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Abstract

Offshore structures, like windmills and oil or gas platforms, require regular maintenance and operators
to continue working. Rough seas and weather conditions caused a problem to get people on and
off these offshore structures until in 2009 Ampelmann came with a solution to safely transfer people
offshore. This people transfer is done by means of a motion compensating platform and gangway.
With the Ampelmann solution workers are able to safely access these offshore platforms, even in
rough weather and sea conditions.

The vessel motions must be known to allow compensation. Currently the vessel motions are mea-
sured by Ampelmann using a highly accurate and expensive fibre optic gyroscope called a Motion
Reference Unit (MRU). The MRU measures translational change in velocity by means of accelerations
and rotational change in position by means of angular velocity. These changes are used to determine
the position and orientation of the vessel in six Degrees of Freedom (DoF). Using a rate of change
measurement system to measure position and orientation is known to introduce drift. Over time this
drift influence will grow and the position and orientation of the vessel with respect to the target platform
becomes inaccurate.

A new vessel motion measurement system is introduced called the LIDAR Reference Unit (LRU),
with Light Detection And Ranging (LIiDAR). The LRU overcomes the drift problems by measuring the
position of the offshore target with respect to the vessel. The LRU combines measurement information
from multiple sensors to create a robust, accurate and cheaper solution. The system combines a
scanning Laser Range Finder (LRF) and a micro-electromechanical Inertial Measurement Unit (IMU).

To determine the vessel motions, the position of the target platform is measured and followed in
every consecutive LRF scan. Obstructions caused by moving people or small details on the target
platform create measurement scan point outliers. These outliers could cause mismatching of LRF
scan point clouds. To avoid mismatching a landmark detection algorithm is used. Common shapes on
platforms are circles and straight lines. A RANdom SAmple Consesnsus (RANSAC) algorithm is used
to extract lines and arcs from the LRF scan point cloud. Only the scan points of the arcs and lines are
used to measure the vessel position and orientation to the target platform. The position and orientation
are determined using an lterative Closest Point (ICP) matching algorithm. The sensor measurement
data of the LRF and IMU are combined with a model based Kalman filter.

The feasibility of the proposed LRU is tested with a simulation model for the system. To verify
the results of the simulation model and determine the accuracy of the LRU a test setup is created.
Simulated vessel motions are used to move the measurement system. The LRF scans the target
platform and the measured results are compared to the position data of the measurement setup. The
robustness of the motion extraction algorithm is tested by creating an obstruction of a person walking
around the target platform while measuring.

The vessel motions and target platform position with respect to the vessel can be accurately mea-
sured with the proposed LRU. The LRU system does not experience drift and future innovations for the
Ampelmann system could be integrated with the LRU, due to the known position and orientation of the
vessel to the target platform.
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Introduction

W.AMPELMANNNL

Figure 1.1: The Ampelmann system used to safely transfer people from a vessel to a offshore windmill.

Offshore structures, like Windmills and oil or gas platforms, require regular maintenance and oper-
ators to continue working. Rough sea and weather conditions caused a problem to get people on and
off the structures, until Ampelmann came with a solution to safely transfer people between a vessel
and offshore platforms. This people transfer is done by means of a motion compensating platform and
gangway. With the Ampelmann solution workers are able to safely access these offshore platforms,
even during rough weather and sea conditions.

To measure the vessel motions the Ampelmann system uses a highly accurate and expensive fibre
optic gyroscope as their vessel motion measurement system called a Motion Reference Unit (MRU).
The MRU consist of fibre optic gyroscopes and measures translational change in velocity by means of
accelerations and rotational change in position by means of angular velocity. These changes are used
to determine the displacements and angles of the vessel in six Degrees of Freedom (DoF). The use of
a rate of change measurement system to measure displacement and orientation is known to introduce
drift. Over time this drift influence will grow and the position and orientation of the vessel with respect
to the target platform become unknown.

The Ampelmann system is also used to transfer people from one vessel to another vessel. This
operation is called ship-2-ship transfer, where the Ampelmann system is located on the host vessel.
The gangway of the Ampelmann system is used to connect to the target vessel so people can safely
cross. In 2014 a proof of concept measurement setup was created by Verweij [43] to measure the target
vessel motions. The measurement system consisted of a scanning Laser Range Finder (LRF) and was
able to measure the motions of the target vessel,from the host vessel, without any added markers on

1



2 1. Introduction

the target vessel . The conceptual measurement system was able to accurately measure the motions
of the target vessel. The extra measurement information available by measuring the distance to the
target vessel could be used for other innovations within the Ampelmann system.

The Ampelmann system is mainly used to transfer people to offshore platforms instead of ship-2-
ship transfer operations. As the measurement system designed by Verweij only measures the motions
of the target vessel it has no added value during the people transfer operation to offshore platforms
and is therefore not yet integrated in all Ampelmann systems.

A measurement system that uses the target as a reference has lot of potential for future innovations
of the Ampelmann system. The added value of the LRF must be investigated for different applications
within the Ampelmann system. Some information is required to discuss the possibilities and will be
explained in the following sections: the current Ampelmann system setup and the working principle of
a LRF. To get a better understanding of the interpretation difficulties of the measured data points the
ship-to-ship solution is explained. The different applications are introduced using absolute reference
measurement. The application with the most potential is chosen. Finally The problem statement and
the goal of this research are stated.

1.1. The Ampelmann System

The motions of a vessel as a result of ocean waves introduce difficulties when accessing offshore
structures or vessels. Access to these structures was mainly done by helicopter, a swing rope or lifting
basket, until the Ampelmann system was introduced. Providing a safe solution by making offshore
access as easy as crossing the street.

The main goal of the Ampelmann system is to provide safe access to offshore structures or vessels,
by doing so the production and accordingly the revenue will increase. Ampelmann offers multiple
solutions to accommodate a large range of safe offshore personnel and cargo transport. For smaller
vessels the L-type system is used. large ships that support dynamic positioning the A-type Ampelmann
system is used. For even more demanding jobs that can also include cargo lifting, the E-type is used.
The specifications of these systems are shown in table 1.1 All these systems use the same three
basic features as shown in figure 1.2: a transfer deck with gangway, a control system and a Stewart
platform. Over the past years a lot of innovations have been implemented to extend the operations of
the Ampelmann system. These subsystems and the operation modes will be briefly discussed in this
section.
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Figure 1.2: The Ampelmann E-Type System.

1.1.1. Stewart Platform, Transfer Deck and Gangway
A floating vessel has three translations (surge, sway and heave) and three rotations (roll, pitch and
yaw). This results in six DoF as shown in figure 2.5. To compensate all these motions the Ampelmann
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Table 1.1: Ampelmann systems

Sea states up to H, [m] Gangway range [°] Height transfer deck [m] Footprint @ [ m]

L-Type —20 to +22 2.0 3.5
A-Type 3.0 —17 to +17 5.4 7.3
E-Type 4.0 —17 to +17 9.5 11.0

systems is derived from the motion platform used in flight simulators, a Stewart platform. This platform
consist of a rigid base frame, six actuators and a rigid top platform used as a transfer deck (also called
the Mercedes frame). Typical for a Stewart platform is its (nearly) octahedral configuration [6]. In the
Ampelmann system hydraulic cylinders are used as actuators, these are driven by a Hydrolic Power
Unit (HPU) which can be electrical or diesel powered.

Roll

0
. 2 -

Pitch

(12
E‘“"'ﬁ.‘(_%
L Sway

}

Yaw
D v

H( rave
Z

Figure 1.3: The six DoF’s of a floating vessel.

1.1.2. Control System

Before any motion compensation can be done the motions need to be measured. In the current Am-
pelmann system’s an Octans Fibre Optic Gyroscope, as shown in figure 1.4, is used as a measuring
device and outputs the six motions of the vessel. This motion data is used to compensate for the vessel
motions on the transfer deck of the Ampelmann.

Figure 1.4: The Octans fibre optic gyroscope six DoF’s motion sensor.

The control system of the Ampelmann is a Programmable Logic Controller (PLC) which uses the
output data to determine the length of each of the six cylinders, these cylinders form the Stewart platform
regulated by valves, the position of the cylinders is send back to PLC via a feedback loop. A scheme
of the control loop is shown in figure 1.5. The control loop is responsible for the correct execution of



4 1. Introduction

the following main tasks [43]:
* The movement of Stewart platform
» Control of the gangway
» Making sure the actuators do not saturate (cylinder reaches physical limit)
» Checking sensors for correct operation

» Control safety protocols and warnings

‘ HPU }—>{ Accumulator ‘
Octans }—>‘ PLC }—>{ Valves }—>‘ Actuators }—>

Position

Sensor

Figure 1.5: Ampelmann Control Model [43].

The complete Ampelmann system is redundant, meaning that every critical component has a sec-
ond component which is immediately activated if the other component fails.

1.1.3. Operation Modes

The Ampelmann system is used for personnel and cargo transfer to seabed anchored or floating off-
shore structures. The Ampelmann system is designed to safely transport personnel from a floating
vessel to a seabed anchored platform or windmill. Due to later innovations the Ampelmann system is
these days also used for cargo transport or lifting. Small cargo is transferred using a KIB which is a
motion compensated basket connected to the tip of the gangway as shown in figure 1.6a. For heavy
lifting the CTS system is used which is a motion compensated crane as shown in figure 1.6b.

(b) CTS cargo crane.

(a) KIB cargo system.

Figure 1.6: Cargo and lifting additions for the Ampelmann system.

The Ampelmann is also used to transfer personnel or cargo to another vessel this is called Ship to
Ship (S2S) operation. For this operation the motion of the target vessel is also compensated. This is
done by the controllable motions of the gangway (telescoping ad luffing) combined with the rotation of
the transfer deck (slewing), these motions are shown in figure 1.7. The motion information of the other
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vessel is measured by an extra Octans sensor and the output is transferred wireless to the Ampel-
mann. in 2014 a proof of concept master thesis research was conducted to use another measurement
technique to measure the important motions of the target vessel [43]. in this research a scanning LRF
is used measuring from the Ampelmann system. In the next section a more in-depth explanation about
this measurement technique is given. The measurement technique using a scanning LRF has three
main advantages over the Octans sensor:

* No need to put an extra sensor on each target vessel before performing the S2S operation.
* No wireless connection that is easily disrupted.

* No large latency delay, mainly caused by the wireless connection of the current measurement
system.

» The used LRF is a SICK LMS 511 PRO and costs a fraction compared to an Octans sensor.

Slewing

‘_E\f_gggﬂl?__-»
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Figure 1.7: The controllable motions of the Gangway.

1.1.4. Operation States
To understand how the Ampelmann system is used the different states of the Ampelmann system during
operation are explained in this section. The four states of the Ampelmann system are as follows:

1. Safe Mode: When the hydraulic pressure is turned on, the transfer deck will always be in safe
mode. In this mode the hydraulic actuators are not actively controlled. Due to springs in the
valves the cylinders are subjected to a small retracting force in the safe mode.

2. Settled State: After the hydraulic pressure system is turned on, the system does a short check of
all the components and then goes into the settled state. In this state the platform is still retracted
and not compensating any motion but now the PLC is controlling the valves.

3. Neutral State: defined as the elevation of the transfer deck at half of its maximum heave capacity.
Vessel motions are still not compensated.

4. Engaged State: During the engaged state the Ampelmann system starts to compensate the
measured ship motions, the control loop is active during this state to forward the valve information
acquired from the inputs.

1.2. Laser Range Finder

A LRF is a non-contact absolute distance measuring technique also known as Light Detection And
Ranging (LIDAR). In this section an introduction to this technique is given. The working principle is
explained and the limitations. In the next part of this section the proof of concept system using a LRF is
explained. The basic principle of active non-contact range finding devices is to project a signal (radio,
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ultrasonic or optical) onto an object and process the reflected signal to determine the distance. A high
resolution range finder is required for positioning measurement, Therefore a range finder using an
optical source is used [1].

1.2.1. Laser Pulse Time-of-Flight Distance Measurement
The Laser Pulse Time of Flight (ToF) distance measurement technique refers to the time it takes for an
energy pulse to travel from its transmitter to an observed object and back to the receiver t;. In the case
where a light pulse is used as energy source the measured distance correlates to the speed of light
c =~ 3 x 108m/s. Because the light travels forth and back from the object the total distance is halved,
resulting in the measured distance d
1

d= Et‘ic (1.1)
A schematic setup showing the working principle of the ToF LRF is shown in figure 1.8. This measure-
ment technique is very useful when measuring distances longer than 1 m, systems where no reflectors
are used and fast measurement applications such as scanning. The system works with centimetre
precision and by averaging multiple measurements this can even be reduced to millimetre precision.

Beam splitter Optics

Receiver |« Target

Ampllﬁer ‘ Transmitter l

T|me measurement Start

Ar pulse

Stop
pulse

Figure 1.8: Block diagram of a time of flight laser range finder.

For the scanning capability the LRF is equipped with an angle encoder. For time critical scanning
purposes a servo system is required to increase the measurement rate. These servo’s drive a mirror to
create a line scan, resulting in a 2-dimensional image or galvanometer-driven mirrors for 3-dimensional
scans. Focal plane scanning is a technique that does not use mechanical beam scanning. Focal plane
scanning uses the laser or an array of lasers to illuminate the total field of view on the target. The
reflected image is received by a matrix of separate receivers [23].

To subtract motions from the measurement done by a LRF, a high measurement rate is required
to extract these motions. The basic principle of motion extraction is based on the comparison of con-
secutive scans and a reference scan. The difference found between these scans is used to subtract
the motion. In the following subsections the measurable motions are explained using the 1-,2- and
3-dimensional features of point cloud measurement scan.

1.2.2. 1-Dimensional

The most simple version of a LRF transmits a single laser pulse. With this single pulse the distance to
the target is measured as shown in figure 1.9. When multiple pulses are transmitted and the target is
moving, the only motion that can be measured over time is the translation in y-direction. A rotation, for
example around the z-axis, could result in a measured motion in the y-direction. The 1-dimensional
measurement does not give the information if the motion is a translation or a rotation, it only measures
the motion of a point on the the target along the y-direction.

1.2.3. 2-Dimensional

When a line scanning feature is introduced in the LRF multiple distance measurements are taken re-
sulting in a line cloud cloud of measured distance points, as shown in figure 1.10. The line scan
measurement results in a 2-dimensional image or point cloud. When multiple line scans are taken over
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Figure 1.9: Schematic setup of a 1-dimensional measurement.

time of a moving target three motions can be measured: translation in y and z direction and the rotation
around the x-axis.

The translation along the z-axis is measured by following the point cloud along the vertical line. The
translation along y-axis is measured by the distance measurement of the measured points. And the
rotation around the x-axis can be extracted with the information from the point cloud forming the lines,
so that also the rotating point of the target is measured with the LRF.

Figure 1.10: Schematic setup of a 2-dimensional measurement.

1.2.4. 3-Dimensional

Using a LRF with 2-DoF mirror, multiple mirror’s, rotating a scanning LRF or a array of transmitters and
receivers described in section 1.2.3 a 3-dimensional point cloud is created from the target as shown in
figure 1.11. From this point cloud it is possible to extract all six DoF’s when the target is moving and
multiple measurements are done over time.

Compared to the line scan the extra measured motions are: rotation along the y- and z-axis and the
translation along the x-axis. The translation along the x-axis is measured by following the horizontal
line of the target or the begin and endpoint of the measured point cloud surfaces. The rotation about
the z-axis can be gathered from the vertical surface of the point cloud and the rotation about the y-axis
can be extracted from both point cloud surfaces.

Figure 1.11: Schematic setup of a 3-dimensional measurement.
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1.2.5. Timing, Jitter, Walk and Drift

The main sources of inaccuracy in laser range finders are noise-generated timing jitter, walk and non-
linearity [26]. Most pulse measurement systems include a certain amount of electronic noise, intro-
duced by the receiver, amplification of the pulse or the time discriminator. This noise causes uncertainty
in the time at which the pulse cross the threshold as shown in figure 1.12. This is known as time jitter.
The change in the amplitude of the pulse introduces a amplitude walk error in leading-edge timing sys-
tem. Changing rise time of the pulses introduce a rise-time walk error. Both walk errors are illustrated
in figure 1.13. Jitter and walk are both short-term introduced errors, Drift is a long-term introduced error.
Drift can be caused by component ageing, changes in temperature during the measurement and so
on.

Timing Jitter
Jitter

Amplitude

Time

Figure 1.12: time jitter.

The time discriminator observes the time information from the electric pulse detector pre-amplifier
and produce signal at the right moment. Commonly used principles for time discriminators are: leading-
edge timing, zero-crossing timing and constant fraction timing. The choice for a discriminator is based
on the desired time resolution, counting rate and dynamic range of the pulse. Constant fraction discrimi-
nation compensates with an attenuated signal which is created by a constant fraction that corresponds
to the desired fraction of the full amplitude. This compensates for both amplitude and rise-time in-
duced walk and is commonly used in the ToF measuring units of the LRF. Zero-crossing discrimination
compensates only for amplitude variation and leading-edge does not compensate for any. The preci-
sion of distance measurement using the ToF principle can be greatly improved by averaging multiple
measurements.

AmleEpE?Walk Rise Time Walk

/' ™ r . Walk e - —_
. ‘Walk / AN L o ya g e \\ S
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(a) Amplitude induced. (b) Rise time induced.

Figure 1.13: Walk.
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1.3. Ship 2 Ship Solution

Before the applications for a LRF measurement system for the Ampelmann are discussed in the next
section a general understanding of the difficulties involved with position and motion extraction are high-
lighted. This is done trough the steps involved in the S2S LRF concept solution.

In S28 operation the target vessel is also moving. The motions of the target vessel that are compen-
sated in this operation are: sway, heave and roll. To measure these motions with an LRF, a algorithm
was produced by A.G. Verweij [43] to transform raw measurement data into target vessel motions that
serve as input for the gangway control loop. This processing pipe-line is shown in figure 1.14.

Data Acquisition Pre-processing Matching Process
: 4 4 z 4 z 4
LRE ' Raw ‘ grdeeemg Filtered : EECE PR
i \/. i Data ' ¢ Data I " 3
] essel ' 4
—> » - »
' ate
B e LT Pl 000 b cccee e =3 | [V SR >
y y y
Transform
Options
v
4 )
Control Target |%) .- i
Output | ! Location | | __[ y Transform | &
<+— < ; f\ < ‘
S . I S ;
: y : y

Figure 1.14: Data processing pipe-line [43].

Data acquisition
The data is acquired with an LRF, and a self made LRF scanning system called the AmpelScann.

Preprocessing

During the preprocessing block all irrelevant data is discarded. The scanner is able to make a line scan
of 160° while the point of interest and the relevant edges of the target vessel can be contained by a
smaller scan angle. during the preprocessing a bounding box is created around the target vessel, only
the measurement points inside this bounding box are kept.

Ouitliers are data points that do not meet a certain expectations of the user. This does not mean an
outlier is always bad, in fact they can help to determine weaknesses in the system and determine the
sensitivity of the output. The outliers are found by calculating the velocity of the measurement points.
When this velocity is higher then a certain threshold the data point is discarded.

The delay of the measurement output of the range finder and no delay on the angle encoder required
that the data had to be synchronized before the scan measurement was correct.

Matching

To find the best matches between scans, both rotation and translation need to be determined. No active
or passive markers are used in this process, therefore the matching algorithm is based on comparing
a reference scan, in this case the first scan, with the next scans. The LRF measures multiple points in
a scan and due to different disturbances these points are almost never exactly on the same line. For
this reason the translational motions are calculated with an algorithm that makes use of a histogram to
determine the x and y position of the points in the measured point cloud and there occurrence. This is
shown in figure 1.15.

The histogram method to find the translational displacement was tested on measured data and
concluded to be robust. The histogram method did require that both scans have the same orientation.
Before the translational histogram method could be used the scan to be matched must be rotated to
the same orientation as the reference scan.

The rotation of the target vessel is calculated by trying a range of angles on the measurement scan
and compare it with the reference scan. The scans are rotated around their centroid, this is the mean
location of all the scan-points of the measurement scan. The vector with angles to try for the best fit 6



10 1. Introduction

x Position Histogram

Y s B pmmmmmm e
Scan(n+1)
100 foommmmmmmenaae - -
Scan(n) f"/ LT e 1L----p-w
can(n) .-~ -7 _.-7
70 fooooaoo /' — ”/_ ~ - 0 80 100 cm
IS IAPPT LA T y Position Histogram
el 1 T T

« 0 70 100 cm

(a) Two scans [43]. (b) x and y translation histogram [43].

Figure 1.15: The point of two scans are used to create a histogram to find the translations with the use of a cross correlation.

goes from —10° to 10° with increments of 0.4. The rotation of the previous scan is used as a starting
point for the next scan, because the solution will be close to the previous scan. During this procedure
the resolution becomes better by changing the first and last value of 6 to a value closer to the previous
found angle solution. At the same time the length of 8 stays the same and therefore the increments
become smaller, increasing the resolution. This process of finding the rotations and translations is

shown in figure 1.16.
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Figure 1.16: Rotation an translation optimization algorithm [43].

Error metrics

To determine if the found match is the best possible match the error of the match is determined by
calculating the distances between the points in the reference scan and measurement scan. The match
that produces the smallest distance between the points of the reference and measurement scan is
selected. The translations and rotations found are used as output of the measurement system

Smoothing

Every measurement step the position of the target vessel is determined by comparing the measure-
ment with the reference scan. The reference scan is the first scan made. A match always has some
error when compared to the target vessel motion. This error could be caused by overestimating or un-
derestimation the target vessel motions, creating a output signal that jumps around the actual motion
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of the target vessel and the output result does not describe a smooth motion. Filtering is applied to
create a more usable output measurement signal of the position and motion of the target vessel.

1.4. Applications

The required information for applications of a absolute reference measurement system for the Am-
pelmann system is explained in the previous sections. In this section these different applications are
explained. The potential of each application is determined in consensus with Ampelmann. The added
value of the application is determined and a single application is chosen for this research.

1.4.1. Compensate Residual Tip Motion

The Stewart platform has a maximum range within it can compensate vessel motions. When this limit
is reached safe transfer could still be possible if additional compensation is done with the 3 controllable
DoF of the gangway. The LRF could for his application be mounted on the Ampelmann system transfer
deck and immediately measure this residual motion. Using the controllable DoF Slewing, Luffing and
Telescoping of the gangway to compensate. A sketch of the setup is shown in figure 1.17. Using a
single LRF creates a measurement that can measure heave, sway and roll of the vessel. This system
can therefore only compensate these residual motions with telescoping and luffing of the gangway.
Residual motions in the surge direction can be compensated by slewing the gangway but are not
measured in this setup.

W/
Host Vessel /

(a) side-view overview. (b) top-view overview. (c) rear-view overview.

Figure 1.17: A Measuring setup to extract Heave, Sway and Roll motions with a single LRF shown from different angels.

1.4.2. Control Tip Force

When the Ampelmann is in engaged mode and the gangway is landed to the target the tip of the
gangway remains in place by a force that is induced by a constant pressure in the telescoping cylinder.
This pressure is determined to make sure the tip stays connected to the target even during rough sea
states. Undergoing transfer operations with milder sea states results in a force on the tip of the gangway
that is much larger than the necessary force for safe transfer operation and can result in unnecessary
wear of the gangway tip rubbers.

With the LRF reference measurement it is possible to control the force exerted by the gangway on
the tip because the distance to the target is measured.

1.4.3. Auto Land

The Ampelmann system is currently controlled by two operators. They put the system in the different
operations states and manoeuvre the gangway in the correct position for the transfer. When the LRF
is rotated with a predefined angle and the position is followed with an encoder, it is possible to create a
3-Dimensional (3D) point map with the measurement. This map can be used by the operator to mark a
landing point. The point can then be actively followed by the LRF and the landing of the gangway can
be done with a control loop. It could even be possible to automatically detect a platform in the three
dimensional point map and create a completely automated process. An example setup is shown in
figure 1.18.
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Host Vessel ‘ Host Vessel /

(a) top-view overview. (b) rear-view overview.

Figure 1.18: A Measuring setup to extract Heave, Sway, Surge, Yaw, Pitch and Roll motions with a single rotating LRF shown
from different angels.

1.4.4. Motion Reference Unit

In section 1.1.2 the current motion reference unit, an Octans, is introduced. This sensor is sufficient
as measurement input for the Ampelmann system to compensate vessel motions, but at high price.
Secondly the position and orientations measurement suffer from drift.

3 Degree of Freedom

It is possible to extract three degrees of freedom with a single LRF as explained in section 1.2.3.
The newly developed L-Type Ampelmann system, introduce in section 2.1, will not compensate all six
degrees of vessel motions. This system is designed for small vessels that do not feature dynamic
positioning. The smaller size of the sips requires that the Ampelmann system is placed at the back of
the ship and transfer operation is only possible with the gangway and landing point in line with the long
side of the ship and from the stern of the ship. The LRF could provide a cheap alternative as motion
reference unit for a system where not all DoF have to be measured.

6 Degree of Freedom

Using two LRF’s or a single rotating LRF with encoder creates a three dimensional measurement image
from which all six DoF’s of vessel motions can be extracted. This could not only replace the current
motion reference unit, it has the capability of all the mentioned ideas in this section.

1.4.5. Park Assist

Before each transfer or lifting operation the vessel where the Ampelmann system is mounted on has
to position itself in the correct place. For large vessels that feature dynamic positioning this is not a
difficult task. Smaller vessels that lack dynamic positioning encounter difficulties when positioning the
vessel. The vessels used with the Ampelmann L-Type system have to be positioned with the stern in
the direction of the target. A horizontally scanning LRF could measure the distance and position of the
target and can help the captain manoeuvre the vessel in the right place. Or even automate the entire
process.

1.4.6. Sensor Fusion

Safety is one of the top priorities within Ampelmann. Al the Ampelmann systems are therefore designed
redundant. The use of a LRF can ad to this redundancy by replacing the spare Octans. It can also
contribute to the robustness of the system because a secondary measurement is done. The measured
data of both sensors can be compared and the system can choose tot use the most logical measure-
ment when one of the measurement systems makes a measurement error. In this setup both sensors
can work together or the sensor can be used for error checking.

1.5. Research Innovation

The chosen application used in this research is the LRF as MRU. Designing a vessel motion mea-
surement system based on a distance measurement to the target covers most aspects of the other
suggested applications. The position of the target platform is known when using the LRF as MRU, if
this position is known the implementation of innovations like: park assist, tip force control or automatic
landing of the gangway could be implemented relatively easy afterwards.
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The current Octans MRU is quite expensive, using the cheaper LRF sensor should result in a less
expensive MRU for the Ampelmann system. Using a difference measurement sensor, like the currently
used Octans, to determine the current position in time is prone to drift do to measurement noise. The
current position of the measurement is based on the previous position, so over time this drift error will
only grow. Using a measurement system that uses the target platform as reference to measure the
vessel position and orientation over time does not tend to drift because each measurement update is
done by measuring the distance to a target.

1.6. Problem Statement

The currently used sensor by the Ampelmann system to measure the vessel motions is based on
velocity and acceleration sensing. Using changes in motion to measure current position is known to
drift over time. Although the Octans measures very accurate, a small error will result in a larger error due
to integration of the velocity and accelerations measured data to acquire the position and orientation.
On top of this integration error is that the current position measurement is a summation of the previous
position with the added displacements of the last measurements. In time this position drift could easily
grow to distances larger then the workable area of the Stewart platform of the Ampelmann system.

With the current vessel motion measurement technique the location of the target is unknown. To
allow for future innovations of the Ampelmann system knowing the position of the target with respect
to the Ampelmann system could enable additional improvements to the system.

1.7. Goal of This Research

To solve the drift error with the current MRU, allow future innovations by knowing the location of the
platform with respect to the moving vessel and reduce the total cost of the vessel motion sensor the
goal of this research is:

Design a new vessel motion measurement system based on absolute reference sensing to measure
vessel motions to replace the current MRU and allow for future innovations by measuring the position
of the target with respect to the Ampelmann system. The system should not be sensitive to moving
people on the target platform and must not rely on necessary additions, like markers, on the target
platform.

1.8. Research Approach

To design a new vessel motion sensing system the requirements of the measuring system and specific
Ampelmann system are determined in chapter 2. The sensors chosen to replace the Octans are de-
picted in chapter 3. Creating a robust computer vision based measuring system requires a smart way
to interpret and combine the measured data as explained in chapter 4. To test the performance of cho-
sen sensors and algorithm components a simulation model is created. To determine the performance
of the new vessel motion sensing system a test setup is created. The simulation model and test setup
are explained in chapter 5. The performance of the proposed vessel motion system called the LiDAR
Reference Unit (LRU) and results of the simulation and testing are shown and discussed in chapter 6.

At last a conclusion on the performance and feasibility of the proposed measurement system is
given. The conclusions and recommendations for future improvements and research are given in chap-
ter 7.

1.8.1. Literature & Further Reading
The literature survey is embedded in this research Thesis work. For easy further reading, a summary
of the substantiation and structure of the used literature is given.

To design different applications with the added benefit of absolute reference measurement for the
Ampelmann system background knowledge of the influenced parts is required. In the introduction
(chapter 1) the different, Ampelmann systems, their components and operation states are introduced
[6]. A brief summary of the S2S transfer operation and innovations by Verweij [43] is given, where the
principles for this research start. An introduction to the LRF ToF principles by Amann et al. [1] and
common sources of noise for the LRF systems by Peiponen et al. [26]. The difficulties with a LRF
measurement interpretation algorithm are briefly discussed for the S2S solution of Verweij [43]. This
introduction results in applications and the problem statement for this research: replace the current



14 1. Introduction

MRU that is expensive and suffers from drift in the position measurements. Measuring the target plat-
form position with respect to the vessel enables future innovations for the Ampelmann system. These
innovations could be introduced with the proposed absolute reference vessel motion measurement
setup.

The specifications for the LRU (chapter 2) are determined. The motion is extracted by comparing
consecutive LRF scans to a reference scan, in a sampling manner. Using a sampling based mea-
surement system to measure motion requires a certain minimal sampling frequency to reproduce the
measured motion [30]. The specifications of the current MRU, the Octans [16] play a large role in the
requirements for the LRU.

The components used (chapter 3) to meet these requirements for the proposed LRU are selected
based on the scan resolution [43]. The LRU requires the measurement of 3 translations and 1 rotation,
this requires a 3D point cloud. This 3D point cloud could be produced with a LRF containing an array
of transmitters and receivers as showed by Glennie and Lichti [12], a rotating 2-Dimensional (2D)
scanner created by Wulf and Wagner [45] or the use of two 2D LRF’s as used by Huhle et al. [15].
Different commercially available LRF scanner solution are listed in table 3.1, their corresponding data-
sheets are cited in the table. The roll rotation measurement requires an additional sensor, the chosen
Micro-Electro-Mechanical Systems (MEMS) Inertial Measurement Unit (IMU) and other commercially
available rotation sensors and their specification are listed in table 3.3, their corresponding data-sheets
are cited in the table.

The difficulty of LRF position, orientation and motion measurement lies in the interpretation of the
measurement point cloud of the LRF scan. In robotics and autonomous vehicles this is often referred
to as Simultaneous Localization and Mappaing (SLAM) [27]. The solutions chosen algorithms are
explained in the algorithm for the proposed LRU (chapter 4).
To create an accurate and robust algorithm for the LRU the scan point cloud data is reduced. Less
points make the algorithm more computational efficient [38] and the detection of unwanted walking
people on the target platform can be avoided with landmark detection. RANdom SAmple Consesnsus
(RANSAC) is a common used algorithm to detect lines and arcs [14, 18, 20, 24, 27]. To find mathemat-
ical relations for these landmarks on could use the book of Stewart [36]. In a 3D point cloud shapes
could be detected with the offline solution by Schnabel et al. [31]. The trigonometric equations are
used by Xavier et al. [46] for the detection of human legs. The polar coordinate system of the LRF
measurement data is preserved by Noyer et al. [25] to detect lines.
Matching of consecutive scans to the reference scans extracts the rotations and translations of the
compared point clouds used for the vessel motion measurement. The Iterative Closest Point (ICP)
algorithm has improved in the last decade and the developments are summarized by Colas and Oswald
[7]. On-line surface tracking with ICP is successfully achieved by Bergstrém and Edlund [2], Bergstrom
et al. [3]. The steps taken by the ICP algorithm for the least-squares rigid motion extraction using
Singular Value Decomposition (SVD) are summarized by Sorkine-Hornung and Rabinovich [35]. Part of
the ICP algorithm is based on a nearest neighbour search [27]. A more conceptual matching algorithm
that uses a sampling consensus is proposed by Kim et al. [18].
To combine the measurement data of both sensors and create a smooth the output results from the
matching algorithm filtering is required. The Kalman filter is commonly used [44]. The filter is model
based and can be extended to comply with non-linear systems [27, 38]. The Kalman filter can not be
used in large environments for mapping, the Extended Information Form (EIF) algorithm [38]is able to
map large environments due to the use of a information matrix, instead of the covariance matrix used
in the Kalman Filter. The EIF algorithm only works in a offline batch manner. A solution for online
use of the information matrix comes in the form of the Sparse Extended Information Filter (SEIF) [38].
Another online mapping solution for large maps is the Fast Incremental Mapping (FIM) algorithm. The
FIM algorithm has a non-probabilistic core compared to the probabilistic nature of the other filtering
algorithms mentioned. Due to the non-probabilistic core of the FIM algorithm problems could occur
with cyclic motions of the LRF a solution is provided for this issue as well by Thrun et al. [38].

The literature introduced in the algorithm chapter is illustrated in an overview in figure 4.7.



Specifications

To design a Motion Reference Unit (MRU) the requirements of the measurement setup need to be
determined. The goal is to design a MRU for the currently developed L-Type V4, which is currently
still in a concept phase. One of the goals of the L-type V4 is to have more competitive price on the
market. Though the L-type V4 is still under development, the maximum operating conditions are set.
and explained in this section. The requirements are determined of the LIDAR Reference Unit (LRU),
they are based on the currently used MRU and the limitations set by the Ampelmann L-type V4.

2.1. L-Type V4

To offer a solution to all the segments of the offshore personnel transfer industry Ampelmann created
the L-Type system. This system was intended for smaller, so called Fast Crew Supplier (FCS), vessels.
These vessels have a length between 30-55m and therefore are not suited to accommodate an A-
Type or the even larger E-Type Ampelmann system. The main purpose of these vessels is transferring
people to offshore platforms oil and gas platforms and offshore windmills. The L-Type is placed at the
stern of a vessel and the gangway is positioned in line with the vessel.

Waterline

Figure 2.1: Example setup of the Ampelmann L-type V4 concept transfer operation is done from the stern of the vessel..

The previous versions of the L-Type use a Stewart platform to create 6-Degrees of Freedom (DoF)
motion compensation during the landing of the gangway on the platform. During personnel transfer
operation the Stewart platform is not used and the system could only passively compensate the vessel
motions. This passive compensation is done by keeping the tip of the gangway attached to the platform
by exerting a constant pressure. The gangway will follow the tip by using the three DoF’s of the gangway
system: Telescope length, luffing angle and slewing angle. This makes the expensive Stewart system
unnecessary during transfer operation. In the first years of operation there was a lot downtime due to
defect cylinders in the Stewart platform of the L-Type. So it was time for a new version of the L-Type,
the L-Type V4.

15
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The L-Type V4 is a new concept where not all 6-DoF’s are compensated. It does not use the familiar
Stewart platform. Instead it uses the gangway to compensate the motions at the tip of the gangway.
The L-type is placed at the stern because at the stern there is no ridge. A typical transfer example
on an FCS using the Ampelmann L-Type V4 is shown in figure 2.1. During the transfer operation,
from the vessel to the platform, the intensity of the vessel motions are damped out along the length
of the gangway. Making sure a safe transfer is conducted. The DoF’s that are controlled and their
range during landing and transfer operation of the L-Type V4 are: the telescope length 6.5 - 11.5m,
the Iuff angle —30 - 30°, the slew angle —45 - 45° and the roll angle of the gangway —20 - 20°. These
controllable DoF’s are illustrated in figure 2.2.

+45°
/“\\ N
" +£°
¥20°
— 0 L |
\/ 6500 cm_~
N = T 11500 cm ~
(a) Slew angle. (b) Roll angle. (c) Luff angle and telescope length.

Figure 2.2: The controllable angles and translation with their mechanical limit's on the L-type V4 concept.

2.2. Vessel Motions

To estimate the order of magnitude and dominant frequency’s of the vessel motions. a simulation is
done using the Ampelmann Workability Evaluation of ship Orientated Motions and Cylinder Excitations
(AWESOME) software. This software uses a JONSWAP wave spectrum and simulates ocean waves
based on significant wave height H, and their zero up-crossing wave period T,. In a common sea state
these are H; = 2 and T, = 5.5, resulting in a modelled water surface elevation as shown in figure 2.3a.
The Ampelmann L-Type V4 is designed to work till H; = 2. In this figure the water surface elevation
is plotted in the approach angle with respect to the vessel that induces the fastest and largest vessel
motions of: 90°. The water surface elevation is used to simulate vessel motions. To determine the the
dominant frequencies of the sea waves a Power Specrtal Density (PSD) of the sea state is shown in
figure 2.3b.

The Damen FCS, shown in figure 2.4a, is a small vessel in the offshore industry with a length of
50m. The Aker Wayfarer, shown in figure 2.4b, is a large FCS vessel in the offshore industry with
a length of 160 m. During the design of a ship or floating structure a Response Amplitude Operator
(RAOQ) is calculated for al vessel hull designs and wave headings. A RAO is a set of statistics that are
used to determine the motion response of that vessel at sea. The RAO information of the Damen FCS
and the Aker Wayfarer are used to calculate their motion responses in their Centre of Gravity (CoG),
these vessel motions as response to the water surface elevation for the Damen and Aker are plotted
in figure 2.5.

The smaller Damen FCS is more influenced by the waves than the lager Aker Wayfarer. Resulting
in larger vessel motions. To determine the frequency range in which these vessel motions operate a
PSD analysis is computed using the vessel motion time series as simulated above. This results in the
PSD shown in figure 2.6.

The frequency of the majority of motions of the larger Aker Wayfarer are between 0.1 Hz - 0.2 Hz.
For the small Damen vessel most motions are in the frequency range of: 0.1 Hz - 0.4 Hz. The motions
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(a) Water surface elevation with 90° impact angle with (b) Sea state frequency’s in a PSD.

respect to the vessel.

Figure 2.3: Water surface elevation with 90° impact angle with respect to the vessel and the corresponding frequency’s in a
PSD.

(a) Damen FCS. (b) Aker Wayfarer.

Figure 2.4: Examples of a small and large offshore FCS vessel.

of the small vessel (Damen FCS) are faster than the large vessel (Aker Wayfarer), especially in the
rotational DoF’s of the vessel. The motions induced by the waves create larger movements in the small
Damen vessel compared to larger Aker vessel.

The L-Type V4 is designed to operate on even smaller vessels than the Damen FCS, like the MEO
Express 79 with a length of length of 38 m. The manufacturers of these smaller FCS vessels provide
not all the RAO data required by the AWESOME simulation to calculate the vessel motions. The trend
as shown in figure 2.6 is that the vessel motions are faster and of a larger amplitude then large vessels.
The MEO Express will move with an even higher frequency than the Damen FCS. Taking a look at the
PSD of the sea in figure 2.3b shows that the frequency’s of the sea waves lie between 0.1 Hz - 0.6 Hz.
For the calculation of the minimal required sampling frequency and bandwidth of the MRU 0.6 Hz is
used.

To represent the analogue vessel motions in a control system sampling is required. the created
discrete-time value can only approximate the continous-time value and has to comply with the rule:
"Any conversion is only perfect, when it can be reversed to reproduce the original input signal’ [30]. In
signal analysis the minimal sampling frequency f; is calculated using the Nyquist-Shannon theorem:

fs>2fu (2.1)

where f,, is the Nyquist frequency and stands for the largest frequency present in the analogue signal.
For the vessel motions this means that the minimal sampling frequency is

fi=2-0.6=12Hz (2.2)

In practice it is better to take a higher sampling frequency, especially in feedback controlled motion
systems. The dynamic performance is determined by the phase margin and a closed loop system
requires low pass filters which introduce a phase delay. The Ampelmann control loop uses a low-pass
filter. Therefore at Ampelmann it is common to take a sampling frequency of f; = 50Hz as the minimal
output frequency of the MRU. This measurement output frequency will result in smooth operation of
the motion compensating Ampelmann system.
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Figure 2.5: Simulated vessel motion.

2.3. Vessel Landing Procedure

The L-Type V4 system is placed at the stern of the vessel, meaning that the vessel has to turn around
at some point for the transfer operation. In most cases the captains turn their vessel 100 m away from
the platform. The vessel is then reversed in to place for the transfer operation.

When the Laser Range Finder (LRF) is mounted at the stern of the vessel, this reverse sailing
allows to start measuring before the landing of the gangway or the transfer operation started. During
the measurements, while the vessel is still getting in position, preprocessing parameters could already
be defined, or a rough estimate of the vessel motions could be done to determine the current sea-state
as illustrated in figure 2.7.

2.4. Current MRU Set-up

The Ampelmann systems are currently controlled with the control system explained in section 1.1.2.
The input signal for the vessel motions is measured using the Octans Fibre Optic Gyroscope mounted
to the base-frame of the Ampelmann system. The Octans sensor measures and generates real-time
output for roll, pith, yaw, heave, surge and sway of the vessel at the location where the sensor is
mounted: in the control cabinet on the base-frame of the Ampelmann system. The specifications of
this Octans MRU are listed in table 2.1.

Table 2.1: iXblue Octans Motion Sensor Specifications [16]

Feature Value Unit Comment
Accuracy Heave/Surge/Sway 0.05,5 m, %  whichever is greater
Accuracy Roll/Pitch/Yaw 0.01 ° RMS
Resolution Roll/Pitch/Yaw 0.001 °

Rotation rate 750 °/s Up to
Acceleration rate +15 g 1g ~ 9.81m/s?
Rotation range Roll/Pitch/Yaw 0 to 360/ + 180/ +90 °

Data Output Rate 0.1t0 200 Hz

Timing 235 ms Fixed latency

Price 80,000 <€ Without bulk discount
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Figure 2.7: The normal landing procedure for small FCS vessels for people transfer.

2.5. Requirements

The final requirements for the LRU are based on the discussed sections of this chapter. The data
output rate is based on the update rate of the current Ampelmann system control loop. The translational
accuracy is equal to that of the Octans motion sensor. The rotational accuracy of the Octans sensor
is better than the Ampelmann systems requires to function optimal, so an less accurate rotational
accuracy is chosen for the LRU. The maximum measurement distance to the target is based on the

landing procedure of the vessel and the maximum transfer distance of the L-Type V4. The requirements
for the LRU are summarized in table 2.2.

Table 2.2: specifications

Feature

Value

Measuring distance

Measured output

Accuracy

Data output rate

<20 m
Heave, Surge, Sway and Roll m, °
0.05,01 m,°

50

Suitable sensors and algorithm selection to achieve these requirements are discussed in the next

chapter.






The LIDAR Reference Unit

The sensors used in the LRU to achieve the requirements stated in the previous chapter are chosen in
this chapter. The position and orientation of LRF is defined and an extra sensor in the form of a micro-
electromechanical Inertial Measurement Unit (IMU) is chosen to allow for fast measurement output and
the measurement of roll.

3.1. Sensor Position
The placement of the LRU on the vessel depends on a list of requirements:

+ Clear view from the LRF line of sight to the target platform.
— This guarantees that the measurement of the LRF is not blocked by anything.
+ Attached close to or on the Ampelmann L-Type V4.

— To make the system compatible with most vessels and their deck configurations it is best
to place the sensor in a location on the ship deck that is already used by the Ampelmann
system.

— The closer the sensor is placed to the location of the actuators, the less the measured data
has to be mapped to these locations.

The current Ampelmann control system uses the motion measurement as an input or feedforward
signal as stated in section 1.1.2. The measured motion is translated in platform cylinder lengths and
the cylinder valve positions are determined via a lookup table. The length of the cylinders is measured
and this is used to adjust the cylinder valves with a feedback loop.

Position 1 Position 2
A — | =
b

L Position 3

Figure 3.1: Placement positions for the LRU on the vessel/gangway.

From possible positions for the LRU in figure 3.1, only position 1 is suited to measure the vessel
motions for feedforward control. From position 2 and 3 only the difference between the gangway and
the target can be measured. This difference measurement would require a feedback loop to use the
measurement data. This feedback loop would introduce a limited reaction speed because an error in
the difference has to occur before the controller can correct for it [30].

21
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Position 2 and 3 are close to the position of the gangway that needs to be controlled. Any undesired
motions of the Ampelmann system, that can be introduced by the mechanics or dynamics of the L-Type
V4, are measured when the sensor is placed in location 2 or 3. When using a feedback controller these
undesired motions can also be compensated by the Ampelmann system.

During the transfer operation the tip of the gangway is in contact with the target platform. The closer
the LRU is placed to the the platform the larger the scanning angle of the LRF needs to be to be able
to scan the entire platform. It is easier to determine the location of the full platform when scanned from
a far than being to close near the platform. To measure a translation perpendicular to the platform at
least two distinct features of the platform need to be visible in the measurement point cloud. When the
LRF is located at position 2 or 3 the possibility exist that all scan points get blocked by a single beam
losing measured DoF’s due to the loss of different shapes.

To make sure the LRU could be implemented easily in the current Ampelmann systems and the high
demand for robustness is achieved, the LRU is placed at position 1 for this research. This guarantees
direct vessel motion measurement and the ability to scan a larger portion of the platform compared to
the other positions.

3.2. The Laser Range Finder

Previous research showed that accurate results could be achieved using a scanning LRF. In this section
the specific LRF is chosen and the scan plane orientation is explained. To avoid the detection of
unwanted obstacles on the target platform a landmark or feature detection algorithm is introduced that
allows for the detection of straight lines and arcs in the measurement point cloud. To detect these
landmarks a minimum amount of scan points of the shape of the landmark is required to successfully
detect the landmarks.

3.2.1. Resolution

For feature extraction it is important to have enough measurement points to robustly determine the
feature. In mathematics one can calculate a line formula of a straight line with only two points. Figure
3.2 shows that the noisy measurement data of a laser range finder makes this impossible. To cor-
rectly describe the line feature more measurement points are needed to correctly fit a line. To extract
information about more difficult features like cylinders from an offshore platform even more points are
required to robustly determine the arc.

Scanpoints

Figure 3.2: Noise makes it impossible to correctly describe a scanned line with only two points [43].

To determine the required resolution a simple example is shown in figure 3.3. To get eight mea-
surement points p = 8 on a straight line with a length of [ = 0.5m from a distance of d = 20 m the total
scan angle a and the required angular resolution Aa are calculated as follows:

z
@ =2sin"t (E) —1432°, Aa = % <0.179° (3.1)

The distance from the scanner to the target has a large influence on the required resolution as shown
in the previous example. In this example other aspects that make it even harder to get a minimal amount
of points to extract a feature are not even taken into account, like:

» Features with difficult shapes that require more scan points to extract correctly.
» The angle of attack from the LRF to the target feature.
* Blocking of certain parts of the target feature by other parts of the platform, for example a railing.

* Missing scan points on poorly reflecting material or due to a very large angle of incidence.
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Figure 3.3: Simple example to determine the required resolution of the LRF.

The downside of a LRF with a high resolution is the larger amount of data that needs to be processed
by the algorithm, this increases the computation time.

The amount of measurable translations and rotations for a point-, line- and surface scan as ex-
plained in section 1.2.1 help determine the required LRF configuration to measure the required trans-
lations and rotation for the LRU. All six DoF’s of a vessel could be measured using a 3D surface laser
scanner but the same data could also be measured using two or more of the cheaper 2D line scanners.
In table 3.1 a couple of popular commercially available LRF’s are listed.

All the 3D scanning LRF’s have a high resolution in their scanning or horizontal plane and a low
resolution in their vertical plane. This is due to the fact that all these 3D scanners don’t use a scanning
mirror or a rotation axis to acquire the vertical measurement points. Instead array’s of laser transmitters
and receivers are used [12], each transmitter receiver pair is called a channel. The SICK LD-MRS 8-L
uses 8 channels, the Velodyne Puck 16 channels and the Velodyne HDL-32E and HDL-64E respec-
tively 32 and 64 channels. This non-scanning technique in the vertical plane enables high output rate
scanning to acquire a full 3D 360° point cloud. Though the vertical resolution is not enough for the
challenge in this research.

One of the solutions to acquire a better resolution in the vertical plane is to introduce an extra
scanning rotation axis with a 2D LRF. There are commercial products available that use this technique
This, like the RIEGL LMS-Z210ii-S that has a vertical resolution of 0.01 - 0.75°. The downside is that a
complete 360° scan takes 24 s, which is not fast enough for the LRU motion extraction. In an attempt
to transform an 2D LRF by O. Wolf and B. Wagner [45] only takes 5 to create a full 360° point cloud,
this is still to slow and a low scan resolution of 1° is used. Adding a rotation axis to a 2D LRF is a
solution for a better resolution in the horizontal and vertical plane, only the measurement time for a full
point cloud take to long for the online motion measurement system.

Another solution is to combine two 2D LRF’s with a perpendicular scanning plane orientation as
proposed in [15]. In this research the LRF’s can move in 6-DoF’s while scanning and a matching
process calculates the position and orientation of the LRF system. Using two LRF’s with perpendicular
scanning planes ensures a good resolution in both planes. A setup with two LRF’s is chosen and the
best 2-Dimensional (2D) LRF that meets the required resolution is the SICK LMS 511 PRO, which is
the chosen LRF for this research.

3.2.2. SICK LMS 511 PRO

Combining two SICK LMS 511 PRO’s with perpendicular scan planes provide the required resolution,
range and accuracy in two planes. The SICK LMS also offers user defined settings like: angular
resolution, field of view and data output rate. These settings can be used to optimize the algorithm
required for the motion measurement extraction. To guarantee operation in outdoor environment the
LRF is water and dust proof according to the IP67 rating. It can measure up to five echo’s which enables
measurement in rain, mist or dust, as illustrated in figure 3.5. The SICK LMS outputs the distance, scan
angle and reflection level of every measurement point of a complete scan. The light emitted by the SICK
LMS 511 PRO is invisible infrared light with a wavelength of 905nm and is eye safe. The important
specifications of the SICK LMS 511 PRO are summarized in table 3.2.

3.2.3. LRF Scan Orientation

With the use of two 2D LRF’s the scan plane orientation needs to be chosen, perhaps a diagonal scan
holds more important measurement information for the LRU than a vertical or diagonal scanning plane.
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Table 3.1: LRF specifications

Horizontal Vertical
Manufacturer Type Resolution [°] Resolution [°] Accuracy [mm] Price [€]
Model Range [m] Field of view [°] Field of view [°’] Scan rate [Hz] Units req.
Velodyne 3D 0.08 - 0.35 0.4 +20 60.000
HDL-64E [42] 120 360 26.9 5-20 1
Velodyne 3D 0.1-04 1.33 +20 30.000
HDL-32E [41] 100 360 41.33 5-20 1
Velodyne 3D 0.1-0.4 2.0 +30 8.000
Puck [40] 100 360 30 5-20 1
SICK 3D 0.125-0.5 6.4 +100 16.000
LD-MRS 8-L [33] 300 110 0.8 12.5 - 50 1
SICK 2D 0.1667 - 1 14 5.000
LMS 511 [32] 80 190 25-100 2
Scanse 2D 14-7.2 40 350
Sweep [29] 40 360 2-10 2

Scanning range in m (ft)
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Figure 3.4: The maximum possible scan angle for the SICK LMS 511 Pro, dark red illustrates a scan range up to 40 m for 10%
remission factor and dark red illustrates the maximum range of 80 m. [32]

To investigate the scan plane orientation a simple example with three different scanner orientations;
horizontal, vertical and diagonal is shown in figure 3.6. This figure is intended to demonstrate the ability
to measure displacements in the x, y-direction.

All three orientations are able to measure the in-plane distance because the LRF measures the
distance to the target. Comparing the three scans of the horizontal scanner to the reference frame, it
becomes clear that this scanner orientation is only able to measure the horizontal displacement. The
same goes for the vertically orientated scanner, it can only measure vertical displacements. Could
the diagonally orientated scanner provide information about the vertical and horizontal displacement
in one solution? For all three displacements a difference is visible when the scans are compared to
the reference scan. However the only displacement with a result that can be translated back to the
original displacement is the diagonal displacement. The horizontally and vertically orientated scanners
are able to measure the corresponding component of the diagonal displacement.

Due to the orientation of the vessel during the people transfer operation it is not possible Without a
full 3D point cloud to measure the vessel’s roll motion. An extra sensor that can measure roll accurately
is required for the LRU to meet the requirements.
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Figure 3.5: The SICK LMS 511 PRO can measure up to five echo’s making the laser measurement less dependent on weather
conditions [32].

Table 3.2: LMS 511 PRO LRF specifications [32]

Feature Value Unit Comment

Field of view 190 ° adjustable

Angular resolution  0.1667/0.25/0.333/0.5/0.667/1 °

Operating range 0-80 m

Max. range 40 m with 10% reflectivity

Accuracy +25 mm at1—-10m
+35 mm at10 —20m
+50 mm at20—30m

Data output rate 25/35/50/75/100 Hz

Timing >10 ms response time

Price 5000 €

3.3. Inertial Measurement Unit

To measure roll in the LRU an extra sensor is required. this sensor should be able to accurately
measure roll. This extra sensor could add more measurement information when combining both sensor
data, this is often referred to as sensor or data fusion. Sensor fusion of IMU sensors is often done with
a Kalman filter [5, 28]. With sensor fusion a less accurate roll sensor could be used than required.
Selecting a sensor that measures all six DoF’s could improve the measured vessel motions of the
LRU.

An overview of some of the currently available sensors is shown in table 3.3. To keep the ability to
use the system for more then 4 DoF’s for other applications a sensor that can measure in three axis is
chosen. The field of Micro-Electro-Mechanical Systems (MEMS) IMU’s is rapidly improving, these chips
combine accelerometers and gyroscopes to measure the orientation and accelerations of the sensor.
These MEMS IMU’s are used in large quantity applications like: smartphones and the automotive
industry. Due to the manufacturing procedure large quantity’s can be produced making these MEMS
IMU’s very affordable. The downside is that these sensors are more sensitive to noise than the more
expensive IMU sensors. Due to the sensor fusion the performance of the system is dependent on both
sensor systems; the IMU provides a fast and rough measurement that gets updated using the slower but
accurate LRF measurement. For the LRU the Bosch BNO055 MEMS IMU is chosen, this is a System
in Package (SiP) that combines a accelerometer, gyroscope, magnetometer and micro-controller in a
single package [4].
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Figure 3.6: 2D example of three scanner orientations: horizontal, vertical and diagonal scan orientations. The red lines indicate
the scan lines and the red arrow indicate the motions on the x, y-axis of the different orientations.

3.3.1. BNOO055

The Bosch BNOO55 is an intelligent absolute orientation sensor that combines an tri-axial accelerom-
eter, tri-axial Gyroscope and tri-axial geomagnetic sensor with a integrated micro-controller for sensor
fusion in one package. This sensor fusion calculates the orientation of the IMU by means of Euler an-
gles and the linear accelerations. Tests done by Ampelmann using the SBG Ekinox, which also uses
a tri-axial geomagnetic sensor, when the magnetic field of the earth as an absolute reference, showed
that the magnetic field on a steel vessel could not be used as reference. The Bosch BNO055 can also
act as an IMU without using the information of the geomagnetic sensor.
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Table 3.3: overview of roll sensor specifications.

Axis Range Resolution Accuracy Output Orientation rice

Manufacturer Model #] ] ] ] rate [Hz] computated (€]
on-chip

Vectornav VN-100 [39] 3 +180 < 0.05 1.0 400 yes 750
LORD 3DM-GQ4-45 [21] 3 360 < 0.01 0.1 500 yes
LORD 3DM-GX3-25 [22] 3 360 <01 +2.0 1000 yes
x-io Tech. x-IMU [37] 3 512 yes 285
BOSCH BNOO055 [4] 3 360 14 bit +4% 100 yes 35
InvenSense GY-85[13] 3 360 10 bit 1000 no 8
SignalQuest SQ-GIX-0200 [34] 2 360 0.1 0.5 100 yes
Kongsberg MRU2 [19] 2 +25 0.001 0.1 200 yes
Level Dev. HPS-30 [8] 1 +30 0.001 0.1 16 yes 207
Level Dev. LCH-A-S [9] 1 +180 0.05 0.05 inf. no 48
Level Dev. MAS-360-HA [10] 1 +180 0.01 0.2 40 no
Level Dev. SOLAR-30 [11] 2 +30 0.001 0.1 16 no 130
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A large number of studies is done in the field localization and mapping. In the world of robotics this is
usually referred to as Simultaneous Localization and Mappaing (SLAM), where it is used to determine
the location of the robot in a world (localization) and building a map containing information of this world
(mapping) at the same time (simultaneous). All research is done in the field of computer vision, as a
computer cannot interpret the world around it with the same information we gather with our eyes. This
chapter will explain research done in areas of robotics and autonomous vehicles. This knowledge is
used to determine the best algorithm used for this research. At the end of this chapter the algorithms
used to measure the vessel motions are explained.

4.1. Process Approach

To go from a point cloud as generated by the LRF to motion sensing with an absolute reference requires
a application bounded algorithm. The motion is extracted by comparing scan data to a reference set
of scan data. usually this reference set of scan data is the point cloud from the first scan. If the scan
frequency is high enough the motion can be extracted by calculating the differences between scans
and the reference scan with an fast algorithm. The approach for defining all individual process steps is

shown in figure 4.1.
Point Cloud

Preprocessing

Matching

’ Error metrics, Filtering & Smoothing ‘

’ Position & Map ‘

Figure 4.1: Process approach for an algorithm to go from a point cloud
to motion measurement, using computer vision.

In the preprocessing part the LRF data is imported and converted to logical points with Cartesian
coordinates. During the preprocessing process unwanted data could also be removed. After this step
one could chose to make their algorithm work with the complete point cloud data set or try to reduce
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the amount of data points in the point cloud by finding recurring elements in a scan. These elements
have a mathematical geometric property that makes it possible to find them in computer vision. These
recurring points are called landmarks. The displacements are calculated during the matching step. New
scans are compared with the first and previous scans to calculate the motions. If there is noise in the
measurement or other disturbances, filtering and smoothing could be applied during the error metrics
phase of the algorithm. For the LRU the filtering is also used to combine the measurement data of both
sensor systems. This complete process results in the localization and motion measurement.

An exploded view of the process approach based on literature is found in figure 4.7. The mentioned
techniques are briefly discussed in the next subsections. The algorithms used for the LRU are selected
and explained in section 4.2.

4.1.1. Preprocessing

The communication between the LRF and the computer or Programmable Logic Controller (PLC) is
via Ethernet. After each scan the data is sent in one packet. This data has to be translated to x,y
positions of the measured points. The SICK LMS LRF can scan up to an angle of 190° with intervals of
0.167°,0.25°,0.0.333°,0.5°,0.667° and 1° and up till a distance of 80 m. Only the scan points of the target
are interesting to use in the algorithm. Therefore the measurement angle of the LRF can be adjusted to
only scan the area of interest. This can be done with a so called bounding box. This bounding box can
alter the scan angle or could just delete measurement points that are outside the the area of interest.
The bounding box can be predefined by the user and stay the same size during the measurement, in
this case it is a static bounding box. During the scan the vessel and therefore the LRF moves. If the
algorithm is already measuring the motions, the data could be used to move or adjust the bounding
box as well. In this last case a dynamic bounding box is applied in the prepossessing process.

4.1.2. Landmarks

Most SLAM algorithms are more computationally efficient or have a certain limit when the amount of
measurement points decreases [38]. Furthermore it becomes easier to match points using principles
like nearest neighbour if the different points are further apart then their displacement is in consecutive
scans. In computer vision these points are called landmarks. A Landmark is a natural or artificial feature
that stands out from its environment. In the case of an offshore platform landmarks could be: lines,
corners, edges, rectangles and poles. The features of different algorithms for marker-less landmark
detection from literature are briefly discussed next. Since landmarks remove unwanted scan points,
one of the landmark detection algorithms to be used in the algorithm for the LRU is selected.

Random Sampling Consensus

RANdom SAmple Consesnsus (RANSAC) is an algorithm that is used for robust model fitting if the data
set contains a lot of outliers. Outliers are measurement points introduced by noise or measurement
points that are outside the model preferred to measure. RANSAC can fit any model but it is mainly
used to find lines, curves, planes, and shapes [14, 18, 20, 24, 27]. The RANSAC algorithm is proven
to be a robust algorithm that can be adjusted to work with different shapes.
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Figure 4.2: The RANSAC algorithm illustrated. the initial point cloud is illustrated in (a), two points are randomly selected in (b)
a line is drawn through these points and the distance from this line to the other points is computed, below a set limit these
points become inlier’s in (c). If the line consists of enough inlier’s the line is recomputed using the inlier’s. In (d) and (e) two
different points are selected resulting in the correct line detection.

In figure 4.2 the RANSAC algorithm is illustrated on a 2D example point cloud, figure 4.2a. In figure
4.2b two points are randomly selected from the point cloud. A virtual line is drawn trough these points
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and the perpendicular distance from the line to the remaining points is computed, if this distance is
smaller then the user defined value, these points become inlier’s, figure 4.2c and figure 4.2e. If this
line consists of enough inlier’s the line parameter will be recomputed using the inlier’s, if there are not
enough inlier's two new random points will be selected as shown in figure 4.2d and figure 4.2e where
the found line is computed and a good line fit is found.

Point Cloud Shape Detection

In the previous landmark detection algorithm RANSAC is used for 2D line and arc fitting. The approach
can also be used for 3D shape fitting [31]. Using this approach allows for the detection of for example:
cylinders, boxes, spheres and planes. To correctly detect these shapes a dense or high resolution
point cloud is required in a 3D space. The RANSAC algorithm does an excellent job at finding these
shapes but does require more computing power than for a 2D line or arc detection. The point cloud
shape detection is used in an offline environment where the time required by the algorithm plays no
important role. Furthermore the LRF scanner combination does not provide a full 3-Dimensional (3D)
point cloud.

Inscribed Angle Variance

Inscribed Angle Variance (IAV) is a recursive line fitting method to detect arc’s/circles. It is developed
for real-time detection of human legs [46]. The technique uses trigonometric features of an arc, all
points in an arc have angles with equal values, congruent angles, with respect to the extremes. An
example is shown in figure 4.3. The detection of circles is achieved by by calculating the average
and standard deviation of the inscribed angles, with a standard deviation of 8.6° and average values
between 90° and 135°
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Figure 4.3: inscribed angles, with respect to the extremes(P;, P,), of an arc are congruent [46].

Range segmentation is used to produce clusters of consecutive scan points. The distance between
consecutive points is calculated and if this is below a given threshold the scan points belong to the
same cluster. These clusters are used to find the arcs.

Geometric Invariance

This algorithm works with the polar coordinate system to detect line segments in a scan. This pre-
serves measurement noise statistics and the efficiency only depends of the angular resolution [25], as
a LRF sensor delivers polar measurements. A line is described with two measurement parameters:
the orthogonal distance to the sensor p; and the related bearing 6,;. each point P, = (p;, ;) belonging
to a line verifies the polar equation: p; = p; cos(8; — 6;). The geometric invariant that only depends
on the sensor parameter is the angular resolution «. The angular relation can now be expressed by:
8; = 6; + a(j — i) where i and j define measurement numbers in the same scan. This is used to
define points that are on the same line in a scan. Probabilistic’s are used to deal with noise in the
measurement.

Concluding Remarks on Landmarks

There are multiple solutions to let a computer interpreted point cloud data and find different shapes
that stand out from their surroundings. The detection of landmarks removes a lot of data points that
are not necessary for a good match and make it easier to remove noisy data produced by the LRF or
by other noise factors, for example a human walking around the scan target. people walking around
on the scan target is an issue that will occur during the operation of the LRU. To avoid difficulties
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concerning the movement on the scan target the choice is made to incorporate a landmark detection.
The RANSAC algorithm is commonly used in the field of robotics and autonomous driving, the algorithm
can be adjusted to detect certain shapes. Offshore structures contain mostly lines and arcs as shown
in figure 4.10. The choice is made to incorporate a RANSAC landmark detection in the algorithm for
the LRU to improve the robustness by avoiding unwanted scan points on the target platform.

4.1.3. Matching

At the heart of the motion, position and orientation measurement is the matching algorithm. This part of
algorithm compares the measurement scan point cloud with the reference point cloud and tries to match
these point clouds calculating the translations and rotations between them. In this section different
matching algorithms from literature are explained and a choice is made for the matching algorithm
used in the algorithm for the LRU.

Grid

A very basic matching algorithm is based on a grid that is applied over to the point cloud coordinate
system. The number of points inside the cells of the grid are counted for the reference and the mea-
surement scan. A histogram can be used to compare the grid information and a match is done based
on the number of points in the locations of the grid. A simple example of the grid matching algorithm is
illustrated in figure 4.4. The resolution of the match depends on the cell size of the grid.

Figure 4.4: The grid matching algorithm. The reference point cloud in red and the scan to be matched in blue.

Iterative Closest Point

Iterative Closest Point (ICP) is a matching algorithm that works on entire point clouds but also work
on reduces point clouds. The algorithm is illustrated in figure 4.5. The algorithm compares a scan
point cloud to a reference point cloud and calculates the closest points from the scan point cloud to the
reference point cloud and uses this information to transform the scan point cloud. This operations is
repeated until the error is smaller than the given threshold ¢, as described in figure 4.5.
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Figure 4.5: The ICP algorithm [7].

This algorithm can get stuck in a local minimum and in recent years the ICP algorithm is expanded
using RANSAC and extended Kalman filtering to overcome this problem. To get a robust matching
algorithm it is important to tune the parameters of the ICP algorithm correctly for the measurement
situation and add filtering [7].

Corresponding Vector Fitting SAmpling Consensus
Corresponding Vector Fitting SAmpling Concensus (CVFSAC) is a matching algorithm based on the
RANSAC algorithm for landmark detection. The algorithm uses raw data from the LRF and does not
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require any model information [18]. A corresponding vector pair is a point in both scans that lies on the
same location in the world while the scanner has moved. When this point is found the tangential angle
vectors are calculated and used to transform the scan point cloud, as illustrated in figure 4.6.

Lref

Figure 4.6: The CVFSAC algorithm [18]

The tangential angles «a, 8 are determined using the next points in the point cloud. The transforma-
tion parameters are: x = |a| cos 8, — |b| cos(8, —6,.), y = |a| sin 8, — |b|sin(6, — 6,) with 6, = f — a.
The pseudo code is found in algorithm 1. The algorithm leaves room for some error that is removed
with the ICP algorithm.

Algorithm 1 CVFSAC

1: procedure cvfsac algorithm(pts, pts,.f, iterNum, threshold)

2 calculate the tangential angle vectors of each element in pts and pts,.s

3 forp =1:iterNumdo

4: Randomly select two vector elements from each scan data pts and pts,.s

5: Estimate the transformation from the two selected vectors

6 Transform pts

7 calculate matching score from transformed pts and pts,..; by consensus ranking system
8: if ranking score > threshold then

9: store transformation

10: end if

11: end for

12: Find best transformation

13: return translations and rotation

14: end procedure

Nearest Neighbour

Nearest neighbour is a basic matching algorithm. The principle is that for each point in the scan point
cloud the closest point in the reference scan is computed. This closest point search is based on eu-
clidean distance in a 2- or 3-D space [27]. An example is shown in figure 4.5b of the iterative closest
point algorithm. This matching approach on its own is only used with landmarks instead of full point
clouds. due to the fact that landmarks are further apart from each other and therefore more distinct,
the chance of a mismatch between two scans is less likely. The fact that there are no additional steps
in the algorithm to prevent any mismatching, nearest neighbour is used in multiple matching algorithms
as one of the matching steps and not as a matching algorithm on its own.

Concluding Remarks on Matching
The Grid and neighbour algorithms are only suitable for certain situations, for this reason they are not as
robust as the competition. The precision of the match, is due to the non iterative process, less accurate
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as can be achieved with ICP, on the other hand the chance of converging to local minimum/maximum
could still occur for all three algorithms. The CVFSAC has only proven itself in research once instead
of the ICP algorithm whit a more extensive research history. The ICP algorithm works on full point
clouds but works better due to the fact of the nearest neighbour search if the points in the cloud are
more spread out by means of landmarks. The choice for the matching part in the algorithm for the LRU
is the ICP matching algorithm.

4.1.4. Filtering

After matching the measurement scans to the reference scan, the output motion must be filtered and
fused with the measurement data from the IMU. This part of the algorithm is going to fuse the sensor
data and produce a smoother and more accurate motion output than a non-filtered or single sensor
motion measurement. Due to the complexity of the different filter algorithm only basic information
about the filter is given in this section. This information is used to determine the choice of filter used in
the in the algorithm for the LRU. The chosen filter will be explained in detail in section 4.5 where the
chosen filter algorithm for the LRU is explained in depth.

(Extended) Kalman Filter

In point cloud algorithms the Extended Kalman Filter (EKF) is a commonly used filter, the EKF is based
the Kalman Filter and extended to cope with non-linearity. The Kalman filter is a model based filter
meaning that it relies on a model of the motion system. This model data is used to predict the next
position in time. This prediction is than updated with the measurement data and corrected. The filter
supports estimations of present, past and even future states of the system. The filter only requires the
current and previous position and can therefore be used to filter and fuse the data online [27, 38, 44].

(Extended) Information Form

Extended Information Form (EIF) is a batch mapping filter that maintains a information matrix instead
of the common covariance matrix used in the Kalman filter. The fact that this filter only works with
batches of measurement information and can not be used online. The EIF is not a suitable filter for the
algorithm of the LRU [38].

Sparse (Extended) Information Filter

in the Sparse Extended Information Filter (SEIF) algorithm the sparsity of the information matrix is
used to create an online filter. Both the EIF and SEIF are SLAM filters used in large environments,
for example on cars that ride around town. A lot of landmarks need to be added along the ride. The
Kalman filter, due to the fact that its covariance matrix grows quadratic with respect to the size of the
map, in practice can only cope with maps containing a couple hundred of features [38]. For the LRU
which will only scan a single target this is not a problem.

Fast Incremental Mapping

The Fast Incremental Mapping (FIM) algorithm is able to generate maps in near real-time while simul-
taneously coping with the data association problem of the previous discussed filters. In comparison to
the EKF, EIF and SEIF filters, which are all based on a probabilistic core, the FIM algorithm is based on
a non-probabilistic core. The downside of the FIM algorithm for the LRU is that the core of the algorithm
can not cope with cyclic environments [38]. The motion a vessel will make during transfer operation
will encounter these cyclic motions and pass the same point with respect to the target platform multiple
times.

Concluding Remarks on Filtering
For the LRU a filtering algorithm is required that does not have to cope with large environments and is
able to work online to accurately determine the vessels current position. When the vessel is in position
for people transfer the motions of the vessel induced by waves are cyclic. The Kalman filter is able to
deliver on these points and has proven itself on more occasions than the other filters and is therefore
chosen to be used in the algorithm for the LRU.

The different algorithm process steps discussed in this section are shown in figure 4.7. The chosen
process approach is highlighted by the thick line. In the next section this chosen process approach is
explained in depth.
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Figure 4.7: An overview based on different research done in the field of point cloud localization and mapping. The chosen algorithm items for the
LRU are represented with a thick border/line.

4.2. Motion Extraction Algorithm

The working principles of the algorithm proposed for the LRU are explained in this section. A chrono-
logical order from raw LRF scan and IMU data is used to explain the steps. In this section the same
route, from point cloud to localization and mapping, is followed as illustrated by the thick line in figure
4.7.

4.2.1. Point Cloud
The LRF produces a 2D point cloud of a planar scan. The user can define the scan resolution and scan
angle, respectively between 0.1667°—1°and —5°—185°. To obtain the required resolution of 0.1667°the
scan frequency is set to 25Hz. The LRF sends the scan data over Ethernet via Transmission Control
Protocol (TCP). The measurement data is formatted by a begin and end angle, based on the chosen
scan angle. The scan resolution is given and the data array containing all the measured distances of
the points. This polar coordinate data is converted to a Cartesian coordinate system by means of the
trigonometric functions:

X =71cos¢ (4.1)

y=rsing (4.2)

where r is the distance from the LRF to the measured point and ¢ is the corresponding scanner angles
for the points. This conversion is done for all the points in a single scan and the Cartesian coordinates
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per scan are stored in an array. A simple example scan of a pillar with a wall in the background scanned
in the horizontal plane is shown in figure 4.8.
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Figure 4.8: Point Cloud of a pillar with a wall in the background scanned with the SICK LMS 511 from a distance of 10 m. The
Scanner is scanning in the horizontal plane and is placed in the origin (0, 0) which is not shown in this plot.

4.2.2. Static Bounding Box

During people transfer operation the location of the vessel with respect to the target platform is rea-
sonably well defined. During people transfer operation the distance to the target can vary between
6.5 — 11.5m and the target platform is within a +45°angle perpendicular to stern (aft or most backward
point of the vessel). The LRF is able to scan larger distances and greater angles. To prevent unwanted
measured points by objects not part of the target platform or noise points outside the mentioned area
of the target platform use is made of static bounding box. A static bounding box is a user defined box,
all points outside the box are discarded and only the measured points within the box are used in the
algorithm. An example bounding box on the point cloud of the pillar is illustrated in figure 4.9.
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Figure 4.9: lllustration of a bounding box on the point cloud of a pillar with a wall in the background. In (a) the bounding box is
shown in the original plot and in (b) the resulting point cloud,after discarding the points outside the bounding box

After an initial measurement the current vessel location with respect to target could be known from
the measurement data, the bounding box could be made smaller. The bounding box could also be
made dynamic by moving in the same way as the vessel during the people transfer operation. This
dynamic bounding box is possible because the position of the vessel is updated every measurement
moment in time. As a starting point only a static bounding box is used during the preprocessing phase
in the algorithm.



4.3. Landmark Detection 37

4.3. Landmark Detection

The key robustness of the algorithm starts with landmark detection. To translate the point cloud data into
vessel position the first scan is used as a reference scan. The next point clouds are then compared with
the reference point cloud to determine the displacements and rotations between the two. This matching
principle works best if in both point clouds only contain the same landmark measurement points. An
offshore platform has a relative open structure but there are a lot of small obstacles, for example: stairs
and rails, on these platforms as can be seen in figure 4.10. With the given scan resolution it is possible
to scan such arailing in some of the measurement scans and not in others. Furthermore on the platform
are machines and people moving. These moving parts and people on the target platform cannot be
used during the matching of point clouds. Only the assumed static structure of the platform can be used
for a robust motion sensing algorithm. Offshore platforms are mostly constructed with pillars connected
to the sea floor. These pillars elevate different decks above sea level. When a horizontal and vertical
planar scan are made from these platforms the distinctive shapes found are lines and arcs. The arcs
are created by scanning the round pillars. The lines are created by the scanning of the decks and
structures commonly placed on top of the platform decks. To use the lines and arcs as landmarks for
the algorithm the scan points creating the landmarks need to be extracted from the full scan point cloud.
This extraction is done with the help of the previously introduced RANSAC algorithm.

e W

(a) Offshore platforms (b) People transfer landing point

Figure 4.10: Pictures of platforms in the offshore fields of Asian Marine Professionals (AMPA) taken from a vessel with the
older L-Type V3 on-board. (a) a cluster of platforms, (b) a close by picture off the people transfer landing point.

The basic steps in the RANSAC algorithm are already explained in section 4.1.2. An explanation
on how the lines and arcs are defined within this algorithm can be found in this section. preliminary
user defined variables like the number of iterations done, the inlier distance and the required amount
of inlier's are also explained in this section. To avoid mismatching in a dynamic environment boundary
conditions, for example: minimal or maximum line length, are implemented and explained.

4.3.1. Line Detection

The RANSAC line detection starts by randomly selecting two points from the points in the point cloud p;,
where i is the point number. A line is created using these two random points. A unit normal vector n of
this line is constructed and used to calculate the euclidean distance D; to the other points perpendicular
to the line [36]:

P> —P1 . [ X; ] .
=———— with pi=| "7 | forj=1,2 4.3
Ipz — pil P Yj g *-3)
D; =n(p; — pivz2) (4.4)

where p§ indicate the random selected points and i is the point number of the points in the point cloud
without the two randomly selected points by the RANSAC algorithm. For the distance calculation it
does not matter which of the two random points is used in equation 4.4.
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From this distance vector the inlier's are created by bounding the maximum allowed perpendicular
distance that points may lay from the line named thDist. All measurement points within thDist distance
to the line become inlier's. If the number of inlier’s is larger or equal then the user defined amount of
required inlier’s, called thinlr then the line is stored.

This process is repeated with other non-identical randomly selected points until the user defined
number of maximum loops is reached, named iterNum. All the stored lines are then compared and
the line which consist of the most inlier’s is selected and the begin and end points of the lines x, y-
coordinates are returned with the corresponding inlier's. This process is shown in pseudo code in
algorithm 2, here pts stands for the points in the point cloud.

Algorithm 2 RANSAC line [24]

1. procedure ransac line(pts, iterNum, thDist, thinl, maxLength)
2 forp =1:iterNumdo

3 Choose sample of 2 random points

4: Fit a line through the 2 points

5: Compute the distances d of other point to the line

6 for d < thDist do

7 create set of inlier's ninliers

8 if ninliers > thint then

9: Store the line

10: end if

11: end for

12: end for

13: Find line with most inlier's and shorter than maxLength
14: return line parameters (X,Y) and inlier’s

15: end procedure

In the algorithm for the LRU during testing and simulation the RANSAC line algorithm is repeated
multiple times. In this repeated process the found line inlier’s are removed from the point cloud during
each consecutive line search and a reduced point cloud remains. This reduced point cloud is then used
to find arcs in the point cloud, instead of the full point cloud. The result of the RANSAC line algorithm
on the pillar example point cloud with settings: iterNum = 30, thDist = 0.01m, thinl = 10 and
maxLength = 3m is shown in figure 4.11. A link to the Matlab code can be found in appendix A.1.
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Figure 4.11: RANSAC line algorithm result on the bounded point cloud of a pillar with a wall in the background.
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4.3.2. Arc Detection

The method to find arcs uses the same approach as the RANSAC line algorithm. The goal is to find
the centre coordinates and the radius of the arc. To find an arc in a point cloud three points on the arc
are required to determine the centre and radius. The algorithm starts by selecting three random points.
The general quadratic equations of circle is used with these three points [36]:

(F = x)? + (] —x)* —r?* = 0 withj = 1.3 (4.5)
by subtracting the second from the first and the third from the first two linear equations follow
(x1 — xc)z = (x; — xc)z + (- :Vc)z -0 - YC)Z =0 (4.6)

(1 = %) = (3 —x0)? + (1 =Y ) — (V3 = Ye)? =0 4.7)
solving for the centre x,, y, results in.

_ x1%Y; — X12y3 — %201 + %22y5 + %37y — %32y, + y12Ys — y12Ys — iyt + yiys® 4 ¥22ys — yo s
2 (X1Y2 — X2y1 — X1Y3 + X3y1 + X2Y3 — X3)2)

c

(4.8)
2 2 2 2 2 2 2 2 2 2 2 2
—X17X2 + X1°X3 + X1 X7 — X1X3% T X1)27 — X1)3° — XXz + X2X3” — Xo)1 7 + X2)3° + X3)17 — X3

y =
¢ 2 X1y, — X2y1 — X135 + X3y1 + X35 — X3)5) 4.9)

and the radius r is found by plugging in the values of the found arc centre in one of the three quadratic
equations 4.5 and solving for r

3
1
r=30 =%+ O] —x) (4.10)
=1

To reduce the noise factor on the calculation of the radius of the arc, the radius is calculated using the
mean of all three found radii on the random points.

The found arc must comply with the user defined boundary’s implemented in the algorithm. these
boundary’s are the minimal and maximum radius of the arc named minRadius and maxRadius. If
the found arc complies with these boundary’s the distance of the arc to the points in the point cloud is

calculated:

D; =+/p; — €2 —r with pi=[xi] and c=[x°] 4.11)

Yi Ye

Where i is the point number containing all the points in the point cloud except the random selected
ones to construct the arc. The inlier's are determined. If the found arc consists of enough inlier's thinl
the arc is recomputed using all the inlier's. Small differences in point position caused by noise create
a large difference in the arc’s centre coordinates and radius. The boundary’s on the radius of the arc
are critical to detect smaller pillars and not for example the human body or legs. For this reason the
arc parameters are recomputed with all the found inlier's. The recomputed arc parameters are again
checked checked to comply with the set boundaries of the arc radius and, only if they comply, stored
as an arc. Finally the arc with the most inlier’s is returned by the algorithm. The pseudo code is shown
in algorithm 3. A link to the MATLAB code can be found in appendix A.1.

In the algorithm for the LRU during testing and simulation the RANSAC arc algorithm is also re-
peated multiple times. In this repeated process the found arc inlier's are removed from the point cloud
during each consecutive arc search and a reduced point cloud remains. The result of the RANSAC
arc algorithm on the example point cloud with settings: iterNum = 30, thDist = 0.005m, thinl = 4,
maxRadius = 0.2m and minRadius = 0.15m is shown in figure 4.12.

In figure 4.12 it seems that perhaps not all the points should be found that are on the half-circle in
the eye of sight of the LRF. To investigate if the case is that not all points are found by the LRF, a scan
is made from a concrete pillar with a radius of 0.165m from a distance of 2.2 m to the centre of the
pillar. This is illustrated in figure 4.13, where the red lines are drawn from the origin of the LRF scanner
to the far most top and bottom part of the pillar.

The number of scan points possible with the scan resolution of 0.1667°and the amount of successive
scan points on the pillar of 251 scans is compared. From this study is found that for 16% the difference
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Algorithm 3 RANSAC arc

1: procedure ransac arc(pts, iterNum, thDist, thinl, minRadius, maxRadius)
2 forp =1:iterNum do

3 Choose sample of 3 random points

4: Fit a arc through the 3 points

5: Compute the distances d of other point to the arc

6 if minRadius < r < MaxRadius then

7 for d < thDist do

8: create set of inlier's ninliers

9: if ninliers > thint then

10: Recompute the arc parameters

11: if minRadius < r < MaxRadius then
12: Store the line

13: end if

14: end if

15: end for

16: end if

17: end for

18: Find arc with most inlier's

19: return Arc parameters (cy, ¢y, 7) and inlier's

20: end procedure

is a single point less scanned than possible. There is no scan where more points are found by the
scanner than possible on the pillar and no scans where the difference in points found is larger than
one. Taking the total number of points scanned on the pillar and the number of missing points for all
251 scans into account results in the percentage of missed points by the LRF on the pillar of 0.32%.
This is such a small amount that we can conclude that the LRF does find all the points on a pillar. Keep
in mind when the scanner is further away from the pillar this percentage increases. Take the pillar in
the example point cloud at a distance of 10 m the chance of finding one point less than possible on the
pillar is 1.6%.

In figure 4.13 the pillar is standing in front of a wall that is not visible in the figure. Between the
wall and the pillar some scan points that appear to be floating in mid air are visible. This is a known
phenomenon with a LRF measurement system. This phenomenon occurs when the LRF hits two
surfaces at the same time [43]. This situation is not difficult to achieve when scanning a circular pillar.
At the most outer parts indicated by the red lines in figure 4.13 more light will be reflected towards
the wall instead of back to the LRF. The RANSAC arc algorithm makes sure that these points are not
taken into account during the matching part of the algorithm. These floating points are not used during
matching as they are not part of the inlier point set created by the both RANSAC algorithms used during
matching.

4.4. Matching Point Clouds

During matching the actual translations and rotations of the vessel are computed. The first scan made
by the LRF is the reference scan called pts,.r. This reference scan is used to compare and match all
successive scans called ptsg..,,. This matching is done in an iterative manner using the ICP algorithm.
First a match is done where the scan point cloud is matched to the reference scan. The found rotations
and translations are used to transform the measurement scan. After this transformation a new match
an transformation is done until a user defined minimal error limit is reached or the number of maximum
iterations is reached. This process is already illustrated in figure 4.5. In this section the methods used
to match and transform the successive scans to obtain the current vessel position and orientation are
explained.

4.4.1. Iterative Closest Point
Matching is based on the nearest neighbour principle. For al the scan points ptsg.,n, the nearest
neighbour in the reference scan pts,..r, is computed as shown in figure 4.15a. This nearest neighbour
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Figure 4.12: RANSAC arc algorithm result on the bounded point cloud of a pillar with a wall in the background.

search is based on euclidean distance. The mean of the distances, between the points in the two scans
compared, squared is the residual in the algorithm. The found nearest neighbours in the reference scan
are used to find the rigid body transformation. The process that searches for the optimal rotation and
translation is done with Singular Value Decomposition (SVD). This process and the algorithm used
are explained by Bergstrom and Edlund [2], Bergstrom et al. [3]. A summary of the steps provided
by Sorkine-Hornung and Rabinovich [35] is explained in the next part of this section to get a better
understanding of the ICP algorithm.

The goal is to find a rotation R and a translation T that minimizes the euclidean distances between
the points of the reference scan pts,.; = q and the rotated and/or moved, due to vessel motions scan,
later in time ptsgcqn = P-

n
(RT) = argminz wi I(Rp; +0) — qlI%, w; >0 (4.12)

i=1

where w; are the weights and n is the amount of points in the scan. q; is filled with the same amount
of points created by the nearest neighbour algorithm. This allows for the matching of point clouds
consisting of a different amount of points. w; is in this algorithm is set the same for every point. Next
the centroids of both point clouds are calculated.

INZE

n
; Wipi _Z wiq;
p= , 4= (4.13)

n
X w
=1

with these centroids the centred vectors of the points are calculated
X;=pi—Db Y¥;=9;—q¢ i=12.n (4.14)
With this information the d x d covariance matrix S is computed
S =Xwy' (4.15)

where X and Y are the d x n matrices that have x; and y; as their columns, respectively. W =
diag (wy, wy, .., wy,). Computing the SVD S = UZVT is illustrated in figure 4.14. The rotation and optimal
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Figure 4.13: A scan by the LRF of a pillar from a distance of 2.2 m to the centre of the pillar. The red lines indicate the
maximum line of sight of the LRF on part of the pillar.

translation can then be calculated.

[ 1

det(VUT) |

, t=§—Rp (4.16)

The found transformation is applied to the point cloud of ptsg..», as shown in figure 4.15b. The trans-
formation data is stored. The nearest neighbour algorithm is recomputed to calculate the new residual.

Algorithm 4 ICP

procedure ICP(pts, pts,.r, maxIter, minlter,€)
while residual> €) AND (maxIter = iterNum) AND (miniter < iterNum) do
for each point in pts find closest point to pts,.f
Estimate combination of rotation and translation using SVD

Calculate residual between pts and pts,.r

end while
end procedure

1:
2
3
4
5: Transform pts with the found values in the previous step
6
7
8:

The previously explained process is repeated until the user defined maximum number of iterations is
reached or the residual is smaller than the user defined value. The ICP algorithm returns the rotation R,
translation T and transformed pts,.4, point cloud. In figure 4.15 the first nearest neighbour search and
transformation on the example pillar point cloud are shown. The pillar example point cloud ptsg.,, is
rotated by 10°counter clockwise around its centroid and translated 0.5 m in the positive x and y direction.
The pseudo code of the ICP algorithm is shown in algorithm 4. The final result after all iterations is

1Georg-Johann, https://commons.wikimedia.org/wiki/File:Singular-Value-Decomposition.svg
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Figure 4.14: lllustration of the single value decomposition on a unit disk. The upper left shows the unit disc in blue together with
the two canonical unit vectors. The upper right shows the action of M on the unit disc: it distorts the circle to an ellipse. The
SVD decomposes M into three simple transformations: a rotation V*, a scaling £ along the coordinate axes and a second
rotation U. The SVD reveals the lengths o, respectively o, of the semi-major axis respectively semi-minor axis of the ellipse;
they are just the singular values which occur as diagonal elements of the scaling =. The rotation of the ellipse with respect to
the coordinate axes is given by U .

shown in figure 4.15¢c. The settings for the ICP algorithm are: maximum allowed residual e = 1e5,
minimal number of iterations minlter = 1 and the maximum amount of iterations maxIter = 100.

A problem with the ICP algorithm is that it does not find a good fit if landmarks disappear or extra
landmarks are added. This result in a completely different centroid of the scan point cloud. The scan
point cloud is rotated around the centroid to find the best match. Due to this shift in the centroid of
the point cloud other matches than the correct one could be the result. In the main LRU algorithm
this situation is avoided by setting boundary’s on the ICP algorithm output displacements. If one of
the displacements between two consecutive scans is larger than the user defined translation of 0.07 m
then:

+ A check is done on how many landmarks are found in the reference and scan point cloud.

« If there is a difference in the amount of lines or arcs found, the inlier's of only one of the two is
used: If there is a difference in the amount of arcs in the current and the reference scan than only
the inlier’s of the lines are used from both scans for the matching algorithm.

« If the amount of lines and arcs both differ between the current and the reference scan the position
of the last match is used.

« After this process the difference between the consecutive scans is rechecked. If the displacement
is still larger than 0.07 m, then the position of the previous match is used and the LRF measure-
ment data is not used in the update phase of the Kalman filter.

4.5. Sensor Fusion

To combine the information from both sensors in a efficient way a Kalman filter is used. The Kalman
filter is a set of mathematical equations that provides an efficient computational means to estimate the
state of a process, in a way that minimizes the mean of the squared error [44]. The filter supports
estimations of past, present and even future states, even when the precise nature of the modelled
system is unknown.

4.5.1. Kalman Filter

The kalman filter produces a probability of a predicted state, based on a user defined model of the
system. And combines this with the the probability of the measurement state to produce a combined
probability to correct the prediction state. This cycle is illustrated in figure 4.16 and the different steps
of the process are explained below [5, 27, 38, 44].
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Figure 4.15: Iterative closest point algorithm on the example pillar point cloud. The ptss.q, point cloud is rotated by 10°counter
clockwise around the centroid and translated 0.5m in the positive x and y direction. In (a) the nearest neighbours in the first

iteration step are computed. In (b) the result of the first iteration step transformation are shown. In (c) the final result after
matching and transforming is shown, the transformed points lay on top of the reference points.

The Kalman filter tries to estimate the state x;, € R" of a discrete-time linear stochastic difference
equation for each time step k:
X = Axk—l + Buk + Wi (417)

where
* A is the state transition model, which is applied to the previous state x;_,
* B is the control-input model which is applied to the control vector u,

* wis a sequence of zero mean white gaussian system noise of assumed known covariance matrix

Qk

For each time step a measurement z, € R" of the true state x; is made described as:

YA HXk + Vi (418)
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Figure 4.16: What the Kalman filter does is propagating and updating Gaussian’s and updating their covariances. First the next
state is predicted from the provided state transition, then the (noisy) measurement information is incorporated in the correction
phase [17].

» where H is the observation model mapping the state space into observed space

* v is a sequence of zero mean white gaussian measurement noise of assumed known covariance
matrix Ry,

The Kalman filter uses a form of feedback control to estimate the process: the filter estimates the
process state at some time and obtains feedback in the form of measurement. The Kalman filter
equations therefore fall in two stages: the predict stage and the update (measurement) stage.

The state estimates are given as X, ,_; € R" the a priori state estimate at time step k given knowl-
edge of the proces prior to time step k. %, € R" is the posterior state estimate at time step k given
measurement z,,. The a priori and a posteriori errors are defined now defined as:

ekjk—1 = Xk — Rijk—1 @Nd eg i = X — Rg e (4.19)

which result in the a priori and a posteriori estimate error covariance

Pj-1 =E [ek|k—1 e;|k—1] and Py, = E [eklk eLk] (4.20)

where E[€] is the expected value of .
The equation to find the a posteriori state estimate &, for the Kalman filter is given by

Rijie = Ripe—1 + Kie (2 — H&pepe—1) (4.21)

It describes a linear combination of the a priori estimate %, and a weighted K difference (z,c — H>“<R|k_1)
between the actual measurement z, and the measurement prediction HX,_1. This difference is called
the measurement innovation or residual. K is the Kalman gain it is chosen to minimize the a posteriori
error covariance Py ,. This is achieved by substituting equation 4.21 into the definition for e, 4.19 and
substituting the result in equation 4.19. Resulting in [44]

-1
Ki = Pj—1H (HPjp—1H + Ry) (4.22)

If the measurement error covariance R, approaches zero the Kalman gain will increase and the residual
will be weight more heavily. If the a priori estimate error covariance Py, approaches zero the Kalman
gain will decrease and the residual is weight less heavily.

The cycle of the Kalman filter including the equations and input/output is illustrated in figure 4.17.

4.6. LRF and IMU Data Fusion

To fuse the measurement data with the Kalman filter the state transition and measurement or obser-
vation model need to be defined by the user. these will map the state and measurement information to
the correct states and produce the prediction with the state from the previous time step.
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Predict stage

1. Predict (a priori) state estimate
Rijk—1 = ARg_qjk—1 + Bug (4.23)
2. Predict (a priori) error covariance

Prik—1 = APr_1jk—1AT + Qy (4.24)

Initial estimates

Xk—1|k-1 = X0|0
Pr_1jk-1 = Pojo

Measurement data

z, at each time step k

Update stage
1. Calculate the Kalman gain
-1
Kk = Pk|k—1HT (Hpk|k—1H + Rk) (425)
2. Update (a posteriori) state estimate

Riepe = Ripe—1 + Kic (2 — H&gpem1)  (4.26)

3. Update (a posteriori) error covariance

Prk = (1= K H)Pyjie—q (4.27)
Output data
Rk
Prik

Figure 4.17: Operation overview of the Kalman filter. The filter requires the initial estimates and measurement data at each
time step to update. The filter outputs the updated state estimate and error covariance.

4.6.1. State Vector

To accomodate all the measurement data and filter the data to acquire the position measurement the

state vector is

Xk =

_xk_

Xy
Yk
Vi
Zk
Zy

| O |

(4.28)

Where x, y, z and 0 correspond respectively to surge, sway, heave and roll position at time step k of
the vessel at the sensor location and x, y and z correspond the velocity at time step k. The measured
accelerations, and angular velocity of the IMU are used as control input resulting in the control vector

Uy =

Xr
Vi
Zy
O

(4.29)
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The state model chosen is a Wiener process acceleration model [5]. Combining this with standard state
model of the kalman filter 4.17 and 4.23 results in the transition model A and control input model B

_ g -

[ Xk ] [ Xk—1 +At.7.Ck_1 + %Atzxk ] At ] [ Xk—1 ]

. . ) ! . 2 | [ ]
| Xk ] X Xk-1 + Atxk | I 0 1 | I Xr—1 ] I At ]
Vi Vw1 + Atye_1 + FAL2 1 At Yi-1 Azﬁ [ e |
| Ve | = | Yie-1 + Atd | +we= |0 1T | | ea | + | At | +wy
Z Zi-1 + Dty -I-N%Atzik 1 At Zy-1 Azﬁ [ % ]
Zy | Zp—1 t+ AtZk | 0 1 ] I Zi-1 At
| 6 | [ Ok-1 + At6y | [1 0] [6k] [at] [4,]
Xk A Xk—1 B T
(4.30)

where At is the time between the previous and the current step in this case At = k — (k — 1). For the
measurement state the observation mapping model can be found in a simular manner:

-xk_ [1 0] _xk—
_0_ _xk.
Yk [1 0] Yk
ze= 10| = | Ve | vk (4.31)
Zk [1 0] Zk
0 Zy
[ Ok | [1] 6]
H T X

with the measurement noise and the respective covariance matrices for the translations:
Aﬁ 2 7 1 2 I
Wi =Y A% ’ Qk =Y BB » Vk = { ol Qk = ( HH (432)

Where y is the magnitude of the IMU acceleration noise and ¢ is the magnitude of the LRF measure-
ments after the ICP process. The covariance matrices for the roll rotation are computed in the same
manner. The IMU and LRF measure at a different measurement output rate, therefore The Kalman
filter predicts at the frequency of the IMU of 100 Hz. The update stage is only done when there is a new
measurement from the LRF at 25 Hz. For the Kalman filter no pseudo code is given because figure
4.17 tells the complete working principle of the algorithm. A link to the Matlab code of the Kalman filter
can be found in appendix A.1.

The noise levels for the IMU and LRF are set respectively to y = 1 and { = 0.1. The result of a
simple simulated sine motion, with a amplitude of 0.69 m and frequency of 0.2 Hz, is shown in figure
4.18. The red line indicates the position based on only the Wiener model and IMU acceleration data.
Due to the noisy IMU acceleration measurement data that is integrated twice, the position measurement
experiences drift. The LRF data does not drift, however the measurement data alone is to noisy to use
as output for the LRU. The output position of Kalman filter, showed by the green line, takes about 1.5s
to converge to the input motion showed by the yellow line. The result is a relatively smooth curve
following the input motion very well without any unwanted behaviour, for example delay. The figure
also shows low pass filtered acceleration data. This low pass filter has a cut off frequency of 10 Hz.
In this example the low pass filtered data is not used, the low pass filtered data might come in handy
during testing.

4.7. Measurement Loop

The parts of the algorithm explained in previous sections come all together in the main measurement
loop. This loop is active until the user disables it. Other handles could be used to stop the measurement
loop, for example the gangway position could trigger a stop signal if it is retuning to the stowed position
on the deck of the vessel in the main measurement loop.

First the measurement data is read from the IMU and LRF, both sensors are connected via Ethernet.
The IMU is connected to a Raspberry Pi that runs a Python script set to always sent the translational
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Figure 4.18: The Kalman filter in action on simulated sine motion with an amplitude of 0.69 m with a frequency of 0.2 Hz. With
added Gaussian noiseon the acceleration and LRF position data. The simulated LRF data is updated with a frequency of 25 Hz
the Kalman filter and simulated IMU data predict at a frequency of 100 Hz. In (a) the motion is showed for a duration of 30's, in

(b) a zoomed view of the first 10 s is shown.

accelerations, rotational velocity and the orientation by means of Euler angles via an UDP protocol.
The LRF settings can be changed in a separate Matlab file that is used to read and translate the LRF
measured data. The LRF communicates via a TCP protocol. This read-out script is also used to activate
the LRF. The measurement loop runs at the same frequency as the IMU sensor sends data at a rate of
100 Hz. The acceleration data is filtered with a low-pass filter and a prediction is done by the Kalman
filter. Once every four loops there is also new measurement data available from the LRF.

If a new measurement of the LRF is available, then the algorithm switches to the required steps to
translate this measurement data, find landmarks and match the data for the update step in the Kalman
filter. All the user defined settings and boundaries used during simulation and testing are listed in table
4.1. The main measurement loop algorithm is summarized with pseudo code in algorithm 5. A link to
the Matlab code can be found in appendix A.1.
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Table 4.1: All user defined algorithm settings used during simulation and testing.

name value unit explanation

Measurment loop

boundingBox [6.5,13,—15,15] m [Xmin, Xmax> Ymin» Ymax]

inlierSelection allpoints, inliers - select points to be taken as inliers:
allpoints: all the point in the bounding box.
inliers: uses the inlier’s found by the landmark detection

Nyines 3 # the number of maximum lines to search

Nares 3 # the number of maximum arcs to search

low — pass 0/1 boolean use low-pass filter on acceleration data (1)

accNoiseMag 1 ms=2  acceleration noise magnitude for the Kalman filter y

IrfNoiseMag 0.1 m position noise magnitude for the Kalman filter {

RANSAC line

iterNum 30 # maximum number of iterations

thDist 0.02 m inlier distance

thinl 25 # minimum amount of required inlier's

maxLength 2 m maximum length of line

RANSAC arc

iterNum 200 # maximum number of iterations

thDist 0.005 m inlier distance

thinl 6 # minimum amount of required inlier's

minRadius 0.15 m minimum radius of arc

maxRadius 0.20 m maximum radius of arc

ICP

maxliter 100 # maximum number of iterations

minlter 1 # minimum number of iterations

€ le~> m maximum residual mean squared euclidean distance error
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Algorithm 5 New MRU main loop

1:
2
3
4
5:
6:
7
8
9

10:
11:
12:

13:
14:
15:
16:
17:
18:
19:
20:
21:
22:

23:

24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:

procedure LRU(boundingBox, inlierSelection, njipes, Nares) loWPass,accNoiseMag, Lrf NoiseMag)

while Measuring do
t = time stamp
Get imu measurement data at 100 Hz and irf measurement data at 25Hz
if new LRF measurement then
newlrfMeasurement = 1
if BoundingBox isnot empty then
Remove scan points outside bounding box
end if
if inlierSelection = endpoints OR inliers then
fori =1 to ny,.s do
function ransac line(pts, iterNum, thDist, thinl, maxLength)

remove found line inliers from pts and store line data icppgints
end for
for i =11tony.. do
function ransac arc(pts, iterNum, thDist, thinl, minRadius, maxRadius)

remove found arc inliers from pts an store arc data icppin¢s
end for
elseselect
store all point cloud points in icppeints
end if
function ICP(pts, pts,.s, maxIter,minlter, €)

if abs(Translation, — Translation;_;) = 0.007) then
recompute ICP with only lines or arcs
if abs(Translation; — Translation;_;) = 0.007) then
Translation; = Translation;_,
Rotation,; = Rotation;_
newlLrfMeasurement = 0
end if
end if
end if
if lowPass = 1 then
function lowPass(imu,.., bandPass = 0.5HzcutOf f = 10Hz)
store low-pass filtered imu acceleration data for Kalman Filter

end if
Create Kalman model based on At = time; — time;_
function Kalman Filter(x; (t — 1), B.(t — 1), newLrfMeasurement)
Output current position, clean data
end while

40: end procedure




Simulation & Testing

To determine how well the proposed LRU performs a software simulation model is created. This model
is used to test the LRU on different user defined target platform structures and input motions. The
model and the algorithm are verified by means of testing. The test setup created is also discussed in
this chapter. Both the simulation and test results will be discussed in the next chapter.

5.1. Simulation Model

The simulation model is created to test different vessel motions and target structures. The simulation
model will give a indication of the performance of the LRU. The simulation model is also used to test
the boundaries for the different parts of the algorithm. A simulation model enables the opportunity to
do extensive testing of the system on all kinds of different operation situations without actually sailing
to all these locations offshore. The model is created based on the following requirements:

+ The simulation model can handle different input motions: user generated or from log data gath-
ered offshore.

» The user is able to create 3D shapes that are used as the offshore target.
» The user is able to set the different measurement settings of the LRF.

» The simulation model generates the measurement data of the LRF and IMU as close as possible
to the actual measurement data, including noise.

5.1.1. LRF Simulation

The target platform is created by the user. The created example target platform consist of six pillars.
three horizontal and three vertical pillars. The vertical an horizontal scanner are both set to a resolution
of 0.1667°and a search is done where the laser scan lines intersect with the target platform. These
intersection points are returned as scan points of the LRF. The noise levels specified in the specifica-
tions of the LRF are used to add noise to the found points. A step in time is made of 0.25s and the
corresponding position and orientation in time is changed of the LRF. A new scan is made and the
intersection points are returned. This process is repeated until the user defined motion is finished. The
scanning of the vertical and horizontal scanner to the target is illustrated in figure 5.1. A result of the
scan point cloud on one of the pillars is illustrated in figure 5.2.

Generating LRF data of a vessel motion is a computationally expensive process. A motion of 100s
takes a couple of hours to generate the point cloud data. This is due to the expensive find function used
in Matlab. If the simulation model is used more extensive it would be wise to use a different approach
of finding the intersection points. One could use the information of the model and the distance from
the LRF to the target to generate measurement points. This disadvantage of this approach is that the
model of the target is no longer easily adjustable. For this research the time the simulation takes is not
a problem. Only if more extensive testing by means of simulation is necessary it is advised to make
the LRF simulation model more efficient.
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LRF scan simulation
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Figure 5.1: A scan of the simulation model. The target consist of three horizontal and three vertical cylinders at a distance of
12 m from the LRF scanners. The input motion that the LRF is following during the simulation is plotted around the origin. The
intersection points of the scan are highlighted in the figure with *. The scan lines continue outside the box of the plot, this is not
shown in the figure.
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Figure 5.2: The point cloud of single pillar created by the LRF simulation.

5.1.2. IMU Simulation

The IMU sensor output simulation is straight forward. The motion data is differentiated to acquire the
angular velocity and the translational accelerations. Noise is added to these motions. The noise levels
are determined with a simple test measurement where the BNOO55 sensor is in a still position for 60 s.
The noise levels are determined based on this measurement and added to the generated motion data.

The most noisy data from the BNOO55 is the acceleration measurement as illustrated in figure 5.3.
The sensor is not positioned exactly level in the still position, the mean of the signals is subtracted and
the standard deviation is computed.

The resolution of the acceleration measurement is bounded by 14bit on a range of +8g. This
is clearly visible in the measurement data. The noise factors used can be found in table 5.1. The
simulated acceleration in sway direction is compared to the measured acceleration in figure 5.4.

The fused data of the Euler angles by the BNO055 shows no noise while in a still position for 60 s.
This is seen in figure 5.5. All the used noise levels during the simulation model for the IMU are shown
in table 5.1.

When the IMU measurement data is used for position measuring, drift is a major problem. Due to
the noise levels on the acceleration data the position based on dead reckoning drifts in time. While the
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Figure 5.3: The accelerations measured by the BNO055 IMU while laying still for 60s. Only the first 10 s are shown.
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Figure 5.4: The simulated sway accelerations compared to the measured sway accelerations by the BNO055 IMU while laying
still for 10s.

sensor is in a still position. The position after 60 s is almost 1 m off in the sway direction as shown in
figure 5.6. The dead reckoning is done using only the accelerometer data of the measured directions,
the acceleration data is normalized around zero for this example.

5.1.3. Combining the Simulations

The simulation data is combined and a time vector is added. The IMU data is sampled at 100 Hz and
once every four IMU simulation data points the simulated LRF data is added. The simulation model is
used with two different motions. The motion and the results are shown in chapter 6.

5.2. Test Set-up

To verify the model results and determine the performance of the LRU two test setup’s are proposed.

BNOO055 measured euler angles

30
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ﬁ 7pltch.
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Figure 5.5: The measured Euler angles by the BNO055 IMU while laying still for 60s.
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Table 5.1: IMU noise levels during simulation

noise value unit

accsyrge 0.0065 ms™2
accsyay 0.0131 ms™2
acChegpe 0.0476 ms™2

vel,oy  0.0732 ms™!

eulroll 0 °
o
eulp itch 0
o
eulyqw 0

dead reckoning
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Figure 5.6: Dead reckoning using only the noise levels of the three directions acceleration measurement data of the BNO055
while laying still.

5.2.1. Rotation Swing

The Euler angles measured by the BNOQ55 are generated by on chip sensor fusion. To get an impres-
sion of the measurement data a simple test setup is created. The BNOO55 is aligned and glued to a
steady baseplate. A box containing the Raspberry Pi to read the sensor data is placed over the sensor
on the baseplate. The baseplate contains four holes in the corners. These holes are used to suspended
the sensor in the air, via cord connected to the sealing. The sensor is powered via the Raspberry Pi,
which is powered by a portable power-bank. This creates a swing, swinging with a frequency for small

angles of;
L
f=2n b g=981ms™? (5.1)

With g the gravitational acceleration and L the length of the cord. A Python script reads the sensor data
at 100 Hz and logs the measurement data in a text file. A protractor is drawn on a whiteboard behind
the swing and during testing a video of the test setup is recorded. The swing is actuated by releasing
it at an certain angle. This is shown in figure 5.7.

(a) In rest (b) Swinging

Figure 5.7: A swing for rotational testing of the IMU Euler angle results. In (a) the swing is in rest, in (b) the IMU is swinging.

This test setup does not allow for good Euler angle accuracy test, however it does return some
interesting results that will be discussed in section 6.2. The IMU uses the gravitational field of the earth
as a reference to measure its orientation in roll and pitch rotations. The heading or yaw angle has no
reference since the magnetometer is switched of during testing. For this research the pitch and yaw
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angles are not investigated, but the yaw angle could easily be updated with LRF yaw angle that has the
target platform as reference. A link to the movies made during the test measurements can be found in
appendix A.3.1.

5.2.2. Translation Sled

The focus for testing is to test the performance of the LRU. The translations require both sensors for
an accurate and smooth result. At Ampelmann a start was made, by A.G. Verweij, to create such a
translation test bench, showed in figure 5.8. The test setup is able to create a translational motion in
a single DoF. The setup is upgraded and prepared in corporation with A.G. Verweij to work with the

(a) In rest (b) Swinging

Figure 5.8: A swing for rotational testing of the IMU Euler angle results. In (a) the swing is in rest, in (b) the IMU is swinging.

following test setup requirements:
» The actual position of the sled is known and sent in real time to the user.
» The sled can actuate a user defined translational motion up till a peak-to-peak amplitude of 1.4 m.

* The sled can achieve at least motion with a frequency of 0.3 Hz and a peak-to-peak amplitude of
1.4m.

* The user defined desired motion can be sent to the translational test bench in real time.

the test setup is controlled via an easy to use interface.
+ An emergency stop button that will stop the sled whatever state it is in.

This list of requirements resulted in a test setup that consists of a straight rail of 2.3 m. On top of this rail
is a platform connected via a linear bearing to the rail, called the sled. The sled can move in a straight
line across the rail. Connected to the sled is a toothed belt which extends around a bearing at one
end and a toothed wheel connected via a gear to a frequency drive actuator at the other end. Close to
the toothed wheel is a inductive sensor, used to determine the home position of the sled on start-up.
A rotational encoder is used to determine the position of the sled and is connected to the shaft of the
toothed wheel. An overview of the test setup is illustrated in figure 5.9.

The actuator, encoder and inductive sensor are connected to a PLC. The PLC is used to control
the test bench and act as the communication between the test setup and the user. A state machine is
coded on the PLC that controls the states of the measurement setup. The state machine also defines
how the test setup change between states. The different states are:

* Not Homed: The sled is still and there is no actuation. The PLC does not know where or in what
position the sled currently is on the rail. When the test setup is powered on, it will always be in the
not Homed state. When the emergency button is used the test setup returns to the Not Homed
state as well.
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Figure 5.9: lllustration of the translational motion test setup. All the required parts of the setup are pointed out in the figure.

* Home: In the Home state the sled is positioned on top of the homing sensor. The current encoder
position is taken and translated to a position of the sled. This position is setto —0.7 m in the Home
state. The home position is reached by initiating the homing sequence via the sled control panel.
When the homing sequence is activated the actuator is given a constant velocity input in the
direction of the homing sensor and stops when reaching the homing sensor.

* Neutral: In the Neutral state the sled is moved from the Home state to the centre of the rail,
corresponding to a position at 0 m. Because the position of the sled is know use is made of a
S-curve to get to the neutral position. The S-curve creates a smooth motion where the maximum
velocity is reached halfway the start and end position. This allows for a vertical positioning of the
test setup, also when heavy sensors are used because the motion is controlled via the feedback
loop. The neutral state is reached via a user input on the sled control panel.

» Engaged: During the engaged state the sled is actuated to follow the reference motion input.
The Neutral to Engaged state is initiated via the control panel. To prevent sudden rapid motions
due to a large position difference between the motion reference and the current sled position
an S-curve is used during this state transition. The S-curve gradually introduces the reference
motion over a time of 10s.

The measurement setup is controlled by the user via the sled control showed in figure 5.10a. The control
panel sends commands to the PLC of the measurement setup when the user pushes the buttons. It is
not possible to go from a state to any other state without following the proper route via the necessary
states. The required sequence is illustrated in figure 5.10b. The normal sequence is: Home — Neutral
— Engaged, do the measurement and go back to Home/Safe via the same route you came. There
is one exception the physical emergency stop or E-STOP button and the reset button on the control
panel will stop the sled no matter which state its in. The E-STOP or reset action requires the sled to be
homed again before use, this is to prevents any damage because the E-STOP is probably used for a
reason.

The position of the sled is controlled with a proportional feedback controller on the PLC. The motion
reference data contains the required position and velocity of the sled. This reference motion r(t) is
sent over Ethernet via the User Datagram Protocol (UDP) to the PLC. The current location of the sled,
measured by the encoder on the actuator axis, is subtracted from the reference. The difference between
the reference and the current position is the error e(t). The error is used by the proportional feedback
controller. The controller outputs a current u(t) which is used by the frequency drive to operate the
actuator, which is connected to a gearbox with a ratio of 9 : 1 to the sled. The current position of the
sled is the read from the rotational encoder y(t). The control loop is illustrated in figure 5.11. The
velocity reference signal r(t) is only used as feed-forward control.

The LRF and IMU are mounted on the platform of the sled to complete the measurement test setup.
A simple target platform is constructed consisting of two pillars and two boxes in the horizontal scanning
plane. In the vertical scanning plane the target platform consists of two platforms and three boxes. The
complete test setup and the target platform are shown in figure 5.12.

Different motions are simulated during testing: the test setup is placed parallel to the target platform
to simulate a sway motion of the vessel. The test setup is rotated 45°to simulate a combined motion in
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(a) Sled control panel (b) Sled state machine

Figure 5.10: The user input sled control panel of the test setup and the corresponding state machine. (a) The sled control panel
is used to sent commands to the measurement setup to switch between the states. (b) The state machines shows the different
state of the test setup and the possible ways to get from one state to another.
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Figure 5.11: The control loop of the translational test setup. The input motion or reference is supplied by a position r(t) and
velocity 7(t). The velocity is used in as feed-forward control for the plant. The reference position r(t) is used in a proportional
gain feed-back loop. The plant consist of a current controlled frequency drive connected to a electric AC motor. The motor is
connected to a gearbox slowing the rotations with a factor 9. Connected to the gearbox is the toothed wheel driving the belt
connected to the sled. The encoder used in the feed-back loop is connected to the axle of the toothed wheel.

the surge and sway direction of the vessel. Due to a limited time no safety limits and smooth stopping
of the sled could be integrated in the test setup. To prevent damage and avoid unsafe situations the
setup is only used in its level position. Meaning no heave motion could be simulated during testing. A
heave motion would imply the LRF to make a scan in the vertical plane while moving. This creates no
problem to determine the performance of the system since the measuring process is identical to the
horizontal scan plane. The tested motions are mentioned in the results chapter 6. The parts used to
create the test setup are listed in table 5.2. Links to movies of the test setup while measuring can be
found in appendix A.3.2.
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(b) Test setup with target

Figure 5.12: The complete measurement test setup (a) with the sensors on top of the sled platform. (b) the test setup with the
target platform at a distance of ~8.5m.

Table 5.2: Parts used to create translational test setup.

Manufacturer Series Function serial number
Invertek Drives Optidrive variable frequency AC Drive E2 IP20
ABB Motors Low voltage AC motors Actuator M2VA71A-4
ifm electronic IM Inductive sensor IM5097
Siemens Simatic PLC S7-300 SM317
Simatic Analogue output SM332
Simatic Analogue input SM331
Simatic Digital output SM322
Simatic Digital input SM321
Simatic Counter module SM350
Simatic Simatic NET SM343
Hiwin Linear guide-ways Linear guide-ways HG20

item MB aluminium profile  aluminium profile Support structure




Results

The measurement results of the two test setups are shown and discussed in this chapter. The test
results are compared to the results of the simulation model and the final performance of the LRU is
shown and discussed.

6.1. Simulation Model

The results of the simulation model are shown and discussed in this section. The simulation model
results are computed using two different input motions.

6.1.1. Simulated Motions

Table 6.1: Components of the simulated sinusoidal input motion for the LRU simulation model.

Direction Peak amplitude [m/°] Frequency [HZ]

Surge 0.5 0.1
Sway 1 0.1
Heave 2 0.2
Roll 10 0.1

Two vessel motions are simulated, the model is designed to apply three translations: surge, sway,
heave and a rotation: roll, simultaneously. A simple motion consisting of sinusoidal motions with a
different amplitude and frequency per direction. the second motion, the vessel motion created with
the AWESOME software for the Damen FCS of section 2.2, is used as input motions in the simulation
model. The simple sinusoidal motion is created with the amplitudes and frequency’s of table 6.1. The
motion describes a rotated figure eight already shown in figure 5.1. Due to the similarity in results of
both motions the result of the more interesting vessel motion is showed and discussed in detail. The
simulation model results will be concluded with results that combine both measured motions.

6.1.2. Vessel Motion

To see enough detail of the result the motion is only partially shown, from t = 35s till t = 50s. The
result of the ICP output are shown to see how well the LRF algorithm performs in figure 6.1. The output
signal of the LRU with Kalman filtering is shown in figure 6.2. The ICP output shows some noise and
follows the input motion accurate. The filtered output motion of the LRU is a smooth representation of
the input motion.

To compare the results in the remainder of this chapter the difference between the input and output
motion is compared. This difference is the error of the LRU. The error is calculated using the absolute
peak-to-peak distance between the input and output position at the same moment in time. A clear
error peak dominates the first few seconds of the the output motion of the LRU, this is caused by the
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Figure 6.1: The result after matching of the simulation model of the Damen FCS vessel motion from t = 35s till t = 50s.
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Figure 6.2: The result of the LRU simulation model of the Damen FCS vessel motion from t = 35s till t = 50s.

Kalman filter. During the first couple of seconds the Kalman gain K; and the error covariance P, need
to converge in the direction of the measurement update. In the results this convergence area is left out.

6.1.3. Simulation Errors

The results of all simulated and measured motions are summarized in a box-plot. In a box-plot the first
quartile splits of the lowest 25% from the highest 75%. The mean cuts the dataset in half and the third
quartile splits the highest 25% from the lowest 75%. The explanation of the box-plot can be seen in
figure 6.3.

Third First
quartile quartile fo)
r oA I
- PR S S S S I S S S S S SR |
Outliers ~ Maximum Median Minimum

Figure 6.3: meaning of the box-plot parts [43].

All the translational errors of both simulated motions are summarized in figure 6.4. The error for
both motions stays below the desired 5cm.
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Figure 6.4: The absolute peak-to-peak translation errors of the simulation model of the Damen FCS vessel motions and a sine
motion.

6.2. Rotation Swing

The length of the cord is chosen L = 2.4 m calculating the frequency of the swing results in f = 0.321 Hz.
The swing is released at a positive angle of = 15°. The Euler angles measured and computed by the
BNOOQ55 are show in figure 6.5.

Swing agnle

o

0 50 100 150 200
times [s]

Figure 6.5: The roll angle measured with the BNOO055 while swinging on the test setup. The amplitude is as expected
decreasing over time. The frequency of the motion is f =0.321 Hz and complies with the expected frequency according to the
design of the swing.

The result is in line with the expected trend of a decreasing sinusoidal motion. A PSD of the motion
results in a frequency of f = 0.322Hz, taken the swing test setup in mind, is as expected. A closer look
of the measured angular motion shows a different motion profile than the expected sinusoidal motion
shape, visible in figure 6.6. The test setup is suspected to be the cause of this difference in motion
profile, perhaps the swing is not aligned correctly resulting in a difference in length of the two cords of
the swing. Multiple test where conducted trying different orientations of the swing platform and shifting
the centre of gravity and the initial angle of the swing platform. This did not change the motion profile.
Results of these tests can be found in appendix A.3.1.

To further investigate the difference in the motion profile, the angular velocity measured by the
gyroscope on the BNO055 IMU are plotted in figure 6.6. The angular velocity during the motion does
show the correct sinusoidal motion profile. The on chip sensor fusion also outputs the accelerations
without the earth gravitational field, called the linear acceleration. The linear acceleration shows the
same motion profile as the Euler angles. A conclusion and recommendation on this issue are drawn
when then the translational test results are discussed.

The test setup used for rotational testing can only give a estimate of the rotational measurement
performance. The strange motion profile found during the rotational tests is not used in the simulation



62

6. Results
Euler angle
T T T T T T T T
sk N\ /N ™\ A /N ™\
/ / / \ /
o \ \ \ / \ / \ / \ /
= \ / \ / \ / \ / \ / \ / \ /
ot / \ / \ / \ / \ ] \ / \ 7
8’ \ / \ / \ / \ / \ \ / \ /
\ \ \ / / \ \ / \ /
5 \ / \ / \ / \ / \ / \ / \
\ / \ \ \ / \ \ J
or \\/ \/ &/ \,/ \/ \/ 7
| | | | | | | | |
0 2 4 6 8 10 12 14 16 18 20
times [s]
Angular velocity
T T T T T T
™ a - - N
— 5 /// \'x‘ / V"\ / \ 7\ 71
.;n / \ / \‘ ) \ ’ / /
— \ \ \ \ / \ /
> 0t / \ \ \ / J
o \ / \ / \ y
° / / \ / / \ / \ /
> 5y / \_ / / N, A
N’ M N~ N e
| | | | | | | | |
0 2 4 6 8 10 12 14 16 18 20

times [s]

Figure 6.6: A closer look, from t = 200s till t = 220s of the roll angle from figure 6.5, reveals a unexpected motion profile, while
the angular velocity shows the expected motion profile.

model. To verify the rotational outcome of the model and to test if the BNOO55 can reach the require-
ment accuracy of 0.1°, in combination with the LRF measurement data and the Kalman filter. A test

setup is required that can hold both sensors while rotating, combined with accurate rotational position
information of the test setup.

6.3. Translation Sled

The translation test setup explained in section 5.2.2 is used to acquire the measurement data for the
following results. During testing the linear bearing introduces extra vibrations that are measured by the
IMU, especially the acceleration measurements are influenced. The acceleration data of the IMU is
therefore filtered using a low-pass filter with a cut-off frequency of 10 Hz.

6.3.1. Motions

The test setup allows for translational motion in one DoF only. By changing the orientation of the test
setup with respect to the target a single vessel motion direction can be applied to the LRU or a combined
motion. For example: the sway motion of the vessel is achieved by aligning the rail of the test setup
parallel to the target platform. The surge motion is achieved by a perpendicular alignment of the test
setup rail to the target platform. A combination of these two vessel motion directions is achieved by
aligning the rail of the test setup with a defined angle to the target platform. During testing this angle is
used to create a combined motion in surge and sway direction with a angle of 45°, this results in both
motions with a reduced amplitude A,s of both motions of:

1
Aus = E‘/EAsled (6.1)

where Ag;.4 is the amplitude of the motion of the test setup sled. The motions used during testing are
named and numbered, their amplitude, frequency per component are listed in table 6.2. The amplitude
values are based on the motion of the sled of the test setup, if the direction is surge and sway one can
calculate the amplitude using the above formula. The different components are summed to create the
final motion.

These motions are chosen to compare influence of larger versus smaller motions, the influence of
frequency of the motion and motion 1 represents a more real-life vessel motion.

6.3.2. Measurement Error

The absolute peak-to-peak error that compares the result of the measurement to the encoder position
of the test setup is shown in figure 6.7.
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Table 6.2: Names of the motions and their components used during the translational tests. the complete motion used as the
reference motion of the sled is the summation of all the components listed per motion.

Name direction(s) Comp.1 A[m/?] f[Hz] Comp.2 A[m/?] f[Hz] Comp.3 A[m/?] f[HZ]
ss 1 surge, sway sine 0.2 0.15 sine 0.1 0.25 cosine 0.3 0.09
s 1 sway sine 0.2 0.15 sine 0.1 0.25 cosine 0.3 0.09
ss 2 surge, sway sine 0.5 0.1
s2 sway sine 0.5 0.1
ss 3 surge, sway sine 0.5 0.3
s3 sway sine 0.5 0.3
ss 4 surge, sway sine 0.69 0.2
s4 sway sine 0.69 0.2
P2P error
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Figure 6.7: The absolute peak-to-peak (P2P) error of the test measurement motions compared in a box-plot. The different
motions from table 6.2 illustrate the performance of the LRU.

Motion 2 has the lowest frequency and the smallest amplitude. This results in the lowest error. The
larger the amplitude of the motion the greater the error becomes, the same goes for the frequency of
the motion. Almost all measurements results in an error higher than the 5cm claimed by the current
MRU used by Ampelmann. the found errors differ from the results found during simulation. To further
investigate the origin of the error, motion 1 and 4, both with the largest error are selected for further
investigation. Part of the results after the measurement data passed the ICP algorithm are shown in
figure 6.8 and the final output of the LRU is shown in figure 6.9.
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Figure 6.8: The output after the ICP matching algorithm of motion 4 in sway direction. A delay due to the communication buffer
or flexibility of the toothed belt of the test setup is clearly visible.
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Figure 6.9: The output of the LRU of motion 4 in sway direction. A delay due to communication buffer or flexibility of the
toothed belt of the test setup is clearly visible.

A delay is visible between the motion measured by the LRU and the encoder position. The largest
peak-to-peak error is a result of the regions where the velocity of the sled is high. This delay can be a
result of the communication between the different sensors, because all sensor data is sent via UDP or
TCP over Ethernet to a single laptop. The IMU, LRF and test setup encoder data come from different
machines and are received by the laptop. If a packet is delayed the laptop waits for the packet and
the other measurement packets get buffered until the buffer is full or the packages in the buffer are
read. Another cause could be the design of the test setup. The sled of the test setup is driven by a
toothed belt, although the belt is pre-tensioned rapid acceleration changes could stretch the belt. The
encoder is attached directly to the toothed drive wheel while the sled is connected to a less stiff belt.
The position of the sled is determined with the encoder data. To test if the flexibility of the belt causes
an additional error on the measurement results the LRF is used to compare the sled position measured
by the LRF with the encoder position. To achieve the position measurement of the sled with the LRF
a plate is placed at the end of the rail of the test setup, perpendicular to the rail. The scan angle of the
LRF is increased, now it measures the target platform and the plate at the end of the rail, at the same
time. The mean of all the measurement points on the plate are used to determine the position of the
sled. The added plate and the increased scan angle used during these tests are shown in figure 6.10.
The results are discussed in the final results at the end of this section.

o Target )
Il

Rail

D}
Plate Sled

Figure 6.10: test setup approach to use the LRF as a position sensor while still scanning the target. A plate is added
perpendicular to the rail and the scan angle of the LRF is increased to scan the plate and the target at the same time.

6.3.3. Obstruction

The RANSAC landmark detection algorithm is used to avoid any of the undesired scan points of the
measurement point cloud. This should add to the robustness of the LRU because the landmark detec-
tion can also filter unwanted moving people on the target platform. motion 1 and 4 are also measured
while a person is walking around the platform. The person is detected by the LRF as shown in figure
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Figure 6.12: The absolute peak-to-peak error of motion 1 and 4 for the measurements with and without a person (p) obstructing the target
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6.11b the same motion is scanned without a person obstruction the platform shown in figure 6.11a. In
figure 6.11b the person walking around the platform is clearly visible. the RANSAC landmark detection
only marks the person 5 times of the 2500 scans made during the measurement. These five points
where the person was detected as an arc by the RANSAC algorithm where always close to one of the
pillars of the test platform.
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Figure 6.11: A plot of the point cloud of all measured scan points of motion 4 in sway direction with and without obstruction. In
(a) there is no person walking around the target platform during measuring while in (b) a person is walking around while
measuring.

The results of both measurements, with and without a person of the LRU absolute peak-to-peak
error, are shown in figure 6.12. Due to the RANSAC landmark detection combined with the Kalman
filter prediction taking over during the moments of detection of the person there is almost no difference
in error for both motions with or without a person obstructing the target platform.
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platform. The results with a ’p’ in the name are the results where a person is walking around the platform while measuring.
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6.3.4. Final Results

The delay found between the encoder of the test setup and the measured motion by the LRU is inves-
tigated with the results of the proposed sled position method using the LRF. Motion 1 and 4 in sway
direction are used for this comparison. In figure 4.15c the encoder data of the test setup is shown
together with the data of the LRF as encoder and the result of matching with the ICP algorithm.
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Figure 6.13: The encoder data of the test setup for motion 4 compared to the output of the ICP matching algorithm and the LRF
used to determine the sled position. The sled position determined by the LRF is closer to the output of the ICP matching
algorithm

The position of the sled using the LRF measurement shows a better result to the motion described
by the ICP algorithm after matching. The motion upwards (from a negative to positive sled position)
shows a small delay decrease between the encoder position of the sled and the LRF measured position
of the sled. The motion downwards shows a larger delay decrease between the encoder and the LRF.
This supports the assumption that some of the delay is caused by stretching of the toothed belt. the
length of the the toothed belt from sled to the actuator differs per direction, resulting in a longer or shorter
path able to stretch. Using the LRF for the position measurement also takes away the measurement
delay caused by the data logging construction using multiple ports over Ethernet in combination with
Matlab. The output motion of the LRU compared to the sled position measured with the LRF is shown
in figure 6.14. the absolute peak-to-peak error for both motions using the two sled position measuring
techniques is shown in figure 6.15.

The error has shrunk to a maximum of 10 cm as final result of the LRU. the third quartile even meets
the favoured accuracy of 5cm. Being able to determine the translations of the vessel located =~ 8.5m
away of the target platform, within a accuracy 10 cm while moving ~1.4 m without drift over time is a
great result knowing that the error of the Octans for this motion would be %5 of 1.4 mis 7 cm.

6.3.5. Algorithm Compute Time

The LRU should be able to output the measured motions in real time. The computational time required
by the algorithm was timed for all the tested motions. This resulted in a mean computation time per
algorithm cycle with a new LRF measurement of 12ms. This is fast enough for the LRU and would be
even faster if the algorithm is written in C instead of Matlab.
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Conclusions & Recommendations

This thesis research presents the design and testing of a new vessel motion sensing system during
people transfer operation, called the LRU, for the Ampelmann L-Type V4 system. The LRU combines
measurement data of a reference distance measurement from the vessel to the platform by means
of a scanning Laser Range Finder (LRF) and a micro-electromechanical Inertial Measurement Unit
(IMU). The IMU enables fast motion measurement output of the LRU. The measurement output of the
IMU is noisy and position measurement based on the IMU data alone would be inaccurate and suffer
from drift over time. The LRF measurement data is more accurate and does not drift over time but
the measurement rate combined with the position extraction algorithm is to slow to be used as a stand
alone replacement of the current MRU. The measurement data of the two sensors is combined with a
Kalman filter, this results in accurate and fast vessel motion sensing.

The conclusion regarding the goal of this research are summarized in this section. At last recom-
mendations for future work are made.

7.1. Conclusions

» The proposed LRU, consisting of two scanning LRF’s and a micro-electromechanical IMU is able
to accurately measure the vessel position during people transfer operation. The absolute peak-
to-peak error of the translational vessel motions stays below 10 cm while the vessel is moving at
a distance from the target platform within the working range during the transfer operation.

» The RANSAC algorithm used to detect landmarks from the point cloud measurement data of the
LRF successfully detects arcs and lines. The landmark detection avoids measurement data of
unwanted moving people on the target platform removing these points form the point cloud used
for matching. The landmark detection also filters out unwanted scan points of small details of the
target platform that are not scanned in every consecutive scan.

« The combination of the LRF and IMU sensors fusion results in a high measurement output rate
while remaining accurate. The time a measurement update of the LRF algorithm takes is 12 ms,
resulting in a algorithm for position and motion extraction for online use.

+ Due to the absolute reference measurement from the vessel to the target platform the LRU does
not experience drift over time like the current vessel motion sensing used by Ampelmann does.

+ The LRU measures its location with regard to the target platform. This target position information
can be used in future innovations of the Ampelmann system. Some examples are: The tip force
exerted by the actuator of the gangway can be controlled. Automatic landing of the gangway onto
the target platform with minimal operator input can be achieved. The LRU could also assist the
captain of the vessel to put and keep the vessel in the right place during people transfer operation.

+ The LRU can be used to measure all 6 DoF of the vessel motions. The yaw and pitch rotations are
measured with the LRF scan measurements in both planes. The ICP matching algorithm already
extracts theses rotations and no further adjustments to the ICP algorithm is required. The IMU

69



70 7. Conclusions & Recommendations

already measures the pitch and yaw angle. Only additions to the Kalman filter are required to
implement the rotations in the vectors and model matrices.

Regarding the goal of this thesis project stated in chapter 1, the following conclusion can be drawn:
A measurement system is developed which is able to measure vessel motions during transfer operation
of the Ampelmann system. The test results show a accurate and robust vessel motion measurement
system that measures the target position with respect to the vessel. The new system results in less
then %20 of the cost compared to the current vessel motion sensing system and has the added benefit
to enable future innovations. The proposed MRU does not experience drift by measuring with the target
platform as a reference.

7.2. Recommendations

The proposed absolute reference vessel motion measurement system shows promising results. Before
the system can be used in a real people transfer operation the following recommendations should be
considered and further improvements could be made:

» The on-chip sensor fusion of the BNO055 IMU caused unwanted delays on the output measure-
ment data. Using the raw data of the accelerometer and gyroscope during testing did not show
any problems concerning measurement output delay. To measure the angular orientation and
the linear accelerations, an off-chip sensor fusion algorithm should be implemented in the LRU
algorithm.

* The quality of a match with the ICP algorithm varies largely when landmarks disappear. The
output result of the ICP algorithm is based on the centroid of the point cloud. Due to the changed
centroid position of the measurement scan when a landmark disappears, compared to the refer-
ence point cloud centroid, a large translational displacement will be the output result of the ICP
algorithm. Currently these measurements are discarded and the Kalman filter predicts the motion
of the vessel until a good match is made. If only the landmarks found in the measurement scan
where used in the reference during ICP matching the output of the ICP algorithm will be correct.
A solution that would group the corresponding landmarks of all the consecutive scans can be
thought of and implemented.

» Extra tests are required to determine the roll measurement performance of the LRU. Offshore
testing is required to test the performance of the measurement system during various sea and
weather conditions. Before the system is used one should know what the influence of these
offshore conditions are on the system, for example sea water spray due to high velocity winds.

» To further reduce the cost of the LRU a optical system could be designed where half of the total
scan angle of the LRF is used for the horizontal scan plane and the other half is deflected in a
vertical scan plane. Such a system would require a single LRF only.
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Appendix

To reduce paper and add digital media sources some of the content of the appendix is provided in the
cloud. A link to the specific folder is provided per section of the appendix. To gain access more easily
to the complete cloud stored appen appendix use the following link an password:

http://stenpas.nl/thesisappendix
Password: GiantLaser2017

Please keep in mind that this research is marked confidential till 09-05-2022, don’t share this link
and password with anyone that is not granted access to this document.

A.1. Algorithm code MATLAB

To save the world by printing less paper the m-files of the algorithm m-files can be found online at:
https://server.stenpas.nl/owncloud/index.php/s/JHtWMM5nI1H38vi
Password: GiantLaser2017

Please keep in mind that this research is marked confidential till 09-05-2022, don’t share this link
and password with anyone that is not granted access to this document.
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A.2. Simulation model
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Figure A.1: The peak-to-peak error of the damen FCS vessel motion in the simulation model.
; New MRU output
T T T T ]
/\ —KF surge
/\ [} |——KFsway
/\ [ - KF heave
0.5 \‘ / “ | |——input surge
\ ‘w‘ / ~— input sway
| ~—input heave
|
{ I |
|
n AL A A AL
,' A \_\ S \ \ “ |
\\. ) \' ‘ \»v \ | \ | | |
v g \ )
05 VI WA
|
A | | | | | | | |
0 10 20 30 40 50 60 70 80 90 100
time [s]

Figure A.2: The full 100 s simulation model output and input of the Damen FCS input motion.
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A.3. Test Set-up
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Figure A.3: The swing test is done with changing cercomstances. The weight of the IMU platform is shifted and the start angle
is changed.
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and password with anyone that is not granted access to this document.

A.3.2. Translational Sled

Testing Movies & Pictures
https://server.stenpas.nl/owncloud/index.php/s/6AEO0Ogq5JUgA1S200

Password: GiantLaser2017

Please keep in mind that this research is marked confidential till 09-05-2022, don’t share this link
and password with anyone that is not granted access to this document.

Results
To get a feeling of the ouptu results of the new MRU additional full motion result plots are given here.
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Figure A.8: Motion 4 sway ICP output with obstruction by person walking around the platform . Clear mismatches due to blocking
of the landmarks are visible.
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Figure A.9: Motion 4 sway new MRU output. The mismatched data of the ICP algorithm is discarded and the Kalman filter
predicts the motion at these points.
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motion 4 sway without person
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Figure A.10: Motion 4 sway without person ICP output. The disparaging of landmarks is not only caused when a person blocks
the field of view of the LRF.
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Figure A.11: Motion 1 sway without person ICP output. The disparaging of landmarks is not only caused when a person blocks
the field of view of the LRF. The Kalman filter solves most of the mismatches.
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