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Summary

Localized turbulence in pipe flow In many industrial applications the main process is an
interlinked set of pipes through which the processing fl@dsflowing. The pipes are used to
transport liquids from one place to another, to mix and sspaifluids or heat the fluid. The
efficiency of these processes depends strongly on the flaviatthe pipe. To transport a certain
amount of liquid in the laminar flow state is less energy desivamnthan transporting the same
amount of fluid at turbulent flow conditions. On the other haheéat transfer is much more
efficient in the turbulent regime.

The transition from one state to the other in pipe flow is on¢heflong lasting questions in
research. Since the first systematic and clearly descriaetienents by Reynolds (1883), much
research has been dedicated to this subject. Mathematiablsés of the governing equations
has led to the belief that the laminar velocity profile is &ng stable (Drazin and Reid 2004).
This statement has been proven to hold ufRe= 10’ by a numerical simulation (Meseguer
and Trefethen 2003). Nevertheless, in most practical tsitos transition to turbulence is al-
ready observed arouriRle~ 2000. However, by carefully designing the flow facility, thew

in a pipe can be kept laminar up to very high Reynolds numiiRes=(0(10°), Draad (1996)).
This confirms that a finite amplitude disturbance is requicettigger the transition to turbulence
and that the flow becomes more sensitive to perturbatiorseaReynolds number is increased.
When a carefully designed flow facility is used, i.e. a flowilfacis used in which the natural
transition to turbulence is postponed beydRel= 0(10%), the facility can be used to investi-
gate the transition to turbulence. Darbyshire and Mulli®9@) and Hof et al. (2003), amongst
others, used such a facility to investigate the minimum &ongh necessary to trigger the transi-
tion to turbulence. This critical amplitude decreases witlteasing Reynolds number. How the
applied localized disturbance develops downstream dependhe Reynolds number. The ini-
tiated turbulent region can remain localized, break up itdtigla patches or grow continuously
downstream.

This study focuses on the regime where a large amplitudéizecedisturbance, which is applied
for a very short duration, results in a single localized tleht patch. This localized turbulent
patch is known as a puff. At low Reynolds numbers puffs are ablsurvive over a limited

distance. As the Reynolds number increases, the chasdtdifietime of these puffs increases.
The scaling of the lifetime with Reynolds number gives andation whether the turbulent flow
state can be considered a repeller or an attractor. Wheruthelént flow state would be an
attractor, the flow is not able to return to the laminar flowtestaaturally. However, when the
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viii Summary

turbulent flow state would be a repeller, the flow will evetiueeturn to the laminar flow state.
This difference has an enormous impact on the possibilitfida control of turbulent pipe flow.
When the turbulent flow state is a repeller, only a minor modifon of the turbulent flow state
can force it on a trajectory towards the laminar flow statendégthe options for flow control are
much more promising than when the flow state would be a tunbalgractor.

To determine the proper scaling of the transition to turbcéea large number of experiments
were conducted. In the first set of experiments the flow wasigerd and then the flow state
was determined at different downstream locations. Theltregustatistics were then used to
determine the proper lifetime scaling. One of the majoresswith the methods used so far
was that it was unknown whether the disturbance was sucdgsapplied. Moreover, the flow
state was often determined Wsual inspection of the flow. Therefore the results might be
influenced by the observer. In order to remove this unceytaardifferent method has been used
to determine the lifetime of each individual observation.

Pressure drop measurements were used to detect the presengeff. The presence of a puff
causes a slightly larger pressure drop when present in ttieseovered by the pressure trans-
ducers. If the puff decays within the section covered by tlesgure transducers, the pressure
level relaxes to the level without a puff present. This aldar an objective and quantitative de-
termination of the lifetime of that particular puff. Moreay the generation of the disturbance is
clearly sensed by the pressure measurement devices. &temnuning the lifetimes of the indi-
vidual puffs quantitatively, the characteristic lifetimere extracted. It is shown that the proper
scaling for the turbulent flow state is that of a repeller. d&Nbobwever, that at higher Reynolds
numbers the localized turbulent structures are able toapdi a completely different model may
be needed to properly describe the transition to turbulence

After determining the life times of puffs, the question egeat about what is happening in more
detail inside the puff. What mechanism is responsible ferghff to exist for long times and
then suddenly ceases to exist? What forces act on a puff,teatht remains localized? What
happens when the puff splits and why does it split instead@iiopg slightly? In order to find
answers to these questions a direct numerical simulatieninitated. As initial condition for
the simulation a puff was used that was measured using stapit particle image velocimetry
(see van Doorne and Westerweel (2007) for an overview ohtieasurement method). Another
motivation for the simulation was the observation of smedlle structures in the experiments,
which had not been described in previous numerical simariat{van Doorne and Westerweel
2009). By using a high resolution numerical simulation, $imeall scale structures could be
resolved.

The numerical simulations allowed for the determinatiodifferent characteristics of the puffs.
The mean convection velocity of the puffs turned out to bexiceient agreement with experi-
mental observations. However, the instantaneous velottiye puff is not constant. Moreover,
it is shown that the instantaneous velocity of the puff iselated with the total amount of en-
ergy excluding the energy contained in the axial motion effthid in the pipe. The trend of the
correlation can be predicted by obtaining the energy flux aw@ntrol volume that contains the
transition front. The control volume is convecting with thensition front. As the velocity of the



transition front decreases, the amount of energy that bes@vailable from the laminar velocity
profile increases. The additional energy has to be disslgateaintain an energy equilibrium.
This can be done, either by increasing the turbulence intgems by increasing the amount of
fluid that is turbulent. At low Reynolds numbers, i.e. wheiff gplitting is not present, the first
scenario is observed. The fluctuation level increases asetheity of the puff decreases and visa
versa. At higher Reynolds numbers, in this casRet 2300, puff splitting is observed. The
velocity of the newly generated structure is higher tham tfidhe mother puff, and indeed the
observed velocity fluctuation level is also lower comparethe mother structure. This confirms
the relation between internal energy level of a puff and éeaeity.

The direct numerical simulation was also used to follow timalé structures first identified by
van Doorne and Westerweel (2009) over time. It turns outtti@structures move with a higher
velocity than the puff itself and thus travisiroughthe puff. Although van Doorne and Wester-
weel (2009) related the small scale structures to hairpitiogs, this could not be confirmed by
the results from the present simulation. The small-scalettres seem to be created by large
scale vortical structures that are oriented normal to the pkis and extend over almost over the
entire diameter of the pipe.

Although it has been shown that there exists a strong reldteiween the velocity of a puff
and its total energy content, the reason for the puff to rant@ialized has not been revealed.
Furthermore, in literature different driving mechanisros the puff are proposed and it would
be worthwhile to assess the relevance of the structureslliraythrough the puff to the driving
process, both numerically and experimentally.
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Samenvatting

Gelokaliseerde turbulentie in pijpstromingen In veel industriéle faciliteiten bestaat het hoofd-
proces uit een aantal verbonden pijpen waardoor procastdffen stromen. De pijpen wor-
den gebruikt om vloeistoffen te transporteren, om vertatile vloeistoffen te mengen of om
vloeistoffen te verhitten. De efficiéntie van deze proeedsangt sterk af van de stromingstoe-
stand in de pijp. Om een bepaalde hoeveelheid vioeistohtesprorteren kost minder energie
wanneer de stroming in de pijp laminair is vergeleken metngan het turbulent is. Aan de
andere kant, warmte overdracht is weer veel efficienter gea turbulente stroming.

De oorzaken naar de omslag naar turbulentie in pijpstronsireggn van de laatste onbeantwo-
orde vragen in de stromingsleer. Sinds de eerste expeemean Reynolds (1883) is veel on-
derzoek gewijd aan het beantwoorden van deze vraag. Tisbrebeschouwing van de beweg-
ingsvergelijkingen heeft geleid tot de overtuiging datlaatinaire snelheidsprofiel lineair stabiel
is. Meseguer and Trefethen (2003) hebben bewezen dat deeeibgen juist zijn voor Reynolds
getallen totRe= 10’. Desalniettemin treedt de omslag naar turbulentie in desteg@aktische
situaties al op ronéRe= 2000. Echter, wanneer de experimentele faciliteiten mefz@rg ont-
worpen worden kan transitie uitgesteld worden tot zeer Regynolds getallenRe= 0(10°),
Draad (1996)). Hieruit kan worden geconcludeerd dat eestméng met een eindige ampli-
tude nodig is om de omslag naar turbulentie te initieren &ndeé stroming gevoeliger wordt
voor verstoringen naarmate het Reynolds getal verhoogdtwdYanneer een goed ontworpen
faciliteit wordt gebruikt, een faciliteit waarin natuykié transitie niet optreed voor Reynolds
getallen lager daw(10%), kan deze worden gebruikt voor het onderzoek naar tramsiie tur-
bulentie. Onder ander Darbyshire and Mullin (1995) en Hafle€2003) hebben een dergelijke
faciliteit gebruikt om de minimale amplitude te bepalen wiaelig is om de transitie naar turbu-
lentie te initieren. Deze amplitude neemt af met toenenfeeyholds getal. Afhankelijk van
het Reynolds getal blijft de gecreéerde turbulentie depet een klein gebied (gelokaliseerde
turbulentei), breekt op in meerdere gelokaliseerde stukkélijft continu groeien.

Dit proefschrift richt zich op het regime waar een grote gelseerde verstoring wordt aange-
bracht voor een korte tijd. Zon verstoring resulteert in gelokaliseerd gebied met turbulentie.
Een gelokaliseerd gebied waarvan de lengte constant siigét bekend als een puff. Bij lage
Reynoldsgetallen zijn puffs in staat over een korte afstaraerleven. Wanneer het Reynolds-
getal wordt verhoogd neemt de karakteristieke levensdaarpuffs toe. De schaling van de
levensduur met het Reynoldsgetal geeft aan of de turbuleestand kan worden beschouwt als
een repeller of een attractor. Wanneer de turbulente togsten attractor zou zijn, is de stroming
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Xii Samenvatting

niet in staat om op natuurlijke wijze terug te keren naar deidaire toestand. Echter wanneer
de turbulente toestand een repeller zou zijn, zal de strpmiteindelijk altijd terugkeren naar
de laminaire toestand. Dit verschil heeft enorme gevolgem de mogelijkheden om turbulente
pijpstroming te beinvioeden. Wanneer de turbulente stigstoestand een repeller is, kan een
kleine aanpassing van het stromingsveld ervoor zorgenal&irbulente stromingstoestand op
een traject kan worden gebracht richting de laminaire strgetoestand. Dus de mogelijkheden
voor een efficiente manier om de stroming te beinvioedam\aje malen groter wanneer de
turbulente toestand een repeller is dan wanneer de tutieui@estand een attractor is.

Om de juiste schaling van de transitie naar de turbulenttdod te bepalen zijn een groot aantal
experimenten gedaan. In het de eerste experimentele campagrd op een aantal verschil-
lende afstanden van het verstoringspunt bepaald of de istgorbulent of laminair was. De
statistieken die op deze manier zijn verkregen zijn gebroik de juiste schaling te bepalen.
Echter, een van de grootste beperkingen van de methodeot diesver gebruikt zijn is dat het
onbekend is of de verstoring daadwerkelijk toegepast waseBdien was de stromingstoestand
bepaald door middel van visuele observatie door de expatat@. Hierdoor kunnen de resul-
taten beinvloed zijn door de verwachtingen van de experiateren. Om deze onzekerheden
weg te nemen is een andere methode gebruikt om de statistiakede levensduur te bepalen.
Durkvalmetingen zijn gebruikt om te bepalen of een puff aarigy was. De aanwezigheid van
een puff zorgt voor een kleine toename in de gemeten drulotahg de puff zich bevindt in
de sectie waarover de drukval gemeten wordt. Wanneer eéngivhlt zal deze extra bijdrage
verdwijnen. Dit fenomeen kan gebruikt worden om op een digee en kwantitatieve manier de
levensduur van elke individuele puff te meten. Bovendiem ket behulp van de druksensoren
bepaald worden of de verstoring daadwerkelijk toegepadtidshet bepalen van de levensduur
van de individuele puffs kan de karakteristieke levensadigeleid worden. Hiermee is bepaald
dat de juiste omschrijving van de turbulente toestand dieeen repeller is. Realiseer hierbij
wel dat bij hogere Reynolds getallen puffs kunnen splitseeen volledig ander model nodig
zou kunnen zijn om de transitie naar turbulentie op eengursdnier te omschrijven.

Na het bepalen van de statistieken van de levensduur kwamadg waar boven wat er gebeurd
in een puff. Welk mechanisme is verantwoordelijk voor hetrgg van puffs, dat ze voor lange
tijd kunnen bestaan en dan plotseling desintegreren? \Wedlohten werken er op een puff zodat
deze gelokaliseerd blijft? Wat gebeurd er wanneer een plité? Waarom splits een puff en

groeit deze niet langzaam uit tot een iets grotere puff? Omaggwoord te vinden op deze
vragen is een directe numerieke simulatie (DNS) opgezes. skdrtconditie voor de simulatie

is een stereoscopische PIV (particle image velocimeteyyan Doorne and Westerweel (2007)
voor een overzicht van deze meetmethode) meting gebruih. extra motivatie voor de DNS

was de observatie van kleinschalige structuren in experiemedie nog niet zijn beschreven
in resultaten van numerieke simulaties (van Doorne and &hlgsel 2007). Door gebruik te

maken van een simulatie met een hoge resolutie, was het ijkagal deze kleine structuren te

simuleren.

Met behulp van de resultaten van de simulatie konden de taistkeken van de puffs bepaald
worden. De gemiddelde translatie snelheid van een gesamildeouff kwam perfect overeen
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met de gegevens van experimentele observaties. Echters@dmiane snelheid is niet constant.
Bovendien was de instantane snelheid van de puff sterk ggeerd met totale hoeveelheid en-
ergie in de puff wanneer de bijdrage van de axiale snelherdponent hier niet in meegenomen
is. De trend van de correlatie tussen beschikbare energnstamtane puff snelheid kan worden
voorspeld door de energie fluxen te beschouwen over eenot®rtslume waarin het transitie
front zich bevindt. Het controle volume heeft dezelfde beal als het transitie front in de puff.
Wanneer de snelheid van het transitie front afneemt zal dededheid beschikbare energie toen-
emen. Deze energie zal moeten worden afgevoerd om aan deawdtelhhoud van energie te
voldoen. Dit kan worden gedaan door of de turbulentie graagthogen of door de lengte van
het turbulente gedeelte te verlengen. Bij lage Reynolddlgat wanneer nog geen splitsende
puffs aanwezig zijn, is het eerste scenario aanwezig. Drikemtiegraad in de puff neemt toe
naarmate de snelheid van de puff afneemt en visa versa. @#rbdreynoldsgetallen, in dit geval
bij Re= 2300, zijn splitsende puffs geobserveerd. De snelheid gaontstane (tweede) puff is
hoger dan die van de originele puff. De turbulentiegraaddeze nieuwe puff is lager dan die
van de originele puff. Hiermee is de relatie tussen de sieeifan de puff en de hoeveel interne
energie bevestigd.

De DNS is ook gebruikt om de kleinschalige structuren te @nldie als eerste beschreven zijn
door van Doorne and Westerweel (2009). De kleinschaligetren bewegen sneller dan de
puff zelf en reizen daaromoor de puff. Hoewel van Doorne and Westerweel (2009) deze klein-
schalige structuren identificeerden als haarspeld werkels dit beeld niet bevestigd worden
met de resultaten van de huidige simulatie. De kleinschaigucturen lijken het gevolg te zijn
van de aanwezigheid van een grote wervel die normaal op plapgtaat en bijna over de gehele
diameter van de pijp reikt.

Ondanks dat is aangetoond dat er een sterke relatie bassaantde snelheid van een puff en
zijn interne energie, is de drijvende kracht achter hetlgdiseerd blijven van de puff niet on-
trafelt. Verder zijn in de literatuur verschillende aaffdriechanismen omschreven voor de puff
en het zou waardevol zijn om de relevantie van de kleinsgealiructuren, die zich door de puff
bewegen, verder te onderzoeken, zowel door middel van nekessimulaties als experimenten.
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Chapter 1

Introduction

In our daily life we experience flows all around us. Sometitheslows around us are beneficial:
for example when the toxic fumes of cars are mixed with surding air thereby reducing the
concentration of toxic substances. On the other hand, wieetnavel by bike with a strong head
wind, we do not appreciate the drag caused by the flow. Mosteofilne we are not even aware
of these phenomena and the richness that is embedded inflivese Occasionally the flow of
air is visualized by snow or leafs, thereby suddenly remgaine richness of all the flows around
us.

Reynolds (1883) was the first to identify that flows can begassi to either one of two distinc-
tive states: laminar and turbulent flows. This classificatias been used ever since. Laminar
flows move in a regular and smooth fashion, while the motigrtiddoulent flow is chaotic and
irregular. The change of flow state, i.e. the change fromnamio turbulent, is called transition
to turbulence. This is the main topic of this thesis.

In our own kitchen these flow states can easily be visualisagtuthe tap whitout the aerator. By
opening the tap by a small amount, the resulting jet of wageeals the first distinctive state. As
the water leaves the tap the flow is very smooth: the flow isnamiSee the left part of figure 1.1
for an example. When the flow rate is increased, the flow fraadb is turbulent. The turbulent
flow causes the surface of the jet to have an irregular shape.

Depending on the particular situation, either flow stateréfgryred. For example, when the flow
is laminar the mixing of fluids and the heat transfer are drilg diffusion processes. In the
turbulent state these processes are enhanced, becaugeanlditional convective mixing, and
are much more efficient. Therefore, a turbulent flow stateeggpred when one wants to obtain
and maintain a homogeneous mixture. However, the drawbbekturbulent flow is that the
skinfriction increases. Hence, laminar flows are prefewbén transporting large quantities of
fluid over large distances as in gas or oil pipelines.
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Figure 1.1: The flow of water from a tap in our kitchen: In th& fgart the flow shows a nice undeformed state.
Here the fluid elements are all moving in parallel and thitesisitknown as the laminar state. As the flow rate is
increased, the flow becomes turbulent and irregular, randotion is observed.



1.1. Pipe flow 3

1.1 Pipe flow

In figure 1.1 a free flow, i.e. the flow does not interact with kds@all, was shown. Two distinct
regimes could be identified. However, the difference betwke two flows in figure 1.1 is caused
by the flowin the tap. The first who clearly made the distinction between $eparate flow
regimes was Reynolds (1883) in pipe flow. His experimenttalpseonsisted of a glass pipe in
which water was flowing. The glass pipe allowed for opticaless. The flow was visualized by
carefully injecting dye at the centerline of the pipe. At lbaw rates the dye remained a straight
line at the center of the pipe. As the fluid velocity was insexh patches of mixed dye were
observed. These patches were called flashes by Reynold3)(18Rer further increasing the
velocity, sudden transition was observed at a fixed locatmmnstream of the entrance region.
The dye downstream of the transition point was mixed oveetiiee diameter of the pipe. The
point at which the transition occurs moved upstream witlmagasing flow rate. He found that
the observed flow state depended on three independentestidthese could be arranged into
a dimensionless number; which is nowadays known as the Réynamber Re= up,kD/V),
whereupyik is the mean or bulk velocity of the fluid) a characteristic length scale, for a pipe
this is the diameter andthe viscosity of the fluid. In this early work it became alrgatkar that
the flow could be kept stable, i.e. laminar, for higher flovesaby minimizing the perturbations
in the setup. In fact, Reynolds (1883) was able to obtaintamilow up toRe~ 10%,

This fact has resulted in a quest to reveal the reason fordhsition to a turbulent motion in a
pipe. In the next sections the main topics of research amsi®ed in recent and not so recent
years. It is categorized based on the research topic anefthemot chronological. The goal
is to give a general overview of the research on the tramsitmm laminar to turbulent flows in
pipes. Although the transition process for flows of non-Nmvidn liquids, which are fluids that
do not show a linear relationship between the strass ratsteaid rate, is important for industrial
applications, only the flow of Newtonian fluids in straighp@s without swirl is considered in
this thesis. For more information about the effect of nombdmian liquids on the transition
process in pipe flow see the work of Draad (1996).

In engineering textbooks usuallycaitical Reynolds number is defined to differentiate between
laminar and turbulent flow. Above this critical Reynolds rhenpipe flow should be considered
turbulent. However, the value that should be considereti@sritical Reynolds number is not
consistent between textbooks and ranges typically bet®een2000 andRe= 2500.

1.1.1 Linear stability

To determine if transition will occur for a typical flow, a skical approach in fluid mechanics is
to perform a (linear) stability analysis. The response efléminar base flow to an infinitesimal
perturbation is studied. In the case of pipe flow, the baseidaund in the form of a parabolic
velocity profile. This velocity profile is known as the Hageniseuille (HP) velocity profile.
For the stability analysis, the HP velocity profile is sutgéd in the governing equations with a
superimposed infinitesimal perturbation. The non-trig@utions of the eigenvalue problem that
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results after linearizing, are used for the analysis. Wheraimplitude of the superimposed per-
turbations increase over time, the flow is considered ligaarstable, consequently for linearly
stable flows only decreasing amplitudes are found.

All evidence up to now on the stability analysis of the HP weépprofile, has led to the belief
that pipe flow is linearly stable (Drazin and Reid 2004, Meszgand Trefethen 2003). This
means that when the fully developed laminar velocity prafle pipe is perturbed by an in-
finitesimal perturbation, it will always return to the larairflow state. Pipe flow is not unique in
being considered a linearly stable shear flow. Other exasrgrie plane Couette flow (the flow
between two plates moving in opposite direction) and Ta@ouette flow (the flow between
two concentric cylinders) with only the outer cylinder ritg. However, all these flow share the
common feature that ipracticea transition to turbulence is observed, even at moderatedidy
numbers. This contradiction between theoretical prashstiand experimental observations has
led to a large amount of dedicated research.

1.1.2 Developing pipe flow

As initial condition for the stability analysis of pipe flothe fully developed parabolic velocity
profile was used. However, in practice the flow entering a pige approximately a uniform
velocity profile and has to develop before the fully devetbptate is reached (Durst et al. 2005).
When the entrance region in the pipe is unstable, turbulailveady sets in before the laminar
velocity profile has been reached and this would be an exyitsméor pipe flow to become
turbulent in practice.

The development region has been researched numericallgtbymi (1952a,b) and Huang and
Chen (1974a,b). The results were verified experimentall@énpkaya (1975). They found that
the entrance region is unstable to small symmetric and gonyeetric disturbances in a small
region forRe~2x10%,

Therefore one can conclude that the unstability of the ang@auses the transition to turbulence
in pipe flow. However, the Reynolds number that was found atkwvtihe entrance flow becomes
unstable is still much larger than the Reynolds number athvtransition is observed in experi-
ments. Therefore it is expected that the instability of thizance flow is not the main reason for
the transition to turbulence at low Reynolds numbers.

1.1.3 Transition of fully developed laminar pipe flow

In this section the transition to turbulence of the fully doped laminar velocity profile is con-
sidered. The research can be broadly split into two categotiansient growth of infinitesimal
perturbations and the effect of finite amplitude disturlesnc

In the first scenario, the governing equations in linearfpech are considered. The HP velocity
profile is used as a base flow. A disturbance is superimposéhwian be decomposed in a



1.1. Pipe flow 5

number of modes, each mode decays monotonically. Howehenwonsidering modes that are
not orthogonal, the norm is able to grow when the rate of de€#lyese modes are different (see
Gavarini (2004) for a more detailed explanation). When tbemgrows to an amplitude that

non-linearities become important and take over the growthsturbance amplitude, a transition
to turbulence has been realized.

An extension of the transient growth scenario was to ina@atecssmall modifications of the base
flow, Gavarini (2004) and more recent Ben-Dov and Cohen (RODie optimal deviated base-
flow profile that resulted in exponentially growing distunicas, consisted of a velocity profile
with inflection points.

Although much effort has been put in the research to non-abontransient growth of the

linearized equations, Dauchot and Manneville (1997) slidowe reduced model that the linear
features, especially the transient energy growth, is leg®rtant than particular non-linearities.
Moreover they emphasize that one should be cautious whespekating results from the linear
framework.

In the second approach, the effects of finite amplitude hstuces to the laminar base flow are
considered. The property of linear stability for pipe flonsHad to numerous experimentalists
to pursue theninimumamplitude of a disturbance that is required to trigger aditeon to tur-
bulence. Obviously the threshold depends on the type afirthahce that was used. Here only
spatially localized perturbations are considered, heradbraughness effects or other means that
influence the flow over a long distance, are not taken intowadcd hese localized disturbances
can be divided into two classes, based on the time they areeaaontinuous and temporal
disturbances.

Obstacles that are present in the flow (Wygnanski and Chanephj73, Durst and Unsal 2006)
and time continuous flow perturbations (e.g. small sectiadhewall that is periodically moving
(Leite 1959), periodic injection and/or retraction of flildough a small hole or slit in the pipe
wall (Draad 1996) or more sophisticated, through a porouisvian Doorne 2004)) continuously
perturb the fluid at a fixed location. The other class consi{serturbations that are applied
over a short time interval and therefore create a localizetlidbance in both space and time
(Darbyshire and Mullin 1995, Hof et al. 2003, 2006, Peiximmal Mullin 2007, Hof et al. 2008,
Kuik et al. 2010). In the transitional regime, the effectstia flow downstream depend on the
class of disturbance that is applied. This is describeddticel1.1.4.

To determine the mechanism that is responsible for theitrams$o turbulence in pipe flow, one
can consider the scaling of the minimal amplitude with imasieg Reynolds number. When the
scaling of the disturbance amplituelés written as

e = O(Re) (1.1)

a negative value for the exponefindicates an increasing sensitivity of the flow to pertuidyag
(Waleffe 1995, Hof et al. 2003). When the exponents for diffie flow geometries are com-
pared, a relative sensitivity to perturbations can be etd¢rth Based on numerical evidence, the
amplitude scaling of Couette flow (the flow between two wallsving in opposite direction)
and Poiseuille (pressure driven flow between two walls) seerbe equal tiRe >4 andRe 7/4
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respectively (Waleffe 1995). An exponentyof —1 indicates that the non-linear terms and the
viscous dissipation terms of the Navier-Stokes equatiomsfequal magnitude (Waleffe 1995).
Because different authors used different definitionsy ttesiults for pipe flow could not be com-
pared. Therefore Trefethen et al. (2000) reformulated élsalts of existing data of Darbyshire
and Mullin (1995) and Draad (1996) to perform a meaningfuhparison. This resulted in a
scaling equal tdRe %/ for pipe flow, which is exactly between the values that werentbfor
Couette and Poiseuille flow.

From the experiments with a single jet-like disturbancef etoal. (2003) concluded that dis-
turbance amplitude scales lilRe 1, indicating a balance between the non-linear and viscous
dissipation terms in the Navier-Stokes equation. Howawere recently Peixinho and Mullin
(2007) showed that the exponent depends heavily on therpation that was used. Simulta-
neously injecting and extracting fluid appeared to be a mucterefficient way to trigger the
transition to turbulence. Depending on the arrangemenh@frjection and extraction point,
the scaling ranges frorRe 13 to Re->, which is the value resulting from the comparison by
Trefethen et al. (2000).

In the search for the critical disturbance amplitude, ardbaindary is sought that separates the
events that return to the laminar flow state from the evermiisiécome turbulent. However, for a
single Reynolds number, there is not alwagsralethreshold. To illustrate this, the experimental
results of Darbyshire and Mullin (1995) are reproduced iarkgl.2. This figure shows whether
or not the flow became turbulent after applying a jet-likewlisance normal to the pipe wall with
an amplitude as indicated on the vertical axis. The ampitoicthe disturbance is in this case
defined as the ratio between the mass flux of the jet pertuthm@ipe flow and the mass flux
of the pipe flow itself. Figure 1.2 shows a few occasions wieceasingthe amplitude of the
disturbance results in laminar flow, whereas the lower annbdi disturbance was able to trigger
a transition.

This is even clearin the experimentby Draad (1996). Instdacing a localized disturbance in
time, as was used by Darbyshire and Mullin (1995), Draadg)lp@riodically perturbed the base
flow through a slit in the pipe wall. The results for a fixed dég@ment volume and for different
disturbance frequencies are given in the left part of figuB At first the global behavior in
this experiment seems to be opposite to the results by Dhireyand Mullin (1995): a positive
slope is observed instead of a negative. Draad (1996) equlahat this is the result of using
a continuous disturbance, when a short localized distudaras used; they also observed an
increasing sensitivity of the base flow with increasing Régia number. The second important
observation in figure 1.3 is that, at a single Reynolds numbeitiple thresholds are present.
For example aRe= 40000, the flow remains laminar for ¥ < 0.054 (m/s) and turns turbulent
for 0.054 < Vi < 0.056. However when the disturbance velocity is increased @056 the
flow remains in the laminar flow state. Increasing the distnde velocity beyond \¢ 2 0.064
results in turbulent flow.

Similar behavior is found in a numerical simulation by Sadee Eckhardt and Yorke (2007). A
result from their simulation is reproduced in the right parfigure 1.3. Despite the fact that the
disturbance amplitude can not be compared between theieges by Draad (1996) and the
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simulations by Schneider, Eckhardt and Yorke (2007) itmsaekable that both observe multiple
thresholds that trigger turbulent flow at a fixed Reynolds bem

The questions that emerge are: What resides on the boundamgdn laminar and turbulent
flow? Can it be associated to a coherent structure? Afted#mification of exact solution to the
Navier-Stokes equations (see for more information abasttportant development chapter 2)
the attention of the groups that discovered the edge staemwerted to a search for the structure
that separates the laminar from the turbulent flow state.fcaket al. (2006) was the first to
identify a structure separating the laminar state from thibulent state in Couette flow and
indtroduced the termadge statelt was called an edge state because only a minor modification
in the energy contained in the structure results either lammarization (when the energy is
decreased) or grows towards the level of turbulent flow (Wihenenergy is increased). First
Schneider, Eckhardt and Yorke (2007) and later Duguet €@08) identified the edge state in a
periodic pipe. The converged solution resulted in a stnedtiiat extended over the entire length
of the domain. By extending the calculation domain, MeNisky et al. (2009) showed that the
edge state was in fact a localized structure. For higher &dgmumbers (up to 6000), Duguet
et al. (2010) found that the edge state remains localizedede@r, as could be expected by the
scaling of the critical amplitude of a disturbance to triggee turbulent flow state, the energy
contained in the edge state decreases with increasing Risymamber. This confirms that pipe
flow becomes more susceptible for disturbances at highendey numbers.

1.1.4 Reynolds number effect on the type of disturbance

In the previous section it was shown that the amplitude ofdiseurbance is not the only fac-
tor influencing the transition to turbulence. As was showfigares 1.2 and 1.3, the amplitude
needed to trigger turbulent flow depends strongly on the Blegmumber. Peixinho and Mullin
(2007) also showed that thgpe of disturbance is a third factor that influences the tramsiti
to turbulence, i.e. a particular type of disturbance can beeneffective to trigger turbulence
compared to others. In literature different types of diséunces are used to trigger the transi-
tion to turbulence. However, a clear description of theaftd these disturbances on the flow
downstream has not been given.

In this section a disturbance either belongs to the categiocgntinuous disturbances or to the
category of disturbances localized in time. In the remaimd¢his section a disturbance that is
applied very shortly, and is thus localized in time, is chbetemporal disturbance. A continuous
disturbance can either be a stationary object that is alwessent in the flow (Durst and Unsal
2006, Wygnanski and Champagne 1973), or a time periodictioje-extraction of fluid (Draad
1996, Eliahou et al. 1998, van Doorne 2004). The disturbématis localized in time can ei-
ther be obtained by injecting fluid through a hole in the watia different configurations are
possible, Hof et al. (2003), Peixinho and Mullin (2007), Ket al. (2010) or a solid object that
is temporarily inserted in the flow (Durst and Unsal 2006)e Effect on the flow downstream
depends on the global characteristics of the disturbant@dt on the exact details of the distur-
bance. A schematic overview of the effects is given in figufie The color-coding represents the
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Figure 1.4: Depending on the type of disturbance, diffeflemt patterns emerge downstream of the disturbance

flow state. In the white regions, laminar flow is obtained dstream of the applied disturbance.
In the black regions the resulting flow is turbulent. In thigufie three cases are considered: a
small continuous disturbance present in the flow, a largéirmeous disturbance and a temporal
disturbance with a large amplitude. In these cases thelambel emerges in different forms,
depending on the type of disturbance and the Reynolds nurhtege we consider three forms
together with their most distinctive properties.

In a particular Reynolds number range, the turbulent flowaiesilocalized. This can be con-
sidered the smallest amount of turbulence that is able tmisugself and was referred to as a
flash by Reynolds (1883) and puff by Wygnanski and Champat®gé3). The latter name will

be used in the remainder of this thesis to refer to this fortuddulence. Since the focus of this
thesis is on puffs, section1.1.5 is dedicated to clearlyndedind describe the properties of puffs.

Continuously growing structures are observed in anothgn®ds number regime. A localized
structure that is able to grow continuously is referred ta atug (Wygnanski and Champagne
1973). In contrast to a puff, a slug has two clearly identl&aipansition fronts. The leading
front has a velocity that is significantly larger than thekbuélocity while the trailing front
has a velocity significantly smaller than the bulk velocifor higher Reynolds numbers the
velocity difference increases. However, the trailing sition front never advancegstreami.e.

it always travels in the same direction as the bulk fluid. Heice entire pipe will never become
fully turbulent when a slug is created. The velocity statssinside a slug are identical to the
statistics for fully developed turbulent flow at the same iEgts number.

The third form in which turbulence can appear is the fullyptuent state. This means that either
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the entire pipe is turbulent or that downstream of the distoce the flow is turbulent. The main
difference between a slug and the fully developed stateaaisitie fully developed state is present
indefinitely in a pipe with finite length, whereas the sluglwi¢ convected with the flow and
eventually leave the domain.

As was mentioned before, the type of turbulent flow dependsobin the Reynolds number and
type of disturbance. In the next paragraphs the flow thattseBom the two different classes of
disturbances are described.

Small continuous disturbance When a small disturbance is present in the flow, the flow re-
mains laminar up to a large Reynolds number. When the pomgiaished such that the distur-
bance is large enough to trigger turbulenceyddertransition is observed. The flow downstream
of the disturbance is turbulent and remains turbulent,the. turbulent flow does not break up
into patches with laminar and turbulent flow. For Reynoldsibar just below this critical value,
which is unique for the disturbance, the flow remains lami@ay a small increase in Reynolds
number results in a completely different state.

In pipe flow facilities driven by a pump, the higher frictioec@mpanied by the transition to
turbulent flow causes the flow rate to decrease. Thereby tiledRis number is also decreased
and can reach a value below the critical Reynolds numbercéltre disturbance is not able to
trigger turbulent flow anymore. As the part with turbulenimfles transported downstream out
of the pipe, the additional friction diminishes. The flow elerates as a result and the Reynolds
number increases. When the Reynolds number passes tloalordlue again, turbulent flow is
initiated by the disturbance. This results in a periodiasraon from laminar to turbulent flow.
The results of a measurement of the pressure drop and flowuetey such a cycle can be found
in the work by van Doorne (2004).

Small temporal disturbance For a small temporal disturbance a similar effect is obskrve
When applied at low Reynolds numbers the flow remains lamiWghen the disturbance is
applied at a Reynolds number high enough to trigger turlmglemd larger thaRe > 2800, a
slug is observed. The entire pipe will never become fullbtlent as a result of a localized
temporal disturbance, because the trailing front of a dugaveling downstream.

Large continuous disturbance As could be expected, when a large continuous disturbance
is applied to the flow, the Reynolds number at which a tramsito turbulence is observed de-
creases. However, at lovRé < 1600) and intermediate Reynolds numbdRe £ 2700) the
turbulent flow cannot be sustained and part the flow breaksiwagppuffs. The ratio turbulent
over the total flow, hereafter called the turbulent fractidacreases with decreasig The
increasing turbulent fraction is visualized by the coloadjent in figure 1.4. Moreover, up to

a Reynolds number of approximately 2500, the turbulenttifsacdecreases with downstream
distance but increases with downstream distancd&®p 2500 (Rotta 1956). ForRe> 2800

the flow downstream does not show any parts that relaminarndefully developed turbulence
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is observed. This means that for a very long pipe (order ofishads of diameters), the flow
returns to the laminar flow state f&e < 2500.

This property has been used by Hof et al. (2010) to eliminataulent patches. In their exper-
iments they created a localized turbulent patch. Furthemdtream a continuous disturbance
was present. Downstream of this continuous disturbanciaveelaminarizes, which is a prop-
erty of a large continuous disturbance at these Reynold$®atsnThe relaminarization process
is independent of flow condition before the continuous disince and therefore it seems to
eliminate puffs that were created upstream.

Large temporal disturbance When a large temporal disturbance is used to create turbulen
flow, the effect on the flow downstream features unique charatics. At Reynolds numbers
Re< 2040, the temporal disturbance results in a single puff. dffeFacteristic time or distance
over which the puff is able to survive increases super-egptally with Reynolds number. An
overview of the findings up to now in this Reynolds number migygiven in chapter 2. Fur-
thermore, one goal in this thesis was to determine the pridpetime scaling of puffs over a
larger Reynolds number range.Detailed measurements difettiene of localized structures are
presented in chapters 3 and 4.

For higher Reynolds numbers, puffs are able to split (vanrb@@004, Nishi et al. 2008, Moxey
and Barkley 2010). The higher the Reynolds number, the ldhgeprobability that the initially
single structure splits (Avila et al. 2011). Simultanegushe probability that a puff decays
vanishes rapidly in this Reynolds number range. Howeverpagh up toRea 2800 the local-
ized structures split, each remain localized and theredatiscrete number of puffs are present.
When the Reynolds number is increased beyRre: 2800, the structure created by a temporal
disturbance grows continuously. Hence, Re < 2800 puffs are observed and fBe=> 2800
slugs.

Avila et al. (2011) showed that the first splitting structigee observed &e~ 2040. How-
ever, Moxey and Barkley (2010) claimed, based on a humesicallation, that the Reynolds
number has to exced®e~ 2300 before splitting structures are observed. This diffee can be
explained by the fact that an extreme long observation tswequired before a splitting struc-
ture is observed for Reynolds numbers slightly larger tha402 Nevertheless the difference
in behavior for flows above and beloRe~ 2300 is remarkable in the simulations by Moxey
and Barkley (2010). Moreover, Moxey and Barkley (2010) obse a second threshold. For
Re=> 2600 continuously growing structures were observed arwkghrey used a period domain,
fully developed turbulent pipe flow was obtained.

Recently, Barkley (2011) presented a novel one-dimenkiaodel that captures all the observed
flow states that result from a single large amplitude tempdisdurbance. Although the non-

linear model is able to capture all features present in ttianal pipe flow, it has not been based
on the Navier-Stokes equations. A challenge for the futar® iobtain such a model directly

from the Navier-Stokes equations.
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Figure 1.5: Centerline velocity in a domain with a singlefgaresent. The flow is in positive direction. In the
figure the definition for the leading and trailing edge of théf pre given.

1.1.5 Characteristics of localized turbulent flow

This thesis focuses docalizedturbulent structures, also known as puffs, that appear tfee
introduction of a localized temporal disturbance with géaamplitude. In the previous section it
was shown that puffs are present for Reynolds numbers laas2B00. In this regime the length
of the structure remains finite over time and does not shownéiramous growth or reduction
in length. The global characteristics of puffs have beerrlesd in literature based on condi-
tionally averaged hot-wire data (Wygnanski and Champa@i& 1Wygnanski et al. 1975, Nishi
et al. 2008), by using flow visualizations (Lindgren 1969nBgopadhyay 1986) or by exploiting
the difference in axial momentum between the puff and lanfioav, which affects the outflow
angle (Rotta 1956, Hof et al. 2006, 2008).

Figure 1.5 shows the classical centerline velocity distidn for a puff as obtained by the present
numerical simulation. On the trailing edge of the puff, arptgrop is present indicating a sudden
transition at the transition front. Because of the cleadfirted drop this has often been used to
determine the location of the puff (see also section 5.80).the downstream side however, a
gradual increase in velocity is observed. Upstream anddandtream of the puff the centerline
velocity is equal to the theoretical value for laminar flow, itwo times the bulk velocity. The
length of the puff is ill-defined due to the gradual increas¢he centerline velocity on the
leading edge. In section 5.5.1 is described how the locati@puff is determined in numerical
simulations. The information of the location of the puff otene is used to determine the
velocity of the puff. In section 5.6.2 is shown that the vélpof the puff is strongly related to
the velocity fluctuation level inside the puff.

Directly after the sharp drop in centerline velocity strorgjocity fluctuations are observed.
Bandyopadhyay (1986) identified a region inside the puft thay consider fully developed.
Using a direct numerical simulation the average velocitgé@and the velocity fluctuation fields
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are obtained inside a puff and compared to fully developeautant pipe flow. The results are
presented in section 5.5.

1.2 Outline of the thesis

When a localized temporal disturbance is applied to a fublyedoped laminar flow, the result is
a localized turbulent structure. An overview of the reskam the dynamics of these localized
structures in pipe flow is presented in chapter 2. From thaégtdr it is clear that the scaling of
the lifetimes of localized turbulent structures can giveratication of the dynamical model that
describes the transition to turbulence. In chapter 3 thelteeare presented of a large number
of experiments. The goal of these experiments was to inergesnumber of observations and
therefore the increase the range of observed lifetimesho@iyh the range of life times was
increased tremendously, the experiments descibed inehaulid have a few shortcomings. In
the experiments it was unknown if a disturbance was inifiat@en intended. Furthermore, it
was unknown what the exact lifetime of thrdividual puffs was. The state was determined at
fixed distances after the location where the disturbanceaywpbed. Therefore new experiments
were undertaken. The goal of these experiments was to ¢ataregly determine the life time
of individual puffs. The presence of a puff was determinadgipressure transducers. When a
puff is present in the pipe, the pressure drop is larger wioempared to laminar flow. If a puff
disintegrates, the pressure drop relaxes to the levelfoinkr flow. By determining the moment
at which the pressure drop is below a predetermined tresttwdife time of each individual
puff can be determined. The results of these experimenesisrithed in chapter 4.

A question that remained was: Are coherent structures resipie for the regeneration process?
Or in a broader sence: what mechanism is required for theiembpuff to sustain itself. In
order to answer this question a large experimental campaagnundertaken. The goal was to
use a pressure measurement technique, as described inrchaptdetermine the exact location
of decay. Since the location at which the velocities weresuesd was known with respect to
the pressure measurement, this could be used to sort thairasests such that a puff could
be measureduring its decay process. Instead of using LDA to track the decaggag time
resolved PIV (van Doorne and Westerweel 2009) was used tsunea quasi-instantaneous
three dimensional velocity field. Unfortunately the pressdrop measurement could not be
used to determine the location of decay, because of a rediigreal due to to the larger diameter
of the pipe. The larger diameter of the pipe that was requoethe PIV measurements.

When in the PIV measurements the contribution of in-plarlecisy component to the kinetic
energy was considered, distinctive localized structuregevobserved. The contribution of the
in-plane velocity components to the kinetic energy is alsovkn as the in-plane kinetic energy
and is defined as:

R
2
Ein(2) :iz// rdrde (1.2)
50 Ubuik
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whereE, is the in-plane kinetic energy the radius of the pipey, andug the radial and az-
imuthal velocity components respectively angi the bulk velocity. The bulk velocity is defined

as:
R 2m

1
Ubulk = ﬁ//uzrdrde (1.3)
00

whereu, is the axial velocity component. The localized structuhes tvere identified in the in-
plane kinetic energy were similar to the structures thaevieund and discussed by van Doorne
and Westerweel (2009). A quest to the relevance of these kmgplitude structures led to a
direct numerical simulation. Before the simulation wasf@ened, it was remarkable that the
structures clearly present in experiments (van Doorne aest&kveel 2009, De Lozar and Hof
2009) were never discussed before in results from numegiicallations. van Doorne and West-
erweel (2009) provided an explanation for this mismatclneform of the axial resolution used
in the numerical simulations. According to van Doorne andgiéeveel (2009), the small scale
structures could not be resolved with the resolutions usélde numerical simulations.

This was the main reason a simulation was undertaken witlyla dxial resolution, such that
it could resolve small scale structures. The results ofghmaulation is presented in chapter 5.
As an initial condition for the simulation, the results of B/Aneasurement were used. This
ensured the presence of the large amplitude structure imitiial condition. The results form

the numerical simulation allowed then for a characteraratf their dynamical behavior.

Moreover, the temporal and spatial information availahléhe numerical simulation led to the
ability to get the integral behavior of localized structuver time. The results obtained from
the simulation are in very good agreement with the theaktierived energy balance over a
transition front that was already derived by Rotta (1956itfrermore, the experiments presented
in chapter 4 show that the instantaneous velocity of a terfiudtructure is not constant as the
structure travels down the pipe. This behavior of localizgthulent structures is confirmed by
the behavior of a puff observed in the numerical simulation.



Chapter 2

Long-lived transients in transitional pipe
flow*

The transition to turbulence in pipe flow has remained an lwasigproblem in fluid mechanics.
The transition from laminar pipe flow to a turbulent flow staias first investigated in detail by
O. Reynolds in 1883 (Reynolds 1883), after which the Reysoldmber is named, defined as
Re =UD/v, whereU is the bulk velocityD the pipe diameter, andthe kinematic viscosity of
the fluid. Typically, for flow rates with a Reynolds numberdekan 1,600 the flow is laminar,
while for Reynolds numbers larger than about 2,000 the flogtrisngly intermittent and lam-
inar and turbulent flow domains co-exist (Wygnanski and Qbagne 1973). These localized
turbulent flow regions are called ‘puffs’. However, a matlagical analysis of the laminar flow
state, characterized by a parabolic velocity profile knosiagen-Poiseuille (HP) flow, shows
that it is linearly stable for all Reynolds numbers (Draziad&eid 2004). Hence, one is not able
to explain the transition to turbulence by means of an inktaloriginating from infinitesimal
disturbances, and the transition to turbulence in pipe fEawains unexplained.

A breakthrough occurred when new solutions were found fefflitw through a pipe Faisst and
Eckhardt (2003), Wedin and Kerswell (2004). Each of thesetiems, in the form of aravel-
ing wave(TW), is an exact solution of the (non-linear) equations a@ition, or Navier-Stokes
equations. These traveling waves (TW) are families of smhstcharacterized by their symme-
try. Each TW solution has the character of an unstable saddléhat one cannot create these
solutions under experimental conditions. However, flowtgyas that have a very strong rem-
iniscence to these TW solutions could be identified in expental data by Hof et al. (2004);
see Figure 2.1. The TW solutions first appear for a Reynoldsben of about 773 in a mirror-
symmetric form. At slightly higher Re, helical and asymnerW'’s are found (Pringle and
Kerswell 2007). At Rex~ 1,300, those with a 2-fold and 3-fold rotational symmetrypegr.
All these TW solutions have a phase speed that is slightfyelathan the mean flow speed; see
Fig. 2.2.

1This chapter has been published as a chapter in a book egitedubbeldam, K. Green and D.Lenstra.

15
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Figure 2.1: Comparison of experimental data of instatipmépe flow in a planar cross section (A-C-E) and corre-
sponding exact traveling wave states (B-D-F). From: Hol.g2004).
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Figure 2.2: The phase speed of traveling waves (the numbaites the rotational symmetry) relative to the mean
bulk velocity as a function of the Reynolds number. From: iWethd Kerswell (2004).
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Figure 2.3: Schematic representation of phase space irflpipeThe laminar flow state is an attractor by increasing
the Reynolds number its basin of attraction reduces, if the i6 perturbed outside the basin of attraction, the flow
wanders around the traveling wave solutions found by Weduh lerswell (2004), Faisst and Eckhardt (2003).
Courtesy of: T. Schneider, Univ. Marburg.

In order to interpret the observed transition to turbuleimca pipe, we now consider the dy-
namical behavior of pipe flow in relation to the HP flow and TWwflsolutions in terms of a
representation in state space. Hagen-Poiseuille (HP) 8dwen represented as a single stable
node. At low Reynolds numbers all disturbances to the bagedicay back to the HP flow,
which is represented in state space by a trajectory thatn®ta the stable node.

The TW solutions form a strange repellor. When the HP flow sswibed sufficiently, the flow
state wanders around in phase space, occasionally apprgathtes that are near a TW, but each
time is carried away along one of the unstable directions@funstable saddle, and eventually
returns to the laminar flow state. As the Reynolds numbeeasxzs, the time it takes to return
to the stable HP-node increases, implying longer and lommgesients with increasing Reynolds
number. The time the flow state follows a complex trajectdrgves large variations. This
behavior is typical for a chaotic saddle (Skufca et al. 2006)

To explain a transition to sustained turbulence it is exgebthat at a given Reynolds number the
strange repellor changes into a strange attractor so thatbit of a disturbed HP flow no longer
returns to the fixed point representing the stable base flowhdt case HP and turbulent flow
coexist, and the two flow states are separated by a bounddagefines the basin of attraction for
the laminar and turbulent flow states respectively (Schereickhardt and Yorke 2007, Robert
et al. 2000). For small-amplitude disturbances the flowkjuieturns to the laminar flow state.
However, when the disturbance amplitude is large enougttréifectory passes the boundary for
the basin of attraction of the turbulent strange attraetod, thus will no longer return to the lam-
inar base flow. This then represents a sustained turbulenstlte that explains the transition to
turbulence in a pipe flow.
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Figure 2.4: Time series of the disturbance energy for faghdly different initial conditions for a pipe flow at Re =
2,000, showing the large variation of life time. From: Fa@sd Eckhardt (2004)

This transition scenario was investigated by Faisst anch&ck (2004) by means of a direct
numerical simulation (DNS). They simulated the time eviolubf localized turbulent flow (rep-
resenting the turbulent portion of a puff) in a domain of 5d8rihe pipe diameter with periodic
boundary conditions. Although only a small portion of théirenpuff is simulated, the essential
dynamics of the entire system is captured. Starting at lothBgdetermined for each realization
how long it took for the flow to return to the laminar flow staféney found that there is a large
variation in the time that the flow returns to the base stae [8g. 2.4), and that the probability
of decay follows an exponential distributiéh~ exp(—(t —to) /1), wheret is the characteristic
life time. The probability distributions for increasing Ree shown in Fig. 2.5. This clearly
shows that increases with Reynolds number.

By taking the time for which 50% of the disturbances had dedayr median life time, they
initially found that the life timex diverges at a finite value of the Reynolds number, indicating
critical Reynolds numbeRe. of 2250. The value oRe. was obtained from aextrapolationof
11 as a function oRe

Peixinho and Mullin (2006) performed an experiment in a dip& where they determined
the life time of puffs. They generated puffs Re= 1900, and then reduced to flow rate to a
lower Re and then determinedsually the moment of decay. Like the numerical simulation,
the probability showed an exponential decay. From these tthaty determined the reciprocal
lifetime as a function oRe and determined from an extrapolation tRet = 1750+ 10, where
the lifetime appears to diverge. It should be noted that theerainty of the last 3 to 4 data



19

1 - 200———T———T 71T T 71— *
. L 0.006 —————— {b) |
. [ t . P
3 1500 o.004f N ¢ A
_. [ = [ ] !
- 1000 0.002 .
SO i — T - 3 : .
< 10 = s = 1 -
I I",n 2 - : 0 B ; | ; | ) 1 -.§ :
: J ‘.‘I B} \ A R : i 1600 1800 2000 22.{)0' : ]
- # - 500 .8 .
1600 1800 . [ o ]
2 & T JENTY PPN THAAa bttt
102 L1 R T N R T T N T T PR IR S ST NI
0 500 1000 1500 2000 1600 1800 2000 2200
Lifetime Re
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still be turbulent after a time (right) Mediant of the turbulent lifetimes as a function of Reynolds numidére
inset shows the reciprocal median lifetime vs. Re and a flifigacorresponding ta(Re) 0 (Re. — Re)1, with
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Figure 2.7: Probabilit?(T) of the life time of a puff to exceed. From: Willis and Kerswell (2007a)

points at the highest Re measured essentially occur at the Ba.

Willis and Kerswell (2007a) used DNS to simulate the decayuwifs in a pipe at various
Reynolds numbers. The DNS was implemented with periodicflary conditions, with a pipe
length of 50 times the pipe diameter, which would be suffityelong to contain the entire puff.
The approach was very similar to the experiments perfornyeBédixinho and Mullin (2006):
the simulation was started with a randomly selected sndshioe velocity field of a puff in the
domain atRe= 1900, and started at the desired Reynolds number. The pliopdistribution

of the lifetimes was determined based on 40-60 simulatien®gynolds number. They claimed
that a quantitative agreement was found between theirtsesdl the previously obtained results
by Peixinho and Mullin (2006). Although they concluded ted@also found a linear scaling for
the characteristic life time, the critical Reynolds numbyas 1870, which is significantly larger
than the value of 1750 found by Peixinho and Mullin (2006).

Meanwhile, another experiment was conceived by Hof et &062. Rather than following
disturbances in a pipe at fixdReto determine the characteristic life timgone can consider a
pipe with fixed lengthL and determine the probability that a disturbance surviRés:ReL).
This is equivalent to considering the probability alongtiead lines in the left part of Fig. 2.5
(as opposed to evaluatifjt, Re) along horizontal lines). A disturbance is introduced in pepi
(after sufficient distance from the pipe inlet) and it is atved when this disturbance reaches the
outlet of the pipe. When the jet emanating from the pipe digsaresult of the lower centerline
velocity in the puff) the disturbance has obviously surdifer the time period required to travel
a distancd. along the pipe. A schematic of this experiment is shown in Ei§.

It was found from the analysis of the initial results repdrbg/ Faisst and Eckhardt (2004) that



21

Re = 1955
1 : : : 1 - . .
Re — 1855 %%s,_, el L e
%z%. o "‘“"‘"’\?ﬂ fog g
‘ix*.‘x ‘
° Ny, LY
0.9t AN -
%
i ~. _ o
Q_‘ L
0.1 .
' 0.8
Re = 1855
100 200 300 400 100 200 300 400
tUp/D [-] tUp/D [-]

Figure 2.8: Probability of the life time of a puff to exceetlp/D. From: Kuik et al. (2010)

Disturbance D =4 mm

Figure 2.9: Schematic of the experiment used by Hof et aD§20
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Figure 2.101eft probability as a function of Reynolds numbertif! ~ (Re.— Re), with Re, = 2000right probability
as function of Reynolds numberif! ~ expRe)

the slope of the exponential distributions did not exactigrespond to the reported lifetimes that
were based on the median lifetime extracted from Fig. 2.5thieaanalysis conjectured that the
lifetime might actually scale as ! ~ exp(Re) (Willis and Kerswell 2007a). This has the im-
portant consequence that the life times does not divergéitacritical Reynolds number, and

implies an important fundamental issue in regard to undedshg the transition to turbulence.

The difference between these two scaling regimes can béyeaderved inP(t,ReL), as indi-
cated in Fig. 2.10. In the case of a linear scalingdfwith a divergence of the lifetimes at finite
Re, the observed probabilities for fixed L have an exponenhapg, all culminating & = 1
for Re= Re.. Whereas for the exponential scaling, the probability earfrave distinct S-shapes
that shift to higher Re for increasing pipe length.

Note that the curves fd?(t, Re L) for low probabilities(P < 0.3) look very similar. This implies
that it is difficult to determine the difference between twe scaling regimes when only data is
available for low Reynolds numbers and short pipes or olasiervtimes. This is a serious com-
plication for numerical investigations, as not only theuieed integration time increases with
Reynolds numbers, but also the computational cost.

The linear scaling leads to an interesting thought experiras the probability approaches a
step function wher. — . Consider a very long pipe driven by a constant pressure théh
Reynolds number of the flow just beld®e.. Then each disturbance introduced at the beginning
of the pipe decays and for all disturbances the flow at the giplet remains undisturbed. (The
very long pipe length implies that the flow rate as determimethe pressure drop is not affected
by introducing the disturbance.) Then a second, identiga 5 placed next to the first one.
However, it is made slightly shorter, so that the flow rate@ases just above the critical Reynolds
number. When the same disturbance is now introduced to bp#spall disturbances in the
second pipe will survive. Provided that the pipe are longugiho the difference in the two pipe
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Figure 2.11: Probability distribution obtained by Hof et@006) showing clearly the S-shaped curves

lengths can be made arbitrarily small, so that the two piggeear to be identical, yet their
behavior in terms of the disturbances at the pipe exits argtztely different.

In the case of the exponential scaling of the lifetime the (almost identical) pipes behave al-
most identically, with the slightly longer pipe having agsitly lower fraction of puffs surviving
all the way to the pipe exit.

In order to make a distinction between the two scaling regintds necessary to perform the
measurements in very long pipes, preferably exceeding-2000 pipe diameters in length.

First a 4 mm diameter pipe with a length of 11 by D = 2,750) was constructed in Delft, and
later a 4 mm diameter pipe with a total length of 30 meters, (LD = 7,500) was constructed

in Manchester. The results of the measurements by Hof eR@D6) in both pipes are shown
in Fig. 2.11. Note that the probability curves have a distBxshape, which already indicates
gualitatively that the lifetime of the disturbances doesdiverge at finite Re. Further analysis
indicated that the data indeed show an exponential scalithggdifetime as a function of Re over

the range of Reynolds numbers investigated.

Further experiments were conducted to extend the rangkebiries that could be measured and
to determine the location of decay quantitatively. Rathantconsidering the median lifetime,
the rate of decay was determined. Thus it was possible tordetet for pipe lengths that were
shorter thatJt (whereU is the mean flow velocity) and it was possible to determinedéeay
rate over a very large range between 1 an®l The results over the very large range in escape
rates were reported by Hof et al. (2008). Later these reswdte confirmed by a quantitative



24 Chapter 2. Long-lived transients in transitional pipe flow

1 T T T T T T T T T
v
, —‘“‘*ﬁ-k,\. v ..,....'.
10 B LI .%.. N
- N ®
~ Ve
= \ %
g 0%
T o104t ‘ LY -
Z | e
8 .
T
® Kuik et al. (2009)
107° F. Hof et al. (2008) i
v Willis & Kerswell (2007)
= Peixinho & Mullin (2006)
10_8 1 1 1 1 1 1 1 1 1
1550 1600 1650 1700 1750 1800 1850 1900 1950 2000 2050

Reynolds number Re [-]

Figure 2.12: The life time of decay rate fB(t) as a function of Reynolds number. After: Kuik et al. (2010)

measurement of the lifetime as reported by Kuik et al. (20T0g results for the life time (viz.,
decay rate or escape rate) as a function of Re are reprodndeid.i2.12, together with the
previous experimental and numerical results. It appeatstkie scaling is not exponential, but
rather super-exponential, i.e. the life times given by Hof et al. (2008)

T =(U/D)exp[-(Re/c)"]

with ¢ = 1549 anch = 9.95, where n is related to the rate at which the laminar basattcdction
shrinks with increasing Reynolds number (Tél and Lai 2008)e data fits quite well with the
experimental and numerical data obtained by others, exoepéry low Reynolds numbers and
for Reynolds numbers where the observation is limited byatteal pipe length. The super-
exponential scaling also appears in so-called spatio-teahghaotic systems, where transients
increase super-exponentially with the size of the systeghdid Lai 2008).

2.1)

The conclusion of the experiments is that the lifetimes oélzed disturbances rapidly increases
with Re. The scaling of the lifetime with Re as measured ingkigeriments suggests that the
divergence of the lifetime does not occur at a finite critiRalynolds numbér This suggest
that, for the Reynolds numbers investigated, no evidentauisd for the existence of a strange
attracto?. If the scaling found in the experiment holds for larger Ranththose investigated,

2The work of Borrero-Echeverry et al. (2010) shows that alsimtype of scaling is found for the life time of a
turbulent patch in Taylor-Couette flow. Thereby showing thés type of behavior can be considered more general
as a feature of linear stable shear flows and not a featureamigpipe flow.

3In a numerical simulation by Avila et al. (2010) exactly traree type of scaling is found for puffs in a pipe.
The results show a remarkalgjeantitativeagreement between the data obtained from the simulatiothanésults
from experiments.
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then it would imply that the turbulent flow state should besidared as a transient, albeit an
extremely long-living one (Lathrop 2006). For example, xtead the observation time for the
data shown in Fig. 2.12 that are valid for water flowing thrdoad> = 1 cm pipe to a Reynolds
number of 2,200 would imply observation times exceedinglifieéme of the universe. Evi-
dently, to extrapolate the experimental results to anyevafithe Reynolds number beyond those
investigated experimentally should be taken with greatioauThe problem arises that the pre-
dicted lifetimes for higher Reynolds number become simpigriactically large. Next to that, at
higher Reynolds numbers the localized nature of the turm@lés lost. From Reynolds number
higher than approximately 2350, turbulent puffs can spid or Re larger than about 2700 can
form 'slugs’ (Wygnanski and Champagne 1973, Nishi et al.800 his behaviour cannot be ex-
plained by the current dynamical systems point of view ortthesition to turbulence. Another
remaining question is what the relation is between the gragbdic solutions that were found
numerically (TW’s) and the turbulent puff.
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Chapter 3

Repeller or Attractor? Selecting the
Dynamical Model for the Onset of
Turbulence in Pipe Flow!

The collapse of turbulence, observable in shear flows at leynBlds numbers, raises the ques-
tion if turbulence is generically of a transient nature orcoenes sustained at some critical point.
Recent data have led to conflicting views with the majoritgtatlies supporting the model of
turbulence turning into an attracting state. Here we pradgetime measurements of turbulence
in pipe flow spanning 8 orders of magnitude in time, drasljcaxtending all previous investiga-
tions. We show that no critical point exists in this regimel éimat in contrast to the prevailing
view the turbulent state remains transient. To our knowdetihgs is the first observation of su-
perexponential transients in turbulence, confirming a eochjre derived from low-dimensional
systems.

Finding appropriate models and concepts describing fluloutence is one of the outstanding
challenges in the physical sciences. Shear flows with arlynstable laminar state, such as pipe,
channel, duct, or Couette flow have proven to be particulathycate in this regard Eckhardt
et al. (2007). Here the laminar and the turbulent state sb&tiossmann (2000), Pomeau (1986)
without a clear transition point, yet at large flow rates tamihar state becomes increasingly
susceptible to perturbations. Once a disturbance is langegh the transition to turbulence
occurs suddenly without any intermediate states Dauchsbtaviaud (1995), Darbyshire and
Mullin (1995), Hof et al. (2003). Surprisingly, at relatlydow Reynolds numbers (Rg 2000)
the turbulent state is not stable and after long times sugdetapses Brosa (1989), Bottin and
Chate (1998), Bottin et al. (1998), Faisst and Eckhardt420illis and Kerswell (2007a), Hof
et al. (2006). This behavior is reminiscent of memorylesxesses in nonlinear systems. In
phase space the dynamics can be described by a complexistrgoting rise to the disordered
dynamics, a socalled chaotic repeller Kadanoff and Tan84)L.9Jnderlying such a structure are

1The content of this chapter has been published in PhysciaéRé etters (Hof et al. 2008).
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unstable states and for pipe flow unstable solutions to tkergong equations have been iden-
tified in the form of traveling waves Faisst and Eckhardt @0®Wedin and Kerswell (2004).
Surprisingly clear transients of such traveling waves warserved in experiments Hof et al.
(2004, 2005) confirming their relevance to the turbulentadgits. More recently traveling wave
transients were also reported in numerical studies Scandtgkhardt and Vollmer (2007), Ker-
swell and Tutty (2007).

A way to probe the validity of this model is to measure thetilifee of turbulence in the transient
regime. Previous experimental and numerical lifetime meaments have shown approximately
exponential probability distributions Bottin and Chat898), Faisst and Eckhardt (2004), Willis
and Kerswell (2007a), Peixinho and Mullin (2006), Lagha Bfahneville (2007) which suggests
that the probability for a turbulent structure to decay dependent of its age and hence that this
process is memoryless as would be expected for the escapeafrchaotic saddle. Here the
probability for a flow to still be turbulent after a timeat a fixed Reynolds number (Re) is then
given by

P(t —to,Re) = exp[— (t —to) /T(Re)], (3.1)

whereT is the characteristic lifetimer(! can be also interpreted as the escape rate)tgisd

the initial time period required for turbulence to form aftee disturbance has been applied to
the laminar flow at = 0. The fate of the chaotic repeller is then determined by timetfonal
form of the characteristic lifetime(Re) and different suggestions have been made in the past.
The majority of studies reported that! decays linearly and reaches zero at a critical Reynolds
number. Here the turbulent state undergoes a boundary Eigghardt et al. (2007) leading from
transient to sustained turbulence. However there is notdative agreement for the value of
such a critical point and cited values differ by more than 23%is view has been challenged in
an experimental study Hof et al. (2006) carried out in aneewgly long pipe where ! has been
observed to decay exponentially. Crucially it only appfesczero and hence (unless a global
bifurcation occurs at larger Re Eckhardt et al. (2007)) dimite lifetime is only reached in the
asymptotic limit Re— c. Subsequently a number of studies have questioned this§radid
again entertained the occurrence of a boundary crisis$¥itid Kerswell (2007a), Ben-Dov and
Cohen (2007), Willis and Kerswell (2009). A clear consttaifall previous investigations is the
limited range in lifetimes measured. Typically scaling awere postulated from data covering
2 orders of magnitude. Numerical simulations are partitylaroblematic because in order to
capture the quantitatively correct behavior computatitang to be carried out in large domains,
which severely restricts the number of realizations N thatraanageabléN < 50) Willis and
Kerswell (2007a). Consequently the statistics are oftsnfficiently resolved resulting in am-
biguous probability distributions Hof et al. (2007). A faer difficulty in interpreting the existing
data arises from the initial formation tinte Most numerical measurements have been carried
out at relatively low Reynolds numbers whegecan be larger than the actual observation time.
Consequently the evaluations of lifetimes in this regimeshgignificant uncertainties.

The experiments presented here were carried out in fourgepgs located in three different
laboratories. On all four occasions the pipes were made ofldngprecision bore glass tubes
and the working fluid was water. The setups mainly differ ia thametergD) and their total
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Figure 3.1: (a) Sketch of the general pipe setup. Four diffepipes were used, two of them with a 10 mm diam-
eter(L/D = 690 and 60pand two with a 4 mm diametdt /D = 2000 and 3600 Pipes were gravity driven and
turbulence could be induced by injection and withdrawal oidfthrough small holes in the pipe wall at various
downstream positions. Turbulence was detected by mongdhe outflow angle and by LDA velocity measure-
ments. (b) LDA velocity trace obtained at the center linehef@ = 10 mm(L,/D = 690) pipe during the passage of
a turbulent event. The trace shows the well-known WygnaaséiChampagne (1973) signature of a turbulent puff
for the axial velocity (top) and the radial velocity (botthm

length(L). For two pipes 4 mn(+0.01) bore tubes were used and their lengths vigi@ = 2000
and 3600; the other two had a diametebof 10 mm=+0.01 and a length df /D = 690 and 600.
As in our previous study Hof et al. (2006) the flow was drivenabgonstant pressure head. To
avoid fluctuations during transition caused by the diffeemnin drag between the turbulent and
the laminar motion, a large constant resistance to the flosvaglaled to the supply line between
the constant head reservoir and the flow conditioning sectidhe pipe entrance. This ensured
that the flow rate remained constant to betwed®®and 001% depending on the setup, even
when transition occurred. The main improvement over théegastudy by Hof et al. (2006)
was the implementation of an accurate temperature conkogliag measurements to be carried
out at constant temperaturés0.05K) for several days and hence avoiding Reynolds number
changes caused by the temperature dependence of the #jiscosi

In order to achieve laminar flows at Reynolds numbers in exo€2000 the pipe sections need
to be very accurately aligned and special care has to be tdkba pipe inlet to avoid turbulence
being induced (see figure 3.1). In three of the pipes lamioar dould be achieved up to Re
3000. Detailed tests have shown that at the natural trangint turbulence is always triggered
at the pipe inlet and not inside the pipe itself. For thesedhpipes the inlet consisted of a
straight convergence reducing the diameter fron518 4 mm. In theL/D = 690 pipe a more
sophisticated inlet was used employing several meshes smdath convergence . This resulted
in a much higher natural transition point of Re10*,

The experimental procedure then was as follows: First aiggation was applied at a fixed po-
sition upstream. The perturbation amplitude was chosge lanough to trigger the transition to
turbulence and the duration of the perturbations was setteden 10 and 2D/U. The perturbed
segment then develops into a so-called turbulent puff, vime¢his Reynolds number regime has
a fixed length and travels downstream at approximately thennvelocityU Wygnanski and
Champagne (1973). To determine if this turbulent puff hadisad its journey to the end of the
pipe or if the flow had relaminarized, the outflow angle at tipe@xit was monitored. Since for
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a given Reynolds number the turbulent flow has a lower ceimerkelocity than the laminar one,
it exits the pipe at a steeper angle (with respect to the pif Blof et al. (2006), Rotta (1956).
In the 10 mm pipes velocities were measured with laser Dogpienometry (LDA) in addition
to monitoring the outflow angle. These velocity measuresiemde it possible to determine
the formation periodp more accurately. In the case of the single jet perturbatienvalue of

to wasto = 70+ 5. In order to establish if the type of perturbation used hadnduence on
the lifetime of the resulting turbulent flow, measuremengsercarried out at various amplitudes
and different perturbation types. For the majority of meaments shown here a single jet was
injected for a duration of 1D/U through a small (0.5 mm) hole in the wall. In additional segdi
De Lozar and Hof (2009) different types of perturbationsevested including a simultaneous
injection and withdrawal of fluid through two small holes ariggering of turbulence at larger
flow rates followed by a sudden reduction in the Reynolds rem{iis perturbation is identical
to the one used by Bottin and Chate (1998), Willis and Kerk{2€l07a), Peixinho and Mullin
(2006)). Outside the formation peridgino differences, neither in the observed turbulent struc-
tures nor in their statistics were observed. Indeed, thieber is typical for chaotic systems
where the exponential divergence of neighboring trajéesaguickly erases the memory of the
initial conditions.

The improved temperature control allowed us to base eaclsuneaent point on observations
of typically N = 500 and occasionally even uphb= 100000 puffs reducing statistical errors by
an order of magnitude compared to all previous studies atreéasing the range of measurable
lifetimes by more than 5 orders of magnitude. The probafdlistributions obtained in the =4
mm pipes are shown in figure 3.2 for five different distancdsvben the perturbation and the
measurement poinx = 140,270,930,190Q and 3500 corresponding to fixed dimensionless
timest = (x/U)(D/U). Our data confirm that probability distributions eBeshaped and not
simple exponentials as would be expected(Re) was a linear function as proposed in Refs.
Bottin and Chate (1998), Faisst and Eckhardt (2004), \Walhid Kerswell (2007a), Peixinho and
Mullin (2006). In particular the dotted lines show the expotial distributions that follow from
the proposed boundary crisis in Willis and Kerswell (2007Bpth scalings (exponential and
Sshaped curves) agree well for Re1870. Here differences only occur for very short pipes,
where errors due to uncertaintiestinare very large and make a distinction of the decay rates
very difficult. For Re> 1870 our data clearly disagree with the proposed expongrdigergent
curves and instead fall on tt8curves resulting from the fit shown in figure 3.3.

The observed distributions however also differ from the &shsuggested by Hof et al. (2006):
they are not selfsimilar but instead their maximum slopé(&t = 0.5) increases with /D. For
each of the measured probabilitieg) inverse characteristic lifetimes1(Re) can be deter-
mined using equation 3.1, and the values are plotted in figiye

In addition to the data obtained in the 4 mm pipes, the datheofild mm pipes is also included
in the graph. All the data collapses onto a single curve wBiobws that equation 3.1 is the
appropriate description for the observed decay of turlmdemd hence confirms the model of a
chaotic repeller. By resolving valuesBft) up to 09999 we were able to determine escape rates
down tot~! = 10~8 which is 4 orders of magnitude smaller than had been meabefede. By
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Figure 3.2: Probabilities for the flow to still be turbulefftes traveling a fixed distance Viewed from left to right
the five data sets shown correspond to the following dis&nce 140 (down triangles), 270 (diamonds), 930 (up
triangles), 1900 (circles), 3500 (squares). The fitted esifellow directly from the superexponetial scaling shown
in figure 3.3. The dotted curves show the scaling that woulkeidpected for the critical behavior suggested by Willis
and Kerswell (2007a).

resolving very small probabilities inla/D = 140 pipe it was possible to determine decay rates
down toRe= 1670 while keeping errors due tgat a minimum. In principle lifetimes at even
lower Re can be obtained in even shorter pipes, yet as degdwsove, the uncertainty in the
initial formation timetgp is considerable when compared to the total observation, thenverely
restricting measurements in this regime. In addition theewcal data by Willis and Kerswell
(2007a) (open squares) are plotted together with the lifiigaroposed in that study. Note that
the data point aRe= 1580 of Willis and Kerswell (2007a) has been refitted as ssiggein
Hof et al. (2007). The numerical data is in excellent agragmath our measurements (taking
the relatively large uncertainties duettpat small Re into account). However the data of our
experiments clearly does not follow the linear fit [dashedveun figure 3.3(a)] proposed in
their study. Turbulent puffs are still found to decay wel{bed the critical point of Re= 1870
postulated by Willis and Kerswell (2007a). The exponentizdling suggested by Hof et al.
(2006), shown by the solid black line, gives a reasonablenfif over 2 orders of magnitude
in T2, but fails over the far larger range measured in the presadysOver these 2 orders of
magnitude also the shape of the probability distributidrie@present study are indistinguishable
to the ones by Hof et al. (2006). Outside this overlap regi@mScurves in the present study
are observed to become steeper with Re. Such a Re dependehuetibeen seen in the earlier
study Hof et al. (2006). Note that the solid black line in fig®.3 was shifted bpARe= —48
with respect to the one shown in Eckhardt et al. (2007). This ef the data corresponds to a
2.5% difference in the absolute value of Re. In particular theemtainty of the pipe diameter
in Hof et al. (2006) with(+1.5%) was comparatively large; furthermore in the present study
greater care was taken to measure the absolute value ofrtipetature allowing to determine
the viscosity values more accurately.
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Figure 3.3: Decay rates plotted on a log linear scale. Gin@dpresent data obtained in the= 10 mm pipes while

the full symbols were measured in tBe= 4 mm pipe. The dashed line and the open squares are a reposduct
of the data points and the linear fit given by Willis and Kerd&007a). The black line has the same slope as the
exponential scaling observed by Hof et al. (2006). The Iggiid curve assumes a superexponential dependence of
the decay rate on Re. The dash-dotted line shows an altersaperexponential fit (see text for details). (b) Data
on a log-log linear scale. The data could be fitted by a sttdigé over the entire regime. This two parameter fit
was then used to plot the five curves in figure 3.2 as well asghedolid curve in figure 3.3(a).

The robustness of the scaling behavior was tested by agpdyperiodic modulation to the flow
rate. At a frequency of up to 2 Hz and an amplitudeA&e = +10 the shape of th8 curves
remained unchanged within experimental errors. Equallglsmtentional misalignments of
the pipe segments did not show any noticeable influence odisfiebution shape.S-shaped
probability distributions have also been observed in pl@oeette Hof et al. (2006), Schmiegel
(1999) flow suggesting that this scaling behavior applies tariety of shear flows.

In figure 3.3(b) the present data are shown on a double logriseale. On this scale a straight
line can be fitted to the data suggesting lifetimes scale rewpenentially with Re:t1 =
exp[—exp(ciRe+cy)], with ¢; = 0.0057 andc, = —8.7. As shown in figure 3.3 this two pa-
rameter fit captures the observed escape rate dependernc@ anders of magnitude. Equally
the Sshaped curves plotted in figure 3.2 directly follow fromstistraight line fit without any
additional fitting parameters. While the data allows to nuéfunctional forms which are subex-
ponential, it should be noted that adequate fits can also tanell by other superexponential
functions.

For instancer ! = exp[— (Re/c)"], with c = 1549 anch = 9.95 [dash-dotted line in figure 3.3(a)].
Here the magnitude of the exponenis related to the rate at which the basin of attraction of the
laminar state shrinks as Re increases Tél and Lai (20083criminating between the differ-
ent superexponential scalings would require measurenogetsa substantially larger Reynolds
number range. However, due to the rapid increase in lifetithe parameter space observable in
experiments is rapidly approaching its limit. In order toasere the escape rate at R&100
would require an estimated time of 46 yr in our setup, and a=R&00 with 162 yr the exper-
imentation time would have to surpass the age of the Univétszviously long lived transients
whose lifetime scales superexponentially with system, Siaecalled Type-Il supertransient Tél
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and Lai (2008), had only been observed in low-dimensionabdyical systems.

In conclusion, by increasing the range of measured lifediime6 orders of magnitude and sig-
nificantly reducing statistical errors the decay rate obtlence has been measured far more
accurately than previously possible. The observation ofitecal point reported in many re-
cent studies is not supported. The superexponential bahfawind here identifies turbulence in
pipe flow as a type-Il supertransient Tél and Lai (2008),t€hfield and Kaneko (1988), which
had been conjectured as a potential description of turbeléno decades ago Crutchfield and
Kaneko (1988). This scaling shows that at least in the intéent regime, the correct dynamical
model of turbulence in linearly stable shear flows is that strange repeller.

The authors would like to thank B. Eckhardt, J. Vollimer, T. $8thneider, C. Poelma, and R.
Delfos for helpful discussions. This resarch was suppdygtie EPSRC (Grant No. EP/F017413/1),
the Max Planck Society, and FOM (Foundation for Fundamd®églearch of Matter).
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Chapter 4

Quantitative measurement of the lifetime
of localized turbulence in pipe flow

Transition to turbulence in a pipe is characterized by tha@ase of the characteristic lifetimes of
localized turbulent spots (‘puffs’) with increasing Reldgonumber (Re). Previous experiments
are based on visualization or indirect measurements ofitearhe probability. Here we report
guantitative direct measurements of the lifetimes baseatouarate pressure measurements com-
bined with laser-Doppler anemometry. The characteristétime is determined directly from the
lifetime probability. It is shown that the characteristitekime does not diverge at finite Re, and
follows an exponential scaling for the observed raf@@5<Re<1955 Over this small Re range
the lifetime increases over four orders of magnitude. Tiselte show that the puff velocity is
not constant, and the rapid disintegration of puffs occuithiwv 20-70 pipe diameters.

4.1 Introduction

The transition to turbulence in pipe flow can be charactdrirethe lifetimes of localized turbu-
lent spots, or ‘puffs.” These puffs co-exist with the lamifiaw state, and travel downstream with
a velocity of around the bulk velocity (Lindgren 1969, Wygski and Champagne 1973). Faisst
and Eckhardt (2004) used a direct numerical simulation (Pfd$vestigate the lifetime of the
turbulent flow state in a short periodic pipe. They found thatprobabilityP(t; Re) of survival
at a given Reynolds numbeR@ decays exponentially with time, reminiscent of a memayle
process, i.e.

P(t; Re) = exp—(t —to) /T(Re)], (4.1)

wheretp represents a formation time of the disturbance, gifitE) the characteristic lifetime of
the disturbances. Faisst and Eckhardt (2004) obtaifBd) from the median lifetime of the
disturbances, which appeared to scalaas (Re — Re), whereRe is a critical Reynolds

1This chapter has been published in the Journal of Fluid MeickgKuik et al. 2010)
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numberat which the lifetime diverges. Earlier, new solutions of tiavier-Stokes equations for
pipe flow, in the form otraveling waveswere identified (Faisst and Eckhardt 2003, Wedin and
Kerswell 2004, Hof et al. 2004). These solutions were thotmform astrange saddlén phase
space, so that a disturbance of the base flow, i.e. HageetRitasflow that is represented as a
stable node, leads to a transient for which the duratioream®s proportional to the Reynolds
number. A divergence of the duration of the transient, etiliie of the disturbance, that occurs
atfinite Reynolds number implies a transition from a strange saddiestrange attractor in phase
space (Eckhardt et al. 2007). The strange attractor woydticate turbulence as a sustained flow
state.

Faisst and Eckhardt (2004) fourRle, = 2250, which agrees with empirical data. However,
re-examination of the data, whetréRe) was evaluated directly from the slope Bft; Re) in a
semi-log plot, showed thaiRe) scales exponentially, i.a~* [0 exp—Re), so that the lifetime
does not diverge at a finite critical Reynolds number (HofleR@06). To examine in which
way the lifetime diverges witliRerequires long observations times of several hundred or even
thousands of integral time scales.

Peixinho and Mullin (2006) carried out an experiment to detee P(t;Re) by observing the
decay of a puff in a constant mass flux pipe. First a puff waeggad aRe=1900, and when
it had survived 100 pipe diameters the Reynolds number whgesl, and the decay of the puff
was observed. The turbulent motion in the puff was visudl#gth small platelets, and the
moment of decay was determined visually. The results cortirthe exponential probability in
(4.1), and it was found that ! scales linearly witiRe, 221750+10. Willis and Kerswell (2007a)
represented the experiment in a DNS. They also found an expiah distribution forP(t; Re)
and a linear scaling af 1, although the observation times where rather short, Rea=1870.
However, re-evaluation of their data showed that the saswdtsawould be reconcilable with an
exponential scaling of 1 (Hof et al. 2007, Willis and Kerswell 2007b). Recent dataf(Efoal.
2008) showed that the lifetime scalesper-exponentiallyi.e. T 0 exg—(Re/c)"] with n=9
andc=1549, over eight orders of magnitudetin

The measurements ofRe) by Hof et al. (2006, 2008) are based on the probabiiie L) that

a puff survives a given pipe lengthas a function of Reynolds number. This probability has a
characteristic S-shape in the case of an exponential gaailir{Re). However, thismplicitly as-
sumes thaP(t; Re) has the form givenin (4.1). Also, this experiment does notalo constantly
monitor the formation of the puff after the injection, the tiva of the puff along the pipe, and
its sudden decay. Especially at high Reynolds number, wirdgea very small fraction of puffs
decays before reaching the pipe exit, it is difficult to makkstinction between puffs that decay
in the pipe and a possible misfiring of the disturbance meashanor disturbances that failed to
generate a puff. Furthermore, this approach requires amadst of the mean puff velocity, in
order to convert the distanteinto a lifetime.

In this paper we report results of quantitative lifetime siw@@ments that are based on accurate
pressure measurements. This makes it possible to direztyrdineP(t; Re), rather than relying

on an implicit assumption that the lifetime probabilityltais (4.1). Since we measure over a
pipe section that excludes the injection it is possible tiearinet(Re) irrespective of the puff
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Figure 4.1: Schematic of the experimental setup. A: overfleservoir to maintain constant pressure head (H);
B: heat exchanger; C: flow conditioner containing severashme with reducing grid size and a smooth 1:100
area contraction; D: flow disturbance; E: pipe exit with getoeservoir from which fluid is pumped back into
reservoir (A);PTy2: pipe sections over which the pressure drop is measured bgsayre transduce® indicates

a pipe section; LDA: location of velocity measurement by LDAset, left Measured friction factorX) as a
function of Reynolds number together with Poiseuille’stion law (—); error bars represent an estimate of the
total experimental erroinset, right Velocity profile measured with LDAX) together with a calculated velocity
profile based on the mass flow rate (—).

formation. The inlet length for laminar pipe flow Re=2x10° is ~120D, so that any applied
disturbances that failed to generate a puff are expectedv® thecayed before the first pressure
tap atL/D=125 (see section 4.2). Apart from being able to directly sneathe lifetime that
individual puffs travel along the pipe, it is possible to @atine the decay time during which
the puff disintegrates. It is thus possible to validate thguanption of sudden puff decay that
underlies the expression f&Xt; Re) in (4.1).

4.2 Experimental setup and method

The flow facility used for the measurements is similar to #teg used by Hof et al. (2006, 2008).
Figure 4.1 shows a schematic overview of the setup. The m#erahce is that in the current
setup special care is taken to reduce pressure fluctuailibles20-meter long pipe is made of 16
glass tubes, each 120-130n length, with an inner diameter @ = 10+ 0.01 mm. The pipe
sections are joined by PMMA connectors with the same inn@meéier, that contain 0.5 mm
holes which could either be used for sensing the pressur@ iotrbduce the flow disturbance.
The water flow is driven by the constant pressure head gertkbgithe height difference between
the free surface of the overflowing reservoir (A) and the outfbf the pipe (E). At regular
intervals the fluid from reservoir E is pumped back into theebtom which the overflowing
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reservoir is fed. The flow rate of the system can be adjustetuaily by changing the total
pressure head between 3.0 and 3.5 meters (correspondifg363L0° Pa).

To reduce pressure fluctuations in the pipe, the amount afloweng fluid has been minimized.
Furthermore, the fluid was introduced from the bottom andegdithrough a set of flow straight-
eners to remove any remaining fluctuations caused by the jamehthe introduction of the fluid
into the reservoir. From the top reservoir, the fluid flowsotlgh a feeding line consisting of
two segments: one 10-meter long copper tubing segment and®meter long flexible tubing
segment.

The 20-m pipe section is thermally insulated from the emuiment. To control the temperature
of the working fluid, temperature-controlled water is fat@ound the copper segment (B), cre-
ating a heat exchanger by which the daily temperature vamiz& maintained to within-0.3°C.

To determine the exact Reynolds number at which each measuates taken, the temperature
of the water is continuously monitored at the pipe exit (Ehgs calibrated mercury thermome-
ter. Using a digital camera, the temperature reading coelddiermined with a precision of

3.4x10°3°C.

The main pressure drop occurs between sections A and C, Wieetgbe has a smaller diameter
(6 mm) than in the straight pipe. In this section the flow remeaurbulent, and the total pressure
loss is much larger than in the 10-mm diameter pipe. Introdo®f a turbulent disturbance in
the pipe (D) lowers the flow rate by the additional frictionté local turbulent flow. However,
one can easily verify that the flow rate changes by less thHai?0for the current configuration,
because of the large pressure drop over the feeding lingefdre this setup can be considered
to effectively operate with a constant mass flux conditiora humerical investigation Willis and
Kerswell (2009) showed that the lifetime statistics forfpyfor sufficiently long computational
domains) did not change for either constant pressure drammstant mass flux conditions.
Therefore itis valid to compare the present results wits&found in experiments and numerical
simulations under constant mass flux conditions.

To validate that the pipe is internally smooth, the frictfactor was determined by measuring
simultaneously the pressure drop and the flow rate. Theymeedg#ference was measured by an
inverted U-tube manometer between pressure taps & @88 1514 from the pipe inlet, cov-
ering almost 89D. The first pressure tap was far enough from the entrance id effects due
to the development of the flow, even at high Reynolds numlbleesghtrance length f&e=8000

is approximately 50D). The flow rate was determined by measuring the weight of the that
exits the pipe over at least 200 seconds. The result for tlasuaned friction factoF as a func-
tion of Reis shown in figure 4.1, in comparison to Poiseuille’s ld&w=64Re. A laminar flow
state could be sustained fBie> 9x10% before natural transition occurred. Since experiments
are carried out only foRe< 2000, it is not expected to observe spontaneous generdtiorba-
lence. Using laser-Doppler anemometry (LDA), a velocitgfipe was measured at 20DGrom
the pipe entrance fdRe=1750. Figure 4.1 shows the measured velocity profile in Gmpn to

a parabolic Poiseuille profile based on the measured flow hatthe lifetime experiments, the
centerline velocity was measured by LDA at the same locatoralidate that the flow distur-
bance has the typical characteristics of a puff. This is malrable than observing the jet angle at
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Figure 4.2: Three instantaneous time series of pressuaeatlle—= 1822, measured biyT; showing two surviving
and one decaying puff. The dashed black line is the thredbedd (T1) used to determine the location of decay, the
second (dashed grey line) threshold)(is used to determine the puff disintegration time. Seeftmdetails.

the pipe exit (Rotta 1956, Hof et al. 2006). After each measiant series, the Reynolds number
is determined based on the measured mass flow rate and nésomgerature, and could be
determined with an estimated total uncertaintytdf (i.e., 0.2% aRe=2000).

In a lifetime experiment, the fully developed laminar flowsisortly perturbed to create a lo-
calized flow disturbance. In the current experiment the flewlisturbed by a zero mass flux
disturbance, at 1514 from the pipe entrance. The non-dimensional amplitude efdistur-
bance was equal taD, based on the ratio of disturbance mass flux and pipe-flovg fhas The
amplitude is above the critical amplitude to create a puéiryshire and Mullin 1995, Hof et al.
2003). The flow is perturbed during 0.0625 s (1.1E1/By), which is much shorter than the
disturbance time of 10-Z0)/Uy, used in previous experiments (Hof et al. 2006, 2008, De Lozar
and Hof 2009). Previously, Mullin and Peixinho (2006) fouhdt the critical Reynolds number
is reduced by increasing the disturbance amplitude. Thdiamue was chosen in correspon-
dence to the lowest critical Reynolds number reported byliMahd Peixinho (2006). However,
De Lozar and Hof (2009) already showed that the type of distiace did not change the lifetime
scaling.

In the present experiment the lifetime of a puff is deterrdinsing two differential pressure
sensors (Validyne DP45). One pressure transdUR&r) (measures the pressure drop between
taps at 12b and 250 () from the disturbance, and the secoRdy) between 25D and 49®

(S3). Both pressure transducers were calibrated using a menwemeter (Betz) and have a full
range of 150 Pa with an accuracy better than 0.75 Pa. In thaineler of this section only the
results from the first pressure sensBil{) are shown, but an identical analysis applies to each
time series measured f&T,. The extension to much larger domains by adding more pressur
sensors is trivial.
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Figure 4.3: Probability density functions of relative aage puff velocity as a function &e (a) in sectionS; (b)
in sectionS; (c) in sectionSs. The inclined straight line is a least square fit to the véyodistribution in sectiors;
and is given in the other plots for comparison.

Figure 4.2 shows three signals recordedPy; for clarity the pressure drop due to laminar flow
(AP ~ 64 Pa) has been subtracted. The recording starts just libéodésturbance is appliediaf
where the signal shows a single oscillation with a large @&omgi#. The oscillation ensures that the
disturbance was applied. The short-duration pressurdaigm does not induce any significant
acceleration or deceleration of the fluid mass in the pipe. ahplitude of the oscillation would
be much larger when generated by a non-zero mass flux inject#o when the injected mass is
not simultaneously removed.

After the flow has been disturbed, the disturbance formsamoff and is convected downstream.
Since the puff is now present in secti®q the pressure drop measured By is only due to
laminar flow, hence the additional pressure di&= 0. Att, the puff begins to enter secti@,
indicated by the increase I8P, which reaches a maximumt Then it falls to approximately
half the maximum value, which is indicative of an adversespuee gradient at the transition side
of the puff. Rotta (1956) derived that the theoretical udpeit of the pressureéncreasedue to

the transition from a laminar velocity profile to a uniformoety profile is equal t(%pubz. This
would imply a pressure rise of almost 10 Pa. This is not olexenv the present data, because the
mean velocity profile inside the puff is not uniform. Nevetdss, the predicted adverse pressure
gradient is clearly visible.

Figure 4.2 shows the pressure time series (black linesWorarbitrary puffs. Both time se-
ries show the same characteristics, with a constant additjgressure drop betweénandtg,
indicating that the entire puff is inside secti§n When the puff leaves this section, the same
characteristics in pressure are observed as when the gafsehe domain. Due to the presence
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Figure 4.4: Semi-log plots of the probabil®yt; Re) that a puff survives a timeUy, /D, whereUy is the bulk velocity
andD the pipe diameter, foRebetween 17255 and 1955-5, in increments of 10. The data fRe=1855 appears
in both graphs for reference. The slope of each curve detesniRe) defined in (4.1), which increases wiite

of only the transition front inside secticd®, a sub-laminar pressure drapR’ < 0) is observed
aroundt;. Hence, both puffs survived while passing sect®nFor the time series represented
in light grey the behavior up tt is the same as previously described. Howevert forts the
sub-laminar pressure difference is not observed, from lwhican be concluded that the puff
decayed within sectioS.

This allows for the determination of the lifetime of eachiindual puff by observing the time
at whichAP’ drops below a certain threshold. The threshold value shoelichosen below the
additional pressure due to the presence of a puff, but stieufdgher than the noise amplitude of
the signal in the absence of a puff. After some preliminavgsatigation a single threshold value
of 1.95 Pa was chosen for all Reynolds numbers (indicatedjindi4.2). The mean value for
AP’ betweerts andts (AP pu) was determined for all puffs that survive beyond the dovassh
pressure tap. A minimum value &P’ = 2 Pa was found. The pressure signal noise fluctua-
tion is estimated at 0.37 Pa for laminar flow, which is less thiae-fifth of the selected threshold.
The individual lifetimes that were found depended on theaed threshold value, although the
result for the scaling of(Re) did not change significantly for threshold values betwe@mahd
2.7 Pa.

In figure 4.2 it is clearly visible that the sub-laminar pragspeak int; does not occur at
t Up/D = 250, which would be expected when the puff travels with thk lmelocity. This
indicates that the puff is not traveling at the bulk veloclhyt slightly faster. Given the dis-
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tance between the pressure taps and the time differencedetive occurrence of the pressure
peaks, the average velocity of the puff can be determinedy Quffs that survive beyond the
last pressure tap (at 4BGafter the injection point) are taken into account. Sincellyaany puff
survived beyond 498 for Re<1800, only the measured mean velocities for 1:8B@<2000 are
determined.

Figure 4.3 shows the probability density function of the meaff velocity in sectionss;, $
andSs. If puffs would move at a constant mean velocity through thee pthese figures would
be identical. Comparing the graphs in figure 4.3 shows tleaptHf first accelerates as it moves
downstream, while the velocity PDF in sectidgsandS; appear to be identical.

Clearly, the puff velocity at giveReis not fixed. An open question is whether each puff travels
at its own constant velocity (for fixelde), or that the puff velocity is variable as it travels along
the pipe. An indication of the validity of the second statems the correlation coefficient of the
puff velocity in sectionsS, and Sz, which turns out to be between 0.49 and 0.51. This implies
that the puff velocity is variable.

Note that in earlier measurements (Hof et al. 2006, 2008yhich the survival probability was
determined for a fixed pipe lenglth the characteristic non-dimensional lifetime was detaadi
ast = L/Upytr, whereUps is the mean puff velocity determined from the time differebetween
the moment of injection and the moment the puff reaches the g@xit at a distancke. Since the
puff velocity is not uniquely defined, we prefer to non-dirmigmalize the directly measured
lifetime with D /Up,.

4.3 Results

To determine the characteristic lifetime first the lifetime of each individual puff was deter-
mined. Then the measurements were sorted according toRkgitolds number (given by the
temperature reading at the pipe exit) and binned with a vatithb for Re=1725,1735,1745,...,1955.
The total number of measurements for e&sgis between 500 and 3500. The number of puffs
that decayed before arriving at the first pressure tap weneved from the data. Nex®(t; Re)

is found as the number of surviving puffs over the total nundfedata, where it drops by one
count for each measured lifetime, until the lifetime excettet domain covered by the pressure
transducers.

In figure 4.4 the resulting probability distributions ar@féd. Each point in this figure repre-
sents the measured lifetime of an individual puff. The rissiar P(t; Re) are clearly exponential

(i.e. data follow straight lines in a semi-log plot). Thisirsagreement with the results for
P(t; Re) found by Peixinho and Mullin (2006) and Willis and KerswelDQ7a). However, here

we observe that even f&Re above the critical Reynolds numbers of 1750 and 1870 idedtifi
by Peixinho and Mullin (2006) and Willis and Kerswell (200 #aspectively, numerous puffs
decay. Moreover, decaying structures are observeRdor1900, which is the Reynolds number
at which the disturbances were initiated in the experimbeyt8eixinho and Mullin (2006).
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Figure 4.5: The inverse of the characteristic lifetimé as function of ReynoldsRe number. Data from Peixinho
and Mullin (2006) and Hof et al. (2008) are included, togetivéh their linear and super-exponential scaling
respectively. The data points of Peixinho and Mullin (20f#8)Re >1740 are plotted in light grey since they are,
considering the error estimates, measured at the same Reynonber. The data of Willis and Kerswell (2007a) is
shown, in which the data point &e=1580 is reinterpreted (Hof et al. 2007, Willis and KersvflD7b)(Hof et al.
2007, ¢), original (v))

In previous investigations the characteristic lifetinjf®e) was obtained by determining the me-
dian or half lifetime, i.e. the lifetime for which the suralvprobability equals 0.5 (Faisst and
Eckhardt 2004, Peixinho and Mullin 2006, Willis and Kersh2907a, 2009). This approach
depends heavily on the initial formation time, indicatedgi® (4.1), which is the time needed
for the disturbance to develop into a puff. Instead, the attaristic lifetime (together with the
formation timetg) can also be determined by fitting the expression in (4.1héprobability
distributions in figure 4.4. This has the advantage thean be determined for lifetimes that
are shorter than the characteristic lifetime, which avdidsuse of a pipe with extremely large
values ofL/D (Hof et al. 2008).

In figure 4.5 the lifetimes are given based on a least squate tfite probability distribution in
figure 4.4. To estimate the confidence interval a bootstrappmiethod was used. By extracting
100,000 new data sets of the same length as the initial detesethe data given in figure 4.4,
the median and standard deviation of the best fitting sloesoalculated, resulting in error bars
smaller than the symbols used in figure 4.5. In the same figacethe data of Peixinho and
Mullin (2006), Willis and Kerswell (2007a) and Hof et al. (@8), together with their proposed
best fits, are given. Despite the different methods usedtermée the lifetimes, the best agree-
ment is found with the data of Hof et al. (2008).

In addition to the measurement of the characteristic fifetand mean convection velocity of
the puffs, we used the pressure measurements to determeiiésthtegration time (2t) of the
puffs, which is the time needed to become fully laminar atray sets in. It is determined from



N
N

Quantitative lifetime measurements

—_

o
o0

cumulative probability [-]
o
o

0.4}
0.2 1750 Ly
0 L L L
0 50 100 0 50 100
2. AtU, /D [-] t'Uy/D [-]

Figure 4.6:Left Cumulative probability distribution of the time neededvieetn initiation and complete decay of a
puff; RightEvolution of the conditionally-averaged centerline vétypof a decaying puff for nine consecutive times
relative to the onset of decatg (n figure 4.2).

the time between passing a thresh@®ldand a second thresholld, and non-dimensionalized
by D/Uy; see figure 4.2. Cumulative probability distributions fbe tdisintegration time were
computed for decaying puffs &e=1750, 1760, 1770.. 1910, and are plotted in figure 4.6. No
obvious trend witHReis observed, so that the disintegration process seems toibersal over
this Rerange. It is clear from figure 4.6 that it takes at leadD20r a puff to decay, which is
approximately the length of a puff (Wygnanski and Champ&fi3). About 80% of the puffs
need less than &Dto disintegrate completely.

To visualize the disintegration itself, the conditionalyeraged centerline velocity measured by
LDA was used. The pressure measurements are used to det¢hmilocation of disintegration
with respect to the location of the LDA measurement poinfigare 4.6 the velocity time series
for nine consecutive disintegration times are shownRer 1850t5. The top line shows the
averaged velocity profile for a puff that started to decal t@pstream of the LDA measurement
point. The velocity profiles for the puffs that decay clogettte velocity measurement point are
plotted with a vertical offset for clarity. The bottom veltyctrace shows the result when a puff
has survived up to the point where the velocity is measuredeveals the classical centerline
velocity time series observed for a pulff.

4.4 Conclusions

In this paper we present results of direct quantitative mieasents for the lifetime of individ-
ual localized turbulent structures, or ‘puffs’, in pipe floWhe mean shape of the puff during
decay could be reconstructed from conditionally-averdged measurements. Pressure mea-
surements can be used to directly determine the lifetimadh éendividual puff, where the mea-
surement is based on a predefined threshold for the pressuease when a puff is present in
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a given pipe section, rather than a visual inspection of a flmwalization. By combining all
measurements, the lifetime probability distributiB(t; Re) is obtained, which shows an expo-
nential decay given in (4.1), which is characteristic for @amoryless process. By using a fit to
the probability functiorP(t; Re) the characteristic lifetime(Re) could be determined from the
slope of the distribution in a semi-log plot. The presentittssdepend neither on the initial for-
mation timetp, nor on the inclusion of applied disturbances that may éadevelop into a puff.
This avoids possible complications of previous investayet of the characteristic lifetime. In
addition, we obtained direct measurements of the lifetinodability, rather than observing the
probability P(Re L) that puffs survive a given pipe lengthas function ofRe which implicitly
assumed an exponential decay Rft; Re).

The present data confirm that the scaling of the lifetime \K#his super-exponential, as pro-
posed by Hof et al. (2008). This confirms that the lifetime <loet diverge at a finite critical
Reynolds numbeRe. within the observed Reynolds number range of IZR8<1955, which is
well above previously reported values ®&. ForRe=1950 there is a significant fraction of puffs
that decay before reaching the end of the measurement dowithran estimated characteristic
lifetime of 25x 10° D/Uy; see figure 4.5. This implies that no indication is found foraasition

in phase space of the strange saddle into a strange atfnabich would imply a sustained tur-
bulent flow state. Therefore each puff should be considesealteansient flow state. At much
higher Reynolds numbers, puffs may split or grow in lengtfoten into ‘slugs’ (Wygnanski and
Champagne 1973, Nishi et al. 2008). This behavior cannokplai@ed by the current dynami-
cal systems point of view, and a completely different me@rammay describe the transition to
turbulence.

In addition, the measurements show that puffs do not movecanhatant mean speed through
the pipe, which is in contrast with previous observationsrtiiermore, the puffs show a rapid
decay, which underlies the memoryless process represbytétil), that occurs within 20-70

pipe diameters.
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Chapter 5

Simulation of localized turbulent pipe flow

5.1 Introduction

In the previous chapters, the global behavior of localizetulence in a pipe, or puffs, is de-
scribed for Reynolds numbers upRe= 2000. This chapter provides a more detailed description
of a puff. The first approach was to use stereoscopic PIV nmeasnts to get more details on the
behavior of the internal structures of the puff. The PIV nugaments gave the velocity field in

a planar cross section as a function of time. By applying d kinTaylor hypothesis, the quasi-
instantaneous 3D flow structure are reconstructed (vanrizcamd Westerweel 2007). However,
this does not provide any information on the temporal evotubf these structures. Therefore,
the planar PIV experiments were not sufficient to get an intddglke dynamics within the puff,
and another approach was taken.

Van Doorne and Westerweel (2009) found, from a few expertal@bservations, strong and
localized structures in the form of narrow (09D) peaks in the "in-plane kinetic energy” (see
equation 1.2), that were associated with regions with a Hegree of symmetry in the vicinity
of hairpin like coherent structures. However, in simulati®n transitional pipe flow (Willis
and Kerswell 2007a, 2008, Avila et al. 2010, Moxey and Bark@10, Duguet et al. 2010)
these structures were never reported. Van Doorne and \Weste(2009) concluded that in
existing numerical simulations the axial resolution mayehlaeen not sufficient to resolve these
small-scale features. This was the major motivation togarfa numerical simulation in a long
domain with a very high axial resolution. Furthermore, tieddvior and physical relevance of
these structures was unclear. De Lozar and Hof (2009) shomeedncorrelated experimental
realizations of the in-plane kinetic energy. In their résisee figure 7 in De Lozar and Hof
(2009)), similar small-scale structures are observed.e Nt the location of these structures
with respect to the puff is different for each realizatiomidlled to the belief that these structures
would show some dynamics of their own. Van Doorne and Westein{2009) associated the
observed structures to hairpin-like vortices.

In this chapter the results of this simulation are discusstditing with a description of the nu-

a7
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merical procedure in section 5.2. As an initial conditiontfee direct numerical simulation, the
results from a single PIV measurement were used. The déscrigl the numerical procedure
is followed by a description of the effect of simulating tsétional pipe flow at different resolu-
tions in section 5.3. As a validation of the numerical coddlyfdeveloped turbulent pipe flow
is simulated and compared to existing numerical and expariah data. These results are pre-
sented in section 5.4. Wygnanski and Champagne (1973) amdyBpadhyay (1986) described
different parts of the puff and found a region which is coname to fully developed turbulent
pipe flow. In order to validate this, a puff Re= 1900 is compared to fully developed turbulent
pipe flow simulated aRe= 5300 in section 5.5. The localized nature of puffs introduseique
scales for length and velocity: the ones of the global stmectin section 5.6 the properties and
global behavior of individual puffs at different Reynoldsmber, are described. It is shown that
in the current simulation the small scale structures, fiestcdbed by van Doorne and Wester-
weel (2009), are present. Since the current DNS allows ®tréicking of these structures over
time, the associated structure can be revealed. The stesciwe visualized by showing large
scale vortical motion using th@-criterion (Jeong and Hussain 1995). Furthermore, seétion
contains a discussion about the dynamics of these strisctiamgally, concluding remarks can be
found in section 5.8.

5.2 Numerical Procedure

The goal of the current direct simulation is to simulate lzeal turbulent pipe flow in a periodic
domain. The localized nature of the flow results in strucuhat have a length of the order of
25 pipe diameters (Wygnanski and Champagne 1973, Wygnahski 1975, van Doorne and
Westerweel 2009, De Lozar and Hof 2009). To prevent the pafhfinteracting with itself, a
minimum domain length of 90 is required. Here domain lengths ofB@&nd 10@ are used.
Table 5.1 shows an overview for the domain lengths used byrdbeuof authors for their simu-
lation of transitional pipe flow.

For the DNS of pipe flow a code has been used that was based andkeused by Ptasinski
(2002). However, instead of using cartesian coordinatesNavier-Stokes equations are repre-
sented in cylindrical coordinates. The simulation is dorin & pseudospectral method in the
circumferential and axial direction. In the radial directia standard™ order staggered finite
difference method is used. The Fourier expansion of thecitglbeld can be written as

u(r,8,z,t) = ggaik(r,t)e‘”ee‘ikz (5.1)
iz INg

wherer is the radial coordinated the azimuthal coordinate, arathe axial coordinate. At the

centerline(r = 0) the velocity is not a function o® anymore, i.e. there is only a single Fourier
mode in the circumferential direction. To account for thie number of Fourier modes in the
expansion is reduced as the centerline is approached. ddhistion in the number of Fourier
modes also avoids problems with small time steps due to asskely small grid spacing at the
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centerline. The pressure correction method (Ptasinski 2083) is used to ensure conservation
of mass. The equations are advanced in time with a second Addens-Bashforth method.

For the initial condition of the simulations of localizedlulent pipe flow, a quasi instantaneous
velocity field from a PIV measurement was used. The flow wassomea by a high speed

stereoscopic PIV setup, similar to the setup used by vanmzo®004). Taylor's hypothesis

of 'frozen turbulence’ was used to convert the time sequeftained from the experiment to a
velocity distribution that could be used as an initial cdiwh for the DNS. The measured bulk
velocity (equation 5.2) was used as convective velocitye Balk velocity was determined by

integrating the axial velocity component over the entikgssrsection of the pipe:

1 R 2m
Upulk = ﬁ//uzrolrole (5.2)
00

The flow was simulated fdrup,x/D = 100 timescales in a domain of BAo allow any possible
measurement errors from the initial condition to be diggigaThe resulting velocity field was
used subsequently as an initial condition for the flow in Emdomains.

For the simulations in a periodic pipe with a length of DQ@he velocity field was extended
from 50D to 10 by laminar flow with a parabolic velocity profile. To elimimaartificially
introduced noise, the simulation was continued for andthgji/D = 100 time scales, resulting
in the initial condition for further investigations in wiid¢he Reynolds number was varied.

To modify the Reynolds number, the viscosity was adjusteitewhaintaining a constant volume
flow rate.

In section 5.4 the results for fully developed turbulentgpifow are presented. Fully developed
turbulent pipe flow was simulated to validate the numericalecand resolutions used. As initial
condition two pairs of counter rotating vortices were inioed in the pipe. The counter rotating
vortices were modulated by a small amplitude axial wavectvicaused an unstable interaction,
resulting in rapid breakdown into fully developed turbulpipe flow.

5.3 Resolution

For the characterization of the flow different methods cauged. It will be shown that, for

the description and characterization of localized turbuflew, the most suitable quantity to use
is the so-called in-plane kinetic energy. The small-scaiactures found by van Doorne and
Westerweel (2009) were identified by considering only thetigbution of the in-plane veloc-

ity components to the kinetic energy. The advantage of tleasuare is particularly present in
localized turbulent flow (Moxey and Barkley 2010), becausemean velocity of the in-plane
velocity components equals zero for all non-swirling pigevB, both in the laminar and turbu-
lent regime. Therefore, by definition velocitiyctuationsare considered only. This avoids the
definition of an ensemble mean velocity for the axial commbnehich is inhomogeneous both
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in time and space. Also, as was found in the experiments itbescin chapter 4, the advection
velocity of a puff is not constant.

In localized turbulent pipe flow, the homogeneity of the &gigection is lost compared to fully
developed pipe flow. Consequently, when the velocity is ayed over the axial direction it
depends on the length of the domain. This is caused by thehfacthe length of théurbulent
part does not change with pipe length. So by increasing tineadolength a longer part with
laminar flow is used in the calculation of the average vejocit

This can be avoided by considering quantities that deperakiah location only. For example
the total kinetic energy:

17 2nuz-l—u +u2
Eai(?) = — / / 0% rdrde (5.3)
00 bulk

Because all velocity components are considered inata¢kinetic energy, it reaches a maximum
value when the flow is laminar. For laminar flow the in-planéoe#gy components are zero,

hence the total kinetic energy is dominated by the axialaigi@omponent. In order to obtain a
relation that equals zero for laminar flow, consider the gbuation to the total kinetic energy by

the in-plane velocity components only. From now on this diars referred to as the 'in-plane

kinetic energy’ and is defined as:

R 2

Ep(2) = — //”f“‘e drde (5.4)

)
TR 2% Ubulk

The distribution of both quantities is given in figure 5.1.télthe difference in scales. The results
shown here are from the current numerical simulation forfhgglRe= 1900. By using the in-
plane kinetic energy, the localized nature of the puff is enclear. Also note the presence of
localized peaks. These peaks were observed before in exgr@s (van Doorne and Westerweel
2009, De Lozar and Hof 2009), but have not been discussettmtiire describing results from
numerical simulations (Willis and Kerswell 2009, Dugue&akt2010).

Van Doorne and Westerweel (2009) pointed out that the résalused by Willis and Kerswell

(2007a) may have been inadequate to resolve these smallstnattures. It is however not sur-
prising why a coarser resolution was used. Since the purpbge simulation was to obtain

life time statistics for turbulent puffs, a large number ohglations had to be done. This results
in opposing requirements for the total computation time #ugdspatial resolution. By decreas-
ing the spatial resolution, the computation time per runreleges. With the same amount of
computation time available, this results in more runs, Whicturn is beneficial for the life time

statistics (Hof et al. 2006, Peixinho and Mullin 2006, Véléind Kerswell 2007a, Hof et al. 2008,
Kuik et al. 2010). The risk of using a reduced resolution &t thot all flow scales are resolved
adequately, and as a result the proper behavior of the éeétstitucture of a puff is not captured.

Table 5.1 gives an overview of previous direct numericalsations of transitional pipe flow. In
this table, the first column shows the length of the domaihwlas used. In the second to fourth
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Figure 5.1: Distribution of the total kinetic energy, as defined ir{5.3) and the contribution to the kinetic energy

z/D[-]

by the in-plane velocity components ority, (5.4)
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Table 5.1: Overview of resolutions used in direct numerg@lulations of transitional pipe flow.

L/D # grid p.oints / modgs Az who

radial | azimuthal| axial D
16mt | 53 16 128 | 0.393 Shan et al. (1999)
16t | 53 64 256 | 0.196 Shan et al. (1999)

5 502 | az/l17+ax/151 | N.A. Faisst and Eckhardt (2004)

5 25 32 30 | 0.167 Wedin and Kerswell (2004)

5 50 48 40 | 0.125 Wedin and Kerswell (2004)

5 50 60 60 | 0.083 Wedin and Kerswell (2004)
81 33 81 321 | 0.078| Priymak and Miyazaki (2004)
81 33 41 641 | 0.039| Priymak and Miyazaki (2004)
16m 33 41 641 | 0.078| Priymak and Miyazaki (2004)
16m 40 +24 4+ 384 | 0.130| Willis and Kerswell (2007a, 2008
8 100 21 170 | 0.148 Shimizu and Kida (2008)

8 80 31 511 | 0.049 Shimizu and Kida (2009)

50 | 25° 33 193 | 0.259 Mellibovsky et al. (2009)

50 40 +24 | +384]0.130 Avila et al. (2010)

50 50 + 32 + 510/ 0.098 Avila et al. (2010§
8m | unstructured grid| 512 | 0.049 Moxey and Barkley (2010)
40m | unstructured grid| 2048 | 0.061 Moxey and Barkley (2010)

33.51| 40 24 256 | 0.131 Duguet et al. (2010)
33.51| 60 48 384 | 0.087 Duguet et al. (2016)
Present paper description

50 64 64 2048 | 0.024 Original resolution (OR)

50 64 64 4096 | 0.012| Increased resolution case (2 OR
50 64 64 1024 | 0.049| decreased resolution case (OR/
50 64 64 512 | 0.098 lowest resolution case(OR/4)
100 64 64 4096 | 0.024 extra long domain case
100 64 128 4096 | 0.024 fully developed turbulence

8legendre polynomials

bPetrov-Galerkin in all directions
®High resolution reference case
dused forRe < 4500
fused for 45005 Re< 6000

%)
2)
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column the number of gridpoints or the number of Fourier nsoal® given that were used in
radial, azimuthal and axial direction. In the fifth columm thxial resolution is given. This was
determined by dividing the length of the domain by the nundéegrid points in axial direction.
When the number of Fourier modes were given instead of théoruof grid points, this number
of Fourier modes were used. Therddy-ourier modes givél independent grid points in space.
The table shows that over the last decade both the resolatidrihe length of the domain, in
which the simulations are done, have increased. Yet, tha@meqgents of a domain of at least
50D long and a resolution to resolve structures smaller thaP9D in axial direction are not
met by any of the listed simulations. In the next section fifeceés of under-resolving localized
turbulent pipe flow are discussed.

5.3.1 Does the axial resolution matter?

In this section the results are discussed for simulatioaswlere done at different spatial reso-
lutions. The main question that is addressed here is: Whaeigffect of the resolution used
in a direct numerical simulation on the dynamics of a puffr #@ current investigation, four
different resolutions are used. The results in the remaiofithis chapter are computed using a
simulation with a resolution that is referred to as ’oridiresolution’ (OR). The choice for this
particular resolution in axial direction was based on thepuneement that the small scale flow
structures, with a length of aboutd®5D observed by van Doorne and Westerweel (2009), could
be resolved. The radial and azimuthal resolutions weredoaséhe resolutions previously used
for the investigation of localized turbulent pipe flow. Thesolution in all directions was chosen
such that the number of grid points was an integer power ohXettion 5.4 it is shown that
this resolution is sufficient to capture the flow statistitully developed turbulent pipe flow at
a Reynolds number dRe= 5300. Therefore, this resolution is considered sufficienesolve
also the flow structures for localized turbulence that cs@ilower Reynolds numbers. In this
section only the influence of modifying theial resolution is considered. Table 5.1 gives an
overview of the spatial resolutions used in other studiaghé same table the resolutions used
for the present investigation are also listed.

For validation purposes one simulation is performed at aluéisn of two times the original
resolution (20R). To show the effect of under-resolvingdkil flow features, two simulations
are done at coarser resolutions. One simulation was atheabriginal resolution (1/2 OR) and
one at one quarter of the original resolution (1/4 OR); see tble 5.1.

The initial condition was the same for all resolution caséBe velocity field was a randomly
chosen field from a simulation of a localized turbulent dine atRe= 1900 in a 5@ long
domain. Before the resolution was modified, this flow field wkswed to develop over several
hundred time scales at the original resolution. Two optiwaee considered for the modification
of the resolution. The resolution could be modified eithereial space (by linear interpolation
and subsampling) or in Fourier space. In the latter methwoel velocity field is first mapped
to Fourier space. In Fourier space the number of modes iceelducreased to the available
number of modes at the new resolution. When the resolutionci®ased, the energy in the
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Figure 5.2: Distribution of in-plane kinetic energyeff) initial condition, (nse) a part of the curve is enlarged to
highlight differences in the initial conditionright) after continuation ovetruyyk/D = 28, for four different spatial
resolutions. Flow is from left to right. The values indicagithe axial location shows smaller values in the right part,
because of passing the periodic boundary.

newly available modes was put to zero. By decreasing théutsso, the energy in the modes
that could not be presented on the new grid were discardemtebafapping the result back to
real space.

The left part of figure 5.2 shows the effect of modifying theaktion on the in-plane kinetic
energy distribution. In this figure the in-plane kinetic egyedistribution for the initial condition
is shown. As could be expected, changing the resolutionali@ffiect the large scale features of
the distribution. However, when the distribution is corsetl in detail (see inset of figure 5.2)
small differences can already be observed. Due to thesd difiatences, it is not expected
that the in-plane kinetic energy distributions will shadentical behavior as the simulation is
continued at different resolutions. This is because of threlmear nature of the Navier-Stokes
equations. However, when all energy containing modes amdved at all resolutions, the differ-
ence is expected to remain small over a longer time.

In the right part of figure 5.2, the in-plane kinetic energstdbution is given after the simulation
was continued for 28 timescales. It seems that the solubiams divided into two classes: one
with an overall higher amplitude and one with a broader loasplitude distribution. The
two simulations with a high amplitude coincide with the twimslations done at the highest
resolutions (i.e. the OR and 20R simulations). This distrdn also seems to be more skewed,
i.e. have a higher amplitude at the upstream part. Next to tie lower resolution cases have
moved slightly farther than the other two, indicating the tesolution also has an effect on the
global behavior of the puff (see also section 5.6.2 on thetiol between the velocity of a puff
and the total in-plane kinetic energy).
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Figure 5.3:left Development of the total in-plane kinetic energy over timght Standard deviation of the in-plane
kinetic energy with respect to the 2 OR cagesetStandard deviation on a logarithmic scale.

To get an estimate of the mutual deviation, the in-planetliénenergy is integrated over the
whole domain. The total in-plane kinetic energy is iniyyalhe same for all resolution cases,
which could already be concluded from the initial in-planeetic energy distribution given in
figure 5.2. This results in the common origin that is shownhia left part of figure 5.3. As
time progresses, the solutions start to diverge. The loaeerésolution at which the simulation
is performed, the sooner it deviates from the higher resmiutases and results eventually in a
larger deviation.

To highlight the difference between the four cases, thedstiahdeviation of the in-plane kinetic
energy distribution with respect to the highest resolutiase is shown over time in the right part
of figure 5.3. Itis clear that the lowest resolution simwatstarts to deviate almost instantly and
is soon followed by the simulation at half the original regmn. For more than ten timescales the
in-plane kinetic energy distribution is the same for the siaulations at the highest resolution.
The non-identical initial condition causes the resultsrfrthe two simulations at the highest
resolution to diverge too. However, before the deviatiantstto become noticeable, the puff has
travelled already more than twice its own length (see alsti@®e5.6.1).

To assess whether the observed spikes in the in-plane &kewdrgy distribution are indeed not
properly resolved in the lower resolution cases, the sedengative of the in-plane kinetic en-
ergy distribution is determined. In figure 5.4 the probaiiistribution of this second derivative
is presented. To determine this probability distributibe in-plane kinetic energy data over
28 time scales is used. The instantaneous second deridagivibution is averaged over time.
Therefore this figure shows the overall behavior and it iarcteat the simulation at the original
resolution is able to resolve all scales. Even if the resmius increased the probability distribu-
tion does not change, whereas for the two cases with redesetlition, the strongest gradients
could not be resolved anymore.
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Figure 5.4: Probability distribution of the second deiivatof the in-plane kinetic energy distribution for four

different resolutions. This shows clearly that the simolat at the lower resolutions (i.e. 1/2 OR and 1/4 OR) are
not able to resolve all small scale features of the distiglout
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In order to exclude the possibility that the phenomena olesehere were only valid for this
particular initial condition, the analysis was repeatethwi different initial flow field. Even with

a completely different initial condition the same behawa@s observed. These results are not
included in this thesis. These observations show that alatroo which is not able to properly
resolve the flow structures in axial direction will give @ifént behavior for the internal structure
of the puff, irrespective of initial condition. Thereforeeveonclude that it is very important to
resolve the small scale features observed in experimeopedy in a numerical simulation. This
requires a higher resolution in axial direction than comiyparsed for investigating localized
turbulent pipe flow.

5.4 Fully developed turbulent pipe flow

Although this investigation was focused on simulating lzeal turbulent pipe flow, fully devel-
oped pipe flow was simulated to validate the numerical proeedsed for the current investiga-
tion. In the current simulation, the number of cores thatlmaemployed for parallel computing
was limited by the resolution in azimuthal direction. By &g the resolution in azimuthal
direction, the number of cores that can be employed is alabldd, which is done in the calcu-
lation of the fully turbulent pipe flow. For the calculatiomoeg domain of 10D is used with the
same axial resolution as is used for the flow at lower Reynmlaisbers, resulting in a resolution
of (Nr,Ng,Nz) = (64,128 4096). The results are compared to datdrat= 5300, obtained by a
finite volume method (Eggels et al. 1994), experimental Pitady Westerweel et al. (1996),
experimental LDA data by denToonder and Nieuwstadt (198@d)maore recent numerical work
by Wu and Moin (2008).

For the initial condition, two pairs of counter rotating tioes with a small amplitude axial wave
is used. The axial wave causes an unstable interaction ofdtiees and quickly results in
fully developed turbulent pipe flow. The agreement of the meglocity profiles (not shown in
a figure) are excellent between the current simulation aedithulation of Eggels et al. (1994)
and the experimental results of Westerweel et al. (1996pandoonder and Nieuwstadt (1997).

In figure 5.5 the velocity fluctuations as a function of theiahtbcation are presented, together
with the results of Eggels et al. (1994), Wu and Moin (2008gsWrweel et al. (1996) and
denToonder and Nieuwstadt (1997). The results obtainedhéyptesent simulations show a
small deviation with respect to the data of Eggels et al. §19%esterweel et al. (1996) and
denToonder and Nieuwstadt (1997). However, they agredlertwith a more recent simulation
at a high resolution by Wu and Moin (2008). These agreemérutw shat the code used for the
present simulations is able to capture the flow statisticarately at a Reynolds number, that is
higher than the number used in the remainder of this chaptes.steep gradients present over
the radial direction poses a strong restriction on the reguiadial discretization (Eggels et al.
1994). Since the resulting statistics were in good agreémvih the results of Wu and Moin
(2008), the in-plane resolution is also considered sufiidi@ the lower Reynolds number cases.
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Figure 5.5: Profiles for the axialif) and radial (/) velocity fluctuations as simulated by Eggels et al. (199%) a
Wu and Moin (2008), measured by Westerweel et al. (1996) andabnder and Nieuwstadt (1997) and the present
simulations.
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5.5 Comparison of fully developed pipe flowRe= 5300 and
localized turbulent pipe flow (Re= 1900

In this section fully developed turbulent flow is comparedte flow at a Reynolds number at
which localized turbulent structures are observed. Inliped turbulent pipe flow, the flow over
a length of about B can be considered to consist of fully developed turbulemt {M/ygnanski
et al. 1975, Bandyopadhyay 1986). However, to the knowledgbe author, no quantitative
comparison has ever been attempted to validate this claim.

Moxey and Barkley (2010) found in their simulations twoical Reynolds numberfke~ 2300
andRe~ 2600. BelowRe~ 2300 a single disturbance convects downstream and renueials |
ized. BetweerRe~ 2300 andRe~ 2600, a single disturbance might split into multifdealized
structures. Abov&e~~ 2600, the localized nature of the structures is lost andesihey used
a periodic domain, fully developed turbulent pipe flow isabed. The localized turbulent flow
is therefore simulated &e= 1900 and the statistics are compared to fully developeditenth
flow atRe= 5300.

In figure 5.6 the in-plane kinetic energy distribution foithbéully developed turbulent pipe flow
and for a puff are given. By considering only this in-planaftiution the localized nature of
turbulent flow atRe= 1900 becomes immediately clear. The contribution is noy eohfined
in space, its amplitude is significantly higher comparedutty fdeveloped flow. The maximum
amplitude observed in figure 5.6 are in excellent agreenwkfiitilence< 5%) with the values
reported by van Doorne and Westerweel (2009) for a puff medsatRe= 2000. When com-
pared to older experimental data by Wygnanski et al. (193155 turbulent puff aRe= 2200, a
good agreement is found. They report that in the interiormdffthe turbulent intensity is about
four times higher compared to fully developed turbulenedipw. In the present study a factor
of up to three times is observed for peak to peak differenagplane kinetic energy for the puff
in comparison to fully developed turbulent pipe flow.

In the next section the mean velocity profile and the turbiusésttistics are compared between
fully developed turbulent pipe flow and a turbulent puff.

5.5.1 Comparison of velocity statistics

Determining statistics for fully developed pipe flow is alsbrivial compared to the case with
localized turbulent flow. Since in the axial direction onlyoait 3M of the domain is filled
with turbulence, the velocity statistics become dependeanthe length of the domain. When
only a single disturbance is present in the domain, the kenfithe part that is turbulent does
not change as the length of the pipe is increased (providetktigth of the pipe is sufficiently
long). Therefore it is important to know what part of the dambelongs to the puff before
determining the flow statistics. Moreover, since the tuehtipuff consists of different regions
(Bandyopadhyay 1986), it is essential to align the turbiulegions properly. This is discussed
in the next paragraphs.
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5300 and localized turbulence occuring the form of a piRe= 1900
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To properly determine the mean velocity, a convective frafneeference has to be employed,
and therefore knowledge of the current location of the psiffiéeded. When the location of
the puff is known, the instantaneous velocity fields can et to get the average flow field.
Furthermore, tracking the location of the puff allows foe #xtraction of the velocity of the puff.
See section 5.6.1 for more information about the velocigrabteristics of puffs.

The location of the puff can be determined in a number of wayalis and Kerswell (2007a)
used the sudden decrease presentin the centerline valtiagk the puff. They needed smooth-
ing of the velocity profile in order to avoid jumps in the locat of the puff caused by vortex
shedding at the trailing edge of the puff. Wygnanski and Qbegne (1973) first acknowledged
this problem and used a threshold ondag/dt + logduy /dt to determine the laminar-turbulent
interface. Eckhardt and Schneider (2008) used the centst ¢fider moment) of the in-plane
kinetic energy distribution to determine the location ofudf pThis resulted in accurate informa-
tion on the location and smooth translational velocity iniation, without the need to smooth
the data. The distribution of in-plane kinetic energy wasalsed by Moxey and Barkley (2010)
to visualize the location of puffs and their behavior overdi They showed that individual puffs
could be identified and tracked over time. Even the splitithguffs could be clearly observed.

Based on these experiences the first moment of the in-plaeéi&ienergy distribution was used
as the measure of the location of a puff, which was then usatigo the puffs. In the numerical

simulation, however, a periodic boundary is present inladi@ction. When the puff extends
over this boundary the first moment of the in-plane kinetiergy distribution can not be deter-
mined in a proper way. Therefore the location of the puff iredained by using the following

procedure:

1. determine the maximum intensity of the in-plane kinetiergy
2. rearrange the data such that the maximum is located mitivegyipe section
3. determine the first moment of the in-plane kinetic eneiggribution

4. rearrange the data such that the first moment of in-plametikienergy distribution is in
the center of the pipe

In the remaining part of this chapter we refer to the first mohwe the in-plane kinetic energy
distribution as the 'center’ of the puff. The rearrangedadzdn then be used to determine the
average velocity distribution in a puff. Note however tha tiverage and the fluctuations of the
velocity are influenced by the possible variations in lengftithe puff (see section 5.6.3 for a
more detailed discussion on the length properties of puifeg average velocity distribution of
a puff has not been compensated for the variations in letigghexpected that this does not have
a major influence on the results presented here.

Figure 5.7 gives an overview for the velocity profiles in abtlent puff. Be aware that the
pipe wall is located at the bottom in every subfigure, as mi@id in partsa andb. The major
conclusion to be drawn from this figure is that the puff doeshave a region with the same
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statistics as for fully developed turbulent flow as was owdly proposed by Bandyopadhyay
(1986).

In the top part of figure 5.7a(andb) contour plots are given for the average velocity distidout
in a puff. The difference in axial velocity with respect teetlaminar flow is given ira, and the
radial velocity distribution is given ib. The flow is from left to right in these figures and red
indicates a velocity higher than the laminar velocity angelbk a region with a lower velocity.
When the information in these figures is combined, the imdgetoroidal vortex emerges. This
was already found by Wygnanski et al. (1975) using conditiignraveraged velocity fields of
hotwire data. Fluid that enters the puff is on average fiestdported from the center towards the
wall and after the transition front has passed, transpdoéet to recover the laminar velocity
profile. However, as was already shown by BandyopadhyayG)19e toroidal vortex is only
an artifact of the averaging procedure and does not occheimstantaneous flow field of a puff.
This was also confirmed by the measurement of van Doorne asteWesel (2009).

As was stated above, the average velocity distribution \elsiated by rearranging the velocity
data such that the center of the in-plane kinetic energy wateced in the pipe, i.e. afD =0

in figure 5.7. The location at which the flow towards the wadid(in figure 5.B) changes into
a flow away from the wall, is at the same location. Hence, thetereof the apparent toroidal
vortex coincides with the center of in-plane kinetic enetgyigures 5.7 to h mean velocity and
velocity fluctuation level profiles are given for three ditfat locations in the puff. The locations
at which these profiles are taken are indicated by three direesin figure 5.7, indicated by,

I andlll .

In figures 5.7c to e the mean velocity profile is shown for the puff by a red line.aA®ference,
the mean velocity profile for fully developed turbulent pffmv at Re= 5300 (blue dashed) and
the parabolic Hagen-Poiseuille profile (green dash-detparen.

Figure 5.7c shows the velocity profile at the trailing edge of the pufdfsated byl in parta,
two diameters upstream of the center in in-plane kineticggnewhere the strongest inflection
point is present. This is consistent with the work of Hof et(2D10), who also identified an
inflection point at the trailing edge of the puff. For the dataation of the strongest inflection
point, the same method has been used as can be found in tHeraeppary material of the paper
by Hof et al. (2010). They claim that the transition to tudnde is caused by this inflection point
in the velocity profile. The presence of an inflection poirgtde the regeneration process of the
puff. They concluded, by considering the vorticity tranddgerm, that vorticity is transported
upstream at the upstream side and downstream at the doamsside of the point where the
inflection is maximal. This leads to the conclusion that tbdieity had to beproducedby the
inflection point, and the inflection point is a vorticity soar However, the inflection point shown
in figure 5.7b is the result of the averaging procedure, but obviously dtifs@ points are also
present in the instantaneous velocity profiles of turbullemt. Moreover, an inflection pointis a
necessargondition for flow instability but it is not sufficientcondition to get an unstable flow
(Drazin and Reid 2004).

The question remains what the order of causality is: Doegflextion pointcausean unstable
velocity distribution, whichresultsin a transition to turbulence or is the inflection poinesult
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(b) the same for radial velocity component-If) velocity profiles for laminar (green), fully developed tutent
flow (blue) and the puff (red) at locatioris1l andlll as indicated ira. (c-€) mean velocity profiles for a puff
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distribution for the velocity fluctuations for the axial weity component of a puff (red, continuous), the radial
component (red, dashed-dot). As a reference the velocityuiitions for fully developed flow is given in axial
(blue, dashed) and radial (blue, dotted) component.
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of the transition to turbulence? Unfortunately all thesehamisms are coupled, and a clear order
of events can not be extracted. Hof et al. (2010) already gawexplanation for the case when
one assumes the inflection point to be the source of the ttamgrocess. Another approach, in
which the vortical structures are the source for the trasib turbulence, can be as follows:

Since it is a self sustained mechanism, one can start at anyipahe cycle. For the expla-
nation of the scenario, the processes that are continupus$ent and are happening in parallel
are presented here as if they happen sequentially. Assuinéiakcondition a small patch of
turbulent fluid, that is spanning the entire diameter anddgio1D long. Consider a convective
reference frame with the same velocity as the puff, whichpigraximately equal to the bulk
velocity (see also section 5.6.1). Due to the velocity peofihe perturbed fluid in the center of
the pipe will leave the domain on the downstream side of tiérobvolume, whereas perturbed
fluid close to the wall will leave on the upstream side.Thdyrbations leaving the domain on
the upstream side interact with the incoming laminar vé&yogiofile and provide a finite ampli-
tude disturbance needed for the laminar velocity profilegcdme unstable. The breakdown of
the laminar velocity profile into turbulence provides thiea énergy to drive the velocity fluctua-
tions. Hence, with these renewed velocity fluctuationsptioeess is back at its initial condition
and the process can continue. Note that in this scenarimfteetion point in the velocity profile
is the effect of the vorticity distribution and transporbpess.

The average velocity profile in the center of in-plane kimetergy ¢= 0), which was used to
align the puff to obain the average velocity distributiomgiven in figure 5.d. The velocity
profile is closest to that of the fully developed turbuleniflcaompared to the velocity profiles
adjacent to this location. This region corresponds to tiggoreidentified by Bandyopadhyay
(1986) as the fully developed turbulent region. Indeed trexage velocity profile assumes a
shape close to the velocity profile for fully developed tuelo pipe flow, but is actually never
reached. Moreover, according to Bandyopadhyay (1986)e¢hisn extends over five pipe diam-
eters, but appears to be much shorter here. When the vepwoiile is observedB downstream
of the puff alignment location (figure %), the flow is already redeveloping into laminar flow.
The fluid in the core region is accelerated and deceleratadthe wall, see figure 5& Hence,
the region in which nearly fully developed flow is observeaséd on the average velocity pro-
files, is limited to a small region close to the center of thelane kinetic energy.

The velocity fluctuations at each location are given in figbr&-h. The mean velocity fluc-
tuation level for a puff for the axial velocity component ajiwen by continuous lines. The
dashed-dotted lines represent the profiles for the meawriteftuctuation level in radial direc-
tion. As a reference, the mean velocity fluctuation levelftdly developed turbulent flow in
the axial direction (dashed) and the radial direction @ittare given. Obviously, for fully de-
veloped turbulent pipe flow the profiles do not change witlakbdcation, and therefore these
distributions are the same in all three figures. In thesedigthie mean velocity fluctuation level
is not normalized by the friction velocityu* = /Tw/p, Tw = v0U/dy) as is common for fully
developed turbulent pipe flow, but by the bulk velocity ir&te The reason for this is that the
friction velocity depends on the location within the puffidais small compared to the friction
velocity for turbulent flow. Especially in the relaminariiwan region of the puff£/D > 5 in fig-
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ure 5.7), where the velocity gradient at the wall gets clogbé gradient for laminar flow; When
the data is normalized by the local friction velocity thismaresult in a very large value for the
mean fluctuation level in the puff, and therefore the meaaais/ fluctuation level with respect
to the bulk velocity is given in figures 5.7h.

At the location in axial direction where the inflection pohds the highest value (locatidi,
the velocity fluctuations at the centerline of the puff arengmall, as can be seen in figure 6.7
Although the fluctuation level at the centerline of the pgemall, the average velocity is already
significantly lower compared to the theoretical value fonilaar flow (see figure 5¢j. Closer

to the wall, the amplitude of the fluctuation level and theimagover which a higher level is
observed is significantly larger than for fully developerbtdent pipe flow.

In the central region of the in-plane kinetic energy disttibn (figure 5.19), the fluctuation level

is almost homogeneous over the entire pipe diameter. Whapaong the fluctuation levels at
the centerline in figures 5f7andg, a rapid increase in downstream direction is observed. This
is in agreement with the jump observed in the axial velooitsnponent at the centerline of the
pipe in the classical image of a puff: see e.g. Wygnanski dmah@pagne (1973), van Doorne
and Westerweel (2009).

Downstream of the center in in-plane kinetic energy (i.ezf® > 0), the mixed fluid relaminar-
izes. The relaminarization is initiated close to the wadlcan be seen in the velocity profile in
figure 5.7e. The velocity fluctuation level close to the wall is strongdgluced, and the maximum
of the turbulence intesity moves towards the center of the ffigure 5.1). This corresponds to
the conical region observed by Bandyopadhyay (1986).

In conclusion; figure 5.7 summarizes the general behavitiveopuff. When the velocity profiles
are conditionally averaged with respect to a frame of refeeemnoving with the velocity of the
puff the image of a toroidal vortex emerges. The puff cossi$three regions: On the upstream
side, the flow close to the wall is perturbed by disturbanatttavel upstream with respect to the
puff. These perturbations cause the finite amplitude distuce needed for the laminar velocity
profile to become unstable. The kinetic energy that is caoethin the laminar velocity profile
gets released and becomes available for fluctuations (R666) and results in a well-mixed
region that corresponds to the center of in-plane kinetazggn In the downstream direction, the
flow relaminarizes and the maximum fluctuation level shiftsards the pipe axis.

5.6 The behavior of a single puff

In this section the results are presented of puffs simulatedifferent Reynolds numbers. An
overview of the total simulation time for each case is givemable 5.2 as a reference. The puff
that was simulated &e= 1800 decayed after approximatély,,k/D ~ 300, and therefore this
simulation was not continued beyond this.

In the previous section the interior of a puff was comparett \iilly developed turbulent pipe
flow. It was assumed that the central region of a puff can bsidened to be the same as fully
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Table 5.2: Total simulation time for each Reynolds numbseca
Reynolds number| 1800 1900| 1900| 2000| 2100 | 2300

domain lengthD] | 100 | 50 | 100 | 100 | 100 | 50
sim. timet upyk/D | 305 | 1350| 400 | 400 | 400 | 850

developed turbulent pipe flow. From the analysis in secti®nlht became clear that this is not
valid. Next to the difference in the interior flow field, theckdized nature of turbulence for a
puff introduces new quantities that are unique to a puft, g propagation velocity, that are not
defined for fully-developed turbulent pipe flow. The propestof the instantaneous propagation
velocity of a puff are discussed in section 5.6.1. Becauseotlif has a finite length given its
localized nature, a length of the localized domain can bendéfi With that theotal in-plane
kinetic energy is also finite and is independent of the ledtine domain, as long as the entire
puff is taken into account. Obviously it does depend on thgtle of the domain, if the domain
is shorter than the puff. The relation between the totallame kinetic energy, the length of the
puff, and the velocity of the puff are discussed in sectiossXand 5.6.3.

5.6.1 Motion of an individual puff: its velocity

Due to its localized nature, the puff has a certain velocjtyvbich it propagates along the pipe.
Wygnanski et al. (1975) concluded that, based on their axgetal data, the velocity of an
equilibrium puff moves at approximately the bulk velocityfew years earlier Lindgren (1969)
showed that the puff velocity decreases with increasingnBlels numberReg. When theRe
range is reached where splitting puffs and eventually ghtis grow in length over time (slugs)
are observed, the trailing edge velocity continues to dseevith increasing Reynolds number.
The leading edge velocity branches off and increases.

Lindgren (1969) did not report on the convection velocitystructures forRe < 2000. Hof

et al. (2005) took measurements for localized structurésvegr Reynolds numbers. For their
measurements &e= 1500 toRe= 1800 a very interesting behavior is observed. In this rarige o
Reynolds numbers, the turbulent structures have a fingerhie (Hof et al. 2005, 2006, Peixinho
and Mullin 2006, Willis and Kerswell 2007a, Hof et al. 2008jiKet al. 2010, Avila et al. 2010).

In order to get an estimate for the variations in puff velgdiof et al. (2005) determined the
velocity in two parts of the pipe separately. In the firsD2&fter the disturbance the average
velocity was used for théow velocity estimate. The average velocity of the structurethe
subsequent 37 was used to get thieigh velocity estimate. No conclusions were drawn by Hof
et al. (2005) on this behavior while there are at least twsibds explanations:

(i) Since the structures have a high probability of decayhedbserved Reynolds number range,
it is very likely that decaying structures were used for tleéednination of the velocity. This
leads to one possible explanation: during the decay of aikemb puff the structure accelerates
(see also section 5.6.2), and therefore a higher velocdipserved in the second pipe section.
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(i) Another explanation is related to the formation of tuldnt structures. In the experiments
of Hof et al. (2005), the velocity of the structures was dwieed directly after their creation.

When the disturbance is applied a puff is not instantly fatmi@stead, the introduced velocity
fluctuations have to be dissipated or redistributed to eragtuff. This process can result in a
different convection velocity of the structure (see alsctisa 5.6.2). Therefore it is expected
that the behavior of a disturbance directly after its cogais different from the behavior of a

puff at that particular Reynolds number.

Kuik et al. (2010) observed in their experiments similardgbr for puffs as Hof et al. (2005),
see chapter 4. Kuik et al. (2010) determined the velocitydiaurbance over three consecutive
pipe sections (each with a length~ 123). Over the entire Reynolds number range that was
considered, it was found that the velocity in the first pipetise was lower compared to the
velocity in the other two pipe sections. While the puff velas in the following two pipe
sections were similar, yet uncorrelated. This implies thatpuff fluctuates in velocity during
its advection through the pipe. Only structures that sedilkeyond this point were taken into
account in the velocity determination. Therefore it is nlaiugible that the acceleration that was
found between the puff forming in the first pipe section ang klocity in the following two
sections, was caused by the decay process of the puffs. Hersceoncluded that a disturbance
that is introduced in fully developed laminar pipe flow haswaér velocity during its formation
into a turbulent puff, compared to its final velocity.

How a turbulent puff is formed from a disturbance has beearesively investigated by Duguet
etal. (2010). They studied the formation of a turbulent puth an edge state as initial condition.
The edge state is a state between laminar flow and the fullgldeed turbulent flow state. It is
a structure that is localized and is able to sustained i(d&dilibovsky et al. 2009). When the
amplitude is slightly increased, it develops rapidly irtie turbulent state and returns directly to
the laminar flow state when the amplitude is slightly deadas

The space-time plots given by Duguet et al. (2010) show tmatdisturbance initially has a
higher velocity and decelerates as the puff is formed. Thia contrast to the observations in
experiments by Hof et al. (2005) and Kuik et al. (2010) andlmacaused by the fact that in the
experiments not the edge state, but a local disturbancedtognitialize the turbulent state. It
is clear from all these investigations that during the faroraof a turbulent puff its convection

velocity is not the same as in its final state.

De Lozar and Hof (2009) also determined the velocity of paffer a similar Reynolds number
range as considered by Kuik et al. (2010). De Lozar and H@92@eport that the puff velocity
is the same irrespective of its position in the pipe, i.e.wblecity does not change with down-
stream distance. This observation confirms the classieal of an equilibrium puff, which was
introduced by Wygnanski et al. (1975). However, it disagreh the findings of Kuik et al.
(2010) and Hof et al. (2005). Therefore the question remahmether or not the puff moves with
a constant velocity. A varying velocity would be indicatioklarge scale dynamical processes
within the puff. Which might provide a clue for the lifetimebavior of puffs at low Reynolds
numbers.

The velocity characteristics of puffs are investigatechgghe present direct numerical simula-
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tion. The advantage of numerical simulations is that bottshatial distribution of a puff and its
development over time are available. The behavior of a pariflee captured in a single space-
time plot, which is given in figure 5.8. The red region in thiguie represents the puff. On
the horizontal axis the spatial extend of the structure vemin a reference frame that moves
with the bulk velocity. The convective frame of referencesgd to highlight the motion relative
to the bulk velocity. In vertical direction the time evoloi is shown. In this figure, the color
contours show the magnitude of in-plane kinetic energy @myalscale, where red corresponds
to Ejp = 10~ and white toEj, = 10 (the definition forEjp is given in equation 5.4).

When the puff would have moved at the same velocity as theualdicity it would have appeared
as a vertically aligned region in this figure. The puff showrfigure 5.8 is moving faster than
the bulk fluid, i.e. there is a net transport of fluid from thadang edge to the trailing edge of
the puff. The behavior shown in figure 5.8 is opposite to whas wbserved by Eckhardt and
Schneider (2008). From a simulation at the same Reynold$euthey found a convection
velocity that was lower than the bulk velocity (see also fgbii9).

Next to the mean motion, it is clear from this figure that ihgantaneouselocity of the puff

is not constant over time. In the right part of figure 5.8 thetamtaneous velocity of the puff
is plotted, the dashed line indicates the bulk velocity. Vhkcity at each time instant was
determined by applying a linear fit to the location versusetisata over 20 units of time. The
location of the puff was determined by the method describesgction 5.4. Applying a linear fit
in this way results in a moving average velocity of the pufijeh clearly shows the instantaneous
behavior of the puff. When the data was fit over more than 2& wifitime the curve in the right
part of figure 5.8 would have been smoother, and less smoatisliorter time was used. The
currently selected integration time has been chosen take¢kie behavior observed in the left
part of figure 5.8. Most of the time the puff moves faster thHamtthe bulk fluid, however for
a considerable time the puff is moving at a velocity whichoiweér than the bulk velocity. It is
clear that the velocity of a puff is not constant at a consReynolds number. It is emphasized
that the bulk velocity in the DNS is maintained constant agithe entire simulation.

Shimizu and Kida (2009) also found a fluctuating velocitytfoe puff in their simulation. They
concluded that the variations in puff velocity were causgd/driations in bulk velocity. The
variations in bulk velocity were present because they pitesd the pressure gradient that drives
the flow instead of the mass flux. When the portion of turbulemt fluctuates the total resistance
of the flow varies, which results in a fluctuating bulk velgcifThis reveals directly the major
drawback of prescribing a pressure gradient in a trangtipipe flow simulation. Because of
the fluctuating bulk velocity, the Reynolds number is notdixd herefore it is not clear from
their simulations what the motion of the puff would be at adiXeynolds number, i.e. under
constant mass flux conditions. To conclude: the resultagivéigure 5.8 confirm the behavior
of puffs observed in the measurements by Kuik et al. (201@)tley disagree with the earlier
findings of Wygnanski et al. (1975) and De Lozar and Hof (200%ky report that the velocity
of a puff is constant.

The mean velocity of a puff can be determined by applying edirfit to all the location data
of a single puff over time. This was done for four simulati@gifferent Reynolds numbers.
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Figure 5.8:Left) Dynamics of a single puff #&e= 1900. The colors give the amplitude for in-plane kineticrgge
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vertical direction upwardsCente) Number of peaks detected over time (see section Righ) Moving average
velocity of the puff taken over 20 units of time: an illustoat of the instantaneous behavior of the puff. The mean
velocity of a puff for these data igyf = 1.04 Upuik
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The results shown in the next figures are from simulationseedaora domain with a periodic
length of 10M. In section 5.2 it was already described how the Reynoldsbeunwas changed
and how the simulation was initialized. From the four sintiolas the mean convection velocity
of the puffs was extracted, and the results are shown in fi§l@e To get an estimate for the
variations in velocity, the instantaneous velocity wasedeine as discussed previously. The
standard deviation of this instantaneous velocity witlpees to the average velocity is used as
an indicator for the variations in convection velocity. Téreor bars in figure 5.9 doot show
the error on the mean velocity, but represent the standaidtan of thevariationin convection
velocity of a puff.

In figure 5.9 the experimental results obtained by Hof et2006), De Lozar and Hof (2009)
and Kuik et al. (2010) are given as a reference. The puff wedsahat were found by Eckhardt
and Schneider (2008) and Willis and Kerswell (2008) areiigantly below the experimental
data and the velocities found in the present simulationgirgttit was suspected that the resolu-
tion at which these simulations were performed were not aalecto resolve the flow structures
and thereby the global behavior of the puff. This has beeffiegiby continuing the simulations
given in section 5.3 in a 3D domain at the lowest resolution (one quarter of the resmtutsed
for the other cases). The resulting average velocity wakig#erthan the velocity found at high
resolution. An explanation for the higher velocity is that all velocity scales could be resolved
and that this is effectively the same as simulating at a |dReynolds number. The additional
damping due to insufficient spatial resolution can be careid as an increased viscosity. Fol-
lowing the trend given by the experimental data in figure B.8,concluded that the velocity of
the structure should be higher at this lower Reynolds numbiegrefore it is concluded that the
difference in resolution is not the explanation for the édifference in puff velocity.

In the work of Duguet et al. (2010) only the velocity of stues forRe> 2000 are reported.
The velocity of a puff aRe= 2000 is approximately 3% higher in their simulations tha@ th
velocity found in the results of the present simulations.éWlkonsidering the resolutions (see
table 5.1) it is surprising that the simulations of WilliscaKerswell (2008) and Duguet et al.
(2010) show such a large difference for the puff velocitycsithe resolutions are comparable.

Another explanation for the difference in velocities foundexperimental data and numerical
data can be the domain size. In an experiment there is onlygéespuff present in a domain
which is at least a few hundred diameters long. The lengtthefdomain in a simulation is
limited and has a periodic boundary, this results in the &tman of not a single puff, but an
infinite train of puffs. The length of the domain used by Dugeteal. (2010) isshorterthan the
domain used by Willis and Kerswell (2008). Therefore it ipeated that the interaction between
the puffs is more significant in a shorter domain and that geocity of the structure is influenced
more.

To measure the amount of interaction between successif& pahsider the centerline velocity.
When the centerline velocity is able to recover to the thiszakvalue for laminar flow, i.e. two
times the bulk velocity, the puffs can be considered inddpahand no interaction is present.
Hence, the level to which the centerline is able to recovarnseasure for the amount of inter-
action with itself. The domain size in the current simulatwas set to 10D and the centerline
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velocity deviates only @1% from the theoretical value. In the B@omain the difference has
already increased up to@%. Because the laminar velocity profile provides the enezgyired
for the turbulent puff to be sustained (Rotta 1956), it issesial that a fully developed laminar
velocity profile is entering the puff to get the correct babator the puff.

In this section we showed that the mean advection velocity @iff was correctly captured by
the current simulation. Furthermore, it was shown thattiséaintaneous velocity of a puff is not
constant. It is expected that both the domain size and tloéutesn at which the simulations are
done influence the instantaneous behavior of the puff.

5.6.2 Total in-plane kinetic energy related to puff velociy

In the previous section it was shown that the velocity of d jgufiot constant during the lifetime
of the puff. An unanswered question that remains is: Whalésreason for this variation in
velocity? Directly related to this question is what deteres the velocity of a puff.

In order to answer these questions, consider the followindehof a puff that was introduced
by Rotta (1956). Assume that the puff consists of a singlesiteon front, and take a control
volume around this transition front. The inflow conditioraigully developed laminar velocity
profile, and on the outflow side the flow is that of a fully deysdd turbulent pipe flow. The
transition front inside the control volume redistributbe welocity profile from laminar to tur-
bulent. It was already shown in section 5.4 that the velqgaitfiles for the interior of the puff
are not the same as for fully developed turbulent pipe flownewertheless it is a good initial
approximation for the problem at hand.

By applying a momentum balance, Rotta (1956) showed thapraesure shoulohcreaseover
the transition front. The pressure increase does not demetite velocity of the transition front.
This phenomenon has already been confirmed experimentallhé upstream part of a slug
by Draad (1996) and for a puff by van Doorne (2004) and Kuil &{2910).

When an energy balance is considered over the same conlwoh&pthe following relation can
be derived (Rotta 1956):

Ay
Eu+ﬂDubu|k/TodZ— Ed — Ef =0 (5.5)
2

whereEy is the energy dissipation, aritt the energy associated with the velocity fluctuations.
Both terms are always positive and can ordynoveenergy from the system. The second term
gives the production due to the friction at the wall and delseon the length of the puff. This
contribution is always positive and for now take this cdmition to be constant; see section 5.6.3
for more information about the length variations of a puff.

The remaining ternt, gives the contribution caused by the rearrangement of tamelocity
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profile by the transition front and is given by:

contribution by changing velocity profile

1 1
Eu— RO 2 [ ()P ndn—2 [ () *nan
0 0

1 (5.6)

1
~(2+4ur) |2/ (@)?nan -2 [ @)?nen
0 0

-

-
contribution by pressure drop over control volume

whereu’ = uL/upyk anduf = ur /upyk are the normalized average laminar and turbulent velocity
profiles respectively anglthe normalized radial coordinate/R. The normalized convection ve-
locity of the puffis given byj’lc‘,uff = Upuff/Upulk- The firstterm, indicated bgontributionbychangingvelocityy
gives the direct contribution to the energy due to the charfigiee velocity profile, from laminar

to turbulent. The energy caused by the pressure differemt®th sides of the control volume is
indicated bycontributionbypressuredropovercontrolvolumienis term has been rewritten into
the present form by using the momentum balance over theatmalume. Equation 5.6 can eas-
ily be integrated after substituting the parabolic velgitofile (u_/Upuik = 2[1— (r/R)?]) and

a power law relation for the turbulent velocity profiler /upuk = [1— (r/R)]Y/") (Schlichting
1968), wherdR = D/2 is the radius of the pipe. When a valuecf 6 is substituted, the integrals
can easily be solved, and the equation reduces to

- p
By = DUl (2 ~1.077— (2+ uguﬁ> 1.333— 1.021) . (5.7)

E, can be both positive and negative, depending on the puftitgldt equals zero for a transition
front velocity (upys) of 1.05 times the bulk velocity. From figure 5.9 itis clear thatRe> 1900
theaveragevelocity of a puff drops below this value. When a puff is aldstrvive in this regime
it means that the only energy source that is left is the bictt the wall.

However, it was shown in the right part of figure 5.8 that th&antaneous velocity of the puff
shows large variations. From equation 5.7 it is clear thatamount of energy that is available
for conversion into fluctuations and dissipation also flatés. To get an estimate of the turbulent
fluctuations in a puff, the in-plane kinetic energy can begnated over the entire domain. This
guantity is independent of the size of the domain, as longasmtire puff is inside, because the
length of the puff is finite. It is expected, based on equat®® and 5.6, that the total in-plane
kinetic energy will be highly correlated to the velocity bktpuff. To illustrate this, a scatter plot
with these two quantities is given in figure 5.10. In this fegtine total in-plane kinetic energy
is given with respect to the instantaneous puff velocity,diéfferent Reynolds numbers. In this
figure, the quantity is also shown for tRe= 1900 case for two different domain lengths. These
two data sets show a large overlapping region. The puff iray@ the shorter domain shows a
larger variation in its velocity. This difference might bigher due to the limited domain length,
or due to the fact that the observation time for the shortenaln case was longer.
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Figure 5.10: The correlation between the instantaneowsiglof a puff and the total in-plane kinetic energy. Only
the data foRe= 2300 before the structure splits into two separate puffeansidered in this figure. It seems that
the behavior of the puff is independent of Reynolds numbdrthat the velocity is determined by the total amount
of in-plane kinetic energy.
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Two puffs that are represented in this figure show speciadlieh The puff atRe= 1800
decayed during the simulation, this is visible in figure SoyGhe red lines that disappears at the
bottom right of the figure. Note however that the behaviorhi$ tlecaying structure confirms
the hypothesis that a decaying structaceeleratesluring its decay.

The other puff that showed special behavior was simulatdgieat 2300. Initially there was
only one puff present in the pipe. After simulating fas,,k/D ~ 500, the structure split into
two separate structures. Only the data is showr tiggx/D < 500, thus for the time aingle
structure was present.

In figure 5.10 the same trend is observed as would be expeatsdilon equation 5.7. The total
energy content in the fluctuatiomgereasedor decreasingransition front velocity. Equation 5.7
does not contain the Reynolds number explicitly. Biveragevelocity of the puff does depend
on the Reynolds number, as was shown by figure 5.9. Nevestelhen considering the total
in-plane kinetic energy as function of the puff velocity thfferent Reynolds numbers given in
figure 5.10, the weak dependence of the Reynolds number gedrasonfirmed. The behavior
of a puff is determined by the energy content and its assetiatlocity. The route of a single
puff through the energy-velocity domain was followed in @rdo determine the causality of
events, i.e. does the decrease in velocity cause the imcdanergy? One would expect to
observe a small latency between these events if the amaisedby the other. Unfortunately no
clear trend was observed: in some cases the energy contesdged rapidly while maintaining
its velocity. On other occasions a direct coupling was fowardincreasing energy was observed
simultaneously with a decrease in velocity, or vice vershis behavior was observed for all
Reynolds numbers. By changing the Reynolds number onlyrdguéncy of occurrence in a
certain part of the energy-velocity domain is changed. As stated before, the puff simulated
atRe= 1800 decayed: the flow in the entire domain became laminathi®single observation,
it seems that this decay is associated with a high puff vila@eid a low in-plane kinetic energy
content. For future research it is worth to investigate ifuff pannot recover once a particular
puff velocity threshold is exceeded, or if there exists altot-plane kinetic energy threshold,
below which the puff cannot sustain itself anymore.

It is clear from equation 5.7, and especially figure 5.10t tha frequency of occurrence close
to these thresholds reduces for increasing Reynolds numi@s can be an explanation for
the observed increasing lifetime for increasing Reynoldsiner (Hof et al. 2006, Peixinho and
Mullin 2006, Willis and Kerswell 2007a, Hof et al. 2008, Kugk al. 2010).

Here we showed that the instantaneous total in-plane kieagrgy in the puff is strongly related
to the instantaneous velocity of the puff. Unfortunatdlys inot possible to extract the causality
of events, i.e. if a decrease in in-plane kinetic energyseshe puff to slow down or that the
velocity of the puff itself is the driving factor. Nevertlesis, a possible explanation is given for
the decay process and the lifetime statistics observedeiiqus studies.
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5.6.3 The length of a puff

The localized nature of a puff introduces a 'new’ length saaique to this type of flow: the
length of the puff (see also figure 1.5). Due to the smoothfiaxte at the downstream side of
the puff it is hard to determine the exact length of a puff @adl981). Therefore a large range
of lengths for a puff are reported in the literature. Howeweany authors do not measure the
length of the puff themselves, but refer to classical worl.(8/ygnanski and Champagne 1973,
Wygnanski et al. 1975). Wygnanski et al. (1975) showed thatléngth of a puff appears to
be constant for a given Reynolds number and the length iseobttier of 2@. However, they
also showed in their paper that the length of a puff decrefasd?®e < 2200 and increases with
downstream distance when the Reynolds number exceeds E3®@r the length observed at
each measurement station was the same for a given Reynatusenand all puffs at a given
Reynolds number showed the same behavior, or the length isongtant at a given Reynolds
number as was stated in their conclusion.

Nishi et al. (2008) reports that the puff length ranges betw® and 2@ and states that the

length of a puff depends on Reynolds number. Unfortunatedy tlid not report on the length of

puffs they observed themselves. By using a flow visualipati@thod, Bandyopadhyay (1986)
divided the puff into three regions, from which the totaldémcan be deduced: a transitional
region, a fully developed turbulent region, and a relamaaion region.

The transitional region, in which the laminar fluid is corteer into turbulent motion, extends
over 3 to D. The second part contains fully turbulent fluid and is apprately D long.
However, as was already shown in section 5.5, fully devaldpebulent flow is not observed
in the current investigation. Moreover, the region in whiklh average velocity profile is close
to fully developed turbulent pipe flow is much shorter thgmoreed by Bandyopadhyay (1986).
The length of the remaining and longest part is not specifx@ti@tly and depends strongly on
what the observer considers to be part of the puff. Nevertiselsince it is the longest part, the
total length of the puff has to exceedl5

In a more recent experimental investigation, De Lozar antl(B009) only state that the dis-
turbances they applied generated puffs of constant lengpifortunately, it is uncleawhatthe
length of the structure is.

In the current simulation the length is determined by cosmsid) the in-plane kinetic energy
distribution. The reasons for selecting the in-plane kinehergy to extract the instantaneous
behavior of the puff also apply here. In the previous sedt@nfirst order moment of the in-
plane kinetic energy distribution was used to extract tlvation of the puff. For an estimate of
the length of the puff, the second order moment of the ingldnetic energy is used.

Figure 5.11 shows the correlation between the instantanesocity of the puff and the length
of the puff. The horizontal axis gives the velocity with respto the bulk velocity, similar to
figure 5.10. The length of the puff is given on the verticakaxi

In this figure two states of a puff seem to be present. One ®ateuff where the length of
the puff is does not depend on either Reynolds number or tleeitye of the puff and remains
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limited. The second state is a puff with a maximum velocityado the bulk velocity. The puff
has a variable length instead of a variable velocity oveetinihe puff is in the first state for
Re< 2000, and the length seems to be bounded betwBeamd D.

As the Reynolds number is increased above 2000 the upperdboyrof 3, seems to be

breached. If the Reynolds number is increased even morestigghl increases dramatically,
and the second state is reached. In this state the veloeitys® be limited by the bulk velocity
(value equal to one in figure 5.11).

The large magnitude reached for the pufRa&t= 2300 is mainly caused by the method the length
is determined. After observing the in-plane kinetic enaliggribution at the moment the longest
length was reached, it was clear that the major increasengtHevas caused by a relative small
contribution of in-plane kinetic energy downstream of thf pit was as if a fluid package, con-
taining velocity fluctuations, was shed from the main pufhéil the fluctuations in this package
decayed, the measured length decreased again. This alammexphy the dramatic increase was
not observed in the total in-plane kinetic energy (figuré®h.Dnly a small amplitude fluctuation
was shed from the puff, which hardly contributes to the totadlane kinetic energy.

Comparable to figure 5.10, figure 5.11 contains limited amofidata for theRe= 2300 case
(onlytupyk/D < 500). A very short time later the puff splits into two parts)eve the new puff is
generated downstream of the existing structure. The nesvigigted puff convected downstream
during its formation process faster than the parent puffrii@uthis phase, the in-plane kinetic
energy contained in the puff was also lower, which is coesiswith the observations in the
previous section. Once it was well established, the ang#iia of the same order as the parent
puff as is its velocity. By this single observation an exjlthon for the generation of new puffs
from existing puffs is given, that is consistent with theatgn between the in-plane kinetic
energy and puff speed.

When the Reynolds number is increased even more, the slugeeg entered (Wygnanski and
Champagne 1973). In this regime a continuously growingsire is observed. Lindgren (1969)
already showed that the velocity of the rear transitiontfitecreases with increasing Reynolds
number. Based on equation 5.5 it becomes clear that the @anobwmergy released by the
transition from laminar to turbulent also increases. Hithés energy has to be dissipated, for
example by creating stronger gradients and smaller stestor by increasing the length of the
structure, so the energy can be converted into more fluid weitbcity fluctuations. The latter of
these two options has already been observed, which led wefiration of the slug regime, i.e.
continuously growing structures.

Up to now it is still unclear what drives the velocity of thansition front. However, from the
current investigation the effects of the changing traosifront velocity on the total energy and
the length of the puff can be explained and surprisingly dostrongly depend on the Reynolds
number that is considered.
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Figure 5.11: The correlation between the length of the pudf is instantaneous velocity. The length of the puff
does not depend on the velocity of the puff. R < 2100 the velocity is bounded ts 5D. This boundary is
breached wheRe> 2000. Only the data foRe= 2300 for timetuyyk/D < 500 are taken into account, this is just
before this structure splits into two puffs.
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5.7 Dynamics of structures within a puff

One of the main motivations to perform a simulation at a veaghtresolution, was the dis-
crepancy between small scale structures that were obserpztimentally (van Doorne and
Westerweel 2009) in in-plane kinetic energy and the avbiledsolution in simulations done so
far. The high energetic peaks in in-plane kinetic energyeolesd by van Doorne and Westerweel
(2009) were reproduced in an experiment by De Lozar and Ha®4R They showed the in-
plane kinetic energy distribution for two individual readtions. The distributions revealed that
the location of the high energetic peaks were at differecations. This shows that the peaks in
in-plane kinetic energy are not stationary structures titsael at the same velocity as the puff.
Unfortunately, De Lozar and Hof (2009) did not comment ondhigin and behavior of these
energetic peaks.

In this section a brief description of the characteristitthese peaks is given, starting with the
identification and tracking of the high energetic peaks iplane kinetic energy. In section 5.7.2
their dynamical behavior is discussed. Since van Doorné/desterweel (2009) only measured
a single quasi-instantaneous puff, the dynamics of therebdepeaks could not be resolved.
Based on their single measurement and their comparisonflavthvisualizations they deduced
that the high energetic peaks are caused by hairpin vortingke final section a single peak is
followed and the underlying structure is discussed.

5.7.1 Peak identification and tracking

Before the characteristics of the peaks can be identifiedeak’ event has to be defined. Con-
sider the in-plane kinetic energy distribution given in figb.1. To extract the location of the
peaks, the obvious approach would be to take the first damvat the signal and detect the zero-
crossings. However, this would result in a very high numbeletected peaks, since every small
wiggle in the in-plane kinetic energy distribution would identified as a peak. In this way the
significance of the peak is not accounted for. We are loolkangife dominant peaks, and should
disregard the smaller peaks. To account for the amplitudbeopeak, the following definition
and procedure is used to identify the most significant peaks o

First, the global maximum of the in-plane kinetic energyssablished. This peak is then fol-
lowed over time by a nearest neighbor approach: At the nex@-8tep all local maxima are
determined by identifying the zero crossing for the demadf the distribution. Then the peaks,
i.e. zero crossings, closest to the peaks that have to desttare selected. Because in general
the distance between peaks is much larger than their reldtsplacement between two con-
secutive time steps of the simulation, the nearest neigapproach can be successfully used.
Finally two checks are carried out: first it is checked if tleak displacement does not exceed a
predetermined limit. The second check is whether two peals merged and became the same
peak. If either of these two events occurs, the tracking aif plarticular peak is terminated.

When the current peaks cease to contain the global maxinhemewly identified peak corre-
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Figure 5.12: The development of the amplitude of a peak dmer.tOnly the peaks that once become the global
maximum are taken into accoufpthe number of identified peaks that are simultaneously pteser time.

sponding to the global maximum is followed too. This proaedwas implemented as a post-
processing step. Therefore it was possible to apply thespitre both forwaréndbackward in
time. This allowed for tracking the entire lifetime of thgseaks. A drawback of the currently
used method is that the total number of peaks may be undeedstl. This is because a peak
that never becomes the global maximum over time is not ifiedtiand therefore is not tracked.
Despite this drawback, the clear and robust definition isepred.

5.7.2 Peak characteristics

In the present simulation both the location and the ampdinfdhe peaks are available over time.
In this section the characteristics of the peaks themseleepresented.

In figure 5.12 the amplitude variation of all peaks within aithime interval are presented.
Each line in this figure represents the evolution of an irdiial peak. The horizontal axis gives
the progress in time. On the vertical axis the amplitude effibak is shown. Over time, the
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amplitude of a single peak does not only increase monottyiend after its maximum has
been reached decreases monotonically, until it is not ptesgymore. Instead, the amplitude
shows large variations over the lifetime of a peak. Look faraple at the first peak, i.e. the one
present atup,k/D = 405, in figure 5.12. The amplitude of the peak first increabes decreases
for a very short time and finally increases to reach its globaximum before decreasing again.
Next to the very dynamic behavior, it shows that the energyaioed in a single peak can change
tremendously. The amplitude of a single peak can increase afactor 20 over its lifetime.

In the top part of figure 5.12 the number of peaks is given trasanultaneously present in the
pipe. This value has been determined by counting the nunfbdewtified peaks at every time
instant. Inherent to the tracking method, always at leastp@ak is present, which corresponds
to the global maximum. In the central part of figure 5.8 the hanof peaks are given over a
much longer integration time. Theveragenumber of peaks that are present over time in the
puff given in figure 5.8 is equal to three. In the single expemtal observation, van Doorne and
Westerweel (2009) identified the same number of peaks. Tihesesults combined give on the
one hand confidence in the method that is used here to ideh&fynost significant peaks; On
the other hand it shows that the results found in the expetisrigy van Doorne and Westerweel
(2009) are a good representation of what happens in the ptfiglits lifetime and should not
be considered as exceptional.

From the data of the simulation not only the amplitude vatabver time is available, but also
the location of the peak. In order to visualize the behaviahe peaks relative to the puff, a
space-time plot is given in figure 5.13. In this figure the bonital axis represents the axial pipe
coordinate. The flow direction corresponds to the posiidigection. Note that in this figure the
actualposition in the pipe is given instead of the position withp@s to a convective reference
frame, as was shown in figure 5.8. Again the time increasesriical direction.

In figure 5.13, the bold curves show the result of trackinghglsi peak, with a different color for
each peak.For every peak that was observed in this timevaliés location is given as a function
of time. Be aware that the data given here are over a mucheshonie interval than the data in
figure 5.12. To get an idea of the location of the peaks raddtithe puff, the location of the puff
is also given together with its length. In section 5.4 it waeven how the location of the puff
was determined. The length has been determined by the meé#sadbed in section 5.6.3. The
location of the puffis given by a blue dashed line, and thatfemd back of the puff are indicated
by red dashed lines. The front and back are determined bggakie location of the puff and
subtracting and adding half the puff length to that locatiespectively. Recall that the length of
the puff did vary over time, but it is clear from figure 5.13tltze length does not change very
rapidly.

The inset in this figure shows the distribution of the in pl&irestic energy over the pipe at time
t upuik/D = 598 (indicated by the dashed black line in the main figure)e phaks that were
tracked at this time are indicated by dots, and the color o @t corresponds to the color of
the peak-location traces in the main figure. The detectiothatkused clearly does not track
all peaks present in the in-plane kinetic energy distrdoutias was predicted when discussing
the detection method. This is confirmed by the two peaks katviee blue dashed line and the
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Figure 5.13: Location of puff and the peaks over time. Onlgkseof which the amplitude becomes the global
maximum at least once in their lifetime are tracked. The r@ghéd lines give an indication of the two fronts of the
puff, the blue dashed line gives the currentlocation of #rem@l moment for the in-plane kinetic energy distribution
InsetThe in-plane kinetic energy distribution iy, /D = 598. Dots in the peaks indicate that these peaks were
tracked and at least once became the global maximum peag& thaitthe time frame presented heradasthe same

as in figure 5.12.
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downstream red dashed line in the inset of figure 5.13, whiemat being tracked.

From the distribution given in the inset of figure 5.13, it isar that the in-plane kinetic energy
distribution is skewed. This was already observed wheniderag the effect of using a different
resolution on the behavior of a puff in section 5.3 and simbkehavior is found for almost all
realizations. On the upstream side of the center of thelloligion a higher contribution is found.
Therefore it is not surprising that the concentration oflgeia higher in the upstream half of
the puff, also when taking the detection method into acco8irtce only peaks are tracked that
once become the global maximum, it is more likely to find peakihe upstream part than in
the downstream part of the in-plane kinetic energy distiitou Nevertheless, on the upstream
side peaks do not extend over the boundary indicated by theaghed line. On the downstream
side there is occasionally a peak that survives for a long @md extends over the boundary
that indicates the length of the puff. This implies that stowes associated with these peaks are
created at the upstream side of the puff. Occasionally thewlale to survive through the entire
puff and are 'ejected’ at the downstream side. These stregmight be the seeds from which a
new puff is created, and hence a new puff can be created d@anst Lindgren (1969) already
observed that new structures are generated on the dowmssida of the parent puffs, but did
not comment on the process that was involved.

From the slope of the traces given in figure 5.13 it is posdiblget the velocity of the peaks.
The velocity is determined by applying a least square fit &odata for each peak, as presented
in figure 5.13. By eye it is already clear that the velocityled peaks is significantly higher than
the velocity of the puff, hence the peaks travel 'forwattoughthe puff.

The velocity distribution of the most significant peaks igagi in figure 5.14, for puffs at different
Reynolds numbers. In the top part of the figure the peak wvglaginormalized by the bulk
velocity. The bottom part shows the peak velocity when itasnmalized by the average puff
velocity as given in figure 5.9.

First consider the velocity distribution of the peaks widspect to the bulk velocity. As the
Reynolds number increases, the velocity of the petdaeases The difference between the
distributions atRe= 1800 andRe= 1900 is larger than the difference betwdee= 2000 and
Re= 2100. This indicates that the velocity distribution woulel &pproaching an asymptotic
distribution and that there is a lower limit for the peak \@fp In section 5.6.1 it was shown that
the puff velocity depends on Reynolds number. The velodithe puff continues to decrease
for increasing Reynolds number. This means that the pedkiaviel faster with respect to the
puff when the Reynolds number is increased.

This is confirmed when the peak velocity is normalized bydteragepuff velocity, shown in
the bottom part of figure 5.14. The peak veloditgreaseswith respect to the puff velocity for
increasing Reynolds number.

For a single simulation at a variable Reynolds number, Shirand Kida (2009) observed small
scale structures that had a higher velocity than the putioigl. These structures were found
by considering only the centerline velocity distributioneo time. The velocity fluctuations
observed in the centerline velocity distributions were sidared to be caused by a Kelvin-
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Figure 5.14: Cumulative distribution of the velocity of agfiefor different Reynolds numbers, relative to the bulk
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Helmholtz instability at the upstream side of the puff. Tkepcluded that this Kelvin-Helmholtz
instability was essential in the regeneration process aiffa p

Later, Duguet et al. (2010) also found that at the rear of thfé giructures were formed that
were caused by a Kelvin-Helmholtz-like instability. Thelentified these structures by tracking
a local maximum in azimuthal vorticity in an axial cross sactof the pipe. These structures
were carried downstream relative to the slug they consitiéFbe velocities observed for these
structures coincide with the velocities of the peaks foumdhie present investigation. If the
structures observed in the present investigation are the aa the structures observed by Duguet
et al. (2010), it is not surprising that the majority of theustures is observed at the upstream
side of the pulff, since this is the location where they argated. More details on the structures
responsible for a peak in in-plane kinetic energy is givesection 5.7.3.

A question that emerges is whether the distance traveleddmak depends on the Reynolds
number. Since the velocity of the peaks with respect to tlfiflaqereases for increasing Reynolds
number, the peaks would travel a longer distance througpufiéf the survival time of the peaks
is constant. The probability distribution of the distanqeeak travels relative to the puff is given
in figure 5.15. Hence, a negative distance in this figure méeishe peak travelled slower than
the puff. This shows that the distribution is independerfReynolds number, which means that
the lifetimeof a peakdecrease$or increasing Reynolds number.

5.7.3 The structure responsible for a peak

Up to now it is unclear if there is a single coherent structinag is responsible for the high
energetic peaks in in-plane kinetic energy. If the high gegc peak is generated by a single
structure, the question remains what kind of structure ivan Doorne and Westerweel (2009)
found in their measurement hairpin vortices close to thessk®. Therefore they concluded
that hairpin vortices are responsible for the generatiothefhigh energetic peaks. However,
these observations were based on a few observations in k& sedjization. In the previous
section the velocity distribution for the peaks in in-plddieetic energy was given. When this
velocity distribution is considered and compared to theei¢y distributions of structures found
by others, a range of possible flow structures responsibléhése structures can be obtained.
Both Shimizu and Kida (2009) and Duguet et al. (2010) founalized structures with a similar
velocity as was found for the peaks in in-plane kinetic epefthey related these structures to
vortices that were induced by a Kelvin-Helmholtz instdipilFurthermore, when comparing the
convection velocity of the peaks and the phase velocitidisefraveling waves found by Pringle
and Kerswell (2007) a similar magnitude is observed. Peragld Kerswell (2007) found that
the phase velocity of the traveling waves ranges from 1.15dithes the bulk velocity. It might
be that the observed structures are in fact traveling waMas.is not considered likely, because
of the spatial extend of the traveling wave solutions thaewWeund and the very localized nature
of the currently observed peaks.

From these observations it is not clear what the structuredhat cause a peak in in-plane
kinetic energy. A first approach to reveal the underlyingdtire was to conditionally average
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Figure 5.15: The distance covered by the peaks with respéhetpuff. The distance that is travelled with respect
to the puff seems to be independent of the Reynolds number.
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the velocity field. This results in a single cross sectiomdbrity distribution. When the velocity
difference with respect to laminar flow was considered, #leaity field contained three to five
high speed regions close to the wall, depending on the pdak.riethod did not reveal a clear
unique structure that could be considered responsibldéogéneration of the peak in in-plane
kinetic energy.

A second approach was to follow the structures in a convecgiference frame that moves along
with a single peak. The results for a single event are shovigume 5.16. In this figure the flow

is from right to left. In each subfigure iso-contours for aipes value ofQ are given. Her&) is

the second invariant dflu (Jeong and Hussain 1995). The same quantity has been useuah by v
Doorne (2004) to identify coherent structures in experitaketata. As a reference the in-plane
kinetic energy distribution is plotted on the bottom of eaabfigure-box.

The time evolution of the structures underneath a singl& ilustrated by three snapshots in
figure 5.16. In each subfigure a volume spanning two pipe demién the axial direction of
the entire domain is shown, taken symmetrically around tireeatly followed peak. Starting
at the top, the time between two consecutive images is equahk/D = 0.7. It is clear that
the structures found in this way are slowly evolving stroesuthat are convected downstream
without major changes. In these figures the classical mabdéira hairpin vortex could not be
detected. Other methods of visualization and differeregholds forQ did not reveal hairpin-
like structures either. By tracking six different stru@srgiven in figure 5.16 over time, the
relative motion of structures inside the puff are explained

In figure 5.16 these six vortical structures are labeldeth F. The observed vortices can be
divided into three categories based on their velocity. Tist iategory contains structures that
have the same velocity as the pe@kandD). These structures are the most likely candidates to
be responsible for the peak that is currently followed. Téeosd category contains structures
that move faster than the peak,B andF). Since the average fluid velocity is higher near
the center of the pipe, it is expected that these structiaede found closer to the pipe axis.
Consequently, structures with a lower velocity (the thiatiegory) are expected to reside closer
to the pipe wall E).

In order to find the structures that are responsible for tmegdion of the high peak in in-plane
kinetic energy, only the structures that move at the sanwitglas the peak are considered. Be-
cause the domain is selected symmetrically around the plealstructures responsible for this
particular peak are expected to be close to the middle of ifje gections given in figure 5.16.
The structure that is labelléglis present close to the middle of the pipe in each of the sutefgyu
and is therefore considered responsible for the generafitre high peak. Note that the struc-
ture is always upstream of the peak, which is in accordantketdindings of van Doorne and
Westerweel (2009). The structure is orientated normal pe jpixis and is aligned in azimuthal
sense with the wall of the pipe. It has a length of approxityatee pipe diameter. A vortex
which is orientated normal to the pipe axis is able to geeemdarge amplitude contribution to
the in-plane velocity components, which results in a highkgda in-plane kinetic energy. More-
over, a structure with this orientation will contribute teetazimuthal vorticity component, which
was used by Duguet et al. (2010) to identify and track Kellmhotz vortices generated at
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the trailing edge of the puff. Because of its orientationmal to the pipe axis, a relative high
resolution in axial direction is needed to resolve thisatite properly. This might be a reason
why the high energetic peaks were not observed by otherglse¢able 5.1.

The structure indicated b has approximately the same velocity as the peak. However, it
extends over almost half the domain (axially) and can tloeeehot be considered responsible
for the creation of the very localized peak.

In figure 5.16 three structures are labelled that move faktar the peak. These structures are
labelledA,B andF. Two structuresA & B) are present downstream of the structure responsible
for the peak in in-plane kinetic energy. Since the velocityigher, hardly any interaction is
expected between these structures and the vortex laBel&tie vortex indicated by remains
approximately constant in size as it moves downstream ahdfdbhe domain. The size of the
structure that is labelleB increases as time progresses, the velocity of this streicslapproxi-
mately equal to the velocity of structufe Since the velocity is higher than the peak velocity, it
is expected that this structure would be present close toghter of the pipe. However, as can
be seen in the bottom part of figure 5.16, the structure islathto the wall. The propagation
velocity of vortical structures clearly does not have to e same as the local fluid velocity.
The third structure that is moving faster than the pdakig present in the center of the pipe and
upstream of the structuf@ Its velocity is considerable higher than the velocity a fleak, but
its velocity is also higher than the velocity of the struetutabeledA andB. Due to its higher
velocity, it gets closer to the structure responsible far pleak in in-plane kinetic energy. The
approach of structurgé contributes to the change in orientation of structOreAs this structure
loses its orientation normal to the pipe axis, the contrdmuto the in-plane velocity components
reduces. As a result the peak in in-plane kinetic energyrdshes.

Finally there is a single structure, indicatedbythat moves slower than the peak. This structure
is close to the wall and moving slowly in the upstream di@gttii.e. relative to the peak. It
seems to be a very stable structure, which is hardly influbbgethe presence of the structures
surrounding it.

This figure shows the richness of structures present in alfembpuff. By considering only a
small fraction of the simulation time a large number of lasgale structures can be identified that
survive for a significant time. Furthermore, the high entecgeeaks in in-plane kinetic energy
werenotfound to be caused by hairpin like vortices. Instead, thé&kpeaem to be generated by
vortical structures that have an orientation normal to fpe pxis. One might argue that the head
of a hairpin vortex is also normal to the pipe axis and is ttoeeeresponsible for the high peak.
This might be the reason why van Doorne and Westerweel (200894 structures close to the
high energetic peaks that could be associated to hairptiteer However, from the result shown
in figure 5.16 it is clear that the peaks are generated by kegke structures that span almost
the entire diameter of the pipe. The same analysis has bgdieép numerous other peaks in
which a similar behavior is found: A large scale structura tias an orientation normal to the
pipe axis generates the large peak in in-plane kinetic gnérgll cases, the classical picture of
a hairpin vortex could not directly be associated to volstaictures observed in a puff.
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Figure 5.16: Coherent structures in a puff in a convectiferemce frame that moves along with a peak. The time
between consecutive imaged isu/D = 0.7 timescales. Coherent structures are visualized usingastours of
Q. On the bottom of each figure the in-plane kinetic energyitistion is shown as a reference.
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5.8 Conclusion

In this chapter the results of a direct numerical simulatibmansitional pipe flow are presented.
The velocity field of a puff measured by PIV was used as anain@ndition. It was shown
that the requirements on the domain are very demanding fiaulating transitional pipe flow.
Not only the necessary length of the domain causes a chall@ie high resolution required in
axial direction to obtain a puff that behaves similar to pudbserved in experiments, makes the
simulation of transitional pipe flow computational interesi

In order to validate the numerical procedure, fully develdpurbulent pipe flow aRe= 5300

is simulated. The obtained velocity statistics are thenpamed to the average flow field of a
turbulent puff. Surprisingly, the interior of the puff doest reveal a region that shows the same
flow statistics as observed in fully developed turbulenefipw. This opposes conclusions in
earlier works, e.g. Wygnanski et al. (1975), Bandyopadl{§8$6). At the location in which the
average velocity profile has the closest match to the vglpcdfile for fully developed turbulent
pipe flow, the velocity fluctuations show a more homogenedatsiloution across the pipe. This
location also corresponds to the position with the strohigdlection point in the mean velocity
profile, which is considered the source of vorticity by Hoget(2010). In the relaminarization
region, the maximum intensity for the velocity fluctuatiomeves towards the center of the
pipe, which is in accordance with the classical image of traaal tail characteristic for a puff
(Bandyopadhyay 1986).

The instantaneous velocity of the simulated puffs was nastamt. This is in agreement with

the findings of Kuik et al. (2010). However, Wygnanski et 4975) and De Lozar and Hof

(2009) found constant propagation velocities for the puffsheir experiments. The average
velocity found by in the present simulations agree exceliath the velocities reported by Hof

et al. (2006), De Lozar and Hof (2009) and Kuik et al. (2010nisTsuggests that the distance
over which the velocity of a structure was measured by De Land Hof (2009) was already

sufficiently long to hide the instantaneous velocity bebawif a puff as observed in the present
study and in the experiments by Kuik et al. (2010).

The instantaneous velocity is strongly correlated withttital in-plane kinetic energy present
in the puff: A high total in-plane kinetic energy content i@ates to a low puff velocity. It is
unclear which of these two quantities is the driving factod & responsible for the behavior of
the other.

For Reynolds numbers below 2100, the length of the puff isfie be independent of Reynolds
numberand the velocity of the puff. The length of the puff has been deiaed by taking the
second order moment of the in-plane kinetic energy distiobu At higher Reynolds numbers
(Re = 2100), the length occasionally shows a dramatic increabés ificrease is caused by a
small patch of fluid containing velocity fluctuations thatsished’ from the main puff. At lower
Reynolds numbers, the puff is not able to shed these patcigessdength remains more or less
constant.

In the in-plane kinetic energy distribution, van Doorne aviesterweel (2009) found, in a single
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measurement, narrow large-amplitude contributions. Bgresively studying the corresponding
velocity fields, they deduced that a hairpin vortex was rasjie for the generation of these
energetic peaks. Since it was a single observation, thengigsaof these structures could not
be revealed. De Lozar and Hof (2009) showed the in-planetikie@ergy distribution of two
different measurements. Similar peaks were observed, Jevikey were not present at the
same location. Therefore it was expected that the strug@ssociated to these peaks did not
reside at a fixed location in the puff. Up to now, these peak®wet observed in simulations
of transitional pipe flow. In hindsight the resolution in aldirection of the simulations was too
low (van Doorne and Westerweel 2009). This was the majorvatitin to perform the current
simulations. In these simulations, the high energetic peakre also observed. The structures
were generated at the trailing edge of the puff and traveldnstream with respect to the puff.
Hence, their velocity is higher than the puff velocity. Sopegsisted for very long times and
could travel up to 2D before disintegrating. For increasing Reynolds numben#iecity of
these structures decreases with respect to the bulk welddawever, the velocity of the puff
decreases even faster, hence the velocity of the peaksagegeavith respect to the puff. The
distance covered with respect to the puff is found to be ieddpnt of the Reynolds number.
The majority of the peaks travel from the upstream side ofpthi€ to the downstream side, by
which some survive through the entire puff.

A hairpin vortex, as suggested by van Doorne and Westen&8@8(), was not found to be present
near a peak in in-plane kinetic energy. Instead, vorticakstires were found with an orientated
normal to the pipe axis. They were about one diameter longaéigded along the azimuthal
direction.

Up to now it is unclear what the exact driving mechanism of fhigu Several scenarios are pro-
posed, in which the majority of studies support the idea d¥ikeHelmholtz type of instabilities
generated at the upstream side of the turbulent puff (Shisai Kida 2009, Duguet et al. 2010,
Hof et al. 2010). However, it remains complicated to dedheecausality of events.

By using a lower resolution it was shown that it is not possiéshymore to resolve these very
localized structures. The question remains if this has amiagpact on the behavior of a turbu-
lent puff. It was already shown that the velocity of the psftlightly increased by reducing the
resolution, which could be related as if a turbulent pufiimisidated at a lower Reynolds number.
For future work one might use a forcing method to influencenigh amplitude peaks in in-plane
kinetic energy, in order to assess their significance in timeigl of a turbulent puff. If the be-
havior of the puff changes dramatically, it is clear thasitmportant to resolve these structures
accurately in order to understand long-lived transientecdlized turbulence and their sudden
disintegration.
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Appendix A

Derivation of the energy budgets in a
cylindrical coordinate system

In this section the derivation of the mean and turbulentticrenergy is given. The steps involved
are very similar to the steps involved in the derivation @ftilrbulent kinetic energy for fully de-

veloped turbulent channel flow. Textbooks are usually kahito channel flow, which allows for

using the Navier-Stokes equations in a cartesian cooelsyatem. Moreover, fully developed
flow is often considered since it simplifies the equationsaedously. For localized turbulent
pipe flow these assumptions cannot be applied. This is be¢hasnean velocity distribution is

not independant of the axial direction.

Unfortunately the full equations for the mean and turbulenétic energy in cylindrical coordi-
nates were not found in existing literature.

The following procedure is used to derive the turbulent ttmenergy budget equations:
1. start with the Navier-Stokes equations in cylindricadicbnates

2. apply Reynolds decomposition, i.e. assume the velsditieconsist of an average and a
fluctuation:u = U+ u’.

3. average the equation to obtain the Reynolds AveragetN&tokes (RANS) equations in
cylindrical coordinates.

4. by multiplying each component of the RANS with its mearoedly and adding the equa-
tions for each direction, results in the equation for the miaaetic energy.

5. subtract the RANS from the equation obtained in step 2y @w fluctuating part remains.

6. multiply each component with the corresponding veloititgtuation and averaging results
in the equation for turbulent kinetic energy in each dir@ucti
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7. adding the equations for each direction results in theaggu for the turbulent kinetic
energy.

In this section not every step is given in detail. As a refeeea number of essential equations
are given below, starting with the Navier-Stokes equationsylindrical coordinates. These
equations can be found in books that introduce fluid dynareigs Kundu and Cohen (2004). In
the following sections, the RANS equations, the mean kinatiergy equation and the turbulent
kinetic energy equations are given. After the full equagiare obtained, it is indicated how these
equations can be simplified when the flow of a turbulent pufbissidered. Finally, the equations
are simplified even more to obtain the equations for fullyedeped turbulent pipe flow, which
are identical to the equations given in exisiting literatur

A.0.1 Navier Stokes equation

As a starting point, the Navier-Stokes equations are giwovbfor each velocity component.
These equations are given as a reference and can be foundsirtertivooks introducing fluid
dynamics.

For the radial direction:

2
ouy our  Ug OUr ou ug

Yo Tree e T T

A.l
10p 190 / dy 10%u, 0%y, U 20ug (A1)
v o (S )t St 5 5
p or ror\  or r2062 9z r2 r290
For the azimuthal direction:
Jdug OJUg UgOug dug Ulg
ot Yor Tree ez TTr "2
L0p [0 (3 10% P 20u U |
pr oo ror\ or r2002 9z r2d90 r?
For the axial direction:
ouy ou; UgOu, ou;
- tUh -+ ——55 TUz7- =
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A.0.2 Reynolds Averaged Navier Stokes equation

After substituting each velocity component by an averadecity and a fluctuation, i.e. using
Reynolds decomposition, the resulting equations are geedra This results in the Reynolds
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Averaged Navier-Stokes equations or RANS. For the radraction:
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_10p lorgu  19uvg  dul
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For the azimuthal direction:
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For the axial direction:
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A.0.3 Mean kinetic energy equation

Each component of the RANS is multiplied by its mean velociynpenent. After combining
the three resulting equations, the equation for the meagtikianergy is obtained: equation A.7.
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E—FUra +— T +U; 257
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HereQ is the mean kinetic energy of the flo@ = (Ur> + Ug? 4+ T%) /2.

Mean kinetic energy equation for a puff

For a turbulent puff the following assumptions are made deoto simplify equation A.7:
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e The solution is considered steady state (heh@¢ = 0)

e The flow is considered axisymmetric, without swidl/f6 = 0 & Ug = 0), only for mean

quantities.
Q —0Q _ lorrp 0GP
10 ——  —— 0 s
—art (u;u’u_r+ U Up;) — 3 (U Uy + Uy )
Uy o oty 0t
+ul ug— + U u’Z—Z +u u’zﬂ Ut £+ UpUy L:r (A.8)

0Q\ = 0°Q
v {r or < or ) T2
o\ 2 L\2 [am\? [om)\2 o\ 2
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Mean kinetic energy equation for fully developed turbulentflow
The mean kinetic energy equation obtained for the puff casitbglified even more when con-

sidering fully developed turbulent pipe flow. The followiagsumptions are used to obtain the
equation for fully developed turbulent pipe flow:

e statistically the flow does not vary in axial directia?y§z=0)

e there is no mean flow in radial direction; (= 0)

_ 1(0wp) 10 o o0
0= 5(62) Fa—r(uuuz)-i-u o

HERERCH

A.0.4 Turbulent kinetic energy equation

+V

A similar procedure is used for the turbulent kinetic eneeguation as was used for the mean
kinetic energy equation. Only the equation for the turbulanetic energy is presented. This
equation is obtained by first subtracting the RANS equatoe&ch component from the Navier-
Stokes equation in which the Reynolds decomposition istiutesd (i.e.u=t+U’). The result-
ing equations are then multiplied by the their correspogdelocity fluctuation. After rewriting



108 Energy Budgets

this results in the turbulent kinetic energy equation.
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Hereqis the turbulent kinetic energy = (u’z—i—ue -l—u_’22) /2
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Turbulent kinetic energy equation for a puff

By applying the same assumptions given in appendix A.O&tutbulent kinetic energy relation
reduces to:
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0z p\r or 0z
or 0z
_loryq dug V[13<6q)+62q

roor 0z roar\ or/) ' a2

U\ [oup\?  [ou,)?
ar r ar (A.11)
(56 (5 + (%)
G () (3
0z z z

2up 0ug  2Ug0u;  ufup  Uglg

- s o s —
_u/u/%_u/u/%_u;ué<%+%) _w

r2 06  r2 00 r2 r2

This equation is almost identical to the equation given byWanski et al. (1975), equation A.11
contains two viscous dissipation terms that were not giweliggnanski et al. (1975). These

terms are:zr—‘f% and%%. It is unclear why these terms were neglected by Wygnansii et
(1975).

Turbulent kinetic energy equation for fully developed turbulent flow

When the same assumptions are applied to the turbulenikiretrgy relation as was done for
the mean kinetic energy relation in section A.0.3, the tlebukinetic energy relation reduces
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too.

oy 2+ oy 2+ au, 2 (A.12)
0 00 00

A AT A
) (E) *(E) *(E)

200Uy 2upou; Uy, ugu'e]

r> 00 r200 r? r?

This equation is identical to the equation given for fullwd®ped turbulent pipe flow by Laufer
(1954).

Names for each term

Convection Term:

~0q 09
O + Uy, = (A.13)
Pressure diffusion term (VPG):
1 (1orup  oup
o <? o + 3 (A.14)
Production term (PR):
Up U Ty
—Uup —u’zu’z% v fz(% %) e (A.15)
Turbulent diffusion terms (TD):
Ja  oua
~loryq oduyq (A.16)

r or 0z
Visous diffusion term (VD):
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Viscous dissipation term (DS)

(A.18)

Some general comments on the equations

First of all, when these equations were derived, the dedimitif the averaging operator is not
stated. If the averaging operator means a time averageptheously the result is that the time
derivative of the average velocity distribution is equatévo by definition. However, a different
averaging operation can be defined as long as it compliegttmtlowing definitions and rules.
A bar above the variable, or collection of variables, inthcan averaging operation. In the
following equationsq is a constantf andg are velocity components, can either be a spacial
direction or a temporal indication.

e af=af

o T=T




