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Abstract

The knowledge of the transportation mode used by humans (e.g. bicycle, on foot, car, and train)
is critical for travel behaviour research, transport planning and traffic management. Nowadays,
new technologies such as the GPS have replaced traditional survey methods (paper diaries, tele-
phone) since they are more accurate and problems such as underreporting are avoided. However,
although the movement data collected (timestamped positions in digital form) have generally
high accuracy, they do not contain the transportation mode. We present in this paper a new
method for segmenting movement data into single-mode segments and to classify them accord-
ing to the transportation mode used. Our fully automatic method differs from previous attempts
for five reasons: (1) it relies on fuzzy concepts found in expert systems, i.e. membership functions
and certainty factors; (2) it uses OpenStreetMap data to help the segmentation and classification
process; (3) we can distinguish between 10 transportation modes (incl. between tram, bus, and
car) and we propose a hierarchy; (4) it handles data with signal shortages and noise, and other
real-life situations; (5) in our implementation, there is a separation between the reasoning and
the knowledge, so that users can easily modify the parameters used and add new transportation
modes. We have implemented the method and tested it with a 17-million point dataset collected
in the Netherlands and elsewhere in Europe. The accuracy of the classification with the devel-
oped prototype, determined with the comparison of the classified results with the reference data
derived from manual classification, is 91.6 percent.

Keywords: Movement trajectory; GPS track; travel behaviour research; OpenStreetMap

1 Introduction

The knowledge of the transportation mode used by humans (e.g. bicycle, on foot, car, and train)
is critical for applications such as travel behaviour research (Bohte and Maat, 2009) where re-
searchers aim at understanding human travel behaviour in order to predict travel patterns and
evaluate transport-related measures and policies. Travel behaviour is concerned with how peo-
ple travel, where they go, how often, which transportation mode do they use, whether they chain
trips, which route they choose, and so on. Researchers try to understand the impact that the built
environment, the quality of the public transport and the cost of various transportation modes
have on humans. This knowledge can also be used for transport planning and traffic manage-
ment, see for instance Asakura et al. (2000) or Ranjitkar et al. (2002).

In the past, the data required by travel behaviour researchers were usually acquired in travel
surveys, involving randomly sampled individuals. Researchers collected the information of the
transportationmode used through paper diaries filled by participants or telephone surveys, which
often resulted in underreporting of short trips and in inaccurate and incomplete data (McGowen
andMcNally, 2007). Recent advancements in positioning technologies—such as the Global Posi-
tioning System (GPS)—have enabled inexpensive and straightforward acquisition of movement
data, but they come in a different form: sequential timestamped positions:

1



(x1, y1, z1, t1), (x2, y2, z2, t2), . . ., (xn, yn, zn, tn).

The advantages are many: underreporting of trips is less likely, the data are immediately available
in a digital form and can be analysed in a geographical information system (GIS) environment,
and in general more data are available at a finer level of resolution (Bricka and Bhat, 2006; Wolf,
2000; Draijer et al., 2000). Further, most researchers conclude that these receivers have now com-
pletely replaced, rather than supplement, traditional travel diaries. It should be noted that several
travel surveys with positioning loggers have already been done, see, among others, Draijer et al.
(2000); Bohte and Maat (2008); Axhausen et al. (2004).

However, in contrast to travel diaries and surveys, these techniques do not collect the transporta-
tion mode. Combining the use of receivers with traditional paper/telephone surveys would be a
high burden for participants of these surveys (Wolf et al., 2001), and since the datasets are usually
vast, manual classification may not be possible.

We present in this paper a newmethod to automatically detect and classify amovement trajectory
(such as a GPS log) for the transportation mode. Since a trajectory may contain multiple trans-
portation modes, the problem is extended to the segmentation of the movement data into single
transportation modes; we introduce our terminology in Section 2. As explained in Section 4, the
segmentation works by detecting potential transition points between two transportation modes
at brief stops at train stations, traffic lights, bus stops, etc. Each segment between consecutive po-
tential transition points is classified, and adjacent segments with the same classification outcome
are merged in an iterative process. For each trajectory, various numerical values (we call them in-
dicators), which contribute to the identification of the transportation mode, are calculated. Some
of these indicators are derived from the geographic data (e.g. the proximity of the trajectory to the
tram network). As explained in Section 5.1, we use the geodata from OpenStreetMap, which is
free to use and of good quality (at least in Western Europe). The transportation modes are classi-
fied by analysing the indicators with an explicit knowledge base set with a number of empirically
derived fuzzy membership functions; our method relies thus on fuzzy concepts found in expert
systems, i.e. membership functions and certainty factors. Finally, the classification results have a
certainty value. The classification of data gaps (e.g. caused by a signal shortage during the logging
of a trajectory, which often arise with our test datasets) is also addressed.

The method we propose has two main advantages over previous work: (1) a more extensive and
detailed list of transport modes is used, we differentiate between 10 modes while previous work
was often limited to 4 or 5; (2) it tries to handle errors in tracks (due to signal shortage for instance)
and can thus be used both with older devices and new ones. A novelty of our method is that we
introduce a hierarchy of transportation modes, and for each segment to be classified we assign
the mode only if we are sure, if not we return a transportation mode lower in the hierarchy.

We have implemented our method and we have tested it with, among others, a 16-million point
dataset that was collected in 2007 in the Netherlands for a study (Bohte and Maat, 2009), which
contains many real-life cases useful for checking the robustness of the method. We report in
Section 6 on this experiment, and we discuss the results we obtained against a semi-manual clas-
sification that had been performed during the study. At this moment, our prototype permits us to
classify movement trajectories for 10 transportation modes, but since there is a clear separation
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between the reasoning engine and the knowledge, it can easily be extended by users so that new
transportation modes are considered.

2 Terminology

Moving objects are all objects that may change their position through time (e.g. people). In this
case their position can be often represented with a point, without losing valuable information.
During their existence, moving objects experience journeys, each one occupying a time interval
in the object’s lifespan and moving the object between two relevant locations—bird migration,
daily commuting, and mail service. Any movement, including journeys, can be perceived as
countable traveling units—“a record of the evolution of the position of an object that is moving in
space during a given time interval in order to achieve a given goal.” (Spaccapietra et al., 2008).

The movement of an object may be segmented into trajectories between two relevant locations.
This segmentation is application-dependent. For example, the movement of a truck of a deliv-
ery company can be segmented into daily movements, but also into movements between cus-
tomers.

In this paper, two varieties of segmentations are considered. First, the segmentation into separate
journeys, which we define as connections between two relevant locations related to an individ-
ual or a household, e.g. the movement from home to work and from work to shopping (Maat
and Timmermans, 2006). Second, since trajectories can be undertaken with the use of different
transportation modes, another segmentation is established for obtaining single-mode trajecto-
ries, simply denominated as segments. In the segmentation of the trajectories for discerning dif-
ferent transportation modes, the points where the segmentation occurs are defined as transition
points.

The record of a movement is synonymous with a track, which is more applicable in the context
of current acquisition technologies. The recording is nowadays generally done by sampling (ob-
serving) positions in a certain interval of time, deriving sampled points—sequences of positions
and timestamps (i.e. position in space-time) in a specific time interval.

In order to formalise the presented concepts and related terms with their relations, a UML class
diagram, inspired by the work of Verbree et al. (2005), is given in Figure 1.

A sampled point is part of a single transportation-mode segment. Each point consists of a times-
tamped position, but with additional information it is possible to derive supplementary informa-
tion; for instance it is possible to calculate its speed from the distance and time difference to the
subsequent point.

The first and last point of a segment are transition points, which separate the segment from ad-
jacent segments completed with other transportation modes. A segment is part of a journey, an-
other collection of points, but related to a purpose ofmovement between two relevant locations—
e.g. commuting. A relevant location, the point separating two consecutive journeys, can also have
a type (e.g. home, shop).
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A movement archive contains all journeys of an individual in a recorded timeframe.

+speed(): Double

+lon: Double
+lat: Double
+ele: Double
+t: Timestamp

SampledPoint

+distance(): Double
+duration(): Double
+numberOfPoints(): Integer
+avgSpeed(): Double
+minSpeed(): Double
+maxSpeed(): Double

+transportationMode: String

Segment

0..1

1

+purpose: String
+startJourney: Timestamp
+endJourney: Timestamp

Journey
1..* 1

+identity: String
+startRecording: Timestamp
+endRecording: Timestamp

Movement Trajectories

BelongsTo

next

1..*

1

TrackIn

PartOf

+prev_mode(): String
+next_mode(): String

TransitionPoint

+purpose(): String

+type: String

RelevantLocation

prev
0..1

+class: String
+location: Point

TopographicObject
0..* 0..1

2

1..2

2

1..2

bounded bounded

Figure 1: UML class diagram formalising the presented concepts relevant to segmentation and
classification of movement trajectories. Adapted from (Verbree et al., 2005).

3 Related work

There are several publications describing attempts to solve the problem presented in this paper.
Most publications concentrate on the classification and omit the segmentation problem (Byon
et al., 2009; Dodge et al., 2009; Reddy et al., 2008). On average, the published methods classify
between four and five transportationmodes and use around four indicators. The accuracies of the
studiedmethods aremostly between 70 and 85%. Table 1 gives an overview of themainmethods,
with their main characteristics.

In general, all methods use the speed between two consecutive points as the primary variable for
mode detection, implying that the speed gives the highest indication of a transportation mode
(Bohte et al., 2008; Schüssler and Axhausen, 2009). Because different transportation modes have
similar speeds (e.g. cars, trams and trains), additional knowledge is essential in order to distin-
guishmodes. Apart from the average speed, a fewmethods use themaximumspeed in a trajectory
as an additional indicator from the knowledge of the speeds at each observation (Stopher et al.,
2008). Researchers note that nearlymaximumvalues should be used rather thanmaximumvalues
of speeds and acceleration in order to make the method robust for noisy measurements (Stopher
et al., 2007; Schüssler and Axhausen, 2009). While there is not a strictly defined value, nearly
maximum values are usually calculated with 95th or 85th percentiles.
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Table 1: Comparison of the reviewed methods for transportation mode identification. (The dash
represents unknown information.)

Method Modes Criteria GIS data usage Accuracy (%)

(Byon et al., 2009) 4 3 no 82
(Schüssler and Axhausen, 2009) 5 3 no —
(Zheng et al., 2010) 4 5 no 75
(Bohte et al., 2008) 4 2 yes 70
(De Boer, 2008) 7 6 yes —
(Dodge et al., 2009) 4 3 no 82
(Reddy et al., 2010) 4 3 no 74
(Liao et al., 2007) 3 2 yes —
(Gonzalez et al., 2010) 3 8 no 91
(Lester et al., 2008) 4 3 yes —
(Stopher et al., 2008) 7 4 yes 95
Average 4.5 3.8 5 of 11 81.3

Geodata is not frequently used for calculating the indicators or facilitating the segmentation and
classification, but methods using geodata report higher accuracy (up to 95%) (Gonzalez et al.,
2010).

Geodata may be used not only for detecting line infrastructure features (e.g. roads and railways),
but also for determining potential transition points such as railway stations (Liao et al., 2006).
In addition, underground modes (metro) can be detected by finding signal shortages with last
known points around the locations of the stations (Shalaby et al., 2006; Stopher et al., 2008).

One major problem of related methods is that they do not segment a trajectory into single-mode
segments. Assuming the use of a single transportation mode may result in a wrong classifica-
tion since people often use multiple transportation modes while travelling. Zheng et al. (2008a)
highlight that fact, stating that a person usually walk between the use of 2 transportation modes.
In our method, we exploit that fact: in order to detect a transition, first we try to find walking
segments.

Furthermore, several researchers do not address problems with data such as occasional gaps
caused by signal shortages and noise. During our experiments, errors and noise were very fre-
quent (see Section 6), especially in data acquired with older GPS receivers.

Most methods consider only a limited number of transportation modes, which may be trivially
distinguishable in most circumstances due to their very different behaviour in movement. Meth-
ods which incorporate more transportation modes usually do not report high accuracy—a nega-
tive correlation between the number of modes and accuracy can be observed—and the methods
usually derive single results without a value of certainty, with no alternative result.
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Figure 2: Hierarchy of transportation modes.

From the classification perspective themost common approach is the use of a decision tree-based
method, which delivers single results without a value of certainty and does not consider ambiguity
when two modes have similar behaviour (Zheng et al., 2010, 2008b; Bohte et al., 2008; Bohte and
Maat, 2008, 2009; Lester et al., 2008).

4 Our method

The method we propose first segments a movement trajectory into single-mode segments. The
segments are then passed to the classification system, and in the post-classification phase, con-
secutive segments with the same transportation mode are merged (Figure 3).

Ourmethodprimarily relies on the use of a fuzzy expert system solutionwith indicators—numerical
values that may indicate the use of a set of transportation modes. As explained in Section 4.3, the
classification is empirically manually trained with training data (supervised learning), in which
relationships are found from the calculated indicators to a particular transportation mode, and
these are realised with membership functions.

We consider the most frequent transportation modes in Europe. Their list is composed from
the recent Dutch National Travel Survey (Ministerie van Verkeer en Waterstaat, 2009), with the
addition of sea and air transportation modes, and metro (underground). The complete list of the
modes is shown in Figure 2. Notice that the inclusion of the sea and air transportation modes is
novel in relation to the existing solutions.
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For technical reasons, we introduce a new class “Stationary” for all non-moving points. It is not
shown in the Figure 2 as it is auxiliary.

As one may anticipate, in a few cases, discerning between a certain subset of the listed modes
may not be possible with a high certainty. For example, buses and cars have similar speeds and
acceleration in urban areas and both operate on the same infrastructure. We therefore introduce
a hierarchy of transportation modes in order to give an accurate result, which is more acceptable
than returning inaccurate or uncertain results. Three layers of transportation modes are gener-
ated, and the classification is done separately for each layer.

The first basic layer contains the most general groups: land, sea, and air. In some cases it may be
complex to distinguishing the following groups of modes:

• Bus, tram, and car (similar speed, and use of the same infrastructures);

• Sailing boat and ferry.

In order to avoid the possible errors of the classification system, the second layer contains ag-
gregations of some ambiguous modes. Hence, the second layer comprise seven transportation
modes: walk, bicycle, car/tram/bus (a single mode), train, metro, boat (comprises sailing boat
and ferry), and aircraft. The third layer has the car, tram and bus modes, and the sailboat and
ferry models, as separate modes.

4.1 Selection of the indicators

Our research involved testing the usability of a large number of numerical values derived from
the timestamped positions for the classification of the trajectories. The selection of the indicators
suitable for the classification for transportation modes resulted in nine values:

• three single values of speeds in the segment: its 95th percentile (the nearly maximum
speed), the mean speed, and the mean moving speed,

• five average proximities of the segment to the infrastructures used by the selected trans-
portation modes (railway, tram lines, roads, bus lines, metro lines—with segments that are
not underground where might be GPS reception), and

• the location of the trajectory with respect to water surfaces.

According to other researchers, the acceleration is as a useful indicator (Zheng et al., 2010). How-
ever, experiments with our datasets have shown otherwise. Despite the speeds inmost of the GPS
devices being measured accurately with the Doppler effect (Zhang et al., 2006), because of insuf-
ficient sampling periods (equal or above five seconds) and because of the variation of speeds
between the samples, the acceleration was not accurate enough to be used as indicators*. Fur-
thermore, in our experience, when considering a larger number of transportation modes the
acceleration is no longer an indicator that helps the segmentation process.

*With the use of newer devices with a sampling rate of 1s, acceleration could however be used.
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On a related note, since the average moving speed is computed from consecutive positions which
may contain positioning errors, a stationary GPS device will often record low speeds when not
moving at all. This issue is taken into account, it is detected with an algorithm we developed and
such data is filtered out.

4.2 Concept of the segmentation

As described in Section 2, a GPS track may have been completed with multiple transportation
modes, therefore before any classification first we need to divide it into single transportation-
mode segments. The segmentation is done in a two-step process:

1. partition of trajectories to single-journey segments (between two meaningful locations),
and

2. segmentation of journeys into single-mode segments.

Although both segmentations technically derive segments, the segments in the first segmentation
are referred to as journeys, and the latter simply as segments, as visible in the UML diagram in
Figure 1. Once a trajectory is segmented, it is ready for its classification. Therefore, the trajectories
are segmented before any knowledge of the transportation mode.

4.2.1 Segmentation into journeys between two relevant locations

Different journeys are often separated by a longer interruption in logging the data, caused by
either a signal shortage (individual in a building) or a device turned off. However, regular signal
shortage while travelling (e.g. entering a tunnel, or a journey with train) often exhibits the same
behaviour. As a consequence, in addition to the time difference, the distance between the last
known point before the gap and the first point after the interruption of logging is taken into
account. In case of journeys, and not of a signal shortage while moving, the departing point of
the next journey is usually close to the arrival point of the previous journey. By examining several
datasets we concluded that most of the journeys are mutually separated by longer period such as
a working shift (8-9 hours) or a night, hence they are straightforward to detect and segment.

4.2.2 Segmentation into single-mode segments

The second step of the segmentation is more challenging: the transitions between modes occur
much faster than transitions between journeys and they require a different approach.

Mountain and Raper (2001) report that the a rapid and sustained change in direction or speed
indicates a change ofmode. Therefore, a segmentation algorithmwould require detecting sudden
changes. Although theoretically such approach is plausible, a serious problem arises when dealing
with a transition which does not bear a noticeable change in speed and/or direction.
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Liao et al. (2006) segmentmulti-modal trajectories by analysing the proximity to potential-transition
locations such as bus stops. This method presents another interesting use of geodata. However,
their approach may have difficulties in areas with dense traffic features (especially in the Nether-
lands), where the distance between potential transition points for various modes may be in the
range of GPS errors, hence this method is used only partially in order to discern between cars,
buses and trams (we elaborate on this in Section 4.4).

Zheng et al. (2010) indicate that a person usually walks or stops during the transition. By examin-
ing the test dataset and observing the same behaviour, we choose to second their conclusions and
to follow this logic. However, by examining the available data we have noticed that the transitions
often cause data interruption (signal shortage under the roof in a train station, or entering a bus),
hence signal shortages have to be added to the list. They are used as an additional indication for
a potential transition.

All stops which are longer than a specific threshold, and also those before a signal shortage, are
considered as potential transition points. These events indicate that the transportationmodemight
have changed. In determining the threshold, one should consider that over-segmentation of the
trajectories is better than under-segmentation since fast transitions may pass undetected (e.g.
exiting a tram/bus, and immediate departure with some other modes).

Since many single-mode trajectories contain stops (e.g. cars stopping for traffic lights), initially
the trajectory may be segmented into a high number of segments. This is however not a problem
since we merge as post-processing consecutive segments having the same mode (see Figure 3).

A
A

B

Transition point
A

B

Potential transitions

Figure 3: All stops and signal shortages in a trajectory are first marked as points of potential tran-
sition, and the segments are classified separately. If two adjacent segments have the
same classification outcome, they are merged into one segment.

Each segment is terminated after a stop or signal shortage is encountered. The threshold for a
data disruption is set to 30 seconds, while a stop is considered when there is no movement for
more than 12 seconds. Since in a stop the position might not be recorded at exactly the same
position and there might be slight movement, a stop is detected when consecutive points in an
interval of 12 seconds do not have a speed higher than 2 km/h.

Despite our efforts, some cases of very fast transitions cannot be detected, one example being
when a person is running to a tram which immediately departs. These cases would require a
different approach since a shorter thresholdwould compromise other results by creating toomany
segments with just a few points. However, in practice such cases are not frequent.
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4.3 Concept of the classification

There are various general approaches for building a classification system, as it can be concluded
from the different existing approaches described in Section 3. In this paper, an expert system
approach is chosen because of its maturity and because it has been used successfully at solving
other problems (Holzmann et al., 1999; Rearden et al., 2007; Wentz et al., 2008).

An expert system is a software package that can reason through complex situations. It comprises
the knowledge of an expert in a certain field to provide answers to problems (Buchanan andDuda,
1982). It is applicable to specific problems and has been developed to substitute experts. Themost
typical usage of expert systems is in medicine (Grazia, 2006). Expert systems have been used in
GIS, for instance in cartography (VanOosterom et al., 2001; Alkemade, 2000; Kotte, 2002), and for
area/object classification of topologically structured topographic data converted from spaghetti
data (Van Oosterom, 1999).

Fundamentally, expert systems consist of a knowledge base (evidences e), and an inference pro-
cedure (rules), which derive conclusions (hypotheses h): IF e THEN h.

Another important concept in expert systems is (un)certainty, which occurs when one is not ab-
solutely certain about a piece of information (Nickles and Sottara, 2009). The degree of certainty,
introduced by Shortliffe et al. (1975), is represented by a numerical value CF(h, e), where CF is
the certainty factor, a quantification of the confidence that an expert might have in a conclusion
or hypothesis h that s/he has arrived at from an evidence e.

In case that a set of conclusions (hypotheses) derives multiple values of CFs, they should be prop-
agated through a reasoning chain, i.e. combined, to obtain one single certainty factor. Several
inference methods had been established for this operation. For instance, in MYCIN (an early
expert system developed in the early 1970s at Stanford University), when two CFs are ANDed
(conjunctive reasoning), the joint CF is the minimum value of the two (Shortliffe and Buchanan,
1975):

CF[A ∩B] = min(CF[A], CF[B])

This approach has the advantage that one CF with the value of 0 may result in a joint CF of 0, i.e.
if there is strong evidence that contradicts a hypothesis, other hypotheses with a non-zero CF are
discarded.

The presented concepts appear to be suitable for solving the problem of the classification ofmove-
ment trajectories.

In relation to this project, an example of a fact is the mean speed of a trajectory—30 km/h. By
considering solely the mean speed of a trajectory, there is suggestive evidence that the value of
the speed probably represents a car, with e.g. a CF of 1.0.

The fuzzy expert system developed for this paper uses fuzzy logic to derive certainty factors, i.e.
fuzzy variables are used to assign certainties to each derived hypothesis. Consider the following
case of a rule as an explanation of the concept. If the maximum speed in a segment is 118 km/h,
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from common sense we can build a rule that concludes that the transportation mode could be a
car: CFmax.speed

car (118 km/h) = 1.0.

While higher speeds for cars are rare, they should not be discarded as a possibility, since there
might be a possibility that the segment was completed with a car. In order to retain the reasoning,
but give it less weight, this is done for instance by assigning a lower CF:CFmax.speed

car (138 km/h) =
0.6.

Therefore, the certainty factors in fuzzy expert systems are a function of available evidence: CF =
f (e), i.e. membership functions which are empirically defined by investigating travel behaviour
for each transportationmode in the training data, a subset of the test data used for that purpose.

Each available fact should be used for each considered transportation mode (class) in the system.
For instance, extending the use of the information of the maximum speed for trains:

CFmax.speed
train (118 km/h) = 0.4.

Therefore, each rule in the system determines an array of certainty factors, one for each mode
considered:

IF (max. speed is 118 km/h)
THEN CFmax.speed

car = 1.0, CFmax.speed
train = 0.4, . . .

In case of multiple facts, the final CF is determined as a conjunctive CF since the rules are not
used in a particular sequence:

IF (max. speed is 55 km/h)
THEN CFmax.speed

tram = 0.85

IF (average proximity to tram network is 4933 m)
THEN CF

prox.
tram = 0

→ CFtram = min(0.85, 0) = 0

This is done for each mode. From the last example, it is visible that one rule in such system could
completely eliminate the possibility of a transportation mode based on only one fact. Therefore,
the presented classification system works on the elimination of unlikely modes by assigning them
CFs of zero for each evidence that is strongly against a hypothesis.

In order to formalise the presented concepts an overview is given. For each transportation mode
m (e.g. train) of the N considered modes (modes m1 . . .mn), the classification system contains
k membership functions f i

m, where k is total number of indicators (facts) used as the input of
the classification and i marks the designation of the indicator, e.g. f3

2 or fmax.speed
train . For each

segment, k indicators i1 . . . ik are calculated (e.g. i3 or iavg.speed) and passed to the respective
membership functions for each transportation mode (e.g. f3

train(i3), f3
car(i3), f3

bicycle(i3), …)
from which certainty factors CFi

m = f i
m(i) are calculated. The total number of the membership

functions and corresponding certainty factors is the product of the number of indicators k with
the number of the considered transportation modes n.
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After computing the k certainty factors for each transportation mode, the system determines
the minimum value for each and considers it as a the final CF. The confidence that the mode in
question was used to complete the classified segment is:

CF1
1 = f1

1 (i1) CF2
1 = f2

1 (i2) . . . CFk
1 = fk

1 (ik) ⇒ CF1 =min(CF1
1, . . .CF

k
1)

CF1
2 = f1

2 (i1) CF2
2 = f2

2 (i2) . . . CFk
2 = fk

2 (ik) ⇒ CF2 =min(CF1
2, . . .CF

k
2)

⋮ ⋮ ⋮ ⋮
CF1

n = f1
n(i1) CF2

n = f2
n(i2) . . . CFk

n = fk
n(ik) ⇒ CFn =min(CF1

n, . . .CF
k
n)

The mode with the highest (non-zero) CF may be considered as the result of the classification.

A significant advantage of using certainty values in the results is the possibility of sorting the
results by the value of CF and obtaining alternative results in order to improve the performance
of the classification system.

Theknowledge used for the classification is stored (encoded) separately inmembership functions,
and it is explicitly defined. There are numerous types of membership functions. A common
construction of a membership is trapezoidal, and it is used in our implementation. Figure 4
shows the set of membership functions of the considered modes for the indicator of the nearly
maximum speed.

1T H E S E G M E N TAT I O N A N D C L A S S I F I C AT I O N
S Y S T E M

µA

125 180160
0

3

1

10010 50 6520 35 80

Figure 1: The membership functions usually overlap. This is an example for
the membership functions for nine modes used in the indicator of the
nearly maximum speed (in km/h). The following modes are plotted:
car (black), train (yellow), walk (red), bicycle (green), tram (brown),
bus (purple), sailing (light blue), ferry (blue), and underground (dark
orange). The classes standing and aircraft are left out for aesthetic
reasons.

i

Figure 4: The membership functions usually overlap. This is an example for the membership
functions for ninemodes used in the indicator of the nearly maximum speed (in km/h).
The following modes are plotted: car (black), train (dark yellow), walk (red), bicycle
(green), tram (brown), bus (purple), sailing (light blue), ferry (blue), and underground
(dark orange). The classes stationary and aircraft are left out for aesthetic reasons.

This is also one of the simplest constructions, and it is suitable for this approach. It requires the
definition of four points, where ≤ x0 and ≥ x3 correspond to a certainty of zero, while between
x1 and x2 to one. Every value in between the four points is considered as fuzzy. It is important
to note that in this concept the range of the derived values by the MF is [0,1].

The definition of the membership function for each indicator for each transportation mode is
done in a training process also known as trial and error (Section 5.3).
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4.4 Discerning between similar modes

Classification between bus, car and tram is usually ambiguous because of comparable speeds and
because they both use the road network. While buses and cars in urban areas operate on the
same roads, when a segment is detected far from the bus network the classification rejects bus as
a possibility by assigning a CF of zero. However, in case of the presence of a bus line, but in some
cases also a tram line which operates adjacently to the road (on sometimes on the road) and it
is in range of GPS errors, the classification is ambiguous and the three classes are assigned with
the comparable CF, e.g. 1.0. This situation is solved by using the locations of the bus and tram
stops, and by using the knowledge of the previous used mode. Indeed, if the segment started at
a bus/tram station then there is a high probability that the segment was completed by a bus or
tram. Thus, the certainty factors for these modes are increased; Figure 5 clarifies this theory. If
the new segment is started close to a station, then the corresponding mode gets a CF increase
in the subsequent segment. The value is currently put to 0.2 since we have noticed that virtually
all discrepancies between these three modes in the classification are less than 0.2. The size of the
buffer is currently set to 20 m which compensates the size of the bus/tram stops and the GPS
noise.

Si

Si+ cfbus = . + .
cfcar = .

Bus station

Transition point

Bu�er of the station

cftram = .

Figure 5: Injecting certainty factors supplement for segments which commence at a station for
bus or tram contribute to the distinction of the modes car, bus, and tram.

However, many tram and bus stops are close to regular car stops (such as traffic lights), which
may wrongly assign a car segment to a bus or a tram if it was started close to a station. Hence,
our method takes into account the knowledge of the previously used transportation mode: if the
previous segment was completed with a car, and ambiguity between car, tram and bus exist, the
class car gets a favourable CF supplement. Bus and tram segments may be possible only when the
previously used mode was walking.

In addition, buses and tramsmay stop at points outside the buffers of stations (e.g. bridges), which
may cause the opposite classification. The knowledge of the previously transportation mode is
then taken into account as well.

The disadvantage of this approach is that in rare situations where a person was dropped off from a
car directly at a bus or tram station and continued the journey with either a bus or tram are from
that point wrongly classified as car segments. This is partially solved by analysing the dwell time
between two segments. If the dwell time after a non-walking segment is longer than a certain
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threshold and took place in the buffer of a station, then it is assumed that the person was waiting
for a bus/tram, rather than waiting in a car for a traffic light.

4.5 Dealing with disruptions in the data

Signal shortages that cause disruptions in the acquisition of data (i.e. gaps) are frequent and hard
to handle since we are dealing with the classification of non-existing data. As noted, we consider
data as missing when no samples are recorded for more than 30 s. The problem is complex since
there are numerous cases, one example is that the transportationmode could have changed during
the disruption.

Resolving the gaps requires investigating many possible cases that occur in practice. In addition
to these problems, this method takes advantage of gaps, since the metro mode does not have any
reception, and it is detected by the disruption of signal in between entrances to the two metro
stations, similar to the methods of Stopher et al. (2008) and Shalaby et al. (2006).

The following distinct cases account for most, if not all occurrences of gaps, and their reconstruc-
tion was developed and implemented in the prototype. All cases are depicted in Figure 6.

Since the points are not sampled, we must guess what happened during the gap. The distance
between the two adjacent recorded segments is known, along with the time difference. From
these, the average distance may be computed, although this is rather a rough approximation due
to the potential sinuosity of the travelled path. As one might suggest, proximity to the stations
for certain modes are available for the points on the edge of the gap. Although it is possible to
take into account the proximity to the stations, these cases have something more in common—
they occur on the network of each corresponding mode. Hence, instead of stops, the location of
networks is used, which are already available from the preprocessing procedure.

Before each disruption in the data, the system stores the classification result of the preceding
segment, and the distance from the last known point to all considered infrastructures. This is
also done for the first point after the gap.

The reasoning system analyses the infrastructures from the buffers of the boundary points of
the segments (last recorded point in the previous segment and first in the subsequent segment).
If two infrastructures match (e.g. if both points fall in a buffer), then the corresponding mode is
assigned. This is especially useful for undergroundmodes since it is the only way to classify them.
Indeed, some metros have part of their networks on the surface, but almost always involve data
missing time intervals.

In case of the match of multiple infrastructures, the average speed of the gap and the knowledge
of the previous transportation mode prevails. If neither conditions are met, the system analyses
the average speed of the gap, and the average speed of the first 20 points of the next segment. If
either speed is higher than 300 km/h, the gap is marked as ‘air’.

The value of 20 points in the following segment was taken into account in order to preserve the
travel behaviour of the segment in the portion closer to the gap. This is useful in cases where
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Car Car Car

(a) “Regular” gaps where the mode was not changed.

Bike Train Walk

(b) The whole segment done with another mode is not recorded.

Bike
Train WalkTrain

(c) The first transition is recorded, but not the rest of the segment and the second
transition.

Bike
Train WalkTrain Train

(d) Neither of the transitions is detected, but a small fragment of the segment is
recorded in between.

Bike WalkTrain

Bike
Walk

(e) Signal shortage occurs during both transitions, the mode is not recorded, and
the disruptions exist in the earlier and next segments.

Bike
Bus WalkTrain

(f) Signal shortage occurs during both transitions, the mode is not recorded, and
the disruptions exist in the earlier and next segments.

Figure 6: General cases of data interruption.
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the subsequent segment is relatively long and during its course exhibits behaviour which can be
different than in its part closer to the previous segment (e.g. much higher speed).

This solves the cases (a), (b), (c), (d) shown in Figure 6 by a unified approach. The method is also
useful in segments where only fragments of data are available.

Case (e) is resolved only in instances where the time difference and distance to the occurred
transition is small. In other cases the segment is marked as unknown as it involves too much
ambiguity. The same applies for (f) which is a case that cannot be solved even with human inter-
vention.

Another specific case that could not be solved is that if a person lost GPS signal while board-
ing a ferry, and reappeared after the segment was finished. The sea mode could not be resolved
since both boundary points fall onto land. Reasoning that the person crossed a water polygon
in between requires complex GIS operations (and there is always the possibility that the person
crossed a bridge).

Althoughmachine reasoning in signal shortages is complex, we have obtained satisfactory results
and “repaired” the available datasets. We believe that the presentedmethod of classifying deficient
and broken data is a contribution in this field.

5 Implementation

Aprototype, implemented inPython, was created in order to test the presented approach. Figure 7
depicts the workflow of the implementation.

(x,y,z,t)

Geodata

Calculate 
indicators

(x,y,z,t, 
indicators) Segmentation

(x,y,z,t, 
segment_id)

Classified points 
and segments

1) Raw movement
data (trajectories)

2) OpenStreetMap

3) Empirical
relationships

input:

output:

Classi!ed and
segmented data

1st step
(preprocessing)

Preprocessed
data 2nd step

Segmented
data

3rd step

(x,y,z,t, 
mode)

Classi!ed
data

Merging 
segments

4th step

Membership 
functions

Classification

Figure 7: Flowchart of the implementation of the prototype.

Raw movement datasets in form of timestamped positions (x, y, z, t) are imported in a database
(PostgreSQL with PostGIS in our case), and are preprocessed for the required indicators (first
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step). Geodata required for the calculation of the indicators come from the OpenStreetMap
project (described in Section 5.1) and have been stored in the same database. To each point is
attached a series of indicators which are later used in the classification. Afterwards the data is
segmented (second step) into single-mode trajectories in single-journeys (Section 4.2), which
are then passed to the classification system. The classification system, aided by the membership
functions and certainty factors (Section 4.3), classifies each point for the transportation mode
(third step). The classified segments are then finally merged with adjacent segments of the same
class (fourth step) resulting in the segmented and classified trajectories.

In order to test the developed method and the prototype two large movement datasets were
used:

• the data from the survey conducted in the Netherlands by Bohte andMaat (2009) as part of
a travel behaviour study focused on residential choice. This dataset contains 7-day move-
ment logs of a thousand respondents collected with a handheld GPS logger with a SiRF-
StarII chip, with an average sampling period of 6.5 s. The data have been classified in an
interpretation-validation process in which the system first made a preliminary basic seg-
mentation and classification, after which the data have been checked and corrected by the
respondent in a web-based questionnaire. Bohte and Maat (2009) are interested in remov-
ing or shorten the validation process by improving and automatizing the segmentation and
classification process, which is one of the motives for our research. The data corrected by
the respondents may be used as a reference for experiments and for validation.

• The manually classified data from the project of Van der Spek et al. (2009) from the De-
partment of Urbanism, Faculty of Architecture, Delft University of Technology is used as
well. The project concentrates on collecting data on various types of pedestrian movement
in city centres. It addresses the topic of improving city centres for pedestrians, especially
for shoppers and tourists (Van der Spek, 2010). This dataset has been collected with devices
with a newer and more sensitive chip (SiRFStarIII), with a sampling period of 5 s.

Notice that for all the GPS tracks, we used the speed as calculated by the receivers (using the
Doppler effect). Also, it was important to check the robustness of the method with data ob-
tained with various devices of different sensitivity and technology (different frequency of signal
shortages and accuracy). Thus, we downloaded additional movement data from the internet (e.g.
OpenStreetMap raw logs for which the transportation mode was known), and from various de-
vices that we used (mobile phones, and with handheld GPS devices of different production years
and manufacturers).

In total, the available data contains 17.5 million GPS points in trajectories longer than half of a
million kilometres, well covering the considered transportation modes and various movement
scenarios required for testing the robustness of the method for different situations.

As an impression of the available datasets and their size, Figure 8 shows the Dutch city Amers-
foort “mapped” from the available movement data. Frequently used paths (e.g. highways) can be
observed by the aggregation of multiple points (i.e. thicker lines).
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Figure 8: Visualisation of an excerpt of the GPS data used in the implementation (Amersfoort,
the Netherlands) and its classification. The left side of the Figure represents a collection
of rawGPS points, while the right side represents the visualisation of classified GPS data
of the same spatial extent with different colours accounting for different transportation
modes. Red represents walking, while green and blue are for bicycles and cars, respec-
tively. Train is represented in yellow, visible on the diagonal railway.

After the preprocessing (calculation of the indicators), the data are ready for segmentation, where
the movement archive is segmented between all stops, and passed to the classification system.

It should also be said that the definition of the membership functions, the empirical relationships,
are stored in a separate XML file which enables the extension of the prototype for additional
indicators or transportation modes.

5.1 OpenStreetMap

For geographical data, we chose to use the data from the OpenStreetMap (OSM) project because
they are available for free usage, they contain all the needed features (e.g. bus infrastructure, at
least in the Netherlands) and they have a good coverage (at least in Western Europe). OSM is a
collaborative project to create a free editable map of the world, and one can download and freely
use the data. Several studies have looked at the quality of the OSM data in different countries
in Europe, see for instance Haklay (2010) for the UK, Girres and Touya (2010) for France and
Zielstra and Zipf (2010) for Germany. We are not aware of any such study in the Netherlands,
but the dataset is certainly up-to-date and accurate enough since several high-quality datasets of
the Netherlands have been recently donated to the OSM project. First, the buildings are coming
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from the topographic map (Top10NL)†, and second the roads are very accurate since in 2007
the Dutch mapping company ‘Automotive Navigation Data’ donated their entire street map of the
Netherlands‡. Other useful information (e.g. location of bus stops, of airports, of the railways) is
also continually added to the OSM database.

The data are organised separately into geometry (polylines) and corresponding attributes (tags).
By contrast, most GISs use Simple Features to store geographical objects, so we had to convert
the datasets to that format before being able to to calculate indicators from it.

5.2 Import and preprocessing of the trajectories

Movement data are usually stored in the GPX format (GPS exchange format), an example of a
point stored in the GPX format is shown in the continuation:

<trkpt lat=”52.196537” lon=”5.413356”>
<ele>51.475254</ele>
<time>2007-03-11T12:50:47Z</time>
<course>220.490177</course>
<speed>10.932674</speed>
<fix>3d</fix>
<sat>4</sat>
<hdop>22</hdop>
<vdop>20</vdop>
<pdop>29</pdop>
<quality>1</quality>

</trkpt>

The trajectories are imported and stored in the database point by point, and are immediately
preprocessed for the different indicators. The computation of some indicators is derived from
other indicators (e.g. the maximum speed is calculated after the speeds at all points are derived),
hence the preprocessing is done in multiple passes.

5.3 Training of the system

In order for the system to performwell, the proper values for defining theMembership Functions
(MF) for every transportation mode have to be defined. Currently this is done in an iterative pro-
cess starting with common senses values for bikes, cars, trains, etc. These values for the MF are
encoded in an XML file and the system then classifies the segments. This automatic classification
is then compared to the ‘ground truth’ of the dataset (the results classified by the respondents)
and a score is assigned based on the similarity between the automatic and the manual classifica-
tion. If needed the MF values are adjusted and a new iteration is executed until the results are

†http://wiki.openstreetmap.org/wiki/3dShapes and https://rejo.zenger.nl/inzicht/
aanvullende-informatie-over-het-3d-shapes-bestand (in Dutch).

‡http://wiki.openstreetmap.org/wiki/AND_Data

19

http://wiki.openstreetmap.org/wiki/3dShapes
https://rejo.zenger.nl/inzicht/aanvullende-informatie-over-het-3d-shapes-bestand
https://rejo.zenger.nl/inzicht/aanvullende-informatie-over-het-3d-shapes-bestand


satisfactory; e.g. the score is above 95%. Note that each iteration is quite expensive as new MFs
imply computing again the indicators for the segments and based on the new indicator values
the rules are applied for classification. The next excerpt shows a fragment of XML file with MF
values:

<indicator name=”mean_speed”>
<mode layer=”3” name=”walk”>

<values>0,1,8,10</values>
</mode>

i.e. the four values of the MF of mean speed for the transportation mode walking (3rd layer) are
0, 1, 8, and 10 km/h.

What is actually going on is a search process to optimal values for the MF functions. For each
transport mode there is one MF function described by values. Currently this is a manual trial-
and-error process based on analysing the errors.

The end results are extremely sensitive to the determination of the MF parameters. When using
a dataset which is not homogenous, many trade-offs should be taken into account due to large
differences and possibilities in mode behaviour.

However, this process could also be automated by considering it as a search problem to optimize
the score in the high-dimensional space of all values ofMF. In principle all steps can be automated:
setting four MF values, computing indicators, assigning classification and finally computing the
overall score. Hence, we could use one of the well know search/optimization algorithms such
as hill climbing, simulated annealing, genetic algorithm, etc. (Russell, 2003; S. Kirkpatrick and
Vecchi, 1983; Michalewicz, 1996). As each iteration is relatively expensive, we could try to use a
subset of the manual classified segments and optimize for this subset. If good results are obtained
we can try these MF values for all manual classified segments. If results are still good then the
subset was representative; if the score is not good the subset was not representative. In such a case
we should either use a different segment or more segments (e.g. if not all cases were sufficiently
represented).

One last warning: the manual classified segments are now considered as the ground truth. For
our data this was not really true. We inspected the differences between the manual and the auto-
mated classifications and it could be observed that theymade about the equal number ofmistakes
(but different ones); for instance many segments of different public transport modes were clas-
sified as one segment, and in general short segments were often not noted. This is something
that automatic training (optimizing) of the system can not improve (as it considers the manual
classified data as truth and tries to get as close as possible to these classification).

6 Experiments and validation

In order to assess the quality and the applicability of the developed segmentation and classification
method, unbiased validation methods have been applied. It was decided to use two different
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large test datasets for the validations: implying different types of GPS receivers (both new and
old), different regions, different timeframes, different sampling periods, and different and non-
related organisers of the collection of the involved GPS traces. As explained in Section 5 these
two datasets are from the research projects of (1) Bohte and Maat (2009) and (2) Van der Spek
et al. (2009). The size of the datasets and the variety of all kinds of different movement situations
is a guarantee for robust validation.

The datasets have been manually and independently classified within the scope of the original
research projects. This classification will now be used as reference material, i.e. ‘ground truth’, for
our developed automated approach. There are a few difficulties when comparing the results:

• the segments are not segmented exactly at the same transitions points (so one should accept
small differences here),

• our new approach has a more refined classification scheme (hierarchy of transportation
modes, see Fig. 2), and

• the manual classification taken as ’ground truth’ might contain errors.

In order to copewith the abovementioned validation problemswe took the following approach:

• we remapped our refined classification in the validation to the rougher classification of
original test data (our classes x1, x2, . . . to class y1 of the reference classification, e.g. bus
and tram are grouped together for the class bus/tram that is defined in the test dataset which
was further checked),

• for comparable classes, we collected statistics on the amount of overlap between the two
classifications at point level—this resulted in respectively y1p , y2p , y3p agreements and over-
all yp of 91.6 %, and

• finally, the individual cases were inspected further where there was a large number of se-
quential points in a GPS trace that were classified differently. From this inspection (cases)
it turned out that there was about an equal amount of manual error and automated errors,
i.e. about half of the 8.4% ‘error’ was indeed correct (4.2%), resulting in an overall score
of about 95% (a little lower than 95.8% as there is a small changes that both manual and
automated classification are wrong and equal, though we did find no indication for this).
Some transportation modes in various situations have been classified with a 100% accu-
racy, e.g. cars on journeys longer than a few kilometres. When taking into account also
the alternative result with the second highest CF, the accuracy was nearly 100%, which is
a clear advantage over methods that do not determine values of certainties.

The right side of the Figure 8 shows the GPS data in the spatial extent shown on the left side of
the same Figure classified by our fully automated classification and this reinforces the confidence
in the above stated positive results of the validation method.

A significant difference between the accuracy of the movement data obtained with relatively old
and new devices has not been found. Thanks to the presented approaches, which takes into ac-
count the signal shortages, the accuracy is not affected by the deficiencies found in data acquired
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with older devices. The method can be seen as a worst case scenario where the results can only
be improved when newer receivers are used.

The developed method was further checked on various smaller datasets collected by us and oth-
ers retrieved from the internet for tests with the data acquired with different sampling periods,
on a different location and with different GPS devices, as further explained in Biljecki (2010).
The segmentation and classification results obtained with the presented automated method are
comparable to the above presented findings.

The results may be further improved when optimising the knowledge (membership functions)
and using datasets from single sources which contain an uniform behaviour and smaller geo-
graphic extent.

7 Discussion and Future Work

The work described in this paper has been initiated by the need of a classification solution for
the data acquired for the travel behaviour study conducted by the Department of Urban and
Regional Development (Bohte and Maat, 2009) and the Department of Urbanism (Van der Spek
et al., 2009) at TU Delft. We have described an algorithm, we have implemented it, and we have
validated our results. Their dataset is now classified with a significantly higher accuracy than the
existing (semi-manual) method that had been originally used (since we introduced automatic
segmentation of the trajectories), and we take into account ten different transportation modes.
Apart from travel behaviour research, we believe our method and our prototype is useful in other
disciplines since it can be easily extended with new transportation modes (one simply has to
define the MFs for all the indicators, i.e. speed, proximity to a certain infrastructure) and the
current MFs can also be modified so that they are more realistic for a given country (we have set
them up for the Netherlands here). Moreover, themethod is universal and we had shown it works
for movement data collected with any relatively modern GPS device.

Although it is very difficult to take into account all possible cases in the real-world, the prototype
yielded satisfactory results, especially in the segmentation and classification of data containing
noise or having a small number of samples.

The errors are usually not caused by the imperfection of the system, rather by specific situations
whose modelling would be either complicated or would impair the existing classification perfor-
mance. We believe that the development of a system that takes into account virtually all possible
situations in movement may not be possible.

One reasonwhywe obtained better results than previous attempts is thatwe rely heavily on the use
of geographical data for the indicators, which permits us to resolve gaps, ambiguity between car,
bus and tram, and to enrich the trajectories with additional information about the transportation
modes. Without geographical data this would not be possible. A few years ago it would have been
unthinkable to have (free) access to such datasets, but OpenStreetMap solves that problem and
we believe that the quality and coverage of the data uploaded to their servers will only increase in
the next year (this is certainly our experience with the data in the Netherlands).
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Ourmethod distinguishes between ten transportationmodes, which is to the extent of our knowl-
edge, more than any othermethods. Although a lot of overlapping characteristics betweenmodes
exist, with a careful selection of the indicators andmodelling of correspondingmembership func-
tions the accurate classification of a large number of modes was made possible. Discerning be-
tween car, bus, and tram is done thanks to a developed technique of injecting supplementary
confidences based on previous knowledge, which is a novelty. However, there are still cases that
we cannot really solve, for instance the difference between bicycles and scooters. In the Nether-
lands these two modes use primarily the cycling paths, and travel at similar speeds; we tried to
use the acceleration to differentiate them but because of the noise in the data that proved unsuc-
cessful. We hope that with newer GPS units that problem will be solved.

For future work, we plan to improve the prototype by training the system with more datasets
coming from newer and better GPS units. We plan to allow users to upload their own GPS logs
to a website and let them manually classify their trajectories; that knowledge could then be used
to improve our method. Users would also be able to upload their GPS logs and get back seg-
mented and classified trajectories, in aKMLfile for instance. We also plan on usingmore auxiliary
datasets, such as the type of a road or speed limit. For instance, if it is known that in the Nether-
lands most of the traffic jams occur on highways, then the classification system may take that fact
into account and compensate the speed on such locations (depending on the time of the day).
The number of lanes of a road, which is conceptually available in OSM but often not acquired,
could be used to alter the MF for the proximity to a road (i.e. a wider road would require a wider
MF). Finally, we think that a better classification could be obtained if data about the users were
used. Indeed, since a user’s trajectory ordinarily contains repetitive journeys, not only in space
but also in time and usually with the same transportation mode(s) (e.g. every-day commuting),
historical user data may be used to improve the classification in uncertain situations. Similarly,
in movement research surveys, extensive data from numerous respondents is often available. By
modelling patterns and transportation modes from a group of similar movements, it may be pos-
sible to facilitate the classification by searching for a similar trajectory in the database and assign
the transportation mode from existing trajectories (classified patterns) in the database.
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