corroding cases).
The development of the passive layer and further stabilization is illustrated by the initial
fluctuations of OCP values for the reference group R-24h and stabilization further on,
toward more anodic OCP values and higher Rp values after prolonged conditioning (see
Figure 3, after the age of 215 days).

A factor related to the above observations, which contributes to an impeded passive
layer formation, is the leaching-out effect. If a cement-based material is in a prolonged
contact with water, the dissolution of cement hydrates will occur (due to alkali ions—Ca2+,
Na+, K+ leaching) [13–15]. The transport of sodium and potassium is faster than that
of calcium ions, and it is more pronounced at early stages (a fresh bulk matrix means a
non-mature, more open pore structure), whereas it is stable and/or negligible with longer
treatment [16,17]. The leaching of calcium ions promotes coarsening of the pore structure,
and it leads to increased transport properties (permeability, diffusivity) and a decrease in
the mechanical properties [17].

Generally, the leaching process starts with a total dissolution of portlandite (calcium
hydroxide, CH), ettringite, followed by a progressive decalcification of the calcium–silicate–
hydrate (C-S-H) phase [18,19]. From 1 day of age onwards (after 24 h curing in molds),
the 24h-cured specimen (R-24h) was conditioned in water, which is likely to result in
leaching-out and altered transport properties of the bulk matrix. Hence, stabilization of the
passive layer in a fresh (24h only cured) cement-based system, as in specimen R-24h, takes
a significantly longer period—after 141 days of conditioning (see Figure 3), when OCPs
tend toward more anodic values.

It can be noted that the recorded Rp values of C-24h are higher than that for the
reference group R-24, especially in the first period of 3-28 days (Figure 4). This phenomenon
is due to the effect of NaCl as an accelerator of cement hydration (especially at early age
before 28 days) [20–22]. In case of NaCl additions, Friedel’s salt is formed, and it is
accompanied by a release of NaOH, which is attributed to the chemical action between
NaCl and 3CaO·Al2O3·6H2O. Consequently, the pH in the pore solution will increase. The
increased pH will further accelerate the hydration process and modify the pore structure
toward a finer one. This will lead to a more stable product layer on the steel surface, which
in turn will delay Cl-induced corrosion damage. Therefore, initially higher Rp values are
recorded for C-24h at an early age. After 28 days, the Rp values of C-24h remain at stable
and lower values toward the end of the test, indicating the corroding state of C-24h after
prolonged conditioning in 5% NaCl.

Until 141 days, the OCPs of specimens A-24h and S-24h are more noble than those
for R-24h (in the range of −300 to −400 mV for S-24h and −300 to −100 mV for A-24h). A
significant cathodic drop in the OCP value i.e., increased corrosion activity, for specimen
A-24h is observed at the end of the test, establishing an OCP at around −600 mV. The OCP
values for specimens S-24h remain stable over most of the test duration, with a cathodic
shift and stabilization (around −400 mV) at the end of the test.

The stray current in the Cl-free condition (group S-24h, cured for only 24h) was
expected to have a negative effect on steel corrosion resistance at an early age. However,
this is not observed. On the contrary, the recorded OCP values (as shown in Figure 3) of
specimen S-24h are more anodic than those for specimen R-24h (before 141d) and maintain
stability (corresponding to higher Rp values of S-24h than those of R-24h, before 141 days,
see Figure 4), suggesting an intensified process of passive layer formation/stabilization of
S-24h at an early age. The more anodic OCP of S-24h can also be due to microstructural
changes (e.g., a denser bulk matrix) at an early age. This will lead to an improved steel–
mortar interface and a more stable passive layer.
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Again, this observation reflects the effect of a “fresh” matrix on the properties of the
steel–mortar interface. For group S-24h, stray current flow through the fresh (non-mature)
cement matrix leads to enhanced water and ion transport due to a potential gradient.
Hence, the cement hydration would be enhanced, a faster development of the cementitious
microstructure would be at hand, and the more rapid stabilization of the pore solution
and hydration products would occur at the steel–mortar interface. Previously reported
and known are the early stage beneficial effects of a stray current on cement-based matrix
properties [23].

3.1.2. OCP and Rp of 28 Days-Cured Specimens

The outflow of stray current from the steel “body” accelerates corrosion on the steel
surface (as shown in Figure 1a). This is relevant for all tested series related to stray current
(i.e., “S” specimens), irrespective of the curing duration (in fog room) prior to conditioning.
However, the effect of stray current for the previously discussed S-24h specimen is already
different for the S-28d specimen (cured for 28d). For S-28d, the stray current was applied
when the bulk matrix was already hardened. In this situation, ion and water transport
cannot be as significantly enhanced, as this would be in a fresh matrix (e.g., as in S-24h).
Therefore, the effect of stray current on cement hydration of S-28d is slight, and the stray
current effect would be mainly on the properties of the product layer on the steel surface
of S-28d.

As can be observed in Figure 6, the Rp values of S-28d show a trend toward lower
Rp (110 kΩ·cm2, at 243 days), i.e., lower corrosion resistance, if compared to the 28d-
cured reference specimen R-28d (590 kΩ·cm2, at 243 days). In line with the Rp records
and compared to the 28d-cured reference case (R-28d), more cathodic OCP values of ca.
−290 mV are observed for group S-28d at the time interval of 243 days.

The Rp values of R-28d (Figure 6) are higher than that for R-24h (see Figure 4) over
the testing period. These, together with the more noble OCP values of R-28d, show the
more resistive steel surface of R-28d, and they reflect that a sufficient curing leads to a
stable product layer formation on the steel surface in a Cl-free environment. The expected
beneficial effect of sufficient curing is also reflected by the higher Rp values of A-28d
specimen compared to those of A-24h.

The corroding specimens cured for 28d (C-28d, CS-28d, and CA-28d), exhibit cathodic
OCP values at the end of conditioning. In accordance with these cathodic OCPs, the Rp
values of C-28d and CS-28d are much lower than those of R-28d and S-28d. Lower Rp is
recorded for CS-28d (25 kΩ·cm2 at 243 days), compared to C-28d (about 40 kΩ·cm2 at 243
days). The result illustrates the effect of both Cl-induced corrosion and the additional stray
current contribution in the case of a CS specimen. The most active steel surface is observed
for CA-28d (the lowest Rp values are recorded for CA-28d after 28 days).

Based on the OCP and LPR results, it can be concluded that stray current and anodic
polarization exert significantly different effects on the corrosion behavior of steel embedded
in mortar, in both 24h-cured (samples cured in a fog room for only 24h) and 28d-cured
(samples cured in a fog room for the standard 28 days) conditions. This will be discussed
in more detail together with EIS response in the next sections.

3.2. Curing Effect Reflected by EIS Response

For a reinforced cement-based system, qualification of the EIS is a useful approach
for evaluating the corrosion state of steel and a simplified assessment of the electrical
properties of the bulk matrix. For instance, a reinforced mortar specimen conditioned
in NaCl will logically perform differently in time if compared to a reference specimen
conditioned in water. This is due to the expected Cl-induced steel corrosion in the former
case and stabilization of the passive state of the steel reinforcement in the latter case.

Additionally, alterations in the electrical properties of the cement-based matrix, e.g.,
increased resistivity over time, would be expected because of the cement hydration [24].
Similarly, factors such as chemical composition of the external environment, ion and water
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penetration into the bulk matrix, pore interconnectivity of bulk matrix, variation in bulk
matrix diffusivity, etc., will determine changes in the electrical properties of the bulk matrix
over time [20,25,26]. These can be reflected by the high to middle frequency of the EIS
response. All these features in an experimental EIS response are well visible and can be
compared qualitatively for systems as in this work—reference and corroding reinforced
mortar specimens. The EIS responses at time intervals of the most significant interests will
be presented and discussed in this work.

The EIS responses overlay in Nyquist format of R-24h and R-28d are shown in Figure 7.
The responses for 24h-cured groups (R-24h and S-24h) are presented in Figure 8. These
cases are chosen here to address the effect of curing (Figure 7) on one hand. On the other
hand, the comparison of R-24h and S-24h cases (Figure 8) would specifically address the
aspect of the stray current effect.
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Figure 8. EIS responses overlay in Nyquist format of R-24h and S-24h (R-24h: Reference, S-24h: Stray
Current, 24h-cured specimens treated in water).

For the 24h-cured reference group R-24h, the shape of the experimental curves reflects
the typical response of steel in a Cl-free cement-based environment (alkaline medium) [27].
The response means EIS curves inclined to the y-axis, specifically in the LF EIS response
range, denoting a capacitive-like behavior (passive state of the steel). This is relevant for
both R-24h and R-28d at the end of conditioning, denoting the stabilization of the passive
layer over time.

A stable passive state would be related to R-28d from the beginning of the test (28d
response), but stability of the passive layer for the R-24h group would develop over time
of conditioning, as can be observed in Figure 7 for the 215d response. Figure 7 also depicts



Materials 2021, 14, 261 11 of 23

variation in bulk matrix properties for the 24h and 28d-cured groups, as reflected by the
HF EIS response (Figure 7, inlet). As can be observed, the magnitude of real |Z| increases
over time (due to cement hydration in both cases), but it ends up higher for the 28d group
at 215d of conditioning. For the last time intervals (after 215d conditioning), an additional
time constant (in the range of 3.15 kHz–112.7 Hz, Figure 7 inlet) can be observed in the HF
response of R-28d, while it is not observed for R-24h. This time constant of R-28d reflects a
more developed bulk matrix, steel–mortar interface, and product layer on the steel surface.
Evidently, a more corrosion resistive product layer is formed in R-28d, as also reflected
by the LF response for this specimen (Figure 7). All these results show the importance of
sufficient curing duration for the development of both bulk matrix properties and passive
layer formation at the steel–mortar interface.

Related to ion transport in the bulk matrix, the main difference between R-24h and
S-24h is the effect of ion and water migration (as in “S” cases) compared to diffusion
controlled processes only (as in “R” cases). Ion migration is logically expected to affect both
pore network properties and passive layer formation. As can be seen in Figure 8, the Z’
values in the HF EIS response (inlet in Figure 8) increase with the time of conditioning for
both R-24h and S-24h, indicating the increase of bulk matrix resistance due to the ongoing
cement hydration. For specimen S-24h, the magnitude of HF Z’ is slightly higher than that
for R-24h at the initial time intervals of 7–28 days. In the meanwhile, the LF responses
of S-24h (at 7 and 28 days) reflect a more corrosion resistant steel surface compared to
R-24h. Both LF and HF responses before 28 days for specimens R-24h and S-24h are
in line with the OCP and Rp values, where the more noble potential and higher Rp are
recorded for S-24h. All these results suggest an intensified process of cement hydration and
passive layer formation/stabilization of S-24h at earlier ages if compared to the reference
condition (R-24h).

In contrast to the above performance, the responses of S-24h and R-24h change toward
the end of the test, namely: the LF response for S-24h depicts a reduction of |Z|, which is
well in line with the more cathodic OCP (Figure 3) and lower Rp (Figure 4) for the same
time interval. The corrosion resistance of R-24 increases at the end of conditioning, which
is reflected by the increasing |Z| in the LF (Figure 7), the more noble OCP (Figure 3), and
an increasing trend of the Rp (Figure 4). All these mean that the stray current (negative)
effect is observed but at already later stages for the group of 24h-cured specimens.

The experimental impedance responses for the 28d-cured specimens R-28d and S-28d
can be seen in Figure 9. With regard to group R-28d, the curves reflect the passivation of
the steel reinforcement. It can be noted that the time constant (in the range of 4.2 kHz–78.9
Hz, as marked in inlet of Figure 9) is relevant for both R-28d and S-28d. In this frequency
window, the time constant reflects bulk matrix characteristics, showing a potentially higher
portion of the disconnected pore-network and hence a more resistive bulk matrix in both
R-28d and S-28d compared to the previously discussed 24h-cured groups (R-24h and S-24h).
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Similar to the 24h-cured group, the EIS response for the 28d group depicts a negative
effect of the stray current, which is predominant at the later stages. Although an improve-
ment of the bulk matrix is also observed here (Figure 9), the magnitude of |Z| in the LF
for specimen S-28d is 2-time lower than that of R-28 at the end of the test. In other words,
the effect of curing (group 28d vs group 24h) only results in a delay of the negative effect of
stray current, rather than preventing it.

3.3. Competitive Mechanisms of Stray Current and Cl− at Early Age

In contrast to groups R-24h and S-24h, the EIS responses of groups C-24h and CS-24h
(specimens cured for 24 h, and then immersed in 5% NaCl solution) show clear evidence of
active corrosion (see Figure 10). As already mentioned, the recorded Rp (derived from LPR)
for C-24h is higher than that of R-24 at an early age (period of 3–28 days, see Figure 4). This
is also reflected by the EIS as shown in Figure 11: the LF |Z| of C-24 (at intervals of 3d and
7d) is higher than that of R-24.
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On the one hand, the arrival of Cl− at the steel surface needs time, as the penetration
of Cl− in mortar cover is hysteretic. In this penetration process of Cl−, the acceleration of
cement hydration is triggered in the meanwhile, resulting in a denser bulk matrix (chloride
additions in ordinary Portland cement materials increase the volume of finer pores and
decrease the fraction of coarse pores [21,22,28,29]). In turn, this denser bulk matrix hinders
the further penetration of Cl−. The denser bulk matrix of C-24h compared to R-24h can be
verified by the HF response in Figure 11: the |Z| values of C-24h of HF are higher than
R-24 before 28 days, and an additional time constant (a depressed semi-circle) in the range
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of 1.05 kHz–49 Hz can be observed in the EIS responses of C-24h-3d and C-24h-7d. This
response is typical for a reinforced cement-based system in the presence of Cl−, and it
signifies the effect of Cl− on bulk matrix properties (densification in this case).

An additional effect related to specimen C-24h is the potentially lower [Cl−]/[OH−]
ratio at the steel surface. At a very early age in a fresh cement matrix, the OH− concentration
is relatively high; hence, together with the low concentration of Cl− at the initial time
intervals, a more stable product layer will form on the steel surface at an early age. However,
after 28 days, the passive layer breakdown of C-24h is already evident. This is reflected
by the low Rp values derived from LPR (see Figure 4) and by the EIS response for group
C-24h, where a semi-circle inclined to an x-axis (real axis) and a decreasing |Z| toward
215 days are recorded. The shape of this EIS response had been largely reported to be due
to the presence of Cl− on the steel surface and the increasingly active corrosion state [30].

Comparing the EIS response of C-24h and CS-24h (see Figure 10), and also in line with
the LPR results, a more active state is recorded for CS-24h, which is reflected by the LF
of the EIS response at the end of conditioning. This is because of the synergetic effect of
the stray current and Cl−; i.e., after prolonged conditioning of the stray current, the more
anodic zones are produced where the current leaves the steel surface. This, together with
the Cl−, leads to the lower corrosion resistance of CS-24h at the end of conditioning.

The more active state in CS-24h is accompanied by lower |Z| values in the HF domain
for CS-24h compared to C-24h at all time intervals (Figure 10), meaning a lower resistance
of the mortar bulk matrix for CS-24h. As already discussed, NaCl leads to cement hydration
acceleration and results in densification of the matrix (higher resistance). Cl− and Na+

ion migration is also accelerated by the potential gradient induced by stray current (as
in CS-24h); hence, ions will migrate more easily, and the distribution of ions in the bulk
matrix of CS-24h will be more uniform than that in the case without stray current (C-24h).
Consequently, the Cl− ions will more easily reach the steel surface when stray current is
involved, especially for the “fresh” bulk matrix with high porosity and more connected
pore networks at an early age.

As for C-28d and CS-28d (see Figure 12), much higher corrosion resistance compared
to C-24h and CS-24h is observed. This reflects the curing effect: sufficient curing and
hydration of the bulk matrix lead to a more resistive steel surface. At the age of 35 days
(after 7 days of stray current supply), the EIS responses of C-28d and CS-28d are similar. In
other words, the stray current effect is not significant yet at this stage. Even after 28 days of
current supply, although the steel surface of CS-28d shows a slightly enhanced corrosion
activity, the HF EIS responses of C-28d and CS-28d are still similar and in the same range
of |Z| values. This is in contrast to the previously discussed CS-24h, where after only
3–7 days of stray current supply, the stray current already played roles in both affecting
the “fresh” bulk matrix and steel surface (Figure 10). At the end of the test duration, the
EIS response of CS-28d-243(215)d shows lower |Z| and is more inclined to a real axis
response compared to that of C-28d-243(215)d. This indicates a higher corrosion activity in
CS-28d after a prolonged supply of stray current if compared to C-28d specimen, where
only Cl-induced corrosion plays a role.

According to above observations, a hypothesis about the stray current effect at early
age can be proposed: the competitive mechanisms act in specimen CS-24h, where on
the one hand, the stray current has positive effects on bulk matrix properties, similar to
specimen S-24h, at early stages. On the other hand, stray current accelerates Cl− ion
migration toward the steel surface, leading to Cl-induced corrosion and an active state of
steel. It is also reported that stray current can accelerate the decomposition of the C-S-H
gel and a subsequent desorption of the physically adsorbed Cl− by the C-S-H gel [31].
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In the case of CS-24h, when the stray current was supplied at the age of 24h (1d) on
the specimen immerged in 5% NaCl, stray current would immediately flow through the
bulk matrix and polarize the steel (since steel is the low resistive path in the system). In
contrast, Cl− needs to firstly penetrate into the mortar cover before it reaches the steel
surface. This means that the effects of stray current are immediate, influencing both the
steel surface and the bulk matrix (i.e., accelerating cement hydration). Both of these lead
to product layer formation on the steel surface (compounds as Fe3O4: FeO + Fe2O3, γ-
FeOOH, or γ-Fe2O3 would form). This would be a positive effect of the stray current on the
steel–mortar interface at an early age, which is in line with the OCP and LPR (Rp) results,
as already discussed in Section 3.1. The product layer would remain stable before Cl−

ions arrive at the steel surface and exceed the threshold value of Cl− concentration toward
de-passivation (a transformation from the passive layer to 3Fe(OH)2·FeCl2 due to Cl−).

For specimen CS-28d, the penetration of Cl− into the bulk matrix will be delayed due
to the well cured mortar cover (higher resistance, lower porosity, and lower connectivity
of the pore network of the bulk matrix). The denser matrix in CS-28d is evident from the
higher HF |Z| (Figure 12) compared to that of CS-24h (Figure 10) at all time intervals.
After curing of 28 days, a more resistive product layer (compared to CS-24h) has also been
formed on the steel surface of CS-28d (seen by the LF response of EIS, where the LF |Z|
values of CS-28d are higher than CS-24h). In this situation (CS-28d), the stray current
effect is less significant on both the bulk matrix and the steel surface. Yet, after prolonged
conditioning, the stray current still takes effect on the well-cured bulk matrix. As can be
seen in Figure 12, the HF |Z| of CS-28d is lower than C-28d at age of 243 days. Compared
to C-28d, the steel surface of CS-28d is more active at 243 days (see Figure 12, the LF
response of EIS reflect this), indicating that the stray current accelerates steel corrosion
after prolonged conditioning.

3.4. EIS Response Indicating Difference between Stray Current and Anodic Polarization

The aim of this section is to clarify the different effects of stray current and anodic
polarization, on specimens after 24h curing (fresh bulk matrix) or 28d curing (already
hardened bulk matrix), in Cl-free or Cl-containing environments. To illustrate the different
behavior of the rebar (by the EIS LF response) and mortar cover (by the EIS HF range)
induced by stray current and anodic polarization, the overlays of relevant EIS response are
shown in Figures 13–18. The comparison of EIS responses of S-24h and A-24h is shown
in Figure 13. For the response of specimen A-24h, an actively corroding steel surface is
already seen at 7 days of age. This behavior is in line with the cathodic OCP values for
group A-24h (Figure 3) at the initial stage of the test (approximately −590 mV at 3 days,
−320 mV at 7 days), as well as with the LPR-derived Rp values (Figure 4) of A-24h.
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The more noble OCP values (Figure 3) recorded for A-24h before 56 days of age,
together with the increased Rp before 141 days (Figure 4), are probably due to the specific
product layer formation and compaction in conditions of anodic polarization [32,33]. This
is also supported by the EIS response of A-24h (see Figure 14): after the active state at
14 days, as seen from the LF response, an enhanced corrosion resistance is observed at
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the stages of 28 and 56 days (increasing of |Z| with prolonged conditioning). It is well-
known that with anodic polarization, in the absence of corrodents (as Cl−) and in alkaline
medium (pH of 12.5–12.9, for concrete pore solution), a product layer will be forced to form
(according to thermodynamical principles as reflected by the Pourbaix diagram of the Fe-
H2O system [32]), i.e., with constant anodic current, the electrode potential will gradually
rise toward a stable value [34–36]. A transformation to a more active state, together with
a drop in bulk matrix resistance, is recorded later on after the stage of 141 days. This is
ascribed to the anodic polarization-induced crack, by expansion of the corrosion product
layer on the steel surface of A-24h (see Figure A1 in Appendix A). The reduction of Rp for
A-24h (see Figure 4), together with a significant cathodic drop of OCP (Figure 3), accounts
for an active state of A-24h at the end of the test. In contrast, such a significant corrosion
activity is not observed for S-24h.

The above behavior is more significant for the 24h curing situation, i.e., A-24h, com-
pared to A-28d (see Figure 15). As shown in Figure 15a, a clear difference in the HF and
LF of A-24h and A-28d can be observed in all time intervals. This can be attributed to the
sufficient and timely OH− supply of A-24h, because of hydration process of cement at an
early age. In the “fresh” matrix, the migration of OH− (toward the steel surface) affected
by the electrical field is enhanced. In the meanwhile, the Fe2+ is continuously produced
by the supplied anodic current; consequently, more corrosion products are formed at the
steel–mortar interface. The above processes are not significant for the already hardened
bulk matrix of A-28d at later age.

As for A-28d, the evident semi-circle of EIS plots (Figure 16) is already recorded at
35 days of age (after 7 days conditioning). The EIS response in the LF domain inclines
to the x-axis, indicating an active steel surface. This response again confirms that anodic
polarization induces corrosion for reinforcing steel. Comparing the EIS response of S-
28d and A-28d (standard curing for 28 days), a more significant corrosion behavior is
recorded for A-28d. This is supported by the OCP and Rp (from LPR) values, as shown in
Figures 5 and 6. A capacitive ark (in MF range) is observed for A-28d at 215 days, meaning
a potentially improved resistance of the interface, which can also be reflected by the higher
|Z| of A-28d at 215d. This may be attributed to the expansion of the corrosion product at
the steel–mortar interface and an altered steel–mortar interface of A-28d. More details will
be further discussed together with potential decay recording in Section 3.5.

For the response of the CA groups (NaCl + anodic polarization), CA-24h shows a
more significant corrosion activity than CS-24h (NaCl + stray current). At 215 days, a
significant drop of impedance and phase angle is recorded for CA-24h (Figure 17). This
response indicates the synergetic action of two degradation factors, i.e., anodic polarization
and Cl− in the environment, resulting in significantly low corrosion resistance. For this
CA-24h case, the EIS response is well supported by the recorded cathodic OCP values and
extremely low Rp values (Figures 3 and 4).

A more active behavior is recorded for group CA-24h compared to CA-28d. At the
end of conditioning, the EIS response of CA-28d shows a more significant corrosion of steel
than A-28d and CS-28d. This again implies the coupling effects of anodic polarization and
Cl− on the accelerating corrosion of steel.

For both 24h curing and 28d curing conditions, a more pronounced corrosion is ob-
served for the CA groups (NaCl + anodic polarization, specimens CA-24h, and CA-28d)
compared to the stray current groups (NaCl + stray current, CS-24h, and CS-28d). Visi-
ble/macro cracks induced by corrosion are observed for both CA-24h and CA-28d (see
Figure A2, Appendix A). Once cracks are induced, the bulk matrix resistance (in 5% NaCl
solution) will decrease, as the water and ions will penetrate into the bulk matrix via cracks.
In a Cl-containing alkaline environment, a stable passive layer cannot form on the steel sur-
face, although the anodic current was applied continuously. In this situation, Cl-containing
iron oxides and hydroxides form on the steel surface, because of Cl− ingression [30]. In
addition, the anodic current applied to the steel rebar accelerates Cl− ion migration toward
the steel–mortar interface (as illustrated in Figure 1b). This synergy of anodic polarization
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and Cl− significantly accelerates the corrosion propagation. In contrast, the synergy of stray
current and Cl− causes different effects (Figure 1a). Stray current leads to the formation of
anodic zones (corroding areas) where the current leaves the steel surface. In other words,
only part of the steel surface can be corroded by the stray current, while in conditions of
anodic polarization, the whole steel surface acts as an anode.

Overall, stray current and anodic polarization exert significantly different effects on
the corrosion behavior of steel and the surrounding mortar matrix in both 24h-cured and
28d-cured specimens. Regardless of whether there is Cl− in the external environments,
anodic polarization leads to more pronounced effects on corrosion behavior than stray
current. Hence, anodic polarization cannot reflect the effects of stray current and should
not be adopted to simulate stray current.

3.5. Potential Decay Monitoring over 24 Hours

Stray current leads to both cathodic and anodic polarization on the steel surface.
The shift of the overall (mixed) potential induced by stray current flow can be adopted
as an indicator of the presence of stray current. As aforementioned, for the specimens
undergoing stray current or anodic polarization, a 24-hour potential decay measurement
was performed and recorded prior to any further electrochemical tests. The reason for the
decay tests is to verify:

(1) if the steel rebars were indeed affected by stray current (or anodic polarization, re-
spectively); in other words, a change of potential in “ON” and “OFF” conditions, compared
to rest conditions, will indicate polarization of the reinforcement due to current application;

(2) if an OCP stability would be achieved in rest conditions (when no external electrical
field was applied), in the required time for the polarized system. This waiting time reflects
the limitation of ion transport, diffusion, or limitation of electron transport along the steel
surface, which are also related to the amount/thickness, heterogeneity, and composition of
the product layer on the steel surface.

Figure 19 depicts the 24h potential decay results at the hydration age of 95 days. The
very first recorded values (at the start of the curves and in the range of first 100 s) are
the “ON-potentials”, as adopted due to anodic polarization or stray current, respectively
(Figure 19c). At the moment of switching off the current supply, the potential drop reflects
the contribution of the so-called “IR drop”. After a certain decay and toward the 24h time
interval, the potentials of all specimens are stable (see Figure 19a).

The IR drop is the product of current (I) passing through resistance (with value of R)
between the working electrode (the steel rebar) and the reference electrode (SCE). The “R”
value is governed by the resistivity of the mortar matrix and the electrolyte (water or 5%
NaCl in this case) surrounding the working electrode. The former is more significant and
will depend on bulk matrix properties; hence, it will be different for the 24h and 28d-cured
specimens. The latter (electrolyte resistance) is negligible in this set-up. After the IR drop,
the potential decay reflects the relaxation of the system from the previous state of being
under stray current or anodic polarization (“ON” conditions) toward the stability in “rest”
conditions (“OFF” conditions).

As can be seen in Figure 19c, the IR drop for the anodic polarization cases (A-24h and
A-28d) are the most pronounced. A higher IR drop is recorded for A-28d compared to
A-24h (the IR drops for A-24h and A-28d are about 800 mV and 1000 mV, respectively).
The higher IR drop for A-28d reflects the higher resistance of the bulk matrix compared
with A-24h. The higher resistivity of the cement-based matrix partly indicates the higher
hydration degree (maturity of concrete matrix) and denser bulk, which is as expected for
specimen A-28d. This is in accordance with the EIS response at the HF domain of A-24h
and A-28d. As shown in Figure 15, the real component of impedance Z’ in the HF range,
reflecting the resistance of the bulk matrix, is lower for A-24h compared to that of A-28d at
both 56 and 141 days.
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Figure 19. Potential decay monitoring over 24h de-polarization process (S-24h: Stray Current; CS-24h:
NaCl + Stray Current; A-24h: Anodic Polarization; CA-24h: NaCl+ Anodic Polarization—After 24h
curing; S-28d: Stray Current; CS-28d: NaCl + Stray Current; A-28d: Anodic Polarization; CA-28d:
NaCl + Anodic Polarization—After 28d curing). (a) Full time scale; (b) Time scale of 0–20,000 s; (c)
Time scale of 0–1000 s.

For A-24h and A-28d, it is clear that longer time is needed for establishing an equilib-
rium condition at the steel-mortar interface of A-24h and A-28d (Figure 19b). This reflects
the limitations of ion transport at the steel-mortar interface. In other words, at the age
of 95 days, a stable steel surface in this environment (mortar pore solution without Cl−,
alkaline medium, pH of 12.5–12.9) was formed due to the anodic polarization. It can be
seen that the “instant-off potentials” of A-24h and A-28d are about 700 mV (vs. SCE).
These “instant-off potentials” are the potential of steel after the disappearance of IR drop
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(i.e., instantaneously after the cutting-off of the current). In an alkaline environment and
at anodic potentials higher than +300 mV (vs. SCE), a passive film formed at the steel
surface [33]. By the anodic polarization of iron, Fe(III) may be formed directly on the
electrode surface as Fe2O3, as mixed iron oxide Fe3O4, or as FeOOH [37–42].

A longer time is needed for establishing an equilibrium condition at the steel-mortar
interface of A-24h compared to A-28d. This means that a thicker corrosion product layer
was formed in A-24h. As aforementioned, this is attributed to the enrichment of Fe2+

produced by anodic polarization at a very early age (just at age of 1 day) at the steel-mortar
interface. In the meanwhile, sufficient and timely OH− supply in a “fresh” matrix at early
age enhances the migration of OH− to the steel surface in condition of the present electrical
field. After this, the continuous supply of anodic polarization leads to the higher Fe3+/Fe2+

ratio in the passive film, which further enhances the stability of the product layer on the
steel surface in A-24h until the age of 95 days when the potential decay was performed.
This is in line with the OCP values and Rp (derived from LPR) of A-24h: noble OCP values
are recorded for A-24h before 56 days of age, together with the increasing trend of Rp
before 141 days, showing the product layer formation and stabilization process.

For S-24h and S-28d undergoing stray current interference, “instant-off potential”
values are much lower (−300 mV for S-24h, 0 mV for S-28d) than those of A-24h and
A-28d. Only around 100 mV of IR drop is monitored for S-24h and S-28d. Considering that
the resistance (R component of IR) between the steel (working electrode) and reference
electrode (SCE) is similar, the IR drop difference is mainly attributed to the difference of
“I” (current flowing from the steel surface to the reference electrode). The much lower IR
drop of S-24h and S-28d denotes the significantly lower current level flowing into the steel,
comparing to the anodic polarization cases (A-24h and A-28d).

An IR drop higher than 400 mV is recorded for CA-24h and CA-28d. However, for
CS-24h and CA-28d, no evident IR drop can be identified. It can also be found that the IR
drop in Cl-containing cases is much lower than that of Cl-free specimens. This is due to
the reduced resistance in the external environment of 5% NaCl solution. All these results
again denote the different effects of stray current and anodic polarization in both Cl-free
and Cl-containing environments.

4. Conclusions

In this work, the effects of stray current on the corrosion of reinforcing steel embedded
in mortar are studied in view of electrochemical behavior in both 24h-curing and 28d-curing
regimes. The comparison between stray current and anodic polarization is conducted in Cl-
free and Cl-containing conditions. From the experimental results, the following conclusions
can be drawn:

1. Stray current and anodic polarization exert significantly different effects on the corro-
sion behavior of steel embedded in mortar, in both 24h curing (the samples are cured
in a fog room for only 24h) and 28d curing (the samples are cured in a fog room for
28 days) regimes. Anodic polarization simulating stray current means the absence
of cathodic polarization and different corrosion mechanisms. Consequently, anodic
polarization cannot reflect the effects of stray current, and therefore, it has limited
significance for simulating stray current.

2. The curing regimes and starting time of stray current (i.e., the stray current supply
starts at age of 24h or 28d) play significant roles in the formation of a corrosion
product layer on the steel surface. At a very early age, water transport, leaching-out
effects, and ion migration governed by the electrical field are more evident because
of the high porosity and pore network connectivity of a fresh bulk. The hydration
process and pore network characteristics are influenced by the foregoing factors, and
they further affect the stability of the corrosion product layer.

3. In a Cl-free (conditioned in water) situation, stray current flowing through the fresh
(non-mature) bulk matrix may lead to the enhanced migration of water and ions.
In this case, the cement hydration and steel surface passivation can be enhanced.
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However, this phenomenon is not evident for the condition of sufficiently cured bulk
matrix, as the bulk matrix is already hardened when the stray current is supplied. This
also means that the properties of the cementitious material in a reinforced cement-
based system are of significant importance and largely determine the electrochemical
state of the steel rebar.

4. At an early age, competitive mechanisms act in specimen CS-24h (Cl− + stray current,
cured in fog room for only 24h). On the one hand, the stray current has positive effects:
stray current flow through a fresh (non-mature) cement matrix leads to enhanced
water and ion transport due to migration. The results are enhanced cement hydration
and consequently a more rapid stabilization of pore solution and the steel–mortar
interface. On the other hand, stray current enhances Cl− ion migration and accelerates
Cl-induced corrosion.

Author Contributions: Conceptualization, Z.C. and D.K.; methodology, Z.C.; investigation, Z.C.;
resources, Z.C. and D.K.; writing—original draft preparation, Z.C.; writing—review and editing, Z.C.
and D.K.; visualization, Z.C.; supervision, D.K.; project administration, Z.C. and D.K. All authors
have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Data sharing not applicable.

Acknowledgments: Zhipei Chen would like to express his gratitude for the financial support from
the Chinese Scholarship Council (CSC).

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Corrosion-Induced Cracks at the End of Conditioning

Materials 2021, 14, x FOR PEER REVIEW 22 of 24 
 

 

Conflicts of Interest: The authors declare no conflict of interest. 

Appendix A. Corrosion-Induced Cracks at the End of Conditioning 

 
Figure A1. Cross-section of A-24h at the end of conditioning. 

 
Figure A2. Cross-section of (a) CA-24h; (b) CA-28d at the end of conditioning. 

References 
1. Bertolini, L.; Carsana, M.; Pedeferri, P. Corrosion behaviour of steel in concrete in the presence of stray current. Corros. Sci. 2007, 

49, 1056–1068. 
2. Chen, Z.; Koleva, D.A.; van Breugel, K. Electrochemical tests in reinforced mortar undergoing stray current-induced corrosion. 

In Concrete Durability: Cementitious Materials and Reinforced Concrete Properties, Behavior and Corrosion Resistance; Miron, R.D.L.E., 
Koleva, D.A., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp 83–108 

3. Chen, Z.; Koleva, D.; van Breugel, K. A review on stray current-induced steel corrosion in infrastructure. Corros. Rev. 2017, 35, 
97-423. 

4. Hornbostel, K.; Larsen, C.K.; Geiker, M.R. Relationship between concrete resistivity and corrosion rate—A literature review. 
Cem. Concr. Compos. 2013, 39, 60–72. 

5. García, A.; Castro-Fresno, D.; Polanco, J.A. Evolution of penetration resistance in fresh concrete. Cem. Concr. Res. 2008, 38, 649–
659. 

6. ASTM G1. Standard practice for preparing, cleaning, and evaluating corrosion test specimens. Am. Soc. Test. Mater. 2003, 2, 17–
25. 

7. Alonso, C.; Castellote, M.; Andrade, C. Chloride threshold dependence of pitting potential of reinforcements. Electrochim. Acta 
2002, 47, 3469–3481. 

8. Rengaswamy, N.S.; Srinivasan, S.; Balasubramanian, T.M.; Mahadeva, Y.I.; Nayak, N.U.; Bapu, R.H.S. Corrosion survey of 
reinforced and prestressed concrete structures—Methodology of approach. Trans. SAEST 1988, 23, 207–212. 

9. Andrade, C.; Alonso, C. Corrosion rate monitoring in the laboratory and on-site. Constr. Build. Mater. 1996, 10, 315–328. 
10. González, J.A.; Molina, A.; Escudero, M.L.; Andrade, C. Errors in the electrochemical evaluation of very small corrosion rates—

I. polarization resistance method applied to corrosion of steel in concrete. Corros. Sci. 1985, 25, 917–930. 

Figure A1. Cross-section of A-24h at the end of conditioning.

Materials 2021, 14, x FOR PEER REVIEW 22 of 24 
 

 

Conflicts of Interest: The authors declare no conflict of interest. 

Appendix A. Corrosion-Induced Cracks at the End of Conditioning 

 
Figure A1. Cross-section of A-24h at the end of conditioning. 

 
Figure A2. Cross-section of (a) CA-24h; (b) CA-28d at the end of conditioning. 

References 
1. Bertolini, L.; Carsana, M.; Pedeferri, P. Corrosion behaviour of steel in concrete in the presence of stray current. Corros. Sci. 2007, 

49, 1056–1068. 
2. Chen, Z.; Koleva, D.A.; van Breugel, K. Electrochemical tests in reinforced mortar undergoing stray current-induced corrosion. 

In Concrete Durability: Cementitious Materials and Reinforced Concrete Properties, Behavior and Corrosion Resistance; Miron, R.D.L.E., 
Koleva, D.A., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp 83–108 

3. Chen, Z.; Koleva, D.; van Breugel, K. A review on stray current-induced steel corrosion in infrastructure. Corros. Rev. 2017, 35, 
97-423. 

4. Hornbostel, K.; Larsen, C.K.; Geiker, M.R. Relationship between concrete resistivity and corrosion rate—A literature review. 
Cem. Concr. Compos. 2013, 39, 60–72. 

5. García, A.; Castro-Fresno, D.; Polanco, J.A. Evolution of penetration resistance in fresh concrete. Cem. Concr. Res. 2008, 38, 649–
659. 

6. ASTM G1. Standard practice for preparing, cleaning, and evaluating corrosion test specimens. Am. Soc. Test. Mater. 2003, 2, 17–
25. 

7. Alonso, C.; Castellote, M.; Andrade, C. Chloride threshold dependence of pitting potential of reinforcements. Electrochim. Acta 
2002, 47, 3469–3481. 

8. Rengaswamy, N.S.; Srinivasan, S.; Balasubramanian, T.M.; Mahadeva, Y.I.; Nayak, N.U.; Bapu, R.H.S. Corrosion survey of 
reinforced and prestressed concrete structures—Methodology of approach. Trans. SAEST 1988, 23, 207–212. 

9. Andrade, C.; Alonso, C. Corrosion rate monitoring in the laboratory and on-site. Constr. Build. Mater. 1996, 10, 315–328. 
10. González, J.A.; Molina, A.; Escudero, M.L.; Andrade, C. Errors in the electrochemical evaluation of very small corrosion rates—

I. polarization resistance method applied to corrosion of steel in concrete. Corros. Sci. 1985, 25, 917–930. 

Figure A2. Cross-section of (a) CA-24h; (b) CA-28d at the end of conditioning.



Materials 2021, 14, 261 22 of 23

References
1. Bertolini, L.; Carsana, M.; Pedeferri, P. Corrosion behaviour of steel in concrete in the presence of stray current. Corros. Sci. 2007,

49, 1056–1068. [CrossRef]
2. Chen, Z.; Koleva, D.A.; van Breugel, K. Electrochemical tests in reinforced mortar undergoing stray current-induced corrosion. In

Concrete Durability: Cementitious Materials and Reinforced Concrete Properties, Behavior and Corrosion Resistance; Miron, R.D.L.E.,
Koleva, D.A., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 83–108.

3. Chen, Z.; Koleva, D.; van Breugel, K. A review on stray current-induced steel corrosion in infrastructure. Corros. Rev. 2017, 35,
97–423. [CrossRef]

4. Hornbostel, K.; Larsen, C.K.; Geiker, M.R. Relationship between concrete resistivity and corrosion rate—A literature review. Cem.
Concr. Compos. 2013, 39, 60–72. [CrossRef]

5. García, A.; Castro-Fresno, D.; Polanco, J.A. Evolution of penetration resistance in fresh concrete. Cem. Concr. Res. 2008, 38,
649–659. [CrossRef]

6. ASTM G1. Standard practice for preparing, cleaning, and evaluating corrosion test specimens. Am. Soc. Test. Mater. 2003, 2,
17–25.

7. Alonso, C.; Castellote, M.; Andrade, C. Chloride threshold dependence of pitting potential of reinforcements. Electrochim. Acta
2002, 47, 3469–3481. [CrossRef]

8. Rengaswamy, N.S.; Srinivasan, S.; Balasubramanian, T.M.; Mahadeva, Y.I.; Nayak, N.U.; Bapu, R.H.S. Corrosion survey of
reinforced and prestressed concrete structures—Methodology of approach. Trans. SAEST 1988, 23, 207–212.

9. Andrade, C.; Alonso, C. Corrosion rate monitoring in the laboratory and on-site. Constr. Build. Mater. 1996, 10, 315–328. [CrossRef]
10. González, J.A.; Molina, A.; Escudero, M.L.; Andrade, C. Errors in the electrochemical evaluation of very small corrosion rates—I.

polarization resistance method applied to corrosion of steel in concrete. Corros. Sci. 1985, 25, 917–930. [CrossRef]
11. Stern, M.; Geary, A.L. Electrochemical polarization: I. A theoretical analysis of the shape of polarization curves. J. Electrochem. Soc.

1957, 104, 56–63. [CrossRef]
12. Wenger, F.; Galland, J. Analysis of local corrosion of large metallic structures or reinforced concrete structures by electrochemical

impedance spectroscopy (EIS). Electrochim. Acta 1990, 35, 1573–1578. [CrossRef]
13. Leemann, A.; Lothenbach, B. The influence of potassium-sodium ratio in cement on concrete expansion due to alkali-aggregate

reaction. Cem. Concr. Res. 2008, 38, 1162–1168. [CrossRef]
14. Ishii, K.; Seki, H.; Fukute, T.; Ikawa, K. Cathodic protection for prestressed concrete structures. Constr. Build. Mater. 1998, 12,

125–132. [CrossRef]
15. Chang, J.J. A study of the bond degradation of rebar due to cathodic protection current. Cem. Concr. Res. 2002, 32, 657–663.

[CrossRef]
16. Saito, H.; Nakane, S.; Ikari, S.; Fujiwara, A. Preliminary experimental study on the deterioration of cementitious materials by an

acceleration method. Nucl. Eng. Des. 1992, 138, 151–155. [CrossRef]
17. Susanto, A.; Koleva, D.A.; Van Breugel, K.; Van Beek, K. Stray current-induced development of cement-based microstructure in

water-submerged, Ca(OH)2-submerged and sealed conditions. J. Adv. Concr. Technol. 2017, 15, 244–268. [CrossRef]
18. Ulm, F.J.; Torrenti, J.M.; Adenot, F. Chemoporoplasticity of calcium leaching in concrete. J. Eng. Mech. 1999, 125, 1200–1210.

[CrossRef]
19. Kuhl, D.; Bangert, F.; Meschke, G. Coupled chemo-mechanical deterioration of cementitious materials. Part I: Modeling. Int. J.

Solids Struct. 2004, 41, 15–40. [CrossRef]
20. Koleva, D.A.; Hu, J.; Fraaij, A.L.A.; van Breugel, K.; de Wit, J.H.W. Microstructural analysis of plain and reinforced mortars under

chloride-induced deterioration. Cem. Concr. Res. 2007, 37, 604–617. [CrossRef]
21. Haque, M.N.; Kayyali, O.A. Free and water soluble chloride in concrete. Cem. Concr. Res. 1995, 25, 531–542. [CrossRef]
22. Pruckner, F.; Gjørv, O.E. Effect of CaCl2 and NaCl additions on concrete corrosivity. Cem. Concr. Res. 2004, 34, 1209–1217.

[CrossRef]
23. Susanto, A.; Koleva, D.A.; Copuroglu, O.; van Beek, K.; van Breugel, K. Mechanical electrical and microstructural properties of

cement-based materials in conditions of stray current flow. J. Adv. Concr. Technol. 2013, 11, 119–134. [CrossRef]
24. Siegwart, M.; Lyness, J.F.; McFarland, B.J. Change of pore size in concrete due to electrochemical chloride extraction and possible

implications for the migration of ions. Cem. Concr. Res. 2003, 33, 1211–1221. [CrossRef]
25. Koleva, D.A.; Copuroglu, O.; van Breugel, K.; Ye, G.; de Wit, J.H.W. Electrical resistivity and microstructural properties of concrete

materials in conditions of current flow. Cem. Concr. Compos. 2008, 30, 731–744. [CrossRef]
26. Koleva, D.A.; de Wit, J.H.W.; van Breugel, K.; Veleva, L.P.; van Westing, E.; Copuroglu, O.; Fraaij, A.L.A. Correlation of

microstructure, electrical properties and electrochemical phenomena in reinforced mortar. Breakdown to multi-phase interface
structures. Part II: Pore network, electrical properties and electrochemical response. Mater. Charact. 2008, 59, 801–815. [CrossRef]

27. Keddam, M.; Nóvoa, X.R.; Soler, L.; Andrade, C.; Takenouti, H. An equivalent electrical circuit of macrocell activity in facing
electrodes embedded in cement mortar. Corros. Sci. 1994, 36, 1155–1166. [CrossRef]

28. Suryavanshi, A.K.; Scantlebury, J.D.; Lyon, S.B. Pore size distribution of OPC & SRPC mortars in presence of chlorides. Cem.
Concr. Res. 1995, 25, 980–988.

29. Díaz, B.; Nóvoa, X.R.; Pérez, M.C. Study of the chloride diffusion in mortar: A new method of determining diffusion coefficients
based on impedance measurements. Cem. Concr. Compos. 2006, 28, 237–245. [CrossRef]

http://doi.org/10.1016/j.corsci.2006.05.048
http://doi.org/10.1515/corrrev-2017-0009
http://doi.org/10.1016/j.cemconcomp.2013.03.019
http://doi.org/10.1016/j.cemconres.2007.10.005
http://doi.org/10.1016/S0013-4686(02)00283-9
http://doi.org/10.1016/0950-0618(95)00044-5
http://doi.org/10.1016/0010-938X(85)90021-6
http://doi.org/10.1149/1.2428496
http://doi.org/10.1016/0013-4686(90)80012-D
http://doi.org/10.1016/j.cemconres.2008.05.004
http://doi.org/10.1016/S0950-0618(97)00014-7
http://doi.org/10.1016/S0008-8846(01)00740-2
http://doi.org/10.1016/0029-5493(92)90290-C
http://doi.org/10.3151/jact.15.244
http://doi.org/10.1061/(ASCE)0733-9399(1999)125:10(1200)
http://doi.org/10.1016/j.ijsolstr.2003.08.005
http://doi.org/10.1016/j.cemconres.2006.12.001
http://doi.org/10.1016/0008-8846(95)00042-B
http://doi.org/10.1016/j.cemconres.2003.12.015
http://doi.org/10.3151/jact.11.119
http://doi.org/10.1016/S0008-8846(03)00047-4
http://doi.org/10.1016/j.cemconcomp.2008.04.001
http://doi.org/10.1016/j.matchar.2007.06.016
http://doi.org/10.1016/0010-938X(94)90140-6
http://doi.org/10.1016/j.cemconcomp.2006.01.009


Materials 2021, 14, 261 23 of 23

30. Koleva, D.A.; van Breugel, K.; de Wit, J.H.W.; van Westing, E.; Boshkov, N.; Fraaij, A.L.A. Electrochemical behavior, microstructural
analysis, and morphological observations in reinforced mortar subjected to chloride ingress. J. Electrochem. Soc. 2007, 154, E45.
[CrossRef]

31. Chu, H.; Wang, T.; Guo, M.-Z.; Zhu, Z.; Jiang, L.; Pan, C.; Liu, T. Effect of stray current on stability of bound chlorides in chloride
and sulfate coexistence environment. Constr. Build. Mater. 2019, 194, 247–256. [CrossRef]

32. Pourbaix, M. Atlas of Electrochemical Equilibria in Aqueous Solutions, 2nd ed.; National Association of Corrosion Engineers: Houston,
TX, USA, 1974; pp. 312–314.
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