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Abstract

This thesis aims to develop an optimal control strategy for the DOT 500kW Pilot Reverse Osmosis
(DOT500PRO) turbine system. The system integrates a 500 kW wind turbine with a reverse
osmosis (RO) module to produce freshwater. The primary goal is to maximise revenue generation
by optimising the turbine's state transitions based on wind predictions.

The thesis begins with an analysis of the DOT500PRO and its state machine, identifying oper-
ational states, transitions, and constraints. A Markov model is used to model and predict wind
speeds, which fits nicely with the Markov Decision Process (MDP) framework. The problem
is formulated as an MDP, and multiple control strategies, including Threshold Control, Model
Predictive Control (MPC), Stochastic Dynamic Programming (SDP), and Approximate Dynamic
Programming (ADP), are evaluated.

MPC is found to be computationally intensive, making it less feasible for real-time control. SDP
shows promising results, but is limited by the curse of dimensionality, restricting the use to higher-
order models. ADP, which approximates SDP solutions, can offer a potential controller for higher-
order models but requires further tuning and optimisation.

Simulations are conducted to compare the performance of these control strategies in several
scenarios. While SDP demonstrates slight improvements over threshold control on the training
dataset, its performance on different wind patterns is less consistent. The study concludes that
while proactive control strategies such as SDP and ADP can offer improvements over reactive
methods, their performance is dependent on the accuracy of wind predictions and the specific
operational conditions.

Future work suggestions include refining the turbine and wind models, exploring adaptive control
methods, and conducting real-life experiments to validate the control strategies, which are crucial
for practical implementation and optimisation.
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Chapter 1

Introduction

This introductory chapter provides the context and relevance of the study. In the first section,
some background information on wind-powered desalination is given. Afterwards, the case of the
DOT500PRO system is presented. Following this, the objective of the thesis is given. Lastly, the
chapter concludes with an outline of the rest of the thesis.

1-1 Background

This section describes the problem of global water scarcity and the role of desalination technologies.
It highlights the relevance of wind-powered desalination and provides a brief overview of the current
state of this technology.

1-1-1 Water scarcity

The surface of the Earth is covered for about seventy percent by water [1], but still, half of
the world population experiences severe water scarcity for at least part of the year [6]. Due to
urbanisation and climate change, this number is projected to keep growing in the future [7]. The
United Nations has been warning of a water crisis since 1977 [8] and has set "Clean drinking water
and sanitation" as their sixth goal for sustainable development since 2015.

According to Igor Shiklomanov, only 2.5 percent of water on Earth is freshwater, and the majority
is not easily attainable because it is trapped in glaciers or at the poles [1]. Currently, freshwater is
primarily used in agriculture and is collected from rivers, lakes and aquifers. These water reserves
are becoming increasingly scarce and are unevenly distributed across the world [9], resulting in a
growing need for new solutions to support water demand. Desalination has become an essential
part of these solutions.

Master of Science Thesis S. Kronemeijer



2 Introduction

Atmosphere  Living things
Surface/other
Freshwater 2.5% freshvvlater 1.3% 0.22%\ 0.22%
— — - .
Rivers
0.46%

wamps,
marshes
2.5%

Soil
moisture
3.5%

Ice
and
snow

Glaciers

ice caps 73.1%
68.6%
Total global Freshwater Surface water and
water other freshwater

Figure 1-1: The distribution of water on Earth [1]

1-1-2 Desalination

Desalination is the process of converting saline seawater into freshwater. Desalination can be
carried out using multiple techniques: Reverse Osmosis (RO) and Electrodialysis (ED) use semi-
permeable membranes, while Multi-Stage Flash (MSF) distillation, Multi-Effect Distillation(MED)
and Vapour Compression (VC) involve phase changes. Out of these methods, RO is the most
commonly used technique [10] because of its efficiency and ease of use [11]. The principle of
RO relies on applying high pressure on saline water, pushing the water through a semi-permeable
membrane to separate the salt from the water, as illustrated in Figure 1-2.

| CEACEES

Applied pressure Pure water

Fresh
water

Semi-permeable
membrane

Water flow

Figure 1-2: The principle of Reverse Osmosis (RO) [2]

1-1-3 The connection to wind power

Desalination is very energy-intensive, accounting for 26 percent of the energy in the global water
sector [6]. Currently, most desalination plants are connected to the electricity grid or are coupled
with a fossil-fuelled power plant. As the world is shifting away from fossil fuels, alternative ways
are being investigated to power the desalination process. Multiple renewable power sources have
been considered and wind energy has emerged as the most promising option [12, 4]. Wind energy
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1-2 The DOT500PRO 3

provides a technologically mature and relatively inexpensive setup that is easy to scale. Wind-
powered RO is the most compelling, as RO presents a developed and widespread method which
can best handle the intermittency of the wind [4].

Wind-powered RO is most economically viable for coastal regions where the price of freshwater is
high, especially when there is no strong (green) electricity grid available. This makes the coastal
areas of Africa and the Middle East, as well as many island regions, among the most promising
locations for this technology [13].

In recent years, interest in wind-powered desalination has grown significantly [14]. There have
been several simulated concepts [13], but just a few experimental setups have been put into
operation. One of the biggest operational wind-powered desalination plants is located on the
Canary Islands, consisting of an R&D setup using two 230 kW turbines coupled with a flywheel for
energy storage [15]. The conclusions from this test setup show feasibility and reaffirm RO as the
most suitable desalination technique. Considering the increased worldwide efforts on sustainability
and the increasing efficiency of wind turbines, there is an expanding market for innovations in
wind-powered desalination. One particularly innovative project is being developed at the Delft
Offshore Turbine (DOT), aptly named the DOT500kW Pilot Reverse Osmosis (DOT500PRO)
project [3].

1-2 The DOT500PRO

The DOT500PRO consists of a 500 kW turbine connected to a Sea Water RO (SWRO) module
capable of producing up to 25000 litres of fresh water per hour. A schematic overview of the
DOT500PRO system is shown in Figure 1-3. Unlike conventional wind turbines, which typically
house a generator in the nacelle, this turbine is retrofitted with a High-Pressure Pump (HPP).
The HPP is used to transform the rotational energy from the rotor to hydraulic power in the form
of pressure and flow. This hydraulic power can be used in two ways: to produce electricity using
a Pelton turbine or to desalinate water using an RO module. The use of hydraulic transmission
removes the medium of electric power between the turbine and the RO module that exists in a
conventional wind-powered RO setup. The DOT500PRO is the first turbine aimed at proving the
concept on this scale and with this configuration.

wind L
: N

Seawater

Figure 1-3: Schematic showing the DOT500PRO system|3]
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4 Introduction

1-3 Thesis Objective

Simplistically speaking, the DOT 500kW Pilot Reverse Osmosis (DOT500PRO) can be off (pro-
ducing nothing), generating electricity, or simultaneously producing both electricity and freshwater.
Moving between states takes both time and power, making frequent switching undesirable. The
turbine’s production, and hence revenue, depends on the state, the applied control, and the wind
speed at that time. Although the state of the system is fully controllable, the future wind speed
is uncertain. Therefore, accurate wind prediction is a crucial part of making the best decision for
the future. With a smart control strategy, the system can be controlled proactively rather than
reactively. This brings us to the goal of the thesis:

How can the state machine of the DOT500PRO be controlled to operate for maximum rev-
enue?

In order to answer the main research question, several key challenges must be addressed, in-
cluding the design of a wind model and the selection of a suitable control method. Accordingly,
the thesis objective is subdivided into the following sub-questions:

1. Which wind model is most appropriate for predicting wind speeds in this application?

2. How do Model Predictive Control (MPC), Stochastic Dynamic Programming (SDP) and
Approximate Dynamic Programming (ADP) compare in terms of optimising the DOT500PRO
turbine’s operation?

3. Does the integrated prediction-controller system significantly outperform a simple threshold
policy in terms of revenue generation?

4. How do variations in wind prediction accuracy affect the performance of the prediction-
controller system?

1-4 Thesis Outline

This thesis is structured to answer the research questions systematically. To begin, chapter 2
gives a comprehensive description of the DOT500PRO system and analyses the statemachine. In
this chapter, an explanation of the system states, transitions, constraints and objective revenue
function are presented. At the end of the chapter, these four elements are combined in a Markov
Decision Process (MDP) framework. Following this, chapter 3 focuses on comparing different
wind models. After testing several models, the most suitable one is chosen, answering the first
sub-question. Chapter 4 explores the different control methods for the DOT500PRO system:
MPC, SDP and ADP. These methods will be compared in a simulation, for which a framework
is described in Chapter 5. In this chapter, different scenarios and test metrics are presented to
compare the control methods. Subsequently, chapter 6 reveals the results of the simulations and
allows us to answer the second, third and fourth research question. Finally, chapter 7 concludes
the findings, answers the main research question, and provides recommendations for future work.
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Chapter 2

Problem Description

This chapter provides an overview of the state machine of the DOT 500kW Pilot Reverse Osmosis
(DOT500PRO), followed by an introduction to the system’s constraints and the objective function.
By understanding these elements, an optimisation problem is formulated in the form of an Markov
Decision Process (MDP).

2-1 Components of the DOT500PRO

What makes the DOT500PRO unique is that, rather than simply having a turbine and generator,
it integrates the turbine into a much larger system, as shown in Figure 2-1. This system includes
pre-treatment equipment, a High-pressure pump (HPP), a Pelton turbine, a Reverse Osmosis (RO)
unit and an Energy Recovery Device (ERD). A detailed explanation of each component is provided
below.

= During pre-treatment, the seawater is filtered multiple times to remove any sand, metals
or plastic waste. A small pump is used for saltwater intake. After pre-treatment, a boost
pump sends the filtered water to the nacelle or the ERD.

= Within the nacelle, the kinetic power from the wind turbine is converted into hydraulic power
by use of a High-pressure pump (HPP). Between the rotor and the HPP is a gearbox to
increase the rotational velocity from the rotor to the HPP.

= The high-pressure water can be led to the Pelton turbine by opening the Spear Valve (SV).
This creates a water jet that spins the Pelton wheel, which is connected to a generator to
produce electricity.

= Alternatively, the high-pressure water can be fed into the RO unit by adjusting the Flow Con-
trol Valve (FCV). The RO unit uses semi-permeable membranes to separate the freshwater
(permeate) and the brine. Brine is water consisting of a high concentration of salts.

Master of Science Thesis S. Kronemeijer



6 Problem Description

= The brine still contains a lot of hydraulic energy when it leaves the RO unit. In the Energy
Recovery Device (ERD), this energy is transferred to low-pressure water coming from the
pre-treatment. The low-pressure water is pressurised and merged with the feed of the SWRO.
The low-pressure brine is disposed of back into the sea.

HPP

Wind
. P>
Turbine
+
Low pressure Flow control RO unit
h valve
Hi -
'gh pressure é Feed SWRO Permeate
x [y
T
Spear valve \
- |
Eletricity Pelton Feed PT 1 @ l
Turbine 7‘ S Boost -
pame %
N Feed ERD ~ _sole _Brine
Intake Pre- Pre- ¥ ERD
pump treatment treatment Brine
. valve
A Filtrated
water tank
Seawater
intake

Figure 2-1: Schematics of DOT500PRO [4]

High-level system control is managed at four places:

The boost pump delivering seawater up into the nacelle

The pitch of the blades

The SV controlling the flow towards the Pelton

The FCV controlling the flow towards the RO unit.

While each of the controllers is managed by a dedicated low-level controller, the coordination and
activation of these controllers is to be optimised. For a detailed explanation of the theory behind
the optimal control of the low-level controllers themselves, see Appendix A.

In the scope of this research, the system can be switched into an electricity production mode
by activating the booster pump and pitching the blades to extract energy from the wind. The
SV is used to control the flow towards the Pelton turbine, which is where the system produces
electricity. Afterwards, the system is also able to go into a water production mode by activating
both the ERD and RO module and opening the FCV.

2-2 The State Machine

To further understand the control problem, it is important to identify the system’s state ma-
chine. As described earlier, there are multiple modes in which the system can operate. Six such
operational modes are defined below.

S. Kronemeijer Master of Science Thesis



2-2 The State Machine 7

1. Hibernation. The system uses as little energy as possible. Both the ERD and all the pumps
are off. This state is intended to reduce energy usage as much as possible for longer periods
of little to no wind.

2. Standby (clean). The system is ready to start electricity production, but the turbine is not
spinning. The pumps are on and can begin to provide pressure to the system.

3. Standby (contaminated). Identical to Standby (clean), but the RO module is contami-
nated.

4. Electricity Production (clean). The booster pump delivers water to the nacelle, where
the rotor blades are spinning, and the HPP pressurises the water. The water flows to the
Pelton turbine in a constant stream, controlled by the spear valve. The Pelton turbine spins
a generator, resulting in electricity production.

5. Electricity Production (contaminated). Identical to Electricity Production (clean), but
the RO module is contaminated.

6. Water Production. The FCV is opened, meaning that part of the water flow is directed to
the RO module, producing permeate. The flow towards the RO is stabilised by the Pelton
turbine. The ERD is also on. The system generates both freshwater and electricity.

Both the Standby and Electricity Production modes include a contaminated version. This is
a design choice made to keep track of the cleanliness of the membranes in the RO module.
These six operational modes, combined with two timers for the contamination and hibernation
modes, form the state s of the wind turbine. These states form the state space S. Thus, a state
s € S contains three points of information: The operational mode, a contamination timer, and a
hibernation timer. The reason for these timers is elaborated in the next section on constraints. A
flow diagram of the state machine, including transitions between states, is further illustrated in
Figure 2-2.

Stay Stay Stay Stay
Start
Stop ¥ i (v S 2
Hibernation Electricity Electrici ( N
I ectricity Long Start Water
Hibernation Standby e | Water
(clean) < . Production
Start Stop \ )
Hibernation Electricity A
Rinse Rinse
Start
E\eclricity$ S
[ ectricity Stop Water
Standby Production <

(contaminated)

Stop (contaminated)

LA Electricity A

Stay Stay

Start Water

Figure 2-2: The state machine of the DOT500PRO

The transitions between the states are controlled by a set of 9 defined actions: Start/Stop Hi-
bernation, Start/Stop Electricity, Long Start Water, Start/Stop Water, Rinse, and Stay. These
actions form the action space U. Each of these actions corresponds to a change in the system's
configuration. For instance, Start Electricity initiates turbine rotation and pressurisation at the
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8 Problem Description

HPP, while Stop Electricity shuts down these processes. Only performing the action Stay does
nothing.

Due to the potential contamination in the RO module, the available actions differ slightly between
the clean and contaminated states. For example, when the state is in the operational mode
Electricity Production (clean), the startup procedure of turning on the water production (Long
Start Water) takes more time compared to its contaminated counterpart. This prolonged transition
is due to a careful ramp-up sequence required to protect the membranes. If the system is still
contaminated, it means that the RO membranes are still fouled and therefore the RO process
can be started again sooner, using the action Start Water. Regardless of this benefit of the
contamination, the system may not be contaminated for too long, so a dedicated Rinse action
can transfer the contaminated state to its clean counterpart. Note that as the water production
is stopped, the system always gets contaminated.

While the real system takes different amounts of time to transition between states, inducing
some sort of 'transition state’, the transition times are omitted in this thesis. The assumption of
instantaneous transitions is made to simplify the modelling and allow for a more straightforward
optimisation. However, the time and energy associated with these transitions are accounted for
in the objective function, which will be explained later.

The transition between states is represented by the discrete state update equation.
Sk1 = f(Sk, uk) (State update) (2-1)

Here, the function f : S x U — S represents a mapping that indicates the transition from the
original state s € S at time k, to the new state spy1 € S using one of the possible actions
ur € U(sg) . In this thesis, a timestep of 18 seconds is used. Here, U(si) € U denotes the
set of possible actions available in state si. Generally, the set of possible actions available is as
indicated in Figure 2-2. However, certain constraints can sometimes restrict the availability of
specific actions, thereby forcing other actions. These constraints are explained in the next section.

2-3 Constraints

There are constraints on the system to keep the operation of the DOT500PRO safe and efficient.
The reasoning behind these constraints is explained in this section.

1. Contamination: The first constraint concerns the amount of time the system is allowed
to be contaminated. After stopping water production, the water that remains in the RO
module stagnates, causing contaminants like salts to settle on the membrane surface, also
known as fouling. This can decrease efficiency and potentially damage the membranes.
Therefore, the RO system has to be rinsed using a backflush procedure if it has been idling
for more than 30 minutes. Once this contamination time threshold is reached, the only
available action is to Rinse. The contamination time is tracked using the contamination
timer. After rinsing, the timer is reset.

2. Hibernation mode: A similar constraint is given regarding the hibernation mode. When
the system enters hibernation mode, it shuts down all non-essential electronics, allowing the
system to stabilise its thermal and pressurised components over the course of 20 minutes.

S. Kronemeijer Master of Science Thesis



2-4 Wind update 9

This helps to maintain safe and stable conditions and reduce the wear and tear of excessive
cycling between standby and hibernation mode. As a result, when the system enters the
hibernation state, it must remain in this state for at least 20 minutes. During this time,
the only available action is to Stay. The hibernation time is tracked using the hibernation
timer. Performing the action Stop Hibernation resets the timer to zero.

3. Cut-out wind: The turbine rotor blades are not allowed to spin above 20 m/s (cut-out)
because of safety constraints. This constraint is being handled by a different controller and
thus not considered in this thesis.

4. Delicate membranes: The RO module can be severely damaged if engaged while the
pressure in the system is lower than the osmotic pressure. Therefore, the system is prohibited
from being in water production when the wind speed is below 5.6 m/s. Instead of restricting
the action space directly, this constraint has been modelled using a penalty in the objective
function to capture the cost of operating under these conditions.

These constraints do not just limit which actions are available, but also significantly increase the
number of system states to consider when controlling. The core system logic can be described in six
operational modes from the previous section, but the introduction of time-dependent constraints
means that, in practice, the effective state space grows to several hundred unique combinations
as the time spent in contamination or hibernation mode needs to be included.! A table with the
available actions per state is given in Appendix B

2-4 Wind update

The future wind speed wgy1 € W is modelled as a stochastic variable that is updated every
timestep. Because of its sequential nature, the probability distribution is conditioned on the
previous n wind speeds wg, Wk_1, ..., Wk—n+1, as is expressed in Equation 2-2. The statistical
modelling of wind is addressed in the next chapter, as well as the justification for this choice.

Wit1 ~ P(|lwg, .., Wi—nt1) (wind update) (2-2)

2-5 Objective function

Having defined the system's capabilities and constraints, as well as the way that the wind is
modelled, the next step is to establish the system’s objective: maximising the revenue generated
by the DOT500PRO. The amount of revenue (in euros) is dependent on both the state s, the
wind speed wy and the action uy at time k. Mathematically, this is represented by the function
R:SxUxW-—>R

Revenue at time k (in €) = R(sk, uk, wi) (2-3)

'In practice, this results in over 200 unique states, depending on how time-dependent conditions are discre-
tised. For example, using an 18-second timestep, the hibernation and contamination timers span approximately
66 and 100 steps, respectively.
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10 Problem Description

The system can generate positive revenue when producing electricity or water, but when inactive,
the power consumption of the system leads to a negative revenue. Additionally, transitioning
between states comes with its own costs, such as energy use and the time delays, which are also
incorporated in the function R.

The goal is to maximise the total amount of revenue over time. This is expressed by taking the
infinite summation of (2-3). Because of the stochastic nature of the wind speed wy, R(sg, ug, wy)
is also expressed as a random variable. Taking the expectation of R, a measurable value of the
total revenue is obtained, which can be used to assess performance.

Total Revenue = ZE[R(sk,uk,wk)] (Objective function) (2-4)
k=0

2-6 Markov Decision Process

In this section, all components presented in the previous sections of this chapter are combined to
formulate the problem as an MDP. This framework allows the discrete states and transitions to
be modelled together with the stochasticity of the wind model. Before setting up the full MDP,
the objective function is first reformulated from maximising the revenue to minimising the loss
?:SxUxW — R, defined as

LS, up, wy) = —R(Sk, up, wi)

This formulation is mathematically equivalent, but follows the standard MDP conventions. The
MDP is defined by the following set of spaces, functions, and probabilities:

= S represents the state space, which includes the operational modes but also the time spent
in hibernation or contamination.

= U(sy) is the action space, which defines the possible actions available to the controller at
each state s, such as starting or stopping electricity or water production.

= W represents the wind states, which evolve over time in a stochastic manner. The wind
speed at each timestep is taken from a distribution which is conditioned on previous wind
states, with probabilities modelled by P(wg41|wg, ..., Wk—nt1)-

= The transition function f(sg,ui) describes how the system evolves from state sp to ski1
when an action wuy, is taken.

= The loss function (s, ug, wy) represents the cost or loss associated with being in state sy,
taking action wug, and experiencing wind speed wy.
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Together, this forms the optimisation problem of Equation 2-5

[e.@]
121611[11 kZOE[E(Sk,uk,wk)}
st. Sg+1 = f(sk,ug), (2-5)
Wyl ~ P(wg, -, We—nt1),
Uk = F(Sk, Wiy ,wk,nJrl)

Here, 7 represents a policy, characterised by a function in the function space IT : S x W™ — U.
The policy 7 provides an action u; dependent on the current state s, and the n past wind speeds
wg to wg_py1. The goal is to find the best policy 7* that provides the actions to minimise
the objective function. The process of finding this best policy or approximating it, is explored
in Chapter 4. Assuming the model assumptions hold, the policy 7* enables the DOT500PRO to
minimise losses and maximise long-term revenue performance.
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Chapter 3

Wind Modelling

This chapter contains the process of selecting a suitable wind model for the application at hand.
First, the requirements of the model are determined, followed by a review of the possible mod-
els available. Based on a qualitative evaluation, the most appropriate method is then chosen.
Subsequently, the core principle of this method is then introduced, before describing the imple-
mentation using real-world wind data. The chapter concludes with a discussion of the limitations
and assumptions corresponding to this approach.

3-1 Introduction and Modelling Requirements

For the design of the wind model, it is crucial to look at the requirements that correspond to the
application of the DOT 500kW Pilot Reverse Osmosis (DOT500PRO). In the previous chapter,
it is found that the dynamics of the statemachine of the DOT500PRO operate on a relatively
short timescale. For instance, the constraints in the model result in the requirement to distinguish
between the 29th and 31st minute of contamination. To make the best decision, the controller
requires a wind prediction that also behaves on a short timescale. The wind model should therefore
operate on a very short timescale, with a resolution of less than 1 minute.

The speed of wind is determined by multiple factors, like pressure zones, climate change and
even the rotation of the planet. However, for the operation of the DOT500PRO, these physical
relations are either far too complex or are not measured at the turbine itself. For the sake of
simplicity and practicality, the wind speed is modelled as a time series, relying solely on recent
wind speeds.

Moreover, as wind speeds are highly variable, the model needs to be able to describe the un-
certainty. Instead of assuming one exact value for the wind speed, the model should provide a
distribution of possible values and give a probabilistic forecast.

Lastly, it is crucial to note that the primary objective of this thesis is not to develop the best wind
prediction model but rather to create a model that allows good control. Therefore, a model is
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14 Wind Modelling

preferred that fits well within the Markov Decision Process (MDP) framework. This means that
the model should be predictable and transitions should be well-defined.

In summary, the wind model needs to meet several criteria: it should operate at a very short
timescale, provide probabilistic forecasts, rely on recent wind measurements and allow predictable
and well-defined transitions suitable for MDP. Using these criteria as a selection method, an
appropriate model can be chosen.

3-2 Review of Wind Models

For centuries, humanity has tried to predict the weather [16]. From early farmers and sailors
scanning the skies to today’s sophisticated weather stations, forecasting has come a long way.
Nowadays, wind forecasting models come in a broad range of variations. In [5], these wind
forecasting methods are classified according to Figure 3-1.

Wind speed/wind power forecasting

Time scale Forecasting Types of Maodeling
objective forecast theory
i:: Deterministic model Physical model
Short term Wind farm |Probabilistic model | | Traditional statistical model
Medium term Al-based model
Long term Hybrid model

Figure 3-1: Classification of Wind Forecasting methods according to [5]

Knowing the requirements of the model, the focus is on a timescale in the very short term (< 30
min) range. The forecasting objective is a single wind turbine, rather than a wind farm, and the
model should be probabilistic.

In terms of modelling theory, physical models rely on atmospheric physical relations and use
Numerical Weather Prediction (NWP) to model weather over large scales. Although useful for
long-term weather forecasts, this is not very reliable for very short-term predictions [17]. Machine
learning and hybrid models, although increasingly popular, are also avoided due to their computa-
tional cost, data requirements, and limited interpretability in real-time systems [18, 19, 20]. The
focus is placed on traditional statistical models, with the scope narrowed to three widely studied
methods: ARIMA, Kalman Filtering and Markov processes. These methods are well-supported in
the literature for very short-term wind forecasting. A brief overview of each method’s application
is provided below.

3-2-1 ARIMA

In [18], the ARIMA model is compared with several machine learning and deep learning methods
in predicting wind power plant performance. The ARIMA model showed a higher Mean Squared
Error (MSE) than the machine learning methods, indicating comparatively weaker performance.
However, Liu et al. [21] makes a similar comparison with Seasonal ARIMA (SARIMA) and two
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3-2 Review of Wind Models 15

machine learning methods: Gated Recurrent Unit (GRU) and Long-Short Term Memory (LSTM).
In this setup, the SARIMA model outperformed the advanced ML methods. This seems surprising
as in [18] the LSTM is performing much better than ARIMA. While the addition of the seasonality
could be a cause of this, it does show that the performance of ARIMA and ML methods is
dependent on the specific situation. One is not simply better than the other. Nonetheless,
ARIMA models remain more interpretable and easier to implement than their ML counterparts.

3-2-2 Kalman Filtering

After the initial formulation of the Kalman Filter (KF) by Rudolf Kalman in 1960 [22], Bossanyi
[23] was one of the first to apply the KF for short-term wind prediction. This resulted in a reduction
of 10 percent in one-minute-average wind speed forecasting error. In 1995, Huang [24] combined
the AutoRegressive(AR) model with the KF to improve wind predictions for horizons ranging from
one hour to several hours ahead. Louka et al. [25] showed that the KF can also be used for
post-processing two atmospheric models, to provide a wind forecast, which was described as a
'remarkable improvement’ to the original model. Liu [26] created a hybrid ARIMA-Kalman model,
where the ARIMA model is used to initialize the Kalman Measurement and the state equations.
This also showed the suitability of the KF for multi-step, non-stationary, wind speed prediction.

Chen [27] proposes a novel hybrid method combining Support Vector Regression (SVR) and an
Unscented KF (UKF) for short-term wind speed prediction. The UKF is an extension of the normal
KF that can be used to work with non-gaussian uncertainties. In the study, the SVR-UKF model
performed better than an AR-Kalman model for one-step and multi-step prediction across three
USA test sites. Shukur [28] compares AR-ANN and AR-KF on wind data from both Malaysia and
Irag. The AR-KF outperformed both ARIMA and the machine-learning based AR-ANN models.
More recently, Hur [29] proposed the use of the Extended KF (EKF) together with machine
learning to predict strong gusts near wind turbines. As an alternative to expensive LiDaR-based
systems, this method showed promise in improving the turbine control performance of the wind
turbine, being able to track actual wind more closely for 2 and 3 seconds ahead.

Finally, Kalman Filtering is being noted as a good option in a 2024 review by Tuncar [30]. In
the paper, he discusses the growing trend of hybrid forecasting methods, combining the strengths
of multiple methods. However, it also acknowledges the limited research on offshore wind farms
compared to land-based wind facilities.

3-2-3 Markov Processes

Markov processes have been widely used in wind speed time series generation, as shown by
Shamshad et al. [31], who demonstrated that these processes can synthetically generate time
series while preserving key statistical characteristics. In the context of wind power prediction,
Carpinone et al. [32] applied first- and second-order Markov processes for very short-term wind
forecasting (10-minute intervals). Although the higher-order method yielded better results, the
study acknowledged that shorter time intervals led to even more accurate predictions. In [33],
Jacobsen demonstrated the effectiveness of Markov processes in increasing wind power yield on a
Norwegian wind farm. The study also highlighted the advantage of clustering states, rather than
linearly spacing them. In a different application, Markov processes were utilised not for direct
prediction, but to select the best chaotic prediction model [34, 35]. Building on this, Zhao et
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al. [36] enhanced the model by incorporating a temporal Markov process that accounts for the
interactions between nearby turbines in a wind farm.

3-2-4 Comparison

The three aforementioned models were tested numerically for very short term wind speed forecast-
ing. The process of this comparison is found in Appendix D. Although ARIMA models showed
slightly better numerical performance in terms of the Root Mean Squared Error (RMSE) and
Mean Interval Score (MIS), the difference with the other two models was marginal and not de-
cisive for this application. Experiments with the Kalman Filter did not result in any meaningful
results. Given ARIMA’s assumption of Gaussian noise, combined with the added interpretability
and compatibility of the Markov model with the MDP, the decision is made to model the wind as
a Markov Process. The comparison based on the application requirements set in Section 3.1 can
be seen in Table 3-1. Markov Processes are fully data-driven, probabilistic by design, and operate
on discrete states. This makes it an intuitive and fitting model for the purpose of control. For
these reasons, the wind is modelled as a Markov process in the remainder of this thesis.

. Kalman Markov
Requirement ARIMA Filter Process
High time resolution (<1 min) v v v
Probabilistic forecast ~ ~ v
Uses only recent wind measurements v v v
Predictable, well-defined transitions for « N v
MDP integration
Overall fit for this application Medium Mgiilgl;m_ High

Table 3-1: Comparison of Wind Forecasting Models Based on Application Requirements

3-3 Markov Processes

A Markov Process is defined by its order n. A first-order Markov process is a stochastic model
where the probability of an event depends only on the previous event. This means that previous
events are not contributing to the probabilities of the next event!. The order of a Markov process
notes the number of historical events relevant. For example, the first-order and second-order
Markov processes satisfy this property

P(wwi—1) = P(w|wi—1, wp—o2,--+) (first-order) (3-1)

P(wi|wi—1,wi—2) = P(wy|wi—1, wi—o, wi—3,- -+ ) (second-order) (3-2

As seen in Equation 3-1, the addition of more, older information (i.e., w;_g, - - -) does not change
the probability for the first-order process. This property is also known as the Markovian Property.

'In this thesis, only discrete-time Markov Processes on a finite space are considered.
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3-3 Markov Processes 17

3-3-1 First-order example

A first-order Markov process is illustrated with an example. Let w; be a random variable at
timestep ¢ which can take on one of m discrete states W = (Wy, Wy, -+ W,,). Assuming a
Markov process of the first order, the probability of transitioning from W; to W; can be defined
as

pij = Plwe = Wjlwe—y = W) (3-3)

A transition table T" of size m x m can be formed by collecting all p; ; and placing the value in
the corresponding row and column.

P11 - Pm,
T=|: -~ (3-4)

1,m " Pmm

Note that
m
Zpivj =1 Vl
j=1

that is, each column of T sums up to a total probability of 1.

Let Z; be a vector consisting of the probability of the random variable w; being in every state Wy
to W,,.

P(wt = Wl)
. P(wt = Wz)
2t = .

P(wt = Wm)

Here, Z; represents a discrete probability distribution, and the sum of its values is one. By the law
of total probability, P(A) = > P(A|B,)-P(B,) as long as the set of (B,, : n =1,2,3,...,m)
is finite. Based on this, the relation of z; with Z;_; can be expressed using 7.

'P(wt = Wl)

_P(wt = Wm)

[y pig - Plwe—y = Wy)

> Piom - P(wi—1 = W)

(P11 - Pma| [Pwi—1 = Wh)
P1m " Pmm P(wtfl = Wm)
=T7Z

This allows predictions to be made by multiplying the transition table by an initial probability
distribution to get the new distribution at time ¢.
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This way, the future distribution at time t can be predicted as

Zr =TZ
=T°%_9

=Ttz

3-3-2 Higher orders

The process can be extended for second- or higher-order Markov processes as well. This involves
creating a higher-dimensional matrix, also known as a tensor, instead of the two-dimensional
transition table T'. For a Markov process of order n, a tensor with n + 1 dimensions is used. The
value of a cell in this tensor represents the probability of transitioning to this state, conditioned
on the sequence of n states. As an example, for an order 3 transition table, the value of p; 223
represents P(w; = Wilwi—1 = Wa,wi—9 = Wao,wy—3 = Wjs), i.e. the probability that the
sequence {Ws3, Wo, W} is followed by W;. The size of a transition table is m™*!.

3-4 Implementation and Data Setup

p

a Data Collection & Analysb B. Model Construction

C. Forecasting

1. Select dataset 1. Discretise in bins Rt
2. Interpolate missing data 2. Count sequences of ; ﬁigi[ﬁf Fgﬁg'ﬁg;?ge
3. Check for trends > length n —> 3' Check forpstead -
4. Confirm Markovian 3. Create transition table ’ y-

Assumption it

AN /

Figure 3-2: The workflow of this section

The implementation of a Markov Process as a wind model follows the workflow shown in Figure 3-
2. The first step is to collect wind speed data and perform an analysis of the properties of the
dataset. Following this, a model is constructed. To do this, the data is discretised into a finite
number of bins. Then, given an order of the Markov chain n, a transition table can be constructed.
The last step is to perform forecasting and gain insight into the dynamics of the wind model.
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3-4-1 Data Preparation and Analysis

Data is gathered by KNMI from the Borssele windpark
1 + 2, from 1-10-2024 to 28-2-2025 [37]. The location
of the windpark is shown in Figure 3-3. Wind speed
data is collected every 18 seconds using a LiDAR system,
measuring horizontal wind velocity at a height of 38m. 2
The raw wind speed data contains missing values (NaNs)
and some unrealistic high values. These data points are
removed and replaced using linear interpolation.

The months October to February were deliberately cho-
sen, as these months showed the most consistent be-
haviour. Additionally, this dataset is quite recent and
relatively complete, unlike earlier years. The full data
set, shown in Figure 3-4, consists of more than 720.000

measurements, providing a reliable basis for analysis and model construction.

Wind Data from Oct 1, 2024 to Feb 28, 2025

25

Wind Speed (m/s)

—— Wwind Speed

2024-10 2024-11 2024-12 2025-01 2025-02
Date

(a) Wind data

Figure 3-4: The dataset and its wind profile
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(b) Wind speed profile of the data

After analysing the data, no clear (daily) trends were discovered. On the other hand, there is a
clear temporal dependency between sequential datapoints. This can be seen by looking at the
graphs of the AutoCorrelation Function (ACF) and Partial AutoCorrelation Function (PACF) of
the data in Figure 3-5. The high values corresponding to the first few lags indicate a strong
correlation of recent data, strengthening the claim of the Markovian Property of Equation 3-1
and 3-2. The rapid decline of the PACF after approximately five lags confirms the diminishing

relevance of older data.

2For reference, the DOT500PRO has a nacelle height of 44 meters.
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Partial Autocorrelation Function (PACF)
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Figure 3-5: ACF and PACF of the training data

3-4-2 Model construction

For the construction of the Markov model, the data first needs to be discretised. The data can
be discretised in several ways. The most straightforward method would be to divide the data into
intervals of the same length, for instance, using intervals of 0.5 m/s, such as [0.3,0.8], [0.8, 1.3],
and so on. The downside of this method relates to the distribution of the wind. As the wind is
not distributed uniformly, this would result in some intervals having much more datapoints than
others, potentially resulting in bins with only a few datapoints to determine the behaviour from.
Instead, the data is discretised using an equal frequency approach, resulting in the same number
of occurrences for every interval bin (see Figure 3-6). The added benefit of this approach is that
the algorithm behaves more precise around the important transition points of the DOT500PRO
statemachine, whilst reducing complexity on the windspeeds that are less relevant. For example,
wind speed data points below 1.6 m/s are all in the same bin.

Equal Frequency distribution with 41 bins
17500 i

] ] = Transition points
15000
12500
10000
7500
5000
2500
0 5 10 15

0
20 25 30
Wind speed (m/s)

Frequency

Figure 3-6: Wind distribution using an equal frequency discretisation. Every bin has equal height,
but the interval is scaled.

Choosing the number of bins is somewhat arbitrary; more bins give a finer-grained result, but comes
at the cost of a larger state-space and less data points per interval. Choosing 41 bins provides
a sweet spot, maintaining over 16 thousand datapoints per bin. Based on this discretisation, all
wind data is mapped to these 41 states in W = {Wj,..., Wy}, where the mean value of the
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interval is used later for calculations.

Apart from discretisation, choosing an appropriate order n of the Markov process is much more
crucial, as this determines the number of unique state sequences and thus the size of the transition
table. As discussed in section 3-3, each n-length sequence is paired with the following state to
create the transition table T'.

This table is constructed from the discretised data. The value of p; ; can be estimated by counting
the number of transitions n; ; from W; to W; in the data. Dividing n; ; by the total number of
transitions > ; n; ), coming from W; gives the probability of transitioning from state W; to Wj.

ni?]

- ) 3-5
Ped Dkt Mk (3-5)

3-4-3 Forecasting

With the transition table in place, predictions can now be made. This is done by multiplying an
initial state by the transition table, as discussed in section 3-3. An interesting observation is that
the further in the future predictions are made, the more the predicted distribution resembles the
wind speed profile in Figure 3-4b. This indicates that the model converges towards a steady-state
distribution coinciding with the wind speed profile as one looks further into the future.

As the forecast reaches this steady state, further propagation with the transition table does not
change the distribution anymore. This point is crucial because a prediction past this steady-state
point is no longer dependent on the initial state or model, and might as well be picked from the
distribution of Figure 3-4b.

It was observed that both a higher model order n and a rare or extreme initial wind sequence will
increase the number of timesteps before convergence. An example of the propagation is shown in
Figure 3-7. Here, a model of order 3 is initialised with three windspeed measurements of 15 m/s.
After approximately 300 timesteps, or 1.5 hours, the probability density reaches this steady state.
This reveals a key limitation of this approach: forecasts are useful only for short-term predictions.

V\cl}iggi probability densities after some iterations with x0=(15,15,15)
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Figure 3-7: Wind probability forecast after several iterations
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3-5 Limitations

While Markov processes offer a simple and interpretable way to model wind speed, there are a few
limitations to consider:

1. Convergence to Steady State. As explained in the previous section, the forecast is
restricted to very-short term predictions. This is due to the convergence of the prediction
to a steady state.

2. State Space Explosion for Higher Orders. As the order n increases, the number of
states grows exponentially, leading to an even bigger transition table. This quickly results
in problems with memory and computation time, limiting the use of higher orders.

3. Data Sparsity Even with a large dataset, many transitions may very rarely or never occur.
These can cause unreliable or wrong predictions in the transition table, resulting in poor
performance if they do occur.

4. Stationarity. The model is based on the assumption of stationarity, providing one transition
table for all data. This rejects potential daily, monthly or seasonal trends that could occur.
By constraining the dataset to the five months mentioned, this is offset for the most part,
but it also means that the transition table might not perform well at other times of the year.

5. Markov Assumption. The PACF does show a big drop in correlation after the first few lags,
but a fully Markovian system would have absolutely zero dependence on events happening
more than n times in the past.

6. Discretisation The Markov process requires a discrete state space, forcing the discretisation
of the wind data. This loses granularity and forces us to make trade-offs in the number
of bins and their size. This means that results can differ depending on the discretisation
strategy

7. Data-Driven model. One of the biggest advantages of the Markov Process is that it
is purely data-driven, without any physical assumptions or complicated weather models.
However, this is also a limitation as it ignores all meteorological studies on wind behaviour
and correlations with other factors such as pressure and temperature. Instead, this model
treats the wind speed as a purely statistical data point, solely dependent on past winds.
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Chapter 4

Control Strategies

In this chapter, different control strategies are explored. First, the problem is reformulated to fit
more naturally into the MDP framework. Afterwards, four control algorithms are presented, each
time increasing in complexity. With every method, the limitations of the approach are included in
the text.

4-1 Problem formulation

In Chapter 2, the optimisation problem of the MDP is defined like this:

0
min kZOEV(Sk,uk,wk)}
st spp1 = f(sk,up), (4-1)
Wry1 ~ P([wg, .o, We—ng1),
U = T(Sky Wiy -+ + s Wk—pt1)

Here, s; represents the state of the turbine, which is updated by the function f using the action
ug, which is provided by the policy @ of the controller. wy1 is a random variable representing
the wind speed at time k£ + 1. This random variable is taken from a discrete probability density,
based on the transition table from an n-th order Markov Process, as described in Chapter 3.

The objective function is expressed using the expectation operator. This is defined as a summation
over the m possible wind states in W = (Wy, Wa, ..., W,,)'. For every W; € W, the probability
P(wy, = W;) is determined and multiplied by the loss function ¢ using the corresponding value of
Wi.
m
E[((sk, uk, wi)] = Y { P(w = Wi) - Lk, u, Wi) | (4-2)
i=1

In Chapter 3, we have determined m = 41.
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4-1-1 Definition of the state vector z;

To combine both the state and the wind update, a state vector &), is defined containing both s
and the wind speed values wy, to wg—n+1. The vector Z exists in the space X :=S x W". From
now on, this vector is denoted simply as xy, omitting the vector arrow.

Sk

Wk
xp = , (4-3)

Wk—n+1

The full state update then becomes the following.

J (S, ur)
WE4-1

Tpr1 = with wgi1 ~ P(|wg, ..., Wk—nt1) (4-4)

Wk —n+2

The state evolution of zy, is defined with a probabilistic transition function F : X x U — [0, 1]™
corresponding with the update as in Equation 4-4

Ty ~ F(-|og, ug)

After this reformulation, the MDP can be written as:

o0

iy E[l(zk, ug)]

k=0 (4-5)
st Tprr ~ F(|lzg, ug)

U = W(l‘k)

where the function ¢(sy, ug,wy) is adjusted to ¢(xy, uy) accordingly. The problem can now fully
be described with the 4-tuple (X, U, F, /).

4-2 Threshold Control

One of the simplest ways to control the DOT 500kW Pilot Reverse Osmosis (DOT500PRO) state
machine would be to use a rule-based transition controller. In this type of application, rule-based
control is typically implemented in the form of a threshold controller. A threshold control applies
actions for transitions if the wind reaches above or below a certain threshold.

While this method is often used in the industry, it is a reactive heuristic, meaning it will often
perform suboptimally. For instance, imagine the threshold control is implanted to switch to water
production if the wind speed is above 6 m/s. This would result in the system to do a lot of
frequent switches when the wind oscillates around this threshold. This problem can be omitted
by setting very conservative thresholds, for instance, 7 m/s to turn water production on, 5 m/s
to turn it off. However, this would clearly come at the cost of optimal control as well.
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4-3 Model Predictive Control

Model Predictive Control (MPC) is a control strategy that finds the optimal input for a finite-
horizon version of the problem. Instead of finding a policy w that works for all cases of x, the
problem focuses on a specific trajectory of inputs of length IV in the future. This transforms the
problem formulation to Equation 4-6

N-1
i E
w2y 2 Pl )
st Tpe1 ~ F(|eg, ug) (4-6)
up € U(zg) k=0,...,N—1
o € X

The MPC approach of solving this problem can be split into three steps:

1. This algorithm first predicts the N wind speed distributions of the finite horizon based on
the initial wind sequence. This provides the distributions of wy 1, wrio, ..., WriN-

2. Then, the value of being in a state at the last timestep is calculated based on the wind
prediction of wy.n. After calculating this cost V(sy) for every state s € S, the algorithm
performs a backwards iteration step , calculating the best action for every state and the
resulting cost-to-go V' (sy) corresponding to the sequence of actions until timestep N. This
is known as dynamic programming and is based on the Bellman equation:

Visg) = gie%Ew(sk’uk’ wk) + V(sg+1)] (4-7)

3. Having iterated back to the initial timestep, the action ug corresponding to the minimisation
of the value function of the initial state V'(s¢) is determined as the best action. The controller
then applies the control action uy to the system. When the following measurement is
received, the state sg is updated, and the entire problem is solved again over a shifted
horizon. This is known as a receding horizon approach over horizon N.

4-3-1 Limitations

While MPC is flexible and used very often in highly constrained, continuously spaced systems, it
does come with limitations that prevent its usage for the DOT500PRO system.

= The MPC controller works in an on-line optimisation setting. This means that it is required
to solve the problem again for every timestep, leading to a high computation cost. This
computation cost can become a bottleneck if it prohibits the system to act fast enough
before the dynamics of the system update.

= Apart from that, the MPC formulation of the problem provides an approximation of the
actual problem in Equation 4-5. It simplifies the problem by reducing the horizon and
finding an open-loop solution, rather than a policy for the infinite horizon.

= The performance of the control is highly dependent on the choice of horizon N. This is
always going to involve trade-offs between performance and computation cost.
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4-4 Stochastic Dynamic Programming

Stochastic Dynamic Programming (SDP) is intended to find a policy for the Markov Decision
Process (MDP) presented in Equation 4-5. However, because of the infinite horizon, the sum
in the objective function can diverge. To resolve this issue, the SDP algorithm is built around a
slight modification in the problem statement. By solving for the minimum average-cost, instead
of total cost, the problem is rephrased as Equation 4-8. As the function ¢ is bounded, the average
cost remains bounded and finite as well, thereby addressing the issue of a diverging objective.

N-1
o1
min lim > E[l(zy, u)]
k=0 (4-8)
s.t. Thy1 ~ ]:(’l'k, uk)

up = m(wy)

The state space X is finite, allowing for an exhaustive consideration of all options for x;. The
standard approach to solving this problem is via dynamic programming, either using value iteration
or policy iteration. Using the Bellman equation [38], value functions V' (z}) or policies m(xzy) are
updated until the algorithm converges to an optimal policy 7*. This policy essentially consists of
a lookup table with the best action for every xi. A value iteration approach is explained below.

4-4-1 Value iteration

The algorithm begins by assigning an arbitrary value, typically zero, to every possible state z € X.
This assigns a value V(x) for every state and every n-sized wind sequence, making this a very
large space. Then, the iteration starts: for every x, the value is updated as in Equation 4-9. This
represents an adaptation of the Bellman equation, using an increasing variable o that starts at 1
to get the average cost:

Uz, u) + aE[Voa(F (|2, u))]
14+«

View () < m&n

(4-9)

Here, the expectation is calculated over the distribution of the random variable gained from F. If
the difference between the old value function V,;; and the new value function Vj,c,, () becomes
minimal, the iteration has converged. This is measured using the 2-norm of the difference of a
vector containing the value functions:

6 = |[Vaew(x) = Vora(2)]]2 (4-10)

When ¢ is smaller than the convergence criterion, the iteration stops. Otherwise, both the value
function and « are updated:

Vora(z) < View() Ve eX (4-11)

a+—a+1 (4-12)

After this update, the process is repeated. After convergence, there is a final step: the minimisation
of Equation 4-9 is done once more, to assign the optimal action w to each x € X, essentially

creating a lookup table that provides the policy . Pseudo code of this algorithm can be found in
Appendix C.
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4-4-2 Limitations

While SDP is guaranteed to find the optimal policy for the problem in Equation 4-8, this process
also comes with flaws. Due to the brute-forcing nature of the algorithm, exploring all possible
states, the computation cost can explode for larger state spaces. As the state space increases, for
example, when taking a higher order for the Markov process, the number of situations to consider
can explode, making solving infeasible. This is also known as the Curse of dimensionality and is
a common problem in optimisation.

4-5 Approximate Dynamic Programming

Approximate Dynamic Programming (ADP) is designed to overcome the curse of dimensionality
that comes with SDP in larger state spaces. Although ADP still tries to solve the same problem
in Equation 4-8, it does not update a separate value function V() for every state in X. Instead,
the value function is estimated by a function, typically a weighted sum.

V(z) ~ 07¢(z) (4-13)

Here ¢(x) is a set of features aimed to capture the structure of the state, and 6 consists of a
vector of weights that are parameters to be learned. The ADP algorithm typically iterates several
trajectories, during which a learning algorithm is applied to update the weights. This update
can be seen as a similar process of minimising ¢ in Equation 4-10. When learning is successful,
V(z) ~ V(x) with V(z) the value function gained from SDP. When controlling, the controller
then compares the values V(ack + 1) to determine the best action. This can be done online
or beforehand. Other ADP techniques, such as Q-learning, reinforced learning, exploration vs
exploitation, and advanced basis functions are kept outside the scope of this research.

4-5-1 Limitations
Despite its practical advantages, using ADP introduces its own challenges:

= To begin, the approximation results in the loss of the optimality guarantee. Because the
algorithm does not consider every possible state, it cannot guarantee to work for all states.

= Second, the performance of ADP is very dependent on the features selected in ¢(x). The
features need to be selected in such a way that every sort of important behaviour (wind
trends, combinations of variables, et cetera) is included. Choosing the right features repre-
sents a whole field of study itself.

= The weights are adjusted with the goal of converging to an optimal vector . Convergence
is not guaranteed, however. Neither is the point, if converged, a global optimum necessarily.
All the common challenges regarding local optima are present in ADP as well.
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Chapter 5

Simulation Framework

This chapter provides a setup for the simulations. First, the objectives of the tests are outlined,
followed by a short recap of the wind model and the controllers. Afterwards, the parameter values
are given, and finally, the different test scenarios are given.

5-1 Simulation Objectives

The simulation objectives are closely linked with the sub-questions that were introduced in Chapter
1. Nevertheless, there are some added goals that are meant to further increase the understanding
of the performance of the model.

1. MPC limit: In the previous chapter, the claim was made that Model Predictive Control
(MPC) results in a high on-line computation cost. Nevertheless, the feasibility of MPC is
explored, comparing the runtime at different order n and horizon V.

2. SDP limit: Similarily, the limit of Stochastic Dynamic Programming (SDP) is investigated.
By increasing the order, the trade-off between performance and complexity is explored.

3. Controller comparisons: Using the data where the model is trained on, fair comparisons
can be done between the controllers, including a higher-order Approximate Dynamic Pro-
gramming (ADP) control.

4. Test on other data: Arguably, the most important test is to simulate the controller on
real-world data, outside of the training set. This can provide concrete results, showing the
benefit of pro-active control of the DOT 500kW Pilot Reverse Osmosis (DOT500PRO).
These tests are done in separate conditions:

= Set A: On the same period as the training data, but using a previous year.

= Set B: On a period of data with different seasonal conditions.
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5-2 Simulation components

In this section an overview is given of the wind model and the controllers that are being simulated.

5-2-1 Wind Model

For the wind model, the Markov Process explained in Chapter 3 is used. This consists of a
transition matrix of order n that provides a probabilistic forecast. The wind has been discretised
into 41 intervals of different lengths. The average value of this interval is used to calculate the
loss function in training. In out-of-model simulations, the actual continuous wind space is used,
reflecting real-life deployment.

5-2-2 Controller overview

In the simulations, 5 types of controllers are being tested:

1. Threshold Control: A simple rule-based controller to serve as a baseline. The controller
changes states reactively, using just the current wind speed. The threshold values are
determined by looking at the policy of the first-order SDP solution.

2. MPC: Solves a finite-horizon version of the problem on-line. This controller finds the best
trajectory over a finite-horizon based on a wind prediction.

3. SDP: This controller has solved the infinite-horizon problem offline, exhausting all possible
policies. In usage, the controller simply follows the action as stated in the policy.

4. ADP: Has approximated the SDP solution by iterating the value function. Does not suffer
from the curse of dimensionality and can therefore handle a higher order n.

5. Omnipotent Control: All-knowing controller that makes the perfect decision, as it knows
the future wind speeds. The Omnipotent controller provides the best possible performance
for the given wind.
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5-3 Parameter values

The parameters for the different models are shown in the overview below, with a more detailed

explanation provided in Appendix F.

Category Parameter / Description
Wind Model

Order To be determined (Markov order n)
Bins 41 bins (see Figure 3-6)

Turbine Model

Electricity price 0.09 €/kWh

Water price 1.13 €/m?

Hibernation overhead 0.462 kWh

Standby overhead 11.72 kWh

Contamination penalty 0.01 €/hr

Rinse cost 17.6 kWh

Start FElectricity cost 78 kWh

Other transition cost 0

Low wind production penalty -1000

Hibernation constraint 20 minutes

Contamination constraint 30 minutes

Controller Parameters

Threshold Control

Stop Hibernation 49 m/s

Start Electricity 4.4 m/s

Stop Electricity 2.9 m/s

Long Start Water 6.1 m/s

Start Water 6.6 m/s

Stop Water 5.8 m/s

Rinse 3.5 m/s

MPC

Horizon At least 100 (e.g., 30 min); 300 for order 3
SDP

Convergence criterion § <1074

ADP

Feature design Custom function using turbine state, wind sequence, trackers
Optimiser Adam

Learning approach TD(0), value iteration, e-greedy
Discount factor ~y 0.99

Table 5-1: Overview of Parameters Used in the Simulation
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5-4 Scenarios

The controllers are evaluated in different settings. To begin, tests are done using in-model sim-
ulations on data that is generated by the corresponding Markov process. This removes the ap-
proximation step from the wind model and allows for a check whether the controller is properly
implemented. Out-of model simulation begins by simulating on the training set. Here, the goal is
to find the limits of the controllers and make a fair comparison. Afterwards, the best controllers
are tested on other wind speed data, either in a different season or in the same season of the
previous year.

5-4-1 Data split

The data is split in sets A, B and T as shown in Figure 5-1a.

Wind Speed with Outliers Interpolated (from 1-10-2023 onwards) Overlapping Wind Profle Histograms
0 [ Wind speed profile (dataset A)
Wind speed profile (dataset B)
Wind speed profile (dataset T)

Test Set A Test Set B Test Set T

Wind Speed (m/s) at 38m
N
o
Probability

[y & & [y 3] )
b a2 109.'7, ’\}.’L D\;’L _0,5.’1'
oY o¥ oY o¥

o’ 1
2O @®

> 5
o Y o
oY oY

>
o o

Time Wind Speed (mis)

(a) The split of the three test sets (b) The wind profile of the test sets
Figure 5-1: The data used for the three test sets
The goal was to select one dataset with a similar wind profile, from the same months in a different

year (set A) and one dataset from a different season (set B). This can reveal how the controller
performs with seasonal or yearly differences in wind data.

Interestingly, the wind profile appears to vary more when compared to the previous year than it
does when compared to a different season, as shown in Figure 5-1b.

5-4-2 Set T: Training set scenarios
In the training set scenarios, all controllers are considered. From the dataset, starting points are
selected randomly. The 6-hourly (or 1200 time steps) wind sequence from that point is used as the

input for the simulation. All controllers are tested against the threshold control, which provides a
baseline.

1. Test T1: Finding the MPC limit. The test is done on both different orders and horizon
lengths. The computation time is also measured to see if it limits the use of MPC control.
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2. Test T2: Finding the SDP limit. Simulations are performed for different orders for the
SDP control. The goal is to compare the performance of different orders and determine at
what order the curse of dimensionality results in a limit.

3. Test T3: Comparison of controllers. This test includes all controllers. The objective is
to find the best control method for the training set. The resulting control method can then
be tested on the different data sets.

5-4-3 Other Test sets

In order to test the dependency of the control on the dataset and the learned wind model, the
best controllers from the previous tests are simulated on different wind speed data.

1. Test A: Different year. The controllers are tested on the same months in the previous
year, aiming to reduce the effect of seasonality.

2. Test B: Different season. Simulation is done on the rest of the year. This should indicate
how sensitive the control is on the different data.

5-4-4 Evaluation Metrics

The controllers are evaluated both on performance and feasibility. This is measured using several
metrics:

= Total Revenue: The main metric is the total loss of the system over the simulation time (6
hours). The loss of the threshold control is subtracted from the loss of the other controllers
to indicate the difference. Focus is put on the average improvement.

= Computation time & Memory usage: For both the MPC and SDP controller, feasibility
issues are foreseen as the order and horizon grows. Simulations are run up to the point
where the controller becomes unfeasible for usage.

= Number of transitions: Even though this is not the intended optimisation of the control
algorithms, the number of transitions is an interesting thing to measure. The threshold
controller has a big drawback in that it makes a lot of transitions. If the other controllers
lower this amount, it could indicate an improvement in the durability of the system. The
number of times the system enters and leaves water production mode can be measured, as
the RO module is the most sensitive part of the system.

Using these metrics, the results of the simulation can be analysed to draw conclusions about the
performance of the controllers.
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Chapter 6

Results

The results of the simulations are presented in this chapter. Based on these results, conclusions
are drawn.

6-1 In-model simulations

For the in-model simulations, 100 2-hour sequences of wind speeds were generated based on the
second-order Markov model. For every sequence, the order 2 Stochastic Dynamic Programming
(SDP) and Model Predictive Control (MPC) controls are executed. The threshold and omnipotent
control were also tested on the same sequences. The results of the controller performance is shown
as a boxplot in Figure 6-1. Here the dependency on wind data, rather than control, is highlighted
as all controllers (apart from the omnipotent control) share the same minimum and maximum
loss. If there is no wind, the type of controller is not going to change that.

Controller Performance Comparison
(order 2, horizon 100, 2hr)

0
-10
-20

Final Loss (€)

Threshold SDP MPC Omni
Controller

Figure 6-1: In-model performances of the controllers

If the threshold results are subtracted from the data of the other controllers, the improvement in
Figure 6-2a can be seen more clearly. The omnipotent control is, as expected, always performing
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better than or equal to the threshold control. The SDP and MPC controllers, however, do not
always perform better. This result shows that sometimes the proactive controllers make a mistake
and pre-emptively go into the wrong state. This can be attributed to the controller assuming that
the wind data follows the prediction when in reality, it does not. Nevertheless, both controllers
make an improvement over the heuristic on average.SDP performs the best, with an average
improvement of approximately 3 euros on a 2-hour wind sequence. This would come down to
an improvement of around 3 percent, which would result in a big difference if applied on a large
scale.

The Approximate Dynamic Programming (ADP) controller of order 4 does not perform better
than the threshold control, as can be seen in Figure 6-2b.

Improvement Over Threshold Comparison of results

8 Mean loss wrt Threshold e
0 w5688 DN 0.3458

Loss in €
o

|

Improvement over Threshold (€)

= i
10 : -10
SDP MPC Omni
Controller SDP_3 ADP_4
(a) In-model improvement over the (b) In-model comparison of SDP(3) and
threshold ADP(4)

Figure 6-2: In-model comparison of the controllers w.r.t threshold control

6-2 Training set tests

The training set tests are done on dataset T in Figure 5-1a. The wind model of the controllers are
based on this dataset as well. These simulations are intended to help determine the best controller
without interference from different data. Figure 6-3 shows the training data.

Wind Data from Oct 1, 2024 to Feb 28, 2025

—— Wind Speed
30

25

20

15 1

Wind Speed (m/s)

10 1

2024-10 2024-11 2024-12 2025-01 2025-02 2025-03
Date

Figure 6-3: Training set T
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6-2-1 Test T1l: MPC Computation time

The MPC control is tested for orders 1, 2 and 3. The result is compared with the baseline of the
threshold control. A lower loss indicates better performance. The result is shown in Figure 6-4a.
As expected, the higher-order model is performing better, which can be seen as the loss is more
negative. An order 1 MPC controller performs even worse than the heuristic.

A similar improvement is observed as the horizon increases, as seen in Figure 6-4b. This shows
three MPC controllers of order 1 with different horizon lengths of 100, 200, and 300. The
difference in the results is smaller compared to the previous test of different orders. This indicates
the importance of order over horizon. The change of a horizon of 200 to 300 timesteps does not
results in any change. This can be attributed to the steady-state behaviour of the first-order wind
model being reached before the 200th timestep.

Comparison of results Comparison of results

jg'?:L

MPC_1_100 MPC_2_100 MPC_3_100 MPC_1_100 MPC_1_200 MPC_1_300

Lossin €
Lossin €

(@) Comparison of different orders of (b) Comparison of different horizons of
MPC MPC

Figure 6-4: Overall comparison of MPC parameters

However, this increased performance of a higher order or a longer horizon comes at a cost: the
MPC computation time grows rapidly, as shown in Figure 6-5. The threshold given here is already
very generous, as the next wind update arrives after 18 seconds, meaning that with a 9-second
computation time, the controller is half a timestep too late. For orders of 4 or higher, the MPC
is deemed infeasible. The order 3 controller is bounded to a horizon of 300 timesteps.

MPC Computation Time by Order and Horizon

eOrder 4 —e— Order 1
12 —o— Order 2
—#— Order 3
—4— Order 4

/Order 3 —==- Time threshold (9s)
10

Order 2

Computation Time (s)

Order 1

Horizon

Figure 6-5: MPC computation time
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6-2-2 Test T2: Stochastic Dynamic Programming

In this test, the order n of the SDP controller is increased. As the order increases, the controller
becomes more elaborate and considers more measurements before making a decision. This addition
of information seems to increase the performance for orders 1 to 3, as indicated in Figure 6-6.
Solving the MDP using SDP for orders of 4 was unsuccessful because of the curse of dimensionality.
The limit of SDP is reached at order 3.

Comparison of results
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Figure 6-6: Comparison of SDP of orders 1 to 3

6-2-3 Test T3: Comparison of the controllers

In Table 6-1 the results of test T3 are shown. Here, the best variants of MPC (order 3, horizon
300) and SDP (order 3) are compared with the threshold and a fourth-order SDP controller. On
average, the SDP controller performs best, followed by ADP and MPC. All controllers perform
better than the threshold control.

Controller | Threshold | SDP_3 | ADP_4 | MPC_3_300
Average loss | -155.4 | -157.2 | -156.7 |  -156.9

Table 6-1: Results of test T3

Whilst higher orders were indications of better results in the previous tests, the ADP controller
of order 4 is not performing better than the order 3 SDP control. This can be explained by the
approximation nature of the algorithm. The features might not behave optimal, and the optimizer
might not have found the best weights in time, or got stuck in a local minimum.

When looking at a single week-long relative loss graph that compares SDP(3) and ADP(4) in
Figure 6-7, both controllers can be seen making mistakes on the way, resulting in a very close end
result. The SDP(3) controller makes the right decision at 10000 timesteps, while the ADP(4)
controller performs correctly around 20000 timesteps, where the SDP(4) makes a comeback af-
terwards. This might reveal that the ADP controller has the ability to outperform SDP(3), but it
does not manage to do so here.
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Relative Loss compared to the Heuristic (actual data)

—— Relative Loss ADP(4)
0 —— Relative Loss SDP(3)

Total Loss (euros)

0 5000 10000 15000 20000 25000 30000 35000
Time Step

Figure 6-7: Example of cost graph comparing SDP and ADP over a week

6-3 Other test sets

Seeing as SDP(3) performed the best on the training set, this controller is tested on the other
test sets. For the sake of curiosity, it is also check whether ADP(4) is acting better here.

6-3-1 Test A: Different year
As seen in Figure 5-1b, dataset A is not quite as similar as the training set T. Looking at the wind

data in Figure 6-8, it can be seen that it was a stormy winter, including one of the worst storms
of the 21st century. ' This compromises the model its forecasting ability, as seen in Figure 6-9a

Wind Speed with Outliers Interpolated (Test Set A)

Wind Speed (m/s) at 38m

Figure 6-8: Test Set A

Whilst there is little to no difference in the amount of revenue generated by the SDP controller

! According to BBC: https://www.bbc.com/weather /articles/cvglvnyxpx0o
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compared to the threshold, the controllers do not make the same decisions. The SDP controller
is acting much more conservative, as it is making less transitions, as is shown in Figure 6-9b.

Comparison of results
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(a) Results of test A in terms of revenue

Comparison of switches

Average amount of switches
1230133 BN 15.6567 [ 224567

' :
:

; !

!

1 !

o+

Threshold SDP_3 ADP_4

(b) Results of test A in terms of number
of transitions into water production

Controller Threshold | SDP 3 | ADP 4
Average loss -164.0 -164.2 | -161.6
Number of transitions 23.0 15.7 22.5

Table 6-2: Results of test A

6-3-2 Test B: Different season

In Figure 5-1b, test data set B seems more similar to the training data compared to test set A.
However, when looking at the results in Figure 6-11a, no significant improvement can be stated.
With an average of 3 eurocents over 6 hours, this change in revenue seems insignificant. Again, the
ADP controller is not performing better than the threshold control, but both proactive controllers
make less switches to water production, as is shown in Figure 6-11b.
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Figure 6-10: Test Set B
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Comparison of switches
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Comparison of results 200 1 36.06 W 2385 [ 33.54

Mean loss wrt Threshold
20 W -0.0389 [ 286536

5
0
50
-5
: 0

SDP_3 ADP_4

Number of switches
H

Lossin €

Threshold SDP_3 ADP_4

(b) Results of test B in terms of number

(a) Results of test B in terms of revenue of transitions into water production
Controller Threshold | SDP_ 3 | ADP 4
Average loss -106.4 -106.5 | -103.6
Number of transitions 36.1 23.9 33.5

Table 6-3: Results of test B

6-4 Conclusion of the results

Based on the results from the simulations, several conclusions can be drawn:

1. From testing using MPC, the bottleneck of the computation time is quickly found. The
conclusion is drawn that this technique is too slow for the fast dynamics of the system.
Using MPC in this application is therefore not a feasible approach.

2. SDP is limited by the curse of dimensionality, resulting in a maximum order of three with
the current setup. This technique performs better than the threshold control on the training
set, revealing the controller’s potential.

3. For the higher-order dynamic programming, ADP can be used. The results show that the
model needs more tuning, but it has the potential to overtake the third-order SDP as the
best-performing controller.

4. The results from tests A and B show the limitations of predictive control. When the wind
behaves differently from what the model predicts, the SDP controller is no longer able to
make the best decisions. The predictive controller is too sensitive to different wind patterns,
for instance different seasons and years. This results in the reactive threshold controller
getting similar results.
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Chapter 7

Conclusions and Discussion

7-1 Conclusion

The goal of this thesis is to find an optimal control strategy for the DOT 500kW Pilot Reverse
Osmosis (DOT500PRO) statemachine. In this approach, the optimal control results in the most
revenue generated. The question this thesis tries to answer is therefore:

How can the state machine of the DOT500PRO turbine be controlled to operate for maximum
revenue?

Analysis of the system reveals an opportunity for improvement by the use of proactive control,
switching states based on a prediction of the wind. Several statistical models were considered to
model the wind, and a Markov Process was found to be the most appropriate for this application.

Using the Markov model, the problem was formulated as an Markov Decision Process (MDP).
Several control techniques were applied to this framework. These control methods were tested in
a Python simulation with a heuristic threshold controller as a benchmark for comparisons.

Some concerns about Model Predictive Control (MPC) were confirmed, as for higher orders, the
computation time exceeds the limit. The Stochastic Dynamic Programming (SDP) performed the
best overall, improving average performance as the order of the SDP method increases.

Above Markov order 3, the curse of dimensionality prevents the usage of SDP due to the state space
growing too large. Higher orders of control are possible using Approximate Dynamic Programming
(ADP) to approximate a SDP solution. The use of ADP might result in better performance, but
requires careful tuning. Unfortunately, this is currently not achieved due to a lack of time.

Sensitivity of SDP and ADP to different wind patterns is tested by using data from both another
year and from another season. Both tests led to a decrease in performance, resulting in a negli-
gible improvement over the threshold control. Nevertheless, the number of transitions decreases
compared to the threshold control. Where the controller did not increase revenue directly, the
implementation should decrease the amount of wear and tear, leading to other benefits.
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In conclusion, the state machine of the DOT500PRO can be controlled using several methods,
with an SDP control performing slightly better than a heuristic threshold control. For optimal
revenue in the training data, this approach is seriously worth considering for implementation. For
other uses, this might not be recommended when compared with the ease of implementation of a
threshold control.

7-2 Discussion

In order to improve on the work done in this thesis, several key points can be addressed and
improved upon. In this section, several topics for further research are mentioned.

7-2-1 Turbine model

Transition time. For the sake of simplicity, the assumption was made that the transitions between
states are instantaneous. This assumption does not reflect real life. Adding this factor to the
model might give the pro-active controllers a better performance, considering the higher amount
of transitions of the threshold control.

Momentum in the system. In the model, an assumption is made on the speed of the response in
the system. It is assumed that when the wind speed increases, the turbine’s production increases
immediately with it. However, in practice, there is a momentum in the system where the rotor
speeds up or slows down.

Simplification of the revenue function. The revenue function that is being used is based on
an indoor test setup, where the electricity and water production were measured for different rotor
speeds. This is multiplied by current prices for water and electricity in the Netherlands. In a
real-world business evaluation, the prices of the target location need to be accounted for, as well
as the difference between the buy and sale prices. In addition, the wear and tear is resulting in
eventual repairs and other operational costs. These are not accounted for in the function right now.

Constraints. Constraints such as contamination were considered very simple and very strict.
In real-world applications, this might be much more complex than the model representation.
Additionally, rinsing is more complex than illustrated in this thesis, but it is beyond the scope of
this thesis. Cut-out of the wind is also not addressed here, but can be implemented in the future.

Control timestep. The speed of the control, together with the speed of wind updates are
important parameters to consider. In the future, more research is needed on the choice of these
timesteps, where a separation might be interesting, updating the wind more often than the control.

7-2-2 Wind model

Advanced wind models. The use of a more complicated wind model or higher orders Markov
models might capture the dynamics of the wind better. In real life, wind speed depends on many
external physical factors, which could also be incorporated as additional measurements or (filtered)
noise.
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Seasonality. More research can go into seasonality and other effects on the wind data. It might
be worth considering to create a different model per season, or an adaptive model that updates
the dynamics in real-time.

Drawbacks of Markov process prediction. Using a Markov process to do predictions gives
some approximations and complexities to the forecast. A discretisation has to be done on the
wind speed space, and an order of the Markov chain has to be chosen. This approach is limited
by the computational power of the system and the available data to create a transition matrix.

Data availability. The method used for wind prediction relies on accurate and credible data.
For the actual application of the turbine, different wind conditions might be applicable. Different
seasons, locations, and climate change can all cause different weather patterns, making predictions
difficult. In this thesis, data on a short timescale is used, but this might not show the full picture.
For the Markov table to be as accurate as possible, it may seem that incorporating more data
would improve the accuracy. However, the relevance of historical data from previous years remains
uncertain. This is a difficult trade-off that requires more research.

7-2-3 Control methods

Feature functions. In ADP, the feature functions can be experimented with. Using more or
different feature functions, combined with non-linear functions or weights can be worth exploring.

Order. More research can go into the optimal order of the control system, figuring out a limit
where overfitting leads to diminishing results.

Multiple objectives. In this thesis, the objective was brought back to one variable: the total
revenue in euros. However, the ideal control would balance water and electricity production with
wear and tear, and maybe even more factors. Using a multi-objective based control method could
address this.

Approximations. MPC and ADP require an approximation of an exact model. This is done
either by limiting to a finite time or by approximating a policy using basis functions. Both of these
approaches result in approximations, possibly leading to shortcomings in the control policy.

Fault tolerance. In the controller, it is assumed that a wind speed is always measured, and it is
reasonable. If a sensor fails or no wind speed data is transmitted, the controller is incapable of
dealing with such situations. Creating fault-tolerant control is something that would need more
attention before deployment of the controller, especially considering the usage offshore.

7-2-4 Experimentation
Real-life experimentation. Performing real-life tests and field experiments is a necessary next

step to validate the control strategies and models. Out of all options for future work, this will
probably give the most insights.
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Appendix A

Optimal control

An optimal control is proposed by Greco et al. in [3]. In Figure A-1 The steady state operation
is shown for this control. The different control points are noted from 0 to D.
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Figure A-1: Pressure-flow graph

For wind speeds below 6 m/s, the system follows the orange line (0-A in Figure A-1), as water
production is not possible since the pressure is not high enough. The system is restricting flow
to the membranes (FCV is closed), and the SV towards the Pelton is set to close just twenty
percent. This value is chosen as it coincides best with the C} 4., which means that the power
transmission is optimal. Between 0 and A, the system relies on passive control as explored in [39].
Due to the nature of the SV, no active control is necessary.

As the wind reaches a speed of 6 m/s, the pressure is not high enough for reverse osmosis
with this flow. On the other hand, if the SV is closed more, the pressure builds up and is able to
just reach above osmotic pressure (Point B in Figure A-1). This means that Reverse osmosis can
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start from a wind speed of 6 m/s and we are now in water production mode.

From point B to C, the FCV is controlled to keep the system from moving left of the C7 4.
line, to keep the system stable. Meanwhile, the SV is kept at a constant 68 percent closure. This
prevents the system from having 2 active controllers interfering with each other. As the wind
speeds rise, the system follows the purple line.

Although the maximum pressure of the HPP is not reached at point C, the membranes of the RO
unit have reached rated pressure. To prevent the membranes from being damaged, the pressure
is controlled by opening the SV. The FCV is kept constant during this time (C-D in Figure A-1).

The HPP is limited to a rated flow of 2394 |/min. Therefore, at point D, the blades start
pitching out to decrease the amount of hydraulic power. Up until cut-out wind speed at 20 m/s,
the system keeps operating at the flow and pressure of point D.

Although extensive, there are a few gaps with this current approach. This is an idealized control
and wind speed does not usually increase or decrease linearly or predictably. The wind might
oscillate around 6 m/s, where this control would repeatedly turn the water production on and off.
Also, the startup and shutdown of the system (around point 0 in Figure A-1) are not included.
During the last test setup at the Maasvlakte, these decisions were carefully made by hand to
test the control at the valves. As this has proved itself, the control between the states is now
investigated here.
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Table of actions

State s;

Available actions U(sg)

Hibernation (hibernation
timer < 20 min)

Stay

Hibernation (hibernation
timer > 20 min)

Stay, Stop Hibernation

Standby (clean)

Stay, Start Hibernation,
Start Electricity

Electricity Production (clean)

Stay, Stop Electricity, Long
Start Water

Water Production

Stay, Stop Water

Standby (contaminated)
(contamination timer < 30
min)

Stay, Start Electricity, Rinse

Electricity Production

(contaminated) Stay, Stop Electricity, Start
(contamination timer < 30 Water, Rinse
min)
Standby/Electricity

Production (contaminated)
contamination timer = 30
min

Rinse

Table B-1: Table of actions
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Appendix C

Pseudo

Code

Algorithm 1 Construct Higher-Order Markov Transition Table for Wind

Require: Wind series wi, wo, ..., wr, bin edges B, order k
Ensure: Transition tensor 7' of shape (N, ..., N) with k£ 4+ 1 dimensions

10:
11:

1
2
3
4:
5:
6
7
8
9

: Discretize w; into bins using edges B
. Initialize count tensor Cfiy, ..., ik, j] < 0 for all bins
cfort<0toT —k—1do
(i1,...,1) < bin indices of (wy, ..., wik—1)
j < bin index of w1k
Clit, ... ik, j] < Clits. .. i, j] +1
: end for
. for all (iy,...,i;) do
Normalize C|iy, ..., ik, :] to get probabilities T'[i1, ..., i, ]
end for
return T

Algorithm 2 Define MDP Components for Turbine Control

Require: Discretized wind model T', system state descriptors
Ensure: Definition of (S, A, P, R) for DP

1
2
3
4

: Define state: s = (turbine_ state, wind .k, hib, cont)

: Define actions: a € ValidActions(s)

. Define transitions: P(s’ | s,a) using T and environment rules
: Define reward: R(s,a) = —get_loss(s,a)
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Pseudo Code

Algorithm 3 Stochastic Dynamic Programming for Turbine MDP

Require: Horizon H, MDP (S, A, P, R)
Ensure: Value function V, policy 7
1: Initialize Viext(s) < O for all terminal states
2: Initialize action cache C « )
3: fort+ H—1to0do

4: Initialize View < {}

5: for all s € Vet do

6: v* ¢ 00, a* < None

7: for all a € ValidActions(s) do
8: if t = H — 1 then

9: next_ states <— GetNextStates(s, a)
10: C[s,a] < next_ states
11: else

12: next_ states < C[s, a]
13: end if

14: E+Xpap- Vaext (8')

15: v ¢ BleaHHOE

16: if v < v* then

17: v v, a" —a

18: end if

19: end for

20: Vaew(s)  v*

21: m(s) < a*

22: end for

23: if max; |[Vhew(s) — Vaext(s)| < € then
24: break

25: end if

26: Vnext — Vnew

27: end for

28: return Ve,

> Converged
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Appendix D

Wind performances

We test ARIMA, Kalman Filtering and Markov processes on their ability to predict wind speeds.

D-1 Test setup

Every method follows the same pipeline: The parameters are fitted on the training data, using hy-
perparameters which are compared on the validation data. The best hyperparameters are chosen
and used to train the parameters on the combined dataset of training and validation data before
being tested on the unseen data in the testing dataset. Here the three methods are compared.
For the Markov process, the parameters are the p; ; in the transition table, and the hyperparameter
is the order m of the chain.

The ARIMA model has 6; and o; as parameters determined in training, and (p, d, q) as hyperpa-
rameters.

Lastly, the Kalman filtering performs system identification to get matrices A and C' as parameters,

Data after pre-processing

1.0 —— Training
Validation
0.8 1 —— Testing
9 061
£
£
> 0.4 1
Q
o
& 0.2
2 .
£
=
0.0 1
-0.2

0 100000 200000 300000 400000 500000
Timesteps (in 18 seconds)

Figure D-1: Data used for the wind predictions, totalling to 1 month of wind data
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and has the size of the state L as hyperparameter.

D-2 Performance metric

We test our methods by comparing Root Mean Squared Error (RMSE)[40]. This is given as

n

1 _
RMSE = \J n Z(yt — yr)? (D-1)
t=1
Here the prediction is denoted by 4 and the actual observation is y. We use a horizon of n
datapoints to compare the prediction. In our case this is 200, which is equal to one hour of data.
Another measure we use is the Mean Interval Score (MIS).following [40], This is defined as

b=y y<lb
MIS(«) := (Ip —up) + ” 0, Iy <y <uy (D-2)

Yy—up up <y

Here o denotes the confidence level of the prediction interval. For our application we look at a
95% and 68% prediction interval, coinciding with one and two variances. This results in an « of
0.05 and 0.32.

The values of I, and wu; denote the lower and upper bound of the interval. When the observation
is within this interval, no score is added. However, if it is outside of the interval, the score is
increased proportional to the distance to the closest bound. This gives an intuitive appeal to
measure both accuracy and precision. The lower the MIS score, the better the performance. For
our case of a longer horizon, we simply take the average MIS over time.

The RMSE score is a standard metric giving insight into the precision of the prediction. However,
this does not allow for measuring the variability of a probabilistic measure. For this, the MIS is a
better fit, giving more weight to the size of the confidence region.

D-3 Results

The validation step finds us that a Markov order of 5, ARIMA(1,1,3), ARIMA(2,1,3) and a state
size of 1 or 2 gives the best results for the Kalman Filter. All hyperparameter results from the
validation step, these results can be found in Appendix E.

Re-training these models on both training and validation data allows us to test the three models
against each other on the testing data. We also compared our prediction to Persistence, that is,
using the latest value as a prediction for all values. The RMSE and MIS of all methods are shown
in Table D-1.

D-4 Conclusion

Although the best results seem to come from ARIMA(2,1,3) according to this table, the difference
between methods is very small. This means that more research is probably needed. Note how
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Method RMSE MIS68 MIS95
Markov(5) 0.0584  0.16 0.29
ARIMA(2,1,3) 0.0486  0.14  0.24
ARIMA(1,1,3) 0.05223  0.15 0.27
Kalman(1) 0.05901 - -
Kalman(2) 0.09871  0.15 0.27
Persistence(naive method) | 0.06513 - -

Table D-1: Comparison of the methods

almost all methods manage to beat Persistence though. Also, remember that the Markov method
gives a better probabilistic prediction, instead of a mean and variance. This makes Markov a more
desirable method in terms of control and risk management.
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Appendix E

Table of Performances

Markov Order | RMSE | MIS_68 | MIS_ 95
1 0.125760 | 0.373594 | 0.855535
2 0.097483 | 0.310535 | 0.714383
3 0.077824 | 0.267865 | 0.601183
4 0.065724 | 0.237610 | 0.520504
) 0.060807 | 0.218061 | 0.476738

Table E-1: Performance of the Markov Model for Different Orders

Master of Science Thesis

S. Kronemeijer



58

Table of Performances

p, d, q RMSE | MIS_68 | MIS_ 95
ARIMA(1,0,0) | 0.119947 | 0.382267 | 0.653018
ARIMA(1,0,1) | 0.051063 | 0.214932 | 0.409821
ARIMA(1,0,2) | 0.051776 | 0.180717 | 0.324812
ARIMA(1,0,3) | 0.046189 | 0.166709 | 0.301716
ARIMA(1,1,0) | 0.044587 | 0.488213 | 0.961452
ARIMA(1,1,1) | 0.042547 | 0.169415 | 0.316843
ARIMA(1,1,2) | 0.042780 | 0.152771 | 0.275900
ARIMA(1,1,3) | 0.042739 | 0.150023 | 0.268055
ARIMA(2,0,0) | 0.095838 | 0.328808 | 0.601925
ARIMA(2,0,1) | 0.061762 | 0.190449 | 0.305426
ARIMA(2,0,2) | 0.068597 | 0.208304 | 0.328008
ARIMA(2,0,3) | 0.047705 | 0.174244 | 0.318369
ARIMA(2,1,0) | 0.042687 | 0.389167 | 0.765188
ARIMA(2,1,1) | 0.042791 | 0.157713 | 0.288362
ARIMA(2,1,2) | 0.042770 | 0.160894 | 0.295123
ARIMA(2,1,3) | 0.042258 | 0.151183 | 0.272687
ARIMA(3,0,0) | 0.078833 | 0.292391 | 0.553262
ARIMA(3,0,1) | 0.048268 | 0.158015 | 0.272088
ARIMA(3,0,2) | 0.050641 | 0.168456 | 0.293724
ARIMA(3,0,3) | 0.054224 | 0.171452 | 0.287428
ARIMA(3,1,0) | 0.043191 | 0.332218 | 0.652079
ARIMA(3,1,1) | 0.042750 | 0.153871 | 0.277941
ARIMA(3,1,2) | 0.042260 | 0.155964 | 0.284596
ARIMA(3,1,3) | 0.042274 | 0.167921 | 0.313105

Table E-2: Performance of the ARIMA Model for Different Hyperparameters (p, d, q)

S. Kronemeijer

L (State Size) | RMSE | MIS_68 | MIS_ 95
Kalman(1) | 0.045721 | 0.543805 | 1.087609
Kalman(2) 0.108232 | 0.351905 | 1.0275176
Kalman(3) 0.120872 | 0.417792 | 1.295632
Kalman(4) 0.126459 | 0.441921 | 1.301793
Kalman(5) 0.130008 | 0.461649 | 1.403410
Kalman(6) 0.131779 | 0.468146 | 1.367391
Kalman(10) | 0.136381 | 0.490489 | 1.418039
Kalman(25) | 0.140097 | 0.506550 | 1.421857

Table E-3: Performance of the Kalman Model for Different State Sizes (L)
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F-1

F-2

Simulation Parameters

Wind Model Parameters

Markov order: This is yet to be determined dynamically during simulations. The order n
of the markov model is varied to compare performance.

Discretisation : The wind speed data is discretised in 41 wind speed bins, distributed using
an equal-frequency approach. The distribution is as shown in Figure 3-6.

Turbine Model Parameters

Electricity price: For the Electricity price, the current price of €0.09 per kWh is taken.
This is used for both the electricity that is used and the electricity generated by the turbine.

Water price: The water price is taken as €1.13 per m3. This is the current price of drinking
water in the Netherlands.

Energy overheads: Electrical costs of both being in a state, and performing transitions
like rinsing and starting electricity are assumed to be known and constant. This is still a
rough estimation, but stems from earlier experimentations of the DOT 500kW Pilot Reverse
Osmosis (DOT500PRO).

— Hibernation: 0.462 kWh
— Standby: 11.72 kWh
— Rinsing: 17.6 kWh
— Start Electricity: 78 kWh
The start of electricity production involves generating an initial speed of the Pelton turbine,

as blasting water on the Pelton turbine is inefficient and can damage the Pelton wheel if
it is at a standstill. This does mean that a substantial electricity price is coupled for this
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transition. Rinsing is also a costly operation, but the other transitions are more complex to
evaluate. They are modelled without a cost for simplicity.

= Contamination penalty: A small penalty of €0.01 per hour is subtracted from the reward
function to discourage being in the contaminated state.

= Penalty for water production at low wind: As the Reverse Osmosis (RO) system can
suffer greatly from being in water production at insufficient wind speeds, a penalty of €-1000
per hour is implemented.

= Operational constraints: Two operational constraints were identified in the DOT500PRO
system. These are:

— Hibernation minimum duration: 20 minutes.

— Maximum contamination time: 30 minutes

Using the turbine model parameters, a revenue function can be created, as is shown in Figure F-1.
Here, the 6 states and their revenue are graphed against the wind speed. Note that this assumes
that the current action is 'Stay".

Revenue (€/hr)

40 T

= WaterProd

ElecProd
= Standby
ElecProd(Contaminated) 3
—— Standby(contaminated) / I

Hibernation
30

Total Revenue (€/hr)
|
—_—

00 1425 450 | 45 508 535 . 0 575 .0
i i
— ///
,///
— ///
0 i _—
1T
25 5.0 7.5 10.0 12,5 15.0 17.5 20.0

Wind speed (m/sec)

Figure F-1: Revenue Function, assuming ug = Stay

F-3 Controller Parameters

F-3-1 Threshold Control
= Wind speed thresholds (m/s): Thresholds for the heuristic controllers were based on the

results of Stochastic Dynamic Programming (SDP) with Markov order 1. This performs
best in the in-model tests.
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— Stop Hibernation 4.9 m/s
— Start Electricity 4.4 m/s
— Stop Electricity 2.9 m/s
— Long Start Water 6.1 m/s
— Start Water 6.6 m/s

— Stop Water 5.8 m/s

— Rinse 3.5 m/s

F-3-2 Model Predictive Control (MPC)

= Horizon: As the longest interaction in the model, the contamination time, is already 100
time steps, the horizon needs to be > 100 time steps (30 minutes). The maximum length
of the horizon is still to be determined in simulation, but keep in mind that the forecast
converges to some steady state, from where more predictions are no longer necessarily
beneficial, for instance the horizon for n = 3 reaches steady state in 300 steps’.

= Terminal cost: The terminal cost is taken as zero for the sake of simplicity, for now.

F-3-3 Stochastic Dynamic Programming (SDP)
= Convergence criterion: For the value iteration algorithm used in SDP, convergence is
assumed when the difference § < 10~
F-3-4 Approximate Dynamic Programming (ADP)

= Features: Feature selection is an essential part of Approximate Dynamic Programming
(ADP). The number of features is dependent on the order n of the Markov process. All of
these features are normalised. The chosen features are:

One-hot turbine state (6 types)

— Normalized wind sequence (n values)

Wind differences, clipped to [-3, 3] and normalized (n — 1 values)
— Hibernation tracker / 66
Contamination tracker / 100

— Wind prediction expectation and median

— State-wind interaction terms (element-wise product) (6 values)
= Optimiser: Adam is chosen for its stability abilities.
= epsilon-adam 1e-8

= adam beta values betal = 0.9, beta2 = 0.999

!see Chapter 3
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» Learning methods: For the learning, a Value iteration approach was taken, using TD(0)

= Policy strategy: The action in training is a trade-off between exploration and exploitation.
We use an e-greedy algorithm with ¢ = 0.05

= Initial learning rate: 0.05
= Num episodes: 1000
= steps per episode: 500

= discount factor ~: 0.99
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DOT500PRO DOT 500kW Pilot Reverse Osmosis

HPP
RO
ERD
SV
FCV
ERD
NWP
MDP
ADP
SDP
MPC
RMSE
MIS
ACF
PACF

High-pressure pump

Reverse Osmosis

Energy Recovery Device

Spear Valve

Flow Control Valve

Energy Recovery Device
Numerical Weather Prediction
Markov Decision Process
Approximate Dynamic Programming
Stochastic Dynamic Programming
Model Predictive Control

Root Mean Squared Error

Mean Interval Score
AutoCorrelation Function

Partial AutoCorrelation Function

List of Symbols

R(sg,ug,wy) Revenue function

0(sk, u, wi) Loss function, equal to —R(s, ug, wg)

S
U

Turbine state space

Action space
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Glossary

=

W(Sk,wk,...,

f (s, ug)
up,

Wk

Tk

S. Kronemeijer

Wind space

State space combining S and W™
Policy function space

Wk—_n+1) Policy function
Turbine state update function
Turbine state at time k

Action at time k

Wind speed at time k

State vector combining s; and wy,
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