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Transport through dirty interfaces

Kees M. Schep* and Gerrit E. W. Bauer
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Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, The Netherlands
~Received 2 June 1997!

The transport properties of a single dirty interface are calculated starting from the Schro¨dinger equation. The
disordered scattering potential is modeled by a high density of short-range scatterers, randomly distributed in
a plane perpendicular to the direction of transport. The distribution function of transmission matrix eigenvalues
is shown to be universal in the sense that it scales with a single parameter, the conductance, and does not
depend on the dimension or the precise values of the microscopic parameters. It differs, however, from the
well-known universal distribution for diffusive bulk conductors. These general results are supported by ana-
lytical and numerical calculations of the conductance and the angular dependence of the transmission and
reflection probabilities as a function of the microscopic parameters. The conductance fluctuations are nonuni-
versal and a localization transition does not occur.@S0163-1829~97!00348-2#
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I. INTRODUCTION

Most studies of phase-coherent electrical transport in
ordered metals are restricted to bulk conductors in the w
scattering regime. Several interesting phenomena are
served in these systems.1 For example, when the conduc
tance is smaller than the conductance quantume2/h, the
electron wave functions are localized, causing the cond
tance to drop exponentially with the sample length. Anot
fascinating phenomenon is the universality of some trans
properties that do not depend on the precise values of
microscopic parameters. The best known example of thi
provided by the universal conductance fluctuations:2 The
sample-to-sample variations of the conductance are of
order ofe2/h, independent of the sample shape and size,
degree of disorder, and the dimensionality.

In this paper we consider transport through dirty int
faces. The term ‘‘dirty’’ implies that the scattering is due
a random potential and that the conductanceg ~in unitse2/h)
is sufficiently smaller than the number of conducting cha
nels N (g!N). For an interface the scattering region wi
lengthL ~the ‘‘thickness’’ of the interface! is supposed to be
sufficiently shorter than the Fermi wavelengthlF . In con-
trast, the calculations for diffusive bulk conductors are in
regimeL@lF . The aim of this work is to investigate to wha
extent the transport through strongly disordered interface
different from or similar to diffusive transport in the bulk
Besides the purely theoretical interest, our study of dirty
terfaces is motivated by experiments on transport thro
metallic interfaces in magnetic multilayers exhibiting gia
magnetoresistance.3,4 These interfaces strongly scatter ele
trons in a region with a length comparable to or smaller th
lF .5 Experiments of transport through a narrow disorde
region in a two-dimensional electron gas are in progre6

With some modifications the present calculations are a
applicable to other scattering problems, such as the trans
ency of a thin, yet strongly diffusing medium to light.

Many properties of a disordered conductor can be
tained directly from the distribution function~or density! of
transmission matrix eigenvalues. The transmission ma
560163-1829/97/56~24!/15860~13!/$10.00
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tptp
† is the product of the transmission amplitude matrixtp

and its Hermitian conjugate. The matrixtp collects the trans-
mission amplitudes of the propagating (p) states on the left-
hand side of a scattering region to those on the right-h
side. All propagating states are normalized to carry unit fl
in the direction of transport. The distribution functionP(T)
of the eigenvaluesTn of the matrixtptp

† is defined as

P~T![K (
n

d~T2Tn!L , ~1!

where the angular brackets indicate averaging over all p
sible realizations of disorder in a given Hamiltonian. Th
distribution function can be used~see, for example, Ref. 7! to
express the average value of any propertya that is described
by a linear statistica(T) as

^a&5K (
n

a~Tn!L 5E dT a~T!P~T!. ~2!

The conductanceg, for example, is related to the transmi
sion matrix by the Landauer formula

g5Trtptp
†5(

n
Tn ~3!

and is thus described by the linear statisticg(T)5T. Simi-
larly, the shot-noise powerp ~in units 2euVue2/h, with V the
applied voltage! is described by the linear statisticp(T)
5T(12T).8 Also for a normal metal/superconductor~NS!
junction the conductancegNS and the shot-noise powerpNS
can be expressed in terms of the transmission matrix eig
values of the normal-metal region by the linear statist
gNS(T)52T2/(22T)2 ~Ref. 9! and pNS(T)516T2(1
2T)/(22T)4,10 respectively.

For disordered bulk conductors in the metallic regim
~where 1!g!N) the distribution function of transmissio
matrix eigenvalues has been shown to be universal:11–13
15 860 © 1997 The American Physical Society
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56 15 861TRANSPORT THROUGH DIRTY INTERFACES
P~T!5
^g&
2

1

TA12T
for cosh22S N

^g& D,T,1 ~4!

and P(T)50 otherwise. The cutoff at smallT is such that
*0

1dTP(T)5N, which for N@g does not affect the average
of the first- and higher-order moments ofT. Equation~4!
does not depend on the shape of the conductor or the sp
resistivity distribution. The distribution function is bimoda
Most eigenvalues are either close to 1~‘‘open’’ channels! or
close to 0 ~‘‘closed’’ channels!. This is in contrast to the
naive notion that all eigenvalues should be much sma
than 1 for g!N. It follows directly14 from Eq. ~4! that
^p&/^g&51/3, which is only one-third of the classical valu
for a Poisson process withTn!1. The universality ofP(T)
has its limits. Either close to the localization regime12 (g
'1) or close to the ballistic regime15 (g&N) Eq. ~4! is no
longer valid. Even in the metallic regime where 1!g!N the
universality can be broken by extended defects, such as
nel barriers, grain boundaries, or interfaces.13

In this paper a microscopic calculation is presented
which the scattering potential at the interface is modeled
scatterers with short-range potentials that are randomly
tributed on a plane. The main result is a universal distri
tion function of transmission matrix eigenvalues for a sin
dirty interface that differs from Eq.~4! for bulk systems. In
other words, dirty interfaces (L!lF) belong to a universal-
ity class16 different from disordered bulk conductors (L
@lF). In addition, a localization transition does not exi
the conductance fluctuations are nonuniversal, and the a
lar dependences of the transmission and reflection proba
ties differ from those of bulk conductors. A short account
part of this work was given in Ref. 17.

The paper is organized as follows. In Sec. II the mode
introduced and the scattering properties are expresse
terms of the microscopic parameters. In Sec. III it is e
plained how the distribution function can be calculated fro
the conductance by using so-called Ward identities. The g
eral aspects of configurational averaging in the strong s
tering regime are discussed in Sec. IV and explicit expr
sions are derived in the coherent potential approximation
Sec. V. The analytical and numerical calculations are co
pared in Sec. VI. In Sec. VII the angular dependences of
transmission and reflection probabilities are studied b
analytically and numerically. Section VIII presents a discu
sion of the results including the conductance fluctuations

II. TRANSMISSION THROUGH A DISORDERED
INTERFACE

The scattering properties of a single interface for state
the Fermi energyEF can be calculated18 directly from the
Schrödinger equation

F2
\2

2m
¹21V~rW !Gc~rW !5EFc~rW !. ~5!

The problem can be formulated for arbitrary dimensiond, so
rW is the d-dimensional position vector. The potential on e
ther side of the interface is constant and equal to zero, i.
free-electron model is considered and there is no poten
tial
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step. The scattering potential at the interface is modeled
short-range scatterers with strengthga at positionrW a in the
planex50:

V~rW !5(
a

gad~x!d~rW 2rW a!, ~6!

whererW is the (d21)-dimensional position vector orthogo
nal to thex direction. The wave function can be expanded
a complete set of transverse plane waves that are labele
the parallel component of the wave vectorkW i as

c~x,rW !5(
kW i

ckW i
~x!

eikW i•rW

AA
, ~7!

in which A is the (d21)-dimensional cross section of th
interface. Employing the orthogonality of the transver
plane waves, a set of one-dimensional equations is obta

d2

dx2
ckW i

~x!1k'
2 ckW i

~x!5
2m

\2 (
kW i8

VkW i ,kW i8
d~x!ckW i8

~x!, ~8!

with

VkW i ,kW i8
5(

a

ga

A
e2 i ~kW i2kW i8!•rW a. ~9!

The perpendicular part of the wave vectork' is defined in
terms of the Fermi wave vectorkF5A2mEF/\ as k'

2 5kF
2

2ki
2 . Note that the interface potential gives rise to mixing

different transverse modes. The states withki.kF and
imaginaryk' are evanescent~exponentially localized!.19 The
imaginary part ofk' is chosen to be positive throughout th
paper. The solutions for the longitudinal wave functions th
are of interest for the transport properties can be written
terms of a propagating incoming statekW i8 and outgoing states

kW i that are either propagating or evanescent:

ckW i
~x!5A m

\uk'uH dkW i ,kW i8
eik'x1r kW i ,kW i8

e2 ik'x, x,0

tkW i ,kW i8
eik'x, x.0,

~10!

where the matricest and r collect the transmission and re
flection amplitudes, respectively. All the propagating sta
are normalized to carry unit flux perpendicular to the int
face. Only the evanescent states that are localized nea
interface need to be taken into account~those that are diverg
ing for x→6` have zero amplitude!. The transmission and
reflection amplitudes can be calculated by matching
wave functions on the two sides of the interface. Continu
of the solution~10! at x50 yields

r kW i ,kW i8
5tkW i ,kW i8

2dkW i ,kW i8
. ~11!

Integration of Eq.~8! over thed function gives a relation
between the spatial first derivatives of solution~10! on the
left- and right-hand sides of the interface. In combinati
with Eq. ~11! this yields an equation for the transmissio
amplitudes:18
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(
kW i9

@dkW i ,kW i9
1 iGkW i ,kW i9

#tkW i9 ,kW i8
5dkW i ,kW i8

, ~12!

with

GkW i ,kW i8
5

m

\2(a
ga

A
e2 i ~kW i2kW i8!•rW a

uk'u
k'

1

Auk'uuk'8 u
. ~13!

This can be written in matrix notation as@ I1 i G#t5I , with I
the unit matrix. For the transport properties we are only
terested in that part oft that connects propagating state
Separating the outgoing propagating (p) and evanescent (e)
states, the matrix equation fort can be rewritten as

S I1 i Gpp i Gpe

i Gep I1 i Gee
D S tp

te
D 5S I

0D , ~14!

with all elements of the matrix0 equal to zero. Elimination
of te yields @ I1 i G̃#tp5I with

G̃5Gpp2 i Gpe@ I1 i Gee#
21Gep . ~15!

The Hermitian conjugates of the submatrices ofG are given
by Gpp

† 5Gpp , Gee
† 52Gee, Gpe

† 5 i Gep andGep
† 5 i Gpe , from

which it follows thatG̃ is Hermitian. The transmission am
plitudes for the propagating states are thus expressed dir
in terms of the scattering potential as

tp5@ I1 i G̃#21. ~16!

Using the Hermiticity ofG̃, the transmission matrix can b
written as

tptp
†5@ I1G̃ G̃#21. ~17!

Equations~16! and ~17! are valid for every individual real-
ization of the disorder. Average quantities are obtained
configurational averaging over the random impurity po
tions that are assumed to be uniformly distributed:

^a~rW 1 , . . . ,rW NI
!&[ )

a51

NI E drW a

A
a~rW 1 , . . . ,rW NI

!, ~18!

whereNI is the number of impurities. This configuration
averaging can be carried out both analytically using Gre
function methods and numerically by brute-force calcu
tions.

III. WARD IDENTITIES

The analytical calculation of the configurationally ave
aged quantities and of the distribution function is based
the expansion oftp in powers of G̃ that follows from Eq.
~16!:

tp5 (
M50

`

~2 i G̃!M. ~19!

From this power series one can derive15 two so-called Ward
identities, which relate single-particle and two-particle pro
erties. The first Ward identity is
-
.

tly

y
-

n-
-

n

-

tptp
†5

1

2
~ tp1tp

†!, ~20!

which follows very generally from current conservation
combination with continuity of the wave function across t
interface. A second, less general Ward identity can be
rived under the condition thatG̃ is proportional tom:

tptp5S 11m
]

]mD tp . ~21!

This relation is valid when evanescent states can be di
garded, which is the case in the limit of weak scatterin
However, also in the strong scattering regimeG̃ is propor-
tional to m, as can be seen from Eqs.~13! and ~15!. The
Ward identity~21! thus applies both in the weak scatterin
regime ~considered in Ref. 15! and in the strong scatterin
regime ~considered in Ref. 17!, but not in the intermediate
regime. Note that Eq.~21! can also be expressed in terms
the derivative with respect to the~average! scattering
strength.15 Although both alternatives should be equivale
the expression in terms of the mass leads to more transpa
results in the dirty limit.

Using these two Ward identities and their Hermitian co
jugates repeatedly, higher-order products oftp and tp

† can be
reduced to expressions that contain onlytp andtp

† . This sim-
plifies the calculations enormously. The distribution functi
P(T) can be rewritten in terms of a power series in t
transmission matrix by expressing thed function in Eq.~1!
as a Fourier integral and subsequently expanding the e
nent exp(iqtptp

†):

P~T!5E dq

2p
e2 iqT(

n50

`
~ iq !n

n!
Tr^~ tptp

†!n&. ~22!

By using the Ward identities repeatedly and applying
Kramers-Kronig relation in the parameterh5m2, this ex-
pression can for an integrable function^g(h)&5Tr^tptp

†& be
rewritten as15

P~T!5
1

p

1

T~12T!
ImF K gS hT

T21
2 i01D L G , ~23!

with 01 a positive infinitesimal. Details of the derivation o
Eq. ~23! and a discussion of a possibly nonintegrable part
^g(h)& are given in the Appendix. By calculatinĝtp& we
obtain the conductance from

^g~h!&5Re@Tr^tp&#. ~24!

The calculation of the distribution function is thus reduced
the calculation of the configurational average of the tra
mission amplitude matrix.

IV. CONFIGURATIONAL AVERAGING

In order to calculate the configurational average oftp it is
convenient to introduce the Green-function matrixG1. The
elements ofG1 are related to the transmission amplitud
by20
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tkW i ,kW i8
5 i

\2

m
Ak'k'8 GkW i ,kW i8

1
. ~25!

The unperturbed Green-function matrixG1(0) is diagonal
and its elements are given by

GkW i ,kW i8
1~0!

5GkW i

1~0!dkW i ,kW i8
52 i

m

\2

1

k'

dkW i ,kW i8
. ~26!

FIG. 1. Lowest-order diagrams in the expansion for the confi
rationally averaged Green function. The solid lines with arro
represent unperturbed Green functions, the crosses are the sc
ing centers, and each dashed line is a scattering event.~a! and ~b!
are the zeroth- and first-order diagrams, respectively. The sec
order diagrams~c! and~d! represent scattering once at two differe
impurities and scattering twice at a single impurity, respectively
en
er
s
es
h

ra
From Eqs.~19! and ~25! an expansion of the configuration
ally averaged Green function in terms of the scattering
tential is obtained, which reads

^GkW i ,kW i8
1

&52 i
m

\2

1

Ak'k'8
(
N50

`

^~2 i G̃!N&kW i ,kW i8
. ~27!

The different terms in this expansion are obtained by in
gration over all possible impurity positions and can be re
resented by Feynman diagrams.18 The zeroth-order term is
given by

2 i
m

\2

1

Ak'k'8
~2 i !0^G̃ 0&kW i ,kW i8

5GkW i

1~0!dkW i ,kW i8
, ~28!

which is nothing but the unperturbed Green function, d
picted schematically in Fig. 1~a!. To first order in the scat-
tering potential only the propagating states play a role:

-
s
tter-

d-

FIG. 2. Lowest-order irreducible diagrams that contribute to
self-energy, which is represented by the big circle with theS inside.
2 i
m

\2

1

Ak'k'8
~2 i !^Gpp&kW i ,kW i8

5GkW i

1~0!S (
a

ga

A DGkW i

1~0!dkW i ,kW i8
. ~29!

This term comes from scattering once at a single impurity and is represented by the diagram depicted in Fig. 1~b!. In the
second-order term also the evanescent states should be taken into account:

2 i
m

\2

1

Ak'k'8
~2 i !2^Gpp

2 1GpeGep&kW i ,kW i8
5GkW i

1~0!S (
a

ga

A DGkW i

1~0!S (
a8

ga8
A D GkW i

1~0!dkW i ,kW i8

1GkW i

1~0!F(
a

S ga

A D 2G S (
kW i9

GkW i9
1~0!D GkW i

1~0!dkW i ,kW i8
. ~30!
es-
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The first term stems from scattering once at two differ
scatterers, whereas the second term arises from scatt
twice at the same scatterer. The corresponding diagram
shown in Figs. 1~c! and 1~d!. Note that the evanescent stat
enter only via the intermediate wave-vector summation. T
higher order terms can be represented by Feynman diag
according to the following set of rules.18

~i! For each electron line, introduceGkW i

1(0) .

~ii ! For each scattering vertexa, introducega /A.
~iii ! Conserve momentum at each vertex.
~iv! Sum over all impurities.
t
ing
are

e
ms

~v! Sum over all intermediate states, including evan
cent states.

The exact configurationally averaged Green function c
be obtained by summing over all diagrams. These can
partially summed by introducing the irreducible self-energ
An irreducible diagram is a diagram that cannot be divid
into two subdiagrams joined only by a single electron lin
Examples of irreducible diagrams are shown in Fig. 2. B
cause the translation invariance parallel to the interface
restored after configurational averaging, the self-energy
trix S is diagonal inkW i :
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SkW i ,kW i8
5SkW i

dkW i ,kW i8
. ~31!

The Dyson equation̂G1&5G1(0)1G1(0)S^G1& relates the
configurationally averaged Green function to the unpertur
Green function and the self-energy. A schematic represe
tion of this equation is given Fig. 3. One can easily see t
substitution of the self-energy of Fig. 2 into the Dyson equ
tion of Fig. 3 generates the reducible diagrams of Fig.
Substitution of Eqs.~26! and ~31! into the Dyson equation
yields

^GkW i ,kW i8
1

&5^GkW i

1
&dkW i ,kW i8

5
1

~GkW i

1~0!
!212SkW i

dkW i ,kW i8
. ~32!

The Green function is thus diagonal inkW i after configura-
tional averaging. In the strong scattering regime whereg
!N the self-energy is much larger than the inverse of
unperturbed Green function and Eq.~32! can be expanded a

^GkW i

1
&52

1

SkW i
F 11

1

GkW i

1~0!
SkW i

1•••G . ~33!

The leading term in the expansion of the Green function t
only depends on the self-energy; it does not contain the
perturbed Green function and therefore does not depen
the effective mass.

In the complete perturbation expansion of the irreduci
self-energy all internal Green functions are fully renorm
ized, i.e., in all the intermediate wave-vector summations
unperturbed Green function is replaced by the pertur
Green function. In the strong scattering regime the pertur
Green function depends only on the self-energy. It then
lows directly from the Feynman rules that the summat
over any set of renormalized diagrams leads to a s
consistent equation for the self-energy that does not con
the unperturbed Green function and is thus independen
the electron massm. The simple and~in the present model!
exact result for the distribution function in the strong scatt
ing regime as derived below is a direct consequence of
m independence of the self-energy.

In the strong scattering regime the average conducta
can be calculated from the self-energy using Eqs.~24!, ~25!,
and ~33! as

^g~h!&5
\2

Ah
(
kW i

~p! 2Im@SkW i
#k'

uSkW i
u2

~34!

and is thus proportional to 1/Ah51/m. The summation over
kW i is restricted to the propagating modes (p). Substitution of
Eq. ~34! into Eq. ~23! and usingg(`)50 yields

FIG. 3. Schematic representation of the Dyson equation, wh
relates the perturbed Green function~thick line! to the unperturbed
Green function~thin line! and the self-energy~circle!.
d
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P~T!5
^g&
p

1

T3/2A12T
for

1

11S pN

2^g& D
2,T,1 ~35!

andP(T)50 otherwise. The cutoff at smallT is introduced
to ensure that*0

1dTP(T)5N; the origin of this cutoff is
discussed in the Appendix. ForN@g this normalization is
irrelevant for the averages of the first- and higher-order m
ments ofT. We emphasize that Eq.~35! is valid only in the
strong scattering regime whereg!N.

The distribution function of transmission matrix eigenva
ues for a strongly disordered interface is thus universal in
sense that it does not depend on any of the microscopic
rameters or on the dimensiond; it depends only on the mac
roscopic conductance. We obtained this result without
plicitly calculating any Feynman diagrams, only using t
general property that the self-energy is independent of
electron mass. Note that Eq.~35! differs significantly from
the universal result~4! obtained for diffusive bulk conduc
tors in the weak scattering regime.

Also for dirty interfaces universality has its limits. Whe
the self-energy has no imaginary part the conductance v
ishes in lowest order and the calculation yieldsP(T)
5Nd(T). A real self-energy is, for example, characteris
for a tunnel barrier. To obtain a finite conductance in th
case higher-order terms in the expansion~33! should be
taken into account, which give rise to nonuniversal resu
This loss of universality is analogous to the situation cons
ered by Nazarov,13 who finds that universal behavior in bul
disordered conductors can be destroyed by a tunnel bar

V. COHERENT POTENTIAL APPROXIMATION

To be more specific we will now explicitly calculate th
self-energy for a limited set of diagrams, namely, all d
grams in which the lines representing potential scattering
not cross. This corresponds to calculating the scattering
single impurity exactly while treating the scattering from a
the other impurities in a mean-field approximation. Quant
interference of electron waves scattered from different im
rities is thus disregarded. The diagrams that are taken
account are shown in Fig. 4. Using the Dyson equation
Fig. 3 one can easily verify that all noncrossed diagrams
included in this way. This approximation is known as t
single-site coherent potential approximation~CPA!. The self-

h

FIG. 4. Irreducible diagrams that are taken into account in
calculation of the self-energy in the coherent potential approxim
tion.
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energy is obtained by summing over all diagrams of Fig.

SCPA5(
a

ga

A (
M50

` S ga

A (
kW i

^GkW i

1
& D M

, ~36!

which does not depend onkW i . Substitution of the lowest-
order term of Eq.~33! yields a self-consistent equation fo
the self-energy. Forga56g the self-energy in the stron
scattering limit is given by

S`
CPA5

1

2A
@NI ḡ 2 iA4~NI2NT!NTg22NI

2ḡ 2#, ~37!

whereNT is the total number of propagating plus evanesc
states. The average of the scattering strengths isḡ
5(aga /NI . Note thatS`

CPA does indeed not depend onm.
In order to obtain nontrivial results the imaginary part
S`

CPA should not vanish. In the strong scattering regime t
is the case when the number of scatterers is larger than
total number of channels, i.e.,NI.NT . We therefore can
allow only a finite number of evanescent states. It is inde
well known in scattering theory that the cross section od
scatterers vanishes without such a cutoff. Another
quirement for a nonvanishing imaginary part ofS`

CPA is a

limited average scattering strength, i.e., (ḡ /g)2

,4(NI2NT)NT /NI
2 . When Im@S`

CPA#Þ0 the average con
ductance can be calculated from Eq.~34!:

^g&5

A(
kW i

~p!

k'

pg̃A~NI2NT!NT

A12
ḡ 2

g2

NI
2

4~NI2NT!NT
,

~38!

where we introduced the normalized scattering strengthg̃
5mg/\2p, which is a dimensionless quantity ford52. The
summation ofk' over the propagating modes depends on
dimension: It equalsp/4 NkF for d52 and 2

3 NkF for d53.
Crossed diagrams are not included in the CPA, but t

can be important in the strong scattering regime. The con
bution to the self-energy of, for example, the crossed d
gram depicted in Fig. 5 equals

(
a,a8

S ga

A

ga8
A D 2

(
kW i8 ,kW i9

^GkW i8
1

&^GkW i9
1

&^GkW i2kW i81kW i9
1

&. ~39!

The summation over the intermediate states in Eq.~39! is
restricted by the cutoff in the integral over evanescent st
in combination with the momentum conservation at ea
vertex. Because of this restriction the self-energy depend
kW i . A simple estimate shows that the contribution to t
self-energy of the crossed diagram of Fig. 5 is of the sa

FIG. 5. Example of a crossed diagram. Crossed diagrams ar
taken into account in the coherent potential approximation.
:
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order of magnitude as the contribution of the second n
crossed diagram in Fig. 4. There is thus noa priori justifi-
cation for the omission of the crossed diagrams in the str
scattering regime. Substantial errors in the CPA caused
the neglect of quantum interference therefore cannot be
cluded.

VI. NUMERICAL RESULTS

In order to confirm the analytical calculations in the dir
limit and explore the not-so-dirty regime, we perform th
ensemble averaging numerically by brute-force calculati
of many realizations of the impurity positions. These calc
lations are limited tod52 ~a two-dimensional ‘‘impurity
necklace’’15! and ga56g. To compare with the analytica
results in the strong scattering regime the conducta
should be sufficiently smaller than the number of conduct
channels. On the other hand, the conductance should no
too small to avoid that the number of eigenvalues close t
becomes so low that large statistical fluctuations occur. M
of our calculations are for 0.005,g/N,0.030. Whereas the
analytical calculations are in the limitN→`, the numerical
calculations are for a finite number of conduction chann
that may give rise to finite-size corrections. The results p
sented in this section are obtained forN520 channels, which
are consistent with those forN up to 80~see Sec. VIII!. All
configurational averages were calculated using an ensem
of 10 000 independent realizations of the impurity positio

The eigenvalues of the transmission matrix can be
tained by calculating the eigenvalues of the matrixI1G̃ G̃
that are equal to 1/Tn , as can be seen from Eq.~17!. The
distribution function is not a convenient function to compu
because of the divergences atT50 and T51. Instead of
P(T) we calculate the well-behaved integrated quantity

Q~T!5
1

^g&E0

T

dT8T8P~T8!, ~40!

which is a smooth function ofT. Q(T) is the relative contri-
bution to the conductance of allTn,T. From Eqs.~4! and
~35! it follows that Q(T)512A12T for a disordered bulk
conductor andQ(T)5(1/p)arccos(122T) for a dirty inter-
face. In Fig. 6 numerically calculatedQ(T) for three differ-
ent sets of microscopic parameters are compared with
analytical results. Figure 6 shows excellent agreement
tween analytical and numerical configurational averag
Note that the numerical results differ significantly from th
analytical result for disordered bulk systems.

In order to appreciate the limits of the universality a
test the CPA we study numerically the dependence of
conductance and the distribution function on the differe
microscopic parameters. Instead of calculating the functi
P(T) or Q(T) we compute only the average values of thr
physical quantities that depend characteristically onP(T). In
Table I the expectation values for the conductanceg and the
shot-noise powerp as well as for the conductancegNS and
the shot-noise powerpNS of a normal metal/superconducto
junction are given for both a dirty interface and a disorde
bulk conductor. These expectation values are sufficien
discriminate between the two universal distributions. Figu
7 shows the dependence of the average conductance an

ot
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ratios ^p&/^g&, ^gNS&/^g&, and^pNS&/^g& on the dimension-

less scattering strengthg̃ . Even though the conductanc
changes as a function ofg̃ , the ratios characterizing the dis
tribution function remain constant which confirms the u
versality of P(T). The numerically calculated average co
ductance deviates from the result obtained in the CPA. T
is not unexpected since in the CPA the crossed diagrams
not taken into account. The difference is, however, surp
ingly small. A good fit to the numerical calculations can
obtained by simply multiplying the CPA results by a scali
factor of order 1. In the present regime the crossed diagr
thus only weakly renormalize the CPA result.

In Figs. 8 and 9 the average conductance and the ra
characterizing the distribution function are plotted as fu
tions of the number of scatterersNI and the total number o
modesNT , respectively. The results confirm thatP(T) is
universal and that̂g& follows the behavior obtained from th
CPA up to a scaling factor. Note that the same scaling fa
is used in Figs. 7–9.

Finally, we consider the dependences on the average
tering strengthḡ . Figure 10 shows that the average condu
tance as a function ofḡ /g differs qualitatively from the CPA

TABLE I. Expectation values of the propertiesa that are de-
scribed by the linear statisticsa(T) for the distribution function of
a strongly disordered interface and of a metallic bulk system.
physical properties considered are the conductanceg and the shot-
noise powerp as well as the conductancegNS and the shot-noise
powerpNS of a normal metal/superconductor junction.

^a&/^g& ^a&/^g&
a a(T) interface bulk

g T 1 1
p T(12T) 1

2
1
3

gNS 2T2/(22T)2 1
2A2 1

pNS 16T2(12T)/(22T)4 3
8A2 2

3

FIG. 6. FunctionQ(T) obtained from three different numerica
calculations~symbols! and from the analytical results for a dirt
interface~solid line! and for a disordered bulk conductor~dashed
line!. The numerical calculation were carried out usingN520, NI

5200, ḡ 50, andNT520, g̃510 for the squares,NT520, g̃560

for the circles, andNT540, g̃510 for the diamonds. Configura
tional averaging was done using 10 000 realizations of the disor
is
re
-

s

os
-

or

at-
-

calculation, in contrast to the results forḡ 50 where they
differed only by a scaling factor close to unity. More impo
tantly, the universality breaks down. Whereas the distri
tion function remains universal forḡ /g,0.6, it becomes
nonuniversal forḡ /g.0.6. The value at which the ratio
characterizingP(T) start to deviate from the universal va
ues coincides with the value at which the CPA conducta
vanishes. Nonuniversal behavior must be caused by hig
order terms in Eq.~33!. The numerical results thus indicat
that for ḡ /g.0.6 the crossed diagrams do not contribute
the imaginary part of the self-energy to lowest order in t
expansion of the Green function. A more detailed study
breakdown of universality is beyond the scope of the pres
paper, but we note that a similar effect has been found
disordered bulk systems in the presence of a tunnel barri13

For ḡ /g51 the numerical results in Fig. 10 indeed becom
characteristic for a tunnel barrier.

In both the analytical and the numerical calculations p
sented above the disorder is due to the random position
the scatterers. We carried out additional numerical calcu
tions in which also the scattering strengthsga were chosen at
random, in contrast to the constant value forugau used in the

e

r.

FIG. 7. Dependence of~a! the average conductance^g& and~b!
the ratioŝ p&/^g&, ^gNS&/^g& and^pNS&/2^g& on the dimensionless

scattering strengthg̃ . The numerical calculations were carried o

usingN520, NT520, NI5200, andḡ 50.0. Configurational aver-
aging was done using 10 000 realizations of the disorder.~a! The
numerically calculated values of^g& ~filled circles! compared with
the CPA result~dashed line! and with the CPA result multiplied by
a factor 1.14~dotted line!. ~b! The numerically calculated values o
the ratios ^p&/^g& ~filled circles!, ^gNS&/^g& ~open circles!, and
^pNS&/2^g& ~diamonds! compared with their universal values give
by the solid, dashed, and dotted lines, respectively.
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56 15 867TRANSPORT THROUGH DIRTY INTERFACES
other calculations of this section. Also with random scatt
ing strengths the universal distribution function~35! persists,
as expected.

Whereas the analytical results of this paper are restric
to the strong scattering regime withg!N, the numerical
calculations can straightforwardly be carried out for arbitra
values ofg. In Fig. 11 the conductance and the ratios ch
acterizing the distribution function are plotted as a funct
of the number of scatterersNI . For NI@N the results are in
the strong scattering regime. ForNI!N the weak scattering
regime is reached whereg&N. For the valueg̃510.0 used
in the calculations presented in Fig. 11, the regimeNI!N
corresponds the limit of a few strong scatterers that was c
sidered in Ref. 15. In this limit analytical calculations15 yield
NI eigenstates that are completely reflected (Tn50),
whereas the remainingN2NI states are completely transmi
ted (Tn51), which is consistent with the numerical resu
for NI!N in Fig. 11. In between the weak and strong sc
tering regimes a smooth transition is observed.

VII. TRANSMISSION PROBABILITIES

Next we calculate the configurationally averaged tra
mission probabilities

^utkW i ,kW i8
u2&5

\4

m2
k'k'8 ^GkW i ,kW i8

1
GkW i ,kW i8

1*
&. ~41!

FIG. 8. Dependence of~a! the average conductance^g& and~b!
the ratios^p&/^g&, ^gNS&/^g&, and ^pNS&/2^g& on the number of
scatterersNI . The numerical calculations were carried out usi

N520, NT520, g̃510.0, andḡ 50.0. Configurational averaging
was done using 10 000 realizations of the disorder. For explana
of the symbols and the lines, see Fig. 7.
-

d

y
-
n

n-

-

-

The product of the electron and the hole Green function
Eq. ~41! cannot be reduced to a one-particle Green funct
by the Ward identities, as was the case in the calculation
the average conductance^g&. Instead, the expectation valu
of the product has to be calculated explicitly. The configu
tionally averaged two-particle Green function can be writt
as

^uGkW i ,kW i8
1 u2&5u^GkW i

1
&u2dkW i ,kW i8

1u^GkW i

1
&u2WkW i ,kW i8

u^GkW i8
1

&u2,

~42!

with W the reducible vertex function matrix.W contains all
the correlated two-particle diagrams in which the electr
and the hole line are connected by a scattering vertex.

To keep the analytical calculations tractable, we will r
strict ourselves to the self-consistent Born approximat
~SCBA!. In the SCBA calculation of the self-energy only th
first two diagrams of Fig. 4 are taken into account, which
the strong scattering limit yields

S`
SCBA5

1

2A
@NI ḡ 2 iA4NINTg22NI

2ḡ 2#. ~43!

The restrictionga56g that was used in the CPA can b
eliminated andg2 now equals the mean-square value of t
scattering strengths:g25(aga

2/NI . Note that in the limit
NI@NT for ga56g the higher-order diagrams in Fig. 4 ca
be neglected and the CPA reduces to the SCBA. Cros

n

FIG. 9. Dependence of~a! the average conductance^g& and~b!
the ratios^p&/^g&, ^gNS&/^g&, and^pNS&/2^g& on the total number
of propagating and evanescent statesNT . The numerical calcula-

tions were carried out usingN520, NI5200, g̃510.0 and ḡ
50.0. Configurational averaging was done using 10 000 real
tions of the disorder. For explanation of the symbols and the lin
see Fig. 7.
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15 868 56KEES M. SCHEP AND GERRIT E. W. BAUER
diagrams such as the one in Fig. 5 are neglected, howeve
spite of being of the same order as those taken into acc
in the SCBA.

The diagrams for the reducible vertex function in t
SCBA are shown in Fig. 12. These ladder diagrams are
dependent of the incoming and outgoing modes and can
easily summed:

WkW i ,kW i8
5W5

s

12s(
kW i9

u^GkW i9
1

&u2

, ~44!

where s5NIg
2/A2 is the irreducible vertex function. To

lowest order in the expansion~33! the denominator in Eq
~44! vanishes, which causesW to diverge. To eliminate this
divergence also the second term in Eq.~33! should be taken
into account. We only evaluatedW for ḡ 50 and NT5N.
Under these conditions the self-energy is purely imagina
which simplifies the calculations and we obtain

^utkW i ,kW i8
u2&5

^g&k'k'8

S (
kW i9

k'9 D 2 . ~45!

The configurationally averaged reflection probabilities c
be calculated from the continuity of the wave function~11!:

FIG. 10. Dependence of~a! the average conductance^g& and~b!
the ratioŝ p&/^g&, ^gNS&/^g&, and^pNS&/2^g& on the relative aver-

age scattering strengthḡ /g. The numerical calculations were ca

ried out usingN520, NT520, NI5200, andg̃510.0. Configura-
tional averaging was done using 10 000 realizations of the disor
For explanation of the symbols and the lines, see Fig. 7.
in
nt

-
be

y,

n

^ur kW i ,kW i8
u2&5S 12

2^g&k'

(
kW i9

k'9 D dkW i ,kW i8
1

^g&k'k'8

S (
kW i9

k'9 D 2 . ~46!

In the SCBA the conductance calculated directly from t
two-particle Green function is identical to the conductan
calculated using the one-particle Green function and
Ward identity ~20!. More generally, the relation̂ tptp

†&
5(^tp&1^tp

†&)/2 is satisfied in the SCBA. This means that,

r.

FIG. 11. Dependence of~a! the average conductance^g& and~b!
the ratios^p&/^g&, ^gNS&/^g&, and ^pNS&/2^g& on the number of
scatterersNI . The numerical calculations were carried out usi

N520, NT520, g̃510.0, andḡ 50.0. Configurational averaging
was done using 10 000 realizations of the disorder. For explana
of the symbols and the lines forNI.N, see Fig. 7. The lines for
NI,N are the results obtained in Ref. 15 for a low density of stro
scatterers.

FIG. 12. Ladder diagrams that are taken into account in
calculation of the reducible vertex function matrix. The thick lin
with a right pointing arrow represent a perturbed electron Gr
function; those with a left pointing arrow represent a perturbed h
Green function.
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56 15 869TRANSPORT THROUGH DIRTY INTERFACES
least under the restrictionsḡ 50 andNT5N, the SCBA is
consistent with the Ward identity~20!, which is a necessary
condition for any physically meaningful approximation. No
that the divergence ofW to lowest order in the expansio
~33! is essential for current conservation.

The irreducible vertex function in the CPA consists of
noncrossed diagrams. A calculation similar to that in
SCBA shows that in the CPA the denominator in Eq.~44!

does not vanish whenḡÞ0. This implies that in the strong
scattering regime the CPA does not conserve current foḡ
Þ0 which we expect to be related to the qualitative deviat
from the exact numerical results forḡ .0 in Fig. 10. At least
for ḡÞ0, the CPA should be applied to the strong scatter
limit with care.

We compare the analytical results in the SCBA forḡ
50 and NT5N with exact numerical calculations that a
limited to d52 andga56g. The transmission probabilitie
are obtained straightforwardly from Eq.~16!. Figure 13~a!
shows the transmission probability averaged over 10 000

FIG. 13. Dependence of the~integrated! average transmission
probabilities on the incoming or outgoing wave vectors. The
merical calculations were carried out usingN520, NT520, NI

52000, g̃510.0, andḡ 50.0. Configurational averaging was don
using 10 000 realizations of the disorder.~a! The numerically cal-
culated transmission probabilities~filled circles! integrated over the
outgoing states as a function of the incoming wave vectorki8 com-
pared with the SCBA result~dashed line!. ~b! The numerically cal-
culated transmission probabilities as a function of the outgoing s
ki for incoming stateki8 equal to 0.05kF ~open circles!, 0.45kF

~filled circles!, and 0.85kF ~diamonds! compared with the SCBA
results given by the dashed, solid, and dotted lines, respective
l
e

n

g

e-

alizations of the disorder, normalized by^g&, and summed
over all outgoing states as a function of the incoming sta
The numerical results agree well with the SCBA calculati
for this integrated quantity. The dependence of the aver
transmission probability as a function of the outgoing st
for one specific incoming state, however, is not well d
scribed by the SCBA result, as illustrated by Fig. 13~b!. The
enhanced probabilities forki5ki8 and ki52ki8 are quite
striking. By performing a similar calculation for a smalle
value of^g& we checked that the peak forki5ki8 is not due
to a small ballistic component. From the relation~11! be-
tween t and r it follows that the nondiagonal terms of th
reflection probability matrix are equal to the correspond
transmission probabilities and therefore similar peaks oc
in the reflection probabilities. Since in the calculation of F
13 NI5100N, the deviation from the SCBA result is no
caused by higher order noncrossed diagrams, which ca
disregarded forNI@N. Even in the CPA, in which all non-
crossed diagrams are included, all elements in the reduc
vertex function matrixW are identical,18 which implies that
the angular dependence of transmission and reflection p
abilities are also in this case given by Eqs.~45! and ~46!,
respectively. This leaves the crossed diagrams as the o
of the peaks in the numerical calculations of Fig. 13~b!. The
enhanced reflection probabilities forki52ki8 are analogous
to the enhanced backscattering peak in bulk conduct
which is due to an interference effect that is described
crossed diagrams.21 A deeper study of the crossed diagram
is again beyond the scope of the present paper.

VIII. DISCUSSION

In this section we compare the results obtained for pha
coherent electrical transport through dirty interfaces with
well-known properties of disordered bulk conductors a
discuss the similarities and the differences. Both distribut
functions ~4! and ~35! for disordered bulk conductors an
dirty interfaces, respectively, are bimodal. For dirty inte
faces there is, however, relatively more weight for smallTn .
This is reflected in the expectation values for the physi
quantities. The ratiô p&/^g&, for example, equals 1/2 fo
dirty interfaces compared to 1/3 for disordered bulk cond
tors. In the case of a bulk disordered normal metal in con
with a superconductor̂gNS& equals the conductance in th
normal state and the ratiôpNS&/^gNS&52/3, which is twice
the normal state result. In contrast, for a dirty interface in
normal-metal in series with a superconductor^gNS& and^g&
are no longer equal (^gNS&5 1

2 A2^g&) and the ratio
^pNS&/^gNS&53/4, less than twice the normal-state resu
These differences should be observable experimentally.

For disordered bulk conductors, the bimodal distributi
function ~4! has been related to the occurrence of univer
conductance fluctuations.22 We investigate the conductanc
fluctuations of dirty interfaces by performing a straightfo
ward numerical calculation of the variance of the condu
tance Var(g)[^g2&2^g&2. Figure 14 shows the depen
dences of^g&, Var(g), and the ratios characterizing th
distribution function on the number of conduction channe
As expected, the average conductance is proportional tN
and the distribution function is universal. The variance of t
conductance is not independent of the number of conduc
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15 870 56KEES M. SCHEP AND GERRIT E. W. BAUER
channels, i.e., the conductance fluctuations are not unive
Instead, Var(g) increases linearly withN, as expected from
classical arguments. In terms of the two-particle diagra
that describe the conductance fluctuations15 the nonuniversal
behavior is due to the absence of a divergence in the la
summations. Such a divergence occurs in Eq.~44! in the
calculation of the transmission probabilities but is absent
the fluctuation diagrams. In the theory of the conducta
fluctuations in bulk conductors the divergence in the lad
summation is the origin of the universality.2 The fluctuations
are also nonuniversal close to the ballistic regime (g&N).23

BecauseP(T) for a dirty interface does not depend on t
microscopic details, its calculation seems well suited
methods of random matrix theory.12 Continuity of the wave
functions on both sides of the scattering region gives rise
the additional constraintt5I1r on the space of allowed
scattering matrices. By combining this with the constra
that arises from current conservation12 we find that the trans-
mission amplitude matrix for propagating states can alw
be parametrized astp5@ I1 i Ĝ#21 in which Ĝ is a Hermitian
matrix. In our specific model for randomly distributedd scat-

FIG. 14. Dependence of~a! the average conductance^g&, the
variance Var(g) and ~b! the ratios ^p&/^g&, ^gNS&/^g&, and
^pNS&/2^g& on the number of conduction channelsN. The numeri-

cal calculations were carried out usingNT5N, NI510N, g̃510.0,

and ḡ 50.0. Configurational averaging was done using 10 000
alizations of the disorder.~a! The numerically calculated values o
^g& ~filled circles! compared with the CPA result~dashed line! and
with the CPA result multiplied by a factor 1.14~dotted line! as well
as the numerically calculated values of Var(g) ~open circles!. The
dash-dotted line is a linear fit Var(g)'0.04110.0063N. ~b! The
numerically calculated values of the ratios^p&/^g& ~filled circles!,
^gNS&/^g& ~open circles!, and ^pNS&/2^g& ~diamonds! compared
with their universal values given by the solid, dashed, and do
lines, respectively.
al.

s

er
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e
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terersĜ equalsG̃, but another model for the interface roug

ness may yield a different expression forĜ. We expect that
this will not change the results obtained in this paper qu
tatively and that the constraintt5I1r is sufficient to de-
scribe the characteristic properties of interfaces compare
bulk systems. A study of transport through dirty interfac
using random matrix theory might further clarify the orig
of the universal result forP(T) and the nonuniversal resu
for the conductance fluctuations.

The distribution function~35! for a dirty interface is iden-
tical to P(T) for two identical tunnel barriers in series sep
rated by a distance that is much larger thanlF ,24 despite the
fact that the two physical systems are very different. At t
moment we have no physical argument to explain this c
respondence.

In the above analytical treatment there is no qualitat
difference between the regimesg.1 andg,1, i.e., no lo-
calization transition is observed. This is confirmed by t
numerical calculations of Fig. 14, where the conductan
varies between 0.3 and 2.4. No changes are observed in
universal ratios or in the proportionality between^g& andN.
The absence of localization follows from the well-behav
maximally crossed diagrams15 and can be understood from
the fact that for an interface the region of scattering has
spatial extent in the transport direction so there is no sp
available in which the wave functions can localize. In oth
words, any incipient bound state is immediately destroyed
the strong coupling to the continuum states in the leads
either side of the interface.

The transmission and reflection probabilities calculated
Sec. VII are quite different from the scattering probabiliti
for disordered bulk conductors.25 For dirty interfaces most of
the reflection is specular in contrast to the smooth distri
tion over all reflection directions for bulk systems. This a
most complete specular reflection is a direct consequenc
the continuity relationt5I1r from which it is clear that the
diagonal terms of the reflection probability matrix are clo
to unity for small transmission. This result is relevant for t
study of electrical transport in metallic multilayers in whic
the interfaces are sometimes modeled by thin regions of b
material with high resistivities.26 Although this description is
valid for weak scattering27,18 it is not correct in the strong
scattering regime. Due to quantum interference effects, a
tional peaks occur in the transmission and reflection pr
abilities for kW i5kW i8 andkW i52kW i8 . Whereas the enhanced re

flection for kW i52kW i8 is analogous to the well-known
enhanced backscattering, the other peaks have no cou
parts in the bulk. The peaks in reflection and transmission
kW i5kW i8 will be difficult to resolve experimentally because
the large specular reflection and the nonzero ballistic tra
mission, respectively. The enhanced transmission forkW i5

2kW i8 , on the other hand, might be observable experimenta
This peak is intimately related to the enhanced backsca
ing via the continuity relation~11!.

In the analytical calculations only the noncrossed d
grams are evaluated explicitly, whereas the crossed diagr
that correspond to quantum interference are disregarded
though in the strong scattering regime there is noa priori
justification for such a mean-field approach, most of the
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56 15 871TRANSPORT THROUGH DIRTY INTERFACES
sults obtained agree quite well with the numerical calcu
tions. The suppression of the shot-noise power, for exam
can be understood on the basis of a CPA or SCBA calc
tion. Also in disordered bulk conductors quantum interf
ence effects are not required to describe the suppressio
the shot-noise power.28

In summary, starting from the Schro¨dinger equation, we
studied the phase-coherent electrical transport through d
interfaces. We have shown thatP(T) for a dirty interface is
universal but differs fromP(T) for disordered bulk conduc
tors. Dirty interfaces belong to a universality class differe
from diffusive bulk conductors. In addition, we have show
that the conductance fluctuations are nonuniversal, the lo
ization transition is absent, and the transmission and refl
tion probabilities are different from the bulk. It remains
challenge to test these results theoretically by random ma
theory and experimentally by transport studies of intenti
ally disordered metallic point contacts and wide quant
wires.

Note added in proof.Carlo Beenakker pointed out to u
that for bulk diffusive conductors much wider than long, t
mean-squared fluctuations are also proportional to the n
ber of conducting channelsN. We note that the slope of th
linear dependence is not universal for the dirty interfaces
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APPENDIX: DERIVATION OF EQ. „23…

In this appendix the derivation of Eq.~23! is presented. In
Eq. ~22! the distribution function was written in terms of
power series in the transmission matrix. The first step in
derivation is to express higher-order moments in terms o
single transmission matrix. Using the Ward identities~20!
and ~21! we find for the second-order moment

~ tptp
†!25S 1

2
m

]

]m
11D tptp

†5S h
]

]h
11D tptp

† , ~A1!

with h5m2. Using Eq.~A1! we obtain a recursion relatio
for the higher-order moments:

~ tptp
†!n115

1

nS h
]

]h
1nD ~ tptp

†!n. ~A2!

By induction we then find from Eqs.~A1! and ~A2! that

~ tptp
†!n115

1

n! F )
m51

n S h
]

]h
1mD G tptp

†

[ f̂ nS h
]

]h D tptp
† , ~A3!
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ty
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c-

ix
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-

e
h
or
ts

e
a

where the operatorf̂ n( x̂) is a polynomial of ordern in the
operatorx̂. Substituting Eq.~A3! into Eq. ~22! and exchang-
ing the orders of differentiation, configurational averagin
and taking the trace,P(T) can be written as

P~T!5E dq

2p
e2 iqTFN1 (

n51

`
~ iq !n

n!
f̂ n21S h

]

]h D ^g~h!&G .

~A4!

The calculation of the distribution function is thus reduced
the calculation of the average conductance and its dep
dence onh.

For explicit calculations Eq.~A4! is cumbersome. To de
rive a more convenient expression we divide the distribut
function is three parts. The first partP1(T) contains only the
first term inside the square brackets in Eq.~A4! and can
easily be evaluated as

P1~T![E dq

2p
e2 iqTN5Nd~T!. ~A5!

The second partP2(T) is the contribution to the distribu
tion function that comes from the integrable part~denoted by
the horizontal line! of the configurationally averaged condu
tance:

P2~T![E dq

2p
e2 iqT(

n51

`
~ iq !n

n!
f̂ n21S h

]

]h D ^g~h!&.

~A6!

A simplified expression forP2(T) can be derived using a
Kramers-Kronig relation for the integrable part of^g(h)& in
the variableh

^g~h!&5Rê g~h!&5PE
2`

` dy

2p

Im^g~y!&
y2h

, ~A7!

where^g(y)& is the analytical continuation of the integrab
part of^g(h)& in the lower half complex plane and P denot
the principal part. We made use of the fact that the cond
tance is real forh>0. P2(T) can be calculated by substitu
ing Eq.~A7! into Eq.~A6!. To evaluate the resulting expres
sion we first note that

f̂ n21S h
]

]h DhM5hM f n21~M !, ~A8!

with

f n21~M !5S M1n

n D . ~A9!

The operators that act on powers ofh can thus be replaced
by numbers. Using this property we obtain

f̂ n21S h
]

]h D 1

y2h
5

1

y
f̂ n21S h

]

]h D (
M50

` S h

y D M

5
1

y (
M50

`

f n21~M !S h

y D M

5
1

yS y

y2h D n

.

~A10!
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Substituting Eq.~A7! into Eq.~A6! and exchanging the orde
of differentiation and integration overy, Eq. ~A6! can be
simplified using Eq.~A10! to

P2~T!5E dq

2p
e2 iqT(

n51

`
~ iq !n

n!
PE dy

2p

Im^g~y!&
y S y

y2h D n

.

~A11!

Using the fact that

ImE dq

2p
e2 iqT

~ iq !n

n!
50 ~A12!

for all values ofn and separating then50 term we find

P2~T!52^g~0!&d~T!1ImPE dy

2p

^g~y!&
y

dS T2
y

y2h D
52^g~0!&d~T!1

1

p

1

T~12T!
ImK gS hT

T21
2 i01D L ,

~A13!

where the positive infinitesimal 01 is added to indicate tha
the conductance should be calculated just below the
axis.

The last partP3(T) arises from the contributions of th
nonintegrable parts of̂g(h)&, which should be treated sepa
rately. As an example we consider the contribution fro
^g(`)&, which vanishes for dirty interfaces but remains fini
in the limit of a small number of strong scatterers.15 Since
^g(`)& is a constant not depending onh,
m

r

eal

-
m
te

f̂ nS h
]

]h D ^g~`!&5^g~`!& ~A14!

and

P3~T![E dq

2p
e2 iqT(

n51

`
~ iq !n

n!
f̂ n21S h

]

]h D ^g~`!&

52^g~`!&d~T!1^g~`!&d~T21!. ~A15!

The total distribution function is the sum ofP1(T),
P2(T), and P3(T). Note that the integrals overT of both
P2(T) andP3(T) vanish and thatP(T) is thus properly nor-
malized. In Eq.~23! only P1(T) and P2(T) are taken into
account sincêg(`)& vanishes for dirty interfaces. When th
conductance contains only integrable parts^g(0)&5N and
the d(T) terms arising fromP1(T) andP2(T) cancel.

In principle full knowledge of̂ g(h)& for h ranging from
0 to ` is required to calculateP(T). Since our calculations
for dirty interfaces are limited tog!N they do not describe
^g(h)& correctly for h approaching zero, which causes in
correct behavior of the distribution function for smallT. This
results in the nonintegrable divergence atT50 in Eq. ~35!
even though Eq.~23! is properly normalized. To normalize
P(T) correctly a cutoff at smallT was introduced in Eq.
~35!. This cutoff is irrelevant for the first- and higher-orde
moments ofT. A similar cutoff occurs in Eq.~4! for disor-
dered bulk conductors.
c.
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