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BCIM: Efficient Implementation of Binary Neural
Network Based on Computation in Memory

Mahdi Zahedi , Taha Shahroodi , Carlos Escuin , Graduate Student Member, IEEE,
Georgi Gaydadjiev , Senior Member, IEEE, Stephan Wong, Senior Member, IEEE,

and Said Hamdioui , Senior Member, IEEE

Abstract—Applications of Binary Neural Networks
(BNNs) are promising for embedded systems with hard
constraints on energy and computing power. Contrary
to conventional neural networks using floating-point
datatypes, BNNs use binarized weights and activations
to reduce memory and computation requirements.
Memristors, emerging non-volatile memory devices, show
great potential as a target implementation platform for
BNNs by integrating storage and compute units. However,
the efficiency of this hardware highly depends on how
the network is mapped and executed on these devices.
In this paper, we propose an efficient implementation
of XNOR-based BNN to maximize parallelization. In this
implementation, costly analog-to-digital converters are
replaced with sense amplifiers with custom reference(s)
to generate activation values. Besides, a novel mapping
is introduced to minimize the overhead of data commu-
nication between convolution layers mapped to different
memristor crossbars. This comes with extensive analytical
and simulation-based analysis to evaluate the implication
of different design choices considering the accuracy of
the network. The results show that our approach achieves
up to 5× energy-saving and 100× improvement in latency
compared to baselines.

Index Terms—Binary neural network, computation-in-
memory, energy-efficient accelerator, memristor.

I. INTRODUCTION

N EURAL Networks (NNs) are leveraged in a variety of
applications [1], [2], [3]. With the growth of the network

size for advanced applications, the implementation of NNs
has become challenging, considering hardware limitations (e.g.,
BERT has around 110 million parameters [4]). Binary Neural
networks (BNNs), where the weights and activation values are
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binarized (-1,+1), receive more attention from researchers due
to their high model compression rate and simplified compu-
tations [5]. This is appealing for edge devices where there
are hard constraints on memory capacity, computing resources,
and energy budget. Although the computations are simplified,
further improvement in the efficiency of BNN implementations
relies on reducing the cost of data transfer between memory
and computing units (memory wall). Computation-in-Memory
(CIM) and the unique characteristics of emerging non-volatile
memories (memristors) [6], [7], [8] are promising candidates
to deliver the next level of energy-efficiency implementation
of BNNs. Hence, there is a need to design energy-efficient
accelerators leveraging the notion of CIM to enable large-size
networks for edge devices.

Memristor crossbar structures are tailored for vector-matrix
multiplication (VMM) operation. As a result, a wide range of
applications such as graph processing [9], [10], bioinformat-
ics [11], [12], [13], image processing [14], [15], and secu-
rity [16], [17] are promising to be accelerated by CIM-based
hardware accelerators [18], [19]. CIM-based accelerators utiliz-
ing these memories not only reduce the overhead of data transfer,
but also enhance the performance of VMM operation as a key
kernel in BNNs. However, using memristors to operate on signed
numbers (-1,+1) in BNN is challenging. From this perspective,
existing works can be classified into hardware or algorithmic
solutions. As a hardware solution, positive and negative values
can be mapped to different memristors [20], [21], [22]. Other
approaches are considering one- [23] or two-column reference
memristors [24] while converting the weights and activations
to unsigned representation. In general, these approaches require
more devices, increase design complexity, and reduce the en-
ergy/performance efficiency of the system. As an algorithmic
solution, a signed VMM can be converted to XNOR opera-
tions [25] where the operands are unsigned (0,1). In this category,
an accelerator is designed in which memristors are also used as
an activation function [26]. This induces endurance, energy, and
performance issues due to excessive memristor programming.
To ensure the accuracy of XNOR operations against device vari-
ation, a new memristor crossbar structure based on differential
sensing is proposed [27]. However, XNOR operations are forced
to be performed sequentially due to the sensing mechanism. All
these overheads drive researchers to explore new mappings and
implementations of BNNs to enhance their efficiency further for
edge devices.
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This work advances the state-of-the-art by proposing an ef-
ficient implementation of BNNs. The proposed mapping of
operands for XNOR operations to the crossbar allows simul-
taneous crossbar row activation. This maximizes resource uti-
lization on the crossbar and enhances performance. Moreover,
we mimic the functionality of an Analog-to-Digital Converter
(ADC) and the following digital processing, initially needed for
this mapping, by only a Sense Amplifier (SA) with an adjusted
reference. Furthermore, we minimize data communication be-
tween layers by proposing a novel mapping of the weights
and activation values into the crossbar and its input buffer. We
investigate the efficiency of our approach on different network
structures in terms of accuracy, energy, and performance by
developing our PyTorch-based simulation platform [28]. The
platform can mimic the behavior of the crossbar and allows
for more characteristics and non-idealities to be integrated and
explored for different networks. Our approach achieves close to
5× energy-saving and 100× improvement in latency compared
to the state-of-the-art computation-in-memory designs at the
cost of up to 4% accuracy loss. This paper presents the following
main contributions:

� An energy-efficient and highly parallel implementation of
XNOR-based BNNs where the functionality of ADC and
the required digital processing after that are modeled by a
SA with an adjusted reference;

� An efficient mapping of the weights and activation values
to improve data utilization and minimize the communica-
tion between network layers;

� An extensive analytical and simulation-based analysis
where the proposed implementation behaves as an approx-
imation to comprehend the implication of SA reference
values on the accuracy of the design.

The paper is organized as follows. Section II provides back-
ground on memristor devices and binary neural networks. Exist-
ing accelerators for BNN are explained in Section III. We discuss
our proposal design in Section IV. In Section V, we perform
analytical analyses to elaborate more on the implications of the
sensing scheme on accuracy. Section VI evaluates the design,
while Section VII concludes the paper.

II. PRELIMINARY

In this section, we first provide background on memristor
devices and the operations supported in a crossbar array, and
then, we briefly explain the basics of binary neural networks.

A. Memristor Devices

Despite charge-based memories, memristor devices hold data
as resistance levels. The data can be presented as a binary
value utilizing a low resistive state (LRS) and a high resistive
state (HRS). Among different memristor technologies, Fig. 1(a)
illustrates Resistive Random-Access Memory (ReRAM) de-
vices [29] consisting of a metal-insulator-metal stack; the bipolar
device is set and reset by changing the polarity of the program-
ming voltage (e.g., 2 V) to form or dissolve the conducting
filament. To read the device without disturbance, a small voltage
(e.g., 0.2 V) is applied, and the current (voltage) through (across)

Fig. 1. (a) ReRAM memristor device behavior (b) 1T1R memristor cell
(c) CIM tile encompassing crossbar and peripheries.

the device should be sensed while programming the device
requires higher voltage/current and longer latency. Fig. 1(b)
shows a schematic representation of the 1T1R memristor-based
structure. This is a fundamental block for constructing a CIM tile
encompassing memristors in crossbar structure and peripheries,
as shown in Fig. 1(c), where drivers are employed to drive
Select-line (SL), Word-line (WL), and Bit-line(BL). The analog
output of the crossbar is captured and converted to the digital
domain using a sense amplifier (SA) or A/D converter (ADC).
The main computational operations that can be performed on
the crossbar include addition, logical operations, and Matrix-
Matrix Multiplication (MMM). Besides the capabilities of co-
locating computation and storage together, huge parallelism can
be achieved within a single memory array (crossbar and its
periphery) as well as at the inter-array level. These are the main
drivers that attract researchers to exploit this concept for different
state-of-the-art applications [30].

B. Fundamentals of Binary Neural Networks

Designing larger networks and the ability to train them with
advanced algorithms were the main drivers to enable neural
networks for complex applications. However, implementing
these networks in embedded platforms with limited storage and
computation units is challenging, specifically in consideration
of strict energy/performance constraints. Despite conventional
neural networks with high precision datatypes, in BNNs, weights
and activations are binarized to make the network extremely
compact. Equation (1) shows a simple binarization rule that
can be applied to both activations (input tensors) and weights
where Bω and BI are the binarized weights and input tensors,
respectively. The binarization not only saves on storage usage,
but also reduces the expensive multiply-accumulate operations
to simple additions.

Bω =

{
+1 if ω ≥ 0
−1 if ω < 0

BI =

{
+1 if I ≥ 0
−1 if I < 0

(1)

Although binarization enhances the system’s efficiency in
terms of memory usage, energy, and performance, it usually
comes at the cost of accuracy loss compared to its high-precision
counterpart. Therefore, using proper methods and algorithms
to preserve the accuracy of the network as high as possible is
essential. Each iteration of training a network can be divided into
three steps: forward pass, backward propagation, and parameter
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Fig. 2. Accuracy of binarized LeNet5 network and the impact of in-
put/output layer binarization as well batch normalization (bn) on accu-
racy loss using different learning rates (lr).

update. The weights during the forward pass and backward prop-
agation are binarized. However, we need to use high-precision
weights during parameter updates. Since parameter changes
obtained by gradient descent are tiny, binarization ignores these
changes and the network cannot be trained [25], [31]. In addition,
binarizing the input and output layers usually results in a huge
accuracy loss. Fig. 2 depicts the accuracy of the binarized LeNet5
network trained for the MNIST dataset. This clearly shows the
impact of binarizing the input and output layers as well as
batch normalization (bn) on the accuracy of the network. Batch
normalization normalizes the contribution of layers’ input. This
helps to stabilize the learning processes during network training.

III. MEMRISTOR-BASED ACCELERATORS FOR BNN

To implement BNNs, besides using traditional systems (CPU,
GPU, and FPGA) [32], [33], [34], computation-in-memory
(CIM) accelerators based on emerging non-volatile memo-
ries (memristors) draw the attention of researchers. Memris-
tor crossbar arrays are tailored to perform analog VMM with
higher energy efficiency compared to their digital counterpart
(CPU/GPU) [35]. Memristor devices usually can alternate be-
tween a few resistance levels (e.g., two levels) while more
levels lead to reliability, stability, and accuracy degradation.
Hence, BNN-based applications where the main kernel (VMM)
is binarized are the promising targets to be implemented using
memristor devices. A small-scale demonstration of a BNN on
memristor devices is presented in [36] with focusing mainly
on device variation and its implication on accuracy. A new
methodology is proposed in [37] to make the design more
tolerant against device variation to be able to activate more
word-lines and perform more computation at the same time.
Based on (1), BNNs require signed representation, but negative
numbers cannot be directly stored in memristors. Accordingly,
existing BNN accelerators can fit in two categories based on how
they address the problem.

� Hardware solutions: To deal with signed numbers, both
weights and activation values can be represented as two
vectors only holding absolute numbers; one holds posi-
tive and one holds negative values [20]. The two vectors
created for both the weights and activation values are pro-
grammed to the corresponding memristors and sent to the

input ports of a crossbar (select-line), respectively. Subse-
quently, the four possible partial results are computed and
summed up in an analog manner. This requires a high num-
ber of memristor devices which translates to low area and
energy efficiency. In addition, since the proposed approach
requires input current in both directions, the complexity of
input drivers is increased. A similar approach is mapping
positive and negative weights into different crossbars [21],
[22]. In these works, ADC is exploited to compute the par-
tial result when a BNN layer size is larger than the crossbar
size. Then, the partial result from different crossbars is
accumulated and given to an activation function. However,
using ADCs imposes significant energy and area overhead
on the system. Another solution is using one- [23] or
two-column reference memristors [24] while the weights
and activations are presented as {0,1}. In this design,
the current flowing through the reference column(s) has
to be mirrored equal to the number of columns in the
crossbar. This increases the design complexity and energy
consumption of the system. In addition, when a layer size
cannot fit into a crossbar, it gets critical to have a flexible
referencing scheme to avoid accuracy loss. We discuss this
more in Section V.

� Algorithmic solutions: Binary multiply and accumulate
operation can be replaced by the following sequence
of operations: XNOR, popcount, and post process-
ing [25]. As a result, the weights and activations for
BNN can be presented as unsigned {0,1} values. This
makes the implementation of BNNs on memristor cross-
bars simpler. Memristor-based content-addressable mem-
ory (CAM) structure can be used to implement binary
XNOR operation and, in turn, BNNs [26]. In this design,
the activation function is implemented by a memristor
where its state determines the input value for the next layer.
However, this suffers from an extremely high number of
device programming, which causes challenges in terms
of reliability, performance, and energy. An XNOR-based
robust design to device imperfections is proposed using a
differential sensing mechanism [27]. Due to the structure
of the crossbar and the mapping of the weights, this design
cannot exploit maximum parallelism in producing output
values for each layer of BNN. This work is closest to our
design and is considered a baseline. We elaborate more in
the following section.

In conclusion and considering the limitations and challenges
of existing works, a novel highly-parallel and energy-efficient
BNN design is needed.

IV. METHODOLOGY

In this section, we first explain the principles behind XNOR-
based BNNs. This is used for both the implementation of BCIM
and the baseline. Second, we discuss data mapping and execution
of BNNs in the baseline [27]. Third, we present the new mapping
and execution of BNNs in BCIM and compare it with the
baseline. Fourth, we explain how the crossbar’s input buffer,
holding activation values, is managed to minimize data transfer
between crossbars implementing the BNN layers.
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Fig. 3. (a) An illustration of a fully connected layer (b) BNN implementation using differential sensing and sequential XNOR operation [27] (c)
proposed design where massive XNOR operations are performed in parallel.

A. Multiply-Accumulate Based on XNOR Operation

The multiply-accumulate operation between two signed bi-
narized vectors can be replaced by the sequence of 1) XNOR,
2) popcount, and 3) post-processing (Shift and Subtract) opera-
tions [25]. To achieve that, first, both vectors are converted from
signed to unsigned, where ‘-1’ is replaced by ‘0’. This is helpful
considering memristor devices since it simplifies the mapping
of weights to the crossbar without concern for negative values.
Second, by applying (2), the final value is obtained where A’ is
the unsigned representation of vector A. Popcount() returns the
number of ones in a bitstream, and ‘vector size’ is the length of
the two vectors.

A ∗B = 2 ∗ Popcount(A′ �B′)− vector size (2)

In the following, an example is provided to have better clarifica-
tion. The result of the multiply-accumulate operation between
vectors A and B from the traditional approach is:

A = [1,−1,−1, 1] B = [−1, 1, 1, 1] ⇒ A ∗B = −2

In the new approach, vectorsA′ andB′ are created by converting
A and B from signed to unsigned representation. First, we per-
form the XNOR operation betweenA′ andB′. Second, the result
is given to the Popcount function. Third, the final processing,
including Shift and Subtraction, is performed on the output of
the Popcount function.

A′ = [1, 0, 0, 1] B′ = [0, 1, 1, 1] ⇒ A′ �B′ = [0, 0, 0, 1]

A ∗B = 2 ∗ Popcount(A′ �B′)− vector size

= 2 ∗ 1 − 4 = −2

By applying the above method for BNNs, one vector can be
considered as an activation vector (A′) while another vector (B′)
holds the weights. The result is an activation value for the next
layer. The process of generating the activation value for the next
layer can be expressed as:

outm = Sign

(
2 ∗

I∑
k=1

(ink � ωk,m)− vector size

)
(3)

where ink represents the kth activation value for the current
layer; ωk,m is the weight connecting the kth activation value to
the mth output; and I is equal to the number of activation values
of the current layer. The operator Σ performs as the Popcount
function. Using this algorithmic solution to avoid representing
negative data can reduce the number of memristor devices 2×
compared to a hardware solution [20]

In the following, we provide an example of a fully connected
layer to explain how the baseline as well as BCIM map and
execute BNNs based on the above methodology.

B. State-of-the-Art XNOR-Based BNN

Fig. 3(b) illustrates how a fully connected layer is mapped to
a crossbar based on the approach proposed in [27]. The binary
weights (ω) and their complements (ω), associated with each
output channel (indicated by different colors), are programmed
into one row of the crossbar. In order to compute the result for one
output channel, first, its corresponding row is read. Second, the
XNOR operation is performed with the (analog) value on the bit-
lines of the crossbar and the input activation vector (orange box
in Fig. 3(b)). This operation is done within the sensing stage by
modifying the circuit of Sense Amplifiers (SAs). In this design,
the complementary value for both weights and input vector is
required to be able to perform the XNOR operation in the sensing
stage. Finally, the output is given to the digital periphery to
perform Popcount, Shift, and Subtract operations.

C. Proposed XNOR-Based BNN Implementation

Fig. 3(c) depicts the mapping of the weights and the crossbar
structure in BCIM. All the weights (ω) and their complementary
values (ω), corresponding to each output channel, are pro-
grammed in one column of the crossbar. We provide the input
activation vector as well their complements to the word-lines
(WL,WL) of the crossbar. Therefore, two memristors are al-
located for each weight (ω and ω) and two world-lines for each
activation value (WL and WL). Hence, XNOR operation be-
tween one element of the activation vector and the weight vector
is computed as ink � ωk,m = ink.ωk,m + ink.ωk,m where ink

and ink are the activation values provided to the WL and WL,

Authorized licensed use limited to: TU Delft Library. Downloaded on July 18,2025 at 10:10:27 UTC from IEEE Xplore.  Restrictions apply. 



ZAHEDI et al.: BCIM: EFFICIENT IMPLEMENTATION OF BINARY NEURAL NETWORK BASED ON COMPUTATION IN MEMORY 399

Fig. 4. (a) Example of a CNN layer (b) details of a convolution operation with 5 × 5 and 28 × 28 kernel and input size (c) mapping of the activation
values to the input buffer and kernels to the crossbar based on the proposed approach to minimize data transmission between layers by only
streaming the newly computed activation values into the input buffer.

respectively. It should be noted that the summation between the
two terms of the above formula is implemented with analog
addition on the bit-line.

The vector resulting from XNOR operations on all the pair
elements of activation and weights vectors should be passed
through the Popcount function. This is indicated in (3) by the Σ
operator. Since each element contributes to the current flowing to
the same bit-line, the analog sum of contributions represents the
output of Popcount in the analog domain. In the naive approach,
this analog value can be translated to the digital domain by using
an Analog-to-Digital Converter (ADC). Then, we perform other
operations (Shift and Subtraction) in the periphery of the cross-
bar. However, ADC is a power and area-hungry component [38].
Consequently, using this component not only reduces the energy
efficiency of the design, but also has to be time multiplexed
between several bit-lines, which in turn reduces the performance.
However, according to (3), the output of Popcount can be directly
compared with a reference noted in (4) to obtain the final output.
Hence, the bit-line’s analog output can be given to a SA with
a customized reference to generate the output value. This also
eliminates the remaining processing (Shift and Subtraction) in
the digital periphery.

SA reference = vector size/2 (4)

Based on this approach, we first maximized the number of
parallel output activation values that can be computed for a BNN
layer. All the bit-lines can be activated in parallel to compute the
result for several output channels. Second, to avoid reducing the
performance and energy efficiency by utilizing a high-resolution
ADC, a simple analog SA with a customized referencing value
is deployed. This not only performs the sign operation, but also
omits extra digital processing in the periphery, thereby achieving
considerable energy and performance improvement. Third, in
this method, when vectors cannot fit into one column of the
crossbar, they have to be broken and mapped to several columns.
This may lead to approximate computing. In Section V, we
scrutinize this interesting scenario analytically.

D. Efficient Data Movement

Data movement between the BNN layers may influence the
performance and energy of the system [38], but is often over-
looked by the existing works. In this subsection, we focus on
how the data should be transferred from one convolutional layer
to the next one to minimize the number of transactions and the
size of a buffer placed between layers. This approach can be
utilized for both, binary and non-binary datatypes.

Fig. 4(a) depicts an example of a convolution layer where
the kernel matrix is convolved into the “i” input channels to
generate data for the “j” output channels. In this example, the
input size for each channel and the kernel size are 28 × 28
and 5 × 5, respectively. Fig. 4(b) illustrates the details of the
convolution operation where each kernel slides on a correspond-
ing input channel to produce the partial result. The kernels are
programmed to the crossbar while the data of input channels
corresponding to the current operating window (highlighted by
light orange) are buffered and sent to the word-lines of the
crossbar. When the operating window slides, the data has to be
sent and reorganized in the buffer to be matched to the weights
of the kernel programmed into the crossbar. However, bringing
the whole data again for the following operating window is not
an efficient way since most of it already exists in the input buffer
of the crossbar from the previous operating window.

To provide better data utilization and reduce the number of
transactions, Fig. 4(c) demonstrates an efficient mapping of
kernels in the crossbar as well as activation value in the input
buffer. In this approach, the kernels and the input data within the
operating window are sliced into columns. The same columns
for different input channels are packed together and placed in
the input buffer. The next columns are stacked on top of each
other as highlighted by the light orange color in Fig. 4(c). The
kernels are also treated the same way. By doing that, when the
operating window slides to the right (assuming stride is one), the
left-most columns for all the input channels are shifted out and
new data corresponding to the right-most columns are streamed
into the buffer. There is no need to change the mapping of the
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kernels in the crossbar and they always reside in front of the right
inputs. When the operating window reaches the last columns,
it has to be shifted down and start from the most left column
again. Therefore, the input buffer is refreshed and filled with
data highlighted by the blue window in Fig. 4(b). As a result,
maximum data is utilized when the operating window slides
while the input buffer can be implemented as simply as possible.

In order to maximize the performance, we can exploit par-
allelization and pipelining. In case the crossbar dimension is
large enough, the computation for the current and next operating
windows can be performed in parallel. As illustrated in Fig. 4(b)
and (c), an extra column (highlighted by bright orange) required
for the next operating window is placed into the input buffer of
the crossbar. Besides, we have to consider another column in
the crossbar to be able to generate the value for both operating
windows simultaneously. It has to be taken into account that this
extra input set should not contribute to the computation of the
current window. Therefore, the memristors located in the first
column and in front of this extra input set should be programmed
to logic value ‘0’. It is worth mentioning that the kernels for
other output channels are programmed to different columns of
the crossbar to maximize parallelization. However, in case the
crossbar has a lower number of columns, we need to deploy more
crossbars to avoid an excessive number of reprogrammings.
Besides parallelization, the same pipelining approach presented
in [38] can be applied in this work. Depending on the kernel
size of the next layer in the network, when enough elements
are produced for the output channels of the current layer, the
operation can be started for the next layer.

V. INTRA-LAYER ACCURACY ANALYSIS

In Section IV, the proposed implementation was presented
where a single SA can generate the activation value for the next
BNN layer (see Fig. 3). However, if the weights that are supposed
to be in a single column of a crossbar cannot fit into it, they have
to be split and mapped to more columns. In other words, if there
are not enough memristors in a column of a crossbar to store
a kernel (e.g., the blue kernel in Fig. 3(c)), this kernel has to
be broken into several parts each mapped to different columns.
Therefore, the final activation value has to be calculated from
the intermediate activation values obtained from different sets of
columns. This is where inaccuracy is injected into the network
with a particular probability distribution.

In the following, the ideal situation is formulated where the
crossbar size is equal to or greater than the vector size.

−→
A and−→

B are the two input binary vectors,
−→
R is the result of XNOR

operation between the two input vectors, and Σ(
−→
R ) produces

the output of Popcount function on the binary vector
−→
R .

Vector size = ν, Crossbar size = C, and C ≥ ν
input 1:

−→
A , input 2:

−→
B−→

R =
−→
A
⊙−→

B

outgolden

(−→
R
)
=

{
1 if Σ

(−→
R
)
> ν/2

0 otherwise

Fig. 5. Illustration of the regions where logical AND and OR cascading
functions inject inaccuracy into the network.

In case the crossbar size is not big enough, the formulation
is changed as presented below. As an example, we assume the
crossbar size is half of the vector size. Therefore, each vector
has to be split into two parts and mapped to two columns of the
crossbar.

Vector size = ν, Crossbar size: C = ν/2

input 1:
−→
A |ν/2

0 ,
−→
A |νν/2 where

−→
A = [

−→
A |ν/2

0 ,
−→
A |νν/2]

input 2:
−→
B |ν/2

0 ,
−→
B |νν/2 where

−→
B = [

−→
B |ν/2

0 ,
−→
B |νν/2]

−→
R |ν/2

0 =
−→
A |ν/2

0

⊙−→
B |ν/2

0
−→
R |νν/2 =

−→
A |νν/2

⊙−→
B |νν/2

outp1

(−→
R |ν/2

0

)
=

{
1 if Σ

(−→
R |ν/2

0

)
> (ν/2)/2

0 otherwise

outp2

(−→
R |νν/2

)
=

{
1 if Σ

(−→
R |νν/2

)
> (ν/2)/2

0 otherwise

Since we mapped the vector into two columns, two intermediate
activation values (outp1, outp2) are obtained. The final value
depends on the cascading function, which receives intermediate
activation values (outp1, outp2) as input and produces the final
activation value. This function can be a simple logical AND
or OR function. The following is an example of the AND (∧)
cascading function.

out
(−→
R |νν/2,

−→
R |ν/2

0

)
= outp2

(−→
R |νν/2

)
∧ outp1

(−→
R |ν/2

0

)
In the case of logical AND as an example, the following con-
ditions show the scenarios where the output of the cascading
function differs from the golden output. This is also illustrated in
Fig. 5. The y and x axes are the output of Popcount (Σ) obtained
from the result of the first (

−→
R |νν/2) and second parts (

−→
R |ν/2

0 ) of
the output vector. The red and blue regions indicate inaccurate
results by the AND and OR functions.
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Fig. 6. Maximum accuracy loss simulated for all possible input vectors
for different vector sizes (V), crossbar size (C), and cascading functions.

out(
−→
R |ν/2

0 ,
−→
R |νν/2) 	= outgolden(

−→
R ) if:

⎧⎨
⎩
Σ
(−→
R |ν/2

0

)
+Σ

(−→
R |νν/2

)
= Σ

(−→
R |ν0

)
> ν/2

Σ
(−→
R |ν/2

0

)
< ν/4 ∨ Σ

(−→
R |νν/2

)
< ν/4

According to the aforementioned conditions, the output of
AND cascading function does not generate the expected re-
sults only if 1) the final activation value is expected to be ‘1’
(Σ(

−→
R |ν0 ) > ν/2) and 2) one of the intermediate activation values

regarding the partial output vectors (
−→
R |ν/2

0 or
−→
R |νν/2) is ‘0’.

Hence, the final result, which is generated using logical AND
between the output of the two intermediate activation values
from

−→
R |ν/2

0 and
−→
R |νν/2 vectors would be ‘0’. We illustrate these

two conditions in Fig. 5. The region above the m+ n = ν/2
line satisfies the first condition. In this region, the data points
that fall into the two triangles, highlighted in red, meet the
second condition. It should be noted that the condition where the
expected final activation value is ‘0’, but both partial activation
values would be ‘1’ never happens.

The combinations of input vectors for a given (m,n) in these
regions (blue for OR and red for AND cascading function in
Fig. 5) is calculated based on (5). m and n are the outputs
of the popcount function for the two partial output vectors
resulting from XNOR operations. Accordingly, (6) calculates
all the possible combinations of input vectors that fall into the
Solution Set’. The solution set for the AND cascading function
is highlighted in red in Fig. 5. According to these two equations,
Fig. 6 depicts the maximum accuracy loss for two cascading
functions considering two boundary conditions. This accuracy
loss is defined as the percentage of vectors out of all possible
combinations where the cascading function fails to produce the
correct result. The boundary condition determines the output of
SA in case the data is the same as the reference. This is done by
generating all the combinations of input sets to verify the (5).
We observe that the accuracy loss does not have considerable
changes over vector sizes as the relative area associated with
inaccurate region remains the same (Fig. 5). It should be noted
that this accuracy loss in Fig. 6 should not be confused with the
accuracy of an entire BNN.

N(m,n) =
(
mCν/2 ∗ 2m ∗ 2ν/2−m

)
∗

Fig. 7. Illustration of the scenario where there are two references for
each partial output vector. The value of references (or Δx) should be
defined in a way that the cascading function covers more area above
m+ n = ν/2 line.

(
nCν/2 ∗ 2n ∗ 2ν/2−n

)
= 2ν ∗ (mCν/2 ∗ nCν/2

)
(5)

TN(AND) =
∑

(m,n)∈Solution Set

N(m,n) (6)

In the aforementioned example (see Fig. 6), the activation
value for each partial output vector (

−→
R |ν/2

0 and
−→
R |νν/2) are

obtained by only employing one reference (i.e., ν/4). In order
to reduce the accuracy loss, more references can be considered.
This leads to more intermediate results, which provide us with
more information as well as the flexibility to have advanced
cascading functions. However, we should take into account that
adding references increases the hardware complexity of SA.
Next, we investigate a scenario where SAs have two references.

Two references: Fig. 7 illustrates the scenario where SAs have
two references. This figure provides insight into the impact of
references and their value on accuracy. Similar to Fig. 5, m and
n are the outputs of the popcount function for the two partial
output vectors resulting from XNOR operations. The goal is
to determine where to put the references (or determine Δx) to
minimize the accuracy loss (or minimize highlighted red region
in Fig. 7). We assume the references are placed symmetrically
around the center point to simplify the analysis. As mentioned
before, we need a cascading function to receive intermediate
activation values (SAout1, SAout2), generated by the SAs, and
produce the final activation value. In the following, we describe
one example of a cascading function.

F = [(SAout2 > Ref2) ∧ (SAout1 > Ref1)]

∨ [(SAout2 > Ref1) ∧ (SAout1 > Ref2)]

According to the above cascading function, the final activation
value would be 1 only if one of the outputs is higher than Ref2

while the other one is higher than Ref1. In Fig. 7, the area
covered by this function is highlighted in gray and green. As
we can see, this function cannot cover the entire area above the
m+ n = ν/2 line. The uncovered part is highlighted in red.
Compared to the scenario where we have only one reference
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Fig. 8. Data points for two partial output vectors obtained from one
layer of CNN-1 network using MNIST dataset. The size of each vector
(ν/2) is 360. The figure clearly shows a non-uniform distribution of data
points.

Fig. 9. Accuracy loss based on the value of Δx presented relative to
the crossbar size (C).

(see Fig. 5), some new regions are covered (highlighted in green)
while one region is left out (highlighted in yellow). Depending
on the value of Δx, the size of these regions changes. If the data
points were distributed uniformly, we could easily obtain the
optimum Δx where the area covered by this cascading function
is maximum. However, according to (5) (or Fig. 8), the data is
not uniformly distributed. Hence, simulation can help to find
the optimum Δx. Fig. 9 shows the accuracy of this cascading
function over different Δx. In this figure, the value of Δx is
presented relative to the crossbar size (’C’) which is equal to
ν/2. According to this figure, using two references can lead to
better accuracy than one reference (dashed blue line) if we can
find the optimum values for the references. In addition, it is
worth clarifying that accuracy results in Fig. 9 are not the final
BNN accuracy.

It should be noted that when we have two references, putting
one reference in the center does not make sense since the area
covered by the second reference would be either a subset or
superset of the first reference. However, this is not the case when
we have three references. In the following, we elaborate on the
scenario where we have three references. Finally, we should
consider that the data sets provided to any neural network should
follow the same probability distribution as the training data set.
This should be taken into account in any neural network, includ-
ing BCIM. Hence, if a new dataset has a different distribution,
not only the network has to be retrained, but also the analysis for
finding the optimal references should be performed again. As an
example, Fig. 8 shows the data points for the MNIST dataset. Of

Fig. 10. Illustration of two cascading functions where two auxiliary
references are added to the main reference.

course, if a new dataset has a different distribution, the network
should be retrained, the data points would be different, and the
references should be adjusted.

Three references: Fig. 10 presents an example where three
references (Ref0, Ref1, Ref2) are considered to generate an
activation value. In the ideal scenario where there is no need
to split the vectors, the reference, obtained from (4), is equal
to ν/2. However, for the scenario where we have to split the
vector into two parts, the reference for the two partial output
vectors, based on the same equation, should be ν/4. This is
called primary reference and indicated by “Ref1” in Fig. 10. In
this example, next to the primary reference, we utilize two more
-auxiliary references- to improve accuracy. Next, we investigate
the implication of the number of auxiliary references as well as
their actual values on accuracy loss.

Considering the aforementioned scenario where three refer-
ences are employed, we can produce three intermediate values
for each of the partial output vectors. Hence, the final activation
value should be decided based on these six binary values. In
the following, we describe two possible cascading functions to
produce the final activation value. They are also illustrated in
Fig. 10.

Prime implicant of cascading function 1:

F1 = [(SAout2 > Ref5) ∧ (SAout1 > Ref0)]

∨ [(SAout2 > Ref4) ∧ (SAout1 > Ref1)]

∨ [(SAout2 > Ref3) ∧ (SAout1 > Ref2)]

Prime implicant of cascading function 2:

F2 = [(SAout2 > Ref5)] ∨ [(SAout1 > Ref2)]

∨ [(SAout2 > Ref3) ∧ (SAout1 > Ref1)]

∨ [(SAout2 > Ref4) ∧ (SAout1 > Ref0)]

The numbers in Fig. 10 indicate the different conditions where
the cascading function produces logic 1 as the final activation
value. As an example, the first cascading function comprises
three conditions, where meeting each can set the final activation
value to 1. Each number in Fig. 10 illustrates one term in the
prime implicant of cascading function 1. These are based on the
fact that the summation of two Popcount functions (Σ) obtained
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Fig. 11. (a) Accuracy loss based on the distance of two auxiliary
references to the main reference (b) effect of the number of auxiliary
references on accuracy.

from two output vectors should be greater than half of the
original vector size ( (4)). This function always sets the activation
value to one accurately (true positive), but it sometimes misses
to set it to one (false negative). Considering that, the second
cascading function makes the conditions more relaxed. The
probability of accuracy loss for these two functions is computed
as follows.

PLoss(F1) =

P([SAout2 > Ref5 ∧ SAout1 < Ref0]

∧ [SAout2+SAout1 > ν/2])+P([SAout2 < Ref3∧SAout1

> Ref2] ∧ [SAout2+SAout1 > ν/2])+P([Ref4<SAout2

< Ref5] ∧ [Ref0 < SAout1 < Ref1] ∧ [SAout1 + SAout2

> ν/2]) +P([Ref3 < SAout2 < Ref4] ∧ [Ref1 < SAout1

< Ref2] ∧ [SAout1 + SAout2 > ν/2])

PLoss(F2) =

P([SAout2 > Ref5] ∧ [SAout2 + SAout1 < ν/2])

+P([SAout1 > Ref2] ∧ [SAout2 + SAout1 < ν/2])

+P([Ref4>SAout2>Ref3] ∧ [Ref2>SAout1 > Ref1]

∧ [SAout2+SAout1<ν/2])+P([Ref5 > SAout2 > Ref4]

∧ [Ref1 > SAout1 > Ref0] ∧ [SAout2 + SAout1 < ν/2])

An important parameter that has a remarkable impact on
the accuracy loss is the distance of auxiliary references to the
main reference (“x” in Fig. 10). This is quite dependent on the
distribution of data. Hence, the designer can analyze the network
and, based on that, find the proper value for the references where
the accuracy loss is minimized. Fig. 11(a) demonstrates the
impact of this parameter for cascading function 2 assuming a
normal distribution. This is presented for different crossbar sizes
(“c”). The distance to the main reference is shown relative to the
crossbar size. The figure indicates the importance of the values
for the references and how considerably they can change the
accuracy loss. Another important parameter is the number of
references. The implication on accuracy can be comprehended
from Fig. 11(b). It is observed that by adding more references,
an improvement in accuracy is reduced while more complexity

Fig. 12. Impact of the two cascading functions illustrated in Fig. 10 on
accuracy loss.

is added to the hardware. Finally, the impact of the cascading
functions on accuracy is evaluated in Fig. 12 over a different
number of references. The same two methods presented in
Fig. 10 are also used for the situation where we have more than
three references. The figure indicates that choosing a proper
function can help the accuracy of the system remarkably.

VI. EVALUATION

A. Simulation Setup

Our simulation results are obtained by creating our PyTorch-
based platform [28]. This platform is able to evaluate the ac-
curacy, energy, and latency of different networks containing
binarized and non-binarized layers. The software is written in
a modular way to flexibly change network structure as well as
different circuit-level parameters. The system runs at a clock
frequency of 1 GHz. The width of the databus transferring
data between the crossbars is 32 bits. This is required for
communication between layers. Based on the 32 nm technology
node, transferring data to store it in an input buffer consumes
5mW [39], [40]. The energy and latency number of the “Shift
and Add” unit required for non-binarized layers taken from [40].
In all the simulations, the crossbar size is 512 × 512 [41]. We
use an analytical model based on a small ReRAM memristor
prototype and extend the memory to the required size. The LRS
and HRS for the memristors are 5 k and 1 G, respectively. The
read voltage is 0.2 V and the latency of the crossbar to charge
the bit-lines is considered to be 10 ns. The model is acquired
from the results of the EU project MNEMOSENE [42].

The specification of the sensing mechanism is taken from [43].
The energy per ADC read is 12 pJ, and its latency is 3 ns. Besides,
the energy of SA is assumed to be 10 fJ with 1 ns latency. In case
our SA needs more references (e.g., 3 references), its energy and
latency get increased linearly by the number of references [44].
A maximum of 3 references for a SA are considered in the
simulations. The energy and latency numbers are parameterized
in the simulation platform and can be changed based on different
circuit designs.

Our benchmark (MlBench) comprises 7 BNNs for machine
learning applications. The structure of each network is listed
in Table I. LeNet-5, CNN-1, CNN-2, and AlexNet are convo-
lutional networks, and MLP-S/M/L are multilayer perceptrons
(MLPs) with different network scales [45]. We use MNIST and
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TABLE I
TYPOLOGIES OF THE BNNS AND THEIR SOFTWARE ACCURACY

Fig. 13. Accuracy reduction for different network structures due to the crossbar size limitation and breaking the vectors over more crossbars. F1
and F2 are two cascading functions. For SAs with one or two references, cascading functions are ‘AND’ and ‘OR’. For SAs with three references,
cascading functions are described in Fig. 10.

CIFAR-10 datasets to evaluate our networks. The input images
for CIFAR-10 are enlarged to 256×256 required for AlexNet.

We compare our design with a recent work published in one
of the leading journals in this field [27]. For this work, we
instantiate the digital post-processing units (popcount) for every
16 columns of the crossbar instead of sequentially operating
over all the columns (see Fig. 3(a)). This diminishes the latency
overhead of digital processing for the baseline. Besides, the
second baseline is called “Exact computing”, where we use ADC
instead of SA to avoid any accuracy loss at the cost of energy and
performance reduction. As explained before, since the crossbar
dimensions are often smaller than the layer of a network, each
crossbar is responsible for generating a partial result. Then, this
partial result has to be aggregated and passed to the next layer.
However, since the proposed technique uses SA, these partial
results are turned into binary values generated by SAs. Hence,
some of the information is lost, and it causes accuracy loss (see
Section V). However, in case we deploy ADC instead of SA,
this aforementioned source of accuracy loss is avoided.

B. Result and Discussion

In the following, first, we present the total accuracy loss for
different networks. Second, we evaluate the design in terms of
energy and performance and elaborate more on our observations.

Accuracy analysis: Fig. 13 depicts the accuracy loss using our
proposed approach compared to the software implementation.
The figure presents the results for the benchmarks considering

different cascading functions (see Fig. 10). Depending on the
size of the layers in a network, we can see whether we have an
accuracy loss or not.

1) Small-size network layers (LeNet5): Since the size of layers
in the LeNet-5 network is within the range of crossbar size, no
accuracy loss is observed. To clarify more, we can consider one
of the fully connected layers -FC(84)- where there are 84 output
activations. This layer receives 120 inputs. Hence, the number
of memristor devices we need for a single column in order to
accommodate this vector is 120 × 2 (see Fig. 3(c)). Therefore,
considering the crossbar size, there is no need to break the vector
and reduce the accuracy.

2) Medium- and large-size network layers: The rest of the
networks used in our simulations have larger layers to fit in one
crossbar. Therefore, each layer has to be broken and mapped
into several crossbars. This is where inaccuracy is injected into
the network. Fig. 13 shows that accuracy reduction using only
SA with 1 reference is up to 14%. This accuracy loss is much
less for MLP networks. Considering CNNs (CNN1, CNN2, and
AlexNet), adding two more references to the SA can improve
the accuracy by up to 12%. This means that only using three
references in the SA can provide a decent accuracy loss of around
2%. It is worth mentioning that in case we want to perform
computation “precisely”, an ADC should be used in the design.
One can interpret an 8-bit ADC as a SA with 256 reference
levels. Therefore, Fig. 13 shows that with a smart selection of
three references out of those 256 references, only 2% accuracy
loss can be observed. In the case of AlexNet, since the size of
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Fig. 14. Impact of auxiliary references and their distance from the main
reference on accuracy loss. The simulation is performed for the CNN2
network employing cascading function F2 which is described in Fig. 10.

Fig. 15. Energy consumption of BCIM compared to the baseline as
well the design performing precise computing using ADC.

layers is extremely large, layers are broken and mapped into
more crossbars. Therefore, more options are available on how
to perform the cascading function. The detail of the cascading
function used for AlexNet can be found in [28].

Besides the number of references, another important param-
eter that can have a remarkable impact on accuracy is the actual
value of references. Fig. 14 depicts the implication of positioning
the references on the accuracy loss. The simulation is performed
for the CNN2 network with three references by changing the
distance of auxiliary references to the main reference (“x” in
Fig. 10). The distance is relative to the crossbar size (“C”). Plac-
ing the references far from or too close to each other reduces their
efficiency in eliminating the cases where inaccurate activation
values are generated. Therefore, the designer should find the
optimal value for the references by profiling the network.

Energy analysis: Fig. 15 presents the energy numbers of
different networks for the classification of one input image.
The figure shows the energy number for 1) the baseline, 2)
BCIM, and 3) the design where we want to do exact computing
using ADC. The result indicates BCIM can achieve around
40% energy improvement compared to the baseline. Besides,
BCIM can reduce the energy 5× compared to the design where
exact computing is performed. In addition, we show the energy
breakdown of AlexNet as well as its total energy in Fig. 16. It
is clear that energy consumption has a strong correlation with
layer size and the amount of computation that has to be done in
a layer. In addition, although the last layer is not binarized, its
contribution to the total energy is very limited. This is due to

Fig. 16. Energy breakdown as well as total energy consumption of
AlexNet for BCIM, baseline, and exact computing designs.

Fig. 17. (a) Number of transactions between crossbars and (b) num-
ber of SA activation for entire networks (normalized to BCIM).

the size of this layer compared to other layers (impact of output
binarization on accuracy shown in Fig. 2).

Comparing BCIM with the baseline in terms of energy, there
are two factors that contribute to this energy improvement.
First, the number of transactions required between the layers (or
crossbars) is 3 times less in BCIM compared to the baseline. We
present this relative comparison in Fig. 17(a). This improvement
is due to the mapping of activations and weights into the input
buffer and the crossbar, respectively (see Fig. 4). Second, the
number of times SA is activated in BCIM is less than the
baseline. We show this in Fig. 17(b). It is worth mentioning
that in both designs, the major contributor to the energy is the
crossbar rather than the periphery or the data transfer between
the crossbar. Hence, this is the reason BCIM archives marginal
improvement in terms of energy compared to the baseline. In
the future, if the energy consumption of memristor devices
improves, then these two factors will play a major role in the
energy.

In case we aim for exact computing using ADC, the total
energy consumption significantly increases. The major contrib-
utor to this rise in energy is the costly ADC component. As
mentioned in the Simulation setup section, ADC consumes 12 pJ
per conversion. Considering the number of conversions required
per crossbar activation, this imposes significantly more energy
consumption on the system than a SA with around 10 fJ energy
per sensing.

Latency analysis: Fig. 18 shows the relative latency improve-
ment for our different networks normalized to the baseline.
BCIM achieves up to 100× improvement compared to the
baseline. Besides, compared to the design where we perform
exact computing, BCIM improves the latency by more than 3×.

There are two major factors involved in BCIM latency im-
provement compared to the baseline. We explain them in the
following.
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Fig. 18. Latency improvement of BCIM compared to the baseline and
exact computing design.

Fig. 19. Contribution of the different parts of the design to the total
latency for (a) Baseline and (b) BCIM.

1) Mapping of weights into the crossbar: As illustrated in
Fig. 3(b), due to the way weights are mapped to the
crossbar as well as the way computation is performed
in the baseline, the output activation values are produced
sequentially. This means at each time step, one row of the
crossbar associated with one output value is activated.
However, because of the weight mapping and the way we
performed XNOR operations, the output activation values
are produced in parallel (see Fig. 3(c)). This improves
the total latency of the network considerably. Fig. 19(a)
presents the contribution of different parts of the design
for the baseline to the total latency. As we can see, the
crossbar has a major contribution. However, in BCIM, by
changing the mapping of the weights, the contribution of
the crossbar was reduced significantly. We can observe
this in Fig. 19(b). In addition to the crossbar, the total
latency of the periphery is high in the baseline, as we can
see in Fig. 19(b). This is because every time a crossbar
row is activated, the sensing and all the digital peripheries
should be conducted.

2) Mapping of activation value into the input buffer:
Fig. 19(b) shows that by changing the weight mapping
and reducing the contribution of crossbar and periphery in
the total latency, data communication becomes dominant
in most cases. Hence, it is critical to have an optimized
mapping of activation value into the input buffer in order

Fig. 20. Latency breakdown for different layers of AlexNet (left) and
MLP-L (right).

to minimize the data communication overhead. As we can
see in Fig. 19(b), even after the optimization of the input
buffer, the communication overhead is still dominant.

BCIM improves the latency by more than 3× compared to the
exact computing design (see Fig. 18). First, ADC imposes more
latency in the periphery compared to SA in order to perform a
conversion. Second, due to the high area consumption of ADC
compared to a SA, more bit-lines in the crossbar should be shared
by an ADC. Hence, this also increases the latency of this design.

Fig. 19 presents the contribution of three major latency
consumers (transaction, crossbar, and periphery) for (a) the
baselines, (b) and BCIM. Considering the baseline, crossbars
contribute more to the latency than other contributors. This is
due to the large amount of sequential computation that has to
be performed in the crossbar. However, in the case of BCIM,
thanks to the efficient mapping and implementation, the crossbar
is not the major contributor anymore. However, this contribu-
tion is higher for convolutional networks compared to MLPs.
In a convolution layer, a kernel (mapped to a crossbar) has
to slide over the entire input data in order to produce output
activation values. This means more computation is performed
on each crossbar with one input set than in an MLP network.
Fig. 20 shows the latency breakdown per layer for AlexNet. The
figure again demonstrates that the convolution layers have more
contributions than fully connected layers within a network. This
means that if we have to satisfy higher performance requirements
in our design, more resources should be dedicated to these layers.
Considering Fig. 20(b), where we provide the breakdown of the
MLP-L network, the last layer has the major contribution to the
latency since this layer is not binarized, and ADCs have to be
employed. Using ADC considerably increases the contribution
of peripheral circuits in latency. This is the reason that the
periphery contributes more to the latency in our MLP networks
(see Fig. 19(b)).

VII. CONCLUSION AND FUTURE DIRECTIONS

This paper proposed a novel in-memory memristor-based
design that substantially improves both the latency and energy
efficiency of BNN networks. The proposed XNOR-based BNN
design replaces the ADC and digital post-processing function-
ality with a SA with adjusted reference(s) while maximizing
parallelization and resource utilization in the design using a
novel mapping of weights and activation values in the crossbar
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and its input buffer. The impact of SA references on the accuracy
has been evaluated at the crossbar and network levels. The design
was also evaluated in terms of energy and latency for different
networks and datasets. This work is able to improve energy
and latency up to 5× and 100× compared to the baselines with
marginal accuracy loss. In our future work, we will evaluate the
design for larger and more complex networks and datasets to
comprehend the impact of inaccuracy injected into intermediate
layers on the overall accuracy of the networks.
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