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ABSTRACT
Deterioration models can be used to forecast the evolution of the condition of the sewer network under
different investment strategies. Models are calibrated using condition scores obtained from sewer visual
inspection. Many studies highlighted the uncertainties in the procedure of sewer condition assessment,
mainly due to the subjectivity of the coding operator. However, the influence of this uncertainty on the
outcomes of deterioration modelling remains unknown. This paper analyses the influence of sewer condi-
tion uncertainties on the prediction of deterioration models. An optimisation methodology has been
applied to quantify uncertainties in sewer condition assessment from the analysis of a set of repeated
inspections. Then, a method is proposed to propagate uncertainties in the survival curves of a deterior-
ation model using the inspection dataset of the city of Berlin, Germany. Results indicate that old pipes in
bad condition are more prone to False Negative than False Positive (higher probability to miss defects). As
a result, the propagation of uncertainties leads to more pessimistic survival curves with a confidence inter-
val of ±12% at 100 years. The analysis shows that the required replacement rate to maintain a constant
network condition is underestimated if uncertainties are not considered.
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1. Introduction

Sewer systems form one of the most capital-intensive infra-
structure systems in cities. Managing such an infrastructure
is often defined as finding the right balance over time
between costs, services and risks (Burns, Hope, & Roorda,
1999; Cashman et al., 2004; Marlow et al., 2007; Parsons,
2006). For decades, sewer asset management has mainly
been a ‘run-to-failure’ approach (Wirahadikusumah, Dulcy,
& Iseley, 2001): decisions are based on practical experience
and most of the operational resources are allocated to emer-
gency rehabilitation or replacement of failed components
(Ugarelli, Selseth, Le Gat, Rostum, & Krogh, 2013). In order
to cope with the ongoing aging of the infrastructure and to
maintain service quality, municipalities are progressively
shifting to a proactive management aiming at anticipating
the consequences of strategic decisions and targeting sewer
segments before any failure occurs (Ahmadi, Cherqui, De
Massiac, & Le Gauffre, 2014). The implementation of such
an approach is usually hampered by the lack of information
about assets condition, in a general context of budget limita-
tion (Harvey & McBean, 2014).

Over the last decades, modelling has gained increasing
importance into assisting proactive management due to: (1)
a better data availability, (2) the possibility to relate several

data sources, (3) the increase of computational power and
(4) the development of operational software. Modelling tools
support utilities in addressing a broad range of issues such
as sewer deterioration (Ana & Bauwens, 2010; Egger,
Scheidegger, Reichert, & Maurer, 2013; Kleiner, Sadiq, &
Rajani, 2006; Salman, 2010), selection of rehabilitation tech-
nique (Das, Bayat, Gay, & Matthews, 2018), infiltration and
exfiltration (Bertrand-Krajewski et al., 2010), flood risk (Dey
& Kamioka, 2007; Yazdi, Lee, & Kim, 2015), sewer blockage
(Jin & Mukherjee, 2010), sediment deposition (Ashley,
Fraser, Burrows, & Blanksby, 2000; Rodr�ıguez, McIntyre,
D�ıaz-Granados, & Maksimovi�c, 2012) or combined sewer
overflows (Morales, Mier, & Garcia, 2017).

Deterioration models, which are in the focus of this
study, can be used to simulate the condition of non-
inspected sewer segments and to forecast the evolution of
the condition of sewer networks under different investment
strategies. Models are usually calibrated to predict sewer
structural condition from a set of explanatory factors such
as sewer age, material, effluent type, traffic load, etc. Model
outputs provide key information to operators and munici-
palities for the scheduling of inspection programmes (i.e.
the detection of sewers in critical condition and potentially
the reduction of inspection costs by avoiding inspections of
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segments in good condition) and the planning of rehabilita-
tion budgets (i.e. the comparison of different sewer rehabili-
tation scenarios and the evaluation of necessary
investment rates).

Many researches have focussed on the development of
statistical or machine learning deterioration models (e.g.
Ana & Bauwens, 2010; Baur & Herz, 2002; Elmasry, Zayed,
& Hawari, 2016; Harvey & McBean, 2014; Kley & Caradot,
2013; Le Gat, 2008; Marlow et al., 2009; Mashford, Marlow,
Tran, & May, 2011; Micevski, Kuczera, & Coombes, 2002;
Najafi & Kulandaivel, 2005; Salman, 2010; Tran, Ng, &
Perera, 2007; Vitorino et al., 2014). Further studies have
investigated the relevant explanatory factors for model cali-
bration (e.g. Carvalho, Amado, Brito, Coelho, & Leit~ao,
2018; Davies, Clarke, Whiter, & Cunningham, 2001; El-
Housni, Ouellet, & Duchesne, 2018). Several recent studies
have focussed on quantifying different sources of uncertain-
ties, which might affect model predictions, such as:

� the predictive performance of the model itself: Duchesne,
Beardsell, Villeneuve, Toumbou, & Bouchard, 2013;
Rokstad, Le Gat, & Ugarelli, 2014; Sousa, Ferreira,
Meireles, Almeida, & Saldanha Matos, 2014b;

� the availability of CCTV data for model calibration:
Ahmadi, Cherqui, Aubin, & Le Gauffre, 2016; Duchesne
et al., 2013; Rokstad & Ugarelli, 2015; Tran, 2016;

� the availability of historical records of rehabilitated seg-
ments: Egger et al., 2013; Ouellet & Duchesne, 2018;
Scheidegger, Hug, Rieckermann, & Maurer, 2011;

� the availability and quality of appropriate explanatory
factors for model calibration: Ahmadi, Cherqui, De
Massiac, & Le Gauffre, 2015; Mashford et al., 2011;

� the survival bias and issues linked to data censoring:
Duchesne et al., 2013; Egger et al., 2013; Ouellet &
Duchesne, 2018; Scheidegger & Maurer, 2012.

Several studies have shown that, despite the above men-
tioned sources of uncertainty, deterioration models are, to a
certain degree, reliable tools to simulate the deterioration of
the entire network (Duchesne et al., 2013; Hern�andez,
Caradot, Sonnenberg, Rouault, & Torres, 2018; Ugarelli
et al., 2013) and to identify segments in critical condition
(Fuchs-Hanusch, G€unther, M€oderl, & Muschalla, 2015;
Harvey & McBean, 2014; Rokstad & Ugarelli, 2015). It has
also been shown that they can provide satisfying accuracy at
the network level even in case of low data availability
(Caradot et al., 2017; Duchesne et al., 2013; Tran, 2016).
However, to the authors’ knowledge, no study has investi-
gated the influence of data quality on the reliability of mod-
elling outcomes.

Deterioration models are trained or calibrated with sewer
condition scores obtained from sewer visual inspection.
Visual inspection and more specifically closed-circuit televi-
sion (CCTV) inspection is the most used method to assess
the condition of sewer segments (Knolmar & Szabo, 2003).
The analysis of the image enables to identify the type and
location of defects like offset joints, segment cracks, leaks,
sediments, debris and root intrusions. The prevalence of

CCTV compared to other existing techniques is explained
by its low cost and the existence of national and European
standards. The reliability of CCTV has been strongly ques-
tioned these last few years in the scientific literature
(Caradot, Rouault, Clemens, & Cherqui, 2018a; Dirksen
et al., 2013; Korving & Clemens, 2004; Roghani, Cherqui,
Ahmadi, Le Gauffre, & Tabesh, 2019; Sousa et al., 2014a;
van der Steen, Dirksen, & Clemens, 2014; van Riel, van
Bueren, Langeveld, Herder, & Clemens, 2016).

According to these studies, condition assessment based
on CCTV tends to underestimate the level of deterioration
of segments. Condition assessment errors come from
(Cherqui, Gutierrez-Silva, Ahmadi, Aubin, & Le Gauffre,
2017): the environment of the segment (e.g. obstacles which
hinder accurate visualisation); the condition assessment pro-
cedure (e.g. coding system used, experience and subjectivity
of the operator); the segment characteristics (e.g. diameter,
material); and the defects characteristics (e.g. size, number,
spatial distribution). Most utilities acknowledge the uncer-
tainties in the procedure of sewer condition assessment,
mainly due to the subjectivity of the coding operator.
However, the importance of this uncertainty and its influ-
ence on the outcomes of deterioration modelling remain
unknown. Our study aims at addressing these issues with
the following objectives:

� quantify the uncertainties of the sewer condition assess-
ment procedure;

� assess the influence of this uncertainty on the shape of
the survival curves and on the predicted strategies of a
deterioration model.

2. Material and method

The methodology that will be presented in the sequence, is
based on the following three steps (Figure 1):

� Step 1: the determination of the uncertainty matrix using
a set of repeated inspections of the same segments. The
uncertainty matrix gives the probability to correctly esti-
mate or misestimate the real condition of a segment
using CCTV inspection.

� Step 2: the calibration of a statistical deterioration model
and the propagation of the uncertainties in the sur-
vival curves.

� Step 3: the prediction of simple asset management strat-
egies with and without considering uncertainties.

2.1. Step 1: Uncertainties in sewer condition assessment

Caradot et al. (2018a) proposed a methodology to assess
uncertainties of sewer condition assessment based on the
analysis of repeated inspections of the same segments. The
aim is to determine the probability to underestimate, over-
estimate or accurately estimate the real condition of a seg-
ment using CCTV inspection. The methodology assumes
that each inspected segment has a real structural condition
which describes the rehabilitation needs. The real condition
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is defined as the sewer internal condition that would lead to
the best rehabilitation (or no-rehabilitation) decision. The
real condition of the segment is unfortunately unknown but
can be estimated with an inspected condition, following the
steps of CCTV visual inspection, sewer defect coding and
sewer condition assessment. The inspected condition might
estimate correctly the real condition but can also underesti-
mate or overestimate it since uncertainties affect each step
of the condition assessment procedure.

Uncertainties can be expressed in a matrix M ¼
P b ¼ ia ¼ jð Þi,j which gives the conditional probability to be
inspected in condition ‘i’ when a segment is really in condi-
tion ‘j’:

M ¼
P b ¼ 1a ¼ 1ð Þ P b ¼ 1a ¼ 2ð Þ P b ¼ 1a ¼ 3ð Þ
P b ¼ 2a ¼ 1ð Þ P b ¼ 2a ¼ 2ð Þ P b ¼ 2a ¼ 3ð Þ
P b ¼ 3a ¼ 1ð Þ P b ¼ 3a ¼ 2ð Þ P b ¼ 3a ¼ 3ð Þ

0
@

1
A

(1)

The term a indicates the real condition of a segment (which
is unknown), while the term b indicates the inspected condi-
tion of a segment (which is known). The uncertainty matrix
can be used to estimate the inspected condition distribution P
of a network from the real condition distribution R:

P ¼ MR (2)

Similarly, the real condition distribution of a network can
be estimated from an inspected condition distribution, provid-
ing that the matrix M is invertible, which would define R
uniquely:

R ¼ M�1P (3)

Supplementary material, Appendix 1 recalls the main steps
of the optimisation methodology, which leads to the

determination of the uncertainty matrix M. The optimisation
is run 1000 times in order to deliver the mean and standard
deviation of the uncertainty matrix M. The full approach has
been published in a previous paper (Caradot et al., 2018a).

2.2. Step 2: Propagation of the uncertainties in the
deterioration model

The obtained uncertainty matrix M can be used to propa-
gate uncertainties in any survival model that predicts a
probability class output (probability for a segment to be in a
given condition class) from the segment’s age and a set of
numerical or categorical variables. The survival curves SC of
a survival model give the probability to be in each condition
at a given segment age T. For examples, with three condi-
tion classes:

PðTÞ ¼ P1 Tð Þ, P2 Tð Þ, P3 Tð Þð Þ
¼ ðSC1 Tð Þ, SC2 Tð Þ � SC1 Tð Þ,1� SC2 Tð ÞÞ (4)

During the calibration procedure, survival curves are esti-
mated from a set of inspected segments. They aim at repro-
ducing the deterioration behaviour observed in the
inspection dataset, that is, the proportion of segments in
each condition at a given age. After estimating the average
uncertainty matrix, the survival curves can be corrected
using Equation (3) as follows:

R Tð Þ ¼ M�1 P Tð Þ (5)

A confidence interval can be obtained from a Monte-
Carlo simulation using the 1000 uncertainty matrices M
obtained in the optimisation procedure. The confidence
interval can be useful to propagate uncertainties in the

Figure 1. Presentation of the main steps of the methodology.
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prediction of the deterioration model. Monte-Carlo simula-
tions allow simulating the impact of uncertainties on the
strategic outcomes of the model.

It is worth noting that the uncertainties are propagated
directly in the survival curves of the deterioration model:
the simulated proportion of segments in each condition is
corrected by the uncertainty matrix. Another approach
would have consisted in propagating uncertainties in the
condition data used as input for the model calibration. The
uncertainty matrix would be applied to generate a random
condition for each inspected segment. The corrected condi-
tion classes would then be used to calibrate the survival
curves of the deterioration model. In this case, the inspected
proportion of segments in each condition is corrected by the
uncertainty matrix. The two approaches lead to similar sur-
vival curves since the inspected and simulated proportions
of segments in each condition are similar (the deviations
between the inspected and simulated proportions is close to
0 for a good calibrated model (Caradot et al., 2017)). The
first approach presented above has been preferred for its
computational simplicity: the Monte-Carlo simulation is
used to correct the survival curves instead of correcting the
condition data used as input for the model calibration.

2.3. Step 3: Propagation of the uncertainties in asset
management strategies

First, the corrected survival curves are used to simulate the
future evolution of the condition distribution of 1000 random
segments for a fictive do-nothing strategy without any rehabili-
tation action. Over a given simulation period [Tstart; Tend], the
model calculates, for each year T, the condition distribution,
that is, the proportion of segments in each condition:

C Tð Þ ¼ ðC1 Tð Þ, C2 Tð Þ, C3 Tð ÞÞ (6)

Then, the survival curves are used to simulate the neces-
sary replacement rate to maintain the condition of the
whole network over time (constant proportion of segments
in poor condition). The replacement rate is calculated as the
percentage of segments that shifted from the intermediate to
the poor condition between the start year and a given year
of the simulation, divided by the number of elapsed years. It
provides the average yearly replacement rate to avoid the
deterioration of the network:

replacement rate ðTÞ ¼ C3 Tð Þ�C3ðTstartÞ
T�Tstart

(7)

2.4. Application on the sewer network of the city
of Berlin

2.4.1. Description of the data
The study has been performed using the extensive GIS and
CCTV databases of the city of Berlin in Germany (3.7 mil-
lion inhabitants). The sewer network is composed of
235,988 segments (9710 km) registered in the GIS database.
Most segments are sanitary sewers (45%) whereas 35% are
stormwater sewers and 20% are combined sewers. Clay and

concrete are the two dominating materials with respective
proportions of 54% and 25%. The Berliner Wasserbetriebe
conducts extensive CCTV inspection programmes since the
end of the 1980s. Sewer defects observed during inspections
are systematically coded in a local coding system compar-
able to the German guideline ATV M 143-2 (1999).

Sewer structural condition is evaluated using an internal
company classification system with six grades similar to the
German guideline DWA-M 149-3 (2011). The algorithm
considers the most severe defect as well as the length and
density of the defects. It includes a wide range of structural
and operational defects such as fissure, collapse, surface
damage, displaced joint, attached deposit, infiltration, root
intrusion, etc. The six grades have been aggregated into
three grades indicating the emergency of rehabilitation (i.e.
1. good condition; 2. intermediate condition and 3. poor
condition with urgent rehabilitation need). After data prep-
aration (consistency check, filtering and clean up), 124,450
inspections with a length of 5222 km for 107,788 different
segments were available for the study.

2.4.2. Calibration of a deterioration model
Figure 2 shows the condition distribution of the dominating
clay and concrete pipes (99,058 inspections). Pipes with
other materials such as reinforced concrete, asbestos cement,
brick or plastic have not been considered in the analysis.

The condition is correlated with the segment’s age; old
segments are in worse condition than new segments.
However, the condition of very old and depreciated seg-
ments (>90 years old) seems to improve slightly. This phe-
nomenon is known as survival selection bias (Egger et al.,
2013; Ouellet & Duchesne, 2018). Inspection data have a
tendency to be biased as the observations are carried out in
a restricted time window (for this study from 2001 to 2017).
Most old or deteriorated segments have already been
replaced, thus are not fully represented in the sample of
inspection data. In order to remove (or at least reduce) the
influence of the survival bias in model calibration, old seg-
ments (age > 70 years old for concrete pipes; age > 90 years
old for clay pipes) have been removed from the dataset.

The model GompitZ (Le Gat, 2008) has been used to
calibrate survival curves for one unique cohort composed of
concrete and clay segments and using the segment age as
unique variable. Survival curves have the mathematical form
of a Gompertz distribution (Equation (8)). They are cali-
brated with a regression procedure using the maximum like-
lihood estimation:

SCk tð Þ ¼ eð�eaþteb Þ (8)

with SCk the survival function for the condition k; t the age
of the segment; a and b the calibrated parameters of the
Gompertz distribution.

This survival model has been selected for its conceptual
and computational simplicity. The main drawback of survival
models is that they require an extensive dataset to create
cohorts with sufficient inspected sewers in each condition
state for the calibration of the transition functions (Kley &
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Caradot, 2013). For this study, this issue has been addressed
by grouping segments into one unique cohort composed of
concrete and clay segments (99,058 inspections).

The performance of the model has been assessed by ana-
lysing the deviation between the predicted and inspected
condition distributions (Caradot et al., 2018b). At the net-
work level, the deviations between the inspected and simu-
lated proportions of segments in each condition are very
low (<1%). By grouping segments into age periods of
25 years (0–25 y; 26–50 y; 51–75 y), the deviations between
the inspected and simulated proportions of segments in
each condition are below 10%. The performance of the
model could be improved by considering additional covari-
ates such as the material, the depth, the shape and the type
of effluent (Caradot et al., 2018b). For example, the model
could be calibrated separately for concrete and clay pipes to
account for their different deterioration patterns (Davies
et al., 2001). However, for the purpose of this study, the
simplicity of the model is more important than the perform-
ance since the aim is to understand the sensitivity of the
model to input data uncertainties.

Figure 3 depicts the calibrated survival curves for the
three condition classes. The curves reproduce the deterior-
ation behaviour of concrete and clay segments observed in
Figure 2. The influence of the survival bias has been esti-
mated by calibrating the model with all data, that is, without
removing old pipes. As expected, the prediction is more

Figure 2. Condition distribution VS segment age for the inspected concrete and clay segments in Berlin. The grey scale represents the three condition classes,
dark grey being the proportion of segments in the worst condition (condition 3). The y-axis indicates the proportion of segments in each condition (in number of
segments). The x-axis indicates age groups of 10 years.

Figure 3. Calibrated survival curves for concrete and clay segments. The light
grey curve shows transition from good condition: (1) to intermediate condition
(2). The dark grey curve shows transition from intermediate condition (2) to
poor condition (3). The y-axis gives the probability to be in each condition at a
given segment age (x-axis).
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pessimistic by removing old pipes from the databases (e.g.
þ10% pipes in poor condition at 100 years; results not
shown here).

3. Results and discussion

3.1. Step 1: Uncertainties in sewer condition assessment

The methodology described in Caradot et al. (2018a) has
been applied using the inspection data of Berlin.
Supplementary material, Appendix 1 presents in detail the
results of the methodology. The main uncertainty matrix M
obtained from the optimisation procedure is:

mean Mð Þ ¼
85:2 15:9 6:1
10:6 67:3 12:5
4:2 16:8 81:4

0
@

1
A (9)

Main outcomes can be highlighted as follows:

� For segments in good condition (1), the probability of
assessing correctly the condition is 85.2%. On the other
hand, the probability to underestimate the condition is
14.8%: False Positive, that is, the inspected condition is
worse than the real condition (e.g. defects have been
considered more serious than they really are).

� For segments in poor condition (3), the probability of
assessing correctly the condition is 81.4%. On the other
hand, the probability to overestimate the condition is
18.6%: False Negative, that is, the inspected condition is
better than the real condition (e.g. defects have been
missed by the operator).

� The probability to inspect correctly a segment in inter-
mediate condition (2) is lower because the assessment
can lead to both False Positive and False Negative. The
intermediate condition is more ambiguous to assess as
the segment neither is in perfect condition, nor already
failed. Another reason can be the narrow range of defect
characterisation and quantification that leads to inter-
mediate condition (2).

3.2. Step 2: Propagation of the uncertainties in a
deterioration model

The uncertainty matrix can be used to propagate uncertain-
ties in the survival model and to assess their influence on
the prediction of asset management strategies. Equation (5)
is applied to correct the survival curves presented in Figure
3. For each age T, the corrected survival curves are obtained
by multiplying the proportions of each condition from the
survival curves by the uncertainty matrix. A total of 1000
corrected survival curves are generated using the 1000
uncertainty matrices obtained during the optimisation pro-
cedure. From the 1000 corrected survival curves, the mean
corrected survival curves and the boundaries of the 90%
confidence interval are calculated.

The confidence interval quantifies the uncertainty of the
prediction, for example, at 100 years, the proportion of seg-
ments in poor condition is 65% ± 12%. The mean corrected

survival curves do not overlap with the original survival
curves. It indicates that the propagation of uncertainties cor-
rects a systematic error: the average prediction considering
uncertainties (solid lines in Figure 4) is not equal to the pre-
diction without considering uncertainties (dashed lines in
Figure 4). This bias is related to the different probabilities of
False Positive and False Negative. As discussed in the previ-
ous section, the most probable errors are False Positive for
segments in good condition and False Negative for segments
in poor condition. Most of the young segments (<30 years)
are in good condition and are thus more prone to False
Positive than False Negative.

There is a higher probability to be too pessimistic, thus,
the corrected survival curve is more optimistic than the ori-
ginal survival curve.

In contrast, most of the old segments (>75 years) are in
poor condition and are thus more prone to False Negative
than False Positive. It is also worth mentioning that the
slopes of the original and corrected survival curves are not
identical. The slope of the corrected survival curves is higher
indicating that the systematic error increases with age. The
correction leads to a faster network deterioration. There is a
higher probability to be too optimistic, so the corrected sur-
vival curve is more pessimistic than the original sur-
vival curve.

3.3. Step 3: Propagation of the uncertainties in asset
management strategies

In the previous section, uncertainties from sewer condition
assessment have been propagated in the calibrated survival
curves of a deterioration model. Since models are used to
simulate asset management strategies, it is of interest to
assess the sensitivity of the predicted strategies to these
uncertainties.

Figure 4. Original and corrected survival curves. Light grey curves show transi-
tion from good condition (1) to intermediate condition (2). Dark grey curves
show transition from intermediate condition (2) to poor condition (3). The y-
axis gives the probability to be in each condition at a given segment age
(x-axis).
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3.3.1. Impact of uncertainties on the predicted condition
of the network
First, the survival curves have been used to simulate the
future evolution of the condition distribution of 1000 ran-
dom segments for a fictive do-nothing strategy, that is, with-
out any rehabilitation action. The experiment has been run
on 1000 segments selected randomly among the entire net-
work to reduce the computation time of the Monte Carlo
simulation. Figure 5a shows the evolution of condition dis-
tribution using the original survival curves and the corrected
survival curves (with mean and 90% confidence interval).
Figure 5b presents the absolute deviation (in %) between
the proportions of segments in poor condition (3) obtained
with the original and corrected survival curves. The long-
time horizon (>100 years) is not realistic for planning strat-
egies but interesting to understand the sensitivity of
the models.

In 2060, according to the original survival curves, the
proportion of segments in poor condition would be 53%
(Figure 5a). By considering uncertainties, the proportion
rises to 59% ± 11% (Figure 5a). The following outcomes can
be highlighted:

� The impact of the uncertainties is not negligible. Even at
the start simulation year, the proportion of segments in
poor condition can be estimated correctly within a range
of ± 8% (Figure 5b).

� The prediction uncertainty increases with the simulation
year. In particular, the systematic error (bias between the
average prediction considering uncertainties and the pre-
diction without considering uncertainties) increases with
the simulation year. In 2060, the prediction uncertainty
is ±11% with a systematic uncertainty of þ6%. The sys-
tematic uncertainty would reach þ10% only after 2090
(Figure 5b). At this time horizon, other uncertainties
(e.g. urban development; new pipes material) are likely
to have much more influence on the outcomes than the
uncertainty of the condition assessment, making predic-
tions highly unrealistic.

3.3.2. Impact of uncertainties on the replacement rate
In the second experiment, the survival curves have been
used to simulate the necessary replacement rate to maintain
the network with a constant proportion of segments in poor
condition over time, for the same subset of 1000 random
segments. This proportion can be read at the start simula-
tion year in Figure 5a. Figure 6 displays the replacement
rates obtained with the original and corrected survival
curves. Using the original survival curve, the necessary
replacement rate ranges between 0.5% and 0.6%.
Considering uncertainties, the replacement rate is higher.
Until 2050, the average replacement rate obtained by the
original survival curve is 0.54%, and the corrected

Figure 5. Impact of uncertainties on the prediction of a deterioration model. Simulation of a do nothing strategy for 1000 random segments in Berlin. Light grey
curves show the percentage of segments in good condition (1). Dark grey curves show the percentage of segments in good (1) and intermediate (2) conditions. (a)
The y-axis shows the proportion of segments in each condition, with and without considering uncertainties, at a given simulation year (x-axis). (b) The y-axis shows
the deviation between the simulated proportions of segments in bad condition, with and without considering uncertainties, at a given simulation year (x-axis).
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replacement rate ranges between 0.57% and 0.75%. This
result can be understood from the slopes of the survival
curves. The slope of the corrected survival curves is higher
than the slope of the original survival curves indicating a
faster network deterioration. The consideration of uncertain-
ties leads to a higher and more accurate replacement rate.

Note that the calculated replacement rate is not the
required replacement rate to avoid the global deterioration
of the network (i.e. constant proportion of segments in each
condition) but only to maintain a stable proportion of seg-
ments in condition class 3 (poor condition) over the next
30 years. This replacement rate would be too low to avoid
the global deterioration of the network since the proportion
of segments in intermediate condition would increase mean-
while the proportion of segments in good condition
would decrease.

4. Conclusions

This paper analyses the influence of sewer condition uncer-
tainties on the prediction of deterioration models.
Uncertainties of condition assessment are a well-known
issue for sewer operators who generally acknowledge the
high subjectivity of the condition assessment procedure.
First, a methodology has been applied to quantify uncertain-
ties in sewer condition assessment from the analysis of a set
of repeated inspections. The repeated inspections have been
used to determine the uncertainty matrix, which quantifies
the probability to inspect a segment correctly and to over-
estimate or underestimate its condition. Then, a method has
been proposed to propagate uncertainties in the survival
curves and predictions of a deterioration model. The

deterioration model has been used to simulate simple long-
term strategies and evaluate the impact of condition uncer-
tainties over the model prediction period.

The method has been demonstrated using the inspection
dataset of the city of Berlin, Germany, where 13,753 seg-
ments have been inspected at least twice. The following out-
comes can be highlighted.

� The probability to assess the correct condition of a seg-
ment in good condition is 85%; the probability to assess
the correct condition of a segment in poor condition is
81%. The probability to assess the correct condition of a
segment in the intermediate condition is lower and close
to 67%.

� The uncertainties in sewer condition assessment are not
only due to the inspection procedure. The analysis of
deviations in repeated inspections by the water utility
highlights further sources of uncertainties such as
undocumented rehabilitation (i.e. the rehabilitation of
segment has not been documented in the database) or
inspections done with a specific purpose, e.g. to identify
house connections. The reduction of uncertainties could
start by improving data management procedures in order
to be able to filter improper inspections for calibrating
sewer deterioration models.

� The propagation of uncertainties in the survival curves
produces a confidence interval around the original sur-
vival curves. At 100 years, the uncertainty for the pro-
portion of segments in poor condition is ±12%.

� The analysis of this confidence interval highlights the
presence of a systematic error: the mean corrected sur-
vival curves do not overlap with the original survival
curves. This bias is related to the different probabilities
of False Positive and False Negative.

� The impact of the uncertainties on the prediction of a
deterioration model is not negligible. The systematic
uncertainty increases with the simulation year. The ana-
lysis also shows that the required replacement rate to
maintain a constant proportion of segments in poor con-
dition is underestimated if the uncertainties are not
included in the analysis.

Even influenced by uncertainties, deterioration models
remain a powerful tool to assess the impact of future
rehabilitation scenarios at network scale. However, the high
uncertainties in deterioration modelling must be communi-
cated to avoid the wrong interpretations of modelling out-
comes and wrong management decisions. It is
recommended to focus on the mitigation of uncertainty
sources and the visualisation of the remaining uncertainties
in asset management tools to facilitate decision making in a
highly uncertain context.

In particular, the survival bias seems to be a critical
uncertainty source for the future development of deterior-
ation models (Ouellet & Duchesne, 2018). Current models
are expected to overestimate the real condition of the net-
work because the observed segments used for model calibra-
tion are only those that ‘survived’ until the date of

Figure 6. Impact of uncertainties on the required replacement rate to maintain
the network with a constant proportion of segments in poor condition over
time, for 1000 random segments. The y-axis shows the simulated replacement
rate with and without considering uncertainties, at a given simulation year
(x-axis).

294 N. CARADOT ET AL.



inspection, that is, segments that were not replaced before
they reach their current degradation state (Le Gat, 2008).
Several studies already highlighted the existence of this bias
using synthetic datasets (Ouellet & Duchesne, 2018) or by
combining deterioration models with theoretical rehabilita-
tion models (Egger et al., 2013). Further work will be
needed to quantify this bias using real datasets by consider-
ing the data from already replaced segments in model cali-
bration. Further investigations are also needed to propose
practical methodologies to correct locally the survival bias in
order to avoid the presence of systematic errors in long-
term predictions.

Given the considerable annual investments for sewer
rehabilitation (e.g. >80 million euros in Berlin), additional
expenses on sewer inspection and data management for the
reduction of model uncertainties might be beneficial to opti-
mise the strategic planning of investments on the network.
Further studies might investigate in detail the marginal ben-
efits of reducing modelling uncertainties in order to deter-
mine the appropriate level of expenses for sewer inspection
and data management.
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