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Abstract

The Jakobshavn glacier was responsible for approximately 1 mm eustatic sea level rise in the period of 2000
to 2010 [Howat et al., 2011]. As such, the Jakobshavn glacier became one of the largest outlet glaciers in
Greenland [Joughin et al., 2004]. Ice flow velocities within the same period reached over 10 km/yr with strong
seasonal variation [Howat et al., 2011, Joughin et al., 2012]. More recently from 2011 until 2013, even higher
ice flow velocities of at least 15 km/yr were observed [Lemos et al., 2018]. Due to the relatively high ice flow
velocities, the ice discharge plays the largest role in the mass balance (MB) of the Jakobshavn glacier. Quan-
tification of the ice discharge from ice flow velocities is however, not a common procedure. Yet the evolution
of the ice discharge of single glaciers not only improves understanding of the climate-cryosphere system, but
also aids quantification of sea level contribution on a drainage basin scale. To that end, this study embodies
an indirect ice discharge estimation of the Jakobshavn glacier over the period of November 2010 until March
2016 using altimetry (CryoSat-2 Level 1b (L1b)) and gravimetry (GRACE Level 2 (L2)) data in combination with
a regional climate model (RACMO 2.3p2). By subtraction of the altimetric and gravimetric mass balance es-
timates from the atmospheric component (i.e. the surface mass balance (SMB)), two ice discharge estimates
are obtained. This approach does not suffer from the drawbacks involved when estimating ice discharge from
velocity fields directly, which are based on offset tracking. Data gaps for long polar nights and clouds in the
visible spectrum and decorrelation in general, when the duration between subsequent images over the same
location is long, are thus avoided. This is because offset tracking algorithms require recognisable characteris-
tics in subsequent satellite recordings to determine the velocity, i.e. satellite recordings need to be sufficiently
correlated. To derive the mass balance from altimetry data, adequate spatial sampling is desired. To that end,
this study applies swath processing to CryoSat-2 L1b data with an adapted waveform sample selection crite-
rion to obtain an unprecedented spatial sampling with about 2 order of magnitude more height observations
compared to conventional retracking techniques. As a consequence, elevation changes can be derived at a
relatively high spatial resolution (250 m). The elevations are converted to elevation changes, volume change
and mass change using weighted least squares estimations (WLSE), hypsometric averaging and density mod-
els, respectively. The GRACE-based mass change estimate is acquired using a point-mass assumption at the
location of the Jakobshavn glacier. The known, simulated point mass is then scaled to the observed mass by
GRACE. In addition, data weighting of GRACE Stokes’ coefficients is attempted using the full noise covari-
ance matrix. Subsequently, a LSE is used to infer the mass balance from the two time series (with and without
weighting of the Stokes’ coefficients).
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Samenvatting

De Jakobshavn gletsjer was verantwoordelijk voor ongeveer 1 mm wereldwijde zeeniveaustijging gedurende
de periode van 2000 tot en met 2010 [Howat et al., 2011] en werd daarmee één van de grootste afvoerglet-
sjers van Groenland [Joughin et al., 2004]. IJsstroomsnelheden tijdens diezelfde periode bereikte minstens 10
km/jaar met sterke seizoensvariaties [Howat et al., 2011, Joughin et al., 2012]. Na deze periode, tussen 2011
en 2013, werden nog hogere ijsstroomsnelheden (>15 km/jaar) waargenomen [Lemos et al., 2018]. Door de
relatief hoge ijsstroomsnelheden speelt de ijsafvoer de grootste rol in de massabalans van het Jakobshavn
stroomgebied. Desondanks wordt de ijsafvoer vaak niet gequantificeerd. Het onderzoek naar ijsafvoer van
gletsjers is echter van belang voor het beter begrijpen van zowel de wisselwerking tussen het klimaat en de
poolkappen als de uiteindelijke invloed op zeeniveaustijging op gletsjerschaal. Deze studie is daarom gericht
op het indirect schatten van de ijsafvoer van de Jakobshavn gletsjer vanaf november 2010 tot en met maart
2016. Dit wordt gedaan met behulp van altimetrie- (CryoSat-2 Level 1b (L1b)) en gravimetriedata (GRACE
Level (L2)) in combinatie met een regionaal klimaatmodel (RACMO 2.3p2). Door de totale massabalans af
te halen van de atmosferische component (SMB) wordt de ijsafvoer bepaald. Hiertoe worden twee mass-
abalansen berekend, één met altimetrieobservaties en één met gravimetrieobservaties. Deze aanpak on-
dervindt niet de nadelen die voorkomen bij het bepalen van de ijsafvoer aan de hand van ijsstroomsnelhe-
den. IJsstroomsnelheden worden namelijk voornamelijk berekend met offset tracking. Een nadeel van deze
methode is de ontbrekende data door wolken en het lang ontbreken van zonlicht in de winter bij de toepass-
ing in het zichtbare spectrum. Daarnaast verhindert ook decorrelatie, wanneer de duur tussen twee satelli-
etobservaties over hetzelfde gebied lang is, de schatting van ijsstroomsnelheden. Offset tracking algoritmes
moeten namelijk karakteristieken elementen kunnen herkennen in opeenvolgende sattelietopnames om de
snelheid te kunnen bepalen (oftewel de opnames moeten voldoende gecorreleerd zijn). Om de massabalans
te bepalen aan de hand van altimetrieobservaties is adequate spatiéle dekking van observaties een belangrijk
element. In deze studie wordt swath processing toegepast op CryoSat-2 L1b data. Samen met een aangepast
criterium voor het selecteren van punten binnen een golfvorm kan met swath processing tot 3 ordes meer
hoogtemetingen worden gedaan in vergelijking tot conventionele selectietechnieken. Als gevolg daarvan
kunnen ook hoogteveranderingen op relatief hoge resolutie (250 m) worden bepaald. De hoogtemetingen
worden omgezet naar hoogteveranderingen, volumeverandering en massaverandering met behulp van, re-
spectievelijk, een gewogen kleinste kwadratenmethode (WLSE), hypsometrisch middelen en verschillende
dichtheidsmodellen. De massaveranderingsschatting gebaseerd op GRACE L2 observaties wordt verkregen
door een puntmassa aan te nemen op de locatie van de Jakobshavn gletsjer. De bekende, gesimuleerde punt-
massa wordt dan geschaald naar de door GRACE geobserveerde massa. Daarbij wordt ook een schatting
gemaakt met weging van de GRACE Stokes’ coefficiénten met de variantie-covariantiematrix. Vervolgens
kan de kleinste kwadratenmethode worden toegepast op de twee tijdsreeksen (met en zonder weging van de
GRACE Stokes’ coefficienten) om de massabalans te bepalen.






Acknowledgements

This thesis marks the end of my MSc. tracks in Applied Geophysics and in Geoscience and Remote Sensing.
Throughout my time at the ETH Ziirich and TU Delft, I have had the chance to study the ins and outs of the
Earth, literally. The scientific understanding of the Earth’s system has grown enormously in the past century.
Especially since the dawn of continuous satellite observations, we have become more and more aware of the
chain of coupled processes that affect today’s Earth. Our contribution to the Earth’s system appears ever-
growing, which is why studies within this field are crucial.

In the past year I have primarily dedicated my time to prepare this final report. During that time, I received
distinguished guidance from Pavel Ditmar, Cornelis Slobbe and Bert Wouters. Therefore, I wish to express
my gratitude towards each of them for sharing their valuable time and knowledge with me. This has allowed
me to substantially improve my understanding on the matters that are discussed throughout this thesis and
as such, to improve this thesis significantly. Furthermore, I wish to thank Guy Drijkoningen for helping me
realise the combination of these master tracks. Also, I express my gratitude towards Torsten Mayer-Gdirr of the
Institute of Geodesy from TU Graz for providing GRACE L2 monthly solutions and normal matrices as well as
Brice Noél of the Institute for Marine and Atmospheric Research (IMAU) from Utrecht University for sharing
RACMO 2.3p2. Last but not least, I wish to thank Michalea King of the Ohio State University for providing the
ice discharge time series of the Jakobshavn glacier for validation.

vii






List of Acronyms

Abbreviation

ATM Airborne Topographic Mapper

DEM Digital Elevation Model

DLR Deutsches Zentrum fiir Luft- und Raumfahrt (German Aerospace Center)
DoN Distance off Nadir

DORIS Doppler Orbitography and Radiopositioning Integrated by Satellite
ELA Equilibrium Line Altitude

ESA European Space Agency

EWH Equivalent Water Height

FDM Firn Densification Model

GIA Glacial Isostatic Adjustment

GIMP Greenland Ice sheet Mapping Project

GRACE Gravity Recovery and Climate Experiment

GrIS Greenland Ice Sheet

ICESat Ice, Cloud, and land Elevation Satellite

IMAU Institute for Marine and Atmospheric Research Utrecht
IRA Interferometric Radar Altimeter

KNMI Koninklijk Nederlands Meteorologisch Instituut (Dutch Royal Meteorological Institute)
Laser Light Amplification by Stimulated Emission of Radiation
LEO Low-Earth Orbit

LiDAR Light Detection and Ranging

LRM Low Resolution Mode

L1/L1b/L2 Processing levels 1, 1b and 2

MB Mass Balance

NASA National Aeronautics and Space Administration

NSIDC National Snow and Ice Data Center

OIB Operation IceBridge

RACMO Regional Atmospheric Climate Model

Radar Radio Detection and Ranging

(R)ICM (Regional) Climate Model

SAR Synthetic Aperture Radar

SIN(m) Synthetic Aperture Radar Interferometric (mode)

SIRAL SAR/Interferometric Radar Altimeter

SMB Surface Mass Balance

SNR Signal to Noise Ratio

WGS84 World Geodetic System 1984

(W)LSE (Weighted) Least Squares Estimation







Contents

List of Figures xiii
List of Tables XV
1 Introduction 1
1.1 Background. . . . . . . . ... e e e 1

1.2 Previouswork. . . . . . . o e e e e e e 3

1.3 Motivation . . . . . . ..o e e e e e e e e e e 3

1.4 Researchobjective . . . . . . . . . . . .. L e 4

1.5 Outline . . . . . . . L e e e e e 4

2 Mass change through altimetry 5
2.1 Introduction: The CryoSat-2mission . . . . . . . . . . . . ... v 5
22 Theory . . . . . . L e 6
221 AIIMEry. . . . . o o oo e e e e e e e e 6

2.2.2 CryoSat-2altimeter . . . . . . . . . . . .. L e e 8

2.3 Methodology . . . . . .« . . e e e 10
2.3.1 Swathprocessing . . . . . . . . . . . e e e e e e 10

2.3.2 Swath processing parameterselection. . . . . . . . ... ..o Lo oL 15

2.3.3 Elevationtoelevationchange . . . . . . . . . .. ... ... .. 16

2.3.4 Elevation changetovolumechange . . . . . . . . . .. ... ... ... 0L 18

2.3.5 Volumechangetomasschange . . . . . . . . .. . .. ... ... ... ... 19

24 Results&Discussion . . . . . . . ...l e e e e 20
2.4.1 Swath processing parameterselection. . . . . . . . . ... ... oo 20

2.4.2 Swathprocessingresults. . . . . . . . . ..o e 27

2.4.3 Elevationchangeestimate. . . . . . . . . . . ... .. L e 28

2.4.4 Volumechangeestimate. . . . . . . . . . . . ... Lo 29

24.5 Masschangeestimate . . . . . . . . . . L. Lol e 31

3 Mass change through gravimetry 33
3.1 Introduction: GRACE twinssatellites. . . . . . . . . . . . . ... Lo o 33
3.1.1 Measurementprinciple . . . . . . . .. Lo 33

3.1.2 GRACEincontextofstudyarea . . . . . . . . . . . . . i v v v i 33

3.2 Theory . . . . . . o o o e e e e e e e e 34
3.2.1 Degree-1and Cygcoefficients . . . . . . . . . ... L oo 35

3.2.2 Conversion of temporal variations of gravitational potential. . . . . . . . . .. ... .. 35

3.3 Dataprocessingmethodology . . . . . . . . . ... L L L 35
3.3.1 Introducingapointmass . . . . . . .« . ittt e e e e e e e e e 36

3.3.2 Observed massvariations . . . . . . . . . . . .. Lo 38

3.3.3 Masschangeestimate . . . . . . . . . . . ... e 40

34 Results&Discussion . . . . . . . . L L e e e e 41
3.4.1 Mass change estimated with ordinary least squares estimation . . . . . .. .. ... .. 41

3.4.2 Mass change estimated with statistically optimal least squares estimation. . . . . . . . . 43

4 Removal of the Surface Mass Balance 47
4.1 Introduction: Aregional climatemodel. . . . . . . . .. ... L L oL L oL 47
4.1.1 SMBandIcedischarge. . . . . . . . . . ... . oo 47

4.2 Theory&Methodology . . . . . . . . . . . e 48

4.3 Results&Discussion . . . . . . . . . L e e e e e e 49



xii Contents

5 Discussion, Conclusion & Recommendations 51
5.1 Conclusion . . . . . . . . L e e e e e e 52
5.2 Recommendations for futureresearch . . . . . . .. .. ..o Lo oo oo 54
Bibliography 57
A Appendix 63
Al LeastSquares Estimation . . . . . . . . . . . . . . 00 e 63
A.2 Waveform sample selection based on R [Weissgerber and Gourmelen, 2017] . . . . . . . . . .. 64
A3 Leakageand zero-padding . . . . . . . . . . ..o e 64
A.4 On (differential) phase ambiguities . . . . . . . . . . . ... ... o o 64
A5 Sensitivity to ascending/descending observations . . . . . . . ... ... Lo oL 65
A.6 Elevation estimatesfromWLSE. . . . . . . . .. . ... Lo o o L oo 66
A.7 Effective density of the linear densitymodel . . . . . . . . . .. ... ... ... 0., 67
A.8 Geodetic, geocentric and local coordinates . . . . . . . . ... ..o Lo 67
A.9 On the synthesis of the gravitational potential . . . . . . . . ... ... ... ... ...... 68
ATOFIgures . . . . . . . o e e e e e e 69
A.10.1 MapsofGreenland. . . . . . . . . . ... e e e 69

A.10.2 Distributions of elevation difference for different waveform parameters for 6 drainage
basins . . . . . . L e e e 69

A.10.3 Parameterselection . . . . . . . . . ... e e e e e e e 72



List of Figures

1.1 Maps of the basin boundaries in Greenland and of the elevation in the Jakobshavn drainage

basin. . . .. 1
1.2 Calving front of the Jakobshavn glacier with dated demarcations. . .. ... .. .......... 2
2.1 Geographical mode mask of the SIRAL instrument on board CryoSat-2. . . . . . ... ... .. .. 6
2.2 Schematic visualisation of involved parameters for elevation determination from range mea-
SUIEMENTS. . . . o v ittt e e e e e e e e e e 7
2.3 Slope induced error effects on pulse-limited altimeters. . . . ... ... ... ... ......... 9
2.4 A schematic across-track cross-section of CryoSat-2’s SIRAL antennas. . . . ... ......... 9
2.5 Altimetry processing flowchart. . . . . . ... ... .. L L 10
2.6 Geometry of geolocation problem atequal latitudes. . . . . ... ... ........... .. ... 13
2.7 Geometric representation of the geolocation problem. . . . . . ... ... ... ... ... .. ... 13
2.8 Flight paths during the OIB campaign in 2015 on the northern hemisphere. . . ... ... .. .. 14
2.9 Comparison of elevation of retracked points without optimisation and OIB observations. . . . . 15
2.10 Schematic of the grid used for the elevation change estimation. . . ... .. ... ......... 17
2.11 Visualisation of SIN and LRM mode coverage over the Jakobshavn drainage basin. . . . ... .. 18
2.12 Variation of upper and lower normalised waveform power threshold. . . . . ... ... ... ... 21
2.13 Power signatures of a regular and discarded waveform. . . . . .. ..., .. ... ... ... ... 21
2.14 Power signature of a discarded waveform and itsorigin. . . . . ... ... ... ... .. ... ... 22
2.15 Scatter plot of (a) normalised power, (b) look angle, (c) coherence and (d) phase difference dis-
persion as a function of elevationerror. . . . . . . . ... ... e 23
2.16 Variation of coherence and look angle thresholds without a normalised power constraint. . . . . 24
2.17 Variation of phase difference (PD) dispersion and look angle thresholds without a normalised
POWET CONSIIAINT . . . . . . o i ettt e e e e e e e e e e e e e e e e e e e e 24
2.18 Scatter plot of DEM-derived slopes as a function of DEM elevation difference. . . . . .. ... .. 25
2.19 Improvement of elevation statistics by comparison of the observations withOIB. . . . . ... .. 26
2.20 Locations of points validated with OIB. . . . . . . . . ... ... .. .. . . 27
2.21 Number of data points per grid cell of 250 x 250 m? (November 2010 until March 2016). . . . . . 28
2.22 Elevation change and elevation change standard deviationinm/yr. . . ... ... ... ...... 28
2.23 a) Elevation change in m/yr. b) Elevation change standard deviationinm/yr. .. ... ... ... 29
2.24 Histogram of the input and data edited elevation change estimates. . . . ... ........... 29
2.25 Hypsometric averaging using different hypsometricfits. . . ... ... . ... . ... ... ... 30
2.26 Separation of thinning regimes based on flow velocity. . . . . .. ... ... .. ... ... ..... 31
2.27 Example of density models used for volume to mass conversion. . . . . ... ... ... .. .... 32

3.1 Rates of mass change or mass change-related processes in the area of the Jakobshavn drainage

basin. . . . . e e e 34
3.2 Surface density variationrate (5 kmresolution). . . . .. ... ... .. .. L L L oL 36
3.3 Simulation of the surface density variation using a point mass located at (-145.00;-2274.99). .. 37
34 Examplegridwith175kmradius. . .. ... ... ... . .. . . 38
3.5 Impact of co-estimation of point mass 2 on mass change estimate as a function of grid radius. . 41
3.6 Impact of co-estimation of a bias on mass change estimate as a function of grid radius. . . . . . 42
3.7 Impact of grid point spacing on mass change estimate as a function of grid radius. . . . ... .. 42
3.8 Time series based on ordinary LSE with point mass 1 used for mass change estimate with 10 km

grid point spacing, 200 km grid radius and bias co-estimation. . . . ... ... .. ... ... ... 43
3.9 Impact of eigenspectrum truncation on mass change estimates. . . . . ... ... ......... 43
3.10 Insensitivity to simulated point masses in statistically optimal approach. . . . . . ... ... ... 44
3.11 Decorrelated point mass 1 forlarge gridradii. . .. ... ... .. ... ... .. ... ... .. ... 44
3.12 Decorrelated point mass 1 with 800 km grid radius truncated to200km. . ... .. ... ... .. 45

xiii



Xiv List of Figures

3.13 Time series based on truncated decorrelated LSE with point mass 1 used for mass change es-
timate with 10 km grid point spacing, 800 km grid radius (truncated at 200 km) and bias co-
estimation. . . . . . . . . . e e e e

3.14 Number of largest retained eigenvalues of the noise covariance matrix after regularisation for
eachmonth. . . . . . ..

3.15 Time series based on truncated decorrelated LSE with point mass 1 used for mass change es-
timate with 10 km grid point spacing, 800 km grid radius (truncated at 200 km) and bias co-
eStimation. . . . . . . . L e e e e e e e

4.1 TFSmodel . ... ... . . . . e
4.2 Annual SMB persquarekilometre . .. ... ... ... .. ...
4.3 SMA in the Jakobshavn drainage basin with themodelfit. . . . . ... .. ... .. ... ... ...

A.1 Elevation change difference between estimates of observations in ascending and descending
raCK. . . o e e e
A.2 Elevation estimate in the Jakobshavn drainage basin at 250 m resolution. . . . . . ... ... ...
A.3 Elevation difference between the DEM [Howat et al., 2017] and CryoSat-2 elevations. . . . . . . .
A.4 Maps of Greenland of the elevation and basin boundaries . . . . .. ... ... ...........
A.5 Scatter plots of the sample power of the dataset described in section 2.3.2, i.e. nearly all obser-
vations during April 2014 for different drainage basins. . . . . .. .. ... ... oo L L
A.6 Scatter plots of the sample look angle of the dataset described in section 2.3.2, i.e. nearly all
observations during April 2014 for different drainage basins. . . . . ... .. ... ... ... ...
A.7 Scatter plots of the sample coherence of the dataset described in section 2.3.2, i.e. nearly all
observations during April 2014 for different drainage basins. . . . . ... ... ... .. .. ...
A.8 Scatter plots of the sample PD dispersion of the dataset described in section 2.3.2, i.e. nearly all
observations during April 2014 for different drainage basins. . . . . ... ... ... ... .. ...
A.9 Scatter plots of the sample slope of the dataset described in section 2.3.2, i.e. nearly all obser-
vations during April 2014 for different drainagebasins. . . . . . .. ... ... ... oL L.
A.10 Impact of variation of a normalised waveform energy threshold on the standard deviation for
different drainage basins. . . . . . . . . ...
A.11 Impact of variation of a normalised waveform energy threshold on the number of available
points for different drainage basins. . . . . . .. ... L L L L
A.12 Impact of variation of a normalised waveform energy threshold on the optimisation criterion
for different drainage basins. . . . . . . . .. L e
A.13 Impact of variation of a coherence threshold on the standard deviation for different drainage
basins. . . ... e e e
A.14 Impact of variation of a coherence threshold on the number of available points for different
drainage basins. . . . . . . . . e e
A.15 Impact of variation of a coherence threshold on the optimisation criterion for different drainage
basins. . . ... e
A.16 Impact of variation of a PD dispersion threshold on the standard deviation for different drainage
basins. . . ... e e
A.17 Impact of variation of a PD dispersion threshold on the number of available points for different
drainage basins. . . . . . . .. e e
A.18 Impact of variation of a PD dispersion threshold on the optimisation criterion for different
drainage basins. . . . . . . .. e e e e
A.19 Horizontal flow velocity in the Jakobshavn drainagebasin. . . . ... ... .. ... ........
A.20 Linear trend of the FDM and itS €rror. . . . . . . . . . . oo i ittt
A.21 Ice mask of the Jakobshavn drainage basin (90 m resolution). . . . . ... ... ... ... .....

73



2.1
2.2
2.3
24

2.5
2.6
2.7
2.8

3.1
3.2
3.3
3.4

Al

List of Tables

CryoSat-2 altimeter (SIRAL) payload characteristics. . . . ... ... ... ... ... ........ 5
Geophysical and instrumental range corrections. . . . . . .. ... .. .o 8
Number of available points per drainage basin used for optimising threshold values. . . . . . . . 20
Optimisation results for 6 different drainage basins for coherence and look angle as well as PD

dispersion and lookangle. . . . . . . ... L 24
Chosen thresholds for retracking CryoSat-2 L1B data based on 6 drainage basins. . . . . ... .. 26
Hypsometric averaging results for differentfits. . . ... ... ... .. ... .. ... .. ... ... 30
Volume change derived from two hypsometriccurves. . . . . .. ... .. .. ... .. ....... 31
Mass change based on a linear and flow velocity based densitymodel. . . . ... ......... 32
Coordinates of point mass locations. . . . .. .. ... ... .. ... . e 37
Grid radius and corresponding number of points for a 10 km grid point spacing. . ... ... .. 37
Dataused thischapter. . . . . . . . . .. . . e 38
Variation of set-upsinthissection. . . . . . . . . . .. . . i e 41
Geodetic parameters of the WGS84 ellipsoid. . . . . . .. ... ... ... .. ... .. .. .. ... 67






Introduction

1.1. Background

This research focuses on the Jakobshavn glacier at the West coast of Greenland (69.2°, -49.7°). The Jakob-
shavn glacier drains ice, snow and water from the vast Greenland ice sheet (GrIS). The area from which the
Jakobshavn glacier drains is referred to as the Jakobshavn drainage basin, which is outlined in red in figure 1.1.
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Figure 1.1: Greenland and its division by drainage basins on the left. The Jakobshavn drainage basin on the right with an underlying
digital elevation model (DEM). Elevation is with respect to the reference ellipsoid (WGS84). Drainage basin division is taken from Zwally
etal. [2012]. DEM is taken from Howat et al. [2017].



2 1. Introduction

The Jakobshavn glacier itself acquired a lot of interest from the scientific community in the past decade.

Although the glacier width is relatively small (approx. 5 km) compared to e.g. Zachariae Isstrom (approx. 26
km), the Jakobshavn glacier is considered Greenlands largest outlet glacier [Joughin et al., 2004]. It discharges
about 6.5% of Greenlands total ice discharge [Joughin et al., 2004].
The Jakobshavn glacier has not always drained such a large amount ice, snow and water. The Jakobshavn
glacier is considered to have been relatively stable between 1964 and 1989 [Pelto et al., 1989]. A period of
thickening followed, after which rapid thinning was observed when the ice floating tongue started to disin-
tegrate in the late 1990’s [Joughin et al., 2004]. This was likely caused by the retreat of the calving front and
thinning of the shelf [Muresan et al., 2016]. Ice flow velocities dropped from 6.7 km/yr in 1985 to 5.7 km/yr in
1992, accelerating in 1999 to 9.4 km/yr in 2000 and 12.6 km/yr in 2003 [Joughin et al., 2004]. The mass loss of
the Jakobshavn glacier was 8 Gt/yr in 2000, increasing up to about 25 Gt/yr by the end of 2002 [Howat et al.,
2011]. With the loss of the glacier tongue in late 2003 [Muresan et al., 2016], the glacier’s flow velocity and
terminus advancement shows stronger seasonal variation [Howat et al., 2011, Joughin et al., 2012]. Mass loss
accelerated in 2006, rising up to 33 Gt/yr by 2007 [Howat et al., 2011]. Until the end 0f 2010, the loss fluctuated
between between 25 and 33 Gt/yr [Howat et al., 2011]. Strong ice flow acceleration was observed again in the
period of 2011 to 2013, reaching flow velocities over 15 km/yr [Lemos et al., 2018]. The calving front retreat
has been visualised in figure 1.2 using images from Terra and LandSat.

Distance in km

o

Figure 1.2: Calving front of the Jakobshavn glacier with dated demarcations. Taken from: https: //svs. gsfc. nasa. gov/ 3806.
Updated for the years 2013 and 2014 by E. Olsen.

Simultaneously, since 1997, the ice shelf is thinning [Hurkmans et al., 2012]. A thinner ice shelf, along
with melt water seepage through cracks and between the bedrock and the ice sheet (friction reduction), leads
to higher ice flow velocities. As a consequence, the Jakobshavn glacier is considered a significant contributor
to sea level rise from the Arctic cryosphere. Concretely, the contribution to eustatic sea level rise from the
Jakobshavn glacier from 2000 to 2011 was nearly 1 mm [Howat et al., 2011]. That loss resembles a basin-wide
thinning of 3.5 m [Howat et al., 2011]. For a detailed historical study on the glacier terminus and surface
elevations of the Jakobshavn glacier in the 20" h century, we refer to Csatho et al. [2008].

The Jakobshavn mass loss that has taken place throughout this century is driven by two components:

MB=SMB-1ID, (1.1

where MB represents the (total) mass balance, the SMB is the surface mass balance, i.e. the atmospheric com-
ponent and ID the ice discharge, i.e. the dynamic component. A negative or positive MB indicate ablation
or accumulation, respectively. A MB for a glacier is commonly given on a yearly basis in Gt/yr. Concretely,
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approximately 332 Gt of ice loss exhibits 1 mm eustatic sea level rise.

MB estimations can be obtained using observations from various remote sensing techniques. Spaceborne
gravimetry (e.g. GRACE twin satellites), a remote sensing technique can provide such observations. Like-
wise for LiDAR (e.g. ICESat) and radar (e.g. CryoSat-2), which are both active spaceborne remote sensing
techniques. Airborne remote sensing techniques also exist, but generally lack the combination of adequate
temporal and spatial sampling.

With gravimetry, mass change or rather redistribution can be observed. LiDAR and radar observe elevation,
which can be related to volume change. In the latter case conversion to mass is required.

The Regional Atmospheric Climate Model (RACMO) has been designed to model the SMB of polar regions,
i.e. Antarctica and Greenland [IMAU]. The SMB represents the net sum of accumulation from snow and rain
and ablation by run-off and sublimation.

The ice discharge can be obtained by integrating flow velocities over the flux gate assuming the density of ice.
The flux gate is a plane perpendicular to the flow direction near the terminus (upstream the grounding line).
Flow velocities are generally derived from radar or visible satellite imagery with tracking algorithms [Joughin
et al., 2004, Lemos et al., 2018, Strozzi et al., 2002].

1.2. Previous work

The sensitivity of ice dynamics (discharge) to climate change is not fully understood [Howat et al., 2007]. As
a consequence, the description corresponding physical processes that are included in ice-sheet models are
inadequate [Howat et al., 2007]. The ice discharge of the Jakobshavn glacier has been studied by Howat et al.
[2011] in the period of 2000 until 2010 (see section 1.1). Velocity fields are good indicators of ice dynamics.
Velocity fields of the Jakobshavn glacier have been made by Joughin et al. [2010], Moon et al. [2014], Pelto et al.
[1989]. Quantification of the ice discharge from ice flow velocities is however, not a common procedure. More
often, the ice flow velocities are used to improve understanding of glacier physics [Moon et al., 2014]. In some
cases research only focused on thinning rates [Foresta et al., 2018, Nilsson et al., 2016, Wang and Holland,
2018]. In others, volume estimates are obtained [Hurkmans et al., 2012, Motyka et al., 2010, Nielsen et al.,
2013], omitting conversion of volumes to mass. The scales of observation area among these studies varies
widely, i.e. from a few 1000 km? near the Jakobshavn terminus up to entire Greenland. The ice discharge
of the Jakobshavn glacier can be attributed to a demarcated basin described by Zwally et al. [2012]. This
demarcation is also used in this study (see figure 1.1). Most recently, King et al. [2018] (in review) integrated
for each outlet glacier, its thickness, flow velocity and ice density across the flux gate from 2000 until 2016.
The average ice discharge of the time series of the Jakobshavn glacier over the period of November 2010 until
March 2016 (observation period of this study) was estimated at 50.8+2.2 Gt/yr.

1.3. Motivation

The goal is to infer the ice discharge of the Jakobshavn glacier. As indicated in section 1.1, the ice discharge
of the Jakobshavn glacier contributes to a relatively large amount of the total ice discharge of Greenland. In
the context of sea level rise, ice discharge of glaciers is of importance. The Jakobshavn glacier alone connects
roughly 95380 km? of ice sheet surface area to the ocean. The ice discharge is the greater net mass change
component compared to the SMB. The evolution of the ice discharge of single glaciers not only improves
understanding of the climate-cryosphere system, but also aids quantification of sea level contribution on a
drainage basin scale. To that end, this project embodies an ice discharge estimation of the Jakobshavn glacier
over the period of November 2010 until March 2016 using altimetry and gravimetry data in combination with
a regional climate model. By subtraction of the altimetric and gravimetric mass balance estimates from the
SMB, two ice discharge estimates are obtained. This approach does not suffer from the drawbacks involved
when estimating ice discharge from velocity fields directly, which are based on offset tracking. Data gaps for
long polar nights and clouds in the visible spectrum and decorrelation in general, when the duration between
subsequent images over the same location is long, are thus avoided. This is because offset tracking algorithms
require recognisable characteristics in subsequent satellite recordings to determine the velocity, i.e. satellite
recordings need to be sufficiently correlated.

The altimetry data will be swath processed. This means that the full waveform is exploited, which provides
an unprecedented spatial sampling and resolution. Conventional altimetry processing retrieves only one
height estimation per recorded waveform. In contrast to CryoSat-2’s two-antenna system which overcomes
this limitation and retracks the entire waveform. After conversion to mass change, this is compared to mass
change inferred from GRACE monthly solutions.
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1.4. Research objective

This study is conducted to quantify the ice discharge of the Jakobshavn glacier. Three main data sources are
used for the estimation of the annual ice discharge. The first main data source is CryoSat-2, providing satel-
lite altimetry data. CryoSat-2 elevation estimates have a relatively high (approximately 1.6 x 0.4 km?) spatial
resolution. Second main source are the GRACE twin satellites, administered by NASA and DLR. With GRACE,
mass anomalies can be inferred at a relatively low spatial resolution (roughly 150 x 150 km?). The third main
data source is RACMO, a regional climate model maintained by IMAU (Utrecht University) and Dutch Royal
Meteorological Institute (KNMI). RACMO provides the SMB over the study area at 1 x 1 km?. The temporal
resolution of each of these three methods is monthly. However, the CryoSat-2 swaths overlap earlier orbits,
such that surface locations are often revisited more than once per month.

This leads to the following research objective:

Derive the ice discharge and its corresponding error budget from swath processed CryoSat-2 volume data,
GRACE mass anomalies, and RACMO modelling results over the Jakobshavn drainage basin in Greenland in
the period of November 2010 until March 2016.

Three specific research questions will be addressed.

Q.1 What are the key parameters in the implementation of the CryoSat-2 swath processing scheme for eleva-
tion change estimation?

Swath processing is a method for transferring CryoSat-2 observations from level 1b to 2. During this
processing step, a manual choice of several parameters is required. The question is therefore: which
choice of parameters lead to the most accurate and precise elevation estimates with an adequate in-
crease in spatial coverage?

Q. 2 How can the GRACE mass anomalies, the CryoSat-2 elevation estimates obtained through swath process-
ing and the RACMO modelled SMB be combined consistently to reveal the ice discharge in Jakobshavn in
Greenland?

CryoSat-2 carries an altimeter, by which surface elevations are estimated. GRACE, a gravimetry mis-
sion, infers mass anomalies directly. RACMO is a RCM simulating the SMB. Apart from the different
physical quantity, each is also retrieved at a different temporal and spatial scale.

Q.3 What limitations emerge from the RACMO data inclusion, the GRACE and CryoSat-2 data acquisition
and chosen processing methods and how do these jointly affect the ice discharge estimates?

Following up on Q. 2, the different methods and scales introduce different bottlenecks. These bot-
tlenecks are identified.

1.5. Outline

This introductory chapter forms the basis of the forthcoming chapters. The remainder of this report is struc-
tured as such that the research questions can be answered in the written order. Thus, in chapter 2, a CryoSat-2
data derived MB is inferred first. Consecutively in chapter 3, an estimation of the MB with GRACE monthly
solutions is derived. Subsequently in chapter 4, RACMO modelling data is used for the retrieval of the ice
discharge from the MB. Lastly, an endeavour is made to concisely answer the research questions with corre-
sponding discussion in light of the obtained ice discharge estimates of Jakobshavn drainage basin.
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This chapter presents the reader with a brief introduction on the CryoSat-2 mission and its altimeter. This
is followed by the applied methodology to infer mass change estimates from a CryoSat-2 L1b data product.
Finally, the mass change results and several intermediary products are presented and discussed.

2.1. Introduction: The CryoSat-2 mission

ESA’s CryoSat-2 was designed under the Living-planet program, which concerns itself with the understanding
of Earth’s system and its processes to determine the variation of the major ice masses on Earth [ESA, 2017].
CryoSat-2 is equipped with a dual antenna, normal-incidence, radar altimeter, exploiting synthetic aperture
radar (SAR) and interferometric processing. With this set-up, CryoSat-2 is ultimately capable of determining
surface elevations and surface elevation change [Ratier et al., 2005].

CryoSat-2 began its journey at the Baikonur Cosmodrome, Kazakhstan, on the 8" of April 2010, from where
it was launched into space to an altitude of about 720 km. It orbits at a 92°inclination for coverage up to
88°latitude in a non-Sun-synchronous low Earth orbit (LEO) at a speed of roughly 7 km/s [Ratier et al., 2005].
Together with a 369-day orbit repeat and 30-day sub-cycle, it can provide a relatively high temporal and
spatial resolution over the Arctics. As a consequence, ground track distance between two consecutive or-
bits is larger around the equator (approximately 7.5 km) than at higher latitudes (approximately 1.6 km at
70°latitude) [Gourmelen et al., 2017]. Technical details of SIRAL can be found in table 2.1.

Table 2.1: CryoSat-2 altimeter (SIRAL) payload characteristics.
*The transmitted bandwidth is slightly higher (350 MHz), but is only 320 MHz after processing due to a band-pass filter [Galin et al.,
2012]. *Initial number of samples per echo was 512, but was increased by factor 2 to alleviate aliasing [Makhoul-Varona et al., 2017].

Parameter IRM | SAR | SIN
Centre frequency 13.575 GHz (Ky-band)
Bandwidth 320 MHz*

Transmit power 25W

Noise figure 1.9 dB at duplexer output
Antenna gain 42 dB

Antenna 3 dB beam-width (along-track) 1.06° [Scagliola, 2013]
Antenna 3 dB beam-width (across-track) 1.1992° [Scagliola, 2013]
Bandwidth 350 MHz
Compressed pulse length 3.125ns

Sample interval 0.47 m

Samples per echo 128 128 1024**
PRF 1970 Hz | 17.8kHz | 17.8kHz
Burst length - 3.6 ms 3.6 ms
Burst repetition interval - 11.7ms | 46.7ms
Pulses per burst - 60 60
Azimuth looks 91 240 60
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CryoSat-2’s altimeter, Synthetic Aperture Radar Interferometric Altimeter (SIRAL), operates in three dif-
ferent modes, each activated over different parts of the world (figure 2.1).

¢ Low Resolution Mode (LRM) is active above simple topographies (e.g. oceans) and has a footprint
size of approximately 1.64 km along and across-track. This mode resembles the conventional radar
altimetry with additional pulse compression.

¢ Synthetic Aperture Radar (SAR) mode is active above moderately coarse topographies (e.g. sea ice) and
has a with footprint size of approximately 400 m along-track and 1.64 km across-track.

* Synthetic Aperture Radar Interferometric (SIN) mode is active above complex topographies (e.g. ice
cap margins) and has a footprint size of approximately 400 m along-track and 1.64 km across-track.
Additionally, it records with two antennas, enabling users to position across-track scatterers.

Figure 2.1: Geographical mode mask of the SIRAL instrument on board CryoSat-2. SAR mode in green, SIN mode in purple and LRM
in red as well as the remaining transparent parts. In the study area, Greenland, only LRM and SIN mode data is acquired. Taken from:
https:/learth.esa.int/web/guest/-/geographical-mode-mask-7107 (version 3.8).

2.2. Theory
2.2.1. Altimetry

An altimeter is an active remote sensing system, capable of measuring range by recording the time taken
between transmission and arrival of a pulse. The arrival time of a pulse is determined based on the incoming
power over time (waveform). A strong increase in reflected power indicates strong surface scattering. The
time delay corresponding to the strong increase in received power marks the travel time from the satellite to
the ground and back, i.e. two-way travel time (equation 2.1):

ct
Ry=—, 2.1
0=7 2.1)

where R is the range in m, ¢ the speed of light in m/s and ¢ the travel time in s. The travel time of the pulse
is affected by different error sources, e.g. geophysical and instrumental. The corrected range (R) is therefore
described as:

R=Ro+rcorr, (2.2)

where r,,r is the sum of the range corrections. The elevation of the scatterer (H) is then derived by subtract-
ing the corrected range from the known satellite altitude (Hsg;):

H=Hu—R. (2.3)

The satellite altitude is continuously estimated using Doppler Orbitography and Radio-positioning Inte-
grated by Satellite (DORIS) and International Laser Ranging Service (ILRS) [Ratier et al., 2005]. H can only
directly be inferred using equation 2.3 if estimated from a point directly below the satellite, i.e. at nadir. If the
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scatterer is not at nadir the range will appear to be longer such that the elevation is underestimated as well
as incorrectly located. The scatterer is commonly not at nadir as the earth’s topography is inhomogeneous.
Elevation, range and satellite altitude over land are visualised in figure 2.2.

Corrections:
— Instrumental
lonospheric
Atmospheric
Tidal

Reference Ellipsoid

Figure 2.2: Schematic visualisation of involved parameters for elevation determination from range measurements. The altitude and
height are perpendicular to the reference ellipsoid. Over Greenland, the geoid is above the reference ellipsoid. Adapted from Bouzinac
[2012].

Altimeters record the incoming power over time. This recording is called the waveform and is basically
a power profile of a fixed number of samples. The recording of the waveform starts not directly after trans-
mission, but a wait time is built in to save resources. The recording starts just before the expected arrival of
the surface returns. The recording time is referred to as window. The onset of this window is controlled by a
separate instrument that tracks ground topography. The time between transmission and recording is called
the window delay. When orbiting over steep ridges or deep valleys, the recording may start too late or too
early. In that case, the waveform contains mostly noise.
Single recordings are generally very noisy. To improve the signal-to-noise ratio (SNR), waveforms are aver-
aged for the reduction of speckle noise. Naturally, this will only improve the SNR if the window is properly
timed.
The shape of the waveform is a function of the physical properties and shape of the surface scattering region.
For laser altimetry, the waveform shape is strongly dependent on the atmosphere and weakly on the physical
properties of the scatterer. For radar this is exactly opposite, due to its longer wavelength. Radar altimeters
have been widely used to map the ocean heights. Above oceans, radar waves experience strong surface scat-
tering and very little volume scattering (i.e. returns from scatters below the surface). Strong surface scattering
is characterised by a typical steep rise in received power. This steep rise is called the leading edge. The time
delay corresponding to the leading edge is the desired quantity, which can be used in equation 2.1 to estimate
the range. To automatically find the leading edge for millions of waveforms, a retracker (an algorithm) is used
which fits the waveform and retrieve the time delay of the leading edge. Several approaches and adaptations
of retrackers for different surface types can be found in Davis [1993, 1997], Deng and Featherstone [2006],
Giles et al. [2007], Gray et al. [2015], Helm et al. [2014], Martin et al. [1983], Nilsson et al. [2016], Wingham
et al. [1986], Wingham et al. [2006] and Nanda [2015] for a comparison study. In this project, waveforms scat-
tered from ice, snow and sometimes water are primarily encountered.
For accurate elevation estimates using altimetry, surface scattering is desired, as it ensures the correct eleva-
tion estimate. Radar frequencies (CryoSat-2 uses Ku-band, 2.3 cm) can penetrate snow and ice packs up to
a few metres [Davis, 1993], causing a significant amount of volume scattering. This alters the waveform and
thus also the elevation estimate, because retrackers may incorrectly estimate the range [Lacroix et al., 2008,
Ridley and Partington, 1988]. This implies that when ice or snow melts, the scattering regime for radar waves
shifts directly and so does the observed elevation. The penetration depth depends on the physical properties
of the snow-pack, e.g. snow wetness, grain size and density [Davis, 1997]. Moreover, more surface interac-
tion takes place for radar altimetry than for laser altimetry, because radar altimetry produces larger footprints
[Nilsson, 2015].
The penetration depth of the radar frequencies primarily depends on the snow-pack density. Since the near
subsurface density in Arctic regions is a function of both time and space, the penetration depth, and thus the
offset is also a function of time and space.
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Range correction

The corrections in figure 2.2 adjust the range by approximately -2 to -3 metres over land (ice). The involved
geophysical and instrumental corrections and magnitudes for CryoSat-2 are taken from Bouzinac [2012] and
are briefly described below.

Table 2.2: Geophysical and instrumental range corrections. The sum of these corrections equals r¢orr and is required to compute the
corrected range (equation 2.2). The USO drift factor corrects the window delay. The USO drift factor is equal to USO drift plus one.
Adapted from Bouzinac [2012].

*Over Arctic regions.

Parameter Magnitude

Dry tropospheric correction -1.7to-2.5m

Wet tropospheric correction | <1 mm* [Rees and Rees, 2012]
Ionospheric correction -6to-12cm

Ocean loading tide -2to2 cm

Solid earth tide -30 to 30 cm
Geocentric polar tide -2to 2 cm

Range bias 17 £ 35 mm [Scagliola, 2017]
USO drift ~107°

The geophysical corrections (1-6) are, of course, satellite independent. Over oceans extra corrections are
required.

2.2.2. CryoSat-2 altimeter

Compared to conventional (LRM) altimeters , CryoSat-2’s system improves on spatial resolution with:
¢ SAR processing;
¢ Interferometric processing.

SAR processing improves the along-track resolution by exploiting the frequency spectrum of incoming pulses
(using Fast Fourier Transforms (FFT)). This is only useful if there is a pulse-to-pulse coherence [Raney, 1998].
This is realised with the transmission of rapid bursts of 64 pulses each, unlike LRM, where a dedicated pause
takes place after every transmitted pulse.

The along-track footprint size is governed by equation 2.4 and results in:

hA

Ax= o
2Vs;cTprrNB

(2.4)

where Ax is the along-track resolution in m, h the altimeter height in m, 1 the pulse wavelength in m, V.
the satellite orbital velocity, Tprr the pulse period in s and Np the number of pulses per burst. For a SAR
setup for CryoSat-2 this results in a resolution of 336 m (along-track) by 1.64 km (across-track) The actual
resolution is slightly lower, about 400 m, because of the application of a (Hamming) window before applying
FFT. Compared to a LRM resolution of 1.64 x 1.64 km?, SAR improves the along-track resolution by roughly 4
times. We refer to Raney [1998, 2012] for more detailed information on SAR processing.

As mentioned in section 2.2.1, the leading edge is generally not from the satellite’s nadir and thus equation 2.3
does not result in the correct elevation. This first arrival is from the point of closest approach (POCA) to the
satellite receiver, which could differ significantly from the nadir position in sloping terrains [Brenner et al.,
1983]. A digital elevation model (DEM) can be used to locate the POCA to derive the correct range and echolo-
cation [Bamber, 1994]. However, in some cases (valleys) the result is ambiguous. Also, the footprint expands
over sloping terrains, leading to elevation estimations of sub-optimal qualities. This effect is illustrated in
figure 2.3.
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Figure 2.3: Slope induced error effects on pulse-limited altimeters. Adapted from Jensen [1999].

A SAR interferometric (SIN) system determines the echolocation without an external DEM. SIN utilises
two antennas, separated by a small distance, perpendicular to the flight direction. A single signal return is
thus recorded twice, but slightly later by one antenna or the other if the echolocation is either left or right from
nadir. This delay manifests itself in a phase difference with respect to the other antenna, which is illustrated
in figure 2.4.

Figure 2.4: A schematic across-track cross-section of CryoSat-2’s SIRAL antennas (red circles, @ and b), with the dashed line indicating
nadir. For SIN, the primary receiving chain is SIRAL A (SIRAL B is back-up) for which the left-hand (facing flight direction) antenna is
used for transmission [Galin et al., 2012]. The antennas are separated by baseline B, perpendicular to the flight direction. The angle y is
the across-track angle. The delay of an incoming signal at antenna a with respect to b is indicated in blue.

The incoming angle of the signal can be calculated with the baseline, i.e. the distance between the two
antennas and the path length difference (see equation 2.5) [Wingham et al., 2006]. This allows CryoSat-2
to track the footprint location. The incoming angle is referred to as look angle. In short, SIN uses on top of
SAR processing to improve the along-track resolution, across-track angle measurements to allow across-track
positioning.

y = arcsin (gf g) -B, 2.5)

where y is the look angle in rad, d¢ the phase difference in rad, 1 the wavelength in m, B the baseline in m
and S the satellite roll. The sine argument is called phase departure [Galin et al., 2012].

The phase can only be measured from -7 up to 7 for each waveform sample, without knowing the possible
additional number of cycles. This is called the phase ambiguity. In practice this means that a phase difference
of 1.2 m wraps around the 7 limit and is measured as -0.8 7. Phase wrapping occurs for look angles greater
than approximately 0.54°. The integer number of times of 27 ambiguity cannot be resolved from the phase
itself, i.e. each waveform sample can be 27 - N shifted with respect to its neighbouring samples. Moreover,
the entire waveform can be wrapped as well. A more illustrative explanation of phase ambiguities is given in
paragraph A.4.

The look angle is directly affected by the satellite roll. For CryoSat-2, the satellite roll is nominally slightly
above -0.1°. Failing to implement this leads to a elevation difference of approximately 8 metres and well over
a kilometre horizontal offset. The attitude information is provided by three star trackers [Ratier et al., 2005].
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2.3. Methodology

The next 4 sections are dedicated to the processing steps required to obtain the mass change as well as the
intermediary products (see figure 2.5).

. Elevation Volume
Elevation > Mass change
change change

Figure 2.5: Intermediate data products in this chapter. Swath processing results in elevation estimates and is addressed below first. The
remaining 3 steps are simply referred to as elevation to elevation change, elevation change to volume change and volume change to mass
change.

CryoSat-2 L1B, baseline C, SIN mode altimetry data from November 2010 until March 2016 in Greenland
is used. A data file usually contains a few thousand waveforms, each waveform with 1024 waveform samples,
along with quality flags, correction data, attitude data, and more [Bouzinac, 2012].

2.3.1. Swath processing

A proof of concept of an interferometric radar altimeter (IRA) was first given by Hawley et al. [2009], continu-
ing on earlier works by Jensen [1999] and Lentz et al. [2002]. Although the proof of concept was an airborne
set-up and not spaceborne, it was shown that many more points could be retracked from the waveform with
a dual antenna system at the cost of overall accuracy [Gourmelen et al., 2017].

Retracking all waveform samples is in essence possible. However, the waveform does not have uniform qual-
ity and information content, as is exemplified below.

¢ The recording aims to start always a bit before the first scatterer is recorded, meaning that the first X
number of bins only noise is measured.

¢ Waveform subsets where the phase difference wraps many times are indicating steep or complex to-
pography, which are prone to large positioning errors.

¢ The coherence is a quality measure of the stack (set of waveforms with the same Doppler characteris-
tics). A low coherence indicates that the stack put together to form a sample are much different and
vice versa for high coherence.

¢ Waveform samples at the end of the waveform are often from scatterers far away from nadir, i.e. with a
relatively large look angle, which are prone to larger positioning errors.

The swath processing strategy is mostly adopted from Foresta et al. [2018]. The final product of this step is a
set of elevation estimates.

Waveform selection

Based on the available flags (quality indicators) within the dataset, waveforms are discarded. Among these
are flags that indicate, for instance, an orbit propagation error, window delay inconsistency or datation error.
For reference, the SS bit codes of the flags used for waveform selection are 0, 1, 2, 3, 6, 7, 8,9, 10, 11, 16, 17, 18,
19 and 27 in the Measurement Confidence Data table of Bouzinac [2012]. On average, less than 10 waveforms
are discarded per file. Secondly, power values are normalised per waveform. Then for each waveform the
total energy received is then approximated (by applying trapezoidal rule). Waveforms with an exceedingly
high or low energy content are discarded. This selection removes on average less than 10 waveforms as well.

Waveform sample selection

This step makes a selection of waveform samples suitable for retracking. Common method here is selection
of waveform samples based on a threshold on coherence, e.g. see Gourmelen et al. [2017], Gray et al. [2013,
2015], Hawley et al. [2009], Helm et al. [2014]. All waveform samples =0.8 coherence are e.g. selected and
the rest is discarded. A power threshold is sometimes also applied, but is less common. Weissgerber and
Gourmelen [2017] pointed out two reasons not to use the coherence and power in the waveform sample
selection step.
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¢ Coherence consists of a variable number of looks, which is not a constant within the waveform, nor
among waveforms.

* Power is topography dependent. A fixed threshold cannot be used in areas with different topographies.

Although the deviation mentioned in the first point is often relatively small (on average #<5), literature also
shows variability in the choice for coherence. Additionally, during this research it was found that higher co-
herence does not always result in more accurate elevation estimates (see chapter 2.4.1.2). For clarity, samples
with power= 0 or coherence = 1 are discarded in any case.

Instead, a sample selection method is used that essentially selects the smooth parts of the phase difference
measurements within each waveform. An instructive interpretation of the procedure described by Weiss-
gerber and Gourmelen [2017] and Foresta et al. [2018] is given in section A.2. The applied methodology is
given below and slightly differs from what is described in section A.2. The phase difference measurements
are referred to as A¢.

1. Create 32 overlapping windows of 64 subsequent waveform samples where each window represents 32
waveform samples. To illustrate, the first window contains sample 1 up to 64, representing samples 1
up to 32. The second window contains sample 17 up to 80, representing samples 33 up to 64. The third
window contains sample 49 up to 112, representing samples 65 up to 96, etcetera.

2. Restore the full signal with unit amplitude for each window via s = e’2?, where i equals v/—1.

3. Apply FFT to s. The largest magnitude in the amplitude spectrum corresponds with the most dominant
slope. Note that f = %. See section A.3 for more information.

4. Find the sign of the slope by taking the sign of the sum of the corresponding unwrapped differentiated
phase differences in each window.

5. Create a new set of linear phase differences using the estimated slope and slope sign for each window.

6. Subtract the new linear phase differences from the observed phase differences in each window.

7. Restore the full signal with unit amplitude using the subtracted phase differences: s,,¢,, = /2%

A(A¢) is the subtracted phase.

, where

8. Compute dispersion measure R = %'Zgﬂ Snewl, where R is the phase difference dispersion and n is
the sample number.

9. Select all samples which are represented by R>0.95 and discard the rest.

The dispersion measure R was introduced by Weissgerber [2017]. When the phase values used to calculate
R are distributed as a Dirac, the lengths of s,,.,, adds up coherently and R is high. When the phase values
used to calculate R are distributed uniformly, the lengths of s;.;,, add up incoherently and R is low. The
Dirac distribution can be obtained when the slope estimate resembles the slope of the phase values. Smooth
phase observations are therefore characterised by an R that is close to 1, whereas strongly alternating phase
observations are characterised by an R that is close to 0. In this set-up R has bounds [0,1], because of the unit
amplitude of s,¢,. R is inversely proportional to the dispersion of the observed phase differences. R is also
referred to as phase difference (PD) dispersion.

This approach differs from the description by Weissgerber and Gourmelen [2017] and Foresta et al. [2018] on
the window set-up. Weissgerber and Gourmelen [2017] proposed to use overlapping windows such that each
sample is represented by R twice. The highest estimate (i.e. the best fit) is then used. As seen above, our
approach maintains overlap for slope estimation, but only estimates one R per sample.
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Phase smoothing

The real and imaginary components are reconstructed via s = e’*? to which a zero-phase low pass filter is
applied [Gray et al., 2013]. This reduces the phase noise at the cost of spatial resolution [Gourmelen et al.,
2017].

Phase unwrapping

Phase unwrapping of the observed phase differences is applied by adjusting each jump between two con-
secutive waveform samples larger than 7 by adding or subtracting 2z. Although the wraps may have been
resolved amongst the waveform samples the entire waveform can be wrapped as well. The look angle y is
therefore computed as:

6P +271k)- A

Yk = arcsin (

where 6 ¢ is the phase difference, with integer k from -5 to 5. Evaluating vy results in 11 different look angles,
i.e. candidates. Each of these look angles are used to geolocate the scatterer. Ultimately, the elevation esti-
mate closest to the DEM is assumed to be the correct one.

In the baseline C product the satellite’s internal roll is uncorrected for light aberrations in the star tracker
measurements [Scagliola, 2018]. Therefore, an external dataset is included, published by ESA on the 2nd of
February 2018, that corrects for the satellite’s roll inconsistencies for recordings since November 2010.

Range processing

For each sample the bin number is known and therefore the time delay. Together with the window delay, the
range can be computed with equation 2.7:

c At
R= —(Atwmdow+n-At— )+rwrr, @.7)

2

where Afindow is the window delay in s,  the bin number, Af the sample time per bin in s and N the total
number of samples per waveform. r.,,r represents the geophysical corrections and range correction that
need to be applied and can be formulated as in equation 2.8 above continental ice [Bouzinac, 2012]:

Tcorr = TOceanloading tide © T'Solid Earthtide & T'Geocentric polar tidet
I'Drytroposphericcorrection +I'wer troposphericcorrection + I'lonospheric correction™ (2.8)

Trange-

T'corr Usually ranges from 1 to 3 metres.

Geolocation

The ellipsoidal heights of the scatterers (%) are computed with equation 2.9 (within the WGS84 reference
system):

hpx = \/R2 + (Hsgr+ N)2—2R - (Hsqy + N) -cos y; — N, (2.9)

where N the radius of curvature and vy the look angle for k (see paragraph 2.3.1.4). The radius of curvature
can be determined with the satellite latitude 6 according to equation 2.10:

a
N=—uou——, (2.10)

1-e?sin%0

where a is the semi-major axis of the Earths’ ellipsoid and e the eccentricity (see section A.8 in the appendix
for more details). An illustration of equation 2.9 is given in figure 2.6.
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Figure 2.6: Geometry of geolocation problem at equal latitudes. 7 and y are very small, <0.15° and <1.5° (typical), respectively, such that
in reality the geometry is much more elongated. Typical values for Hsq¢, R, N are roughly 724 km, 723 km and 6397 km, respectively.
Figure is not to scale.

The latitude and longitude can be calculated using MATLAB’s reckon () ; function, which calculates new
positions based on azimuth, arc length and initial latitude and longitude. This is also called the direct geodesic
problem. MATLAB uses Vincenty’s formulas [Vincenty, 1975] to solve the direct geodesic problem. The az-
imuth within the direct geodesic problem is 90° clockwise or anti-clockwise to the flight direction and the arc
length L,,. can be derived using equation 2.11:

N-R-sinn
Hgqt+N

(2.11)

Lare =

Figure 2.7: Schematic of the reference ellipsoid (not to scale), with centre C, radius of curvature N, latitude 0 and satellite altitude above
the reference ellipsoid Hsg,¢. a and b are the semi-major and semi-minor axis of the WGS84 reference ellipsoid, respectively.

Elevation difference

The elevation difference is defined as the elevation estimate minus the DEM elevation (equation 2.12). The
candidate whose elevation is closest to the DEM is selected for each scatterer. The DEM is taken from the
GIMP and is based on World View stereo imagery from 1 January 2009 to 31 December 2015 [Howat et al.,
2017] with a 90 m resolution.

The elevation difference is a sum of different components. 1) the true elevation difference between hj, and
Hpgym (AH), 2) an elevation change due to ice mass loss or gain (%), 3) a resolution error (&;,,,) and 4) the
static DEM elevation error (¢ pgps), which is the accuracy of the DEM. In short:

dh
Eeley:hp_HDEMzAH"'AtE + Eres T EDEM) (2.12)

where At is the time between creation of the DEM and observation. It is possible to retrieve a better descrip-
tion of the elevation difference when accounting for the last 3 components in equation 2.12. Foresta et al.



14 2. Mass change through altimetry

[2018] corrected for the elevation change due to ice mass loss or gain. When the drift is strong or time differ-
ence is large, such a correction may help phase unwrapping, preventing the selection of wrong candidates.
However, the drift correction is spatially and temporally dependent, which complicates this procedure. In-
stead, to minimise the impact of the drift onto our results the most recent DEM [Howat et al., 2017] compiled
from datasets from 2009 until 2015 is used. €, is approximated to the first order through bi-linear interpola-
tion. Lastly, epgps rangesis 1.6 or 2.7 m (1-0) [Howat et al., 2017] (depending on data origin) in the Jakobshavn
drainage basin.

On the basis of the aforementioned it is possible a sample is incorrectly unwrapped due to the fact that £,,, #
AH. However, addition or subtraction of 27 results in an elevation change in the order 100 m [Gourmelen
et al., 2017]. Exact prediction of the level of accuracy required is difficult due to inhomogeneous topogra-
phy [Gourmelen et al., 2017]. Considering the magnitude of elevation change, the error sources of the DEM,
and the proofs of concept by Foresta et al. [2016, 2018], Gourmelen et al. [2017], Weissgerber and Gourmelen
[2017] the DEM is assumed adequate for global phase unwrapping.

Wang and Holland [2018] found that the strongest elevation change rates can be up to -20 m/yr in the Jakob-
shavn drainage basin. Based on the change rates and possible error in the DEM, points that are differing
from the DEM by more than 100 m are discarded. Furthermore, results positioned on rocky terrain or water
are mostly discarded as well using an ice mask [Howat, 2017] (appendix A.10.3.6) . Subsequently, the points
outside the range window limit plus-minus 100 m are also discarded. Optionally, points can be discarded
based on the DEM-derived slope. Positioning errors result in elevation differences, which may be larger on
steep slopes than on gentle slopes [Gray et al., 2013]. This is addressed when applying parameter optimisa-
tion.

Validation of results

The observed elevation difference can also be computed with respect to Operation IceBridge (OIB) elevation
data instead of a DEM. OIB is an airborne NASA mission that has been designed to bridge the data gap be-
tween ICESat and ICESat-2 (spaceborne laser altimetry missions) [DeWitt and Zell, 2010, Zell, 2017b]. OIB
campaigns take place since 2009, but only for a few months each year. Figure 2.8 shows the campaign map of
2015.

The OIB laser altimeter, Airborne Topographic Mapper (ATM), [Zell, 2017a] operates at elevations of 500 to
750 metres above the ice surface [Martin et al., 2012], mainly from March until May. OIB precision and accu-
racy are (horz./vert.: 14 cm/3 cm) and (horz./vert.: 74 cm/6.6 cm), respectively. The footprint size is 1 m in
diameter.

2015 OIB C-130 Arctic Flights Flown

33 science flights, 75,462 nm, and 298 hours flown &
Distance flown equivalent to 3.49 times around Earth, or 36% of the distance to the Moon N

= B —— -
Y e T~
270- Q’ V\%K \ #
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Figure 2.8: Flight paths during the OIB campaign in 2015 on the northern hemisphere. Taken from Zell [2017c].
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Validation of the elevation estimates is done only for data recorded in April, because during that time
of the year the surface height is relatively stable (minor melt and precipitation) [Gourmelen et al., 2017]. In
the case of observations over melt ponds, the difference in scattering behaviour of radar and laser pulses are
expected to be minimal (surface scattering). In case of snow or ice, volume scattering of the radar pulse is
expected, introducing a bias that becomes visible when comparing to laser altimetry. In addition, follow-
ing Gourmelen et al. [2017], comparisons between the CryoSat-2 elevation estimates and airborne elevations
(from ATM, OIB) are made only if the distance between points is shorter than 50 metres in space within 10
days’ time. The comparisons are realised using nearest neighbour interpolation.

Due to the specifications of OIB elevation data, OIB elevations are considered more accurate and precise
than the proposed DEM elevations. However, the OIB is sparsely distributed in time and space such that the
number comparisons is limited. The observed elevation differences from DEM and from OIB are therefore
compared. Based on the correlation between the two, the use of the DEM can be approved or rejected.

The correlation between DEM elevation difference and OIB elevation difference is 0.82 (see figure 2.9a). The
barycentre of the scatter plot lies near zero metre OIB elevation difference and between -35 and -5 m DEM
elevation difference. Based on the strong correlation of DEM elevation difference with OIB elevation differ-
ence and apparent fixed offset between the two elevation differences, the DEM is assumed to be an adequate
measure for computing the elevation difference of each scatterer.
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(a) Scatter plot of elevation difference of retracked points
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(b) Histogram of the OIB elevation differences in fig-
ure 2.9a.
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Figure 2.9: Comparison of elevation of retracked points without optimisation and OIB observations.

The mean OIB elevation difference is relatively high due to outliers over 300 m elevation difference. After
the selection and application of appropriate parameters, these outliers will be discarded as much as possible.
Outlier removal then also mitigates the standard deviation. At this stage, only 55% of the points are within 15
metres OIB elevation error.

2.3.2. Swath processing parameter selection
To obtain reasonably accurate and precise elevation estimates, processing settings must be set accordingly.
Parameters are varied and the elevation result is compared against the DEM. The parameters considered are:

¢ Waveform energy

¢ Power

¢ Coherence

* Phase difference dispersion
¢ Look angle

* DEM slope
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The goal is to maximise the number of retracked points, while minimising the dispersion of the elevation
differences. The phase difference dispersion is considered as a possible replacement for the coherence (see
section 2.3.1.2). The number of parameters pose a 6-dimensional optimisation problem. To accommodate
the two requirements, the following optimisation criterion is proposed: mi n(m), where o is the stan-
dard deviation of the elevation differences with the DEM and N is the total number of retracked points. For
this analysis, all samples from all unflagged waveforms are selected. Then all elevation estimates with a max-
imum DEM elevation difference of 250 m are discarded to remove the most severe outliers. Thereafter, all
elevation estimates differing more than 100 m from the basin mean elevation difference are discarded. Addi-
tionally, all samples with a power=0 or a coherence=1 are discarded as well. This is done for 6 small drainage
basins (see figure A.4b) in Greenland during April 2014 are used. No further thresholds for waveform en-
ergy, power, coherence, phase difference dispersion, look angle or DEM slope are applied to this dataset. The
search for the optimum takes place by linearly varying a set of thresholds and regarding the parameters as
independent.

2.3.3. Elevation to elevation change

The swath processing product consists of numerous (=10° #/km? collected over nearly 6 years’ time) eleva-
tion estimates scattered along the coast up to a few 100 km inland of the Jakobshavn drainage basin. This
section describes how the elevation estimates are converted to elevation changes (%) per grid cell in the
entire Jakobshavn drainage basin.

Weighted Least Squares Estimation
The elevation change rates are estimated using the scheme proposed by Wouters et al. [2015]. The functional
model, adopted from Nilsson et al. [2016] and expanded, is:

hix,y,t) = ap+ a1 Ax+ ax Ay + asAxAy + a4Ax2 + a5Ay2+
agAt+ a;cos(2nAt) + agsin (2nAt) + agcos (AnAt) + aypsin (4nAtr), (2.13)

where h(x, y, t) are elevation estimates, ay elevation offset, a; slope in x-direction, a; slope in y-direction, ,
az cross-slope in x— y-direction, a4 curvature in x-direction, as curvature in y-direction, ag elevation change,

a7 and ag as well as ag and a;o are amplitude terms of the seasonal signal, i.e. \/a§ + ag. The phase (¢) of

the seasonal signal can also be assessed with ¢ = arctanZ(Z—j), where arctan2(...) is the four-quadrant inverse
tangent. Ax and Ay are (x, — x.) and (¥, — J¢), i.e. the x and y-distance from data point to evaluation point,
respectively. At is equal to (¢ — fp), i.e. the time passed the with respect to an arbitrary reference time fy. The
following restrictions on the LSE input (retracked points) are imposed [Wouters et al., 2015]:

¢ The retracked points should be <250 m away from the evaluation point;
¢ The number of retracked points should be =16;

e The used retracked points should be acquired during =4 overpasses;

¢ The used retracked points should span =2 years.

The weight assigned to each observation is computed by [Nilsson et al., 2016]:

1

w; = =, (2.14)

d:
1+ 5%

where d; is the distance from the estimation point to point i and p the correlation parameter set to half the
search radius. w; penalises points farther away from the estimation point. This weighting thus better pre-
serves local surface details [Nilsson, 2015]. To reduce contamination of the estimated parameters by outliers,
an iterative scheme is applied in which observations with residuals larger than two times the weighted stan-
dard deviation are discarded [Nilsson, 2015].

r’wr
n-p’

wir|>20,=2 (2.15)
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where w is a weight vector and W a diagonal matrix with weights from equation 2.14, oy, the standard devi-
ation of data noise (assuming noise is uncorrelated), r a residual vector, n the number of observations and
p the number of estimated parameters (11). Forward propagation of the error then results in a scaled co-
variance matrix with squared standard errors of each parameter estimate on the diagonal [Nilsson, 2015] (see
equation 2.16).

Qs =05 (ATWA)™! (2.16)

The WLSE is repeated until no more outliers are found or reaches 25 iterations. Elevation change estimates
that do not include the evaluation point are discarded [Wouters et al., 2015]. Elevation change estimates
outside the interval [-30,15] m/yr are discarded. Thickening or thinning rates outside that interval are not ex-
pected in the Jakobshavn drainage basin [Wang and Holland, 2018]. An iterative 2-¢ filter (with maximum 25
iterations) is used to further reduce the number of outliers within each grid cell. The valid elevation change
estimates are averaged for each grid cell (see figure 2.10). A standard deviation is computed from the eleva-
tion change estimates used for averaging, which signifies the uncertainty for the averaged elevation change
estimate [Wouters et al., 2015].

Two extra steps were taken to reduce computational time, because the total number of points can be large
(>109). Firstly, WGS84 (ellipsoidal) coordinates are projected to EPSG3413 (Cartesian) coordinates, a po-
lar stereographic (north) projection with WGS84 elevations (see section A.8 in the appendix). Distortion in
EPSG3413 for Greenland is minimal because the grid is tangent to 70°N. Distance calculations are less expen-
sive in Cartesian coordinates than in ellipsoidal coordinates. Secondly, all elevation observations are assigned
to a grid. Search for data points is then limited to only 9 grid cells using the approach illustrated in figure 2.10.

— (9, h,0)

Figure 2.10: Schematic of the grid used for the elevation change estimation. The elevation change is estimated at all data points. For
each data point, an elevation change estimate is made using WLSE with all data points within 250 m distance. A grid with cells of the
same size as the search radius reduces the search for points meeting the distance criterion to 9 grid cells.

Elevation change estimates covering the entire Jakobshavn drainage basin

The area hat is eligible for swath processing, i.e. the area that CryoSat-2 observes in SIN mode, cover only
coastal regions. A large part of the Jakobshavn drainage basin is observed in LRM (see figure 2.11). To that
end, elevation change estimates are taken from Gourmelen et al. [2017]. This data is available at 1000 m
resolution, with its elevation change estimates based on elevation estimates from 2011 until 2016.
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Figure 2.11: Visualisation of SIN and LRM mode coverage over the Jakobshavn drainage basin. The SIN mode covers only a small part of
the Jakobshavn drainage basin. The elevation change estimates in the LRM mode area are taken from Gourmelen et al. [2017] (https:
//cryotop-evolution.org/datasets/, gridded dataset).

All elevation change estimates with an error >0.5 m/yr are discarded. Then the estimates from Gourmelen
et al. [2017] are combined with ours. Subsequently, the ensemble of elevation change estimates are interpo-
lated using natural neigbour interpolation [Amidror, 2002] to occupy 250 x 250 m? grid cells in the entire
Jakobshavn drainage basin.

2.3.4. Elevation change to volume change

For a volume change estimate based on elevation change rate, the hypsometric method is used. Hypsomet-
ric averaging integrates the elevation change rates and accounts for missing rates [Foresta et al., 2016, 2018,
Moholdt et al., 2010] .

The hypsometric method is well known in the field of hydrology. It is applied to rain gauge data to interpolate
precipitation rates. Rain gauge data is commonly sparsely distributed and often missing in the higher ele-
vated areas that generally experience more precipitation. Low order polynomials are then used to represent
the relation between elevation and precipitation. [Dingman, 2015] In the context of this research, elevation
is related to elevation change in two ways. First, the temperature is lower at higher elevations which inhibits
melt. Secondly, the glacier outlet is located at low elevation, exhibiting thinning when the glacier is actively
discharging ice. The polynomial fit then serves two purposes, 1) to make interpolate data gaps and 2) to inte-
grate the elevation change rates for a volume estimate. Hypsometric averaging is performed using [Moholdt
etal., 2010]:

=

av
— =) plhy)-A;, (2.17)
roi3

where % is the volume change, N the total number of elevation bins, p(k;) the polynomial function evalu-
ated at centre bin height h; and surface area A; for bin i. A; has been corrected for distortion using [Knowles,
1993]:

1+sin 6 )2

2.18
1+sin 6; ( )

A = Aj uncorrected (
where A; is the corrected surface area, A; ,ncorrecreq the uncorrected surface area, 6y the normal degree lati-
tude (70°N) and 6; the centre latitude of surface area A;. The elevation of an estimation point is derived from
a DEM [Howat et al., 2017]. For p(h;), different functions were tested and compared based on the physical
representation and root means square error (RMSE). Following Moholdt et al. [2010], a ond , 374 and 4'" or-
der polynomial and a mean and median were used. h; is 25 m, 75 m, 125 m and so forth in case of a 50
m bin size. Hypsometric averaging uses the elevation change rates from the fitted function rather than the
actual elevation change rates. This suppresses outliers further, assumed that the fit is representative. A DEM
[Howat et al., 2017] is used to assess elevation of present and missing elevation change estimates. In this way,
hypsometric averaging can account for data gaps. The corresponding standard error can be calculated using
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[Moholdt et al., 2010]:

. Ofit

&= , (2.19)

n-p

where £ is the standard error of the regional average elevation change of all grid cells, o f;; the RMSE of p(h;)
and n is the number of uncorrelated grid cells and p the number of parameters estimated when fitting. Grid
cells are assumed to have fully decorrelated at 5 km distance, such that n = A/(x- 52), with area of interest A
in km? [Wouters et al., 2015].
The standard volume error (Ey) integrated over the entire surface area can then be derived via [Moholdt et al.,
2010]:

¢ ] AV 2
Ey=q/@ a2+ (01-==]". (2.20)
dt

Using the root sum of squares, a basin outline uncertainty of 10% (method from Moholdt et al. [2010]) is
included. The root sum of squares (RSS) is valid on the condition that the £ does not vary disproportionally
in the potential area where there is the outline uncertainty (independent errors).

The basin outline uncertainty comes from the fact that the Jakobshavn glacier is retreating, changing the
surface area and volume change (equation 2.17). The basin outline uncertainty is estimated at 10%. This
estimate can be considered as conservative, because the Jakobshavn drainage basin only has one reasonably
sized outlet glacier.

2.3.5. Volume change to mass change

The conversion of volume (change) to mass (change) requires density information of the accumulation or
ablation signal. Space and time varying near-surface density data over the Jakobshavn drainage basin is un-
fortunately not available. Several methods exist to convert volumes to mass [Bader, 1954, McMillan et al.,
2016, Moholdt et al., 2010, Nuth et al., 2010, Slobbe et al., 2009, Thomas et al., 2006, Wouters et al., 2015].
As described by McMillan et al. [2016], two methods for the conversion of volume-based estimates to mass-
based estimates are well established. The first method consists of multiplication of the volumes with a density
model. This density model describes the density of volume loss in each grid cell and in this way accounts for
dynamic and SMB processes. The second method requires knowledge of the firn column thickness in space
and time to separate dynamic and SMB processes. A firn densification model (FDM) is commonly used to
acquire such knowledge as it describes the change of the thickness of the snow pack due to precipitation,
compaction and melt of snow.

The mass change (AM) in each grid cell can be described as:

AM=AV-perf=AVice:Pice + AVsnow * Psnow, (2.21)

where AV is the total volume change, p.r the effective density, AV;, ice volume change, p;c. density of ice,
AVspow snow volume change and pgj, the density of snow. According to CryTop data [Gourmelen et al.,
2017], basin wide thinning can be expected. That means AV is also negative. According to the derivation in
A.7 in the appendix, the effective density exceeds the density of ice when AV;ce < —AVg,0, and AVgyo >0
in case of volume loss. Near the terminus AV;, contributes most to the volume loss as a consequence of ice
melt and discharge. The absolute contribution of AV;, is expected to gradually decrease inland where little
ice dynamics is expected. The contribution of AV, to the total volume loss is expected to be marginal
near the terminus. Above the Equilibrium Line Altitude (ELA), snow processes start to gradually play a more
significant role. AV, > 0 may occur, but AVj., < —AVs,0, is unlikely, because the SMB variations are too
large with respect to the ice dynamics that occur. Furthermore, the sign of the linear trend of a FDM is neg-
ative basin-wide. A negative trend in the FDM provides confidence that AV, is also negative. Therefore,
it is expected that the effective density does not exceed the density of ice. Thereby, Huss [2013] found that
densities of 850460 kg/m? are often adequate under conditions that are or are likely met in this case, i.e. 1)
long observation period (>3 yrs), 2) relatively large volume changes (Gt/yr) and 3) no strong changes in MB
gradients.

How close the effective density is to that of ice and that of snow depends on the contribution of each volume
component in equation 2.21.

Density model
In this study, a linear density model is used. In this linear density model three zones are assumed. An ice
density is assumed (917 kg/ m?3) from 0 to ELA, which is around 1500 m elevation. From 1500 up to around
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2000 m a linearly decreasing density is assumed. The density decreases until to that of snow, which is also
assumed for everything above 2000 m elevation. The ELA comes with an uncertainty as it covers a relatively
wide transition band of altitudes at which the SMB crosses equilibrium (see figure 4.3 in chapter 4). The
ELA is therefore only certain up to a few 100 m. The snow density also comes with a significant uncertainty,
because no actual density information is available. Furthermore, compaction takes place in the Jakobshavn
basin, which can be considered as volume losses with zero density. To that end, the ELA and the density of
snow is varied to account for these uncertainties.

The ELA is varied from 1250 m up to 1750 m in steps of 50 m. Approximately 96% of the Jakobshavn drainage
basin lies above 1250 m. The snow density is varied from 300 kg/m?® up to 700 kg/m? in steps of 25 kg/m3.
Additionally, an alternative density model based on flow velocity is applied. To that end, a flow velocity map
is used [Nagler et al., 2015] (see figure A.19). This flow velocity map was derived from Sentinel-1 SAR data over
the period 01-10-2015 to 31-10-2016. Volumes where the flow velocity is above e.g. 500 m/yr are considered
dynamic and are multiplied with the density of ice. The rest is multiplied with the density of snow. The flow
velocity boundary for separating ice and snow losses is varied from 50 m/yr up to 750 m/yr in steps of 25
m/yr. The snow density is varied over the same range as above.

The standard deviation of the ensemble of mass change estimates is taken as the conversion error o ,,,. The
total error (Ep;) is computed by applying the RSS to the converted volume error (Ey) and conversion error
[Moholdt et al., 2010]:

Ey = \/(EV Pice 10732+ 02,,,,. (2.22)

The volume error is converted to mass by assuming the density of ice. Conversion from km3 to Gt using the
density of ice (in kg/m?®) introduces a factor of 1073,

2.4. Results & Discussion

In this section, optimal parameters for swath processing are presented. This is followed by elevation change
estimates which are converted to volume change using hypsometric averaging. Finally density models are
applied to convert volume change to mass change

2.4.1. Swath processing parameter selection

First, the results of the parameter analysis are given. This is a multi-dimensional optimisation problem, which
is solved step-wise, because the parameters are assumed independent. Furthermore, visualisation becomes
possible through this approach. Only the figures for the Jakobshavn (7-1 in table 2.3) drainage basin are
presented here (see section 2.3.2 for more details on the used dataset). The rest can be found in the appendix
(A.10). Standard deviations may sometimes seem exceedingly high, because only one or two parameters
are optimised at a time. Meaning that the other parameters are not set at all. Thus, the standard deviation
visible in the plots and chosen as best are best towards that one or two variables. The location of the X in the
figures marks the optimum of the proposed criterion. The standard deviation of elevation differences with
the DEM is a function of observation period when the surface elevation is dynamic. The obtained standard
deviation of the optimised ensemble of elevation differences is optimised assuming a static surface elevation.
The final standard deviation of elevation differences with respect to a DEM can therefore only be considered
as an upper bound. Instead, the quality of elevation estimates is given by comparing a subset of elevations
estimates with OIB elevations.

The number of points involved in the analysis are given in table 2.3 below.

Table 2.3: Number of available points per drainage basin used for optimising threshold values. 7-1 is the Jakobshavn drainage basin. The
location of the other basins can be found in figure A.4b.

Basin | Number of available points
1-2 16190035

1-4 6463637

4-2 6133439

4-3 3815556

7-1 957459

8-2 8211351

Total 41771477
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Figure 2.12: Variation of upper and lower normalised waveform power threshold. The blue cross indicates the position that minimises
the optimisation criterion best. The waveform energy has a lower and upper bound for rejection. Therefore, figure 2.12 has been plotted
from 0 to 100 on the x-axis and from 100 to 200 on the y-axis for the lower and upper bound, respectively. The coordinates of the blue
cross thus provides the best lower threshold (x-axis) and upper threshold (y-axis). Elevation estimates are from the Jakobshavn drainage
basin in April 2014.

According to figure 2.12c, waveforms with an integrated power above 134 or below 38 degrade the criterion
value, leading to sub-optimal results. Together with the results in 5 other drainage basins it can be concluded
that the normalised waveform power desirably remains below 135 and above 35 (paragraph A.10.3.1). The
reduction in standard deviation of elevation differences among the basins are 3% (basin 1-2), 1% (basin 1-4),
5% (basin 4-2), 9% (basin 4-3), 8% (basin 7-1) and 9% (basin 8-2).

Waveforms exceeding the upper limit are noisy waveforms. In Jakobshavn, such waveforms originate from
the area near the terminus. The glacier is oriented along the latitudes, whereas the satellite orbit is along the
longitudes. A longitudinal ground track over such a glacier is prone to high topographic fluctuations, because
the topography resembles many consecutive steep valleys. This causes the recording window to start too early
or too late, such that the returned signal is uninterpretable and mainly noise is recorded. Figure 2.13 shows
an example of a 'normal’ and a ill-timed waveform recording.
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(a) Regular normalised power recording. (b) Normalised power recording with poor window timing.

Figure 2.13: The waveform energy is the integrated area under the curve. Figure 2.13b shows, on average, samples with high waveform
energy, even at early times. This can be used as an indicator for noisy waveforms (see e.g. Helm et al. [2014]).

Waveforms exceeding the lower limit are characterised by one strong spike with no significant trailing
edge. Spikes generally indicate specular reflections. No trailing edge indicates limited surface area over which
the footprint can expand adequately. After visual inspection it was found low waveform energy recordings pri-
marily take place over bare rocky terrains at the coasts of Greenland. This agrees with the CryoSat-2 waveform
signatures found over land by Géttle et al. [2016].
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Figure 2.14: The exposed rocky terrain in b) causes waveforms as recorded in a).
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Power, coherence, phase difference dispersion and look angle

First, scatter plots of the 4 parameters are made to inspect the effectivity of a threshold on each of the pa-
rameters. For the Jakobshavn drainage basin these are given in figure 2.15. The scatter plots of other regions
can be found in the appendix (A.10.2). The correlation parameters are calculated using the absolute elevation
difference.
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Figure 2.15: Scatter plot of (a) normalised power, (b) look angle, (c) coherence and (d) phase difference dispersion as a function of
elevation error. Each sub figure contains the same number of points. The colour indicates relative point density (dark blue: low, dark red:
high). PD dispersion refers to phase difference dispersion, the metric proposed by Weissgerber and Gourmelen [2017]. The correlation
was calculated using the absolute elevation difference.

Figure 2.15a shows that increasing normalised power shows elevation estimates with less severe outliers.
However, when discarding elevation estimates below 0.1 normalised power would immediately discard the
majority (66%) of the elevation estimates. In case of drainage basin 1-2, 1-4, 4-2, 4-3 and 8-2, similar percent-
ages arise, i.e. 80%, 80%, 75%, 61%, and 74%, respectively. Therefore, a threshold is not applied to normalised
power as it drastically reduces the number of observations with a small elevation difference with the DEM.
In figure 2.15b the majority of estimates (72% of points) are concentrated below 1° look angle. This is similar
for the other drainage basins: 1-2 (86%), 1-4 (92%), 4-2 (90%), 4-3 (80%) and 8-2 (88%). Furthermore, large
deviations are visible for higher look angles. Therefore, it is decided that a threshold for look angle is investi-
gated.

Figure 2.15c shows that a large part (39%) of estimates has a coherence >0.8. This is also the case for the other
drainage basins: 1-2 (44%), 1-4 (51%), 4-2 (50%), 4-3 (51%) and 8-2 (44%). Furthermore, lower coherence
shows an increasing elevation bias. Based on that, different coherence thresholds are attempted.

In figure 2.15d, 72% of the elevation estimates are concentrated at >0.9 PD dispersion. The other drainage
basis show similar percentages: 1-2 (77), 1-4 (76%), 4-2 (75%), 4-3 (74%) and 8-2 (72%). Moreover, the re-
mainder (<0.9) shows an increasing bias. The PD dispersion threshold is thus also varied.
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PD dispersion is considered as a replacement for coherence. Therefore, look angle is varied against coherence
first (figure 2.16), then look angle is varied against phase difference dispersion (figure 2.17). The same figures
but for other drainage basins can be found in the appendix (A.10.3).
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Figure 2.17: Variation of phase difference (PD) dispersion and look angle thresholds without a normalised power constraint.

Two optima are found using min(l()gﬁ) for each of the drainage basins. One is based on the choice for
coherence and one on phase difference dispersion. The look angle, coherence and PD dispersion are varied
in steps 0of 0.01°, 0.01 and 0.01, respectively. The results are summarised in table 2.4 below.

Table 2.4: For each drainage basin, the minimum of logﬁ\] was found by varying coherence and look angle (y) as well as PD dispersion

(R) and look angle. o is the standard deviation of the DEM elevation difference and N is the number of elevation estimates. o-reduction
indicates the reduction in standard deviation of elevation estimates when introducing the corresponding optimal thresholds.

Drainage basin logﬁ [m] | o[m] | logeN [#] | R[-] | Coherence [-] | ¥ [?] | o-reduction [%)]
1.2 2.087 14.323 6.862 0.99 - 0.98 34
2.111 14.493 6.865 - 0.76 0.98 33
1.4 1.103 7.228 6.553 0.99 - 0.99 67
0.992 6.376 6.425 - 0.86 0.96 71
42 2.065 13.406 6.491 0.99 - 0.97 43
2.096 13.721 6.546 - 0.67 1.00 41
43 3.339 21.164 6.339 0.97 - 1.04 29
3.359 21.291 6.339 - 0.58 1.05 29
71 3.061 16.855 5.507 0.99 - 0.83 42
2.618 13.090 5.000 - 0.92 0.55 55
8.2 2.731 17.926 6.563 0.99 - 0.93 38
2.770 17.912 6.467 - 0.84 0.92 38
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Based on table 2.4 and figure 2.16 and 2.17 it can be concluded that:

* Higher coherence and higher R reduce the number of points. However, based on the scatter plots, this
takes place more gradually for coherence thresholds than for PD dispersion thresholds.

* Higher coherence does not necessarily provide more precise elevation estimates. This is in contrast to
a higher R. This is better visible in section A.13 for other basins.

¢ Coherence and R perform similarly, because the optimisation value l%,ﬁ differs marginally, except for
the Jakobshavn drainage basin. In that case, the optimal threshold on coherence performs better.

The variation of optimal coherence threshold explains the choice for different coherence thresholds among
the published studies in which CryoSat-2 data is exploited [Gourmelen et al., 2017, Gray et al., 2013, 2015,
Hawley et al., 2009, Helm et al., 2014]. Furthermore, it also reveals that maintaining one coherence threshold
for large surfaces, at least larger than drainage basins, leads to sub-optimal results. This is naturally also the
case for one PD dispersion threshold, but to a far lesser extent. The coherence thresholds range from 0.58 up
to 0.92, whereas PD dispersion thresholds vary from 0.97 to 0.99 on the same scale ([0,1]). The variation of
optimum coherence shows that coherence also depends on factors that do not affect measurement quality.
Its variation among different drainage basin suggests that topography is one. Based on that, a threshold on
PD dispersion is advised for large observation areas, because this approach is far less sensitive to changing
observation area. To that end, 0.99 is taken as threshold, giving preference to the number of points over
quality of the elevation estimate.

DEM slope
The scatter plot (figure 2.18) below shows the distribution of slopes in terms of elevation differences.
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Figure 2.18: Scatter plot of DEM-derived slopes as a function of DEM elevation difference.

Figure 2.18 shows that most points (98%) are located on <5° slope. For the other drainage basins very
high percentages were also obtained: 1-2 (99%), 1-4 (99%), 4-2 (99%), 4-3 (95%) and 8-2 (90%). Furthermore,
it can be seen that the elevation difference does not particularly reduce for steeper slopes (see figure A.9).
Therefore, at the risk of introducing a bias with only marginal improvement of the elevation estimates in
terms of standard deviation, no threshold is applied to the DEM-derived slope.
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Chosen retracking settings
The optimal parameters were chosen based on the optimisation criterion in all 6 drainage basins. The choices
are summarised below in table 2.5.

Table 2.5: Chosen thresholds for retracking CryoSat-2 L1B data based on 6 drainage basins.

Parameter Symbol [unit] Value
Look angle v [°] lyl<0.96
PD dispersion R[] =0.99
Normalised power pl- >0
Coherence v [-] O<y<l1
Normalised waveform energy E [-] 35<E<135
DEM slope /DEM [°] =0
DEM difference Eeley IM] |€eter] <100

A threshold to normalised power (>0) and coherence (<1) is, strictly spoken, applied. The thresholds in
table 2.5 were applied and compared against OIB elevation estimates for April 2014 (see figure 2.9).
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Figure 2.19: Improvement of elevation statistics by comparison of the observations with OIB. The thresholds can be found in table 2.5.
The application of chosen thresholds reduced the standard deviation by more than 25 m. Note that the figures have different scales.
Figure 2.19a and 2.19c are the same as figure 2.9a and 2.9b, respectively.

Before the application of the thresholds from table 2.5, the mean and standard deviation of elevation dif-
ferences in the Jakobshavn drainage basin are 17.09 m and 35.52 m, respectively. After the application of
the thresholds from table 2.5, the mean and standard deviation of elevation differences in the Jakobshavn
drainage basin are -1.26 m and 7.73 m, respectively. In both cases, before and after a comparison between
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DEM elevation difference and OIB elevation difference could be made for about 3% of the total number of
elevation estimates. The total number of elevation estimates dropped from 957459 to 393485, retaining about
41% of the elevation estimates. 98% (w.r.t. 62% before threshold application) of the points are within 15 me-
tres OIB elevation difference.

On average, the airborne elevations are lying above the CryoSat-2 elevations. The mean value of -1.26 m
in figure 2.19c is slightly biased (by +0.25 m) towards a higher mean due to outliers above 50 m OIB elevation
difference. The overall negative offset is likely caused by radar penetration into the snow pack [Gourmelen
etal., 2017]. The bias is assumed to be of minor impact for multi-year trend analysis, because the bias signal
is of seasonal nature. Moreover, WLSE includes seasonal components.

The outliers above 50 m OIB elevation difference originate from near the (SIN-LRM) mode boundary. Dur-
ing processing, anomalous outliers were found near the mode boundary. Therefore, measures were taken to
discard these. Some of these outliers however, still remain. The poor quality CryoSat-2 recordings near the
SIN-LRM mode boundary and limited observations in the LRM zone within the same area are not well docu-
mented. It was also found that the SIN-LRM mode boundary was shifted about 3 km towards the coast from
October 2012 until July 2014 after which it is placed in its old position again. Maps showing the locations of
the elevation differences (between our computed elevation and the OIB elevation) that were used to compute
the histograms (figure 2.19) are provided in figure 2.20.
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Figure 2.20: Locations of points validated with OIB. Note the large errors near the terminus and near the mode boundary. Note that this
figure does not indicate the actual coverage. Only about 3% of the elevation estimates made in April 2014 could be compared with OIB
data. DOM refers to domain, i.e. the Jakobshavn drainage basin.

Notice that the elevation estimates near the terminus are often poorly resolved and are discarded using
the set of thresholds displayed in table 2.5. The retained estimates demarcate the calving front, which is better
visible in figure 2.21 in the next section.

2.4.2. Swath processing results

The spatial coverage of elevation estimates and elevation change estimates are illustrated in figure 2.21. As
discussed in section 2.3.3, an elevation change estimate is attempted for every elevation estimate. Naturally,
there are less elevation change estimates than elevation estimates per grid cell, due to the introduced condi-
tions when attempting a WLSE.
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Figure 2.21: Number of data points per grid cell of 250 x 250 m? (November 2010 until March 2016).

Figure 2.21a shows roughly on average 10>?° (160) elevation estimates per grid cell. In case of POCA
processing this number will thus be, on average, 160 times lower. Therefore, it can be concluded that elevation
changes estimates with this grid cell size is not feasible using POCA processing. Figure 2.21 shows an average
of 10'% (71) elevation change estimates per grid cell. The average was taken over the entire ensemble of
elevation estimates within the Jakobshavn drainage basin, i.e. also just outside the SIN mode zone (in the
LRM zone). Only estimates with at least 1 elevation (change) estimate are included to calculate the average.
Part of the area is not covered by valid elevation (change) estimates at all. These estimates originate from
before the calving front (see figure 1.2 with calving front demarcations) and are not desired.

2.4.3. Elevation change estimate

The elevation change estimates in figure 2.21b are averaged to obtain one estimate per grid cell (see figure 2.22
below) in the lower elevated region of the Jakobshavn drainage basin. The glacial isostatic adjustment (GIA)
is not subtracted from the elevation estimates as models show that this lies around approximately 0 mm/yr
in the Jakobshavn drainage basin [Wake et al., 2016]. A basin-wide error of 1 mm/yr leads to a 0.09 Gt/yr bias
in the mass change estimate of the Jakobshavn drainage basin when assuming the density of ice.
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Figure 2.22: Elevation change and elevation change standard deviation in m/yr. Estimation period is November 2010 until March 2016.
The elevation change estimates are limited to the area of the Jakobshavn drainage basin that is observed in SIN mode.

Figure 2.22 shows an overall signal of thinning, with increasing thinning rates towards the glacier termi-
nus. The particular locations where rapid thinning takes place correspond well with the channels where rapid
ice velocities are observed (see figure A.19 in the appendix). Furthermore, the standard deviation of the rates
are high 1) near the LRM-SIN boundary and 2) near the calving front. These regions correspond well with the
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areas with low numbers of elevation change estimates (figure 2.21b).

The largest part of the drainage basin, more inland, is near balance, as visualised in figure 2.23. The region in
the east of the basin area experiences thickening in the order of cm/yr, in contrast to thinning rates near the
terminus which reach thinning rates over 15 m/yr.
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Figure 2.23: a) Elevation change in m/yr. b) Elevation change standard deviation in m/yr. Estimation period is November 2010 until
March 2016. The SIN mode elevation change rates are the same as in figure 2.22. The LRM elevation changes and corresponding errors
were taken from Gourmelen et al. [2017].

The large standard deviations in figure 2.23b in the added data near the mode boundary is due to very
limited coverage (i.e. few observations). This has a seemingly large effect on LRM data, because no swath
processing is possible here. However, it is expected that the spatial variety of elevation changes is small (little
ice dynamics). The LRM area (89703 km?) is nearly 16 times larger than the SIN mode area (5677 km?). The
total area is 95380 km?.

2.4.4. Volume change estimate

Data selection takes place before attempting hypsometric averaging. Elevation change estimates with a stan-
dard deviation larger than 0.5 m/yr (or no elevation change estimate at all) are discarded and not used for
fitting. This step discards about 20% elevation change estimates, nearly all (>95%) of which originate from
the LRM zone (see figure 2.23b). These mostly originate from around 1700 m elevation (figure 2.24). About
0.5% of all grid cells has no elevation change estimate, these are interpolated using hypsometric averaging.
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Figure 2.24: Histogram of the input and data edited elevation change estimates. About 20% of the estimates exceed a standard deviation
of 0.5 m/yr and are discarded.
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Importantly, there are virtually no estimates available below 500 m elevation. Following Moholdt et al.
[2010], Z”d, Srd, 4™ order polynomial, mean and median fits are made.
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Figure 2.25: Hypsometric averaging using different hypsometric fits.

All fits follow the trend above 1800 m elevation fairly well. In figure 2.25a, mean and median fits are
particularly susceptible to the relatively limited number of points around 1700 m elevation. This effect is
most clearly visible for the mean fit (figure 2.25a). For elevations between 700 to 1700 m, the median fit
shows higher elevation estimates than the mean fit. The median fit is biased towards the elevation change
rates of which there are most observations.

The polynomial fits (figure 2.25b) are naturally smoother and show a significantly different behaviour below
700 m elevation. The 2" and 3" order polynomials better represent the expected global behaviour, whereas
the 4" order is more similar to the mean and median fits. However, the 2"¢ and 3"¢ order polynomial fits
may be biased towards higher volume losses, as it assumes high thinning rates for regions farther from the
outlet at common elevations.

To conclude, the 2% and 3"? order polynomial fits are biased towards higher volume losses and the mean
and median fits towards lower volume losses. The 4!” order polynomial fit is expected to lie somewhere in
between. The volume change and error estimates corresponding to the aforementioned approaches can be
found in table 2.6. From figure 2.24 and figure 2.25 the following can be concluded:

¢ The most elevated (>1800 m) areas are very smooth and show little to no elevation change. All this data
originates from CryoTop [Gourmelen et al., 2017].

¢ The lower elevated LRM field, 1600-1900 m elevation, is poorly sampled due to limited, precise LRM
data in this region. Also there are outliers present within this region after data selection.

* The lower elevated SIN field reveals 2 regimes: one rapidly subsiding regime deviating from the global
trend (500-700 m) and one slightly stabilising.

To resolve the choice between two possible thinning regimes in the SIN field, two hypsometric curves can be
introduced. One for the rapidly discharging region close to the outlet and one for the less dynamic regions.

Table 2.6: Hypsometric averaging results for different fits.

Method | 2V [km®/yr] | Ey [km®/yr]
Mean -26.74 2.94
Median -24.89 3.66
2" order polynomial -34.06 3.65
37 order polynomial -34.34 3.68
4" order polynomial -30.59 3.30
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Deciding on which region is highly dynamic and which region is not, is not trivial. Ice velocity maps provide
an outcome here, such as the one created by Nagler et al. [2015] (see figure A.19), which is also used in the
second density model. This ice velocity map has been derived from Sentinel-1 SAR data over the period 01-
10-2015 to 31-10-2016. A small part (0.2%) of the Jakobshavn drainage basin has however, no valid velocity.
All grid cells without a valid velocity originate from the area where the floating tongue used to be, i.e. in front
of the calving front. Therefore, the elevation change is set to 0.
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Figure 2.26: Separation of thinning regimes based on flow velocity.

The 2% and 37 order polynomial are considered as adequate volume change fit for both velocity regimes,
because it resembles the expected physical behaviour. The results of the two hypsometric fits are summarised
in table 2.7 below.

Table 2.7: Volume change derived from two hypsometric curves.

Method | &Y [km®/yr] | Area [km?] | Ey [km/yr]

2" order polynomial (<500 m/yr) -19.99 93460 2.11

2 order polynomial (=500 m/yr) -9.55 1727 1.18
No velocity available 0 193 -

Total -29.42 95380 3.11

34 order polynomial (<500 m/yr) -20.87 93460 2.19

34 order polynomial (=500 m/yr) -9.60 1727 1.19
No velocity available 0 193 -

Total -30.47 95380 3.20

Remarkable is that less than 2% of the total drainage basin is responsible for nearly one third of the total
mass loss. The result is most sensitive to fits in the high flow velocity (>=500m/yr) region. In contrast to the
3 order polynomial, the 2" order polynomial indicates smaller elevation changes as the elevation drops
(figure 2.26a). The 3" order polynomial estimates for figure 2.26a and 2.26b show 0.88 and 0.05 km®/yr
stronger volume loss, respectively. Nevertheless, the results are similar and within error bar. Furthermore,
direct integration of all volume changes using hypsometric averaging only for the missing cells instead leads
to estimates that are similar (difference in the order of 0.1 km3/yr).

The estimated volume changes corresponds well with the integrated CryoTop [Gourmelen et al., 2017] maps,
i.e. -28.9 km/yr. The 1-0 error bound from the derived estimate alone overlaps this estimate.

2.4.5. Mass change estimate

Direct conversion of the volume changes obtained with a 2" and 3"¢ order polynomial to mass changes
using the density of ice results in a mass change of -27.0+2.9 Gt/yr and 27.9+2.9 Gt/yr, respectively. Table 2.8
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shows the mass change results when accounting for mixed medium in the volume changes using a linear
density model and flow velocity based density model. An example of each one of the used linear and flow
velocity based density models are shown below.
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() Linear density models with p f;r, = 500 kg/ m3 and (b) Flow velocity based density models with p ¢;, = 500
ELA is at 1500 m elevation. kg/m3 and flow boundary at 500 m/yr.

Figure 2.27: Example of density models used for volume to mass conversion. The contour lines indicate elevation in metres. The dashed
red line indicates the mode boundary.

The FDM (see section A.10.3.5) shows a basin wide negative linear trend, which gives confidence that the
effective densities do not exceed the density of ice. Table 2.8 shows the results of volume to mass conversion,
where E)s is the mass change error. Ejs consists of the RSS of 0.,y and Ey, assuming the density of ice.
Thereby, the latter component can be considered as conservative.

Table 2.8: Mass change based on a linear and flow velocity based density model. Estimate A and B are based on the volume estimate
made using a 214 and 374 order polynomial, respectively.

Density model 'fi—“f [Gt/yr] | Oconv [Gt/yr] | En [Gt/yr]
Linear density model (A) -24.72 0.89 2.99
Flow velocity based density model (A) -19.98 3.50 4.52
Linear density model (B) -25.45 0.95 3.32
Flow velocity based density model (B) -20.56 3.67 4.64

The flow velocity based density model has a relatively high conversion error. This is because no density
gradient is considered here (see figure 2.27b). Furthermore, the difference of about 5 Gt/yr and relatively
large conversion error is caused by the non-linear flow velocity change when moving away from the termi-
nus. Therefore, linear variation of velocity thresholds likely biased the result towards lower mass changes.
The linear density model however, is assumed to be more realistic as it includes a varying transition zone.
The change from a dynamic region where ablation is dominant to a region where short term variability is
more dominant is after all not abrupt. To conclude, the linear density model (A) also has the smallest stan-
dard deviation (among linear density model A and B) and is considered as adequate.



Mass change through gravimetry

This chapter presents the reader with a brief introduction on the GRACE twin satellite mission, its measure-
ment principles and theory for conversion of GRACE observations to mass change. This is followed by the
applied methodology to infer a mass change estimate from a GRACE L2 data product using a point mass
assumption. Finally, the observed mass changes are presented and discussed.

3.1. Introduction: GRACE twin satellites

The GRACE mission is engaged with gravity (field) variations employing two satellites at roughly 220 km dis-
tance along the orbital track (near polar orbit) each at an altitude of about 500 km (LEO). Both NASA and DLR
funded the mission. The twin satellite mission was in orbit from the 17*" of March 2002 until October 2017.
We refer to Wouters et al. [2014] for a comprehensive overview of the GRACE mission applications.

3.1.1. Measurement principle

The GRACE satellite mission observes the Earth’s gravitational field by monitoring the distance between the
two satellites. The measurement principle is as follows: The distance between the two satellites varies in the
vicinity of gravity anomalies mainly located near or at the Earth’s surface. Positive gravity anomalies such as
mountain ranges or ice sheets lightly pull the first twin satellite forwards. Therefore, the distance between
the satellites slightly increases. The same event however delayed, takes place for the second twin satellite as it
approaches the same positive gravity anomaly. Further on, the first twin satellite is slightly pulled backwards
after passing the gravity anomaly. Concretely, these changes in distance can be measured down to the order
of 10 micrometers [Tapley and Bettadpur, 2004]. These minuscule changes in distance between the twin
satellites are accurately and precisely monitored using K-band (microwave) ranging (KBR) system [Tapley
and Bettadpur, 2004]. The distance variation is thus a measure of the encountered mass anomaly. Repeated
observations then describe the change of the gravitational field. This enables users to separate (near) static
anomalies such as the mountain ranges from time-varying anomalies such as ice losses in polar areas.

3.1.2. GRACE in context of study area

The maximum spherical harmonic degree gives an indication of the spatial resolution of GRACE monthly so-
lutions (approximately 150 km at 70° N for maximum degree 90). Multiple small-scale mass redistributions
within an area of 150 by 150 km are impossible to differentiate with GRACE monthly solutions. Therefore, it
is essential to assess Jakobshavn'’s surroundings in terms of mass change.

The Jakobshavn drainage basin is roughly 500 km and 350 km in its East-West and North-South direction, re-
spectively. In chapter 2, the strongest mass loss signal was identified near the coast. According to figure 3.1a,
the signal is dominant even in a wide area around the Jakobshavn drainage basin. Figure 3.1a is created taken
CryoTop (from CryoSat data) maps [Foresta et al., 2018]. A signal of of thinning originating from another
glacier can be found in the vicinity of the Jakobshavn glacier at roughly 90 km distance (-2200 km;-200 km
EPSG3413). That signal coincides with the Sermeq Kujatdleq glacier. The Sermeq Kujatdleq glacier is wider
than the Jakobshavn glacier and also discharges at relatively high rates (>1 km/yr) [Moon et al., 2014, Nagler
et al., 2015, Rignot and Mouginot, 2012]. This can also be found in figure 3.1b [Nagler et al., 2015]. In order
to adequately isolate the signal from the Jakobshavn glacier, it is desired that the contribution of the Ser-
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meq Kujatdleq glacier in terms of mass variations is accounted for. Based on figure 3.1a it is expected that the
contribution of the Sermeq Kujatdleq glacier is much smaller than the contribution of the Jakobshavn glacier.
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(a) Elevation change (1 km resolution). Data from CryoTop (b) Annual horizontal flow velocity map (0.5 km resolu-
(CryoSat-2 mission) [Gourmelen et al., 2017]. tion). ESA Greenland Ice Sheet product based on Sentinel-
1 data (01-10-2015 to 31-10-2016) [version 1.2], [Nagler
etal, 2015].

Figure 3.1: Rates of mass change or mass change-related processes in the area of the Jakobshavn drainage basin.

3.2. Theory

GRACE level 2 data products are commonly provided in the form of Stokes’ coefficients on a monthly basis.
Each monthly set of Stokes’ coefficients (GRACE monthly solution) represents the monthly average Earth’s
gravitational potential. By subtracting the long-term mean per Stokes’ coefficients, it is possible to create
a time series of the temporal variations of the gravitational potential (equation 3.1, [Heiskanen and Moritz,
1993]):

GME cos me¢ ,m=0

AV(r,0,¢,1) = 3.1

O agyl+l l _ _
Z(_) Y AC; ()P (cos 6)

=o'\’ el sin |m|¢ ,m<0,

where AV(r,0,¢, t) is the temporal variation of the gravitational potential as a function of spherical coordi-
nates (radial distance, co-latitude and longitude, respectively), G the universal gravitational constant, Mg
the mass of the Earth, a the semi-major axis of the reference ellipsoid (section A.8), I the degree, m the order,
ACy (1) the temporal variations of the Stokes’ coefficients with zero mean and P, ,,, (cos 0) the 47 -normalised
associated Legendre function as a function of the cosine of the co-latitude. Equation 3.1 represents an example
of spherical harmonic synthesis, i.e. the computation of a function from the Stokes’ coefficients. The synthe-
sis in equation 3.1 is in practice not completed and becomes an approximation, because the summation is
bounded by a maximum spherical harmonic degree (L;,4,) and not by infinity. For the GRACE data prod-
ucts the Stokes’ coefficients commonly have a maximum spherical harmonic degree of around 60, 90 or 120.
Truncation of the series affects the spatial resolution of AV (r,0, ¢, t). To illustrate: synthesis up to spherical
harmonic degree 60, 90 and 120 result in a spatial resolution of approximately 670, 450 and 330 km near the
equator, respectively. For Jakobshavn, this is approximately 230, 150 and 110 km, respectively.

Equation 3.1 can be rewritten to:

AV(r,0,¢,1) =

GM Lmax a I+1 1 _ _
EY(3) X ACm0Vim@,), (3.2
=0 T m=—1

where Yl,m(ﬂ,(/)) combines the associated Legendre function and its order-dependent factor as in [Ditmar,
2018b]:

Yl’m(g,(p) = pl,|m|(COS 0 {cos me ,m=0 (3.3)

sin |[m|¢p ,m<0.
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Y, m are called 4m-normalised surface spherical harmonics. The normalised associated Legendre function
are computed using a recursive scheme from Holmes and Featherstone [2002]. For more information on
spherical harmonic synthesis please refer to section A.9, Heiskanen and Moritz [1993], and Ditmar [2018a].

3.2.1. Degree-1 and C,  coefficients

The zeroth spherical harmonic degree and order Stokes’ coefficient 5Cy g, represents the total mass variation
of the Earth, which is zero. §C; ,, (degree-1) and 6C, represent the geocentre displacement [Ray, 1999]
and variations of the dynamic oblateness of the Earth [Sun et al., 2016], respectively. Absent degree 1 Stokes’
coefficients can directly introduce a bias to mass variation estimates at the scale of half the Earth. Wu et al.
[2012] found that 1 mm offset in the z-component of the geocentre equals an 11 Gt bias over Greenland.
To that end, the degree-1 and C; o Stokes’ coefficients from Sun et al. [2016] were taken, which were more
accurately estimated than those present in the GRACE monthly solutions. The more accurate degree-1 and
C,,0 Stokes’ coefficients are inferred from a combination of GRACE observations as well as GIA and an ocean
bottom pressure model [Sun et al., 2016]. These are used to include the degree-1 and replace the regular
GRACE C; Stokes’ coefficients.

3.2.2. Conversion of temporal variations of gravitational potential
Mass variations at the Earth’s surface are obtained in the spectral domain by applying a scaling factor to the

I+1
Stokes’ coefficients. The GTM and (‘;’) terms from equation 3.1 are adjusted to 1) convert gravitational
potential to surface density variations and 2) fit to the dimensions of the Earth more adequately via:

] Mg @l+1)[ a \+2 .
Cl9 = _ ACym, 3.4
Lm = 4xa? (1+ k) (R(B)) b G4

where C%? are Fourier coefficients for surface density variations (§s) and k| the load Love number for spher-

,m
ical harmonic degree /. The load Love numbers account for deformation of the solid Earth due to loading
[Wahr et al., 1998]. R(0) is a geocentric, co-latitude (section A.8) dependent, geocentric radius assuming the
dimensions of the reference ellipsoid [Ditmar, 2018b]:

Roy= 200 (3.5)

1-e?sin’6

where f is the ellipsoid flattening and e its eccentricity. Ditmar [2018b] found that adjusting the term for the
Earth’s radius using R is more (up to 15% or more) accurate than assuming a sphere of radius a; especially
1) at high latitudes, 2) in case of large mass variations at small spatial scales and 3) when considering long
time intervals. Regarding these three points, this implementation is especially relevant for the Jakobshavn
drainage basin.

The final equation relating time-varying Stokes’ coefficients from the GRACE data product to surface density
variations is therefore:

Mg Lmax (214+1) (V1-€?sin?0y+2 L _ }
0s0,¢,1t) = AC; ()Y m (0, ). 3.6
SO0 =305 L (1+k;)( — ) Y MG 0:9) (3.6)

3.3. Data processing methodology

Due to relatively limited resolution, direct integration of each grid cell does not provide accurate mass change
estimates in our case. This is because the dimensions of observation area are of the same order as a GRACE
resolution cell (for maximum spherical harmonic degree 90 or 96). The observation points are correlated
spatially and are thus not point measurements [Wouters et al., 2014]. Therefore, an alternative approach is
chosen to obtain mass change estimates within the Jakobshavn drainage basin. In essence, mass change is
simulated using one or more point masses. These are converted to Stokes’ coefficients and surface density
variations. Then the known modelled surface density variation is said to be an unknown number of times the
observed surface density variation.

To that end, modelling of a point mass and converting it to Stokes’ coefficients and surface density variation
is demonstrated in section 3.3.1. Choice of number of point masses and point mass location is discussed
in section 3.3.1.1. The grid set-up at which scaling of the point mass to the observations takes place is dis-
cussed in section 3.3.1.2. Estimation of the unknown scaling factor to scale the point mass to observations is
discussed in section 3.3.2.
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3.3.1. Introducing a point mass
Combining equations 3.4 and 3.6 leads to [Ditmar, 2018a]:

Liax m _ _
5s@,4,0= Y. Y. COV0) V1m0, ). 3.7)
=1 l=—m

Division of the surface density variations by the density of water (103 kg/m?3) results in equivalent water height
(EWH) variations in metres. The Fourier coefficients for surface density variation can be computed by inte-
grating the surface density variation times the normalised surface spherical harmonics over surface area S:

Co9(t _—f 80,4, 1) Yim(60,0) R*0)dS, 3.8
()4R2(0) 0,¢,0) Y;,m(0,¢) R7(0) (3.8
where R?(0) scales the surface element of a unit sphere to that of to the Earth’s reference ellipsoid. Addi-
tionally, m is used to maintain 47-normalisation. By assuming a point mass (at (6o, ¢)) in the region
responsible for the entire signal in the region, equation 3.8 reduces to:

C(“)_—f 50 -0y, MY, (0,0) dS
l,m 47[R2(0) ( 0 4) (PO) 1 lm( d))
M; (3.9)
=——L ¥ (00,0,
47'[R2(9) l,m( 0 (PO)

where 50 — 0, ¢ — ¢y) is the Dirac delta function, which is infinite at (A, ¢o) and 0 elsewhere and M; is 10'?
kg (equals 1 Gt). As a consequence, the Fourier coefficients now represent a point surface density variation.
Substituting equation 3.9 into 3.7 leads to:

Lmax

> Z Yi,mOc, ) Yi,m (B0, Po). (3.10)

o O,
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Notice that 65y, (0, ¢) is time-independent. A 1-D Fourier transform of a delta-function results in a sinc-
function when the summation truncated (spectrally limited). Analogous to a 1-D Fourier transform, equa-
tion 3.10 results in a 2D sinc-function on a sphere. In short, equation 3.10 maps a point mass of magnitude
M at (6o, ¢o) on sphere with radius R2(0,) onto grid points (8¢, ). 6 pm is not zero when it does not coincide
with (6o, ¢o) due to the fact that the summation is truncated.

Position of the point mass(es)

The surface density variation is computed in the region of the Jakobshavn drainage basin at 5 km resolution in
figure 3.2. The Jakobshavn mass loss is well visible in figure 3.2. On the other hand, a relatively weak signal of
mass accumulation is observed in the eastern area of the drainage basin. This may be a Gibbs phenomenon
caused by the strong and local mass change signal nearby (of the Jakobshavn glacier).
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Figure 3.2: Surface density variation rate (5 km resolution). Notice that the coverage is different than in the other three figures. The green
outline demarcates the Jakobshavn drainage basin [Zwally et al., 2012]. Based on ITSG-2018 L2 maximum spherical harmonic degree
96 GRACE monthly solutions from TU Graz [Mayer-Giirr et al., 2018]. The observation period is from November 2010 until March 2016.
Missing months are denoted in section 3.3.2.
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The mass loss near the terminus is confirmed by thinning maps (figure 3.1a and 2.23a) and the flow ve-
locity map (figure 3.1b). The relatively strong mass accumulation in the Eastern part of the drainage basin
however, is not visible in figure 2.23a. Furthermore, elevation change rates are near equilibrium with devia-
tions in the order of centimetres. The maximum surface density variation rate in the East is up to a quarter
of the minimum surface density variation rate near the terminus. It can be shown in figure 3.3 that this
apparent mass accumulation is caused by the truncation to maximum spherical harmonic degree 96 (Gibbs
phenomenon). Figure 3.3 shows a point mass simulation at the location of the strongest mass loss (figure 3.2).
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Figure 3.3: Simulation of the surface density variation using a point mass located at (-145.00;-2274.99). The 100 km wide ring of positive
surface density variations at 250 km distance from the centre is a consequence of truncation within spherical harmonic synthesis.

In case of local mass loss near the terminus, an apparent mass gain is observed starting at 250 km distance
from the centre of mass loss. Therefore, the mass accumulation signal in the East of the Jakobshavn drainage
basin (in figure 3.2) is considered non-physical. Therefore, it should not be treated as another point mass
signal as it is already part of point mass 1 (see table 3.1).

There is a possibility that the Sermeq Kujatdleq glacier contributes to the mass loss visible in figure 3.2. An
attempt will be made to co-estimate the contribution of the neighbouring glacier. The locations of the two
point masses are summarised in table 3.1 below.

Table 3.1: Coordinates of point mass locations.

Ne Point mass ¢do°l | 6p[°1 | X[km] Y [km]
1 | Jakobshavn 25 minimum | -48.65 | 69.18 | -145.00 | -2274.99
Sermeq Kujatdleq -50.19 | 69.80 | -200.00 | -2201.00

The impact of co-estimation of point mass 2 on the scaling factor of point mass 1 is assessed by including
and excluding it in the functional model.

Grid set-up

The point mass 1 should be adequately covered as it is the signals of interest. The point mass location should
be within the grid of observations, otherwise the scaling factor is biased. Therefore, the grid is centered and
circular around point mass 1. However, it is unknown which coverage is adequate. Therefore, the circular
grid has varying grid point spacing and radius. The grid point spacing is varied from 10 up to 80 and the grid
radius radius is varied from 25 km up to 300 km. The number of grid points for 10 km grid point spacing for
one circular grid is displayed in table 3.2 below.

Table 3.2: Grid radius and corresponding number of points for a 10 km grid point spacing.

Grid radius [km]
Number of points [#]

25
21

50
81

75
177

100
317

125
489

150
706

175
973

200
1257

225
1597

250
1954

275
2377

300
2821
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Figure 3.4: Example grid with 175 km radius. Grid is centered around the % minimum (point mass 1, red star on in the West). The blue
star marks the location of Sermeq Kujatdleq.

The distance from point mass 1 to point mass 2 is approximately 92 km.

3.3.2. Observed mass variations

Mass variations are inferred from GRACE observations on a grid around point mass 1. The GRACE L2 data
product with maximum spherical harmonic degree 96 (ITSG-2018) was produced at TU Graz by Mayer-Giirr
etal. [2018]). This and other exploited data products are summarised in table 3.3.

Table 3.3: Data used in this chapter. The normal-matrices for the GRACE monthly solutions of Mayer-Giirr et al. [2018] were not available
at the moment of processing. Therefore, an earlier version of GRACE monthly solutions was used for the statistically optimal approach.

Dataset Degrees Reference
GRACE monthly solutions | L4 =96 | Mayer-Giirr et al. [2018]
GRACE monthly solutions | L4 =90 | Mayer-Giirr et al. [2016]
Monthly normal matrices Lyax =90 | Mayer-Giirr et al. [2016]
GIA Liax =100 Aetal. [2013]
C1,0,C1,1,C1,-1,Cop - Sun et al. [2016]

In the study period of November 2010 until March 2016 there are GRACE monthly solutions available for
51 out of 65 months. Missing months are January and June in 2011, May and October in 2012, March, August
and September in 2013, February, July and December in 2014 and May, June, October and November in 2015.

First Cy,9, C1,1, C1,-1 and Cy o are replaced by more accurate Stokes’ coefficients for each of the 51 GRACE
monthly solutions by coefficients from Sun et al. [2016]. Subsequently, the glacial isostatic adjustment (GIA)
is removed from the GRACE monthly solutions. Thirdly, the mean of every Stokes’ coefficient in the study
period is removed.

The adjusted Stokes’ coefficients are converted into surface mass density variations using equation 3.6. This
results in a surface mass density variation at each grid point. The functional model for estimating the mass
of a point mass at a grid point for a single month is:

d(Oc,d) = k16510c, ) + k2652(0c,P) + ks, 3.11)

where d (0., ¢) is the observed surface density variation at (6, ¢), k1 and k; scaling factors of simulated point
mass 0s; and J'sy, respectively and ks estimates the underlying surface density variation offset or bias. Phys-
ically, the bias is included to account for possible errors in low-degree coefficients. k; validly represents a
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mass estimate with the chosen grid set-up for a sufficient grid radius and grid point spacing. This leads to a
linear system of equations for each GRACE monthly solution:

Ax =y, (3.12)

where observation vector y contains v surface mass density variations in kg/m? with v as the number of grid
points and design matrix A, which contains a column for each simulated point mass in Gt/m? and a unit
column. Equation 3.12 is solved using a LSE for each GRACE monthly solution. Formal error propagation is
performed using:

Qiz=065(A" A7, (3.13)

where Qz; is the noise covariance matrix of the estimated parameters and o ; the standard deviation of data
noise. The standard deviation of data noise is calculated via:

ri’r
v-p’

Gy= (3.14)
where r are the residuals, v the number of observations and p the number of parameters estimated. The di-
agonal elements of Q3 are the variances of the estimated parameters assuming the noise in the observations
is uncorrelated. Data noise is in this case however, severely correlated [Wouters et al., 2014]. Therefore, this
estimate of standard deviation of data noise is based on an idealised assumption.

Statistically optimal observed mass variations

Decorrelation of observations can be realised through data weighting. To that end, the normal matrix (V) for
each GRACE monthly solution [Mayer-Giirr et al., 2016] is used. The normal matrix is equal to the inverse
noise covariance matrix (Qyy,s = N™1) of the Stokes’ coefficients. Noise variances and covariances can be
propagated directly from the spectral domain to the spatial domain via:

Qyya=YN'YT (3.15)

where Qyy, 4 (from now on simply referred to as Qy,) is a v x v noise covariance matrix with v grid points, Y a
v x w matrix that maps w Stokes’ coefficients to v surface densities (see equation 3.6) and N an w x w normal
matrix of the GRACE monthly solution.

Because the degree-1 and Cyg coefficients were replaced, noise variances and covariances of those coeffi-
cients need to be derived separately as they are not provided. The covariances of the degree-1 and Cy are
assumed to be zero and the variances were computed from time series of those coefficients using Variance
Component Estimation (VCE) as described by Ditmar et al. [2018].

The calculation of Qy, requires the inversion of N. In order to avoid direct inversion of N for robustness,
the method described by Ran [2017] is followed. This method applies Cholesky decomposition and Singular
Value Decomposition (SVD) to derive the eigenvalues (A) and eigenvectors (Q) of Qy,. The covariance matrix
Qyy is then included in the LSE as follows:

x=(ATQ,,H7'ATQ,y. (3.16)

Direct inversion of Qyy is not possible, because Qyy, is ill-conditioned. Conveniently, truncation of the eigen-
value spectrum regularises Q. The number of eigenvalues that need to be retained for a well-conditioned
covariance matrix is unknown. Therefore, the truncation number is set by the magnitude of eigenvalues
themselves. All eigenvalues up to X times smaller than the largest eigenvalue are used, the rest is set to zero.
X is varied to investigate the sensitivity of the inferred mass to the truncation number. As mentioned by Ran
etal. [2018], this data inversion scheme does not fully minimise dispersion because of the truncation. Finally,
inversion of Qyy is then simply performed by inverting each eigenvalue individually:

Q,y = QA Qf, (3.17)

where ny is the regularised full covariance matrix, Q; is the truncated eigenvector matrix and A;! is the
truncated inverse diagonal eigenvalue matrix. With the inclusion of a full covariance matrix equation 3.13
changes therefore to:

Qiz=(ATQy A" (3.18)
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3.3.3. Mass change estimate

In the previous section, a mass estimate was made for the point masses included in the functional model for
each monthly solution. A linear trend is estimated from the time series of point mass 1 using the following
functional model:

d(t) = ag+ aiAt+ axcos (2mAt) + agsin 2mAt) + az cos (4nAt) + as sin (4nwA1), (3.19)

where d(?) is the mass at time ¢, At equals (¢ — f), i.e. the time passed the with respect to an arbitrary refer-
ence time ty, ap the mass change offset, a; the mass change, a, and as are annual amplitude terms and a4 and
as are semi-annual amplitude terms. The variance of d(f) comes from the first diagonal entry of Q;; (equa-
tion 3.13 or 3.18 for ordinary and statistically optimal, respectively) and is used to weigh the observations
according to equation 3.16. The weight matrix is in this case diagonal and does not require regularisation.
The standard deviation of estimated mass change can be calculated by with equation 3.13 and 3.14 assuming
white noise among the different monthly mass estimates. Therefore, the idealised error estimates of each of
the mass estimates in the unweighted case have minor impact on the final mass change estimate. This is be-
cause the actual magnitude of each estimate within the time series is irrelevant. Only the respective (to other
mass estimates in the time series) error magnitude is relevant. Therefore, the assumption is expected to be of
minor impact.

The asymmetry in ablation and accumulation times and magnitude is accommodated by including semi-
annual terms [Ditmar, 2018a]. Concretely, melt often takes place at a much quicker rate than snowfall in
terms of mass change. Furthermore, the duration of melt and the duration of accumulation of snowfall are
also rarely of equal duration.
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3.4. Results & Discussion

In the first part of the result section, the results obtained by applying unweighted LSE to equation 3.12 are
presented. In the second part, the results obtained by applying weighted LSE to equation 3.12 are presented.
Set-ups 1 to 7 are concerned with the unweighted LSE and set-ups 8 to 14 are concerned with the statistically
optimal (weighted) LSE. Set-up 1 is taken as the nominal set-up for comparison.

Table 3.4: Variation of set-ups in this section. Each set-up is one line in the indicated figure. Eigenvalue truncation factor is only used for
the statistically optimal approach.
* Degree-1 and Cp o are removed before estimating mass and mass change.

Set-up | Point | Grid Elgenva.lue Bias Grid point .
.. | truncation . . . Figure
Ne mass | radii factor co-estimation | spacing [km]

1 1 all - yes 10 3.5,3.6and 3.7
2 1,2 all - yes 10 3.5

3 1 all - no 10 3.6

4 1 all - yes* 10 3.6

5 1 all - yes 20 3.7

6 1 all - yes 40 3.7

7 1 all - yes 80 3.7

8 1 all 108 yes 10 3.9

9 1 all 10° yes 10 3.9
10 1 all 100 yes 10 3.9
11 1 all 10! yes 10 3.9
12 1 all 10'2 yes 10 3.9
13 1 all 1013 yes 10 3.9
14 1 all 101 yes 10 3.9

3.4.1. Mass change estimated with ordinary least squares estimation
In figure 3.5, the impact of co-estimation of point mass 2 is shown. The figure shows the scaling factor as-
signed to point mass 1 only (see equation 3.11).
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Figure 3.5: Impact of co-estimation of point mass 2 on mass change estimate as a function of grid radius. PM refers to point mass. PM*
refers to the value of k; when point mass 2 is co-estimated. See table 3.1 for the point mass index. The error bar is 1-0.

The introduction point mass 2 shows stronger negative mass change. It was expected that the co-estimation
of point mass 2 would have a positive impact on the mass change of point mass 1, because the LSE assigns a
part of the regional mass loss to the Sermeq Kujatdleq glacier instead of the Jakobshavn glacier. With growing
radius, point mass 1 and 2 become relatively more similar for grid points far away. As a consequence, their
mass change contribution converges to an equal division. Hence, co-estimation of point mass 2 shows grad-
ual decrease in mass change.



42 3. Mass change through gravimetry

Because the result of co-estimation of point mass 2 non-physical, the impact of neighbouring glaciers is min-
imised by minimising the grid radius only.
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Figure 3.6: Impact of co-estimation of a bias on mass change estimate as a function of grid radius. The estimate without bias co-
estimation with and without a * are almost the same. This indicates that the offset is not primarily caused by the degree-1 and Cz o
Stokes’ coefficients. The error bar is 1-o.

* Degree-1 and Cy o are removed before estimating mass and mass change.

Figure 3.6 shows a 5 to 10 Gt/yr positive change when co-estimating a bias (k3 in equation 3.11), which is
up to one third of the new mass change estimate. It was postulated that low degree coefficients are responsi-
ble for this bias. This is not the case as removal of low degree Stokes’ coefficients did not show similar mass
changes as with bias co-estimation.
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Figure 3.7: Impact of grid point spacing on mass change estimate as a function of grid radius. The error bar is 1-o.

Figure 3.7 shows the impact of grid point spacing on the mass change estimates. Fluctuations are well
visible for the 40 and 80 km solution. At 20 km, the solution shows minor fluctuations with respect to 10 km
grid point spacing. Fluctuations of mass change for growing grid radius are marginal for the 10 km solution.
Therefore, 10 km is considered adequate.

When co-estimating a bias only with 10 km grid point spacing, the curve first shows decreasing mass change
up to 200 km radius. After approximately 200 km radius, the mass change becomes more negative. This
indicates that mass loss observations neighbouring the location of point mass 1 are showing a more gradual
decline than the simulated mass loss when moving away from point mass 1. Concretely, the approximate
radius of maximum mass loss until equilibrium in figure 3.2 is larger than in figure 3.3. When the mass loss
becomes more negative, neighbouring signals of mass loss start to contribute noticeably. Therefore, 200 km is
considered adequate. This estimate shows a -29.8+3.3 Gt/yr for the Jakobshavn drainage basin and is based
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on one point mass and bias co-estimation for 10 km grid point spacing. The corresponding time series for
point mass 1 is shown below in figure 3.8.
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Figure 3.8: Time series based on ordinary LSE with point mass 1 (-29.8+3.3 Gt/yr) used for mass change estimate with 10 km grid point
spacing, 200 km grid radius and bias co-estimation. The error bar is 1-o.

3.4.2. Mass change estimated with statistically optimal least squares estimation

In this section, results of data weighted mass change is shown. Data weighting is applied to Stokes’ coeffi-
cients using a noise covariance matrix as shown in section 3.3.2.1. Figure 3.9 shows the impact of truncation
of the eigenspectrum on the mass change estimates. Important is the fact that the eigenspectrum is gradually
decreasing, such that truncation is not straightforward.

Mass change [Gt/yr]

50 100 150 200 250 300
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Figure 3.9: Impact of eigenspectrum truncation on mass change estimates. The legend shows the maximum factor that an eigenvalue
can be smaller than the largest eigenvalue. Larger factors signify the retention of more eigenvalues. The error bar is 1-0.

For grid radii of 100 km and larger, the mass change estimate deviates by approximately 10 Gt/yr from
the unweighted estimate. To inspect the way the data weighting alters the set-up spatially, in particular the
functional model, the spatial impact of weighting is derived by computing the decorrelated design matrix (for
this procedure see section A.1 in the appendix). Figure 3.10a and 3.10b show the correlated (unweighted) and
decorrelated (weighted) simulation of point mass 1 in the spatial domain, respectively, for truncation factor
10'2 at 200 km grid radius for April 2014.
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(a) Correlated point mass 1. The simulated point mass is

(b) Decorrelated point mass 1. The simulated point mass
well visible.

is not visible. Instead, edge-effects and patterns with un-
realistically short wavelength are visible.

Figure 3.10: Insensitivity to simulated point masses in statistically optimal approach. The first column of the design matrix has been

plotted in figure a and b. Truncation factor is 10'2 with a 200 km grid radius and grid point spacing of 10 km for monthly solution of April
2014.

The intended scaling of a point mass using weighted LSE does not reflect the physical signal that is present
in the area. Further research showed that grid point spacing, grid shape or truncation factor do not alleviate
the insensitivity towards the functional model, i.e. the simulated point mass. A larger grid (>500 km radius)
showed improvement, i.e. the unrealistically short wavelength signals (see figure 3.11 below) have largely
been removed or have shifted to the edge. However, these grid sizes are unfeasible for this study.
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(a) Decorrelated point mass 1 with a 500 km large grid
radius. The short wavelength features that were visi-
ble in figure 3.10b have mostly disappeared within the
Jakobshavn drainage basin. However, edge effects are still
present.

(b) Decorrelated point mass 1 with an 800 km large grid
radius. The short wavelength features that were visible
in figure 3.10b have mostly disappeared within the Jakob-
shavn drainage basin. The edge effects that are visible in
figure 3.11a have displaced to close to the 800 km radius.

Figure 3.11: Decorrelated point mass 1 for large grid radii. Truncation factor is 1012 with a 500 and 800 km grid radius and grid point
spacing of 10 km for monthly solution of April 2014. Note that the colour bars do not have the same limits.

1

The decorrelation filter (C; 2) visibly matches the stochastic properties of noise in figure 3.11b. The noise
is correlated along track due to orbit geometry along with low frequency noise in the original L1 data time
series. Furthermore, the noise is anti-correlated across-track (causing striping [Wouters et al., 2014]).
Based on the seemingly adequate result in figure 3.11b, it is proposed that 1) the point mass is simulated
on a grid with a radius that is a few times larger than the desired grid radius and that 2) statistically opti-
mal scaling takes place with a truncated, decorrelated functional model and observations. Truncation here
means that all grid points beyond the desired radius are discarded. Figure 3.12 shows the decorrelated point

mass from figure 3.11b where the decorrelation filter and the functional model have been truncated before
multiplication.
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Figure 3.12: Decorrelated point mass 1 with 800 km grid radius truncated to 200 km. Truncation factor (for eigenvalue spectrum) is 10'2
in a) and 108 in b) with a grid point spacing of 10 km for monthly solution of April 2014.

It can be seen in figure 3.12a that the point mass crosses zero just over 100 km away form the point mass
location, which is much more rapidly than in the simulated point mass (i.e. approximately 200 km, figure 3.3).
This may indicate that more regularisation is required. To that end, the regularisation factor is decreased to
meet the 200 km radius to its first zero crossing. A regularisation factor of 10® shows (figure 3.12b) a point
mass signature resembling the unweighted simulated point mass. Thereafter, the corresponding time se-
ries is created using an 800 km radius for synthesis, then truncating the functional model, observations and
decorrelation filter to 200 km radius, where the decorrelation matrix has been regularised using a truncation
factor of 10°.
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Figure 3.13: Time series based on truncated decorrelated LSE with point mass 1 used for mass change estimate with 10 km grid point
spacing, 800 km grid radius (truncated at 200 km) and bias co-estimation. Truncation factor (for eigenvalue spectrum) is 106. The error
baris 1-0.

It is expected that the resulting time series is less noisy. Unexpectedly, the time series in figure 3.13 which
was constructed using the description above, shows parts with reduced as well as increased noise. At this
stage it is realised that this may be due to the inherent implications of the truncation factor of the eigenvalue
spectrum. The factor was meant to balance the eigenvalues among different months by magnitude. However,
it also implies that months within the time series may have a reduced eigenvalue spectrum with respect to
other months. If that is the case, then outliers in figure 3.13 should contain relatively few eigenvalues after
truncation with the truncation factor. Solution of April 2012, January 2015 and February 2015 are easily iden-
tified as outliers. The number of retained eigenvalues for each month is shown in figure 3.14 and confirms
this observation.
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Figure 3.14: Number of largest retained eigenvalues of the noise covariance matrix after regularisation for each month. The outliers in
figure 3.13 correspond well with less than average retained eigenvalues. In other words, the outliers have a smaller eigenspectrum.

The final step is to see if the outliers can be adjusted by retaining the largest 91 eigenvalues (instead of
using a truncation factor) of the noise covariance matrix for all months. The corresponding time series is

shown in figure 3.15.
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Figure 3.15: Time series based on truncated decorrelated LSE with point mass 1 used for mass change estimate with 10 km grid point
spacing, 800 km grid radius (truncated at 200 km) and bias co-estimation. The eigenvalue spectrum of the noise covariance matrix of
each monthly estimate was truncated to the largest 91 eigenvalues. The error bar is 1-o.

Figure 3.15 shows that the identified outliers indeed originated from a more reduced eigenspectrum. Fur-
thermore, noise appears only marginally reduced with respect to the unweighted time series (figure 3.8). The
mass balance corresponding to his new time series is -26.6+2.9 Gt/yr. The new time series still shows differ-
ences within the time series regarding to noisy months. For instance, the years 2014 and 2015 appear rela-
tively noisy compared to 2013. This suggest that more subtle adjustments of the number of eigenvalues that
need to be retained are required, because the decay of the eigenvalue spectrum is different for each month.



Removal of the Surface Mass Balance

This chapter provides a brief intro to RACMO); the source from which we derived the SMB. After that, the SMB
is further elaborated upon, continuing on the explanations given in paragraph 1.1. Then the RACMO dataset,
provided by IMAU at Utrecht University, is visualised and further analysed in the context of the study area.
Subsequently, the derivation of the ice discharge using the results from chapter 2 and 3 in combination with
the estimated SMB from this chapter is shown.

4.1. Introduction: A regional climate model

RACMO is a RCM to simulate the SMB tailored to the Arctic and Antarctic. In early 1990, the KNMI and the
Danish meteorological institute (DMI) developed RACMO for research purposes [IMAU]. The current version
of RACMO, RACMO 2.3p2, is based on a numerical weather prediction (NWP) model, i.e. the High Resolution
Limited Area Model (HIRLAM), and a physics model from the European Centre for Medium-Range Weather
Forecasts Integrated Forecast System (ECMWEF-IFS) [Noél et al., 2018]. Figure 4.1 illustrates the components

involved in an IFS model.
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Figure 4.1: IFS model with the included components, which is used in RACMO2. Taken from ECMRWF [2008]

The accuracy of RACMO model was partially derived by Noél et al. [2018] through comparison with obser-
vations, from e.g. automatic weather station records. Noél et al. [2018] found that run-off was poorly resolved
in narrow glaciers due to the relatively large resolution of 11 km length and width (statistically downscaled to 1
km). Therefore, this RACMO version models the SMB at 5.5 km scale, which has been statistically downscaled
to 1 km.

4.1.1. SMB and Ice discharge

In the previous two chapters, estimates of the MB were made. Figure 4.2 shows the SMB in kg/m?/yr or
equivalently in mm/w.e./yr. Relatively strong negative rates are found near the coast and slightly positive
inland within the Jakobshavn drainage basin. These findings correspond well with the long term rates derived
by Ettema et al. [2009] using an earlier version of RACMO 2.
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Figure 4.2: Annual SMB per square kilometre (estimation period: November 2010 until March 2016). The contour lines (derived from the
DEM [Howat et al., 2017], which was also used in chapter 2) indicate elevation in metres.

SMB equilibrium is attained between roughly 1300 m up to 1700 m elevation. With negative elevation
rates (section 2.4.5), this means that the ELA is likely above 1300m. The ELA was used in section 2.4.5 as a
boundary within the linear density model. The density of ice was assumed for the volume change estimates
below the ELA. A higher ELA indicates a larger contribution of ice loss with respect to firn/snow. This leads to
stronger mass change estimates. The ELA was varied to account for ELA uncertainty.

4.2. Theory & Methodology

The goal is to obtain the SMB from the RACMO 2.3p2 model in the Jakobshavn drainage basin over the period
November 2010 - March 2016. To that end, the surface mass anomaly (SMA) is integrated over the basin per
month after which the basin wide linear trend is estimated using the following functional model:

SMA(t) = apg+ a1 At + ax cos 2nAt) + azsin (2w At) + as cos (4nwAt) + assin (4nwAt), (4.1)

where At is equal to (f — tp), i.e. the time passed the with respect to an arbitrary reference time fy, ap the SMA
offset (intercept), a; the SMB, a, and as as well as a4 and as are amplitude terms of the annual and semi-
annual components (e.g. Amplitude =y /a% + ag), respectively. Semi-annual terms are added, because the
ablation and accumulation period do not last equally long (see section 3.3.3). The standard deviation of data
noise () is calculated with:

R rir

6y= , 4.2)

n-p

where r the residual vector, n the number of observations and p the number of estimated parameters. The
covariance matrix of the estimated parameters (Qz3) is then computed via:

Qzz = 6y(ATA)_1, (4.3)

where A is the functional model from equation 4.1. The values of Qs are valid under the assumption that the
data noise is uncorrelated. The error estimate of the inferred SMB is the RSS of the standard deviation of the
estimator (6 ,) and a model error of 20% [van den Broeke et al., 2016]:

2
Eswvp =1/6%+ (O.Z-SMB) . (4.4)

Subtraction of the CryoSat-2 inferred mass balance M Bcs, from the SMB, directly results in an estimate of
the ice discharge IDcs», as indicated in equation 4.5. The error of ID¢s, is computed with the RSS of the
errors of each component in:

IDcsy = SMB— MBcsp.- (4.5)

Likewise for the GRACE estimate:
IDGrace = SMB — MBGRACE- (4.6)
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A more adequate approach however, would be to convert the SMA to the spectral domain through synthesis.
Then the SMA can be spectrally limited to a maximum spherical harmonic degree to ensure spectral consis-
tency. Unfortunately, when using this approach, the point mass assumption is violated and an estimate of
the scaling factor becomes arbitrary. This approach was therefore unsuccessful.

4.3. Results & Discussion

Figure 4.3 shows the SMA within the study area. The annual variability is clearly visible, with a decrease in
SMA in summer, and increase throughout the rest of the year (roughly September until May). Concretely, this
indicates more snowfall and refreezing than melt and sublimation in terms of mass. Furthermore, the sum-
mer of 2013 reveals a relatively weak mass loss signal, whereas the summer of 2012 shows a relatively strong
mass loss signal. This time is was reported as the 2012 melt event [McMillan et al., 2016, Nilsson et al., 2015].
The strong summer melt in 2012 was a consequence of an increased North Atlantic Oscillation index [Wouters
et al.,, 2014]. This index is associated to large scale pressure patterns, controlling westerly winds across the
North Atlantic. The 2012 melt event led to strong biases (56+26 cm) in the CryoSat elevation estimates across
Greenland due to changing scattering properties of the surface [Nilsson et al., 2015]. It should be noted that
the 2012 melt event mostly took place North of 70° N [Nilsson et al., 2015], i.e. North of the study area.
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Figure 4.3: SMA in the Jakobshavn drainage basin in blue with the model fit in red. The standard deviation consist of the RSS of the
model fit error (0.2 Gt/yr) and the SMB model error (4.9 Gt/yr).

The linear rate was estimated at 24.5+ 4.9 Gt/yr, with the total error as the RSS of the formal standard
deviation of the estimated parameter and a model error. The amplitude of the annual and semi-annual signal
was estimated at 3.6+0.6 Gt and 2.5+0.6 Gt, respectively.

The ice discharge derived from CryoSat-2 data, unweighted GRACE monthly solutions and weighted GRACE
monthly solutions in combination with RACMO are then calculated via equation 4.7, 4.8 and 4.9, respectively:

IDcsy =24.5+24.7=49.3Gt/yr, 4.7)
with an error of 5.7 Gt/yr. For GRACE this results in
IDGRrAcE =24.5+29.8=54.3Gt/yr, (4.8)
with an error of 5.9 Gt/yr for the unweighted solution and
IDGRrACE =24.5+26.6 =51.1Gt/yr, 4.9)

with an error of 5.7 Gt/yr for the weighted solution.






Discussion, Conclusion &
Recommendations

The goal of this study was to derive the ice discharge and its corresponding error budget from swath pro-
cessed CryoSat-2 volume data and GRACE monthly solutions in combination with RACMO modelling results
over the Jakobshavn drainage basin in Greenland in the period of November 2010 until March 2016.

The MB derived from CryoSat-2 data yields -24.7+£3.0 Gt/yr. The MB derived from GRACE monthly solu-
tions was estimated at -29.8+3.5 Gt/yr and -26.6+2.9 Gt/yr for the unweighted and weighted solution, re-
spectively. The MB’s combined with the SMB estimate of 24.5+4.9 Gt/yr this yields an ID of 49.3+5.7 Gt/yr
for the CryoSat-2 based estimate. For the GRACE-based estimate this results in an ID of 54.3+5.9 Gt/yr and
51.1+5.7 Gt/yr for the unweighted and weighted solution, respectively. The estimates are obtained over the
observation period of November 2010 until March 2016 within the Jakobshavn drainage basin.

King et al. [2018] (in review) studied the ice discharge time series of entire Greenland. Time series were cre-
ated by integrating the ice flow velocities over the flux gates assuming the density of ice. The time series shows
an average ice discharge of 50.8+2.2 Gt/yr for the Jakobshavn glacier, which is within error of our estimates.
Before the ice flow acceleration in 2011 [Lemos et al., 2018], the ice discharge was estimated at approximately
30 Gt/yr [Howat et al., 2011]. Furthermore, our two semi-independent estimates, i.e. altimetry-derived and
gravimetry-derived are also in reasonable agreement with each other. Considering that, as well as the afore-
mentioned acceleration event and the agreement with King et al. [2018] (in review), provides confidence in
the presented ice discharge estimates. Nevertheless, context of the estimates is provided by briefly addressing
significant intermediate assumptions and choices.

The selection of valid waveform samples was performed by selecting samples that have alow phase difference
dispersion. Samples are considered valid in the sense that they correspond with actual surface scatterers. Se-
lection of samples by phase difference dispersion essentially selects the samples which are within smooth
parts of the phase difference recordings. It was found that using this method for valid waveform sample
selection is overall more reliable than when taking coherence as a threshold criterion. This is because the op-
timal threshold among 6 drainage basins in Greenland varies marginally for the phase difference dispersion
(variation: [0.97,0.99]) with respect to the coherence (variation: [0.58,0.92]) (both quantities range from 0 to
1). Optimal was defined through a measure that minimises the standard deviation of elevation differences
(w.r.t. a DEM) and maximises the number of elevation estimates.

Hypsometric averaging was improved by considering two fits for a dynamic and non-dynamic region based
on flow velocities. The difference between volume changes when using direct summation (integration) of
individual volume changes and when using hypsometric averaging is minor (<1 km3/yr), similar to what was
found by Wouters et al. [2015] upon comparing the difference between direct integration and adequate hyp-
sometric averaging.

The preferred density model (linear model) has an average effective density of 840 kg/m3. Huss [2013] showed
that effective densities are generally within 850460 kg/m? for a glacier under certain conditions that are likely
met in this study. The mass change estimates from different density models (flow velocity and linear den-
sity) in this study are within 1-o of each other. The linear density model includes a varying transition zone,
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whereas the flow velocity based density model does not. Furthermore, the flow velocity threshold which sep-
arates ice and snow/firn was varied linearly. It was found that the flow velocity profile away from the terminus
is not linear such that the mass change estimate and its corresponding uncertainty are inadequately varied.
As a consequence, the flow velocity model likely underestimates mass loss.

With GRACE data, the data noise was assumed white for the ordinary least squares estimation of monthly
mass estimates. By literature, e.g. [Jekeli, 2007, Wouters et al., 2014], it is known that data noise is not white.
This idealised noise estimate is used as weights for each of the data points when assessing the linear mass
change of the mass time series through WLSE. As this assumption is too idealistic, caution is required when
investigating individual data points. However, when inferring the linear mass change from the time series,
only the respective (to other mass estimates in the time series) error magnitude is relevant. Therefore, the
assumption is expected to be of minor impact.

Subtraction of the GIA is done in the spectral domain, i.e. from the Stokes’ coefficients to maintain spectral
consistency. The derived product becomes an approximation with the (in)ability to project signals only up to
a minimum wavelength upon truncation of the Stokes’ coefficients to a maximum the degree. To illustrate,
the GIA has been corrected for in terms of Stokes’ coefficients, whereas the SMB could not be subtracted in the
spectral domain. The magnitude of the SMB is too large, i.e. of the same order as the MB. As a consequence,
the scaling of the point masses would result in invalid mass change estimates. Therefore, the spectrally un-
limited (in the spatial domain) SMB was subtracted and a spectral inconsistency was introduced. The SMB is
fairly smooth in the region of the Jakobshavn drainage basin (see figure 4.2), such that it is expected that the
spectrally consistent ice discharge estimate would not differ significantly.

It was shown that GRACE can be used to infer ice discharge if a local and sufficiently strong mass change
signal with respect to its wide vicinity is present. Uncertainty to which extend this condition needs to be met
may be accommodated by including (multiple) point masses. However, care must be taken of the physical
meaning of observed mass change signals, because a strong change is paired with radially alternating mass
change signals (side lobes of sinc-function) due to truncation.

Furthermore, it was shown that data weighting directly on a local field of observations has an adverse effect
on the simulated observations. In our case, this meant that the simulated point mass signature was destroyed.
This was found when considering the noise covariance matrix in the spatial domain as a decorrelation filter.
This decorrelation filter was then applied to the simulated point mass. It was also shown that the adverse
effects of weighting can be mitigated on a local scale upon increasing the observational area. Afterwards, the
desired observations can be extracted from the decorrelation filter, design matrix and observation vector for
LSE. Furthermore, it was shown that the number of eigenvalues of the noise covariance matrix retained (for
regularisation) for each month may need individual evaluation.

5.1. Conclusion

The research questions as stated in chapter 1 are shown below. A concise explanation is given to each research
question which, altogether provide suitable and workable context for the research objective.

Q.1 What are the key parameters in the implementation of the CryoSat-2 swath processing scheme for eleva-
tion change estimation?

In chapter 2 the coherence, look angle, normalised waveform energy, phase difference dispersion,
power and slope were investigated. A DEM was used to remove the most severe outliers.

Parameter optimisation was performed using an optimisation parameter that penalises a high standard
deviation and rewards a large number of points.

The coherence and phase difference dispersion are key parameters in the swath processing scheme,
because of their ability to reduce the standard deviation significantly. Optimisation of these two pa-
rameters was performed simultaneously with the look angle and showed a reduction of the standard
deviation of elevation differences ranging from at least 29% up to 67% (optimised phase difference
dispersion and look angle threshold) and at least 29% up to 71% (optimised coherence and look an-
gle threshold) for 6 different drainage basins. When varying thresholds these thresholds, the strongest
gradient occurs for the phase difference dispersion and coherence, such that it can be concluded that
these are more effective when reducing the standard deviations of elevation estimates than the look
angle. The optimal coherence threshold performs slightly better than the optimal phase difference dis-
persion threshold however, the optimal coherence threshold changes substantially from basin to basin,
whereas the phase difference dispersion changes marginally. As a consequence, a higher coherence
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does not always improve the optimisation parameter. In case of missing control data it is thus always
advised to use the phase difference dispersion.

Optimisation of the maximum and minimum normalised waveform energy threshold reduces the stan-
dard deviations of elevation estimates by 1% to 9% for the 6 different drainage basins.

It was found that power and slope are not suitable for sample selection, because of the poor distribu-
tion of points. Applying a threshold on these parameters would mean a substantial loss of good quality
(<15 m elevation difference with DEM) elevation estimates.

How can the GRACE mass anomalies, the CryoSat-2 elevation estimates obtained through swath process-
ing and the RACMO modelled SMB be combined consistently to reveal the ice discharge in Jakobshavn in
Greenland?

By subtraction of the MB from the SMB, the ice discharge is retrieved. It was shown that CryoSat-2
data can provide elevation change consistent with OIB elevation estimates using swath processing. El-
evation change was derived using WLSE with a search radius where weighting was based on distance to
the estimation point. Hypsometric averaging and a density model were used to infer volume and mass
changes within the basin. It was shown that hypsometric averaging can be improved by separating fits
based on flow velocity. The computed volume loss is in good agreement (<1-0) with CryoTop volume
change estimate. Furthermore, two different density models show reasonable results and are within
error bar of each other. Mass change error consist of a hypsometric misfit, basin outline uncertainty
and volume-to-mass conversion uncertainty.

GRACE monthly solutions were used to estimate monthly mass anomalies using an improved scheme
that incorporates the radius of the reference ellipsoid instead of a spherical Earth. GIA was subtracted
and degree-1 and C, o Stokes’ coefficients were replaced. The limited resolution of the GRACE data does
not allow for direct integration of each observation point, in contrast to CryoSat-2 elevation change
estimates. To that end, consistency between observation areas of CryoSat-2 and GRACE based mass
change is (largely) maintained by making a point mass assumption. It was shown that scaling of a
simulated point mass to that of the observations yielded mass change estimates that are in agreement
(<1-0) with the CryoSat-2 mass change estimates. Sensitivity of the chosen set-up was studied by vary-
ing grid radius, grid point spacing, bias co-estimation and point masses. It was shown that grid radius
and grid point spacing affects mass change estimates marginally when the radius is sufficiently large.
Bias co-estimation yields a significant deviation of roughly 33% when omitting it. Furthermore, an ad-
ditional point mass located at a glacier in the vicinity of the Jakobshavn glacier resulted in non-physical
behaviour, increased mass change error and thus did not improve the final estimate. The statistically
optimal estimate of the mass change required an increased grid radius to keep the simulated point
mass intact. Selection of observations in the enlarged grid can be done after computing the decorrela-
tion filter. Individual regularisation of the noise covariance matrix for each month was omitted in this
study, but would increase confidence in the statistically optimal time series.

SMB estimate were made based on cumulative monthly RACMO 2.3p2 SMA output. Subtraction of the
CryoSat-2 and GRACE-based MB from the SMB was done in the spatial domain. Regarding the sub-
traction of the GRACE-based MB from the SMB, a spectral inconsistency had to be introduced. This
is because the point mass assumption is violated when subtracting the SMB in the spectral domain.
However, it is expected that the bias introduced by spectral inconsistency is much smaller than the bias
introduced by direct integration of the Jakobshavn basin GRACE observation points.

What limitations emerge from the RACMO data inclusion, the GRACE and CryoSat-2 data acquisition
and chosen processing methods and how do these jointly affect the ice discharge estimates?

In this research, no time series of mass estimates was created per grid cell with CryoSat-2 data, be-
cause the goal was the long term linear trend of the ice discharge. However, such time series do provide
excellent insight in the evolution of mass estimates. In contrast, time series were made from GRACE
and SMA data. A time series can, in practice, be constructed from the CryoSat-2 data. In hindsight,
with the number of available elevation estimates it may have been possible to do so for the part of the
Jakobshavn drainage basin that is observed by CryoSat-2 in SIN mode. Larger grid cells are however,
needed to accommodate time series within the LRM area.

Furthermore, care needs to be taken of an adequate DEM for global phase unwrapping, regardless of
the optimal choice of parameters. If the DEM is not sufficiently up-to-date, CryoSat-2 swath processing
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fails. Additionally, the elevation error estimate is made on the basis of the difference with a DEM. It can
be shown that errors over 50 m can actually be relatively accurate (<5 m difference with OIB elevations),
due to the missing temporal component in the DEM. Since validation of elevation estimates with OIB is
limited (3% of obtained data within a given month), a full picture of elevation estimate quality cannot
be obtained. This however, does not affect the optimisation of thresholds.

CryoSat-2 based mass change estimates are always prone to volume to mass conversion errors, unlike
GRACE based mass change estimates.

As for the GRACE based mass change estimate, the potential mass loss signal of the Sermeq Kujatdleq
glacier could not be separated due to limited magnitude and resolution. It is therefore also not known
if and how much it contributes to the observed GRACE mass change.

The inclusion of the noise covariance matrix for GRACE based mass estimates alters the design ma-
trix in such a way that the location of the point mass becomes largely irrelevant on a drainage basin
scale. Data weighting has therefore not been able to improve the mass estimates without data weight-
ing. Unfortunately, this also affects confidence in the error estimate of the GRACE based mass change
estimates as they are based on white data noise.

Finally, the SMB model error of 20% is a rough estimate as the actual SMB error is not accurately known.

5.2. Recommendations for future research
For future studies, the following recommendations may prove beneficial:

Chapter 2: Mass change through altimetry

¢ The functional model (equation 2.13) presented in section 2.3.3 estimates coefficients related to spatial

and temporal components of the elevation. Throughout chapter 2 the primary goals was to assess
the temporal aspect. However, a DEM can be constructed from the coefficients related to the spatial
components. In section A.6 in the appendix, the elevation offset between the DEM by Howat et al.
[2017] and a CryoSat-2 based DEM at time f; (see section 2.3.3) is given. The CryoSat-2 based DEM can
in turn be used for more reliable global phase unwrapping when ¢ is set to e.g. halfway the observation
period or can be calculated at each moment in time explicitly. This however, requires estimating the
elevations twice and an initial DEM that is not too inaccurate (likely in the order of 10’s of metres).

In late 2003, the Jakobshavn glacier had lost the glacier tongue [Muresan et al., 2016]. This lead to

increasing seasonal variation Howat et al. [2011]. Alternating magnitude is not included in the cur-

rent functional model (equation 2.13) for elevation change estimates. The functional model can be ex-

panded with a,, At cos (2nAt) and a,+1 At sin(2nAt) aswell as a2 At cos (dnAt) and a3 At sin(4nAt)
to infer a linear increase in amplitude. Non-zero outcome of a,, up to a,+3 when applying (W)LSE then

indicate increasing or decreasing amplitude. However, over long periods this linear estimate may likely

not capture short term increase or decrease. Additionally, functional model adaptations can be statis-

tically tested for significance.

In chapter 2 hypsometric averaging was performed. The polynomial fits that were used to interpolate
data gaps and integrate the elevation change rates were introduced as a function of elevation. It was
found that elevation changes does not primarily depend on elevation, but also on ice flow velocity. To
that end, two polynomials were introduced to accommodate elevation changes in fast flowing and slow
flowing regions. A next step would be to include velocity in the polynomial fit p(k;, v;) of the form:

N M
phi,v) =) cphf+ Y dpv", (5.1)

n=0 m=0

where #h; is the elevation at location i, v; the flow velocity at location i, N the maximum degree of the
polynomial that accounts for elevation with unknown coefficient ¢, and M is the maximum degree
of the polynomial that accounts for flow velocity with unknown coefficient d,,. In this way, only one
hypsometric fit is required instead of two.

Choices for a suitable polynomial fit when applying hypsometric averaging can be supported by apply-
ing F-testing [Foresta et al., 2018]. With it, the change or improvement of higher order polynomials can
be evaluated by statistical significance.
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e The method for deriving elevation change uses an Eulerian (fixed) reference frame. Moholdt et al.
[2014] showed that instead of an Eulerian (fixed) reference frame, it can be beneficial to use a La-
grangian (moving) reference frame. This excludes advection of ice thickness gradients from the el-
evation observations between different epochs. Concretely, this means that velocity information is
required to compute the underlying topography at each measurement epoch. The topographic differ-
ence between two measurement epochs can be attributed to two components, i.e. to (advection) due
to a non-zero velocity field and accumulation/ablation. As CryoSat-2 SIN mode is especially useful in
rough terrains, advection may be playing a more significant role than it was the case in this study. Mo-
holdt et al. [2014] showed that changing the reference frame from Eulerian to Lagrangian reduced the
variability of elevation change by 50% for the Ross and Filchner-Ronne ice shelves in Antarctica.

¢ The volume change was converted to mass change using two different density models. The density
within the models depended on certain set-up parameters (i.e. ELA, firn density and ice flow velocity
to separate the dynamic and non-dynamic region). These parameters were varied linearly within likely
bounds to assess the sensitivity of the density model to those parameters. It was found that the variation
of the ice flow velocity threshold should be chosen carefully. This is because a cross-section of the ice
flow velocity away from the terminus is non-linear. Linear variation of this parameter as was done
in this study therefore likely biases the mass change estimate and volume-to-mass conversion error
estimate.

» Elevation and elevation change estimates based on observations from ascending tracks deviates from
elevation and elevation change estimates based on observations from descending tracks. This was
concluded after performing the WLSE in chapter two when using only observations from ascending
orbits or descending orbits (see section A.5 in the appendix). Concretely, 24% of the elevation change
estimates differences were over 1 m/yr. It was found that elevation change estimates based on observa-
tions in ascending track are on average more positive between the terminus and mode boundary. The
exact source and adequate treatment of this bias requires further research.

¢ The procedure to obtain CryoSat-2 based mass change estimates also applies to other drainage basins
in Greenland. When choosing PD dispersion instead of coherence, the parameters do not need to
be adjusted considerably as it was shown that optimal PD dispersion thresholds vary only marginally
among different basins. However, the hypsometric fit as used in this study may likely not be suitable
for other drainage basins. Other parameters, such as flow velocity (suggested above) and latitude may
need to be included. Furthermore, the ELA differs per drainage basin. In fact, it likely differs within a
drainage basin. This may increase the relative contribution of the volume-to-mass conversion error to
the total mass change error estimate and thus needs to be considered carefully.

Chapter 3: Mass change through gravimetry

¢ The statistically optimal approach for the scaling of a point mass to observations to infer mass was only
partially successful. The size of the observation area appears to play a vital role in the outcome of such
estimates. It is however, not investigated how this aspect dominates the point mass signature. Cor-
related and decorrelated simulations of point masses and more natural mass distributions may shed
more light on the destructive behaviour of data weighting for small observational areas. Second point
of interest is then on how to adequately tackle this issue if possible. As shown in the last section of
chapter 3, spatial truncation of the decorrelated simulated point mass after calculation in a wide area
improved the point mass signature. Overall scaling resulted in a time series that contains parts that are
comparably noisy to the correlated (unweighted) time series, which is unexpected when introducing
the noise covariance matrix to the mass estimate. It is thought that this can be improved by treating
the regularisation of the noise covariance matrix for each month (i.e. each data point of the time series)
individually, because it was shown that outliers can be created when truncating inadequately.
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Appendix

A.1. Least Squares Estimation
Suppose an m x 1 observations in vector y and 7 x 1 model parameters in x, related via an m x n model matrix
A according to:

v = Ax, (A1)

where vector x is unknown. Finding find the model parameters that correspond to our observations best is
commonly done in a least squares sense. This can be done by minimising the magnitude of the residuals via:

r=y- A%, (A.2)

where r is the misfit of the chosen model with estimated model parameters X. Minimising a magnitude is
analytically achievable by setting the derivative with respect to X of equation A.2 to be zero. Minimisation of
the squared form r is then:

or'r 0 T A
Y Z;(y—AX) (y—AX) =0
X X (A.3)

0
0= % yly-y ax-xTATy+x" AT Ax),
X

where it can be seen that y”y is not a function of % and that x” ATy =y A%, such that equation A.3 simplifies

to:

0= ;—A(—yTAf(— & ATy T +x7 AT A%)
X (A.4)
= i(—ZyTAﬁ+ﬁTATAﬁ).
0%

Writing out the derivative with respect to X:
0=—=20y' AT +2AT A%
Aly= AT Ax : (A.5)
Araptaly=x
which is the normal equation. The derivation is analogous for a weighted LSE (WLSE). For a WLSE, r’ Wr is
minimised instead of r'r, which leads to:
ATwAa 1 ATwy =%, (A.6)

where W is a square weighting matrix of dimensions m x m. If W is a full matrix containing the inverse
co-variances of y, then W is denoted as Q;yl and the LSE is the Best Linear Unbiased Estimator (BLUE, Gauss-
Markov Theorem).

The addition of the noise covariance matrix Qyy to the normal equation for data inversion (example: 3.16) can
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be considered as an unweighted inversion after decorrelating the design matrix and observation separately,

ie. .
A=Q,2A,
{ i Qj{ (A.7)
7=Qyy ¥,

where A and j are the decorrelated design matrix and the decorrelated observation vector, respectively [Dit-
mar, 2011].

A.2. Waveform sample selection based on R [Weissgerber and Gourmelen,
2017]

Weissgerber and Gourmelen [2017] and Foresta et al. [2018] showed that reasonable elevation estimates can
be obtained using the phase difference only instead of coherence for sample selection. The method essen-
tially selects the samples within smooth parts of the phase difference measurements within each waveform.
The phase difference measurements are referred to as A¢. An instructive example for finding suitable samples
within one waveform based on the information provided by Weissgerber and Gourmelen [2017] and Foresta
etal. [2018] is given below.

1. Divide the waveform in windows of N = 64 samples with 32 samples overlap.

2. Restore the full signal with unit amplitude for each window via s = e’2?, where i equals v/—1.

3. Estimate slope of the full signal in each window using the FFT (f = dg%p).

4. Create a new set of linear phase differences using the estimated slope for each window.

5. Subtract the new linear phase differences from the observed phase differences in each window.

6. Restore the full signal with unit amplitude using the subtracted phase differences: s,,0,, = /2%

A(A¢) is the subtracted phase.

, where

7. Compute dispersion measure R = %lZg:I snewl, where R is the phase difference dispersion and n is
the sample number.

8. Discard the lowest estimate of R for each overlapping window, such that only one estimate per 32 sam-
ples is left. Alow R corresponds to high dispersion and vice versa.

9. Select all samples within a window with R>0.95 and discard the rest.

A.3. Leakage and zero-padding

In section 2.3.1.2, the FFT is used to estimate the slopes of the phase difference values. Because this is ap-
plied to finite windows, this step is more accurately described by a sliding discrete Fourier transform (SDFT).
When applying the FFT for slope estimation, it is of great importance to consider zero-padding the input
(windowed phase differences). The slope of the input phase differences is assumed equal to the dominant
amplitude in the amplitude spectrum of the unit complex signal (e’*? with phase difference values (A¢). The
amplitude spectrum however, can only display discrete frequencies limited by the signal length. It is highly
unlikely that the present slope is among the discrete frequencies. As a consequence, leakage of the energy
towards neighbouring discrete frequencies takes place. To mitigate the leakage and improve the slope esti-
mate, zero-padding can be applied to the FFT input signal. To illustrate, assume that the signal with fixed
time is contained in a recording of N samples. The sampling frequency is then ZW” In case of zero-padding,
the length of the signal is expanded such that the sampling frequency becomes finer.

A.4. On (differential) phase ambiguities

To understand phase measurements and its inherent presence of ambiguity, it is helpful to think of the phase
as follows. Let us say a person is looking at a clock with only a minute hand. Every now and then the person is
looking at it to check the time. Knowing that once the minute hand reaches 59, it starts again at 0 one minute
later. In that case, an hour has to be added to the current time. Now say that this person is going to sleep at a
time when the minute hand is at 50. Next, the person wakes up with the minute hand at 39. There is no way
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of knowing how many hours have passed during the night’s sleep. This is because keeping check of the time
in this case only goes well as long as the person does not leave intervals longer than an hour between each
check (anecdote inspired by R. Hanssen).

This is analogous to the phase ambiguity of CryoSat-2’s double antenna phase difference measurements. A
harmonic signal with an ambiguity, not at 60 minutes, but at —z and 7 is measured. In addition, it is in this
case impossible to retrieve the previous number cycles (analogous to the number of hours that have passed
before). However, it is known that the real answer is within 0 to N times 27 added or subtracted to the actual
measurement. In the anecdote, this comes down to 39 minutes past the hour plus 0 to N hours. Following the
terminology used in this report; wrapping occurs at —7 and 7 (or 0 and 60 minutes if time can go back and
forth). Because of the occurrence of wrapping, the measured value phase or minutes is said to be ambiguous.

A.5. Sensitivity to ascending/descending observations

It was found by Gray et al. [2013] that computed elevations show a discrepancy when observed in an ascend-
ing with respect to a descending track. Therefore, the sensitivity of elevation change estimates to ascend-
ing and descending observations is investigated. The elevation change estimates are made the same way as
described in chapter 2. However, two ensembles of elevation change estimates are made, i.e. only using el-
evations obtained in ascending track and only using elevations obtained in descending track. To avoid an
increasing number of empty grid cells, a 500 x 500 m? grid cell size is used instead of 250 x 250 m?. The
difference between the two elevation change sets is shown in figure A.1 below.
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Figure A.1: Elevation change difference between estimates of observations in ascending and descending track. Grid cells are 500 x 500

m?. Difference is calculated as % - %.

Near the mode boundary, elevation changes observed in descending track are predominantly more pos-
itive than elevation changes observed in ascending track. In contrast, the elevation changes between the
terminus and mode boundary show more positive elevation changes observed in ascending track than eleva-
tion changes observed in descending track.
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A.6. Elevation estimates from WLSE

In section 2.3.3.1 a WLSE is used to calculate the elevation change. Simultaneously, an estimate is made for
the elevation, which is represented by a in equation 2.13. This additional product can be averaged per grid
cell of 250 x 250 m? to obtain a CryoSat-2 derived DEM (see figure A.2a).
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Figure A.2: Elevation estimate in the Jakobshavn drainage basin at 250 m resolution. Elevation is given with respect to the WGS84
reference ellipsoid. A more accurate elevation model can be made by including the slope and curvature terms from equation 2.13. For
this comparison, only the static elevation term was used.

The elevations in figure A.2a can then be compared to the DEM which was used to resolve the phase
ambiguity (Howat [2017]). This DEM (90 x 90 m?) is interpolated to the grid cell centres using natural neigh-
bour interpolation [Amidror, 2002]. When subtracting the DEM elevations from the CryoSat-2 elevations, it
is expected that the overall result is negative. After subtraction, figure A.3 is obtained, which shows regional
thinning.
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Figure A.3: Elevation difference between the DEM [Howat et al., 2017] and CryoSat-2 elevations. The difference is calculated using
Ah = hcs—2 — hpgy- Negative differences indicate ablation and positive differences indicate accumulation. Notice that the differences
clipped to the colour bar minimum and maximum correspond to high standard deviations in figure A.2b.

Figure A.3 show that large elevations differences alternate with near 0 m elevation differences. Addition-
ally, two distinct anomalies of opposite sign are visible in the North-East. These patterns may be a conse-
quence of displacing topographic features. The smoothest parts within this field correspond to the highest
flow velocities in figure A.19, which are in the order of km/yr. Displacing features causing elevation changes
can be resolved using a Lagrangian approach of a flow field instead of Eulerian (see recommendations).
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A.7. Effective density of the linear density model

In section 2, it is assumed that the effective density lies between that of snow and ice. The equation is first
rewritten via:
AM=AV-pery
=AVice Pice + AVsnow - Psnow
= (AV = AVspow) - Pice + AVsnow * Psnow
=AV - pice + AVsnow * (Psnow — Pice)

(A.8)

where AM is the total mass change, AV the total volume change, AV;., the ice volume change, AV, the
snow volume change, p.rr the effective density, p;c. the density of ice and ps,q, the density of snow. Com-
bining the right-hand-side of the first and last line shows:

AVS”OW

AV

Peff = Picet “(Psnow = Pice)- (A.9)

Which indicates that:
A ‘/SYLDLU
AV

Which is false when AV < 0, AVg,0 > 0 such that AV, < —AVj,00. Or, when AV > 0, AVy,01 < 0 such that
AVice > —AVspow-

Peff > Pice 1if <0. (A.10)

A.8. Geodetic, geocentric and local coordinates
Geodetic latitude and longitude (WGS84) and polar stereographic north coordinates (EPSG3413) can be con-
verted into one another with the procedure described below. For Greenland, the true latitude and longitude

are set to 70°N and 0°, respectively. Details of the dimensions and properties of the Earth are given in ta-
ble A.1.

Table A.1: Geodetic parameters of the WGS84 ellipsoid.

Parameter Symbol [unit] Value
Mean radius R, [m] 6371008.771415059
Semi-major axis a [m] 6378137
Semi-minor axis b [m] 6356752.31424518
Eccentricity el-] V2f-f2
Flattening of the Earth’s figure - 298.257223563 7!
Longitude Aor¢ [°] [0—360)
Geodetic latitude 0g [°] [—90,90]
Geocentric latitude 0. [°] [=90,90]
Earth’s average density Pavg Lkg/ m?] 5514
Earth’s mass Mg [kg] 5.9722 x 10%*

The algorithm below was taken from Snyder [1987]. 6 is denoted as 0 for convenience.

x=x-p-sin(p—do)

(A.11)
y ==X p-cos(®—do),
where x and y are the map coordinates in a plane with true a true latitude of ¢y degrees North.
_)-1 ,if6<0 (A.12)
=11 Life=o, '

where y is an operator changing signs for calculations of coordinates on the northern and southern hemi-

sphere.

ea- 7] t
o= x-acosbp t (A.13)

V1-e2-sin? 6, I
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where t and ¢, are described as in equation A.14.

.0 -sin 03
t=tan (%—%)‘(iz,—:g@)z (A.14)
o=t (T - 12).(Lresnchy

The inverse procedure requires iterations or series expansion to solve for . Please refer to Snyder [1987] for
a more detailed description.

Geocentric latitude
For some calculations the geodetic co-latitude is preferred over the geodetic latitude. These can be calculated
as follows:
Oco-g =90-0
com8 & (A.15)
O¢ =90-0c0-g.

The calculation of a geocentric co-latitude (0.,-.) from a geodetic co-latitude (0.,¢) is described in equa-
tion A.16 [Ditmar, 2018b]:
sin B¢ )

(1_f2) Cos Bco—g (A.16)

Ococ = arctanz(
where arctan2(...) is the four-quadrant inverse tangent. In the case of co-latitudes on the northern hemi-
sphere, the inverse method is described with:

0c0-g = arctan ((1 - f)2 tan (@co—c + n)). (A.17)

A.9. On the synthesis of the gravitational potential

The synthesis of the gravitational potential and surface density anomaly is performed using a set of orthogo-
nal basis functions, i.e. the normalised surface spherical harmonics. The meaning of Stokes’ coefficients can
be uncovered by drawing parallels between this method and other mathematical applications using orthog-
onal basis functions.

The Stokes’ coefficients can be considered as magnitudes within a spectrum, analogous to Fourier analysis
on a plane. The spectrum however, is a Legendre spectrum where, in case of equation 3.1, the magnitude of
the coefficients refer to the potential at radius R [Jekeli, 2007].

Alternatively, the orthogonal basis functions can be considered as eigenfunctions with Stokes’ coefficients as
corresponding eigenvalues [Jekeli, 2007].

Higher degree surface spherical harmonics reveal variations at shorter wavelengths (higher frequencies).
Equation 3.1 displays downward continuation to solve the Laplace equation at a given distance from the ob-
servation point outside (above) the gravitational field source (Earth). Accordingly, the standard deviation per

=\ [+1
degree (degree amplitude) of the functional that is displaced downward experiences a scaling by (%)

[Ditmar, 2018a], where Hy,; is the satellite altitude. Therefore, high degree coefficients experience higher
noise levels for a constant numerator than low degree coefficients.
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Figure A.4: Maps of Greenland of the elevation (a) and basin boundaries (b). Figure a) Elevation data taken from Howat et al. [2017]
(90 m resolution). Globe taken from https: // en. wikipedia. org/wiki/ Greenland. Figure b) Mode boundaries taken from ESA.
Drainage basin division taken from Zwally et al. [2012].

A.10.2. Distributions of elevation difference for different waveform parameters for 6 drainage
basins

Parameter optimisation in section 2.3.2 was performed on observations during April 2014 for 6 drainage

basins (see figure A.4b). In the subsections below, the distributions of points of sample power, look angle,

coherence, PD dispersion and slope as a function of elevation difference with the DEM is shown.


https://en.wikipedia.org/wiki/Greenland

70

A. Appendix

Sample power

Normalised power [-]
(=]

-50 1] 50 100
Elevation difference [m]

(a) Drainage basin 1.2.
0.07

o o o
B L) @

Normalised power [-]
I
N

-50 V] 50 100
Elevation difference [m]

(d) Drainage basin 4.3.

e e e
» ) ®

Normalised power [-]
o
N

-50 1] 50 100
Elevation difference [m]

(b) Drainage basin 1.4.
p=0.01

e o e
» ) ™

Normalised power [-]
(=]
N

-100 -50 1] 50
Elevation difference [m]

(e) Drainage basin 7.1.

Normalised power [-]

-50 1] 50 100
Elevation difference [m]

(c) Drainage basin 2.4.
p=-0.07

o
>

Normalised power [-]
e
N

-50 V] 50 100
Elevation difference [m]

(f) Drainage basin 8.2.

Figure A.5: Scatter plots of the sample power of the dataset described in section 2.3.2, i.e. nearly all observations during April 2014 for

different drainage basins.

Look angle

Look angle [deg.]

-50 1] 50 100
Elevation difference [m]

(a) Drainage basin 1.2.
»=0.16 o

1
w
n »

N

Look angle [deg.
(=)

R N D

0

-50 V] 50 100
Elevation difference [m]

(d) Drainage basin 4.3.

N
u w

N

Look angle [deg.]
=
=

4
2]

-50 1] 50 106
Elevation difference [m]

(b) Drainage basin 1.4.
p=-0.02

Look angle [deg.]
= N
- w N w

4
[t

-100 -50 1] 50
Elevation difference [m]

(e) Drainage basin 7.1.

w
(5]

Look angle [deg.]

-50 1] 50 100
Elevation difference [m]

(c) Drainage basin 2.4.

»=0.07
3.5 T -

Look angle [deg.]

o
0

-50 o 50 100
Elevation difference [m]

(f) Drainage basin 8.2.

Figure A.6: Scatter plots of the sample look angle of the dataset described in section 2.3.2, i.e. nearly all observations during April 2014
for different drainage basins. The correlation was calculated using the absolute elevation difference.
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Figure A.7: Scatter plots of the sample coherence of the dataset described in section 2.3.2, i.e. nearly all observations during April 2014
for different drainage basins. The correlation was calculated using the absolute elevation difference.
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Figure A.8: Scatter plots of the sample PD dispersion of the dataset described in section 2.3.2, i.e. nearly all observations during April
2014 for different drainage basins. The correlation was calculated using the absolute elevation difference.
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Figure A.9: Scatter plots of the sample slope of the dataset described in section 2.3.2, i.e. nearly all observations during April 2014 for
different drainage basins. The correlation was calculated using the absolute elevation difference.

A.10.3. Parameter selection

Parameter optimisation was performed by minimising mi n(m) for the following parameters: normalised
waveform energy, look angle and coherence or PD dispersion (R). To that end, o, log1¢(N) and mi n(m)

are shown below for these (combined) parameters.
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Figure A.10: Impact of variation of a normalised waveform energy threshold on the standard deviation for different drainage basins.
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Figure A.11: Impact of variation of a normalised waveform energy threshold on the number of available points for different drainage
basins.
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Figure A.12: Impact of variation of a normalised waveform energy threshold on the optimisation criterion for different drainage basins.
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Figure A.13: Impact of variation of a coherence threshold on the standard deviation for different drainage basins.
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Figure A.14: Impact of variation of a coherence threshold on the number of available points for different drainage basins.
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o/log10(# points)



76 A. Appendix

R versus look angle
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Figure A.16: Impact of variation of a PD dispersion threshold on the standard deviation for different drainage basins.
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Figure A.17: Impact of variation of a PD dispersion threshold on the number of available points for different drainage basins.



A.10. Figures

25

[N
X

(&)

08 06 04 02 O

[l s

43

Logk angle [deg.] o
[62)

N

=
3

0.5

0
1 08 06 04 02 O

25

15

[N
X

0.5

0
1

N

=
o

=

o
«

0
1

08 0.6 04 0.2

7-1

08 06 04 02
R[]

0

0

0
1

08 06 04 02

8-2

108060402 0

0

N w £ (6] ~
o/log10(# points)

o

Figure A.18: Impact of variation of a PD dispersion threshold on the optimisation criterion for different drainage basins.
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Horizontal flow velocity
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Figure A.19: Horizontal flow velocity in the Jakobshavn drainage basin. Near the terminus flow velocities reach up to several km/yr.
Greenland ice velocity map (500 m resolution) based on Sentinel-1 data (2015-10-01 to 2016-10-31) [version 1.2], [Nagler et al., 2015].
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Figure A.20: FDM models the direct elevation change by precipitation of snow, melt of the snow pack as well as compaction of the snow
pack. Linear trend was derived from FDM_FGRN11 at 11 x 11 km? resolution. FDM_FGRN11 was made available by S. Ligtenberg of the
University of Utrecht (IMAU).
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Figure A.21: Ice mask of the Jakobshavn drainage basin (90 m resolution). The black area indicates non-glacier terrain. The mask is
based on LandSat and RADARSAT imagery from 1999 until 2001. Ice mask taken from Howat [2017]. Mode boundaries taken from ESA.
Jakobshavn drainage basin boundary taken from Zwally et al. [2012].
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