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Summary

Localized turbulence in pipe flow In many industrial applications the main process is an
interlinked set of pipes through which the processing fluidsare flowing. The pipes are used to
transport liquids from one place to another, to mix and separate fluids or heat the fluid. The
efficiency of these processes depends strongly on the flow state in the pipe. To transport a certain
amount of liquid in the laminar flow state is less energy demanding than transporting the same
amount of fluid at turbulent flow conditions. On the other hand, heat transfer is much more
efficient in the turbulent regime.

The transition from one state to the other in pipe flow is one ofthe long lasting questions in
research. Since the first systematic and clearly described experiments by Reynolds (1883), much
research has been dedicated to this subject. Mathematical analysis of the governing equations
has led to the belief that the laminar velocity profile is linearly stable (Drazin and Reid 2004).
This statement has been proven to hold up toRe= 107 by a numerical simulation (Meseguer
and Trefethen 2003). Nevertheless, in most practical situations transition to turbulence is al-
ready observed aroundRe≈ 2000. However, by carefully designing the flow facility, theflow
in a pipe can be kept laminar up to very high Reynolds numbers (Re= O(105), Draad (1996)).
This confirms that a finite amplitude disturbance is requiredto trigger the transition to turbulence
and that the flow becomes more sensitive to perturbations as the Reynolds number is increased.
When a carefully designed flow facility is used, i.e. a flow facility is used in which the natural
transition to turbulence is postponed beyondRe= O(104), the facility can be used to investi-
gate the transition to turbulence. Darbyshire and Mullin (1995) and Hof et al. (2003), amongst
others, used such a facility to investigate the minimum amplitude necessary to trigger the transi-
tion to turbulence. This critical amplitude decreases withincreasing Reynolds number. How the
applied localized disturbance develops downstream depends on the Reynolds number. The ini-
tiated turbulent region can remain localized, break up in multiple patches or grow continuously
downstream.

This study focuses on the regime where a large amplitude localized disturbance, which is applied
for a very short duration, results in a single localized turbulent patch. This localized turbulent
patch is known as a puff. At low Reynolds numbers puffs are able to survive over a limited
distance. As the Reynolds number increases, the characteristic lifetime of these puffs increases.
The scaling of the lifetime with Reynolds number gives an indication whether the turbulent flow
state can be considered a repeller or an attractor. When the turbulent flow state would be an
attractor, the flow is not able to return to the laminar flow state naturally. However, when the
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viii Summary

turbulent flow state would be a repeller, the flow will eventually return to the laminar flow state.
This difference has an enormous impact on the possibility for flow control of turbulent pipe flow.
When the turbulent flow state is a repeller, only a minor modification of the turbulent flow state
can force it on a trajectory towards the laminar flow state. Hence, the options for flow control are
much more promising than when the flow state would be a turbulent attractor.

To determine the proper scaling of the transition to turbulence a large number of experiments
were conducted. In the first set of experiments the flow was perturbed and then the flow state
was determined at different downstream locations. The resulting statistics were then used to
determine the proper lifetime scaling. One of the major issues with the methods used so far
was that it was unknown whether the disturbance was successfully applied. Moreover, the flow
state was often determined byvisual inspection of the flow. Therefore the results might be
influenced by the observer. In order to remove this uncertainty, a different method has been used
to determine the lifetime of each individual observation.

Pressure drop measurements were used to detect the presenceof a puff. The presence of a puff
causes a slightly larger pressure drop when present in the section covered by the pressure trans-
ducers. If the puff decays within the section covered by the pressure transducers, the pressure
level relaxes to the level without a puff present. This allows for an objective and quantitative de-
termination of the lifetime of that particular puff. Moreover, the generation of the disturbance is
clearly sensed by the pressure measurement devices. After determining the lifetimes of the indi-
vidual puffs quantitatively, the characteristic lifetimewere extracted. It is shown that the proper
scaling for the turbulent flow state is that of a repeller. Note however, that at higher Reynolds
numbers the localized turbulent structures are able to split and a completely different model may
be needed to properly describe the transition to turbulence.

After determining the life times of puffs, the question emerged about what is happening in more
detail inside the puff. What mechanism is responsible for the puff to exist for long times and
then suddenly ceases to exist? What forces act on a puff, suchthat it remains localized? What
happens when the puff splits and why does it split instead of growing slightly? In order to find
answers to these questions a direct numerical simulation was initiated. As initial condition for
the simulation a puff was used that was measured using stereoscopic particle image velocimetry
(see van Doorne and Westerweel (2007) for an overview of thismeasurement method). Another
motivation for the simulation was the observation of small scale structures in the experiments,
which had not been described in previous numerical simulations (van Doorne and Westerweel
2009). By using a high resolution numerical simulation, thesmall scale structures could be
resolved.

The numerical simulations allowed for the determination ofdifferent characteristics of the puffs.
The mean convection velocity of the puffs turned out to be in excellent agreement with experi-
mental observations. However, the instantaneous velocityof the puff is not constant. Moreover,
it is shown that the instantaneous velocity of the puff is correlated with the total amount of en-
ergy excluding the energy contained in the axial motion of the fluid in the pipe. The trend of the
correlation can be predicted by obtaining the energy flux over a control volume that contains the
transition front. The control volume is convecting with thetransition front. As the velocity of the
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transition front decreases, the amount of energy that becomes available from the laminar velocity
profile increases. The additional energy has to be dissipated to maintain an energy equilibrium.
This can be done, either by increasing the turbulence intensity, or by increasing the amount of
fluid that is turbulent. At low Reynolds numbers, i.e. when puff splitting is not present, the first
scenario is observed. The fluctuation level increases as thevelocity of the puff decreases and visa
versa. At higher Reynolds numbers, in this case atRe= 2300, puff splitting is observed. The
velocity of the newly generated structure is higher than that of the mother puff, and indeed the
observed velocity fluctuation level is also lower compared to the mother structure. This confirms
the relation between internal energy level of a puff and its velocity.

The direct numerical simulation was also used to follow the small structures first identified by
van Doorne and Westerweel (2009) over time. It turns out thatthe structures move with a higher
velocity than the puff itself and thus travelthroughthe puff. Although van Doorne and Wester-
weel (2009) related the small scale structures to hairpin vortices, this could not be confirmed by
the results from the present simulation. The small-scale structures seem to be created by large
scale vortical structures that are oriented normal to the pipe axis and extend over almost over the
entire diameter of the pipe.

Although it has been shown that there exists a strong relation between the velocity of a puff
and its total energy content, the reason for the puff to remain localized has not been revealed.
Furthermore, in literature different driving mechanisms for the puff are proposed and it would
be worthwhile to assess the relevance of the structures travelling through the puff to the driving
process, both numerically and experimentally.
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Samenvatting

Gelokaliseerde turbulentie in pijpstromingen In veel industriële faciliteiten bestaat het hoofd-
proces uit een aantal verbonden pijpen waardoor procesvloeistoffen stromen. De pijpen wor-
den gebruikt om vloeistoffen te transporteren, om verschillende vloeistoffen te mengen of om
vloeistoffen te verhitten. De efficiëntie van deze processen hangt sterk af van de stromingstoe-
stand in de pijp. Om een bepaalde hoeveelheid vloeistof te transporteren kost minder energie
wanneer de stroming in de pijp laminair is vergeleken met wanneer het turbulent is. Aan de
andere kant, warmte overdracht is weer veel efficiënter voor een turbulente stroming.

De oorzaken naar de omslag naar turbulentie in pijpstromingis een van de laatste onbeantwo-
orde vragen in de stromingsleer. Sinds de eerste experimenten van Reynolds (1883) is veel on-
derzoek gewijd aan het beantwoorden van deze vraag. Theoretische beschouwing van de beweg-
ingsvergelijkingen heeft geleid tot de overtuiging dat hetlaminaire snelheidsprofiel lineair stabiel
is. Meseguer and Trefethen (2003) hebben bewezen dat deze beweringen juist zijn voor Reynolds
getallen totRe= 107. Desalniettemin treedt de omslag naar turbulentie in de meeste praktische
situaties al op rondRe≈ 2000. Echter, wanneer de experimentele faciliteiten met veel zorg ont-
worpen worden kan transitie uitgesteld worden tot zeer hogeReynolds getallen (Re= O(105),
Draad (1996)). Hieruit kan worden geconcludeerd dat een verstoring met een eindige ampli-
tude nodig is om de omslag naar turbulentie te initiëren en dat de stroming gevoeliger wordt
voor verstoringen naarmate het Reynolds getal verhoogd wordt. Wanneer een goed ontworpen
faciliteit wordt gebruikt, een faciliteit waarin natuurlijke transitie niet optreed voor Reynolds
getallen lager danO(104), kan deze worden gebruikt voor het onderzoek naar transitienaar tur-
bulentie. Onder ander Darbyshire and Mullin (1995) en Hof etal. (2003) hebben een dergelijke
faciliteit gebruikt om de minimale amplitude te bepalen dienodig is om de transitie naar turbu-
lentie te initiëren. Deze amplitude neemt af met toenemendReynolds getal. Afhankelijk van
het Reynolds getal blijft de gecreëerde turbulentie beperkt tot een klein gebied (gelokaliseerde
turbulentei), breekt op in meerdere gelokaliseerde stukken of blijft continu groeien.

Dit proefschrift richt zich op het regime waar een grote gelokaliseerde verstoring wordt aange-
bracht voor een korte tijd. Zon verstoring resulteert in eengelokaliseerd gebied met turbulentie.
Een gelokaliseerd gebied waarvan de lengte constant blijftstaat bekend als een puff. Bij lage
Reynoldsgetallen zijn puffs in staat over een korte afstandte overleven. Wanneer het Reynolds-
getal wordt verhoogd neemt de karakteristieke levensduur van puffs toe. De schaling van de
levensduur met het Reynoldsgetal geeft aan of de turbulentetoestand kan worden beschouwt als
een repeller of een attractor. Wanneer de turbulente toestand een attractor zou zijn, is de stroming
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niet in staat om op natuurlijke wijze terug te keren naar de laminaire toestand. Echter wanneer
de turbulente toestand een repeller zou zijn, zal de stroming uiteindelijk altijd terugkeren naar
de laminaire toestand. Dit verschil heeft enorme gevolgen voor de mogelijkheden om turbulente
pijpstroming te beı̈nvloeden. Wanneer de turbulente stromingstoestand een repeller is, kan een
kleine aanpassing van het stromingsveld ervoor zorgen dat de turbulente stromingstoestand op
een traject kan worden gebracht richting de laminaire stromingstoestand. Dus de mogelijkheden
voor een efficiënte manier om de stroming te beinvloeden zijn vele malen groter wanneer de
turbulente toestand een repeller is dan wanneer de turbulente toestand een attractor is.

Om de juiste schaling van de transitie naar de turbulente toestand te bepalen zijn een groot aantal
experimenten gedaan. In het de eerste experimentele campagne, werd op een aantal verschil-
lende afstanden van het verstoringspunt bepaald of de stroming turbulent of laminair was. De
statistieken die op deze manier zijn verkregen zijn gebruikt om de juiste schaling te bepalen.
Echter, een van de grootste beperkingen van de methoden die tot dusver gebruikt zijn is dat het
onbekend is of de verstoring daadwerkelijk toegepast was. Bovendien was de stromingstoestand
bepaald door middel van visuele observatie door de experimentator. Hierdoor kunnen de resul-
taten beinvloed zijn door de verwachtingen van de experimentatoren. Om deze onzekerheden
weg te nemen is een andere methode gebruikt om de statistieken van de levensduur te bepalen.
Durkvalmetingen zijn gebruikt om te bepalen of een puff aanwezig was. De aanwezigheid van
een puff zorgt voor een kleine toename in de gemeten drukval zolang de puff zich bevindt in
de sectie waarover de drukval gemeten wordt. Wanneer een puff vervalt zal deze extra bijdrage
verdwijnen. Dit fenomeen kan gebruikt worden om op een objectieve en kwantitatieve manier de
levensduur van elke individuele puff te meten. Bovendien kan met behulp van de druksensoren
bepaald worden of de verstoring daadwerkelijk toegepast is. Na het bepalen van de levensduur
van de individuele puffs kan de karakteristieke levensduurafgeleid worden. Hiermee is bepaald
dat de juiste omschrijving van de turbulente toestand die van een repeller is. Realiseer hierbij
wel dat bij hogere Reynolds getallen puffs kunnen splitsen en een volledig ander model nodig
zou kunnen zijn om de transitie naar turbulentie op een juiste manier te omschrijven.

Na het bepalen van de statistieken van de levensduur kwam de vraag naar boven wat er gebeurd
in een puff. Welk mechanisme is verantwoordelijk voor het gedrag van puffs, dat ze voor lange
tijd kunnen bestaan en dan plotseling desintegreren? Welkekrachten werken er op een puff zodat
deze gelokaliseerd blijft? Wat gebeurd er wanneer een puff splitst? Waarom splits een puff en
groeit deze niet langzaam uit tot een iets grotere puff? Om een antwoord te vinden op deze
vragen is een directe numerieke simulatie (DNS) opgezet. Als startconditie voor de simulatie
is een stereoscopische PIV (particle image velocimetry, zie van Doorne and Westerweel (2007)
voor een overzicht van deze meetmethode) meting gebruikt. Een extra motivatie voor de DNS
was de observatie van kleinschalige structuren in experimenten die nog niet zijn beschreven
in resultaten van numerieke simulaties (van Doorne and Westerweel 2007). Door gebruik te
maken van een simulatie met een hoge resolutie, was het mogelijk om deze kleine structuren te
simuleren.

Met behulp van de resultaten van de simulatie konden de karakteristieken van de puffs bepaald
worden. De gemiddelde translatie snelheid van een gesimuleerde puff kwam perfect overeen
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met de gegevens van experimentele observaties. Echter, de instantane snelheid is niet constant.
Bovendien was de instantane snelheid van de puff sterk gecorreleerd met totale hoeveelheid en-
ergie in de puff wanneer de bijdrage van de axiale snelheidscomponent hier niet in meegenomen
is. De trend van de correlatie tussen beschikbare energie eninstantane puff snelheid kan worden
voorspeld door de energie fluxen te beschouwen over een controle volume waarin het transitie
front zich bevindt. Het controle volume heeft dezelfde snelheid als het transitie front in de puff.
Wanneer de snelheid van het transitie front afneemt zal de hoeveelheid beschikbare energie toen-
emen. Deze energie zal moeten worden afgevoerd om aan de wet van behoud van energie te
voldoen. Dit kan worden gedaan door of de turbulentie graad te verhogen of door de lengte van
het turbulente gedeelte te verlengen. Bij lage Reynoldsgetallen, wanneer nog geen splitsende
puffs aanwezig zijn, is het eerste scenario aanwezig. De turbulentiegraad in de puff neemt toe
naarmate de snelheid van de puff afneemt en visa versa. Bij hogere Reynoldsgetallen, in dit geval
bij Re= 2300, zijn splitsende puffs geobserveerd. De snelheid van de ontstane (tweede) puff is
hoger dan die van de originele puff. De turbulentiegraad vandeze nieuwe puff is lager dan die
van de originele puff. Hiermee is de relatie tussen de snelheid van de puff en de hoeveel interne
energie bevestigd.

De DNS is ook gebruikt om de kleinschalige structuren te volgen die als eerste beschreven zijn
door van Doorne and Westerweel (2009). De kleinschalige structuren bewegen sneller dan de
puff zelf en reizen daaromdoor de puff. Hoewel van Doorne and Westerweel (2009) deze klein-
schalige structuren identificeerden als haarspeld wervels, kon dit beeld niet bevestigd worden
met de resultaten van de huidige simulatie. De kleinschalige structuren lijken het gevolg te zijn
van de aanwezigheid van een grote wervel die normaal op de pijp as staat en bijna over de gehele
diameter van de pijp reikt.

Ondanks dat is aangetoond dat er een sterke relatie bestaat tussen de snelheid van een puff en
zijn interne energie, is de drijvende kracht achter het gelokaliseerd blijven van de puff niet on-
trafelt. Verder zijn in de literatuur verschillende aandrijfmechanismen omschreven voor de puff
en het zou waardevol zijn om de relevantie van de kleinschalige structuren, die zich door de puff
bewegen, verder te onderzoeken, zowel door middel van numerieke simulaties als experimenten.
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Chapter 1

Introduction

In our daily life we experience flows all around us. Sometimesthe flows around us are beneficial:
for example when the toxic fumes of cars are mixed with surrounding air thereby reducing the
concentration of toxic substances. On the other hand, when we travel by bike with a strong head
wind, we do not appreciate the drag caused by the flow. Most of the time we are not even aware
of these phenomena and the richness that is embedded in theseflows. Occasionally the flow of
air is visualized by snow or leafs, thereby suddenly revealing the richness of all the flows around
us.

Reynolds (1883) was the first to identify that flows can be assigned to either one of two distinc-
tive states: laminar and turbulent flows. This classification has been used ever since. Laminar
flows move in a regular and smooth fashion, while the motion for turbulent flow is chaotic and
irregular. The change of flow state, i.e. the change from laminar to turbulent, is called transition
to turbulence. This is the main topic of this thesis.

In our own kitchen these flow states can easily be visualized using the tap whitout the aerator. By
opening the tap by a small amount, the resulting jet of water reveals the first distinctive state. As
the water leaves the tap the flow is very smooth: the flow is laminar. See the left part of figure 1.1
for an example. When the flow rate is increased, the flow from the tap is turbulent. The turbulent
flow causes the surface of the jet to have an irregular shape.

Depending on the particular situation, either flow state is preferred. For example, when the flow
is laminar the mixing of fluids and the heat transfer are driven by diffusion processes. In the
turbulent state these processes are enhanced, because of the additional convective mixing, and
are much more efficient. Therefore, a turbulent flow state is preferred when one wants to obtain
and maintain a homogeneous mixture. However, the drawback of a turbulent flow is that the
skinfriction increases. Hence, laminar flows are preferredwhen transporting large quantities of
fluid over large distances as in gas or oil pipelines.

1



2 Chapter 1. Introduction

Figure 1.1: The flow of water from a tap in our kitchen: In the left part the flow shows a nice undeformed state.
Here the fluid elements are all moving in parallel and this state is known as the laminar state. As the flow rate is
increased, the flow becomes turbulent and irregular, randommotion is observed.
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1.1 Pipe flow

In figure 1.1 a free flow, i.e. the flow does not interact with a solid wall, was shown. Two distinct
regimes could be identified. However, the difference between the two flows in figure 1.1 is caused
by the flow in the tap. The first who clearly made the distinction between two separate flow
regimes was Reynolds (1883) in pipe flow. His experimental setup consisted of a glass pipe in
which water was flowing. The glass pipe allowed for optical access. The flow was visualized by
carefully injecting dye at the centerline of the pipe. At lowflow rates the dye remained a straight
line at the center of the pipe. As the fluid velocity was increased, patches of mixed dye were
observed. These patches were called flashes by Reynolds (1883). After further increasing the
velocity, sudden transition was observed at a fixed locationdownstream of the entrance region.
The dye downstream of the transition point was mixed over theentire diameter of the pipe. The
point at which the transition occurs moved upstream with increasing flow rate. He found that
the observed flow state depended on three independent variables. These could be arranged into
a dimensionless number; which is nowadays known as the Reynolds number (Re= ubulkD/ν),
whereubulk is the mean or bulk velocity of the fluid,D a characteristic length scale, for a pipe
this is the diameter andν the viscosity of the fluid. In this early work it became already clear that
the flow could be kept stable, i.e. laminar, for higher flow rates by minimizing the perturbations
in the setup. In fact, Reynolds (1883) was able to obtain laminar flow up toRe≈ 104.

This fact has resulted in a quest to reveal the reason for the transition to a turbulent motion in a
pipe. In the next sections the main topics of research are discussed in recent and not so recent
years. It is categorized based on the research topic and therefore not chronological. The goal
is to give a general overview of the research on the transition from laminar to turbulent flows in
pipes. Although the transition process for flows of non-Newtonian liquids, which are fluids that
do not show a linear relationship between the strass rate andstrain rate, is important for industrial
applications, only the flow of Newtonian fluids in straight pipes without swirl is considered in
this thesis. For more information about the effect of non-Newtonian liquids on the transition
process in pipe flow see the work of Draad (1996).

In engineering textbooks usually acritical Reynolds number is defined to differentiate between
laminar and turbulent flow. Above this critical Reynolds number pipe flow should be considered
turbulent. However, the value that should be considered as the critical Reynolds number is not
consistent between textbooks and ranges typically betweenRe= 2000 andRe= 2500.

1.1.1 Linear stability

To determine if transition will occur for a typical flow, a classical approach in fluid mechanics is
to perform a (linear) stability analysis. The response of the laminar base flow to an infinitesimal
perturbation is studied. In the case of pipe flow, the base flowis found in the form of a parabolic
velocity profile. This velocity profile is known as the Hagen-Poiseuille (HP) velocity profile.
For the stability analysis, the HP velocity profile is substituted in the governing equations with a
superimposed infinitesimal perturbation. The non-trivialsolutions of the eigenvalue problem that
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results after linearizing, are used for the analysis. When the amplitude of the superimposed per-
turbations increase over time, the flow is considered linearly unstable, consequently for linearly
stable flows only decreasing amplitudes are found.

All evidence up to now on the stability analysis of the HP velocity profile, has led to the belief
that pipe flow is linearly stable (Drazin and Reid 2004, Meseguer and Trefethen 2003). This
means that when the fully developed laminar velocity profilein a pipe is perturbed by an in-
finitesimal perturbation, it will always return to the laminar flow state. Pipe flow is not unique in
being considered a linearly stable shear flow. Other examples are plane Couette flow (the flow
between two plates moving in opposite direction) and Taylor-Couette flow (the flow between
two concentric cylinders) with only the outer cylinder rotating. However, all these flow share the
common feature that inpracticea transition to turbulence is observed, even at moderate Reynolds
numbers. This contradiction between theoretical predictions and experimental observations has
led to a large amount of dedicated research.

1.1.2 Developing pipe flow

As initial condition for the stability analysis of pipe flow,the fully developed parabolic velocity
profile was used. However, in practice the flow entering a pipehas approximately a uniform
velocity profile and has to develop before the fully developed state is reached (Durst et al. 2005).
When the entrance region in the pipe is unstable, turbulencealready sets in before the laminar
velocity profile has been reached and this would be an explanation for pipe flow to become
turbulent in practice.

The development region has been researched numerically by Tatsumi (1952a,b) and Huang and
Chen (1974a,b). The results were verified experimentally bySarpkaya (1975). They found that
the entrance region is unstable to small symmetric and non-symmetric disturbances in a small
region forRe≈2×104.

Therefore one can conclude that the unstability of the entrance causes the transition to turbulence
in pipe flow. However, the Reynolds number that was found at which the entrance flow becomes
unstable is still much larger than the Reynolds number at which transition is observed in experi-
ments. Therefore it is expected that the instability of the entrance flow is not the main reason for
the transition to turbulence at low Reynolds numbers.

1.1.3 Transition of fully developed laminar pipe flow

In this section the transition to turbulence of the fully developed laminar velocity profile is con-
sidered. The research can be broadly split into two categories: transient growth of infinitesimal
perturbations and the effect of finite amplitude disturbances.

In the first scenario, the governing equations in linearizedform are considered. The HP velocity
profile is used as a base flow. A disturbance is superimposed which can be decomposed in a



1.1. Pipe flow 5

number of modes, each mode decays monotonically. However, when considering modes that are
not orthogonal, the norm is able to grow when the rate of decayof these modes are different (see
Gavarini (2004) for a more detailed explanation). When the norm grows to an amplitude that
non-linearities become important and take over the growth in disturbance amplitude, a transition
to turbulence has been realized.

An extension of the transient growth scenario was to incorporate small modifications of the base
flow, Gavarini (2004) and more recent Ben-Dov and Cohen (2007). The optimal deviated base-
flow profile that resulted in exponentially growing disturbances, consisted of a velocity profile
with inflection points.

Although much effort has been put in the research to non-normal or transient growth of the
linearized equations, Dauchot and Manneville (1997) showed in a reduced model that the linear
features, especially the transient energy growth, is less important than particular non-linearities.
Moreover they emphasize that one should be cautious when extrapolating results from the linear
framework.

In the second approach, the effects of finite amplitude disturbances to the laminar base flow are
considered. The property of linear stability for pipe flow has led to numerous experimentalists
to pursue theminimumamplitude of a disturbance that is required to trigger a transition to tur-
bulence. Obviously the threshold depends on the type of disturbance that was used. Here only
spatially localized perturbations are considered, hence wall roughness effects or other means that
influence the flow over a long distance, are not taken into account. These localized disturbances
can be divided into two classes, based on the time they are active: continuous and temporal
disturbances.

Obstacles that are present in the flow (Wygnanski and Champagne 1973, Durst and Unsal 2006)
and time continuous flow perturbations (e.g. small section of the wall that is periodically moving
(Leite 1959), periodic injection and/or retraction of fluidthrough a small hole or slit in the pipe
wall (Draad 1996) or more sophisticated, through a porous wall (van Doorne 2004)) continuously
perturb the fluid at a fixed location. The other class consistsof perturbations that are applied
over a short time interval and therefore create a localized disturbance in both space and time
(Darbyshire and Mullin 1995, Hof et al. 2003, 2006, Peixinhoand Mullin 2007, Hof et al. 2008,
Kuik et al. 2010). In the transitional regime, the effects onthe flow downstream depend on the
class of disturbance that is applied. This is described in section 1.1.4.

To determine the mechanism that is responsible for the transition to turbulence in pipe flow, one
can consider the scaling of the minimal amplitude with increasing Reynolds number. When the
scaling of the disturbance amplitudeε is written as

ε = O(Reγ) (1.1)

a negative value for the exponentγ indicates an increasing sensitivity of the flow to perturbations
(Waleffe 1995, Hof et al. 2003). When the exponents for different flow geometries are com-
pared, a relative sensitivity to perturbations can be extracted. Based on numerical evidence, the
amplitude scaling of Couette flow (the flow between two walls moving in opposite direction)
and Poiseuille (pressure driven flow between two walls) seems to be equal toRe−5/4 andRe−7/4
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respectively (Waleffe 1995). An exponent ofγ = −1 indicates that the non-linear terms and the
viscous dissipation terms of the Navier-Stokes equations are of equal magnitude (Waleffe 1995).
Because different authors used different definitions, their results for pipe flow could not be com-
pared. Therefore Trefethen et al. (2000) reformulated the results of existing data of Darbyshire
and Mullin (1995) and Draad (1996) to perform a meaningful comparison. This resulted in a
scaling equal toRe−6/4 for pipe flow, which is exactly between the values that were found for
Couette and Poiseuille flow.

From the experiments with a single jet-like disturbance, Hof et al. (2003) concluded that dis-
turbance amplitude scales likeRe−1, indicating a balance between the non-linear and viscous
dissipation terms in the Navier-Stokes equation. However,more recently Peixinho and Mullin
(2007) showed that the exponent depends heavily on the perturbation that was used. Simulta-
neously injecting and extracting fluid appeared to be a much more efficient way to trigger the
transition to turbulence. Depending on the arrangement of the injection and extraction point,
the scaling ranges fromRe−1.3 to Re1.5, which is the value resulting from the comparison by
Trefethen et al. (2000).

In the search for the critical disturbance amplitude, a clear boundary is sought that separates the
events that return to the laminar flow state from the events that become turbulent. However, for a
single Reynolds number, there is not always asinglethreshold. To illustrate this, the experimental
results of Darbyshire and Mullin (1995) are reproduced in figure 1.2. This figure shows whether
or not the flow became turbulent after applying a jet-like disturbance normal to the pipe wall with
an amplitude as indicated on the vertical axis. The amplitude of the disturbance is in this case
defined as the ratio between the mass flux of the jet perturbingthe pipe flow and the mass flux
of the pipe flow itself. Figure 1.2 shows a few occasions whereincreasingthe amplitude of the
disturbance results in laminar flow, whereas the lower amplitude disturbance was able to trigger
a transition.

This is even clearin the experimentby Draad (1996). Insteadof using a localized disturbance in
time, as was used by Darbyshire and Mullin (1995), Draad (1996) periodically perturbed the base
flow through a slit in the pipe wall. The results for a fixed displacement volume and for different
disturbance frequencies are given in the left part of figure 1.3. At first the global behavior in
this experiment seems to be opposite to the results by Darbyshire and Mullin (1995): a positive
slope is observed instead of a negative. Draad (1996) explained that this is the result of using
a continuous disturbance, when a short localized disturbance was used; they also observed an
increasing sensitivity of the base flow with increasing Reynolds number. The second important
observation in figure 1.3 is that, at a single Reynolds number, multiple thresholds are present.
For example atRe= 40000, the flow remains laminar for Vi,c . 0.054 (m/s) and turns turbulent
for 0.054. V i,c . 0.056. However when the disturbance velocity is increased beyond 0.056 the
flow remains in the laminar flow state. Increasing the disturbance velocity beyond Vi,c & 0.064
results in turbulent flow.

Similar behavior is found in a numerical simulation by Schneider, Eckhardt and Yorke (2007). A
result from their simulation is reproduced in the right partof figure 1.3. Despite the fact that the
disturbance amplitude can not be compared between the experiments by Draad (1996) and the
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Figure 1.2: The results of the experiments by Darbyshire andMullin (1995) to determine the critical amplitude
required to trigger turbulent flow.

Figure 1.3: left experimental results by Draad (1996) on the critical amplitude to trigger turbulence. The shaded
area indicated the return to laminar flowright similar result for numerical simulation by Schneider, Eckhardt and
Yorke (2007). Be aware that here the shaded area indicates a transition to turbulence
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simulations by Schneider, Eckhardt and Yorke (2007) it is remarkable that both observe multiple
thresholds that trigger turbulent flow at a fixed Reynolds number.

The questions that emerge are: What resides on the boundary between laminar and turbulent
flow? Can it be associated to a coherent structure? After the identification of exact solution to the
Navier-Stokes equations (see for more information about this important development chapter 2)
the attention of the groups that discovered the edge state was diverted to a search for the structure
that separates the laminar from the turbulent flow state. Skufca et al. (2006) was the first to
identify a structure separating the laminar state from the turbulent state in Couette flow and
indtroduced the termedge state. It was called an edge state because only a minor modification
in the energy contained in the structure results either in relaminarization (when the energy is
decreased) or grows towards the level of turbulent flow (whenthe energy is increased). First
Schneider, Eckhardt and Yorke (2007) and later Duguet et al.(2008) identified the edge state in a
periodic pipe. The converged solution resulted in a structure that extended over the entire length
of the domain. By extending the calculation domain, Mellibovsky et al. (2009) showed that the
edge state was in fact a localized structure. For higher Reynolds numbers (up to 6000), Duguet
et al. (2010) found that the edge state remains localized. Moreover, as could be expected by the
scaling of the critical amplitude of a disturbance to trigger the turbulent flow state, the energy
contained in the edge state decreases with increasing Reynolds number. This confirms that pipe
flow becomes more susceptible for disturbances at higher Reynolds numbers.

1.1.4 Reynolds number effect on the type of disturbance

In the previous section it was shown that the amplitude of thedisturbance is not the only fac-
tor influencing the transition to turbulence. As was shown infigures 1.2 and 1.3, the amplitude
needed to trigger turbulent flow depends strongly on the Reynolds number. Peixinho and Mullin
(2007) also showed that thetypeof disturbance is a third factor that influences the transition
to turbulence, i.e. a particular type of disturbance can be more effective to trigger turbulence
compared to others. In literature different types of disturbances are used to trigger the transi-
tion to turbulence. However, a clear description of the effect of these disturbances on the flow
downstream has not been given.

In this section a disturbance either belongs to the categoryof continuous disturbances or to the
category of disturbances localized in time. In the remainder of this section a disturbance that is
applied very shortly, and is thus localized in time, is called a temporal disturbance. A continuous
disturbance can either be a stationary object that is alwayspresent in the flow (Durst and Unsal
2006, Wygnanski and Champagne 1973), or a time periodic injection-extraction of fluid (Draad
1996, Eliahou et al. 1998, van Doorne 2004). The disturbancethat is localized in time can ei-
ther be obtained by injecting fluid through a hole in the wall again different configurations are
possible, Hof et al. (2003), Peixinho and Mullin (2007), Kuik et al. (2010) or a solid object that
is temporarily inserted in the flow (Durst and Unsal 2006). The effect on the flow downstream
depends on the global characteristics of the disturbance, but not on the exact details of the distur-
bance. A schematic overview of the effects is given in figure 1.4. The color-coding represents the
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Figure 1.4: Depending on the type of disturbance, differentflow patterns emerge downstream of the disturbance

flow state. In the white regions, laminar flow is obtained downstream of the applied disturbance.
In the black regions the resulting flow is turbulent. In this figure three cases are considered: a
small continuous disturbance present in the flow, a large continuous disturbance and a temporal
disturbance with a large amplitude. In these cases the turbulence emerges in different forms,
depending on the type of disturbance and the Reynolds number. Here we consider three forms
together with their most distinctive properties.

In a particular Reynolds number range, the turbulent flow remains localized. This can be con-
sidered the smallest amount of turbulence that is able to sustain itself and was referred to as a
flash by Reynolds (1883) and puff by Wygnanski and Champagne (1973). The latter name will
be used in the remainder of this thesis to refer to this form ofturbulence. Since the focus of this
thesis is on puffs, section1.1.5 is dedicated to clearly define and describe the properties of puffs.

Continuously growing structures are observed in another Reynolds number regime. A localized
structure that is able to grow continuously is referred to asa slug (Wygnanski and Champagne
1973). In contrast to a puff, a slug has two clearly identifiable transition fronts. The leading
front has a velocity that is significantly larger than the bulk velocity while the trailing front
has a velocity significantly smaller than the bulk velocity.For higher Reynolds numbers the
velocity difference increases. However, the trailing transition front never advancesupstream, i.e.
it always travels in the same direction as the bulk fluid. Hence, the entire pipe will never become
fully turbulent when a slug is created. The velocity statistics inside a slug are identical to the
statistics for fully developed turbulent flow at the same Reynolds number.

The third form in which turbulence can appear is the fully turbulent state. This means that either
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the entire pipe is turbulent or that downstream of the disturbance the flow is turbulent. The main
difference between a slug and the fully developed state is that the fully developed state is present
indefinitely in a pipe with finite length, whereas the slug will be convected with the flow and
eventually leave the domain.

As was mentioned before, the type of turbulent flow depends onboth the Reynolds number and
type of disturbance. In the next paragraphs the flow that results from the two different classes of
disturbances are described.

Small continuous disturbance When a small disturbance is present in the flow, the flow re-
mains laminar up to a large Reynolds number. When the point isreached such that the distur-
bance is large enough to trigger turbulence, asuddentransition is observed. The flow downstream
of the disturbance is turbulent and remains turbulent, i.e.the turbulent flow does not break up
into patches with laminar and turbulent flow. For Reynolds number just below this critical value,
which is unique for the disturbance, the flow remains laminar. Only a small increase in Reynolds
number results in a completely different state.

In pipe flow facilities driven by a pump, the higher friction accompanied by the transition to
turbulent flow causes the flow rate to decrease. Thereby the Reynolds number is also decreased
and can reach a value below the critical Reynolds number. Hence the disturbance is not able to
trigger turbulent flow anymore. As the part with turbulent flow is transported downstream out
of the pipe, the additional friction diminishes. The flow accelerates as a result and the Reynolds
number increases. When the Reynolds number passes the critical value again, turbulent flow is
initiated by the disturbance. This results in a periodic transition from laminar to turbulent flow.
The results of a measurement of the pressure drop and flow rateduring such a cycle can be found
in the work by van Doorne (2004).

Small temporal disturbance For a small temporal disturbance a similar effect is observed.
When applied at low Reynolds numbers the flow remains laminar. When the disturbance is
applied at a Reynolds number high enough to trigger turbulence and larger thanRe> 2800, a
slug is observed. The entire pipe will never become fully turbulent as a result of a localized
temporal disturbance, because the trailing front of a slug is traveling downstream.

Large continuous disturbance As could be expected, when a large continuous disturbance
is applied to the flow, the Reynolds number at which a transition to turbulence is observed de-
creases. However, at low (Re. 1600) and intermediate Reynolds numbers (Re. 2700) the
turbulent flow cannot be sustained and part the flow breaks up into puffs. The ratio turbulent
over the total flow, hereafter called the turbulent fraction, decreases with decreasingRe. The
increasing turbulent fraction is visualized by the color-gradient in figure 1.4. Moreover, up to
a Reynolds number of approximately 2500, the turbulent fraction decreases with downstream
distance but increases with downstream distance forRe& 2500 (Rotta 1956). ForRe> 2800
the flow downstream does not show any parts that relaminarizeand fully developed turbulence
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is observed. This means that for a very long pipe (order of thousands of diameters), the flow
returns to the laminar flow state forRe< 2500.

This property has been used by Hof et al. (2010) to eliminate turbulent patches. In their exper-
iments they created a localized turbulent patch. Further downstream a continuous disturbance
was present. Downstream of this continuous disturbance theflow relaminarizes, which is a prop-
erty of a large continuous disturbance at these Reynolds numbers. The relaminarization process
is independent of flow condition before the continuous disturbance and therefore it seems to
eliminate puffs that were created upstream.

Large temporal disturbance When a large temporal disturbance is used to create turbulent
flow, the effect on the flow downstream features unique characteristics. At Reynolds numbers
Re. 2040, the temporal disturbance results in a single puff. Thecharacteristic time or distance
over which the puff is able to survive increases super-exponentially with Reynolds number. An
overview of the findings up to now in this Reynolds number range is given in chapter 2. Fur-
thermore, one goal in this thesis was to determine the properlife time scaling of puffs over a
larger Reynolds number range.Detailed measurements on thelife time of localized structures are
presented in chapters 3 and 4.

For higher Reynolds numbers, puffs are able to split (van Doorne 2004, Nishi et al. 2008, Moxey
and Barkley 2010). The higher the Reynolds number, the larger the probability that the initially
single structure splits (Avila et al. 2011). Simultaneously, the probability that a puff decays
vanishes rapidly in this Reynolds number range. However, although up toRe≈ 2800 the local-
ized structures split, each remain localized and thereforea discrete number of puffs are present.
When the Reynolds number is increased beyondRe≈ 2800, the structure created by a temporal
disturbance grows continuously. Hence, forRe. 2800 puffs are observed and forRe& 2800
slugs.

Avila et al. (2011) showed that the first splitting structures are observed atRe≈ 2040. How-
ever, Moxey and Barkley (2010) claimed, based on a numericalsimulation, that the Reynolds
number has to exceedRe≃ 2300 before splitting structures are observed. This difference can be
explained by the fact that an extreme long observation time is required before a splitting struc-
ture is observed for Reynolds numbers slightly larger than 2040. Nevertheless the difference
in behavior for flows above and belowRe≃ 2300 is remarkable in the simulations by Moxey
and Barkley (2010). Moreover, Moxey and Barkley (2010) observed a second threshold. For
Re& 2600 continuously growing structures were observed and since they used a period domain,
fully developed turbulent pipe flow was obtained.

Recently, Barkley (2011) presented a novel one-dimensional model that captures all the observed
flow states that result from a single large amplitude temporal disturbance. Although the non-
linear model is able to capture all features present in transitional pipe flow, it has not been based
on the Navier-Stokes equations. A challenge for the future is to obtain such a model directly
from the Navier-Stokes equations.
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Figure 1.5: Centerline velocity in a domain with a single puff present. The flow is in positivez direction. In the
figure the definition for the leading and trailing edge of the puff are given.

1.1.5 Characteristics of localized turbulent flow

This thesis focuses onlocalizedturbulent structures, also known as puffs, that appear after the
introduction of a localized temporal disturbance with a large amplitude. In the previous section it
was shown that puffs are present for Reynolds numbers less than 2800. In this regime the length
of the structure remains finite over time and does not show a continuous growth or reduction
in length. The global characteristics of puffs have been described in literature based on condi-
tionally averaged hot-wire data (Wygnanski and Champagne 1973, Wygnanski et al. 1975, Nishi
et al. 2008), by using flow visualizations (Lindgren 1969, Bandyopadhyay 1986) or by exploiting
the difference in axial momentum between the puff and laminar flow, which affects the outflow
angle (Rotta 1956, Hof et al. 2006, 2008).

Figure 1.5 shows the classical centerline velocity distribution for a puff as obtained by the present
numerical simulation. On the trailing edge of the puff, a sharp drop is present indicating a sudden
transition at the transition front. Because of the clearly defined drop this has often been used to
determine the location of the puff (see also section 5.5.1).On the downstream side however, a
gradual increase in velocity is observed. Upstream and far downstream of the puff the centerline
velocity is equal to the theoretical value for laminar flow, i.e. two times the bulk velocity. The
length of the puff is ill-defined due to the gradual increase of the centerline velocity on the
leading edge. In section 5.5.1 is described how the locationof a puff is determined in numerical
simulations. The information of the location of the puff over time is used to determine the
velocity of the puff. In section 5.6.2 is shown that the velocity of the puff is strongly related to
the velocity fluctuation level inside the puff.

Directly after the sharp drop in centerline velocity strongvelocity fluctuations are observed.
Bandyopadhyay (1986) identified a region inside the puff that they consider fully developed.
Using a direct numerical simulation the average velocity fields and the velocity fluctuation fields
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are obtained inside a puff and compared to fully developed turbulent pipe flow. The results are
presented in section 5.5.

1.2 Outline of the thesis

When a localized temporal disturbance is applied to a fully developed laminar flow, the result is
a localized turbulent structure. An overview of the research on the dynamics of these localized
structures in pipe flow is presented in chapter 2. From this chapter it is clear that the scaling of
the lifetimes of localized turbulent structures can give anindication of the dynamical model that
describes the transition to turbulence. In chapter 3 the results are presented of a large number
of experiments. The goal of these experiments was to increase the number of observations and
therefore the increase the range of observed lifetimes. Although the range of life times was
increased tremendously, the experiments descibed in chapter 3 did have a few shortcomings. In
the experiments it was unknown if a disturbance was initiated when intended. Furthermore, it
was unknown what the exact lifetime of theindividual puffs was. The state was determined at
fixed distances after the location where the disturbance wasapplied. Therefore new experiments
were undertaken. The goal of these experiments was to quantitatively determine the life time
of individual puffs. The presence of a puff was determined using pressure transducers. When a
puff is present in the pipe, the pressure drop is larger when compared to laminar flow. If a puff
disintegrates, the pressure drop relaxes to the level for laminar flow. By determining the moment
at which the pressure drop is below a predetermined treshold, the life time of each individual
puff can be determined. The results of these experiments is described in chapter 4.

A question that remained was: Are coherent structures responsible for the regeneration process?
Or in a broader sence: what mechanism is required for the turbulent puff to sustain itself. In
order to answer this question a large experimental campaignwas undertaken. The goal was to
use a pressure measurement technique, as described in chapter 4, to determine the exact location
of decay. Since the location at which the velocities were measured was known with respect to
the pressure measurement, this could be used to sort the measurements such that a puff could
be measuredduring its decay process. Instead of using LDA to track the decay process, time
resolved PIV (van Doorne and Westerweel 2009) was used to measure a quasi-instantaneous
three dimensional velocity field. Unfortunately the pressure drop measurement could not be
used to determine the location of decay, because of a reducedsignal due to to the larger diameter
of the pipe. The larger diameter of the pipe that was requiredfor the PIV measurements.

When in the PIV measurements the contribution of in-plane velocity component to the kinetic
energy was considered, distinctive localized structures were observed. The contribution of the
in-plane velocity components to the kinetic energy is also known as the in-plane kinetic energy
and is defined as:
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whereEip is the in-plane kinetic energy,R the radius of the pipe,ur anduθ the radial and az-
imuthal velocity components respectively andubulk the bulk velocity. The bulk velocity is defined
as:

ubulk =
1

πR2
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uzrdrdθ (1.3)

whereuz is the axial velocity component. The localized structures that were identified in the in-
plane kinetic energy were similar to the structures that were found and discussed by van Doorne
and Westerweel (2009). A quest to the relevance of these large amplitude structures led to a
direct numerical simulation. Before the simulation was performed, it was remarkable that the
structures clearly present in experiments (van Doorne and Westerweel 2009, De Lozar and Hof
2009) were never discussed before in results from numericalsimulations. van Doorne and West-
erweel (2009) provided an explanation for this mismatch in the form of the axial resolution used
in the numerical simulations. According to van Doorne and Westerweel (2009), the small scale
structures could not be resolved with the resolutions used in the numerical simulations.

This was the main reason a simulation was undertaken with a high axial resolution, such that
it could resolve small scale structures. The results of thissimulation is presented in chapter 5.
As an initial condition for the simulation, the results of a PIV measurement were used. This
ensured the presence of the large amplitude structures in the initial condition. The results form
the numerical simulation allowed then for a characterization of their dynamical behavior.

Moreover, the temporal and spatial information available in the numerical simulation led to the
ability to get the integral behavior of localized structures over time. The results obtained from
the simulation are in very good agreement with the theoretical derived energy balance over a
transition front that was already derived by Rotta (1956). Furthermore, the experiments presented
in chapter 4 show that the instantaneous velocity of a turbulent structure is not constant as the
structure travels down the pipe. This behavior of localizedturbulent structures is confirmed by
the behavior of a puff observed in the numerical simulation.



Chapter 2

Long-lived transients in transitional pipe
flow1

The transition to turbulence in pipe flow has remained an unsolved problem in fluid mechanics.
The transition from laminar pipe flow to a turbulent flow statewas first investigated in detail by
O. Reynolds in 1883 (Reynolds 1883), after which the Reynolds number is named, defined as
Re =UD/ν, whereU is the bulk velocity,D the pipe diameter, andν the kinematic viscosity of
the fluid. Typically, for flow rates with a Reynolds number less than 1,600 the flow is laminar,
while for Reynolds numbers larger than about 2,000 the flow isstrongly intermittent and lam-
inar and turbulent flow domains co-exist (Wygnanski and Champagne 1973). These localized
turbulent flow regions are called ‘puffs’. However, a mathematical analysis of the laminar flow
state, characterized by a parabolic velocity profile known as Hagen-Poiseuille (HP) flow, shows
that it is linearly stable for all Reynolds numbers (Drazin and Reid 2004). Hence, one is not able
to explain the transition to turbulence by means of an instability originating from infinitesimal
disturbances, and the transition to turbulence in pipe flow remains unexplained.

A breakthrough occurred when new solutions were found for the flow through a pipe Faisst and
Eckhardt (2003), Wedin and Kerswell (2004). Each of these solutions, in the form of atravel-
ing wave(TW), is an exact solution of the (non-linear) equations of motion, or Navier-Stokes
equations. These traveling waves (TW) are families of solutions characterized by their symme-
try. Each TW solution has the character of an unstable saddle, so that one cannot create these
solutions under experimental conditions. However, flow patterns that have a very strong rem-
iniscence to these TW solutions could be identified in experimental data by Hof et al. (2004);
see Figure 2.1. The TW solutions first appear for a Reynolds number of about 773 in a mirror-
symmetric form. At slightly higher Re, helical and asymmetric TW’s are found (Pringle and
Kerswell 2007). At Re≈ 1,300, those with a 2-fold and 3-fold rotational symmetry appear.
All these TW solutions have a phase speed that is slightly larger than the mean flow speed; see
Fig. 2.2.

1This chapter has been published as a chapter in a book edited by J. Dubbeldam, K. Green and D.Lenstra.
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Figure 2.1: Comparison of experimental data of instationary pipe flow in a planar cross section (A-C-E) and corre-
sponding exact traveling wave states (B-D-F). From: Hof et al. (2004).

Figure 2.2: The phase speed of traveling waves (the number indicates the rotational symmetry) relative to the mean
bulk velocity as a function of the Reynolds number. From: Wedin and Kerswell (2004).
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Figure 2.3: Schematic representation of phase space in pipeflow. The laminar flow state is an attractor by increasing
the Reynolds number its basin of attraction reduces, if the flow is perturbed outside the basin of attraction, the flow
wanders around the traveling wave solutions found by Wedin and Kerswell (2004), Faisst and Eckhardt (2003).
Courtesy of: T. Schneider, Univ. Marburg.

In order to interpret the observed transition to turbulencein a pipe, we now consider the dy-
namical behavior of pipe flow in relation to the HP flow and TW flow solutions in terms of a
representation in state space. Hagen-Poiseuille (HP) flow is then represented as a single stable
node. At low Reynolds numbers all disturbances to the base flow decay back to the HP flow,
which is represented in state space by a trajectory that returns to the stable node.

The TW solutions form a strange repellor. When the HP flow is disturbed sufficiently, the flow
state wanders around in phase space, occasionally approaching states that are near a TW, but each
time is carried away along one of the unstable directions of the unstable saddle, and eventually
returns to the laminar flow state. As the Reynolds number increases, the time it takes to return
to the stable HP-node increases, implying longer and longertransients with increasing Reynolds
number. The time the flow state follows a complex trajectory shows large variations. This
behavior is typical for a chaotic saddle (Skufca et al. 2006).

To explain a transition to sustained turbulence it is expected that at a given Reynolds number the
strange repellor changes into a strange attractor so that the orbit of a disturbed HP flow no longer
returns to the fixed point representing the stable base flow. In that case HP and turbulent flow
coexist, and the two flow states are separated by a boundary that defines the basin of attraction for
the laminar and turbulent flow states respectively (Schneider, Eckhardt and Yorke 2007, Robert
et al. 2000). For small-amplitude disturbances the flow quickly returns to the laminar flow state.
However, when the disturbance amplitude is large enough, the trajectory passes the boundary for
the basin of attraction of the turbulent strange attractor,and thus will no longer return to the lam-
inar base flow. This then represents a sustained turbulent flow state that explains the transition to
turbulence in a pipe flow.
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Figure 2.4: Time series of the disturbance energy for four slightly different initial conditions for a pipe flow at Re =
2,000, showing the large variation of life time. From: Faisst and Eckhardt (2004)

This transition scenario was investigated by Faisst and Eckhardt (2004) by means of a direct
numerical simulation (DNS). They simulated the time evolution of localized turbulent flow (rep-
resenting the turbulent portion of a puff) in a domain of 5 times the pipe diameter with periodic
boundary conditions. Although only a small portion of the entire puff is simulated, the essential
dynamics of the entire system is captured. Starting at low Rethey determined for each realization
how long it took for the flow to return to the laminar flow state.They found that there is a large
variation in the time that the flow returns to the base state (see Fig. 2.4), and that the probability
of decay follows an exponential distributionP∼ exp(−(t − t0)/τ), whereτ is the characteristic
life time. The probability distributions for increasing Reare shown in Fig. 2.5. This clearly
shows thatτ increases with Reynolds number.

By taking the time for which 50% of the disturbances had decayed, or median life time, they
initially found that the life timeτ diverges at a finite value of the Reynolds number, indicatinga
critical Reynolds numberRec of 2250. The value ofRec was obtained from anextrapolationof
τ−1 as a function ofRe.

Peixinho and Mullin (2006) performed an experiment in a pipeflow where they determined
the life time of puffs. They generated puffs atRe= 1900, and then reduced to flow rate to a
lower Re, and then determinedvisually the moment of decay. Like the numerical simulation,
the probability showed an exponential decay. From these data they determined the reciprocal
lifetime as a function ofRe, and determined from an extrapolation thatRec = 1750±10, where
the lifetime appears to diverge. It should be noted that the uncertainty of the last 3 to 4 data
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Figure 2.5: Turbulent life times as a function of Reynolds number. (left) ProbabilityP(t) for a single trajectory to
still be turbulent after a timet. (right) Medianτ of the turbulent lifetimes as a function of Reynolds number.The
inset shows the reciprocal median lifetime vs. Re and a linear fit, corresponding toτ(Re) ∝ (Rec −Re)−1, with
Rec ≈ 2250. From: Faisst and Eckhardt (2004)

Figure 2.6: (left) Probability of observation of a puff versus downstream distance. (right) Mean decay rate as a
function of Re. The inset shows the inverse life time with a linear fit indicatingRec ≈ 1750±10. From: Peixinho
and Mullin (2006)
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Figure 2.7: ProbabilityP(T) of the life time of a puff to exceedT. From: Willis and Kerswell (2007a)

points at the highest Re measured essentially occur at the same Re.

Willis and Kerswell (2007a) used DNS to simulate the decay ofpuffs in a pipe at various
Reynolds numbers. The DNS was implemented with periodic boundary conditions, with a pipe
length of 50 times the pipe diameter, which would be sufficiently long to contain the entire puff.
The approach was very similar to the experiments performed by Peixinho and Mullin (2006):
the simulation was started with a randomly selected snapshot of the velocity field of a puff in the
domain atRe= 1900, and started at the desired Reynolds number. The probability distribution
of the lifetimes was determined based on 40-60 simulations per Reynolds number. They claimed
that a quantitative agreement was found between their results and the previously obtained results
by Peixinho and Mullin (2006). Although they concluded to have also found a linear scaling for
the characteristic life time, the critical Reynolds numberwas 1870, which is significantly larger
than the value of 1750 found by Peixinho and Mullin (2006).

Meanwhile, another experiment was conceived by Hof et al. (2006). Rather than following
disturbances in a pipe at fixedReto determine the characteristic life timeτ, one can consider a
pipe with fixed lengthL and determine the probability that a disturbance survives:P(t,Re;L).
This is equivalent to considering the probability along vertical lines in the left part of Fig. 2.5
(as opposed to evaluatingP(t,Re) along horizontal lines). A disturbance is introduced in a pipe
(after sufficient distance from the pipe inlet) and it is observed when this disturbance reaches the
outlet of the pipe. When the jet emanating from the pipe dips (as a result of the lower centerline
velocity in the puff) the disturbance has obviously survived for the time period required to travel
a distanceL along the pipe. A schematic of this experiment is shown in Fig. 2.9.

It was found from the analysis of the initial results reported by Faisst and Eckhardt (2004) that
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Figure 2.8: ProbabilityP of the life time of a puff to exceedtUb/D. From: Kuik et al. (2010)

Figure 2.9: Schematic of the experiment used by Hof et al. (2006).
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Figure 2.10:left probability as a function of Reynolds number ifτ−1 ∼ (Rec−Re), with Rec = 2000right probability
as function of Reynolds number ifτ−1 ∼ exp(Re)

the slope of the exponential distributions did not exactly correspond to the reported lifetimes that
were based on the median lifetime extracted from Fig. 2.5. Further analysis conjectured that the
lifetime might actually scale asτ−1 ∼ exp(Re) (Willis and Kerswell 2007a). This has the im-
portant consequence that the life times does not diverge at afinite critical Reynolds number, and
implies an important fundamental issue in regard to understanding the transition to turbulence.

The difference between these two scaling regimes can be readily observed inP(t,Re;L), as indi-
cated in Fig. 2.10. In the case of a linear scaling ofτ−1 with a divergence of the lifetimes at finite
Rec, the observed probabilities for fixed L have an exponential shape, all culminating atP = 1
for Re= Rec. Whereas for the exponential scaling, the probability curves have distinct S-shapes
that shift to higher Re for increasing pipe length.

Note that the curves forP(t,Re;L) for low probabilities(P< 0.3) look very similar. This implies
that it is difficult to determine the difference between the two scaling regimes when only data is
available for low Reynolds numbers and short pipes or observation times. This is a serious com-
plication for numerical investigations, as not only the required integration time increases with
Reynolds numbers, but also the computational cost.

The linear scaling leads to an interesting thought experiment as the probability approaches a
step function whenL → ∞. Consider a very long pipe driven by a constant pressure withthe
Reynolds number of the flow just belowRec. Then each disturbance introduced at the beginning
of the pipe decays and for all disturbances the flow at the pipeoutlet remains undisturbed. (The
very long pipe length implies that the flow rate as determinedby the pressure drop is not affected
by introducing the disturbance.) Then a second, identical pipe is placed next to the first one.
However, it is made slightly shorter, so that the flow rate increases just above the critical Reynolds
number. When the same disturbance is now introduced to both pipes, all disturbances in the
second pipe will survive. Provided that the pipe are long enough, the difference in the two pipe
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Figure 2.11: Probability distribution obtained by Hof et al. (2006) showing clearly the S-shaped curves

lengths can be made arbitrarily small, so that the two pipes appear to be identical, yet their
behavior in terms of the disturbances at the pipe exits are completely different.

In the case of the exponential scaling of the lifetime the two(almost identical) pipes behave al-
most identically, with the slightly longer pipe having a slightly lower fraction of puffs surviving
all the way to the pipe exit.

In order to make a distinction between the two scaling regimes, it is necessary to perform the
measurements in very long pipes, preferably exceeding 1000-2000 pipe diameters in length.
First a 4 mm diameter pipe with a length of 11 m (L/D = 2,750) was constructed in Delft, and
later a 4 mm diameter pipe with a total length of 30 meters (i.e., L/D = 7,500) was constructed
in Manchester. The results of the measurements by Hof et al. (2006) in both pipes are shown
in Fig. 2.11. Note that the probability curves have a distinct S-shape, which already indicates
qualitatively that the lifetime of the disturbances does not diverge at finite Re. Further analysis
indicated that the data indeed show an exponential scaling of the lifetime as a function of Re over
the range of Reynolds numbers investigated.

Further experiments were conducted to extend the range of lifetimes that could be measured and
to determine the location of decay quantitatively. Rather than considering the median lifetime,
the rate of decay was determined. Thus it was possible to determineτ for pipe lengths that were
shorter thanUτ (whereU is the mean flow velocity) and it was possible to determine thedecay
rate over a very large range between 1 and 108. The results over the very large range in escape
rates were reported by Hof et al. (2008). Later these resultswere confirmed by a quantitative
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Figure 2.12: The life time of decay rate forP(t) as a function of Reynolds number. After: Kuik et al. (2010)

measurement of the lifetime as reported by Kuik et al. (2010). The results for the life time (viz.,
decay rate or escape rate) as a function of Re are reproduced in Fig. 2.12, together with the
previous experimental and numerical results. It appears that the scaling is not exponential, but
rather super-exponential, i.e. the life timeτ is given by Hof et al. (2008)

τ−1 = (U/D)exp[−(Re/c)n] (2.1)

with c = 1549 andn = 9.95, where n is related to the rate at which the laminar basin ofattraction
shrinks with increasing Reynolds number (Tél and Lai 2008). The data fits quite well with the
experimental and numerical data obtained by others, exceptfor very low Reynolds numbers and
for Reynolds numbers where the observation is limited by theactual pipe length. The super-
exponential scaling also appears in so-called spatio-temporal chaotic systems, where transients
increase super-exponentially with the size of the system (Tél and Lai 2008).

The conclusion of the experiments is that the lifetimes of localized disturbances rapidly increases
with Re. The scaling of the lifetime with Re as measured in theexperiments suggests that the
divergence of the lifetime does not occur at a finite criticalReynolds number2. This suggest
that, for the Reynolds numbers investigated, no evidence isfound for the existence of a strange
attractor3. If the scaling found in the experiment holds for larger Re than those investigated,

2The work of Borrero-Echeverry et al. (2010) shows that a similar type of scaling is found for the life time of a
turbulent patch in Taylor-Couette flow. Thereby showing that this type of behavior can be considered more general
as a feature of linear stable shear flows and not a feature unique to pipe flow.

3In a numerical simulation by Avila et al. (2010) exactly the same type of scaling is found for puffs in a pipe.
The results show a remarkablequantitativeagreement between the data obtained from the simulation andthe results
from experiments.
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then it would imply that the turbulent flow state should be considered as a transient, albeit an
extremely long-living one (Lathrop 2006). For example, to extend the observation time for the
data shown in Fig. 2.12 that are valid for water flowing through aD = 1 cm pipe to a Reynolds
number of 2,200 would imply observation times exceeding thelifetime of the universe. Evi-
dently, to extrapolate the experimental results to any value of the Reynolds number beyond those
investigated experimentally should be taken with great caution. The problem arises that the pre-
dicted lifetimes for higher Reynolds number become simply impractically large. Next to that, at
higher Reynolds numbers the localized nature of the turbulence is lost. From Reynolds number
higher than approximately 2350, turbulent puffs can split and for Re larger than about 2700 can
form ’slugs’ (Wygnanski and Champagne 1973, Nishi et al. 2008) . This behaviour cannot be ex-
plained by the current dynamical systems point of view on thetransition to turbulence. Another
remaining question is what the relation is between the exactperiodic solutions that were found
numerically (TW’s) and the turbulent puff.
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Chapter 3

Repeller or Attractor? Selecting the
Dynamical Model for the Onset of
Turbulence in Pipe Flow1

The collapse of turbulence, observable in shear flows at low Reynolds numbers, raises the ques-
tion if turbulence is generically of a transient nature or becomes sustained at some critical point.
Recent data have led to conflicting views with the majority ofstudies supporting the model of
turbulence turning into an attracting state. Here we present lifetime measurements of turbulence
in pipe flow spanning 8 orders of magnitude in time, drastically extending all previous investiga-
tions. We show that no critical point exists in this regime and that in contrast to the prevailing
view the turbulent state remains transient. To our knowledge this is the first observation of su-
perexponential transients in turbulence, confirming a conjecture derived from low-dimensional
systems.

Finding appropriate models and concepts describing fluid turbulence is one of the outstanding
challenges in the physical sciences. Shear flows with a linearly stable laminar state, such as pipe,
channel, duct, or Couette flow have proven to be particularlyintricate in this regard Eckhardt
et al. (2007). Here the laminar and the turbulent state coexist Grossmann (2000), Pomeau (1986)
without a clear transition point, yet at large flow rates the laminar state becomes increasingly
susceptible to perturbations. Once a disturbance is large enough the transition to turbulence
occurs suddenly without any intermediate states Dauchot and Daviaud (1995), Darbyshire and
Mullin (1995), Hof et al. (2003). Surprisingly, at relatively low Reynolds numbers (Re. 2000)
the turbulent state is not stable and after long times suddenly collapses Brosa (1989), Bottin and
Chate (1998), Bottin et al. (1998), Faisst and Eckhardt (2004), Willis and Kerswell (2007a), Hof
et al. (2006). This behavior is reminiscent of memoryless processes in nonlinear systems. In
phase space the dynamics can be described by a complex structure giving rise to the disordered
dynamics, a socalled chaotic repeller Kadanoff and Tang (1984). Underlying such a structure are

1The content of this chapter has been published in Physcial Review Letters (Hof et al. 2008).
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unstable states and for pipe flow unstable solutions to the governing equations have been iden-
tified in the form of traveling waves Faisst and Eckhardt (2003), Wedin and Kerswell (2004).
Surprisingly clear transients of such traveling waves wereobserved in experiments Hof et al.
(2004, 2005) confirming their relevance to the turbulent dynamics. More recently traveling wave
transients were also reported in numerical studies Schneider, Eckhardt and Vollmer (2007), Ker-
swell and Tutty (2007).

A way to probe the validity of this model is to measure the lifetime of turbulence in the transient
regime. Previous experimental and numerical lifetime measurements have shown approximately
exponential probability distributions Bottin and Chate (1998), Faisst and Eckhardt (2004), Willis
and Kerswell (2007a), Peixinho and Mullin (2006), Lagha andManneville (2007) which suggests
that the probability for a turbulent structure to decay is independent of its age and hence that this
process is memoryless as would be expected for the escape from a chaotic saddle. Here the
probability for a flow to still be turbulent after a timet at a fixed Reynolds number (Re) is then
given by

P(t − t0,Re) = exp[−(t − t0)/τ(Re)] , (3.1)

whereτ is the characteristic lifetime (τ−1 can be also interpreted as the escape rate) andt0 is
the initial time period required for turbulence to form after the disturbance has been applied to
the laminar flow att = 0. The fate of the chaotic repeller is then determined by the functional
form of the characteristic lifetimeτ(Re) and different suggestions have been made in the past.
The majority of studies reported thatτ−1 decays linearly and reaches zero at a critical Reynolds
number. Here the turbulent state undergoes a boundary crisis Eckhardt et al. (2007) leading from
transient to sustained turbulence. However there is no quantitative agreement for the value of
such a critical point and cited values differ by more than 25%. This view has been challenged in
an experimental study Hof et al. (2006) carried out in an extremely long pipe whereτ−1 has been
observed to decay exponentially. Crucially it only approaches zero and hence (unless a global
bifurcation occurs at larger Re Eckhardt et al. (2007)) an infinite lifetime is only reached in the
asymptotic limit Re→ ∞. Subsequently a number of studies have questioned this finding and
again entertained the occurrence of a boundary crisisWillis and Kerswell (2007a), Ben-Dov and
Cohen (2007), Willis and Kerswell (2009). A clear constraint of all previous investigations is the
limited range in lifetimes measured. Typically scaling laws were postulated from data covering
2 orders of magnitude. Numerical simulations are particularly problematic because in order to
capture the quantitatively correct behavior computationshave to be carried out in large domains,
which severely restricts the number of realizations N that are manageable(N < 50) Willis and
Kerswell (2007a). Consequently the statistics are often insufficiently resolved resulting in am-
biguous probability distributions Hof et al. (2007). A further difficulty in interpreting the existing
data arises from the initial formation timet0. Most numerical measurements have been carried
out at relatively low Reynolds numbers wheret0 can be larger than the actual observation time.
Consequently the evaluations of lifetimes in this regime have significant uncertainties.

The experiments presented here were carried out in four pipesetups located in three different
laboratories. On all four occasions the pipes were made of 1 mlong precision bore glass tubes
and the working fluid was water. The setups mainly differ in the diameters(D) and their total
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Figure 3.1: (a) Sketch of the general pipe setup. Four different pipes were used, two of them with a 10 mm diam-
eter(L/D = 690 and 600) and two with a 4 mm diameter(L/D = 2000 and 3600). Pipes were gravity driven and
turbulence could be induced by injection and withdrawal of fluid through small holes in the pipe wall at various
downstream positions. Turbulence was detected by monitoring the outflow angle and by LDA velocity measure-
ments. (b) LDA velocity trace obtained at the center line of theD = 10 mm(L/D = 690) pipe during the passage of
a turbulent event. The trace shows the well-known Wygnanskiand Champagne (1973) signature of a turbulent puff
for the axial velocity (top) and the radial velocity (bottom).

length(L). For two pipes 4 mm(±0.01) bore tubes were used and their lengths wereL/D = 2000
and 3600; the other two had a diameter ofD = 10 mm±0.01 and a length ofL/D = 690 and 600.
As in our previous study Hof et al. (2006) the flow was driven bya constant pressure head. To
avoid fluctuations during transition caused by the differences in drag between the turbulent and
the laminar motion, a large constant resistance to the flow was added to the supply line between
the constant head reservoir and the flow conditioning section at the pipe entrance. This ensured
that the flow rate remained constant to between 0.1% and 0.01% depending on the setup, even
when transition occurred. The main improvement over the earlier study by Hof et al. (2006)
was the implementation of an accurate temperature control allowing measurements to be carried
out at constant temperatures(±0.05K) for several days and hence avoiding Reynolds number
changes caused by the temperature dependence of the viscosity.

In order to achieve laminar flows at Reynolds numbers in excess of 2000 the pipe sections need
to be very accurately aligned and special care has to be takenat the pipe inlet to avoid turbulence
being induced (see figure 3.1). In three of the pipes laminar flow could be achieved up to Re≥
3000. Detailed tests have shown that at the natural transition point turbulence is always triggered
at the pipe inlet and not inside the pipe itself. For these three pipes the inlet consisted of a
straight convergence reducing the diameter from 12.5 to 4 mm. In theL/D = 690 pipe a more
sophisticated inlet was used employing several meshes and asmooth convergence . This resulted
in a much higher natural transition point of Re= 104.

The experimental procedure then was as follows: First a perturbation was applied at a fixed po-
sition upstream. The perturbation amplitude was chosen large enough to trigger the transition to
turbulence and the duration of the perturbations was set to between 10 and 20D/U . The perturbed
segment then develops into a so-called turbulent puff, which in this Reynolds number regime has
a fixed length and travels downstream at approximately the mean velocityU Wygnanski and
Champagne (1973). To determine if this turbulent puff had survived its journey to the end of the
pipe or if the flow had relaminarized, the outflow angle at the pipe exit was monitored. Since for
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a given Reynolds number the turbulent flow has a lower center line velocity than the laminar one,
it exits the pipe at a steeper angle (with respect to the pipe axis) Hof et al. (2006), Rotta (1956).
In the 10 mm pipes velocities were measured with laser Doppler anenometry (LDA) in addition
to monitoring the outflow angle. These velocity measurements made it possible to determine
the formation periodt0 more accurately. In the case of the single jet perturbation the value of
t0 was t0 = 70± 5. In order to establish if the type of perturbation used had an influence on
the lifetime of the resulting turbulent flow, measurements were carried out at various amplitudes
and different perturbation types. For the majority of measurements shown here a single jet was
injected for a duration of 10D/U through a small (0.5 mm) hole in the wall. In additional studies
De Lozar and Hof (2009) different types of perturbations were tested including a simultaneous
injection and withdrawal of fluid through two small holes andtriggering of turbulence at larger
flow rates followed by a sudden reduction in the Reynolds number (this perturbation is identical
to the one used by Bottin and Chate (1998), Willis and Kerswell (2007a), Peixinho and Mullin
(2006)). Outside the formation periodt0 no differences, neither in the observed turbulent struc-
tures nor in their statistics were observed. Indeed, this behavior is typical for chaotic systems
where the exponential divergence of neighboring trajectories quickly erases the memory of the
initial conditions.

The improved temperature control allowed us to base each measurement point on observations
of typically N = 500 and occasionally even up toN = 100000 puffs reducing statistical errors by
an order of magnitude compared to all previous studies and increasing the range of measurable
lifetimes by more than 5 orders of magnitude. The probability distributions obtained in theD = 4
mm pipes are shown in figure 3.2 for five different distances between the perturbation and the
measurement point(x = 140,270,930,1900, and 3500) corresponding to fixed dimensionless
times t = (x/U)(D/U). Our data confirm that probability distributions areS shaped and not
simple exponentials as would be expected ifτ(Re) was a linear function as proposed in Refs.
Bottin and Chate (1998), Faisst and Eckhardt (2004), Willisand Kerswell (2007a), Peixinho and
Mullin (2006). In particular the dotted lines show the exponential distributions that follow from
the proposed boundary crisis in Willis and Kerswell (2007a). Both scalings (exponential and
S-shaped curves) agree well for Re< 1870. Here differences only occur for very short pipes,
where errors due to uncertainties int0 are very large and make a distinction of the decay rates
very difficult. For Re> 1870 our data clearly disagree with the proposed exponentially divergent
curves and instead fall on theScurves resulting from the fit shown in figure 3.3.

The observed distributions however also differ from the S shape suggested by Hof et al. (2006):
they are not selfsimilar but instead their maximum slope (atP(t) = 0.5) increases withL/D. For
each of the measured probabilitiesP(t) inverse characteristic lifetimesτ−1(Re) can be deter-
mined using equation 3.1, and the values are plotted in figure3.3.

In addition to the data obtained in the 4 mm pipes, the data of the 10 mm pipes is also included
in the graph. All the data collapses onto a single curve whichshows that equation 3.1 is the
appropriate description for the observed decay of turbulence and hence confirms the model of a
chaotic repeller. By resolving values ofP(t) up to 0.9999 we were able to determine escape rates
down toτ−1 = 10−8 which is 4 orders of magnitude smaller than had been measuredbefore. By
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Figure 3.2: Probabilities for the flow to still be turbulent after traveling a fixed distancex. Viewed from left to right
the five data sets shown correspond to the following distances: x = 140 (down triangles), 270 (diamonds), 930 (up
triangles), 1900 (circles), 3500 (squares). The fitted curves follow directly from the superexponetial scaling shown
in figure 3.3. The dotted curves show the scaling that would beexpected for the critical behavior suggested by Willis
and Kerswell (2007a).

resolving very small probabilities in aL/D = 140 pipe it was possible to determine decay rates
down toRe= 1670 while keeping errors due tot0 at a minimum. In principle lifetimes at even
lower Re can be obtained in even shorter pipes, yet as discussed above, the uncertainty in the
initial formation timet0 is considerable when compared to the total observation time, severely
restricting measurements in this regime. In addition the numerical data by Willis and Kerswell
(2007a) (open squares) are plotted together with the linearfit proposed in that study. Note that
the data point atRe= 1580 of Willis and Kerswell (2007a) has been refitted as suggested in
Hof et al. (2007). The numerical data is in excellent agreement with our measurements (taking
the relatively large uncertainties due tot0 at small Re into account). However the data of our
experiments clearly does not follow the linear fit [dashed curve in figure 3.3(a)] proposed in
their study. Turbulent puffs are still found to decay well beyond the critical point of Rec = 1870
postulated by Willis and Kerswell (2007a). The exponentialscaling suggested by Hof et al.
(2006), shown by the solid black line, gives a reasonable fit only over 2 orders of magnitude
in τ−1, but fails over the far larger range measured in the present study. Over these 2 orders of
magnitude also the shape of the probability distributions of the present study are indistinguishable
to the ones by Hof et al. (2006). Outside this overlap region the S curves in the present study
are observed to become steeper with Re. Such a Re dependence had not been seen in the earlier
study Hof et al. (2006). Note that the solid black line in figure 3.3 was shifted by∆Re= −48
with respect to the one shown in Eckhardt et al. (2007). This shift of the data corresponds to a
2.5% difference in the absolute value of Re. In particular the uncertainty of the pipe diameter
in Hof et al. (2006) with(±1.5%) was comparatively large; furthermore in the present study
greater care was taken to measure the absolute value of the temperature allowing to determine
the viscosity values more accurately.
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Figure 3.3: Decay rates plotted on a log linear scale. Circles represent data obtained in theD = 10 mm pipes while
the full symbols were measured in theD = 4 mm pipe. The dashed line and the open squares are a reproduction
of the data points and the linear fit given by Willis and Kerswell (2007a). The black line has the same slope as the
exponential scaling observed by Hof et al. (2006). The lightsolid curve assumes a superexponential dependence of
the decay rate on Re. The dash-dotted line shows an alternative superexponential fit (see text for details). (b) Data
on a log-log linear scale. The data could be fitted by a straight line over the entire regime. This two parameter fit
was then used to plot the five curves in figure 3.2 as well as the light solid curve in figure 3.3(a).

The robustness of the scaling behavior was tested by applying a periodic modulation to the flow
rate. At a frequency of up to 2 Hz and an amplitude of∆Re= ±10 the shape of theS curves
remained unchanged within experimental errors. Equally small intentional misalignments of
the pipe segments did not show any noticeable influence on thedistribution shape.S-shaped
probability distributions have also been observed in planeCouette Hof et al. (2006), Schmiegel
(1999) flow suggesting that this scaling behavior applies toa variety of shear flows.

In figure 3.3(b) the present data are shown on a double log linear scale. On this scale a straight
line can be fitted to the data suggesting lifetimes scale superexponentially with Re:τ−1 =
exp[−exp(c1Re+c2)], with c1 = 0.0057 andc2 = −8.7. As shown in figure 3.3 this two pa-
rameter fit captures the observed escape rate dependence over 8 orders of magnitude. Equally
the S-shaped curves plotted in figure 3.2 directly follow from this straight line fit without any
additional fitting parameters. While the data allows to ruleout functional forms which are subex-
ponential, it should be noted that adequate fits can also be obtained by other superexponential
functions.

For instance,τ−1 = exp[−(Re/c)n], with c= 1549 andn= 9.95 [dash-dotted line in figure 3.3(a)].
Here the magnitude of the exponentn is related to the rate at which the basin of attraction of the
laminar state shrinks as Re increases Tél and Lai (2008). Discriminating between the differ-
ent superexponential scalings would require measurementsover a substantially larger Reynolds
number range. However, due to the rapid increase in lifetimes the parameter space observable in
experiments is rapidly approaching its limit. In order to measure the escape rate at Re= 2100
would require an estimated time of 46 yr in our setup, and at Re= 2200 with 1012 yr the exper-
imentation time would have to surpass the age of the Universe. Previously long lived transients
whose lifetime scales superexponentially with system size, so-called Type-II supertransient Tél
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and Lai (2008), had only been observed in low-dimensional dynamical systems.

In conclusion, by increasing the range of measured lifetimes by 6 orders of magnitude and sig-
nificantly reducing statistical errors the decay rate of turbulence has been measured far more
accurately than previously possible. The observation of a critical point reported in many re-
cent studies is not supported. The superexponential behavior found here identifies turbulence in
pipe flow as a type-II supertransient Tél and Lai (2008), Crutchfield and Kaneko (1988), which
had been conjectured as a potential description of turbulence two decades ago Crutchfield and
Kaneko (1988). This scaling shows that at least in the intermittent regime, the correct dynamical
model of turbulence in linearly stable shear flows is that of astrange repeller.

The authors would like to thank B. Eckhardt, J. Vollmer, T. M.Schneider, C. Poelma, and R.
Delfos for helpful discussions. This resarch was supportedby the EPSRC (Grant No. EP/F017413/1),
the Max Planck Society, and FOM (Foundation for FundamentalResearch of Matter).
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Chapter 4

Quantitative measurement of the lifetime
of localized turbulence in pipe flow1

Transition to turbulence in a pipe is characterized by the increase of the characteristic lifetimes of
localized turbulent spots (‘puffs’) with increasing Reynolds number (Re). Previous experiments
are based on visualization or indirect measurements of the lifetime probability. Here we report
quantitative direct measurements of the lifetimes based onaccurate pressure measurements com-
bined with laser-Doppler anemometry. The characteristic lifetime is determined directly from the
lifetime probability. It is shown that the characteristic lifetime does not diverge at finite Re, and
follows an exponential scaling for the observed range17256Re61955. Over this small Re range
the lifetime increases over four orders of magnitude. The results show that the puff velocity is
not constant, and the rapid disintegration of puffs occurs within 20-70 pipe diameters.

4.1 Introduction

The transition to turbulence in pipe flow can be characterized by the lifetimes of localized turbu-
lent spots, or ‘puffs.’ These puffs co-exist with the laminar flow state, and travel downstream with
a velocity of around the bulk velocity (Lindgren 1969, Wygnanski and Champagne 1973). Faisst
and Eckhardt (2004) used a direct numerical simulation (DNS) to investigate the lifetime of the
turbulent flow state in a short periodic pipe. They found thatthe probabilityP(t;Re) of survival
at a given Reynolds number (Re) decays exponentially with time, reminiscent of a memoryless
process, i.e.

P(t;Re) = exp[−(t− t0)/τ(Re)], (4.1)

wheret0 represents a formation time of the disturbance, andτ(Re) the characteristic lifetime of
the disturbances. Faisst and Eckhardt (2004) obtainedτ(Re) from the median lifetime of the
disturbances, which appeared to scale asτ−1 ∝ (Rec −Re), whereRec is a critical Reynolds

1This chapter has been published in the Journal of Fluid Mechanics (Kuik et al. 2010)
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numberat which the lifetime diverges. Earlier, new solutions of the Navier-Stokes equations for
pipe flow, in the form oftraveling waves, were identified (Faisst and Eckhardt 2003, Wedin and
Kerswell 2004, Hof et al. 2004). These solutions were thought to form astrange saddlein phase
space, so that a disturbance of the base flow, i.e. Hagen-Poiseuille flow that is represented as a
stable node, leads to a transient for which the duration increases proportional to the Reynolds
number. A divergence of the duration of the transient, or lifetime of the disturbance, that occurs
atfiniteReynolds number implies a transition from a strange saddle to a strange attractor in phase
space (Eckhardt et al. 2007). The strange attractor would implicate turbulence as a sustained flow
state.

Faisst and Eckhardt (2004) foundRec
∼= 2250, which agrees with empirical data. However,

re-examination of the data, whereτ(Re) was evaluated directly from the slope ofP(t;Re) in a
semi-log plot, showed thatτ(Re) scales exponentially, i.e.τ−1 ∝ exp(−Re), so that the lifetime
does not diverge at a finite critical Reynolds number (Hof et al. 2006). To examine in which
way the lifetime diverges withRerequires long observations times of several hundred or even
thousands of integral time scales.

Peixinho and Mullin (2006) carried out an experiment to determine P(t;Re) by observing the
decay of a puff in a constant mass flux pipe. First a puff was generated atRe=1900, and when
it had survived 100 pipe diameters the Reynolds number was reduced, and the decay of the puff
was observed. The turbulent motion in the puff was visualized with small platelets, and the
moment of decay was determined visually. The results confirmed the exponential probability in
(4.1), and it was found thatτ−1 scales linearly withRec

∼=1750±10. Willis and Kerswell (2007a)
represented the experiment in a DNS. They also found an exponential distribution forP(t;Re)
and a linear scaling ofτ−1, although the observation times where rather short, withRec

∼=1870.
However, re-evaluation of their data showed that the same results would be reconcilable with an
exponential scaling ofτ−1 (Hof et al. 2007, Willis and Kerswell 2007b). Recent data (Hof et al.
2008) showed that the lifetime scalessuper-exponentially, i.e. τ−1 ∝ exp[−(Re/c)n] with n=9
andc=1549, over eight orders of magnitude inτ.

The measurements ofτ(Re) by Hof et al. (2006, 2008) are based on the probabilityP(Re;L) that
a puff survives a given pipe lengthL as a function of Reynolds number. This probability has a
characteristic S-shape in the case of an exponential scaling of τ(Re). However, thisimplicitly as-
sumes thatP(t;Re) has the form given in (4.1). Also, this experiment does not allow to constantly
monitor the formation of the puff after the injection, the motion of the puff along the pipe, and
its sudden decay. Especially at high Reynolds number, whereonly a very small fraction of puffs
decays before reaching the pipe exit, it is difficult to make adistinction between puffs that decay
in the pipe and a possible misfiring of the disturbance mechanism or disturbances that failed to
generate a puff. Furthermore, this approach requires an estimate of the mean puff velocity, in
order to convert the distanceL into a lifetime.

In this paper we report results of quantitative lifetime measurements that are based on accurate
pressure measurements. This makes it possible to directly determineP(t;Re), rather than relying
on an implicit assumption that the lifetime probability follows (4.1). Since we measure over a
pipe section that excludes the injection it is possible to determineτ(Re) irrespective of the puff
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Figure 4.1: Schematic of the experimental setup. A: overflowreservoir to maintain constant pressure head (H);
B: heat exchanger; C: flow conditioner containing several meshes with reducing grid size and a smooth 1:100
area contraction; D: flow disturbance; E: pipe exit with second reservoir from which fluid is pumped back into
reservoir (A);PT1,2: pipe sections over which the pressure drop is measured by a pressure transducer.S: indicates
a pipe section; LDA: location of velocity measurement by LDA. Inset, left: Measured friction factor (×) as a
function of Reynolds number together with Poiseuille’s friction law (—); error bars represent an estimate of the
total experimental error.Inset, right: Velocity profile measured with LDA (×) together with a calculated velocity
profile based on the mass flow rate (—).

formation. The inlet length for laminar pipe flow atRe=2×103 is ∼120D, so that any applied
disturbances that failed to generate a puff are expected to have decayed before the first pressure
tap atL/D=125 (see section 4.2). Apart from being able to directly measure the lifetimet that
individual puffs travel along the pipe, it is possible to determine the decay time during which
the puff disintegrates. It is thus possible to validate the assumption of sudden puff decay that
underlies the expression forP(t;Re) in (4.1).

4.2 Experimental setup and method

The flow facility used for the measurements is similar to the setup used by Hof et al. (2006, 2008).
Figure 4.1 shows a schematic overview of the setup. The main difference is that in the current
setup special care is taken to reduce pressure fluctuations.The 20-meter long pipe is made of 16
glass tubes, each 120-130D in length, with an inner diameter ofD = 10±0.01 mm. The pipe
sections are joined by PMMA connectors with the same inner diameter, that contain 0.5 mm
holes which could either be used for sensing the pressure or to introduce the flow disturbance.
The water flow is driven by the constant pressure head generated by the height difference between
the free surface of the overflowing reservoir (A) and the outflow of the pipe (E). At regular
intervals the fluid from reservoir E is pumped back into the base from which the overflowing
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reservoir is fed. The flow rate of the system can be adjusted manually by changing the total
pressure head between 3.0 and 3.5 meters (corresponding to 30–35×103 Pa).

To reduce pressure fluctuations in the pipe, the amount of overflowing fluid has been minimized.
Furthermore, the fluid was introduced from the bottom and guided through a set of flow straight-
eners to remove any remaining fluctuations caused by the pumpand the introduction of the fluid
into the reservoir. From the top reservoir, the fluid flows through a feeding line consisting of
two segments: one 10-meter long copper tubing segment and one 15-meter long flexible tubing
segment.

The 20-m pipe section is thermally insulated from the environment. To control the temperature
of the working fluid, temperature-controlled water is forced around the copper segment (B), cre-
ating a heat exchanger by which the daily temperature variation is maintained to within±0.3◦C.
To determine the exact Reynolds number at which each measurement is taken, the temperature
of the water is continuously monitored at the pipe exit (E) using a calibrated mercury thermome-
ter. Using a digital camera, the temperature reading could be determined with a precision of
3.4×10−3 ◦C.

The main pressure drop occurs between sections A and C, wherethe tube has a smaller diameter
(6 mm) than in the straight pipe. In this section the flow remains turbulent, and the total pressure
loss is much larger than in the 10-mm diameter pipe. Introduction of a turbulent disturbance in
the pipe (D) lowers the flow rate by the additional friction ofthe local turbulent flow. However,
one can easily verify that the flow rate changes by less than 0.01% for the current configuration,
because of the large pressure drop over the feeding line. Therefore this setup can be considered
to effectively operate with a constant mass flux condition. In a numerical investigation Willis and
Kerswell (2009) showed that the lifetime statistics for puffs (for sufficiently long computational
domains) did not change for either constant pressure drop orconstant mass flux conditions.
Therefore it is valid to compare the present results with those found in experiments and numerical
simulations under constant mass flux conditions.

To validate that the pipe is internally smooth, the frictionfactor was determined by measuring
simultaneously the pressure drop and the flow rate. The pressure difference was measured by an
inverted U-tube manometer between pressure taps at 625D and 1514D from the pipe inlet, cov-
ering almost 890D. The first pressure tap was far enough from the entrance to avoid effects due
to the development of the flow, even at high Reynolds numbers (the entrance length forRe=8000
is approximately 500D). The flow rate was determined by measuring the weight of the fluid that
exits the pipe over at least 200 seconds. The result for the measured friction factorF as a func-
tion of Reis shown in figure 4.1, in comparison to Poiseuille’s law (F=64/Re). A laminar flow
state could be sustained forRe> 9×103, before natural transition occurred. Since experiments
are carried out only forRe< 2000, it is not expected to observe spontaneous generation of turbu-
lence. Using laser-Doppler anemometry (LDA), a velocity profile was measured at 2000D from
the pipe entrance forRe=1750. Figure 4.1 shows the measured velocity profile in comparison to
a parabolic Poiseuille profile based on the measured flow rate. In the lifetime experiments, the
centerline velocity was measured by LDA at the same locationto validate that the flow distur-
bance has the typical characteristics of a puff. This is morereliable than observing the jet angle at
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the pipe exit (Rotta 1956, Hof et al. 2006). After each measurement series, the Reynolds number
is determined based on the measured mass flow rate and measured temperature, and could be
determined with an estimated total uncertainty of±4 (i.e., 0.2% atRe=2000).

In a lifetime experiment, the fully developed laminar flow isshortly perturbed to create a lo-
calized flow disturbance. In the current experiment the flow is disturbed by a zero mass flux
disturbance, at 1514D from the pipe entrance. The non-dimensional amplitude of the distur-
bance was equal to 0.1, based on the ratio of disturbance mass flux and pipe-flow mass flux. The
amplitude is above the critical amplitude to create a puff (Darbyshire and Mullin 1995, Hof et al.
2003). The flow is perturbed during 0.0625 s (1.1-1.2D/Ub), which is much shorter than the
disturbance time of 10-20D/Ub used in previous experiments (Hof et al. 2006, 2008, De Lozar
and Hof 2009). Previously, Mullin and Peixinho (2006) foundthat the critical Reynolds number
is reduced by increasing the disturbance amplitude. The amplitude was chosen in correspon-
dence to the lowest critical Reynolds number reported by Mullin and Peixinho (2006). However,
De Lozar and Hof (2009) already showed that the type of disturbance did not change the lifetime
scaling.

In the present experiment the lifetime of a puff is determined using two differential pressure
sensors (Validyne DP45). One pressure transducer (PT1) measures the pressure drop between
taps at 125D and 250D (S2) from the disturbance, and the second (PT2) between 250D and 496D
(S3). Both pressure transducers were calibrated using a micro-manometer (Betz) and have a full
range of 150 Pa with an accuracy better than 0.75 Pa. In the remainder of this section only the
results from the first pressure sensor (PT1) are shown, but an identical analysis applies to each
time series measured forPT2. The extension to much larger domains by adding more pressure
sensors is trivial.
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in sectionS2; (c) in sectionS3. The inclined straight line is a least square fit to the velocity distribution in sectionS2

and is given in the other plots for comparison.

Figure 4.2 shows three signals recorded byPT1; for clarity the pressure drop due to laminar flow
(∆P∼ 64 Pa) has been subtracted. The recording starts just beforethe disturbance is applied att1,
where the signal shows a single oscillation with a large amplitude. The oscillation ensures that the
disturbance was applied. The short-duration pressure oscillation does not induce any significant
acceleration or deceleration of the fluid mass in the pipe. The amplitude of the oscillation would
be much larger when generated by a non-zero mass flux injection, i.e. when the injected mass is
not simultaneously removed.

After the flow has been disturbed, the disturbance forms intoa puff and is convected downstream.
Since the puff is now present in sectionS1, the pressure drop measured byPT1 is only due to
laminar flow, hence the additional pressure drop∆P′ = 0. At t2 the puff begins to enter sectionS2,
indicated by the increase in∆P′, which reaches a maximum att3. Then it falls to approximately
half the maximum value, which is indicative of an adverse pressure gradient at the transition side
of the puff. Rotta (1956) derived that the theoretical upperlimit of the pressureincreasedue to
the transition from a laminar velocity profile to a uniform velocity profile is equal to1

3ρU2
b . This

would imply a pressure rise of almost 10 Pa. This is not observed in the present data, because the
mean velocity profile inside the puff is not uniform. Nevertheless, the predicted adverse pressure
gradient is clearly visible.

Figure 4.2 shows the pressure time series (black lines) for two arbitrary puffs. Both time se-
ries show the same characteristics, with a constant additional pressure drop betweent4 andt6,
indicating that the entire puff is inside sectionS2. When the puff leaves this section, the same
characteristics in pressure are observed as when the puff enters the domain. Due to the presence
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of only the transition front inside sectionS2, a sub-laminar pressure drop (∆P′ < 0) is observed
aroundt7. Hence, both puffs survived while passing sectionS2. For the time series represented
in light grey the behavior up tot5 is the same as previously described. However, fort > t5 the
sub-laminar pressure difference is not observed, from which it can be concluded that the puff
decayed within sectionS2.

This allows for the determination of the lifetime of each individual puff by observing the time
at which∆P′ drops below a certain threshold. The threshold value shouldbe chosen below the
additional pressure due to the presence of a puff, but shouldbe higher than the noise amplitude of
the signal in the absence of a puff. After some preliminary investigation a single threshold value
of 1.95 Pa was chosen for all Reynolds numbers (indicated in figure 4.2). The mean value for
∆P′ betweent4 andt6 (∆P′

puff) was determined for all puffs that survive beyond the downstream
pressure tap. A minimum value of∆P′

puff = 2 Pa was found. The pressure signal noise fluctua-
tion is estimated at 0.37 Pa for laminar flow, which is less than one-fifth of the selected threshold.
The individual lifetimes that were found depended on the selected threshold value, although the
result for the scaling ofτ(Re) did not change significantly for threshold values between 1.2 and
2.7 Pa.

In figure 4.2 it is clearly visible that the sub-laminar pressure peak int7 does not occur at
t Ub/D = 250, which would be expected when the puff travels with the bulk velocity. This
indicates that the puff is not traveling at the bulk velocity, but slightly faster. Given the dis-
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tance between the pressure taps and the time difference between the occurrence of the pressure
peaks, the average velocity of the puff can be determined. Only puffs that survive beyond the
last pressure tap (at 496D after the injection point) are taken into account. Since hardly any puff
survived beyond 496D for Re<1800, only the measured mean velocities for 1800<Re<2000 are
determined.

Figure 4.3 shows the probability density function of the mean puff velocity in sectionsS1, S2

andS3. If puffs would move at a constant mean velocity through the pipe, these figures would
be identical. Comparing the graphs in figure 4.3 shows that the puff first accelerates as it moves
downstream, while the velocity PDF in sectionsS2 andS3 appear to be identical.

Clearly, the puff velocity at givenReis not fixed. An open question is whether each puff travels
at its own constant velocity (for fixedRe), or that the puff velocity is variable as it travels along
the pipe. An indication of the validity of the second statement is the correlation coefficient of the
puff velocity in sectionsS2 andS3, which turns out to be between 0.49 and 0.51. This implies
that the puff velocity is variable.

Note that in earlier measurements (Hof et al. 2006, 2008), inwhich the survival probability was
determined for a fixed pipe lengthL, the characteristic non-dimensional lifetime was determined
asτ = L/Upuff, whereUpuff is the mean puff velocity determined from the time difference between
the moment of injection and the moment the puff reaches the pipe exit at a distanceL. Since the
puff velocity is not uniquely defined, we prefer to non-dimensionalize the directly measured
lifetime with D/Ub.

4.3 Results

To determine the characteristic lifetimeτ, first the lifetime of each individual puff was deter-
mined. Then the measurements were sorted according to theirReynolds number (given by the
temperature reading at the pipe exit) and binned with a widthof±5 forRe=1725,1735,1745,...,1955.
The total number of measurements for eachReis between 500 and 3500. The number of puffs
that decayed before arriving at the first pressure tap were removed from the data. Next,P(t;Re)
is found as the number of surviving puffs over the total number of data, where it drops by one
count for each measured lifetime, until the lifetime exceeds the domain covered by the pressure
transducers.

In figure 4.4 the resulting probability distributions are plotted. Each point in this figure repre-
sents the measured lifetime of an individual puff. The results forP(t;Re) are clearly exponential
(i.e. data follow straight lines in a semi-log plot). This isin agreement with the results for
P(t;Re) found by Peixinho and Mullin (2006) and Willis and Kerswell (2007a). However, here
we observe that even forReabove the critical Reynolds numbers of 1750 and 1870 identified
by Peixinho and Mullin (2006) and Willis and Kerswell (2007a) respectively, numerous puffs
decay. Moreover, decaying structures are observed forRe>1900, which is the Reynolds number
at which the disturbances were initiated in the experimentsby Peixinho and Mullin (2006).
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.

In previous investigations the characteristic lifetimeτ(Re) was obtained by determining the me-
dian or half lifetime, i.e. the lifetime for which the survival probability equals 0.5 (Faisst and
Eckhardt 2004, Peixinho and Mullin 2006, Willis and Kerswell 2007a, 2009). This approach
depends heavily on the initial formation time, indicated ast0 in (4.1), which is the time needed
for the disturbance to develop into a puff. Instead, the characteristic lifetime (together with the
formation timet0) can also be determined by fitting the expression in (4.1) to the probability
distributions in figure 4.4. This has the advantage thatτ can be determined for lifetimes that
are shorter than the characteristic lifetime, which avoidsthe use of a pipe with extremely large
values ofL/D (Hof et al. 2008).

In figure 4.5 the lifetimes are given based on a least square fitto the probability distribution in
figure 4.4. To estimate the confidence interval a bootstrapping method was used. By extracting
100,000 new data sets of the same length as the initial data set from the data given in figure 4.4,
the median and standard deviation of the best fitting slopes was calculated, resulting in error bars
smaller than the symbols used in figure 4.5. In the same figure also the data of Peixinho and
Mullin (2006), Willis and Kerswell (2007a) and Hof et al. (2008), together with their proposed
best fits, are given. Despite the different methods used to determine the lifetimes, the best agree-
ment is found with the data of Hof et al. (2008).

In addition to the measurement of the characteristic lifetime and mean convection velocity of
the puffs, we used the pressure measurements to determine the disintegration time (2∆t) of the
puffs, which is the time needed to become fully laminar afterdecay sets in. It is determined from
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the time between passing a thresholdT1 and a second thresholdT2, and non-dimensionalized
by D/Ub; see figure 4.2. Cumulative probability distributions for the disintegration time were
computed for decaying puffs atRe=1750, 1760, 1770. . . 1910, and are plotted in figure 4.6. No
obvious trend withReis observed, so that the disintegration process seems to be universal over
this Rerange. It is clear from figure 4.6 that it takes at least 20D for a puff to decay, which is
approximately the length of a puff (Wygnanski and Champagne1973). About 80% of the puffs
need less than 60D to disintegrate completely.

To visualize the disintegration itself, the conditionallyaveraged centerline velocity measured by
LDA was used. The pressure measurements are used to determine the location of disintegration
with respect to the location of the LDA measurement point. Infigure 4.6 the velocity time series
for nine consecutive disintegration times are shown forRe= 1850±5. The top line shows the
averaged velocity profile for a puff that started to decay 70D upstream of the LDA measurement
point. The velocity profiles for the puffs that decay closer to the velocity measurement point are
plotted with a vertical offset for clarity. The bottom velocity trace shows the result when a puff
has survived up to the point where the velocity is measured and reveals the classical centerline
velocity time series observed for a puff.

4.4 Conclusions

In this paper we present results of direct quantitative measurements for the lifetime of individ-
ual localized turbulent structures, or ‘puffs’, in pipe flow. The mean shape of the puff during
decay could be reconstructed from conditionally-averagedLDA measurements. Pressure mea-
surements can be used to directly determine the lifetime of each individual puff, where the mea-
surement is based on a predefined threshold for the pressure increase when a puff is present in
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a given pipe section, rather than a visual inspection of a flowvisualization. By combining all
measurements, the lifetime probability distributionP(t;Re) is obtained, which shows an expo-
nential decay given in (4.1), which is characteristic for a memoryless process. By using a fit to
the probability functionP(t;Re) the characteristic lifetimeτ(Re) could be determined from the
slope of the distribution in a semi-log plot. The present results depend neither on the initial for-
mation timet0, nor on the inclusion of applied disturbances that may fail to develop into a puff.
This avoids possible complications of previous investigations of the characteristic lifetime. In
addition, we obtained direct measurements of the lifetime probability, rather than observing the
probabilityP(Re;L) that puffs survive a given pipe lengthL as function ofRe, which implicitly
assumed an exponential decay forP(t;Re).

The present data confirm that the scaling of the lifetime withRe is super-exponential, as pro-
posed by Hof et al. (2008). This confirms that the lifetime does not diverge at a finite critical
Reynolds numberRec within the observed Reynolds number range of 17256Re61955, which is
well above previously reported values forRec. ForRe=1950 there is a significant fraction of puffs
that decay before reaching the end of the measurement domain, with an estimated characteristic
lifetime of 25×103 D/Ub; see figure 4.5. This implies that no indication is found for atransition
in phase space of the strange saddle into a strange attractor, which would imply a sustained tur-
bulent flow state. Therefore each puff should be considered as a transient flow state. At much
higher Reynolds numbers, puffs may split or grow in length toform into ‘slugs’ (Wygnanski and
Champagne 1973, Nishi et al. 2008). This behavior cannot be explained by the current dynami-
cal systems point of view, and a completely different mechanism may describe the transition to
turbulence.

In addition, the measurements show that puffs do not move at aconstant mean speed through
the pipe, which is in contrast with previous observations. Furthermore, the puffs show a rapid
decay, which underlies the memoryless process representedby (4.1), that occurs within 20-70
pipe diameters.

Acknowledgements

The authors would like to thank Bruno Eckhardt, Marc Avila, Björn Hof and René Delfos for the
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Chapter 5

Simulation of localized turbulent pipe flow

5.1 Introduction

In the previous chapters, the global behavior of localized turbulence in a pipe, or puffs, is de-
scribed for Reynolds numbers up toRe= 2000. This chapter provides a more detailed description
of a puff. The first approach was to use stereoscopic PIV measurements to get more details on the
behavior of the internal structures of the puff. The PIV measurements gave the velocity field in
a planar cross section as a function of time. By applying a kind of Taylor hypothesis, the quasi-
instantaneous 3D flow structure are reconstructed (van Doorne and Westerweel 2007). However,
this does not provide any information on the temporal evolution of these structures. Therefore,
the planar PIV experiments were not sufficient to get an imageof the dynamics within the puff,
and another approach was taken.

Van Doorne and Westerweel (2009) found, from a few experimental observations, strong and
localized structures in the form of narrow ( 0.09D) peaks in the ”in-plane kinetic energy” (see
equation 1.2), that were associated with regions with a highdegree of symmetry in the vicinity
of hairpin like coherent structures. However, in simulations on transitional pipe flow (Willis
and Kerswell 2007a, 2008, Avila et al. 2010, Moxey and Barkley 2010, Duguet et al. 2010)
these structures were never reported. Van Doorne and Westerweel (2009) concluded that in
existing numerical simulations the axial resolution may have been not sufficient to resolve these
small-scale features. This was the major motivation to perform a numerical simulation in a long
domain with a very high axial resolution. Furthermore, the behavior and physical relevance of
these structures was unclear. De Lozar and Hof (2009) showedtwo uncorrelated experimental
realizations of the in-plane kinetic energy. In their results (see figure 7 in De Lozar and Hof
(2009)), similar small-scale structures are observed. Note that the location of these structures
with respect to the puff is different for each realization. This led to the belief that these structures
would show some dynamics of their own. Van Doorne and Westerweel (2009) associated the
observed structures to hairpin-like vortices.

In this chapter the results of this simulation are discussed, starting with a description of the nu-

47



48 Chapter 5. Simulation of localized turbulent pipe flow

merical procedure in section 5.2. As an initial condition for the direct numerical simulation, the
results from a single PIV measurement were used. The description of the numerical procedure
is followed by a description of the effect of simulating transitional pipe flow at different resolu-
tions in section 5.3. As a validation of the numerical code, fully developed turbulent pipe flow
is simulated and compared to existing numerical and experimental data. These results are pre-
sented in section 5.4. Wygnanski and Champagne (1973) and Bandyopadhyay (1986) described
different parts of the puff and found a region which is comparable to fully developed turbulent
pipe flow. In order to validate this, a puff atRe= 1900 is compared to fully developed turbulent
pipe flow simulated atRe= 5300 in section 5.5. The localized nature of puffs introduces unique
scales for length and velocity: the ones of the global structure. In section 5.6 the properties and
global behavior of individual puffs at different Reynolds number, are described. It is shown that
in the current simulation the small scale structures, first described by van Doorne and Wester-
weel (2009), are present. Since the current DNS allows for the tracking of these structures over
time, the associated structure can be revealed. The structures are visualized by showing large
scale vortical motion using theQ-criterion (Jeong and Hussain 1995). Furthermore, section5.7
contains a discussion about the dynamics of these structures. Finally, concluding remarks can be
found in section 5.8.

5.2 Numerical Procedure

The goal of the current direct simulation is to simulate localized turbulent pipe flow in a periodic
domain. The localized nature of the flow results in structures that have a length of the order of
25 pipe diameters (Wygnanski and Champagne 1973, Wygnanskiet al. 1975, van Doorne and
Westerweel 2009, De Lozar and Hof 2009). To prevent the puff from interacting with itself, a
minimum domain length of 50D is required. Here domain lengths of 50D and 100D are used.
Table 5.1 shows an overview for the domain lengths used by a number of authors for their simu-
lation of transitional pipe flow.

For the DNS of pipe flow a code has been used that was based on thecode used by Ptasinski
(2002). However, instead of using cartesian coordinates, the Navier-Stokes equations are repre-
sented in cylindrical coordinates. The simulation is done with a pseudospectral method in the
circumferential and axial direction. In the radial direction a standard 2nd order staggered finite
difference method is used. The Fourier expansion of the velocity field can be written as

u(r,θ,z, t) = ∑
Nz

∑
Nθ

û jk(r, t)e
−i j θe−ikz (5.1)

wherer is the radial coordinate,θ the azimuthal coordinate, andz the axial coordinate. At the
centerline(r = 0) the velocity is not a function ofθ anymore, i.e. there is only a single Fourier
mode in the circumferential direction. To account for this,the number of Fourier modes in the
expansion is reduced as the centerline is approached. This reduction in the number of Fourier
modes also avoids problems with small time steps due to an excessively small grid spacing at the
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centerline. The pressure correction method (Ptasinski et al. 2003) is used to ensure conservation
of mass. The equations are advanced in time with a second order Adams-Bashforth method.

For the initial condition of the simulations of localized turbulent pipe flow, a quasi instantaneous
velocity field from a PIV measurement was used. The flow was measured by a high speed
stereoscopic PIV setup, similar to the setup used by van Doorne (2004). Taylor’s hypothesis
of ’frozen turbulence’ was used to convert the time sequenceobtained from the experiment to a
velocity distribution that could be used as an initial condition for the DNS. The measured bulk
velocity (equation 5.2) was used as convective velocity. The bulk velocity was determined by
integrating the axial velocity component over the entire cross section of the pipe:

ubulk =
1

πR2

R
Z

0

2π
Z

0

uzrdrdθ (5.2)

The flow was simulated fort ubulk/D = 100 timescales in a domain of 50D to allow any possible
measurement errors from the initial condition to be dissipated. The resulting velocity field was
used subsequently as an initial condition for the flow in longer domains.

For the simulations in a periodic pipe with a length of 100D, the velocity field was extended
from 50D to 100D by laminar flow with a parabolic velocity profile. To eliminate artificially
introduced noise, the simulation was continued for anothert ubulk/D = 100 time scales, resulting
in the initial condition for further investigations in which the Reynolds number was varied.

To modify the Reynolds number, the viscosity was adjusted while maintaining a constant volume
flow rate.

In section 5.4 the results for fully developed turbulent pipe flow are presented. Fully developed
turbulent pipe flow was simulated to validate the numerical code and resolutions used. As initial
condition two pairs of counter rotating vortices were introduced in the pipe. The counter rotating
vortices were modulated by a small amplitude axial wave, which caused an unstable interaction,
resulting in rapid breakdown into fully developed turbulent pipe flow.

5.3 Resolution

For the characterization of the flow different methods can beused. It will be shown that, for
the description and characterization of localized turbulent flow, the most suitable quantity to use
is the so-called in-plane kinetic energy. The small-scale structures found by van Doorne and
Westerweel (2009) were identified by considering only the contribution of the in-plane veloc-
ity components to the kinetic energy. The advantage of this measure is particularly present in
localized turbulent flow (Moxey and Barkley 2010), because the mean velocity of the in-plane
velocity components equals zero for all non-swirling pipe flows, both in the laminar and turbu-
lent regime. Therefore, by definition velocityfluctuationsare considered only. This avoids the
definition of an ensemble mean velocity for the axial component, which is inhomogeneous both
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in time and space. Also, as was found in the experiments described in chapter 4, the advection
velocity of a puff is not constant.

In localized turbulent pipe flow, the homogeneity of the axial direction is lost compared to fully
developed pipe flow. Consequently, when the velocity is averaged over the axial direction it
depends on the length of the domain. This is caused by the factthat the length of theturbulent
part does not change with pipe length. So by increasing the domain length a longer part with
laminar flow is used in the calculation of the average velocity.

This can be avoided by considering quantities that depend onaxial location only. For example
the total kinetic energy:

Etot(z) =
1

πR2

R
Z

0

2π
Z

0

u2
r +u2

θ +u2
z

u2
bulk

rdrdθ (5.3)

Because all velocity components are considered in thetotal kinetic energy, it reaches a maximum
value when the flow is laminar. For laminar flow the in-plane velocity components are zero,
hence the total kinetic energy is dominated by the axial velocity component. In order to obtain a
relation that equals zero for laminar flow, consider the contribution to the total kinetic energy by
the in-plane velocity components only. From now on this quantity is referred to as the ’in-plane
kinetic energy’ and is defined as:

Eip(z) =
1

πR2

R
Z

0

2π
Z

0

u2
r +u2

θ
u2

bulk

rdrdθ (5.4)

The distribution of both quantities is given in figure 5.1. Note the difference in scales. The results
shown here are from the current numerical simulation for a puff at Re= 1900. By using the in-
plane kinetic energy, the localized nature of the puff is more clear. Also note the presence of
localized peaks. These peaks were observed before in experiments (van Doorne and Westerweel
2009, De Lozar and Hof 2009), but have not been discussed in literature describing results from
numerical simulations (Willis and Kerswell 2009, Duguet etal. 2010).

Van Doorne and Westerweel (2009) pointed out that the resolution used by Willis and Kerswell
(2007a) may have been inadequate to resolve these small scale structures. It is however not sur-
prising why a coarser resolution was used. Since the purposeof the simulation was to obtain
life time statistics for turbulent puffs, a large number of simulations had to be done. This results
in opposing requirements for the total computation time andthe spatial resolution. By decreas-
ing the spatial resolution, the computation time per run decreases. With the same amount of
computation time available, this results in more runs, which in turn is beneficial for the life time
statistics (Hof et al. 2006, Peixinho and Mullin 2006, Willis and Kerswell 2007a, Hof et al. 2008,
Kuik et al. 2010). The risk of using a reduced resolution is that not all flow scales are resolved
adequately, and as a result the proper behavior of the detailed structure of a puff is not captured.

Table 5.1 gives an overview of previous direct numerical simulations of transitional pipe flow. In
this table, the first column shows the length of the domain that was used. In the second to fourth
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Figure 5.1: Distribution of the total kinetic energyEtot, as defined in(5.3) and the contribution to the kinetic energy
by the in-plane velocity components onlyEip (5.4)
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Table 5.1: Overview of resolutions used in direct numericalsimulations of transitional pipe flow.

L/D
# grid points / modes ∆z

D who
radial azimuthal axial

16π 53 16 128 0.393 Shan et al. (1999)
16π 53 64 256 0.196 Shan et al. (1999)
5 50 a az/17+ax/15<1 N.A. Faisst and Eckhardt (2004)
5 25 32 30 0.167 Wedin and Kerswell (2004)
5 50 48 40 0.125 Wedin and Kerswell (2004)
5 50 60 60 0.083 Wedin and Kerswell (2004)

8π 33 81 321 0.078 Priymak and Miyazaki (2004)
8π 33 41 641 0.039 Priymak and Miyazaki (2004)
16π 33 41 641 0.078 Priymak and Miyazaki (2004)
16π 40 ± 24 ± 384 0.130 Willis and Kerswell (2007a, 2008)
8π 100 21 170 0.148 Shimizu and Kida (2008)
8π 80 31 511 0.049 Shimizu and Kida (2009)
50 25 b 33 193 0.259 Mellibovsky et al. (2009)
50 40 ± 24 ± 384 0.130 Avila et al. (2010)
50 50 ± 32 ± 510 0.098 Avila et al. (2010)c

8π unstructured grid 512 0.049 Moxey and Barkley (2010)
40π unstructured grid 2048 0.061 Moxey and Barkley (2010)

33.51 40 24 256 0.131 Duguet et al. (2010)d

33.51 60 48 384 0.087 Duguet et al. (2010)e

Present paper description
50 64 64 2048 0.024 Original resolution (OR)
50 64 64 4096 0.012 Increased resolution case (2 OR)
50 64 64 1024 0.049 decreased resolution case (OR/2)
50 64 64 512 0.098 lowest resolution case(OR/4)
100 64 64 4096 0.024 extra long domain case
100 64 128 4096 0.024 fully developed turbulence

alegendre polynomials
bPetrov-Galerkin in all directions
cHigh resolution reference case
dused forRe. 4500
eused for 4500. Re≤ 6000



5.3. Resolution 53

column the number of gridpoints or the number of Fourier modes are given that were used in
radial, azimuthal and axial direction. In the fifth column the axial resolution is given. This was
determined by dividing the length of the domain by the numberof grid points in axial direction.
When the number of Fourier modes were given instead of the number of grid points, this number
of Fourier modes were used. TherebyN Fourier modes giveN independent grid points in space.
The table shows that over the last decade both the resolutionand the length of the domain, in
which the simulations are done, have increased. Yet, the requirements of a domain of at least
50D long and a resolution to resolve structures smaller than 0.09D in axial direction are not
met by any of the listed simulations. In the next section the effects of under-resolving localized
turbulent pipe flow are discussed.

5.3.1 Does the axial resolution matter?

In this section the results are discussed for simulations that were done at different spatial reso-
lutions. The main question that is addressed here is: What isthe effect of the resolution used
in a direct numerical simulation on the dynamics of a puff. For the current investigation, four
different resolutions are used. The results in the remainder of this chapter are computed using a
simulation with a resolution that is referred to as ’original resolution’ (OR). The choice for this
particular resolution in axial direction was based on the requirement that the small scale flow
structures, with a length of about 0.095D observed by van Doorne and Westerweel (2009), could
be resolved. The radial and azimuthal resolutions were based on the resolutions previously used
for the investigation of localized turbulent pipe flow. The resolution in all directions was chosen
such that the number of grid points was an integer power of 2. In section 5.4 it is shown that
this resolution is sufficient to capture the flow statistics in fully developed turbulent pipe flow at
a Reynolds number ofRe= 5300. Therefore, this resolution is considered sufficient to resolve
also the flow structures for localized turbulence that occurs at lower Reynolds numbers. In this
section only the influence of modifying theaxial resolution is considered. Table 5.1 gives an
overview of the spatial resolutions used in other studies. In the same table the resolutions used
for the present investigation are also listed.

For validation purposes one simulation is performed at a resolution of two times the original
resolution (2OR). To show the effect of under-resolving theaxial flow features, two simulations
are done at coarser resolutions. One simulation was at half the original resolution (1/2 OR) and
one at one quarter of the original resolution (1/4 OR); see also table 5.1.

The initial condition was the same for all resolution cases.The velocity field was a randomly
chosen field from a simulation of a localized turbulent structure atRe= 1900 in a 50D long
domain. Before the resolution was modified, this flow field wasallowed to develop over several
hundred time scales at the original resolution. Two optionswere considered for the modification
of the resolution. The resolution could be modified either inreal space (by linear interpolation
and subsampling) or in Fourier space. In the latter method, the velocity field is first mapped
to Fourier space. In Fourier space the number of modes is reduced/increased to the available
number of modes at the new resolution. When the resolution isincreased, the energy in the
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Figure 5.2: Distribution of in-plane kinetic energy: (left) initial condition, (inset) a part of the curve is enlarged to
highlight differences in the initial condition; (right) after continuation overt ubulk/D = 28, for four different spatial
resolutions. Flow is from left to right. The values indicating the axial location shows smaller values in the right part,
because of passing the periodic boundary.

newly available modes was put to zero. By decreasing the resolution, the energy in the modes
that could not be presented on the new grid were discarded before mapping the result back to
real space.

The left part of figure 5.2 shows the effect of modifying the resolution on the in-plane kinetic
energy distribution. In this figure the in-plane kinetic energy distribution for the initial condition
is shown. As could be expected, changing the resolution did not effect the large scale features of
the distribution. However, when the distribution is considered in detail (see inset of figure 5.2)
small differences can already be observed. Due to these small differences, it is not expected
that the in-plane kinetic energy distributions will showidentical behavior as the simulation is
continued at different resolutions. This is because of the non-linear nature of the Navier-Stokes
equations. However, when all energy containing modes are resolved at all resolutions, the differ-
ence is expected to remain small over a longer time.

In the right part of figure 5.2, the in-plane kinetic energy distribution is given after the simulation
was continued for 28 timescales. It seems that the solutionshave divided into two classes: one
with an overall higher amplitude and one with a broader loweramplitude distribution. The
two simulations with a high amplitude coincide with the two simulations done at the highest
resolutions (i.e. the OR and 2OR simulations). This distribution also seems to be more skewed,
i.e. have a higher amplitude at the upstream part. Next to that, the lower resolution cases have
moved slightly farther than the other two, indicating that the resolution also has an effect on the
global behavior of the puff (see also section 5.6.2 on the relation between the velocity of a puff
and the total in-plane kinetic energy).
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Figure 5.3:left Development of the total in-plane kinetic energy over time.right Standard deviation of the in-plane
kinetic energy with respect to the 2 OR case.insetStandard deviation on a logarithmic scale.

To get an estimate of the mutual deviation, the in-plane kinetic energy is integrated over the
whole domain. The total in-plane kinetic energy is initially the same for all resolution cases,
which could already be concluded from the initial in-plane kinetic energy distribution given in
figure 5.2. This results in the common origin that is shown in the left part of figure 5.3. As
time progresses, the solutions start to diverge. The lower the resolution at which the simulation
is performed, the sooner it deviates from the higher resolution cases and results eventually in a
larger deviation.

To highlight the difference between the four cases, the standard deviation of the in-plane kinetic
energy distribution with respect to the highest resolutioncase is shown over time in the right part
of figure 5.3. It is clear that the lowest resolution simulation starts to deviate almost instantly and
is soon followed by the simulation at half the original resolution. For more than ten timescales the
in-plane kinetic energy distribution is the same for the twosimulations at the highest resolution.
The non-identical initial condition causes the results from the two simulations at the highest
resolution to diverge too. However, before the deviation starts to become noticeable, the puff has
travelled already more than twice its own length (see also section 5.6.1).

To assess whether the observed spikes in the in-plane kinetic energy distribution are indeed not
properly resolved in the lower resolution cases, the secondderivative of the in-plane kinetic en-
ergy distribution is determined. In figure 5.4 the probability distribution of this second derivative
is presented. To determine this probability distribution the in-plane kinetic energy data over
28 time scales is used. The instantaneous second derivativedistribution is averaged over time.
Therefore this figure shows the overall behavior and it is clear that the simulation at the original
resolution is able to resolve all scales. Even if the resolution is increased the probability distribu-
tion does not change, whereas for the two cases with reduced resolution, the strongest gradients
could not be resolved anymore.
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In order to exclude the possibility that the phenomena observed here were only valid for this
particular initial condition, the analysis was repeated with a different initial flow field. Even with
a completely different initial condition the same behaviorwas observed. These results are not
included in this thesis. These observations show that a simulation which is not able to properly
resolve the flow structures in axial direction will give different behavior for the internal structure
of the puff, irrespective of initial condition. Therefore we conclude that it is very important to
resolve the small scale features observed in experiments properly in a numerical simulation. This
requires a higher resolution in axial direction than commonly used for investigating localized
turbulent pipe flow.

5.4 Fully developed turbulent pipe flow

Although this investigation was focused on simulating localized turbulent pipe flow, fully devel-
oped pipe flow was simulated to validate the numerical procedure used for the current investiga-
tion. In the current simulation, the number of cores that canbe employed for parallel computing
was limited by the resolution in azimuthal direction. By doubling the resolution in azimuthal
direction, the number of cores that can be employed is also doubled, which is done in the calcu-
lation of the fully turbulent pipe flow. For the calculation along domain of 100D is used with the
same axial resolution as is used for the flow at lower Reynoldsnumbers, resulting in a resolution
of (Nr ,Nθ,Nz) = (64,128,4096). The results are compared to data atRe= 5300, obtained by a
finite volume method (Eggels et al. 1994), experimental PIV data by Westerweel et al. (1996),
experimental LDA data by denToonder and Nieuwstadt (1997) and more recent numerical work
by Wu and Moin (2008).

For the initial condition, two pairs of counter rotating vortices with a small amplitude axial wave
is used. The axial wave causes an unstable interaction of thevortices and quickly results in
fully developed turbulent pipe flow. The agreement of the mean velocity profiles (not shown in
a figure) are excellent between the current simulation and the simulation of Eggels et al. (1994)
and the experimental results of Westerweel et al. (1996) anddenToonder and Nieuwstadt (1997).

In figure 5.5 the velocity fluctuations as a function of the radial location are presented, together
with the results of Eggels et al. (1994), Wu and Moin (2008), Westerweel et al. (1996) and
denToonder and Nieuwstadt (1997). The results obtained by the present simulations show a
small deviation with respect to the data of Eggels et al. (1994), Westerweel et al. (1996) and
denToonder and Nieuwstadt (1997). However, they agree excellent with a more recent simulation
at a high resolution by Wu and Moin (2008). These agreements show that the code used for the
present simulations is able to capture the flow statistics accurately at a Reynolds number, that is
higher than the number used in the remainder of this chapter.The steep gradients present over
the radial direction poses a strong restriction on the required radial discretization (Eggels et al.
1994). Since the resulting statistics were in good agreement with the results of Wu and Moin
(2008), the in-plane resolution is also considered sufficient for the lower Reynolds number cases.
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5.5 Comparison of fully developed pipe flow(Re= 5300) and
localized turbulent pipe flow (Re= 1900)

In this section fully developed turbulent flow is compared tothe flow at a Reynolds number at
which localized turbulent structures are observed. In localized turbulent pipe flow, the flow over
a length of about 5D can be considered to consist of fully developed turbulent flow (Wygnanski
et al. 1975, Bandyopadhyay 1986). However, to the knowledgeof the author, no quantitative
comparison has ever been attempted to validate this claim.

Moxey and Barkley (2010) found in their simulations two critical Reynolds numbers:Re≃ 2300
andRe≃ 2600. BelowRe≃ 2300 a single disturbance convects downstream and remains local-
ized. BetweenRe≃ 2300 andRe≃ 2600, a single disturbance might split into multiplelocalized
structures. AboveRe≃ 2600, the localized nature of the structures is lost and, since they used
a periodic domain, fully developed turbulent pipe flow is obtained. The localized turbulent flow
is therefore simulated atRe= 1900 and the statistics are compared to fully developed turbulent
flow atRe= 5300.

In figure 5.6 the in-plane kinetic energy distribution for both fully developed turbulent pipe flow
and for a puff are given. By considering only this in-plane contribution the localized nature of
turbulent flow atRe= 1900 becomes immediately clear. The contribution is not only confined
in space, its amplitude is significantly higher compared to fully developed flow. The maximum
amplitude observed in figure 5.6 are in excellent agreement (difference< 5%) with the values
reported by van Doorne and Westerweel (2009) for a puff measured atRe= 2000. When com-
pared to older experimental data by Wygnanski et al. (1975) for a turbulent puff atRe= 2200, a
good agreement is found. They report that in the interior of apuff the turbulent intensity is about
four times higher compared to fully developed turbulent pipe flow. In the present study a factor
of up to three times is observed for peak to peak difference inin-plane kinetic energy for the puff
in comparison to fully developed turbulent pipe flow.

In the next section the mean velocity profile and the turbulent statistics are compared between
fully developed turbulent pipe flow and a turbulent puff.

5.5.1 Comparison of velocity statistics

Determining statistics for fully developed pipe flow is almost trivial compared to the case with
localized turbulent flow. Since in the axial direction only about 30D of the domain is filled
with turbulence, the velocity statistics become dependenton the length of the domain. When
only a single disturbance is present in the domain, the length of the part that is turbulent does
not change as the length of the pipe is increased (provided the length of the pipe is sufficiently
long). Therefore it is important to know what part of the domain belongs to the puff before
determining the flow statistics. Moreover, since the turbulent puff consists of different regions
(Bandyopadhyay 1986), it is essential to align the turbulent regions properly. This is discussed
in the next paragraphs.
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To properly determine the mean velocity, a convective frameof reference has to be employed,
and therefore knowledge of the current location of the puff is needed. When the location of
the puff is known, the instantaneous velocity fields can be aligned to get the average flow field.
Furthermore, tracking the location of the puff allows for the extraction of the velocity of the puff.
See section 5.6.1 for more information about the velocity characteristics of puffs.

The location of the puff can be determined in a number of ways.Willis and Kerswell (2007a)
used the sudden decrease present in the centerline velocityto track the puff. They needed smooth-
ing of the velocity profile in order to avoid jumps in the location of the puff caused by vortex
shedding at the trailing edge of the puff. Wygnanski and Champagne (1973) first acknowledged
this problem and used a threshold on logdu′z/dt+ logdu′r/dt to determine the laminar-turbulent
interface. Eckhardt and Schneider (2008) used the center (first order moment) of the in-plane
kinetic energy distribution to determine the location of a puff. This resulted in accurate informa-
tion on the location and smooth translational velocity information, without the need to smooth
the data. The distribution of in-plane kinetic energy was also used by Moxey and Barkley (2010)
to visualize the location of puffs and their behavior over time. They showed that individual puffs
could be identified and tracked over time. Even the splittingof puffs could be clearly observed.

Based on these experiences the first moment of the in-plane kinetic energy distribution was used
as the measure of the location of a puff, which was then used toalign the puffs. In the numerical
simulation, however, a periodic boundary is present in axial direction. When the puff extends
over this boundary the first moment of the in-plane kinetic energy distribution can not be deter-
mined in a proper way. Therefore the location of the puff is determined by using the following
procedure:

1. determine the maximum intensity of the in-plane kinetic energy

2. rearrange the data such that the maximum is located midwaythe pipe section

3. determine the first moment of the in-plane kinetic energy distribution

4. rearrange the data such that the first moment of in-plane kinetic energy distribution is in
the center of the pipe

In the remaining part of this chapter we refer to the first moment of the in-plane kinetic energy
distribution as the ’center’ of the puff. The rearranged data can then be used to determine the
average velocity distribution in a puff. Note however that the average and the fluctuations of the
velocity are influenced by the possible variations in lengthof the puff (see section 5.6.3 for a
more detailed discussion on the length properties of puffs). The average velocity distribution of
a puff has not been compensated for the variations in length.It is expected that this does not have
a major influence on the results presented here.

Figure 5.7 gives an overview for the velocity profiles in a turbulent puff. Be aware that the
pipe wall is located at the bottom in every subfigure, as indicated in partsa andb. The major
conclusion to be drawn from this figure is that the puff does not have a region with the same
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statistics as for fully developed turbulent flow as was originally proposed by Bandyopadhyay
(1986).

In the top part of figure 5.7 (a andb) contour plots are given for the average velocity distribution
in a puff. The difference in axial velocity with respect to the laminar flow is given ina, and the
radial velocity distribution is given inb. The flow is from left to right in these figures and red
indicates a velocity higher than the laminar velocity and blue is a region with a lower velocity.
When the information in these figures is combined, the image of a toroidal vortex emerges. This
was already found by Wygnanski et al. (1975) using conditionally averaged velocity fields of
hotwire data. Fluid that enters the puff is on average first transported from the center towards the
wall and after the transition front has passed, transportedback to recover the laminar velocity
profile. However, as was already shown by Bandyopadhyay (1986), the toroidal vortex is only
an artifact of the averaging procedure and does not occur in the instantaneous flow field of a puff.
This was also confirmed by the measurement of van Doorne and Westerweel (2009).

As was stated above, the average velocity distribution was calculated by rearranging the velocity
data such that the center of the in-plane kinetic energy was centered in the pipe, i.e. atz/D = 0
in figure 5.7. The location at which the flow towards the wall (red in figure 5.7b) changes into
a flow away from the wall, is at the same location. Hence, the center of the apparent toroidal
vortex coincides with the center of in-plane kinetic energy. In figures 5.7c to h mean velocity and
velocity fluctuation level profiles are given for three different locations in the puff. The locations
at which these profiles are taken are indicated by three greenlines in figure 5.7a, indicated byI ,
II andIII .

In figures 5.7c to e the mean velocity profile is shown for the puff by a red line. Asa reference,
the mean velocity profile for fully developed turbulent pipeflow atRe= 5300 (blue dashed) and
the parabolic Hagen-Poiseuille profile (green dash-dot) are given.

Figure 5.7c shows the velocity profile at the trailing edge of the puff (indicated byI in parta,
two diameters upstream of the center in in-plane kinetic energy), where the strongest inflection
point is present. This is consistent with the work of Hof et al. (2010), who also identified an
inflection point at the trailing edge of the puff. For the determination of the strongest inflection
point, the same method has been used as can be found in the supplementary material of the paper
by Hof et al. (2010). They claim that the transition to turbulence is caused by this inflection point
in the velocity profile. The presence of an inflection point feeds the regeneration process of the
puff. They concluded, by considering the vorticity transport term, that vorticity is transported
upstream at the upstream side and downstream at the downstream side of the point where the
inflection is maximal. This leads to the conclusion that the vorticity had to beproducedby the
inflection point, and the inflection point is a vorticity source. However, the inflection point shown
in figure 5.7b is the result of the averaging procedure, but obviously inflection points are also
present in the instantaneous velocity profiles of turbulentflow. Moreover, an inflection point is a
necessarycondition for flow instability but it is not asufficientcondition to get an unstable flow
(Drazin and Reid 2004).

The question remains what the order of causality is: Does theinflection pointcausean unstable
velocity distribution, whichresultsin a transition to turbulence or is the inflection point aresult
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Figure 5.7: (a) Mean axial velocity distribution with respect to the laminar flow, the flow is in positivez direction.
(b) the same for radial velocity component. (c-h) velocity profiles for laminar (green), fully developed turbulent
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component (red, dashed-dot). As a reference the velocity fluctuations for fully developed flow is given in axial
(blue, dashed) and radial (blue, dotted) component.
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of the transition to turbulence? Unfortunately all these mechanisms are coupled, and a clear order
of events can not be extracted. Hof et al. (2010) already gavean explanation for the case when
one assumes the inflection point to be the source of the transition process. Another approach, in
which the vortical structures are the source for the transition to turbulence, can be as follows:

Since it is a self sustained mechanism, one can start at any point in the cycle. For the expla-
nation of the scenario, the processes that are continuouslypresent and are happening in parallel
are presented here as if they happen sequentially. Assume asinitial condition a small patch of
turbulent fluid, that is spanning the entire diameter and is order 1D long. Consider a convective
reference frame with the same velocity as the puff, which is approximately equal to the bulk
velocity (see also section 5.6.1). Due to the velocity profile, the perturbed fluid in the center of
the pipe will leave the domain on the downstream side of the control volume, whereas perturbed
fluid close to the wall will leave on the upstream side.The perturbations leaving the domain on
the upstream side interact with the incoming laminar velocity profile and provide a finite ampli-
tude disturbance needed for the laminar velocity profile to become unstable. The breakdown of
the laminar velocity profile into turbulence provides then the energy to drive the velocity fluctua-
tions. Hence, with these renewed velocity fluctuations, theprocess is back at its initial condition
and the process can continue. Note that in this scenario, theinflection point in the velocity profile
is the effect of the vorticity distribution and transport process.

The average velocity profile in the center of in-plane kinetic energy (z= 0), which was used to
align the puff to obain the average velocity distribution, is given in figure 5.7d. The velocity
profile is closest to that of the fully developed turbulent flow, compared to the velocity profiles
adjacent to this location. This region corresponds to the region identified by Bandyopadhyay
(1986) as the fully developed turbulent region. Indeed the average velocity profile assumes a
shape close to the velocity profile for fully developed turbulent pipe flow, but is actually never
reached. Moreover, according to Bandyopadhyay (1986) thisregion extends over five pipe diam-
eters, but appears to be much shorter here. When the velocityprofile is observed 5D downstream
of the puff alignment location (figure 5.7e), the flow is already redeveloping into laminar flow.
The fluid in the core region is accelerated and decelerated near the wall, see figure 5.7e. Hence,
the region in which nearly fully developed flow is observed, based on the average velocity pro-
files, is limited to a small region close to the center of the in-plane kinetic energy.

The velocity fluctuations at each location are given in figure5.7f -h. The mean velocity fluc-
tuation level for a puff for the axial velocity component aregiven by continuous lines. The
dashed-dotted lines represent the profiles for the mean velocity fluctuation level in radial direc-
tion. As a reference, the mean velocity fluctuation level forfully developed turbulent flow in
the axial direction (dashed) and the radial direction (dotted) are given. Obviously, for fully de-
veloped turbulent pipe flow the profiles do not change with axial location, and therefore these
distributions are the same in all three figures. In these figures the mean velocity fluctuation level
is not normalized by the friction velocity(u∗ =

√

τw/ρ, τw = ν∂u/∂y) as is common for fully
developed turbulent pipe flow, but by the bulk velocity instead. The reason for this is that the
friction velocity depends on the location within the puff, and is small compared to the friction
velocity for turbulent flow. Especially in the relaminarization region of the puff (z/D > 5 in fig-
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ure 5.7), where the velocity gradient at the wall gets close to the gradient for laminar flow; When
the data is normalized by the local friction velocity this would result in a very large value for the
mean fluctuation level in the puff, and therefore the mean velocity fluctuation level with respect
to the bulk velocity is given in figures 5.7f -h.

At the location in axial direction where the inflection pointhas the highest value (locationI ),
the velocity fluctuations at the centerline of the puff are very small, as can be seen in figure 5.7f.
Although the fluctuation level at the centerline of the pipe is small, the average velocity is already
significantly lower compared to the theoretical value for laminar flow (see figure 5.7c). Closer
to the wall, the amplitude of the fluctuation level and the region over which a higher level is
observed is significantly larger than for fully developed turbulent pipe flow.

In the central region of the in-plane kinetic energy distribution (figure 5.7g), the fluctuation level
is almost homogeneous over the entire pipe diameter. When comparing the fluctuation levels at
the centerline in figures 5.7f andg, a rapid increase in downstream direction is observed. This
is in agreement with the jump observed in the axial velocity component at the centerline of the
pipe in the classical image of a puff: see e.g. Wygnanski and Champagne (1973), van Doorne
and Westerweel (2009).

Downstream of the center in in-plane kinetic energy (i.e. for z/D > 0), the mixed fluid relaminar-
izes. The relaminarization is initiated close to the wall, as can be seen in the velocity profile in
figure 5.7e. The velocity fluctuation level close to the wall is stronglyreduced, and the maximum
of the turbulence intesity moves towards the center of the pipe (figure 5.7h). This corresponds to
the conical region observed by Bandyopadhyay (1986).

In conclusion; figure 5.7 summarizes the general behavior ofthe puff. When the velocity profiles
are conditionally averaged with respect to a frame of reference moving with the velocity of the
puff the image of a toroidal vortex emerges. The puff consists of three regions: On the upstream
side, the flow close to the wall is perturbed by disturbances that travel upstream with respect to the
puff. These perturbations cause the finite amplitude disturbance needed for the laminar velocity
profile to become unstable. The kinetic energy that is contained in the laminar velocity profile
gets released and becomes available for fluctuations (Rotta1956) and results in a well-mixed
region that corresponds to the center of in-plane kinetic energy. In the downstream direction, the
flow relaminarizes and the maximum fluctuation level shifts towards the pipe axis.

5.6 The behavior of a single puff

In this section the results are presented of puffs simulatedat different Reynolds numbers. An
overview of the total simulation time for each case is given in table 5.2 as a reference. The puff
that was simulated atRe= 1800 decayed after approximatelyt ubulk/D ≈ 300, and therefore this
simulation was not continued beyond this.

In the previous section the interior of a puff was compared with fully developed turbulent pipe
flow. It was assumed that the central region of a puff can be considered to be the same as fully
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Table 5.2: Total simulation time for each Reynolds number case
Reynolds number 1800 1900 1900 2000 2100 2300
domain length[D] 100 50 100 100 100 50
sim. timet ubulk/D 305 1350 400 400 400 850

developed turbulent pipe flow. From the analysis in section 5.5.1 it became clear that this is not
valid. Next to the difference in the interior flow field, the localized nature of turbulence for a
puff introduces new quantities that are unique to a puff, e.g. the propagation velocity, that are not
defined for fully-developed turbulent pipe flow. The properties of the instantaneous propagation
velocity of a puff are discussed in section 5.6.1. Because the puff has a finite length given its
localized nature, a length of the localized domain can be defined. With that thetotal in-plane
kinetic energy is also finite and is independent of the lengthof the domain, as long as the entire
puff is taken into account. Obviously it does depend on the length of the domain, if the domain
is shorter than the puff. The relation between the total in-plane kinetic energy, the length of the
puff, and the velocity of the puff are discussed in sections 5.6.2 and 5.6.3.

5.6.1 Motion of an individual puff: its velocity

Due to its localized nature, the puff has a certain velocity by which it propagates along the pipe.
Wygnanski et al. (1975) concluded that, based on their experimental data, the velocity of an
equilibrium puff moves at approximately the bulk velocity.A few years earlier Lindgren (1969)
showed that the puff velocity decreases with increasing Reynolds number (Re). When theRe
range is reached where splitting puffs and eventually puffsthat grow in length over time (slugs)
are observed, the trailing edge velocity continues to decrease with increasing Reynolds number.
The leading edge velocity branches off and increases.

Lindgren (1969) did not report on the convection velocity ofstructures forRe. 2000. Hof
et al. (2005) took measurements for localized structures atlower Reynolds numbers. For their
measurements atRe= 1500 toRe= 1800 a very interesting behavior is observed. In this range of
Reynolds numbers, the turbulent structures have a finite lifetime (Hof et al. 2005, 2006, Peixinho
and Mullin 2006, Willis and Kerswell 2007a, Hof et al. 2008, Kuik et al. 2010, Avila et al. 2010).
In order to get an estimate for the variations in puff velocity, Hof et al. (2005) determined the
velocity in two parts of the pipe separately. In the first 25D after the disturbance the average
velocity was used for thelow velocity estimate. The average velocity of the structures in the
subsequent 37D was used to get thehigh velocity estimate. No conclusions were drawn by Hof
et al. (2005) on this behavior while there are at least two possible explanations:

(i) Since the structures have a high probability of decay in the observed Reynolds number range,
it is very likely that decaying structures were used for the determination of the velocity. This
leads to one possible explanation: during the decay of a turbulent puff the structure accelerates
(see also section 5.6.2), and therefore a higher velocity isobserved in the second pipe section.
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(ii) Another explanation is related to the formation of turbulent structures. In the experiments
of Hof et al. (2005), the velocity of the structures was determined directly after their creation.
When the disturbance is applied a puff is not instantly formed. Instead, the introduced velocity
fluctuations have to be dissipated or redistributed to create a puff. This process can result in a
different convection velocity of the structure (see also section 5.6.2). Therefore it is expected
that the behavior of a disturbance directly after its creation is different from the behavior of a
puff at that particular Reynolds number.

Kuik et al. (2010) observed in their experiments similar behavior for puffs as Hof et al. (2005),
see chapter 4. Kuik et al. (2010) determined the velocity of adisturbance over three consecutive
pipe sections (each with a lengthL ≈ 125D). Over the entire Reynolds number range that was
considered, it was found that the velocity in the first pipe section was lower compared to the
velocity in the other two pipe sections. While the puff velocities in the following two pipe
sections were similar, yet uncorrelated. This implies thatthe puff fluctuates in velocity during
its advection through the pipe. Only structures that survived beyond this point were taken into
account in the velocity determination. Therefore it is not plausible that the acceleration that was
found between the puff forming in the first pipe section and the velocity in the following two
sections, was caused by the decay process of the puffs. Hence, it is concluded that a disturbance
that is introduced in fully developed laminar pipe flow has a lower velocity during its formation
into a turbulent puff, compared to its final velocity.

How a turbulent puff is formed from a disturbance has been extensively investigated by Duguet
et al. (2010). They studied the formation of a turbulent puffwith an edge state as initial condition.
The edge state is a state between laminar flow and the fully developed turbulent flow state. It is
a structure that is localized and is able to sustained itself(Mellibovsky et al. 2009). When the
amplitude is slightly increased, it develops rapidly into the turbulent state and returns directly to
the laminar flow state when the amplitude is slightly decreased.

The space-time plots given by Duguet et al. (2010) show that the disturbance initially has a
higher velocity and decelerates as the puff is formed. This is in contrast to the observations in
experiments by Hof et al. (2005) and Kuik et al. (2010) and canbe caused by the fact that in the
experiments not the edge state, but a local disturbance is used to initialize the turbulent state. It
is clear from all these investigations that during the formation of a turbulent puff its convection
velocity is not the same as in its final state.

De Lozar and Hof (2009) also determined the velocity of puffsover a similar Reynolds number
range as considered by Kuik et al. (2010). De Lozar and Hof (2009) report that the puff velocity
is the same irrespective of its position in the pipe, i.e. thevelocity does not change with down-
stream distance. This observation confirms the classical view of an equilibrium puff, which was
introduced by Wygnanski et al. (1975). However, it disagrees with the findings of Kuik et al.
(2010) and Hof et al. (2005). Therefore the question remainswhether or not the puff moves with
a constant velocity. A varying velocity would be indicativeof large scale dynamical processes
within the puff. Which might provide a clue for the lifetime behavior of puffs at low Reynolds
numbers.

The velocity characteristics of puffs are investigated using the present direct numerical simula-



68 Chapter 5. Simulation of localized turbulent pipe flow

tion. The advantage of numerical simulations is that both the spatial distribution of a puff and its
development over time are available. The behavior of a puff can be captured in a single space-
time plot, which is given in figure 5.8. The red region in this figure represents the puff. On
the horizontal axis the spatial extend of the structure is given in a reference frame that moves
with the bulk velocity. The convective frame of reference isused to highlight the motion relative
to the bulk velocity. In vertical direction the time evolution is shown. In this figure, the color
contours show the magnitude of in-plane kinetic energy on a log10 scale, where red corresponds
to Eip = 10−1 and white toEip = 10−5 (the definition forEip is given in equation 5.4).

When the puff would have moved at the same velocity as the bulkvelocity it would have appeared
as a vertically aligned region in this figure. The puff shown in figure 5.8 is moving faster than
the bulk fluid, i.e. there is a net transport of fluid from the leading edge to the trailing edge of
the puff. The behavior shown in figure 5.8 is opposite to what was observed by Eckhardt and
Schneider (2008). From a simulation at the same Reynolds number they found a convection
velocity that was lower than the bulk velocity (see also figure 5.9).

Next to the mean motion, it is clear from this figure that theinstantaneousvelocity of the puff
is not constant over time. In the right part of figure 5.8 the instantaneous velocity of the puff
is plotted, the dashed line indicates the bulk velocity. Thevelocity at each time instant was
determined by applying a linear fit to the location versus time data over 20 units of time. The
location of the puff was determined by the method described in section 5.4. Applying a linear fit
in this way results in a moving average velocity of the puff, which clearly shows the instantaneous
behavior of the puff. When the data was fit over more than 20 units of time the curve in the right
part of figure 5.8 would have been smoother, and less smooth ifa shorter time was used. The
currently selected integration time has been chosen to reveal the behavior observed in the left
part of figure 5.8. Most of the time the puff moves faster than than the bulk fluid, however for
a considerable time the puff is moving at a velocity which is lower than the bulk velocity. It is
clear that the velocity of a puff is not constant at a constantReynolds number. It is emphasized
that the bulk velocity in the DNS is maintained constant during the entire simulation.

Shimizu and Kida (2009) also found a fluctuating velocity forthe puff in their simulation. They
concluded that the variations in puff velocity were caused by variations in bulk velocity. The
variations in bulk velocity were present because they prescribed the pressure gradient that drives
the flow instead of the mass flux. When the portion of turbulentflow fluctuates the total resistance
of the flow varies, which results in a fluctuating bulk velocity. This reveals directly the major
drawback of prescribing a pressure gradient in a transitional pipe flow simulation. Because of
the fluctuating bulk velocity, the Reynolds number is not fixed. Therefore it is not clear from
their simulations what the motion of the puff would be at a fixed Reynolds number, i.e. under
constant mass flux conditions. To conclude: the results given in figure 5.8 confirm the behavior
of puffs observed in the measurements by Kuik et al. (2010), but they disagree with the earlier
findings of Wygnanski et al. (1975) and De Lozar and Hof (2009). They report that the velocity
of a puff is constant.

The mean velocity of a puff can be determined by applying a linear fit to all the location data
of a single puff over time. This was done for four simulationsat different Reynolds numbers.
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Figure 5.8:Left) Dynamics of a single puff atRe= 1900. The colors give the amplitude for in-plane kinetic energy
on a log10 scale: red means turbulent (Eip = 0.1), white laminar (Eip = 10−5). In the horizontal direction the spatial
extend is given in a convective reference frame (moving at the bulk velocity) and the time evolution is given in
vertical direction upwards.Center) Number of peaks detected over time (see section 5.7).Right) Moving average
velocity of the puff taken over 20 units of time: an illustration of the instantaneous behavior of the puff. The mean
velocity of a puff for these data isupuff = 1.04ubulk
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The results shown in the next figures are from simulations done in a domain with a periodic
length of 100D. In section 5.2 it was already described how the Reynolds number was changed
and how the simulation was initialized. From the four simulations the mean convection velocity
of the puffs was extracted, and the results are shown in figure5.9. To get an estimate for the
variations in velocity, the instantaneous velocity was determine as discussed previously. The
standard deviation of this instantaneous velocity with respect to the average velocity is used as
an indicator for the variations in convection velocity. Theerror bars in figure 5.9 donot show
the error on the mean velocity, but represent the standard deviation of thevariation in convection
velocity of a puff.

In figure 5.9 the experimental results obtained by Hof et al. (2005), De Lozar and Hof (2009)
and Kuik et al. (2010) are given as a reference. The puff velocities that were found by Eckhardt
and Schneider (2008) and Willis and Kerswell (2008) are significantly below the experimental
data and the velocities found in the present simulations. Atfirst it was suspected that the resolu-
tion at which these simulations were performed were not adequate to resolve the flow structures
and thereby the global behavior of the puff. This has been verified by continuing the simulations
given in section 5.3 in a 50D domain at the lowest resolution (one quarter of the resolution used
for the other cases). The resulting average velocity was 1%higherthan the velocity found at high
resolution. An explanation for the higher velocity is that not all velocity scales could be resolved
and that this is effectively the same as simulating at a lowerReynolds number. The additional
damping due to insufficient spatial resolution can be considered as an increased viscosity. Fol-
lowing the trend given by the experimental data in figure 5.9,it is concluded that the velocity of
the structure should be higher at this lower Reynolds number. Therefore it is concluded that the
difference in resolution is not the explanation for the large difference in puff velocity.

In the work of Duguet et al. (2010) only the velocity of structures forRe≥ 2000 are reported.
The velocity of a puff atRe= 2000 is approximately 3% higher in their simulations than the
velocity found in the results of the present simulations. When considering the resolutions (see
table 5.1) it is surprising that the simulations of Willis and Kerswell (2008) and Duguet et al.
(2010) show such a large difference for the puff velocity, since the resolutions are comparable.

Another explanation for the difference in velocities foundin experimental data and numerical
data can be the domain size. In an experiment there is only a single puff present in a domain
which is at least a few hundred diameters long. The length of the domain in a simulation is
limited and has a periodic boundary, this results in the simulation of not a single puff, but an
infinite train of puffs. The length of the domain used by Duguet et al. (2010) isshorterthan the
domain used by Willis and Kerswell (2008). Therefore it is expected that the interaction between
the puffs is more significant in a shorter domain and that the velocity of the structure is influenced
more.

To measure the amount of interaction between successive puffs, consider the centerline velocity.
When the centerline velocity is able to recover to the theoretical value for laminar flow, i.e. two
times the bulk velocity, the puffs can be considered independent and no interaction is present.
Hence, the level to which the centerline is able to recover isa measure for the amount of inter-
action with itself. The domain size in the current simulation was set to 100D and the centerline
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velocity deviates only 0.01% from the theoretical value. In the 50D domain the difference has
already increased up to 0.6%. Because the laminar velocity profile provides the energyrequired
for the turbulent puff to be sustained (Rotta 1956), it is essential that a fully developed laminar
velocity profile is entering the puff to get the correct behavior for the puff.

In this section we showed that the mean advection velocity ofa puff was correctly captured by
the current simulation. Furthermore, it was shown that the instantaneous velocity of a puff is not
constant. It is expected that both the domain size and the resolution at which the simulations are
done influence the instantaneous behavior of the puff.

5.6.2 Total in-plane kinetic energy related to puff velocity

In the previous section it was shown that the velocity of a puff is not constant during the lifetime
of the puff. An unanswered question that remains is: What is the reason for this variation in
velocity? Directly related to this question is what determines the velocity of a puff.

In order to answer these questions, consider the following model of a puff that was introduced
by Rotta (1956). Assume that the puff consists of a single transition front, and take a control
volume around this transition front. The inflow condition isa fully developed laminar velocity
profile, and on the outflow side the flow is that of a fully developed turbulent pipe flow. The
transition front inside the control volume redistributes the velocity profile from laminar to tur-
bulent. It was already shown in section 5.4 that the velocityprofiles for the interior of the puff
are not the same as for fully developed turbulent pipe flow, but nevertheless it is a good initial
approximation for the problem at hand.

By applying a momentum balance, Rotta (1956) showed that thepressure shouldincreaseover
the transition front. The pressure increase does not dependon the velocity of the transition front.
This phenomenon has already been confirmed experimentally for the upstream part of a slug
by Draad (1996) and for a puff by van Doorne (2004) and Kuik et al. (2010).

When an energy balance is considered over the same control volume, the following relation can
be derived (Rotta 1956):

Ėu+πDubulk

zT
Z

zL

τ0dz− Ėd− Ėf = 0 (5.5)

whereĖd is the energy dissipation, anḋEf the energy associated with the velocity fluctuations.
Both terms are always positive and can onlyremoveenergy from the system. The second term
gives the production due to the friction at the wall and depends on the length of the puff. This
contribution is always positive and for now take this contribution to be constant; see section 5.6.3
for more information about the length variations of a puff.

The remaining termĖu gives the contribution caused by the rearrangement of the mean velocity
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profile by the transition front and is given by:
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whereux
L = uL/ubulk andux

T = uT/ubulk are the normalized average laminar and turbulent velocity
profiles respectively andη the normalized radial coordinate:r/R. The normalized convection ve-
locity of the puff is given byux

puff = upuff/ubulk. The first term, indicated bycontributionbychangingvelocitypro
gives the direct contribution to the energy due to the changeof the velocity profile, from laminar
to turbulent. The energy caused by the pressure difference on both sides of the control volume is
indicated bycontributionbypressuredropovercontrolvolume. This term has been rewritten into
the present form by using the momentum balance over the control volume. Equation 5.6 can eas-
ily be integrated after substituting the parabolic velocity profile (uL/ubulk = 2[1− (r/R)2]) and
a power law relation for the turbulent velocity profile(uT/ubulk = [1− (r/R)](1/n)) (Schlichting
1968), whereR= D/2 is the radius of the pipe. When a value ofn= 6 is substituted, the integrals
can easily be solved, and the equation reduces to
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Ėu can be both positive and negative, depending on the puff velocity. It equals zero for a transition
front velocity(upuff) of 1.05 times the bulk velocity. From figure 5.9 it is clear that forRe≥ 1900
theaveragevelocity of a puff drops below this value. When a puff is able to survive in this regime
it means that the only energy source that is left is the friction at the wall.

However, it was shown in the right part of figure 5.8 that the instantaneous velocity of the puff
shows large variations. From equation 5.7 it is clear that the amount of energy that is available
for conversion into fluctuations and dissipation also fluctuates. To get an estimate of the turbulent
fluctuations in a puff, the in-plane kinetic energy can be integrated over the entire domain. This
quantity is independent of the size of the domain, as long as the entire puff is inside, because the
length of the puff is finite. It is expected, based on equations 5.5 and 5.6, that the total in-plane
kinetic energy will be highly correlated to the velocity of the puff. To illustrate this, a scatter plot
with these two quantities is given in figure 5.10. In this figure the total in-plane kinetic energy
is given with respect to the instantaneous puff velocity, for different Reynolds numbers. In this
figure, the quantity is also shown for theRe= 1900 case for two different domain lengths. These
two data sets show a large overlapping region. The puff traveling in the shorter domain shows a
larger variation in its velocity. This difference might be either due to the limited domain length,
or due to the fact that the observation time for the shorter domain case was longer.
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Two puffs that are represented in this figure show special behavior. The puff atRe= 1800
decayed during the simulation, this is visible in figure 5.10by the red lines that disappears at the
bottom right of the figure. Note however that the behavior of this decaying structure confirms
the hypothesis that a decaying structureacceleratesduring its decay.

The other puff that showed special behavior was simulated atRe= 2300. Initially there was
only one puff present in the pipe. After simulating fort ubulk/D ≈ 500, the structure split into
two separate structures. Only the data is shown fort ubulk/D < 500, thus for the time asingle
structure was present.

In figure 5.10 the same trend is observed as would be expected based on equation 5.7. The total
energy content in the fluctuationsincreasesfor decreasingtransition front velocity. Equation 5.7
does not contain the Reynolds number explicitly. Theaveragevelocity of the puff does depend
on the Reynolds number, as was shown by figure 5.9. Nevertheless, when considering the total
in-plane kinetic energy as function of the puff velocity fordifferent Reynolds numbers given in
figure 5.10, the weak dependence of the Reynolds number seemsto be confirmed. The behavior
of a puff is determined by the energy content and its associated velocity. The route of a single
puff through the energy-velocity domain was followed in order to determine the causality of
events, i.e. does the decrease in velocity cause the increase of energy? One would expect to
observe a small latency between these events if the one iscausedby the other. Unfortunately no
clear trend was observed: in some cases the energy content increased rapidly while maintaining
its velocity. On other occasions a direct coupling was found: an increasing energy was observed
simultaneously with a decrease in velocity, or vice versa. This behavior was observed for all
Reynolds numbers. By changing the Reynolds number only the frequency of occurrence in a
certain part of the energy-velocity domain is changed. As was stated before, the puff simulated
atRe= 1800 decayed: the flow in the entire domain became laminar. Onthis single observation,
it seems that this decay is associated with a high puff velocity and a low in-plane kinetic energy
content. For future research it is worth to investigate if a puff cannot recover once a particular
puff velocity threshold is exceeded, or if there exists a total in-plane kinetic energy threshold,
below which the puff cannot sustain itself anymore.

It is clear from equation 5.7, and especially figure 5.10, that the frequency of occurrence close
to these thresholds reduces for increasing Reynolds number. This can be an explanation for
the observed increasing lifetime for increasing Reynolds number (Hof et al. 2006, Peixinho and
Mullin 2006, Willis and Kerswell 2007a, Hof et al. 2008, Kuiket al. 2010).

Here we showed that the instantaneous total in-plane kinetic energy in the puff is strongly related
to the instantaneous velocity of the puff. Unfortunately, it is not possible to extract the causality
of events, i.e. if a decrease in in-plane kinetic energycausesthe puff to slow down or that the
velocity of the puff itself is the driving factor. Nevertheless, a possible explanation is given for
the decay process and the lifetime statistics observed in previous studies.
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5.6.3 The length of a puff

The localized nature of a puff introduces a ’new’ length scale unique to this type of flow: the
length of the puff (see also figure 1.5). Due to the smooth interface at the downstream side of
the puff it is hard to determine the exact length of a puff (Coles 1981). Therefore a large range
of lengths for a puff are reported in the literature. However, many authors do not measure the
length of the puff themselves, but refer to classical work (e.g. Wygnanski and Champagne 1973,
Wygnanski et al. 1975). Wygnanski et al. (1975) showed that the length of a puff appears to
be constant for a given Reynolds number and the length is of the order of 20D. However, they
also showed in their paper that the length of a puff decreasesfor Re< 2200 and increases with
downstream distance when the Reynolds number exceeds 2300.Either the length observed at
each measurement station was the same for a given Reynolds numberand all puffs at a given
Reynolds number showed the same behavior, or the length is not constant at a given Reynolds
number as was stated in their conclusion.

Nishi et al. (2008) reports that the puff length ranges between 5D and 20D and states that the
length of a puff depends on Reynolds number. Unfortunately they did not report on the length of
puffs they observed themselves. By using a flow visualization method, Bandyopadhyay (1986)
divided the puff into three regions, from which the total length can be deduced: a transitional
region, a fully developed turbulent region, and a relaminarization region.

The transitional region, in which the laminar fluid is converted into turbulent motion, extends
over 3 to 4D. The second part contains fully turbulent fluid and is approximately 5D long.
However, as was already shown in section 5.5, fully developed turbulent flow is not observed
in the current investigation. Moreover, the region in whichthe average velocity profile is close
to fully developed turbulent pipe flow is much shorter than reported by Bandyopadhyay (1986).
The length of the remaining and longest part is not specified explicitly and depends strongly on
what the observer considers to be part of the puff. Nevertheless, since it is the longest part, the
total length of the puff has to exceed 15D.

In a more recent experimental investigation, De Lozar and Hof (2009) only state that the dis-
turbances they applied generated puffs of constant length.Unfortunately, it is unclearwhat the
length of the structure is.

In the current simulation the length is determined by considering the in-plane kinetic energy
distribution. The reasons for selecting the in-plane kinetic energy to extract the instantaneous
behavior of the puff also apply here. In the previous sectionthe first order moment of the in-
plane kinetic energy distribution was used to extract the location of the puff. For an estimate of
the length of the puff, the second order moment of the in-plane kinetic energy is used.

Figure 5.11 shows the correlation between the instantaneous velocity of the puff and the length
of the puff. The horizontal axis gives the velocity with respect to the bulk velocity, similar to
figure 5.10. The length of the puff is given on the vertical axis.

In this figure two states of a puff seem to be present. One stateis a puff where the length of
the puff is does not depend on either Reynolds number or the velocity of the puff and remains
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limited. The second state is a puff with a maximum velocity equal to the bulk velocity. The puff
has a variable length instead of a variable velocity over time. The puff is in the first state for
Re≤ 2000, and the length seems to be bounded between 2D and 5D.

As the Reynolds number is increased above 2000 the upper boundary, of 5D, seems to be
breached. If the Reynolds number is increased even more the length increases dramatically,
and the second state is reached. In this state the velocity seems to be limited by the bulk velocity
(value equal to one in figure 5.11).

The large magnitude reached for the puff atRe= 2300 is mainly caused by the method the length
is determined. After observing the in-plane kinetic energydistribution at the moment the longest
length was reached, it was clear that the major increase in length was caused by a relative small
contribution of in-plane kinetic energy downstream of the puff. It was as if a fluid package, con-
taining velocity fluctuations, was shed from the main puff. When the fluctuations in this package
decayed, the measured length decreased again. This also explains why the dramatic increase was
not observed in the total in-plane kinetic energy (figure 5.10). Only a small amplitude fluctuation
was shed from the puff, which hardly contributes to the totalin-plane kinetic energy.

Comparable to figure 5.10, figure 5.11 contains limited amount of data for theRe= 2300 case
(only t ubulk/D < 500). A very short time later the puff splits into two parts, where the new puff is
generated downstream of the existing structure. The newly generated puff convected downstream
during its formation process faster than the parent puff. During this phase, the in-plane kinetic
energy contained in the puff was also lower, which is consistent with the observations in the
previous section. Once it was well established, the amplitude is of the same order as the parent
puff as is its velocity. By this single observation an explanation for the generation of new puffs
from existing puffs is given, that is consistent with the relation between the in-plane kinetic
energy and puff speed.

When the Reynolds number is increased even more, the slug regime is entered (Wygnanski and
Champagne 1973). In this regime a continuously growing structure is observed. Lindgren (1969)
already showed that the velocity of the rear transition front decreases with increasing Reynolds
number. Based on equation 5.5 it becomes clear that the amount of energy released by the
transition from laminar to turbulent also increases. Either this energy has to be dissipated, for
example by creating stronger gradients and smaller structures, or by increasing the length of the
structure, so the energy can be converted into more fluid withvelocity fluctuations. The latter of
these two options has already been observed, which led to thedefinition of the slug regime, i.e.
continuously growing structures.

Up to now it is still unclear what drives the velocity of the transition front. However, from the
current investigation the effects of the changing transition front velocity on the total energy and
the length of the puff can be explained and surprisingly do not strongly depend on the Reynolds
number that is considered.
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5.7 Dynamics of structures within a puff

One of the main motivations to perform a simulation at a very high resolution, was the dis-
crepancy between small scale structures that were observedexperimentally (van Doorne and
Westerweel 2009) in in-plane kinetic energy and the available resolution in simulations done so
far. The high energetic peaks in in-plane kinetic energy observed by van Doorne and Westerweel
(2009) were reproduced in an experiment by De Lozar and Hof (2009). They showed the in-
plane kinetic energy distribution for two individual realizations. The distributions revealed that
the location of the high energetic peaks were at different locations. This shows that the peaks in
in-plane kinetic energy are not stationary structures thattravel at the same velocity as the puff.
Unfortunately, De Lozar and Hof (2009) did not comment on theorigin and behavior of these
energetic peaks.

In this section a brief description of the characteristics of these peaks is given, starting with the
identification and tracking of the high energetic peaks in in-plane kinetic energy. In section 5.7.2
their dynamical behavior is discussed. Since van Doorne andWesterweel (2009) only measured
a single quasi-instantaneous puff, the dynamics of the observed peaks could not be resolved.
Based on their single measurement and their comparison withflow visualizations they deduced
that the high energetic peaks are caused by hairpin vortices. In the final section a single peak is
followed and the underlying structure is discussed.

5.7.1 Peak identification and tracking

Before the characteristics of the peaks can be identified, a ’peak’ event has to be defined. Con-
sider the in-plane kinetic energy distribution given in figure 5.1. To extract the location of the
peaks, the obvious approach would be to take the first derivative of the signal and detect the zero-
crossings. However, this would result in a very high number of detected peaks, since every small
wiggle in the in-plane kinetic energy distribution would beidentified as a peak. In this way the
significance of the peak is not accounted for. We are looking for the dominant peaks, and should
disregard the smaller peaks. To account for the amplitude ofthe peak, the following definition
and procedure is used to identify the most significant peaks only:

First, the global maximum of the in-plane kinetic energy is established. This peak is then fol-
lowed over time by a nearest neighbor approach: At the next time-step all local maxima are
determined by identifying the zero crossing for the derivative of the distribution. Then the peaks,
i.e. zero crossings, closest to the peaks that have to be tracked are selected. Because in general
the distance between peaks is much larger than their relative displacement between two con-
secutive time steps of the simulation, the nearest neighborapproach can be successfully used.
Finally two checks are carried out: first it is checked if the peak displacement does not exceed a
predetermined limit. The second check is whether two peaks have merged and became the same
peak. If either of these two events occurs, the tracking of that particular peak is terminated.

When the current peaks cease to contain the global maximum, the newly identified peak corre-
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Figure 5.12: The development of the amplitude of a peak over time. Only the peaks that once become the global
maximum are taken into accountTop the number of identified peaks that are simultaneously present over time.

sponding to the global maximum is followed too. This procedure was implemented as a post-
processing step. Therefore it was possible to apply the procedure both forwardandbackward in
time. This allowed for tracking the entire lifetime of thesepeaks. A drawback of the currently
used method is that the total number of peaks may be underestimated. This is because a peak
that never becomes the global maximum over time is not identified, and therefore is not tracked.
Despite this drawback, the clear and robust definition is preferred.

5.7.2 Peak characteristics

In the present simulation both the location and the amplitude of the peaks are available over time.
In this section the characteristics of the peaks themselvesare presented.

In figure 5.12 the amplitude variation of all peaks within a short time interval are presented.
Each line in this figure represents the evolution of an individual peak. The horizontal axis gives
the progress in time. On the vertical axis the amplitude of the peak is shown. Over time, the
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amplitude of a single peak does not only increase monotonically, and after its maximum has
been reached decreases monotonically, until it is not present anymore. Instead, the amplitude
shows large variations over the lifetime of a peak. Look for example at the first peak, i.e. the one
present attubulk/D = 405, in figure 5.12. The amplitude of the peak first increases,then decreases
for a very short time and finally increases to reach its globalmaximum before decreasing again.
Next to the very dynamic behavior, it shows that the energy contained in a single peak can change
tremendously. The amplitude of a single peak can increase upto a factor 20 over its lifetime.

In the top part of figure 5.12 the number of peaks is given that are simultaneously present in the
pipe. This value has been determined by counting the number of identified peaks at every time
instant. Inherent to the tracking method, always at least one peak is present, which corresponds
to the global maximum. In the central part of figure 5.8 the number of peaks are given over a
much longer integration time. Theaveragenumber of peaks that are present over time in the
puff given in figure 5.8 is equal to three. In the single experimental observation, van Doorne and
Westerweel (2009) identified the same number of peaks. Thesetwo results combined give on the
one hand confidence in the method that is used here to identifythe most significant peaks; On
the other hand it shows that the results found in the experiments by van Doorne and Westerweel
(2009) are a good representation of what happens in the puff during its lifetime and should not
be considered as exceptional.

From the data of the simulation not only the amplitude variation over time is available, but also
the location of the peak. In order to visualize the behavior of the peaks relative to the puff, a
space-time plot is given in figure 5.13. In this figure the horizontal axis represents the axial pipe
coordinate. The flow direction corresponds to the positivezdirection. Note that in this figure the
actualposition in the pipe is given instead of the position with respect to a convective reference
frame, as was shown in figure 5.8. Again the time increases in vertical direction.

In figure 5.13, the bold curves show the result of tracking a single peak, with a different color for
each peak.For every peak that was observed in this time interval its location is given as a function
of time. Be aware that the data given here are over a much shorter time interval than the data in
figure 5.12. To get an idea of the location of the peaks relative to the puff, the location of the puff
is also given together with its length. In section 5.4 it was shown how the location of the puff
was determined. The length has been determined by the methoddescribed in section 5.6.3. The
location of the puff is given by a blue dashed line, and the front and back of the puff are indicated
by red dashed lines. The front and back are determined by taking the location of the puff and
subtracting and adding half the puff length to that locationrespectively. Recall that the length of
the puff did vary over time, but it is clear from figure 5.13 that the length does not change very
rapidly.

The inset in this figure shows the distribution of the in planekinetic energy over the pipe at time
t ubulk/D = 598 (indicated by the dashed black line in the main figure). The peaks that were
tracked at this time are indicated by dots, and the color of each dot corresponds to the color of
the peak-location traces in the main figure. The detection method used clearly does not track
all peaks present in the in-plane kinetic energy distribution, as was predicted when discussing
the detection method. This is confirmed by the two peaks between the blue dashed line and the
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downstream red dashed line in the inset of figure 5.13, which are not being tracked.

From the distribution given in the inset of figure 5.13, it is clear that the in-plane kinetic energy
distribution is skewed. This was already observed when considering the effect of using a different
resolution on the behavior of a puff in section 5.3 and similar behavior is found for almost all
realizations. On the upstream side of the center of the distribution a higher contribution is found.
Therefore it is not surprising that the concentration of peaks is higher in the upstream half of
the puff, also when taking the detection method into account. Since only peaks are tracked that
once become the global maximum, it is more likely to find peaksin the upstream part than in
the downstream part of the in-plane kinetic energy distribution. Nevertheless, on the upstream
side peaks do not extend over the boundary indicated by the red dashed line. On the downstream
side there is occasionally a peak that survives for a long time and extends over the boundary
that indicates the length of the puff. This implies that structures associated with these peaks are
created at the upstream side of the puff. Occasionally they are able to survive through the entire
puff and are ’ejected’ at the downstream side. These structures might be the seeds from which a
new puff is created, and hence a new puff can be created downstream. Lindgren (1969) already
observed that new structures are generated on the downstream side of the parent puffs, but did
not comment on the process that was involved.

From the slope of the traces given in figure 5.13 it is possibleto get the velocity of the peaks.
The velocity is determined by applying a least square fit to the data for each peak, as presented
in figure 5.13. By eye it is already clear that the velocity of the peaks is significantly higher than
the velocity of the puff, hence the peaks travel ’forward’throughthe puff.

The velocity distribution of the most significant peaks is given in figure 5.14, for puffs at different
Reynolds numbers. In the top part of the figure the peak velocity is normalized by the bulk
velocity. The bottom part shows the peak velocity when it is normalized by the average puff
velocity as given in figure 5.9.

First consider the velocity distribution of the peaks with respect to the bulk velocity. As the
Reynolds number increases, the velocity of the peaksdecreases. The difference between the
distributions atRe= 1800 andRe= 1900 is larger than the difference betweenRe= 2000 and
Re= 2100. This indicates that the velocity distribution would be approaching an asymptotic
distribution and that there is a lower limit for the peak velocity. In section 5.6.1 it was shown that
the puff velocity depends on Reynolds number. The velocity of the puff continues to decrease
for increasing Reynolds number. This means that the peaks will travel faster with respect to the
puff when the Reynolds number is increased.

This is confirmed when the peak velocity is normalized by theaveragepuff velocity, shown in
the bottom part of figure 5.14. The peak velocityincreaseswith respect to the puff velocity for
increasing Reynolds number.

For a single simulation at a variable Reynolds number, Shimizu and Kida (2009) observed small
scale structures that had a higher velocity than the puff velocity. These structures were found
by considering only the centerline velocity distribution over time. The velocity fluctuations
observed in the centerline velocity distributions were considered to be caused by a Kelvin-
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Helmholtz instability at the upstream side of the puff. Theyconcluded that this Kelvin-Helmholtz
instability was essential in the regeneration process of a puff.

Later, Duguet et al. (2010) also found that at the rear of the puff structures were formed that
were caused by a Kelvin-Helmholtz-like instability. They identified these structures by tracking
a local maximum in azimuthal vorticity in an axial cross section of the pipe. These structures
were carried downstream relative to the slug they considered. The velocities observed for these
structures coincide with the velocities of the peaks found in the present investigation. If the
structures observed in the present investigation are the same as the structures observed by Duguet
et al. (2010), it is not surprising that the majority of the structures is observed at the upstream
side of the puff, since this is the location where they are initiated. More details on the structures
responsible for a peak in in-plane kinetic energy is given insection 5.7.3.

A question that emerges is whether the distance traveled by apeak depends on the Reynolds
number. Since the velocity of the peaks with respect to the puff increases for increasing Reynolds
number, the peaks would travel a longer distance through thepuff if the survival time of the peaks
is constant. The probability distribution of the distance apeak travels relative to the puff is given
in figure 5.15. Hence, a negative distance in this figure meansthat the peak travelled slower than
the puff. This shows that the distribution is independent ofReynolds number, which means that
the lifetimeof a peakdecreasesfor increasing Reynolds number.

5.7.3 The structure responsible for a peak

Up to now it is unclear if there is a single coherent structurethat is responsible for the high
energetic peaks in in-plane kinetic energy. If the high energetic peak is generated by a single
structure, the question remains what kind of structure it is. Van Doorne and Westerweel (2009)
found in their measurement hairpin vortices close to these peaks. Therefore they concluded
that hairpin vortices are responsible for the generation ofthe high energetic peaks. However,
these observations were based on a few observations in a single realization. In the previous
section the velocity distribution for the peaks in in-planekinetic energy was given. When this
velocity distribution is considered and compared to the velocity distributions of structures found
by others, a range of possible flow structures responsible for these structures can be obtained.
Both Shimizu and Kida (2009) and Duguet et al. (2010) found localized structures with a similar
velocity as was found for the peaks in in-plane kinetic energy. They related these structures to
vortices that were induced by a Kelvin-Helmholtz instability. Furthermore, when comparing the
convection velocity of the peaks and the phase velocities ofthe traveling waves found by Pringle
and Kerswell (2007) a similar magnitude is observed. Pringle and Kerswell (2007) found that
the phase velocity of the traveling waves ranges from 1.1 to 1.5 times the bulk velocity. It might
be that the observed structures are in fact traveling waves.This is not considered likely, because
of the spatial extend of the traveling wave solutions that were found and the very localized nature
of the currently observed peaks.

From these observations it is not clear what the structures are that cause a peak in in-plane
kinetic energy. A first approach to reveal the underlying structure was to conditionally average
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the velocity field. This results in a single cross sectional velocity distribution. When the velocity
difference with respect to laminar flow was considered, the velocity field contained three to five
high speed regions close to the wall, depending on the peak. This method did not reveal a clear
unique structure that could be considered responsible for the generation of the peak in in-plane
kinetic energy.

A second approach was to follow the structures in a convective reference frame that moves along
with a single peak. The results for a single event are shown infigure 5.16. In this figure the flow
is from right to left. In each subfigure iso-contours for a positive value ofQ are given. HereQ is
the second invariant of∇u (Jeong and Hussain 1995). The same quantity has been used by van
Doorne (2004) to identify coherent structures in experimental data. As a reference the in-plane
kinetic energy distribution is plotted on the bottom of eachsubfigure-box.

The time evolution of the structures underneath a single peak is illustrated by three snapshots in
figure 5.16. In each subfigure a volume spanning two pipe diameters in the axial direction of
the entire domain is shown, taken symmetrically around the currently followed peak. Starting
at the top, the time between two consecutive images is equal to t ubulk/D = 0.7. It is clear that
the structures found in this way are slowly evolving structures that are convected downstream
without major changes. In these figures the classical picture of a hairpin vortex could not be
detected. Other methods of visualization and different thresholds forQ did not reveal hairpin-
like structures either. By tracking six different structures given in figure 5.16 over time, the
relative motion of structures inside the puff are explained.

In figure 5.16 these six vortical structures are labeledA to F. The observed vortices can be
divided into three categories based on their velocity. The first category contains structures that
have the same velocity as the peak (C andD). These structures are the most likely candidates to
be responsible for the peak that is currently followed. The second category contains structures
that move faster than the peak (A,B and F). Since the average fluid velocity is higher near
the center of the pipe, it is expected that these structures can be found closer to the pipe axis.
Consequently, structures with a lower velocity (the third category) are expected to reside closer
to the pipe wall (E).

In order to find the structures that are responsible for the generation of the high peak in in-plane
kinetic energy, only the structures that move at the same velocity as the peak are considered. Be-
cause the domain is selected symmetrically around the peak,the structures responsible for this
particular peak are expected to be close to the middle of the pipe sections given in figure 5.16.
The structure that is labelledC is present close to the middle of the pipe in each of the subfigures
and is therefore considered responsible for the generationof the high peak. Note that the struc-
ture is always upstream of the peak, which is in accordance tothe findings of van Doorne and
Westerweel (2009). The structure is orientated normal to pipe axis and is aligned in azimuthal
sense with the wall of the pipe. It has a length of approximately one pipe diameter. A vortex
which is orientated normal to the pipe axis is able to generate a large amplitude contribution to
the in-plane velocity components, which results in a high peak in in-plane kinetic energy. More-
over, a structure with this orientation will contribute to the azimuthal vorticity component, which
was used by Duguet et al. (2010) to identify and track Kelvin-Helmhotz vortices generated at
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the trailing edge of the puff. Because of its orientation normal to the pipe axis, a relative high
resolution in axial direction is needed to resolve this structure properly. This might be a reason
why the high energetic peaks were not observed by others, seealso table 5.1.

The structure indicated byD has approximately the same velocity as the peak. However, it
extends over almost half the domain (axially) and can therefore not be considered responsible
for the creation of the very localized peak.

In figure 5.16 three structures are labelled that move fasterthan the peak. These structures are
labelledA,B andF. Two structures (A & B) are present downstream of the structure responsible
for the peak in in-plane kinetic energy. Since the velocity is higher, hardly any interaction is
expected between these structures and the vortex labeledC. The vortex indicated byA remains
approximately constant in size as it moves downstream and out of the domain. The size of the
structure that is labelledB increases as time progresses, the velocity of this structure is approxi-
mately equal to the velocity of structureA. Since the velocity is higher than the peak velocity, it
is expected that this structure would be present close to thecenter of the pipe. However, as can
be seen in the bottom part of figure 5.16, the structure is attached to the wall. The propagation
velocity of vortical structures clearly does not have to be the same as the local fluid velocity.
The third structure that is moving faster than the peak (F) is present in the center of the pipe and
upstream of the structureC. Its velocity is considerable higher than the velocity of the peak, but
its velocity is also higher than the velocity of the structures labeledA andB. Due to its higher
velocity, it gets closer to the structure responsible for the peak in in-plane kinetic energy. The
approach of structureF contributes to the change in orientation of structureC. As this structure
loses its orientation normal to the pipe axis, the contribution to the in-plane velocity components
reduces. As a result the peak in in-plane kinetic energy diminishes.

Finally there is a single structure, indicated byE, that moves slower than the peak. This structure
is close to the wall and moving slowly in the upstream direction, i.e. relative to the peak. It
seems to be a very stable structure, which is hardly influenced by the presence of the structures
surrounding it.

This figure shows the richness of structures present in a turbulent puff. By considering only a
small fraction of the simulation time a large number of large-scale structures can be identified that
survive for a significant time. Furthermore, the high energetic peaks in in-plane kinetic energy
werenot found to be caused by hairpin like vortices. Instead, the peaks seem to be generated by
vortical structures that have an orientation normal to the pipe axis. One might argue that the head
of a hairpin vortex is also normal to the pipe axis and is therefore responsible for the high peak.
This might be the reason why van Doorne and Westerweel (2009)found structures close to the
high energetic peaks that could be associated to hairpin vortices. However, from the result shown
in figure 5.16 it is clear that the peaks are generated by largescale structures that span almost
the entire diameter of the pipe. The same analysis has been applied to numerous other peaks in
which a similar behavior is found: A large scale structure that has an orientation normal to the
pipe axis generates the large peak in in-plane kinetic energy. In all cases, the classical picture of
a hairpin vortex could not directly be associated to vortical structures observed in a puff.
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Figure 5.16: Coherent structures in a puff in a convective reference frame that moves along with a peak. The time
between consecutive images ist ubulk/D = 0.7 timescales. Coherent structures are visualized using iso-contours of
Q. On the bottom of each figure the in-plane kinetic energy distribution is shown as a reference.
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5.8 Conclusion

In this chapter the results of a direct numerical simulationof transitional pipe flow are presented.
The velocity field of a puff measured by PIV was used as an initial condition. It was shown
that the requirements on the domain are very demanding for simulating transitional pipe flow.
Not only the necessary length of the domain causes a challenge. The high resolution required in
axial direction to obtain a puff that behaves similar to puffs observed in experiments, makes the
simulation of transitional pipe flow computational intensive.

In order to validate the numerical procedure, fully developed turbulent pipe flow atRe= 5300
is simulated. The obtained velocity statistics are then compared to the average flow field of a
turbulent puff. Surprisingly, the interior of the puff doesnot reveal a region that shows the same
flow statistics as observed in fully developed turbulent pipe flow. This opposes conclusions in
earlier works, e.g. Wygnanski et al. (1975), Bandyopadhyay(1986). At the location in which the
average velocity profile has the closest match to the velocity profile for fully developed turbulent
pipe flow, the velocity fluctuations show a more homogeneous distribution across the pipe. This
location also corresponds to the position with the strongest inflection point in the mean velocity
profile, which is considered the source of vorticity by Hof etal. (2010). In the relaminarization
region, the maximum intensity for the velocity fluctuationsmoves towards the center of the
pipe, which is in accordance with the classical image of the conical tail characteristic for a puff
(Bandyopadhyay 1986).

The instantaneous velocity of the simulated puffs was not constant. This is in agreement with
the findings of Kuik et al. (2010). However, Wygnanski et al. (1975) and De Lozar and Hof
(2009) found constant propagation velocities for the puffsin their experiments. The average
velocity found by in the present simulations agree excellent with the velocities reported by Hof
et al. (2006), De Lozar and Hof (2009) and Kuik et al. (2010). This suggests that the distance
over which the velocity of a structure was measured by De Lozar and Hof (2009) was already
sufficiently long to hide the instantaneous velocity behavior of a puff as observed in the present
study and in the experiments by Kuik et al. (2010).

The instantaneous velocity is strongly correlated with thetotal in-plane kinetic energy present
in the puff: A high total in-plane kinetic energy content correlates to a low puff velocity. It is
unclear which of these two quantities is the driving factor and is responsible for the behavior of
the other.

For Reynolds numbers below 2100, the length of the puff is found to be independent of Reynolds
numberand the velocity of the puff. The length of the puff has been determined by taking the
second order moment of the in-plane kinetic energy distribution. At higher Reynolds numbers
(Re & 2100), the length occasionally shows a dramatic increase. This increase is caused by a
small patch of fluid containing velocity fluctuations that was ’shed’ from the main puff. At lower
Reynolds numbers, the puff is not able to shed these patches and its length remains more or less
constant.

In the in-plane kinetic energy distribution, van Doorne andWesterweel (2009) found, in a single
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measurement, narrow large-amplitude contributions. By extensively studying the corresponding
velocity fields, they deduced that a hairpin vortex was responsible for the generation of these
energetic peaks. Since it was a single observation, the dynamics of these structures could not
be revealed. De Lozar and Hof (2009) showed the in-plane kinetic energy distribution of two
different measurements. Similar peaks were observed, however they were not present at the
same location. Therefore it was expected that the structures associated to these peaks did not
reside at a fixed location in the puff. Up to now, these peaks were not observed in simulations
of transitional pipe flow. In hindsight the resolution in axial direction of the simulations was too
low (van Doorne and Westerweel 2009). This was the major motivation to perform the current
simulations. In these simulations, the high energetic peaks were also observed. The structures
were generated at the trailing edge of the puff and travelleddownstream with respect to the puff.
Hence, their velocity is higher than the puff velocity. Somepersisted for very long times and
could travel up to 20D before disintegrating. For increasing Reynolds number thevelocity of
these structures decreases with respect to the bulk velocity. However, the velocity of the puff
decreases even faster, hence the velocity of the peaks increases with respect to the puff. The
distance covered with respect to the puff is found to be independent of the Reynolds number.
The majority of the peaks travel from the upstream side of thepuff to the downstream side, by
which some survive through the entire puff.

A hairpin vortex, as suggested by van Doorne and Westerweel (2009), was not found to be present
near a peak in in-plane kinetic energy. Instead, vortical structures were found with an orientated
normal to the pipe axis. They were about one diameter long andaligned along the azimuthal
direction.

Up to now it is unclear what the exact driving mechanism of a puff is. Several scenarios are pro-
posed, in which the majority of studies support the idea of Kelvin-Helmholtz type of instabilities
generated at the upstream side of the turbulent puff (Shimizu and Kida 2009, Duguet et al. 2010,
Hof et al. 2010). However, it remains complicated to deduce the causality of events.

By using a lower resolution it was shown that it is not possible anymore to resolve these very
localized structures. The question remains if this has a major impact on the behavior of a turbu-
lent puff. It was already shown that the velocity of the puff is slightly increased by reducing the
resolution, which could be related as if a turbulent puff is simulated at a lower Reynolds number.
For future work one might use a forcing method to influence thehigh amplitude peaks in in-plane
kinetic energy, in order to assess their significance in the survival of a turbulent puff. If the be-
havior of the puff changes dramatically, it is clear that it is important to resolve these structures
accurately in order to understand long-lived transients oflocalized turbulence and their sudden
disintegration.
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say that you are very busy, you always make time to explain anyproblem in a very clear and
detailed manner. On the numerics side, I have to thank Bendiks Jan and Mathieu for developing
and providing the code for the simulation. Without you chapter 5 of this thesis would not have
existed. Of course I should not forget to thank both Wim-Pauland Gerrit.

Doing research in a laboratory is not possible without the great support of technical and ad-
ministrative staff. Therefore I would like to express my gratitude to, Joop, Cor, Simon, Jasper,
Caroline and Ria. A special thank you to Edwin, for the nice discussion during the many hours
of experimenting.

93



94 Chapter 5. Simulation of localized turbulent pipe flow

Without my roommates, my time at the laboratory would have been completely different. I really
enjoyed our discussions and I apologize for the many hours I distracted you from your work.
Because of you, Marc, Vincent and Jeanette, our room was the most convivial of the laboratory.

After having a very nice time with Gosse and Marcel in ’de kelder’ of Aerospace engineering, it
was a pleasant experience being colleagues again. The weekly ’buddy updates’ really helped me
in the last few months to maintain momentum.

Furthermore, I have to thank the bachelor and master students that chose to do their final theses
on pipe flow. Renzo, Frans-Jan, Stefano and Evelien, thank you for your time and effort.

At least as important as the people mentioned up to now are those that contributed to atmosphere
in the laboratory. I would like to thank Arnoud, Astrid, Carole, Harmen, Maarten, Marieke,
Mark, Norbert, Sebastian, Uli, Valentina and all the PhD students and postdocs that were present
during my time at the laboratory. I really liked the discussions at the coffee table, during barbe-
cues and during outings.

I also would like to thank my family and friends for their support during these four years. Finally,
I also like to thank Anna Joke, for motivating me during difficult times, for your unconditional
support and the enormous amount of fun we had during these years. Words cannot describe how
grateful I am. I am looking forward to our future together!



Bibliography

Avila, K., Moxey, D., de Lozar, A., Avila, M., Barkley, D. andHof, B.: 2011, The onset of
turbulence in pipe flow,Science333, 192–196.

Avila, M., Willis, A. P. and Hof, B.: 2010, On the transient nature of localized pipe flow turbu-
lence,Journal Of Fluid Mechanics646, 127–136.

Bandyopadhyay, P. R.: 1986, Aspects of the equilibrium puffin transitional pipe-flow,J. Fluid
Mech.163, 439–458.

Barkley, D.: 2011, Simplifying the complexity of pipe flow,Physical Review E.

Ben-Dov, G. and Cohen, J.: 2007, Critical reynolds number for a natural transition to turbulence
in pipe flows,Physical Review Letters98(6), 064503.

Borrero-Echeverry, D., Schatz, M. F. and Tagg, R.: 2010, Transient turbulence in taylor-couette
flow, Physical Review E81(2), 025301.

Bottin, S. and Chate, H.: 1998, Statistical analysis of the transition to turbulence in plane couette
flow, European Physical Journal B6(1), 143–155.

Bottin, S., Daviaud, F., Manneville, P. and Dauchot, O.: 1998, Discontinuous transition to spa-
tiotemporal intermittency in plane couette flow,Europhysics Letters43(2), 171–176.

Brosa, U.: 1989, Turbulence without strange attractor,Journal Of Statistical Physics55(5-
6), 1303–1321.

Coles, D.: 1981, Prospects for useful research on coherent structure in turbulent shear flow,
Sadhana4, 111–127.

Crutchfield, J. P. and Kaneko, K.: 1988, Are attractors relevant to turbulence,Physical Review
Letters60(26), 2715–2718.

Darbyshire, A. G. and Mullin, T.: 1995, Transition to turbulence in constant-mass-flux pipe-flow,
Journal Of Fluid Mechanics289, 83–114.

Dauchot, O. and Daviaud, F.: 1995, Finite-amplitude perturbation and spots growth-mechanism
in plane couette-flow,Physics Of Fluids7(2), 335–343.

95



96 Bibliography

Dauchot, O. and Manneville, P.: 1997, Local versus global concepts in hydrodynamic stability
theory,Journal De Physique Ii7(2), 371–389.

De Lozar, A. and Hof, B.: 2009, An experimental study of the decay of turbulent puffs in pipe
flow, Philosophical Transactions Of The Royal Society A-Mathematical Physical And Engi-
neering Sciences367(1888), 589–599.

denToonder, J. M. J. and Nieuwstadt, F. T. M.: 1997, Reynoldsnumber effects in a turbulent pipe
flow for low to moderate re,Physics Of Fluids9(11), 3398–3409.

Draad, A.: 1996,Laminar-turbulent transition in pipe flow for Newtonian andnon-Newtonian
fluids., PhD thesis, Delft University of Technology.

Drazin, P. and Reid, W.: 2004,Hydrodynamic Stability, 2nd edn, Cambridge University Press.

Duguet, Y., Willis, A. P. and Kerswell, R.: 2010, Slug genesis in cylindrical pipe flow.,Journal
of Fluid Mechanics663, 180–208.

Duguet, Y., Willis, A. P. and Kerswell, R. R.: 2008, Transition in pipe flow: the saddle structure
on the boundary of turbulence,Journal Of Fluid Mechanics613, 255–274.

Durst, F., Ray, S., Unsal, B. and Bayoumi, O. A.: 2005, The development lengths of laminar pipe
and channel flows,Journal of Fluids Engineering-Transactions Of The Asme127(6), 1154–
1160.

Durst, F. and Unsal, B.: 2006, Forced laminar-to-turbulenttransition of pipe flows,Journal Of
Fluid Mechanics560, 449–464.

Eckhardt, B. and Schneider, T. M.: 2008, How does flow in a pipebecome turbulent?,European
Physical Journal B64(3-4), 457–462.

Eckhardt, B., Schneider, T. M., Hof, B. and Westerweel, J.: 2007, Turbulence transition in pipe
flow, Annual Review Of Fluid Mechanics39, 447–468.

Eggels, J. G. M., Unger, F., Weiss, M. H., Westerweel, J., Adrian, R. J., Friedrich, R. and Nieuw-
stadt, F. T. M.: 1994, Fully-developed turbulent pipe-flow -a comparison between direct
numerical-simulation and experiment,Journal Of Fluid Mechanics268, 175–209.

Eliahou, S., Tumin, A. and Wygnanski, I.: 1998, Laminar-turbulent transition in poiseuille pipe
flow subjected to periodic perturbation emanating from the wall, Journal Of Fluid Mechanics
361, 333–349.

Faisst, H. and Eckhardt, B.: 2003, Traveling waves in pipe flow, Physical Review Letters
91(22), 224502.

Faisst, H. and Eckhardt, B.: 2004, Sensitive dependence on initial conditions in transition to
turbulence in pipe flow,Journal Of Fluid Mechanics504, 343–352.



Bibliography 97

Gavarini, I.: 2004,Initial stage of transition and optimal control of streaks in Hagen-Poiseuille
flow, PhD thesis, Delft University of Technology.

Grossmann, S.: 2000, The onset of sheer flow turbulence,Reviews Of Modern Physics
72(2), 603–618.

Hof, B., de Lozar, A., Avila, M., Tu, X. Y. and Schneider, T. M.: 2010, Eliminating turbulence
in spatially intermittent flows,Science327(5972), 1491–1494.

Hof, B., Juel, A. and Mullin, T.: 2003, Scaling of the turbulence transition threshold in a pipe,
Physical Review Letters91(24), 244502.

Hof, B., Lozar, A., Kuik, D. J. and Westerweel, J.: 2008, Repeller or attractor? Select-
ing the dynamical model for the onset of turbulence in pipe flow, Physical Review Letters
101(21), 214501.

Hof, B., van Doorne, C. W. H., Westerweel, J. and Nieuwstadt,F. T. M.: 2005, Turbulence regen-
eration in pipe flow at moderate reynolds numbers,Physical Review Letters95(21), 214502.

Hof, B., van Doorne, C. W. H., Westerweel, J., Nieuwstadt, F.T. M., Faisst, H., Eckhardt, B.,
Wedin, H., Kerswell, R. R. and Waleffe, F.: 2004, Experimental observation of nonlinear
traveling waves in turbulent pipe flow,Science305(5690), 1594–1598.

Hof, B., Westerweel, J., Schneider, T. M. and Eckhardt, B.: 2006, Finite lifetime of turbulence
in shear flows,Nature443(7107), 59–62.

Hof, B., Westerweel, J., Schneider, T. M. and Eckhardt, B.: 2007, Comment on Willis and
Kerswell,PRL98, 014501 (2007).,ArXiv:0707.2642.

Huang, L. M. and Chen, T. S.: 1974a, Stability of developing laminar pipe-flow,Physics Of
Fluids17(1), 245–247.

Huang, L. M. and Chen, T. S.: 1974b, Stability of developing pipe-flow subjected to non-
axisymmetric disturbances,Journal Of Fluid Mechanics63(MAR18), 183–193.

Jeong, J. and Hussain, F.: 1995, On the identification of a vortex, Journal Of Fluid Mechanics
285, 69–94.

Kadanoff, L. P. and Tang, C.: 1984, Escape from strange repellers,Proceedings Of The National
Academy Of Sciences Of The United States Of America-Physical Sciences81(4), 1276–1279.

Kerswell, R. R. and Tutty, O. R.: 2007, Recurrence of travelling waves in transitional pipe flow,
Journal Of Fluid Mechanics584, 69–102.

Kuik, D. J., Poelma, C. and Westerweel, J.: 2010, Quantitative measurement of the lifetime of
localized turbulence in pipe flow,Journal Of Fluid Mechanics645, 529–539.

Kundu, P. and Cohen, I.: 2004,Fluid Mechanics, 3rd edn, Elsevier Academic Press.



98 Bibliography

Lagha, M. and Manneville, P.: 2007, Modeling transitional plane couette flow,European Physi-
cal Journal B58(4), 433–447.

Lathrop, D. P.: 2006, Fluid dynamics - turbulence lost in transience,Nature443(7107), 36–37.

Laufer, J.: 1954, The structure of turbulence in fully developed pipe flow,NACA Report1174, 1–
18.

Leite, R. J.: 1959, An experimental investigation of the stability of poiseuille flow,Journal Of
Fluid Mechanics5(1), 81–&.

Lindgren, E. R.: 1969, Propagation velocity of turbulent slugs and streaks in transition pipe flow,
Physics of Fluids12(2), 418–425.

Mellibovsky, F., Meseguer, A., Schneider, T. M. and Eckhardt, B.: 2009, Transition in localized
pipe flow turbulence,Physical Review Letters103(5), 054502.

Meseguer, A. and Trefethen, L. N.: 2003, Linearized pipe flowto reynolds number 10(7),Journal
Of Computational Physics186(1), 178–197.

Moxey, D. and Barkley, D.: 2010, Distinct large-scale turbulent-laminar states in transitional pipe
flow, Proceedings Of The National Academy Of Sciences Of The United States Of America
107(18), 8091–8096.

Mullin, T. and Peixinho, J.: 2006, Transition to turbulencein pipe flow,Journal of Low Temper-
ature Physics145(1-4), 75–88.

Nishi, M., Unsal, B., Durst, F. and Biswas, G.: 2008, Laminar-to-turbulent transition of pipe
flows through puffs and slugs,Journal of Fluid Mechanics614, 425–446.

Peixinho, J. and Mullin, T.: 2006, Decay of turbulence in pipe flow, Physical Review Letters
96(9), 094501.

Peixinho, J. and Mullin, T.: 2007, Finite-amplitude thresholds for transition in pipe flow,J. Fluid
Mech.582, 169–178.

Pomeau, Y.: 1986, Front motion, metastability and subcritical bifurcations in hydrodynamics,
Physica D23(1-3), 3–11.

Pringle, C. C. T. and Kerswell, R. R.: 2007, Asymmetric, helical, and mirror-symmetric traveling
waves in pipe flow,Physical Review Letters99(7), 074502.

Priymak, V. G. and Miyazaki, T.: 2004, Direct numerical simulation of equilibrium spatially
localized structures in pipe flow,Physics Of Fluids16(12), 4221–4234.

Ptasinski, P.: 2002,Turbulent flow of polymer solutions near maximum drag reduction, PhD
thesis, Delft University of Technology.



Bibliography 99

Ptasinski, P. K., Boersma, B. J., Nieuwstadt, F. T. M., Hulsen, M. A., Van den Brule, B. H. A. A.
and Hunt, J. C. R.: 2003, Turbulent channel flow near maximum drag reduction: simulations,
experiments and mechanisms,Journal Of Fluid Mechanics490, 251–291.

Reynolds, O.: 1883, An experimental investigation of the circumstances which determine
whether the motion of water shall be direct or sinuous, and ofthe law of resistance in par-
allel channels,Philosophical Transactions of the Royal Society of London174, 935–982.

Robert, C., Alligood, K. T., Ott, E. and Yorke, J. A.: 2000, Explosions of chaotic sets,Physica
D-Nonlinear Phenomena144(1-2), 44–61.

Rotta, J.: 1956, Experimenteller Beitrag zur Entstehung turbulenter Strömung im Rohr,Inge-
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Appendix A

Derivation of the energy budgets in a
cylindrical coordinate system

In this section the derivation of the mean and turbulent kinetic energy is given. The steps involved
are very similar to the steps involved in the derivation of the turbulent kinetic energy for fully de-
veloped turbulent channel flow. Textbooks are usually limited to channel flow, which allows for
using the Navier-Stokes equations in a cartesian coordinate system. Moreover, fully developed
flow is often considered since it simplifies the equations tremendously. For localized turbulent
pipe flow these assumptions cannot be applied. This is because the mean velocity distribution is
not independant of the axial direction.

Unfortunately the full equations for the mean and turbulentkinetic energy in cylindrical coordi-
nates were not found in existing literature.

The following procedure is used to derive the turbulent kinetic energy budget equations:

1. start with the Navier-Stokes equations in cylindrical coordinates

2. apply Reynolds decomposition, i.e. assume the velocities to consist of an average and a
fluctuation:u = u+u′.

3. average the equation to obtain the Reynolds Averaged Navier-Stokes (RANS) equations in
cylindrical coordinates.

4. by multiplying each component of the RANS with its mean velocity and adding the equa-
tions for each direction, results in the equation for the mean kinetic energy.

5. subtract the RANS from the equation obtained in step 2. Only the fluctuating part remains.

6. multiply each component with the corresponding velocityfluctuation and averaging results
in the equation for turbulent kinetic energy in each direction.
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7. adding the equations for each direction results in the equation for the turbulent kinetic
energy.

In this section not every step is given in detail. As a reference a number of essential equations
are given below, starting with the Navier-Stokes equationsin cylindrical coordinates. These
equations can be found in books that introduce fluid dynamics, e.g. Kundu and Cohen (2004). In
the following sections, the RANS equations, the mean kinetic energy equation and the turbulent
kinetic energy equations are given. After the full equations are obtained, it is indicated how these
equations can be simplified when the flow of a turbulent puff isconsidered. Finally, the equations
are simplified even more to obtain the equations for fully developed turbulent pipe flow, which
are identical to the equations given in exisiting literature.

A.0.1 Navier Stokes equation

As a starting point, the Navier-Stokes equations are given below for each velocity component.
These equations are given as a reference and can be found in most textbooks introducing fluid
dynamics.

For the radial direction:
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For the azimuthal direction:

∂uθ
∂t

+ur
∂uθ
∂r

+
uθ
r

∂uθ
∂θ

+uz
∂uθ
∂z

+
uruθ

r
=

−
1
ρr

∂p
∂θ

+ν
[

1
r

∂
∂r

(

r
∂uθ
∂r

)

+
1
r2

∂2uθ
∂θ2 +

∂2uθ
∂z2 +

2
r2

∂ur

∂θ
−

uθ
r2

] (A.2)

For the axial direction:
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A.0.2 Reynolds Averaged Navier Stokes equation

After substituting each velocity component by an average velocity and a fluctuation, i.e. using
Reynolds decomposition, the resulting equations are averaged. This results in the Reynolds
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Averaged Navier-Stokes equations or RANS. For the radial direction:
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For the azimuthal direction:
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For the axial direction:
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A.0.3 Mean kinetic energy equation

Each component of the RANS is multiplied by its mean velocitycompenent. After combining
the three resulting equations, the equation for the mean kinetic energy is obtained: equation A.7.
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HereQ is the mean kinetic energy of the flow:Q = (ur
2+uθ

2+uz
2)/2.

Mean kinetic energy equation for a puff

For a turbulent puff the following assumptions are made in order to simplify equation A.7:
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• The solution is considered steady state (hence∂/∂t = 0)

• The flow is considered axisymmetric, without swirl (∂/∂θ = 0 & uθ = 0), only for mean
quantities.
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Mean kinetic energy equation for fully developed turbulentflow

The mean kinetic energy equation obtained for the puff can besimplified even more when con-
sidering fully developed turbulent pipe flow. The followingassumptions are used to obtain the
equation for fully developed turbulent pipe flow:

• statistically the flow does not vary in axial direction (∂/∂z= 0 )

• there is no mean flow in radial direction (ur = 0)
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A.0.4 Turbulent kinetic energy equation

A similar procedure is used for the turbulent kinetic energyequation as was used for the mean
kinetic energy equation. Only the equation for the turbulent kinetic energy is presented. This
equation is obtained by first subtracting the RANS equation for each component from the Navier-
Stokes equation in which the Reynolds decomposition is substituted (i.e.u= u+u′). The result-
ing equations are then multiplied by the their corresponding velocity fluctuation. After rewriting
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this results in the turbulent kinetic energy equation.
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Hereq is the turbulent kinetic energy:q =
(

u′2r +u′
2

θ +u′2z
)

/2
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Turbulent kinetic energy equation for a puff

By applying the same assumptions given in appendix A.0.3, the turbulent kinetic energy relation
reduces to:
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This equation is almost identical to the equation given by Wygnanski et al. (1975), equation A.11
contains two viscous dissipation terms that were not given by Wygnanski et al. (1975). These

terms are:2u′r
r2

∂u′θ
∂θ and

2u′θ
r2

∂u′r
∂θ . It is unclear why these terms were neglected by Wygnanski etal.

(1975).

Turbulent kinetic energy equation for fully developed turbulent flow

When the same assumptions are applied to the turbulent kinetic energy relation as was done for
the mean kinetic energy relation in section A.0.3, the turbulent kinetic energy relation reduces
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too.
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This equation is identical to the equation given for fully developed turbulent pipe flow by Laufer
(1954).

Names for each term

Convection Term:
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Pressure diffusion term (VPG):
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Production term (PR):

−u′ru′r
∂ur

∂r
−u′zu′z

∂uz

∂z
−u′ru′z

(
∂uz

∂r
+

∂ur

∂z

)

−
u′θu′θur

r
(A.15)

Turbulent diffusion terms (TD):
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Visous diffusion term (VD):
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Viscous dissipation term (DS)
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Some general comments on the equations

First of all, when these equations were derived, the definition of the averaging operator is not
stated. If the averaging operator means a time average, thenobviously the result is that the time
derivative of the average velocity distribution is equal tozero by definition. However, a different
averaging operation can be defined as long as it complies to the following definitions and rules.
A bar above the variable, or collection of variables, indicate an averaging operation. In the
following equations,α is a constant,f andg are velocity components,n can either be a spacial
direction or a temporal indication.

• α f = α f

• f = f

• f +g = f +g

• f g = f g

• ∂ f/∂n = ∂ f/∂n

•
R

f dn =
R

f dn

• f − f = 0


