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Abstract

Autonomous robots hold great potential for positive impacts on society by applying them to tasks that
are hazardous, repetitive, or complex and difficult for humans to perform. To achieve these tasks,
autonomous robots require the ability to perceive environmental changes and create corresponding
motion plans, which involve a combination of perception and motion planning techniques. Building a
perception pipeline that can detect all relevant details in a dynamic environment is challenging and
computationally expensive. To address this issue, the raw data output of a distance-measuring sensor
can be used as a perception pipeline directly, transferring most of the computational load to the motion
planner. However, most motion planning techniques cannot handle this high computational load. The
motion planning technique optimization fabrics offers a promising solution, which utilizes a combination
of differential equations to design robot behavior with extremely low computational complexity.

This thesis proposes a method for local motion planning that combines the low computational complex-
ity of optimization fabrics with direct sensor integration. Our goal is to develop a method that enables
autonomous robots to perceive and respond to changes in their environment quickly and efficiently.
Our method, called direct sensor integrated (DSI) optimization fabrics, utilizes collision-avoidance dif-
ferential equations generated for each raw data point collected from a distance measuring sensor. We
adapted the regular optimization fabrics method to incorporate sensor data directly, and our analyti-
cal analysis shows that direct sensor integration does not require scaling adjustments to the regular
collision-avoidance differential equations. By combining optimization fabrics with direct sensor integra-
tion, DSI optimization fabrics offers a promising solution to local motion planning. This method can
enable autonomous robots to handle tasks that are challenging for humans to perform without needing
a complex perception pipeline.

We conducted several experiments to assess our method, utilizing a simulated LiDAR-equipped point
robot. First, we show empirically that an adjustment is required to properly scale the collision-avoidance
differential equations, resulting in similar collision-avoidance behavior across sensor resolution. Sec-
ond, we demonstrate that DSI optimization fabrics is feasible regarding computational complexity,
achieving a frequency of 23 Hz even with the maximum sensor resolution of 2048 LiDAR rays. Third,
we demonstrate the effect of varying the sensor resolution on performance in multiple goal-reaching
scenarios. We measure performance by monitoring the time-to-goal, total path length, minimum clear-
ance from obstacles, and success rates. Fourth, we compare our method to regular optimization fabrics
with a simulated perception pipeline in a scenario with static obstacles and a scenario with dynamic ob-
stacles. In both scenarios, we show comparable performance regarding time-to-goal, total path length,
minimum clearance from obstacles, and success rates. Finally, we showcase a real-world application
of our method.
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Nomenclature

Abbreviation Definition

2R robot Two-revolute joints robot
DSI Direct Sensor Integrated
DOF Degrees Of Freedom
Fabric Optimization Fabric
GC Geometric Control
HD2 Positively homogeneous of degree 2 in velocities
LiDAR LIght Detection And Ranging of Laser Imaging Detection And Ranging
MPC Model Predictive Control
OSC Operational Space Control
PRM Probabilistic Roadmap
RC Radio Controlled
RGB Red Green Blue
RMP Riemannian Motion Policies
RRT Rapidly-exploring Random Tree
Spec Spectral semi-spray

Symbol Definition

ϕ Differential map
ψ Optimization fabric forcing potential
A RMP Riemannian metric
B Damping matrix
C An n-dimensional configuration space
f RMP motion policy
f A map that maps a region on a manifold to a Euclidean space as f : M → X
f(x,u) State transition function: x′ = f(x,u)
f(x, ẋ) Optimization fabric function of position and velocity
G Riemannian metric representing kinetic energy of a system
h2 Geometry generator
J Jacobian matrix
J̇ Time derivative of the Jacobian matrix
Le Finsler energy
Lg Finsler structure
M A manifold
M(x, ẋ) Metric tensor of a Langrangian
O Set of obstacles inside the state space
O Big O notation
Q Configuration manifold
q Robot position in the configuration space
q̇ Robot velocity in the configuration space
q̈ Robot acceleration in the configuration space
S Spectral semi-spray
T An n-dimensional task space
TM Tangent bundle
TxM The tangent space
U(x) Action space, set of all possible actions at state x
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Symbol Definition

u An action that changes a state into a new state x′

X An Euclidean space
X State space, set of all feasible states x
Xfree The free state space: X \ XO
XO Combination of all obstacles in the state space
x System position in the state space
ẋ System velocity in the state space
ẍ System acceleration in the state space
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1
Introduction

For decades, robots have been widely used in various industries, including automotive, food, and elec-
tronics, to perform complex, repetitive, and dangerous tasks. Robots are increasingly utilized in non-
industrial applications, such as healthcare, households, and supermarkets. The main challenge in
robotics is to create autonomous robots capable of executing complex tasks while ensuring safety. Mo-
tion planning is a critical aspect of robotics that involves finding a valid plan for moving the robot to
a goal location or configuration. A general distinction can be made between global and local motion
planning methods. Global motion planning methods build a general path toward the goal, while local
motion planning methods adjust the plan reactively using a perception pipeline to perceive environmen-
tal changes.

1.1. Motivation
To improve productivity while maintaining safety, robots require fast and reactive behavior, which in-
volves a combination of a fast local motion planning method and a fast perception pipeline. The control
frequency of the system is limited by either the motion planner or the perception pipeline. Therefore,
a fast and reactive robot demands a fast local motion planner and a fast perception pipeline. A per-
ception pipeline that processes sensor data to detect all obstacles and relevant environment details is
challenging to build and computationally expensive, reducing the robot’s reactivity. While using sensor
data directly without any processing would be the most straightforward perception pipeline, the raw
output is typically too intricate and dense for a local motion planner to handle. Consequently, more
data must be processed by the local motion planner, leading to increased computation time and less
responsive robot behavior.

While computation time harms optimization-based methods used for local motion planning, such as
Model Predictive Control (MPC), geometric methods are typically faster. Optimization fabrics is a re-
cent geometric approach to local motion planning that utilizes second-order differential equations to
design robot behavior. Compared to other local motion planning techniques, optimization fabrics is
computationally efficient, making them faster. By directly integrating sensor measurements into opti-
mization fabrics, the robot can take unforeseen obstacles into account without the need for a complex
detection process or a perception pipeline, thereby reducing computational costs and improving the
reactivity of the robot.

1.2. Research question
This thesis explores how sensor data can be directly incorporated into optimization fabrics. The main
research question is ”How can sensor data be directly integrated into optimization fabrics?”. The thesis
investigates the feasibility of directly integrating sensor data into optimization fabrics for reactive robot
control and studies how the performance of optimization fabrics changes with the complexity of sensor
data. Additionally, it compares DSI optimization fabrics’ performance to regular optimization fabrics
that rely on a perfect simulated perception pipeline, assuming knowledge of all obstacle locations. The

1
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thesis also provides insight into the scaling of optimization fabrics with direct sensor integration. A
scaling factor adjusts the equations to maintain consistent collision-avoidance behavior across different
sensor resolutions. Finally, the viability of direct sensor-integrated optimization fabrics in a practical
scenario is demonstrated through a real-world experiment.

1.3. Contribution
The main contribution of this thesis is developing and evaluating DSI optimization fabrics for local mo-
tion planning in robotics. This thesis investigates the feasibility and performance of integrating sensor
data directly into optimization fabrics for local motion planning. A comparison is made between DSI and
regular optimization fabrics where the locations of obstacles are assumed to be known. The thesis ana-
lyzes the collision-avoidance equations in optimization fabrics and their sensitivity to sensor resolution.
Through this analysis, it was found that no scaling is required in a simplified scenario. However, in sim-
ulation, empirical findings revealed that a scaling factor is necessary to adjust the collision-avoidance
equations to maintain consistent collision-avoidance behavior across different sensor resolutions. Fi-
nally, the viability of DSI optimization fabrics in a practical scenario is demonstrated through a real-world
experiment, showing the potential of this approach to improve the safety and efficiency of robotic sys-
tems.

1.4. Structure
The remaining chapters are structured as follows. Chapter 2 provides an overview of related work
on motion planning and perception. Chapter 3 presents relevant robotics notations and the theory
of optimization fabrics. The method of DSI optimization fabrics is described in detail in Chapter 4.
The experiments and results are presented in Chapter 5. Finally, Chapter 6 concludes the thesis and
suggests directions for future work.





2
Related Work

This chapter offers an overview of related work on motion planning and perception. Section 2.1 outlines
the motion planning problem and briefly overviews its two interconnected phases: local and global. The
related works presented in sections 2.2 and 2.3 cover local motion planning techniques for reactive
control and work on perception, respectively.

2.1. Motion planning
Motion planning is a subfield of robotics that regards the problem of finding motions to move the robot
to a goal location or goal configuration collision-free by using planning algorithms. Path planning is
a subproblem of motion planning and only concerns finding a collision-free path between two states
without considering whether this path is dynamically feasible for a robot [24]. Motion planning concerns
finding a motion path under certain constraints, e.g., joint limits and torque limits. In general, a feedback
controller is used to follow the motion path obtained from the motion planner. A general distinction
between global and local techniques is made in this chapter. However, many techniques also overlap
the two domains. This chapter briefly overviews the differences and describes the more widely used
global and local motion planning methods.

2.1.1. Notations for motion planning
This section gives an overview of basic notations of motion planning as found in [19]. Vectors are
denoted in bold lower case, and matrices in bold upper case. A state-space model of a physical system
and its environment can be constructed by discretizing it. A single state x represents the state of a
physical system and its environment at a specific time step, and the set of all feasible states is called
the state space X . Information from the physical system or environment irrelevant to motion planning
should be excluded from the state space to lower the computational complexity of algorithms using the
state space. An action, u, changes the current state into a new state x′ from the state space by a state
transition function f . The new state can be expressed with the state transition function x′ = f(x,u)
[19]. U(x) is defined as the action space which represents the set of possible actions at state x, the
combination of all possible actions is defined by the following set [19]:

U = ∪
x∈X

U(x)

Obstacles inside the state space are represented with the set O and the combination of all obstacles
in the state space as XO. The free state-space is defined as Xfree = X \ XO [19].

A motion planning problem can be formulated as follows [19] [16]:

• A state space X consisting of all possible states x

• An obstacle free state space Xfree = X \ XO

4
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• A state transition function f , with as input a state x ∈ X and an action u ∈ U(x), and as output
a new state x′ derived as x′ = f(x,u)

• An initial state xi ∈ X and a goal state xg ∈ X

• A continuous function σ, that takes a mapping parameter τ to a curve in Xfree for all τ ∈ [0, 1]

• σ : [0, 1] 7→ Xfree with:

• σ(0) = xi, σ(1) = xg, σ(τ) ∈ Xfree

2.1.2. Methods
Various motion planning techniques exist, and a general distinction can be made between global or
offline motion planning and local or online motion planning techniques. Global motion planning tech-
niques compute a global motion plan towards a goal state. Local motion planning techniques plan
motions locally along a global motion path obtained from a global motion planner. A commonly used
strategy in motion planning is then to compute a global motion plan offline once or periodically and
a local motion plan online, resulting in a motion planner that can reactively plan along a global plan.
A local motion planner is helpful in the case of a dynamic environment with moving obstacles. The
location of the obstacles in all coming states cannot be known beforehand. Therefore it is impossible
to consider the obstacles in the global motion plan. The local motion planner will deviate from the
global motion plan to reactively avoid the obstacles. Also, high dimensionality and a high environment
resolution will result in increased computational complexity of the global motion planning technique. A
motion planning technique’s increased computational complexity will require more time to execute and
often more computational space to store it. Therefore, it can be beneficial to keep the resolution of the
environment lower to obtain better global motion planning results while smoothing the global motion
plan again with the local motion planner, which can have a higher resolution for the local details of the
environment. Figure 2.1 shows a simplified workflow for a combined global and local motion planner.
The global motion planner has as inputs the initial state xi and the goal state xg, and computes a global
motion plan σ(τ) as output. The local motion planner is part of an iterative process that takes as inputs
the global motion plan and the new state x′ and returns an action u for the system in the real world.
The new state x′ results from the system interacting with the real world under the influence of action u.
This iterative process continues until the goal state is reached or until it fails to do so. The local motion
planner is executed online while the states are transitioning, and the global motion planner is computed
offline beforehand. In the case of failure, the global motion planner can replan a global motion plan
from the new initial state.

Figure 2.1: Simplified workflow of a combined local and global motion planner. The global motion planner computes an offline
global motion plan based on the initial and goal state. The local planner iteratively computes an action online based on the new

state obtained from the real world.

Global motion planning
Most offline or global motion planning techniques use a discretized model of the environment or world
[24]. By defining the world with a graph or grid, graph theory and graph-search methods can be used
to find a motion path on the graph [19]. A graph consists of vertices (nodes) and edges between the
nodes. The nodes correspond to discretized locations in the real world, with edges connecting the
nodes. The edges can be directed or undirected and are weighted optionally. Graph search methods
find the globally lowest-cost connection between an initial and goal node [19]. Various graph-search
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algorithms exist, e.g., forward search, breadth or depth-first, Dijkstra, Bellman-Ford, A* [19]. All algo-
rithms have specific properties in terms of optimality and time complexity. Graph-search methods for
motion planning are limited by their time complexity, especially as the state-space grows in complexity
or resolution, and limits the applicability to low-dimensional environments [24].

Sampling-based motion planners are another method for global motion planning and can solve high-
dimensional motion planning problems [24]. Instead of building a graph or grid for the whole environ-
ment in one go, sampling-based methods take (non)-uniform samples in the state-space [19]. The
samples are verified to be collision-free, and the distance between the collision-free samples and the
previously obtained collision-free samples is determined. By doing this, a graph is built consisting of
nodes and edges representing viable motions [19]. Sampling-based methods can be split into single-
query and multi-query methods [19]. Multi-query methods, e.g., probabilistic roadmap (PRM) [17], con-
struct a global graph and use graph search methods to find a path connecting a starting and goal node
on the graph. Multi-query methods are limited by dimensionality as the time complexity rises with the
size of the graph. Single-query methods, e.g., rapidly-exploring random tree (RRT) [20], create a graph
towards a specific goal location. A tree is incrementally grown, rooted at the initial position towards a
goal position. Samples that are in a collision are not added to the graph. Once a solution is found, the
method builds further and returns the shortest path. RRT is not optimal; there is an asymptotically opti-
mal variant (RRT*) [16]. The single-query sampling-based motion planners can solve high-dimensional
motion planning problems [19]. Still, the solutions might not be smooth, finding solutions can be slow,
and since it is a single query method, a new tree has to be built for every new goal [19] [24].

Local motion planning
Local or online motion planning is used to smooth out a global motion plan or to consider dynamic
environments, which is essential for reactive control. As described in the previous section, most global
motion planner techniques are constrained by computational complexity due to the environment’s high
dimensionality and high resolution. Global motion planners can reliably find global motion plans by
simplifying the environment. However, these motion plans can be rough and will not result in smooth
robot behavior when followed. A local motion planner can smooth out the global motion plan. There
are various methods to achieve reactive behavior, and a general distinction in local motion planning
can be made between virtual potential field methods and nonlinear optimization methods.

Virtual potential field methods use force fields that push or pull a robot towards or away from specific
locations in the state space, such as a goal or obstacle [24]. Attractive potential fields can pull the
robot toward a goal location or intermediate locations of the global motion plan towards a goal. In
contrast, repulsive potential fields can push the robot away from obstacles. This method has a relatively
uncomplicated implementation and is fast [24]. However, the robot might get stuck in the local minima
of the potential function [24]. Also, positive and negative potential fields can cancel each other out
before the robot reaches the goal [24] [34].

Optimization techniques can also be used for local motion planning. A local motion planning problem
can be converted to an optimization problem by defining a cost function and constraints [24]. The cost
function assigns a cost value based on a given input. In motion planning, it is commonly defined as
the distance to the goal, with a higher cost for longer distances. Similarly, it considers the distance to
obstacles, with a lower cost assigned for greater distances. The inputs are the control inputs and a
dynamic model of a system together with the state space. Constraints define limits on the control inputs
that must be satisfied. Various optimization algorithms or techniques can then be used to minimize or
maximize this cost function and, in the case of motion planning, find control inputs that minimize the cost.
Model predictive control (MPC) [26] is a process control method with optimization techniques. MPC has
been successfully applied to various fields in the past decades [12], including robotics [7]. MPC is an
iterative optimization method that requires a model of the system, a cost function, and an optimization
algorithm to minimize the cost function. With MPC, the cost function is defined not only for the next state
but for several states in the future as the receding horizon. MPC optimizes the cost function defined
for the horizon or future states and uses the control input found in the first step to control the system;
this is done iteratively for the next steps or states while the horizon keeps receding. MPC requires a
sufficiently accurate system model and extensive controller design [12]. Instead of analyzing a control
system on stability and guarantees after it has been built, MPC can provide theoretical guarantees by
design [12]. The computational complexity of MPC grows with the number of recorded data points [12].
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The solving time of MPC increases sharply by including more obstacles [41]; this limits the number of
obstacles that can be included while still maintaining reactive control.

2.1.3. Summary
For a robot to perform a specific action, control inputs are needed for the robot’s actuators. The control
inputs move the robot from an initial position toward a goal position. Motion planning calculates a plan or
path that moves the robot to the desired position. Typically, a global motion planner is used to construct
a global path toward the goal location, and a local motion planner is used to smooth out the global
plan or to deviate from this path in case of unforeseen obstacles. Global motion planning techniques
are often based on graph search methods and sampling-based methods. Virtual potential fields and
optimization techniques are two techniques that can be used for local motion planning. Virtual potential
fields are uncomplicated to implement and fast but are prone to local minima, and the potential fields can
conflict with each other. MPC is a popular optimization-based technique employed for reactive control
in various domains. While MPC offers theoretical guarantees, its practical application is constrained
by its computational complexity.

2.2. Reactive control
This section outlines four local motion planning techniques used for reactive robot control. The tech-
niques include Operational Space Control (OSC), Geometric Control (GC), Riemannian Motion Policies
(RMP), and Optimization Fabrics (fabrics). The first three serve as the foundation for optimization fab-
rics. In sections 2.2.1, 2.2.2, 2.2.3, and 2.2.4, the fundamental concepts, applications, and limitations
of each technique are explained in detail.

2.2.1. Operational space control
The operational space (OSC) framework was first introduced in 1987 by Khatib [18]. It proposed a
method for controlling manipulator systems with dynamic end-effector behavior in the operational (task)
space. OSC allows a manipulator to be controlled as an operational space control system instead of a
joint space control system. This is achieved by transforming the equation of motion from the operational
space to the joint space for the controller. This technique is beneficial when a task is better defined
in the operational rather than the configuration space. This is often the case for many desired robot
behaviors, such as controlling the end-effector. In OSC, the desired joint space velocity, acceleration,
and torque are calculated from the desired end-effector space velocity, acceleration, and force [29].
The equations of motion relate the velocity, acceleration, and forces or torques of a robotic system in
both joint and configuration space. In OSC, the equations of motion in both operational and joint space
are based on classical mechanical systems and are derived using Lagrangian mechanics based on the
kinetic and potential energy of the system [18].

To control a manipulator using OSC, a function for the desired acceleration in operational space is
defined using the current and goal end-effector position and velocity. Calculating the torque in config-
uration space is possible using the desired acceleration function and the equation of motion. Another
layer of control is added in OSC for nonlinear dynamic decoupling of the end-effector, making it a two-
level control system. Besides controlling the end-effector towards a goal location, more behavior is
needed for reactive control, such as collision avoidance. However, the original framework does not de-
scribe combining multiple motion policies. A variant does [44]; this variant uses Bayesian techniques to
fuse numerous motion policies, similar to Bayesian sensor fusing. Still, it is limiting and not well-defined
in the literature. The amount of motion policies that can be combined in OSC is limited by the number
of degrees of freedom of the robot [5].

Applications
The original framework [18] is developed to be used for manipulators. The OSC framework is im-
plemented using the manipulator programming system COSMOS (Control in Operational Space of a
Manipulator-with-Obstacles System) using a PUMA 560 manipulator [18], a robot with six degrees of
freedom. Experiments have been conducted by performing basic assembly operations and with square
wave force inputs. The framework shows a high-level dynamic rate of 100 Hz and effective elimination
of bounces at contact with stiff surfaces. The square wave force input experiments showed responses
with 0.02 s rise time and less than 12 percent steady force errors. However, extensive results are not
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given. For redundant manipulator systems, only the equations of motion are defined, without experi-
ments or results shown.

In [29], an extensCalculatingal evaluation of various variants of OSC is given. Three main variants are
considered, force-based control as in the original framework [18] with extensions by the same author [8],
velocity-based control [28] and acceleration-based control [13]. All control variants are evaluated for
multiple simple motion tasks using a seven-degrees-of-freedom Sarcos Master Arm robot. Regarding
theoretical complexity, the velocity-based controller is the simplest to model and implement, followed
by the acceleration-based controller and the most complex variant, the force-based controller. The
force-based controller performs almost perfectly in simulations. However, it scores low in the exper-
imental evaluations. Compared to the other two methods, the force-based controller requires more
accurate model identification, and the performance deteriorates quite heavily under modeling errors.
The velocity-based controller is relatively straightforward to implement and achieves good tracking per-
formance in simulations and real-world experiments. However, the controller lacks the complexity to
model certain desired behaviors. Lastly, the acceleration-based controller showed the overall best task
performance in simulations and real-world experiments, especially in the most demanding experiments.
A simplified version of this controller had the overall best performance, ease of parameter tuning, and
general robustness and compliance [29]. Regarding computational complexity, the acceleration-based
and velocity-based controllers are less expensive to compute compared to the force-based controller.
The computational complexity of the force-based controller is O(n2), while for the other controllers, it
is O(n).

Limitations
These extensions improve the original framework. However, OSC is still limited as a reactive control
technique. The applications are primarily concerned with end-effector tasks defined in the task space.
Besides these end-effector tasks, reactive control requires avoiding obstacles and, thus, defining more
than one motion policy. While combining multiple motion policies is possible with OSC, it is limited by
the number of degrees of freedom of the robot [5] and is not well-defined in the literature.

In OSC, the task spaces are assumed to be Euclidean, which limits the direct consideration of non-
Euclidean spaces [5]. While Euclidean space is suitable for tasks such as reaching a goal, obstacles
can cause the space to become curved and non-Euclidean. Consequently, it becomes necessary to
define collision-avoiding behavior within this non-Euclidean space.

2.2.2. Geometric control
Geometric control is a technique to model, analyze and control mechanical systems. Operational space
control can be seen as a subset of geometric control [34], although geometric control was developed
mostly independent of OSC [5]. The book Geometric control of mechanical systems [3] can be viewed
as a primary reference for geometric control. This book considers geometric control for simplemechan-
ical systems. In this context, simple relates to mechanical systems described as a class of Lagrangian
systems, with the Lagrangian defined as the difference between kinetic and potential energy. These
types of simple systems are also referred to as natural systems. To control these simple mechani-
cal systems, geometric control utilizes the mathematical overlap, described with differential geometry,
between the fields of nonlinear control and classical mechanical systems.

Differential geometry is a branch of mathematics that deals with the geometry of smooth shapes and
spaces. It uses techniques from differential calculus, linear algebra, and other mathematical tools to
study these smooth shapes and spaces [3]. Smooth shapes and spaces mean these are continuous
and differentiable [3]. This branch of mathematics calculates equations between the configuration
space and task space in robotics control. Geometric control is a generalization of operational space
control (OSC), as it allows for swapping between spaces using forward and inverse kinematics as a
mapping between spaces. The primary object of differential geometry is a manifold [3]. In geometric
control, the manifold describes the different spaces or shapes, e.g., configuration and task space. An
n-dimensional manifoldM is a space that locally resembles an n-dimensional Euclidean space. Locally
around a point on the manifold, defined as the neighborhood, we can find an n-dimensional Euclidean
space homeomorphic to this neighborhood region. Homeomorphic means that there is a continuous
function and inverse function that maps between the two spaces that preserve the properties of both
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spaces. This mapping between a section of a manifold M and a Euclidean space X is done with what
is called a map or chart f , defined as f : M → X.

Other important notions from differential geometry are the tangent vector, tangent space TxM , and
tangent bundle TM . These describe the direction and velocity of smooth curves moving through a
point on the manifold. At a point x on the manifold, we can define a set of all smooth curves that move
through this point. A tangent vector is defined for every smooth curve at point x; this tangent vector is
tangent to the specific smooth curve, showing the direction or derivative of this curve at point x. The
combination of all tangent vectors, for all smooth curves at a single point x, is the tangent space TxM
[21]. Lastly, the tangent bundle is the disjoint union of all tangent spaces TxM [21]. The tangent bundle
TM is also a manifold, consisting of all the possible velocities of all points on amanifold. So, at a certain
point x on a manifold, multiple tangent vectors are defined for multiple smooth curves moving through x.
The combination of these vectors is the tangent space TxM , and the combination of all tangent spaces
is called the tangent bundle TM [21]. Using the tangent space, we can define a Riemannian metric
for a manifold. A Riemannian metric is a metric tensor with some extra properties [2]. A metric tensor
takes the tangent space as input, resulting in a scalar. A Riemannian metric takes the positive-definite
inner product of the tangent space TxM × TxM [2] [3]. A manifold with a Riemannian metric is called
a Riemannian manifold [2]. In geometric control, a kinetic energy metric is used for the Riemannian
metric of a Riemannian manifold [3]. A Riemannian manifold consists of the pair Q, G, with Q the
configuration manifold and G the Riemannian metric representing the kinetic energy of the system [3].
The simple mechanical systems with a Riemannian metric based on the kinetic energy are observed
to evolve as geodesics across a Riemannian manifold [5]. In geometric control, behavior is shaped by
controlling a system to behave as a virtual classical mechanical system, as in OSC [34]. The virtual
classical mechanical system is modeled using Lagrangian mechanics, which are based on the system’s
kinetic and potential energy representations.

To recap, geometric control generalizes OSC and uses concepts from differential geometry, nonlinear
control, and classical mechanical systems to create a virtual mechanical system to define geometries
or curves in the configuration manifold, which can be used as a motion policy for the controller of a
robot.

Applications
Geometric control is defined more broadly as compared to OSC. Geometric control can be used for any
system, described using simple mechanical systems. This includes manipulators but also other types
of robots and systems. Both fully actuated and underactuated systems are described in [3]. However,
experiments or simulations of geometric control with robots are lacking.

Limitations
One main limitation of geometric control is that the task priority weights are defined as positive-definite
matrices and are position dependent only [5], not velocity dependent. Therefore, it cannot express the
priorities for different directions at a specific location. This lack of directionality is problematic since it
can be crucial for more advanced control situations, especially collision avoidance.

Directionality is essential for collision avoidance since the position relative to an obstacle gives only
partial information. An obstacle can move towards a robot or away from it while being in the same
location. The velocity of an obstacle can be used to deduce the obstacle’s direction of motion. With
the obstacle’s direction of motion available, it is possible to perceive whether the obstacle is moving
towards or away from the robot, which is crucial for the system’s motion policies. The simple example in
figure 2.2 shows a scenario where the directionality would provide helpful information for the behavior
of a two-revolute joint (2R) robot. Both obstacles are equally close to the robot’s end-effector, but the
robot is at a greater risk of collision with the upper obstacle since it is in motion toward the robot itself.
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Figure 2.2: 2R robot example with two obstacles (red). The obstacle above the robot moves toward the end effector, and the
obstacle below the robot moves away from the end effector. The obstacles are equally close to the robot, but the robot is at
greater risk of collision with the upper obstacle since it is moving toward the robot. In this example, the directionality of the

obstacles provides useful information for motion planning.

2.2.3. Riemannian Motion Policies
OSC and geometric control are limiting, with missing directionality and no implicit consideration of non-
Euclidean geometries. These limitations lead to the inability of these techniques to combine multiple
local motion policies effectively. Riemannian Motion Policies (RMP) are introduced [36] [4] as a contin-
uation of these techniques. RMPs effectively combine multiple motion policies by introducing solutions
to the directionality and implicit consideration of non-Euclidean geometry limitations. Each RMP is
paired with a Riemannian metric which defines the importance of a policy with directionality; it consid-
ers both position and velocity. To combine multiple policies into one, we must be able to define how
they contribute individually and how to transform them between spaces.

A RMP is defined as the tuple (f ,A)X , with a motion policy f and a Riemannian metric A defined in
the space X . The motion policy f maps position and velocity to an acceleration, which is the desired
acceleration for the robot’s low-level controllers. Like OSC and geometric control, the RMPs can be
transformed between spaces using pullback and push-forward operations. RMPs also introduce an
operation to obtain the metric-weighted average of multiple RMPs [36]. For now, we will not describe
these operations here further, as these are similar to the operations used in optimization fabrics in the
following chapter.

To generate motions for a robot, the following is done with RMPs. A single RMP is created in the
corresponding task space for each desired subtask or sub-behavior for the robot, such as reaching for
a target or collision avoidance. The RMPs are combined into a single RMP in the configuration space
using the pullback and summation operations. Using the RMP in the configuration space, the motion
policy can be used as a desired acceleration for a low-level controller of the robot.

As the RMPs are defined separately, they can be computed in parallel. This is useful since this makes
it possible to compute RMPs that need a lower control frequency but have a higher complexity offboard
and compute RMPs that require a higher control frequency and are less complex onboard. By par-
allelization and separation of computation, improved computational performance is possible [36]. In
the paper, RMPflow [4], a computational graph is introduced, the RMP-tree. On this tree, the various
RMPs are defined as leaf nodes. The tree’s root node combines the nodes in the configuration space.
Figure 2.3 shows three RMP-tree examples with increasing complexity from left to right. The root node
is shown at the bottom and denoted as C, as this node is defined in the configuration space. The leaf
nodes are represented by T , and these are described in the task space. The pullback and summation
operations can be used to pull the leaf nodes, defined in the task space, back to the configuration space
and combine them into one motion policy.
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Figure 2.3: RMP-tree structured task maps showing common examples in increasing complexity from left to right. The nodes
on the graphs are manifolds, and the edges are transformations. The root node is defined in the configuration space C, and
the leaf nodes are in the task space T . For each subtask, a task space leaf node is made. From RMPflow: A Computational

Graph for Automatic Motion Policy Generation, fig. 1. [4]

Applications
In the original paper introducing RMP [36], two simulation experiments are performed using a seven-
degrees-of-freedom manipulator. In the first experiment, three cluttered environments with four cylin-
drical obstacles each are generated. A distribution of goal points on the other side of the obstacles
is chosen. RMP is compared to a general OSC approach, wherein multiple policies are transformed
using pseudoinverses and superimposed for a single motion policy. The general OSC approach shows
conflicting behavior; often, the policies fight each other and result in a collision with obstacles. Also,
complexity is missing to balance stability and achieve the task properly. RMP showed natural, pre-
dictable, and smooth motion for each task.

In the second experiment [36], four cluttered environments with four cylindrical obstacles each are gen-
erated. Configurations are manually designed to create environments where the robot must navigate
the obstacles in various ways, e.g., between and around obstacles. In this experiment and the previous
one, a function or heuristic is used for the RMP that must move toward a goal. The second experiment
compares two types of these heuristics, a simple and a more sophisticated. The simple one is already
quite robust, but the sophisticated one performs slightly better under challenging environments [36],
such as in a larger workspace or long-range navigation.

The RMPflow paper [4] performs simulation and real-world experiments. The simulation is performed
with a modeled seven-degrees-of-freedom ABB YuMi manipulator. The manipulators must reach a goal
location with obstacles in between. RMPflow is compared with OSC. OSC fails to match the speed and
precision of RMPflow. The real-world experiments are performed with the dual armmanipulation robots;
both arms have seven degrees of freedom, the ABB YuMi and the Rethink Baxter, with integrated vision.
RMP performed exceptionally well and showed generalization between the two robots; no extensive
results were revealed.

Another application uses RMP [25] to generate smooth collision-avoiding behavior for a small RC car.
The car is equipped with an RGB camera. Distance information is needed from these images to steer
the vehicle, but depth cannot be directly obtained from an RGB camera. Three deep neural network
methods are introduced and compared to overcome this limitation. The methods are predicting depth,
directly predicting controls, and predicting whole RMPs. Using these methods, the RC car is navigated
autonomously through a hallway with obstacles in simulations and real-world experiments. The simu-
lations show that the predicting RMP method achieves the highest goal completion and lowest chance
of collision. The methods generalized poorly in the real-world experiments; manual fine-tuning was
first needed using real-world images. After fine-tuning, the predicting RMP method showed the best
goal-reaching and collision-avoiding behavior. Although the predicting RMP method has a high chance
of reaching the goal and avoiding obstacles, it is still a local policy, and there is no guarantee that it
will converge to a desired local minimum. Therefore, the authors state that using a neural planner for
a global plan might be more suitable than using the neural RMP for handling the vehicle dynamics and
reactive control to avoid obstacles [25].

Limitations
In [4], stability is analyzed for RMP, but formal stability guarantees are lacking. To create a stable
class of RMP, experience is needed; therefore, they can be dangerous for inexperienced users [34].
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Only a subset of the possible RMPs that can be designed are stable; however, knowing why this is
the case or how to create stable variants requires knowledge of RMP and geometric control. These
are strict requirements and limit RMP’s usability to those who know how to design them. Creating
stable RMP requires knowledge of the design principles, parameter tuning techniques, and damping
heuristics [34]. Users that do not know to design stable variants can create unsafe applications. With
RMP, the priorities are directly coupled with the motion policies. This direct coupling limits expressibility
since it is impossible to create a priority metric and motion policy separately.

2.2.4. Optimization fabrics
Optimization fabrics [34] is a local motion planning or reactive control technique. Whereas geomet-
ric control is, a generalization of OSC and RMP is a class of geometric control. Optimization fabrics
are a generalization of RMP and geometric control. It continues on the theory and concepts of RMP
but improves upon the lack of stability and makes the theory more accessible and less dangerous for
inexperienced users. The motion policy is a desired acceleration obtained from a second-order differen-
tial equation. Optimization fabrics combine multiple second-order differential equations into one. The
multiple separate second-order differential equations define a desired subtask behavior, e.g., collision
avoidance, redundancy resolution, joint limit avoidance, and goal guiding. These separate equations
can then be combined into one by using a metric that defines how important a subtask behavior is.
The modularity makes them easier to build, use, maintain, and calculate in parallel, resulting in a quick
execution time.

Positively Homogeneous of degree 2
A critical property used for optimization fabrics functions is positively homogeneous of degree 2 (HD2)
in velocities. This property assures path consistency for optimization fabrics and is crucial for designing
behavior independent of the robot’s velocity [34]. A function is HD2 in velocities if and only if:

The value of the function, acceleration in this case, is scaled by α2 if the velocity is scaled by some
scalar α > 0.

The property of HD2 relates the velocity and acceleration of a function and results in path consistency for
trajectories computed with optimization fabric using these functions. Path consistency means that the
paths generated from these functions are unique for initial values [34]. This path consistency property
due to HD2 can be described by looking at the units of velocity and acceleration, ms and m

s2 . Velocity is
related to time by the power of one, and acceleration is related to time by the power of two. If the velocity
of a trajectory is scaled by some scalar α, acceleration must be scaled by the same scalar squared
α2. By doing this, the trajectory will remain equal; the only difference is a varying velocity along the
trajectory. Choosing differential equations for which this property holds can be advantageous, as this
will result in the consistency of paths generated by these differential equations. If an optimization fabrics
function is HD2 and therefore has path consistency, the system will always follow the same trajectory
if starting from the same starting conditions. It is possible to change velocity along these trajectories,
speeding up and slowing down. It is impossible to change the velocity or acceleration along different
directions than the direction of motion.

The result is a geometric fabric wherein behavior and priority are uncoupled. The behavior can be
designed using the geometry generator, and the priority metric follows from the Lagrangian energy.
By bending, a new geometry is obtained that preserves its original HD2 geometry and energy. The
HD2 geometry follows the desired geometry behavior and gains a Finsler geometry’s energy metric for
prioritization [34].

Applications
To use optimization fabrics for reactive robot control, separate components must be designed for the
desired behaviors. All components are built using two parts, the Finsler energy and a policy. The two
most essential components are goal-reaching and collision-avoiding behaviors. A component uses a
potential attractor function for the robot to reach a target. The collision-avoiding behavior component
is designed with a collision-avoiding geometry generator. Both components are paired with a Finsler
energy.

In [36], two experiments are performed. One with a simple two-dimensional point mass system and
one with a two-dimensional planar manipulator. The point mass system is used to demonstrate and
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validate the theoretical properties such as path consistency, energization commuting with the pullback,
and other fabric operations. The planar manipulator experiments are similar to the point mass system
experiments. The desired behavior for the arm is built from geometric fabrics tomove to random goals in
the environment continuously. The robot reaches all the goals and shows the desired behavior. Similar
planar manipulator experiments are performed in [33]. General Lagrangian fabrics are compared to
geometric fabrics in [47] using planar manipulator experiments. It is shown that the general Lagrangian
fabrics have issues with reaching the target due to fighting potentials, whereas the geometric fabrics
reach the target.

Simulations with a seven-degrees-of-freedom Franka arm are performed in [47]. In the experiment,
there are six reachable bins near the arm. Geometric fabrics make the arm reach into and out of the
bins. The results show natural and successful behavior. To test generalization, two experiments were
performed. First, 90 problems starting from the same configuration were performed with a 96.7% suc-
cess rate. After rotating the starting configuration 30 degrees, the same experiments were performed,
now with a 92.2% success rate. By additional tuning, a success rate of 100% was obtained.

In [46], more experiments are performed with the seven-degrees-of-freedom Franka arm. A geometric
fabric is designed once and tested with multiple problems, reaching for a target with varying obstacles.
The geometric fabric is compared to the current best-performing RMP. It can be seen that RMP performs
worse due to conflicting behaviors. Moving towards obstacles, the RMP keeps a more considerable
unneeded distance; in some cases, this results in the RMP being unable to reach the target location.
In experiments with moving obstacles, RMP and geometric fabric are only given the position of the
obstacles. The RMP reaches 11 of the 19 targets and has a collision rate of 8.18%, while the geometric
fabric reaches 16 targets and has a collision rate of 0.4%.

The functions used in fabrics have to be designed by hand. There has been some research into learning
the functions used in RMP [32] [27] [22], which can improve the standard functions or make it more
straightforward for inexperienced users to design them for a specific scenario by training. The work
[40] presents an automated parameter optimization method for trajectory generation using optimization
fabrics.

Limitations
Optimization fabrics have no collision avoidance guarantees. At every time step, a new acceleration
is computed, which can take obstacles into account. The acceleration that can be given to the robot’s
controllers is limited by the maximum physical acceleration of a robot. If an obstacle can move with a
higher acceleration than the robot, the robot cannot avoid it. Techniques like MPC can predict future
states with the receding horizon. If one of these future states shows the robot in collision with an
obstacle, actions can be taken in advance, i.e., shutting down the robot. By doing this, MPC can
guarantee that the robot will not dynamically collide with an obstacle, which is essential for human and
robot interaction. Collision avoidance guarantees can be added to optimization fabrics by including
some prediction horizon that checks for collisions. However, this is not inherently included in the theory
and would result in higher computational complexity.

All applications given in section 2.2.4 assume that all obstacles’ positions and sizes are known. In
real-world scenarios, however, these must first be obtained. A perception pipeline is required to obtain
information about the environment and obstacles. Different kinds of perception pipelines exist, which
remain to be tested in combination with optimization fabrics. Most functions used in optimization fabrics
are designed by hand, which limits inexperienced users to using the standard functions, which might
be suboptimal, or designing the functions themselves. The theory of optimization fabrics improved
significantly upon the older techniques of RMP and geometric control in terms of designing them for
inexperienced users. By following the standard concepts introduced, a new user can design stable
behavior, which is still far from straightforward. As fabrics are a local technique without a prediction
horizon, as in MPC, the obtained trajectory might lead the robot toward a local minimum.

2.2.5. Summary
OSC uses a relationship between the forces acting on the robot in the task space and the torques acting
on the robot in the configuration space for end-effector control of a manipulator. Using the relationship,
tasks can be modeled and calculated using Lagrangian mechanics in the task space, where it would be
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logical to perform a specific task and then relate it to torques in the configuration space, which can be
used to control the robot. Geometric control introduced a similar method to control robots or mechanical
systems. The method is a generalization of OSC where any robot modeled as a simple mechanical
system can be controlled. Simple relates to a class of mechanical systems that can be described using
Lagrangian mechanics, which are purely based on potential and kinetic energy. Mapping between
OSC’s task space and configuration space is generalized as a mapping between spaces or manifolds
in differential geometry. In doing so, themethod obtains notions and concepts from differential geometry
that benefit robot control. A metric is obtained that states the importance of a specific task, which makes
it possible to construct behavior built from multiple tasks. However, it is impossible to include velocity
information in this metric, and therefore, geometric control cannot take directionality into account, which
can result in conflicting behaviors. RMP is introduced as an extension and continuation of OSC and
geometric control. It takes the general concepts from both methods to create a motion policy that can
be built from multiple separate desired behaviors or tasks. By also including velocity information in
the metric, directionality can be considered. RMP also introduces a computational graph, the RMP
tree, and specific operations, RMP algebra. The RMP tree can create a motion policy at the root from
multiple separate RMPs at the leaves. The RMP algebra is then used to combine the leaves into
the root; the output of this root is an acceleration that can be used as an input for the robot’s low-
level controllers. RMP still lacks formal stability guarantees and can be dangerous for inexperienced
users. Fabrics are a reactive control or local motion planning technique. They are built from second-
order differential equations known as spectral semi-sprays or specs. Similar to RMP, behavior can
be built by combining multiple specs into one spec. From this resulting spec, acceleration can be
computed, which is used as the input for the robot’s low-level controllers. Spec algebra operations can
combine the various specs and map them between task spaces and the configuration space across
a transform tree. The homogeneous of degree 2 in velocities (HD2) property is critical for geometric
generators and geometric fabrics; the property ensures path consistency. Finsler fabrics are introduced
as a generalization of Lagrangian fabrics, where the Lagrangian is a Finsler energy. A geometric
fabric is a geometry generator energized with Finsler energy. With this, the design of behavior and
priority is uncoupled. A speed control term can be added to the fabric to attain a desired Euclidean
speed. Experiments with geometric fabrics show natural and successful target-reaching behavior while
avoiding obstacles. Optimization fabrics have better task success rates and collision rate performance
than RMP. Optimization fabrics do not guarantee collision avoidance. To be used for reactive control,
optimization fabrics require the location and size information from obstacles; this can be complicated
in real-world scenarios and has not been researched yet in combination with optimization fabrics.

2.3. Perception
Autonomous robotics requires knowledge of the surrounding environment to locate obstacles and the
goal location. More specifically, the local motion planning algorithms, such as optimization fabrics or
MPC, require a constant differentiable function of the distance to obstacles relative to the robot. All
published research on optimization fabrics assumes that this distance function is given for obstacles.
However, practical usage of optimization fabrics for reactive control would eventually need perception
to obtain this distance function from real-world obstacles. The perception pipeline obtains informa-
tion about the surrounding environment by interpreting sensor data. A perception pipeline consists
of sensors and algorithms that transform raw sensor data of the environment into information that
can be utilized for motion planning and control. Proprioceptive sensors measure the robot’s internal
state, typically with encoders [38]. Exteroceptive sensors measure information from the surrounding
environment [38], such as distances to obstacles. Exteroceptive sensors commonly used for distance
measurements include sonars, depth cameras, and, more recently, LiDARs [10]. LiDAR and sonar
sensors use the time-of-flight principle with light and sound pulses. Pulses of light or sound are sent
out, and a distance can be calculated by measuring the time until the pulses return. Depth cameras use
the stereo matching technique, which estimates a depth map from a disparity found between matching
pixels obtained from two slightly shifted images [30]. Additionally, depth cameras can include an extra
sensor that projects light patterns upon the scene, typically infrared [38]. The relationship between
the known emitted light pattern, and the curved light pattern on the scene’s surface is used to obtain
depth information [30]. This further improves the quality of the depth map obtained from depth cameras,
specifically on relatively flat surfaces in the environment [38].
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The raw data obtained from these sensors typically require preprocessing as the raw data can be cor-
rupted by noise and is too dense for the planning algorithm, which results in higher solving times, or
using the raw data directly in the planning algorithm is impractical. Different forms of preprocessing
result in various data representations, such as a raw sensor or point data representations, grid-based
representations, and feature or object representations [38]. The preprocessingmethods and their repre-
sentations vary in terms of computational complexity and computational space. Raw sensor represen-
tations require a low preprocessing level and therefore have low computational complexity. However,
the computational space needed to store the data is high. Grid-based representations require more
computational complexity and less computational space. Methods to obtain feature or object represen-
tations are highly computationally complex but require less computational space to be stored.

Perception pipelines to obtain raw data or point cloud and grid-based representation have a relatively
low computational complexity [37]. These methods provide the locations of the environment as sets of
data points in space and can be used to create grid maps based on occupancy [14]. Depending on the
sensor’s resolution, point clouds or grid maps can become extremely dense. The Intel RealSense D435
depth camera has a depth output resolution of up to 1290 x 720with frame rates up to 90 per second [15].
These techniques have relatively low computational complexity but result in more data being processed
by the motion planner. The computational complexity of MPC increases with the number of data points,
resulting in more constraints to be solved by the optimization problem [12], and the number of obstacles
included increases the solving time heavily [41]. Highly complex perception pipelines, often using
statistical or machine learning techniques, use more preprocessing to provide obstacles’ locations,
shapes, and sizes [38]. Machine or computer vision techniques use the data obtained from one or more
cameras and extract numerical features of the environment [6]. In general, these techniques have a
high computational complexity, and the representations obtained require less computational space than
the raw sensor data. Since obstacle detection with highly complex perception pipelines is challenging
and often impractical or impossible, and the output of a low-complexity perception pipeline is often
too dense, methods to obtain feature-based representations can be used. These methods combine
multiple data points into planes or shapes [23], resulting in a less dense output. In [41], a method
based on [23] generates a set of convex polyhedrons around the robot’s links, which are modeled as
ellipsoids, from the 3D sensor data. The polyhedrons represent the free space and are built using
simplified descriptions of the obstacles’ point clouds as planes. The solving times are unaffected by
using this method compared to representing every obstacle as a sphere.

Deciding which perception pipeline is optimal for a robot use case depends on the sensors and the
motion planning algorithm used, besides the type of robot and the surrounding environment. Practical
considerations concerning the type of sensor to be used include the minimal distance required, the
required resolution and accuracy, the materials and condition of the surrounding environment, space
and power available to mount and power the sensor, and the costs [10]. Besides the practical consider-
ations for selecting a sensor or perception pipeline, there exists a relationship between the perception
pipeline and the local motion planner that we can utilize. Perception of the environment is challenging,
and various methods vary in complexity. Local motion planning techniques and the perception pipeline
are connected, as the output of the perception pipeline is an input for the local motion planner for re-
active motion control. Local motion planning techniques also vary in their computational complexity.
Techniques with relatively high computational complexity cannot maintain reactive control when the
complex output of a low computationally complex perception pipeline is used, e.g., MPC with a point
cloud representation [41]. These techniques benefit significantly from using a more complex perception
pipeline, simplifying the output, e.g., MPC with convex polyhedron representation [41]. However, de-
signing and utilizing a complex perception pipeline is challenging and requires additional computation
time.





3
Background

In this chapter, we provide background information and context for our method, which will be introduced
in the following chapter. Section 3.1 describes general robotics notations used tomodel robotic systems.
Section 3.2 describes the method of optimization fabrics with basic notations and theory. Examples of
optimization fabrics for reactive control are given in 3.3.

3.1. Notations for robotic systems
This section describes basic concepts and notations for robotic systems. Robots are typically modeled
as a mechanical combination of links and joints and typically controlled as a joint space control system,
as the actuators are on the joints. The configuration q ∈ Q ⊂ Rn of a robot uses a set of n variables
to describe the position of the whole robotic system, consisting of the links and joints. The velocities
and accelerations of the robotic system are given by the first and second derivative of the configuration
with respect to time, q̇, q̈, using Newton’s notation or the dot notation to denote differentiation of the
variable with respect to time. The minimum number of variables n needed to describe a robot’s con-
figuration entirely is equal to the number of degrees of freedom (DOF) of a robot. The configuration
space Q is an n-dimensional space containing all possible configurations; a single configuration can
be viewed as a single point in this space. The task space X uses another set of variables; the task
space coordinates x ∈ X ⊂ Rm, with m ≤ n, to describe positions of a robotic task. For example, the
Cartesian coordinates in the Euclidean plane can be used as task space coordinates. The velocities
and acceleration in the task space are given by the derivatives of the task space coordinates, ẋ, ẍ.

The end effector of a robot is a location on the robot where a tool can be attached to the end of a
robot’s link, optionally on a joint, to have an effect on or to interact with the environment. Task space
coordinates are used to describe the location of the end-effector of a robot, and configuration space
coordinates are used to describe the robot’s configuration. Forward kinematics of a robot can be used
to calculate the position of the end-effector x from the robot’s configuration coordinates q using ba-
sic trigonometry. Inverse kinematics of a robot is used to calculate the reverse situation, the robot’s
configuration coordinates q from the position of the end-effector x. Forward kinematics has a unique
solution, whereas inverse kinematics can result in multiple solutions. Basic trigonometry can be used
to calculate the inverse kinematics, or it can be approximated using numerical analysis methods such
as the Newton-Raphson method [43] [24].

Using forward and inverse kinematics, positions can be transformed between the task and configuration
space. Using the Jacobian matrix can do the same for velocities and accelerations, see eq. 3.2 and eq.
3.3 respectively. The Jacobian matrix consists of the first-order partial derivatives of a function, and in
dynamics, it is used to relate between q and x; the Jacobian is described with the following equation:

J =
∂x

∂q
(3.1)
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By rewriting the general Jacobian using the chain rule and rearranging it, an equation relating ẋ, q̇,
and the Jacobian J are found. By differentiating this equation with respect to time, another equation is
found, relating ẍ, q̈, and J .

ẋ = Jq̇ (3.2)

ẍ = J̇ q̇ + Jq̈ (3.3)

3.2. Notations for optimization fabrics
This section describes general notations and concepts of optimization fabrics. Section 3.3 gives an
example of using a two-dimensional point mass to use the concepts and notations for reactive control.

3.2.1. Spectral semi-spray
The building blocks of fabrics are a class of differential equations called spectral semi-sprays (specs).
Specs are described as the pair S = (M ,f)X , with the corresponding differential equationMẍ+f = 0.
M(x, ẋ) is a symmetric and invertible function of position and velocity. f(x, ẋ) is also a function of
position and velocity. Specs have a natural form (M ,f) and a canonical form (M ,M−1f). The
canonical form is also called the policy form, although then notated as [M ,π] with π = −M−1f and
the corresponding differential equation as ẍ = π(x, ẋ).

3.2.2. Forced spec
By adding the gradient of a potential function ∂xψ, a spec is forced towards the minimum of a potential
function. A forced spec is defined as:

Mẍ+ f + ∂xψ = 0 (3.4)

When a forced spec converges to a local minimum of the potential function ψ, it is said to be optimizing,
and the spec forms an optimization fabric. An arbitrarily forced spec is unlikely to converge automati-
cally [34] without damping. A spec that converges after adding damping is called a frictionless fabric.
A damped forced spec is described as:

Mẍ+ f + ∂xψ +Bẋ = 0 (3.5)

3.2.3. Spec algebra
The spec algebra consists of the spec S, pullback, and summation operations. These are used to com-
bine specs across multiple spaces. A spec S can be expressed on any manifold. Using the Jacobian,
the pullback operation transforms a spec expressed on the codomain X to the configuration space
domain Q. With the differentiable map ϕ defined as ϕ : Q → X and x = ϕ(q), the pullback operation is
defined as [34]:

pullϕ(M ,f)X = (JTMJ ,JT (f +MJ̇q̇))Q (3.6)

When multiple specs are expressed on the same domain, they can be added together into one spec
using the summation operation [34]:

(M1,f1)X + (M2,f2)X = (M1 +M2,f1 + f2)X (3.7)

3.2.4. Spec tree structure
A transform tree is used to construct a combination of specs; it consists of one root node and multiple
leaf nodes. At the root node of this tree is the combined spec expressed in the configuration space
domainQ. At the tree’s leaf nodes are a variable amount of specs expressed in different spaces defined
with their differentiable maps. The m amount of differentiable maps are defined as: ϕi : Q → Xi, i =
1, ...,m. The tree structure of fabrics is similar to that of RMPs; figure 2.3 shows three examples. The
resultant spec at the root node can then be defined by pulling the specs from their respective spaces
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into the configuration space and taking the metric weighted average of the individual specs using the
summation operation [34]:

m∑
i=1

pullϕi
(Mi,fi)X =

(∑
i

JTi MiJi,
∑
i

JTi (fi +MiJ̇iq̇)

)
Q

(3.8)

3.2.5. Geometry generator
A spec that is positively homogeneous of degree 2 in the velocities is called a geometry generator.
The HD2 property enforces that the integral curves are path consistent [46]. A geometry generator is
expressed in canonical form as follows:

ẍ+ h2(x, ẋ) = 0 (3.9)

Finsler fabrics
Finsler fabrics are defined using the property of HD2 and classical mechanics. So far, a spec is defined
asMẍ+f = 0. In geometric control, systems are defined using simple classical mechanical systems
based on Lagrangian mechanics. For Finsler fabrics, the same is done while changing the default La-
grangian used, adding specific properties to it. In simple classical mechanical systems, the Lagrangian
function is defined as the difference between the kinetic and potential energy of a system. Applying the
Euler-Lagrange equation to this Lagrangian results in the following equation of motion and equations
forM and f [47]:

M(x, ẋ)ẍ+ f = 0 (3.10)

∂2
ẋẋLẍ+ ∂ẋxLẋ− ∂xL = 0 (3.11)

M(x, ẋ) = ∂2
ẋẋL;f = ∂ẋxLẋ− ∂xL (3.12)

A Finsler fabric is a type of fabric with a special type of Lagrangian. The Lagrangian is defined to be
a Finsler energy Le, which is a special case of kinetic energy from classical mechanics [47] [34]. A
Finsler energy is a Lagrangian with the following properties [47] [46]:

1. Positivity: Le ≥ 0 with equality only for ẋ = 0

2. Homogeneity: Le is positively homogeneous of degree 2 in ẋ

3. Energy tensor invertibility: Me = ∂2
ẋẋLe is invertible

The Finsler energy is based on a Finsler structure Lg as Le = 1
2L

2
g, the second property only requires

Lg to be HD1, as this equation still gets squared, making Le HD2. Le is known as the energy form of
Lg [35]. A Finsler geometry is a nonlinear geometry defined by the equations of motion of the Finsler
energy, whose geometric equation is given by the equation of motion of the Finsler structure [33]. The
energy of a Lagrangian is called the HamiltonianHe, and in the case of Finsler energy, the Hamiltonian
is the Lagrangian itself. This energy will be used for analyzing stability using energy conservation.

3.2.6. Geometric fabric
This section combines geometry generators and Finsler fabrics to form geometric fabrics. This is done
by adding an energization term to the geometry generator differential equation, this term bends the
Finsler geometry to match the geometry generator’s geometry without affecting the energy [35] [33].
The energization or bending term performs no work on the system, a zero work modification, and
therefore does not affect the system’s energy.

Suppose a geometry generator’s equation given by ẍ+h2(x, ẋ) = 0 and any Finsler energy Lagrangian
Le with its corresponding equations of motionMeẍ+fe = 0 and energyHe. An energization or bending
term αHe can be added to the geometry generator, ẍ+ h2(x, ẋ) + αHeẋ = 0. This equation is energy
conserving and only affects the acceleration along the direction of motion by using the following αHe
term [36].
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αHe = −(ẋTMeẋ)
−1ẋT [Meh− fe] (3.13)

The energization transform commutes with the pullback, meaning a spec can be energized before or
after pulling it back to the configuration space. This means that a transform tree can be populated
with multiple leaves containing a geometry generator and a Finsler energy, energize them all at the
leaves, pull them back to the root, and take the weighted metric average. Pulling the original geometry
generators back first is also possible, summing and energizing them at the root.

3.2.7. Speed control
A geometric fabric’s energization term only affects the velocity in the direction of motion as it attempts to
conserve the Finsler energy. This results in non-constant Euclidean speed. A speed control term can
be added to obtain desired speed behavior. This is an additional term that is added to the differential
equation [36].

3.3. Reactive control example
This section describes how optimization fabrics can be used for reactive control or motion planning with
a simple two-dimensional point mass as an example robot. The point mass can move in any direction
in the two-dimensional plane. The first example in 3.3.1 shows the behavior of a general spec and
how it changes when forced and damped. The second example in 3.3.2 shows the collision-avoiding
behavior of a geometry generator and a geometric fabric. The third example in 3.3.3 combines the
former two to create reactive motion. The acceleration obtained from the specs in all examples is used
directly to control the point mass. In all examples, the figures show the trajectory of the point mass and
the system’s energy.

3.3.1. General spec, forced spec, and forced damped spec
A simple example of a forcing potential is a potential pulling the position of the end-effector qend−effector
of the point mass robot towards a goal configuration qgoal, both defined in the configuration space Q.
Here, the point mass itself is the end-effector. A useful potential function can be defined using the
squared 2-norm ψ = ||qend−effector − qgoal||22. The Finsler energy Le used is defined as Le = 1

2L
2
g =

1
2 ||q̇||

2
2 and the Finsler structure as the 2-norm of q̇ asLg = ||q̇||2. The derivative of the potential function

and the functions forM and f form the forced spec equationMẍ+ f + ∂xψ +Bẋ = 0. The B term
is for optional damping; in this example, it is defined as an identity matrix.

Figure 3.1 shows three trajectories on the top row and the corresponding energy plots on the bottom.
Figure 3.1a shows the trajectory of a spec without the forcing potential and the dampingMẍ+ f = 0,
the point mass moves towards its initial direction, and the energy remains constant as shown in figure
3.1d. A forcing potential is added to the spec to form a forced spec Mẍ + f + ∂xψ = 0 as shown
in figure 3.1b, the point mass moves towards the goal but fails to reach it due to overshooting around
it. The system’s energy is shown in figure 3.1e; it increases and decreases but cannot stabilize. The
point mass can converge to the goal location by adding damping to the spec, as shown in figure 3.1c.
Figure 3.1f shows the energy bleeding out.



3.3. Reactive control example 21

(a) General spec (b) Forced spec (c) Forced and damped spec

(d) Energy of general spec (e) Energy of forced spec (f) Energy of forced and damped spec

Figure 3.1: Trajectories of two-dimensional point mass based on three different specs on the top row and the corresponding
energies on the bottom row. Left shows a general spec that starts at an initial position with an initial direction; the point mass
will move to the top right indefinitely. The middle shows a spec forced towards a goal location using a forcing potential; the

point mass overshoots and cannot converge toward the goal location. The right shows a forced spec with added damping; due
to the damping, the point mass can converge to the goal location after initially overshooting. The energy is a non-physical

scalar. Hence no units are shown.
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3.3.2. Collision-avoiding geometry generator and geometric fabric
A geometry generator can be used to create collision-avoiding behavior for the point mass example.
The generator can be defined in the same manner as with the previous potential function. A simple
circular collision avoiding geometry generator in the task space X can be defined using the following
function for h2(x, ẋ) =

||ẋ||22
||x−xobst||22−robst

. Forming the following geometry generator ẍ + h2(x, ẋ) = 0.
Energizing this geometry generator with a Finsler energy results in a geometric fabric. The Finsler
energy Le used is defined as Le = 1

2L
2
g = 1

2 ||q̇||
2
2 and the Finsler structure as the 2-norm of q̇ as

Lg = ||q̇||2.

Figure 3.2a shows the trajectory of the geometry generator; the point mass moves towards the obstacle
but deflects when close. Figure 3.2b shows the geometric fabric, which is the geometry generator
energized. The energization results in an energy-conserving fabric; figure 3.2d shows the energy is
now constant. The geometry generator on the left slows down fast near the obstacle and speeds up
after the obstacle. The geometric fabric on the right shows more constant velocity through the whole
trajectory while remaining on the identical trajectory of the geometry generator due to the HD2 property.

(a) Geometry generator (b) Geometric fabric

(c) Energy of geometry generator (d) Energy of geometric fabric

Figure 3.2: Trajectories of two-dimensional point mass based on two different specs on the top row, the bottom row shows the
corresponding energies. To the left shows a collision-avoiding geometry generator, the point mass moves toward the obstacle
and deflects to avoid it while slowing down. The right shows a geometric fabric, the geometry generator energized with Finsler
energy. The point mass of the geometric fabric shows the same trajectory due to the HD2 property but has a different velocity
due to conserving the Finsler energy; it shows a more constant velocity which can be seen with the arrows. The arrows show
the direction of motion at certain time intervals. On the left, the arrows show a slowing down of the point mass movement due

to the obstacle. The energy is a non-physical scalar. Hence no units are shown.
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3.3.3. Summation and pullback operations
The collision-avoiding behavior and goal-reaching behavior specs need to be added together to obtain
a spec with reactive behavior. The pullback and summation operations can be used to pull back and
add together the forcing potential spec and the obstacle geometric fabric. The specs can be combined
with the summation operation; the summation operation returns the metric-weighted average of the two
accelerations. Together, the two specs form a new spec that exhibits the behavior of both specs, as
shown in figure 3.3a. Figure 3.3b shows that the system’s total energy bleeds out due to the forced
and damped spec. The spec avoids the obstacle while converging towards the goal configuration.

(a) Combined damped forced spec and geometric fabric (b) Energy of combined damped forced spec and geometric fabric

Figure 3.3: On the left shows a two-dimensional point mass trajectory based on the combination of two specs, a damped
forced spec, and a collision-avoiding geometric fabric. The point mass initially moves towards the obstacle but is pushed away
from it while converging towards the goal afterward. The right shows the corresponding energy. The energy is a non-physical

scalar. Hence no units are shown.

The example in Figure 3.3 shows how the two behaviors interact to obtain the desired combined be-
havior. However, the trajectory depicted in the figure is not optimal since reaching the goal is longer
than necessary. By tuning the variables, obtaining an improved trajectory with a shorter path length
is possible. Figure 3.4 displays a tuned combined spec in a scenario with one obstacle and another
scenario with four obstacles.

(a) Combined and tuned damped forced spec and geometric
fabric with one obstacle

(b) Combined and tuned damped forced spec and geometric
fabric with four obstacles

Figure 3.4: Two trajectories of a two-dimensional point mass. The combined spec is tuned for a trajectory with minimal path
length.





4
Methods

The chapter describes the novel approach of direct sensor integrated (DSI) optimization fabrics for local
motion planning. Section 4.1 presents the process of using DSI optimization fabrics for motion gener-
ation and the adjustments required to incorporate the sensors directly. Section 4.2 comprehensively
describes each step involved in the DSI optimization fabrics process. To explore the need for scaling
the collision-avoidance equations with an increasing number of obstacles, an analytical comparison is
conducted in Section 4.3.

4.1. Method overview
We propose a novel approach for local motion planning, direct sensor integrated (DSI) optimization
fabrics, as an alternative to traditional optimization fabrics. Local motion planning for reactive robot
control requires the motion planner to perceive obstacles, traditional optimization fabrics would do so
by having a perception pipeline providing the position and size of the obstacles. DSI optimization
fabrics utilize the relative positions obtained from a sensor directly as the input for collision-avoidance
equations. An example with a point robot surrounded by three robots is shown in Fig. 4.1; on the left,
the robot obtains the obstacle information from a perception pipeline, and on the right, 16 LiDAR rays
are used to obtain relative positions, which are then modeled as obstacles.

DSI optimization fabrics adjust the process of designing and obtaining motions of regular optimization
fabrics. First, we provide a high-level summary of the main modifications in our approach compared to
regular optimization fabrics, as described in [34]. The process of using regular optimization fabrics for
motion generation is described below on the left (based on [34]), and the process of motion generation
with DSI optimization fabrics is shown below on the right, with the key modifications highlighted in bold
font. Subsequently, we present a detailed explanation of each step involved in the DSI process and
delve deeper into the key modifications.

25
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R

O

O

O

(a) Regular optimization fabrics

R

O

O

O

(b) DSI optimization fabrics with 16 LiDAR rays

Figure 4.1: Point robot (green and denoted with letter R) in a scenario with three obstacles (red and denoted with letter O). The
lines show the LiDAR rays; at every endpoint of a LiDAR ray, a small obstacle is designed for the optimization fabric (shown as

the small yellow spheres). Left (a) shows regular optimization fabrics, and right (b) shows direct sensor integrated (DSI)
optimization fabrics.

Motion generation w. regular optimization fabrics:

1. Composition of optimization fabric:

(a) Design components for desired behav-
iors, such as collision avoidance and
goal guiding, and set these as leaf
nodes.

2. Computing motion policy at runtime:

(a) Obtain all obstacle sizes and shapes
from a perception pipeline (red spheres
in Fig. 4.1a).

(b) Update the leaf nodes with the current
state and obstacle information.

(c) Pull the leaf nodes back to the configu-
ration space of the root node using the
pullback operation.

(d) Sum the pulled-back leaf nodes at the
root using the summation operation.

(e) Resolve the root node for a motion pol-
icy.

(f) Feed the motion policy as input for a
robot’s low-level controllers.

Motion generation w. DSI optimization fabrics:

1. Composition of optimization fabric:

(a) Design components for desired behav-
iors, such as collision avoidance and
goal guiding, and set these as leaf
nodes [4.2.1].

(b) Pull the leaf nodes back to the configu-
ration space of the root node using the
pullback operation [4.2.2].

(c) Sum the pulled-back leaf nodes at the
root using the summation operation and
create a symbolic root node, allowing
runtime parameter adjusting [4.2.3].

2. Computing motion policy at runtime [4.2.4]:

(a) Obtain raw sensor data output and
convert it to relative positions (yellow
spheres in Fig. 4.1b).

(b) Update the symbolic root node with
the current state and the relative posi-
tions.

(c) Resolve the root node for a motion pol-
icy.

(d) Feed the motion policy as input for a
robot’s low-level controllers.

There are three main modifications between the two processes. First, the DSI optimization fabric is
entirely composed before runtime using symbolic fabrics [40], which allows us to create placeholder
collision-avoiding components. Second, the placeholder collision-avoiding components are designed
with DSI in mind, creating a component for every relative position instead of a component for every real
obstacle. Last, the relative positions are obtained with a basic conversion of raw sensor data output,
removing the need for a perception pipeline that detects all obstacles.
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4.2. Method description
This section provides a detailed description of each step in our method, including the design of fabric
components, the utilization of symbolic fabrics, and the creation of collision-avoiding components.

4.2.1. Designing fabric components
Optimization fabric components are designed for specific robot behaviors. A tree structure of these com-
ponents as leaf nodes are built to create an optimization fabrics tree, and adjusting a single component
requires this optimization fabrics tree structure to be rebuilt. Changing components is necessary to
tune behavior or to adjust collision-avoiding components. Whenever a perception pipeline perceives a
new obstacle, a collision-avoiding component has to be created, and the optimization fabrics tree struc-
ture is modified. This is typically not an issue since optimization fabrics are computationally efficient.
However, DSI optimization fabrics require new collision-avoiding components for all new obstacles at
every time step, which would result in rebuilding the entire optimization fabric tree at every time step
with potentially hundreds or thousands of these components.

We prevent this by utilizing symbolic fabrics, which allows us to adjust individual parameters at run-
time, allowing for higher planning frequencies [40]. The optimization fabric tree is built before runtime
as a symbolic expression, and sensor data is directly integrated into the expression at runtime. We
utilize symbolic optimization fabric components for base inertia, collision avoidance, goal guiding, and
speed control to design reactive robot behavior. These components are described below.

a) Basic inertia: The root node is designed using a base inertia geometry as a starting point, which
includes a non-zero energy priority tensor to ensure that the system has a mass at all moments while
all other parts of the optimization fabric have zero priority. The base inertia geometry, denoted as
h2b(x, ẋ), is defined using an energy tensorMeb, based on a Finsler energy Leb, given by:

h2b(x, ẋ) = 0 (4.1)

Meb = ∂2
q̇q̇Leb (4.2)

Leb =
λg

2q̇T q̇
(4.3)

b) Collision avoidance: Symbolic fabrics are a key component of our approach as they enable the
creation of collision-avoiding components for each obstacle before runtime. The number of components
required depends on the sensor resolution, with a placeholder component created for each data point
generated by the sensor. In our method, obstacles are represented as small spheres since they are
easily defined mathematically and generalize well with other distance-providing sensors. The sphere’s
position is described by the distance the sensor provides, while the radius is arbitrarily set to a value
that acts as an additional safety boundary, providing more space around the real-world obstacle.

We construct a collision-avoidance component by employing a differential map described by Equation
4.4. This map describes the distance between the robot and an obstacle and allows us to generate
a potential function, as specified in Equation 4.5. Subsequently, utilizing the potential function, we
establish a collision-avoidance geometry, denoted by Equation 4.6.

xobstacle = ϕ(q) =
||qrobot − qobstacle||
rrobot + robstacle

− 1 (4.4)

ψo(x, ẋ) =
1

xo
(4.5)

h2o(x, ẋ) = λoẋ
2∂xψo (4.6)

To ensure appropriate prioritization of this geometry, an associated energy tensor, represented by
Equation 4.7, is introduced. This energy tensor is based on the Finsler energy expression defined in
Equation 4.8.
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Meo = ∂2
ẋẋLeo (4.7)

Leo =
ẋ2

2x
(4.8)

Both q and qobs are defined and kept symbolic until runtime. At runtime, the pulled back and weighted
symbolic root node, containing the obstacle components, is given the configuration state and the abso-
lute positions of the sphere obstacles.

c) Goal guiding: A goal-guiding component is introduced to facilitate goal-reaching behavior. In this
context, we incorporate a goal-reaching geometry accompanied by a priority metric derived from a
Finsler energy. The potential function for goal-reaching behavior is directly obtained from the differential
map described by Equation 4.9, which characterizes the distance between the robot and the desired
goal. By leveraging this potential function, we establish a goal-reaching geometry denoted by Equation
4.10. To ensure appropriate prioritization of this geometry, an associated energy tensor, represented
by Equation 4.11, is introduced. This energy tensor is based on the Finsler energy expression given in
Equation 4.12.

ψg(q, q̇) = xg = |qrobot − qgoal| (4.9)

h2g(q, q̇) = λgẋ
2
g∂qψg (4.10)

Meg = ∂2
ẋẋLeg (4.11)

Leg = ẋ2
gxg (4.12)

d) Speed control: Combining all of the above components will result in robot behavior that only con-
verges when damped and usually exhibits non-constant end-effector speed [36]. Converging robot
behavior is achievable with constant damping; however, enhanced damping known as speed control
[36] is preferred. Speed control ensures convergence and enables us to control the desired speed
behavior. We use the symbolic speed control described in [40]. After combining and weighing all the
fabric components, the motion policy q̈ can be computed. With speed control, we add the speed control
term q̈s to the motion policy. The speed control term is defined as

q̈s = αexq̇ − βq̇ (4.13)

The term αex maintains constant execution energy and consists of the weighted sum of two parts. One
part with goal attraction αψex, and one part without goal attraction α0

ex. It is computed with the following
equation

αex = sη(Lex)α0
ex + (1− sη(Lex))αex (4.14)

The damping term β is computed as

β = sβ(q)Bmax +Bmin +max(0, αex − αLe
) (4.15)

With Bmax and Bmax as the upper and lower damping values and αLe
as the constant system energy

coefficient. sβ and sη are switching functions, parameterized with the following equations [40]

sβ(q) = 0.5 (tanh−αβ(||q|| − rshift)) + 1 (4.16)

sη(Lex) = 0.5 (tanh(−0.5Lex(1− vex)− 0.5) + 1) (4.17)
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With the variable rshift, we can control at what distance to the goal the maximal damping βmax is
enabled. With another variable αβ , we control the rate of change of this transition fromminimal damping
βmin. The term Lex is the execution energy typically designed as a simple kinetic energy. We can
provide a desired velocity with the variable vex. See [34] for a detailed description of speed control or
[40] for more information about symbolic speed control.

4.2.2. Pullback operation
Using the Jacobian, the pullback operation transforms a spec expressed on the codomain X to the
configuration space domain Q. With the differentiable map ϕ defined as ϕ : Q → X and x = ϕ(q), the
pullback operation is defined as [34]

pullϕ(M ,f)X = (JTMJ ,JT (f +MJ̇q̇))Q (4.18)

4.2.3. Summation and symbolic root node
a) Summation: Multiple components expressed on the same domain, which is achieved with the pull-
back operation, are added together into one component using the summation operation [34]

(M1,f1)X + (M2,f2)X = (M1 +M2,f1 + f2)X (4.19)

b) Symbolic root node: The DSI optimization fabric used in the experiments consists of several com-
ponents, including base inertia, goal-guiding, collision-avoiding, and speed control components, as
described in the first step. Finally, we describe the pulled-back and weighted symbolic root node, com-
bining all the behavior components into one node, which can be used as the motion policy.

c) Combined and weighted symbolic root node: All geometries are pulled back to the root configuration
space and combined using the priority metrics. The Lagrangian energies are summed as

Le = Leb + Leg +
n_rays∑

o

Leo (4.20)

Then, using the summed Lagrangian energy, the system metric is calculated as

Me = ∂2
ẋẋLe (4.21)

With n_rays being the number of LiDAR rays. Using the system’s combined metric, the total weighted
geometry can be calculated as follows

q̈ = −M−1
e

(
Mebh2b −

(
JTMegJ̇ q̇ + J

TMegh2g

)
−

(
n_rays∑

o

JTMeoJ̇ q̇ + J
TMeoh2o

))
(4.22)

4.2.4. Computing motion policy at runtime
The process of computing a motion policy at runtime using DSI optimization fabrics is depicted in Fig.
4.2. The top part of the figure illustrates the steps described in the previous section. The bottom part
of the figure outlines the process of computing a motion policy at runtime, which consists of three main
steps.

First, the raw data output from a LiDAR sensor is converted and provided as input to the symbolic
root node. This step ensures the appropriate integration of sensor information into the optimization
framework. Conversion of the raw sensor data is required as the symbolic components designed for
collision-avoiding behavior need to be provided with the absolute positions of the obstacles. With
DSI optimization fabrics, we utilize the raw output of a LiDAR sensor, which are measured distances
(xobstacle) at certain angles (αobstacle). We use the distance and angle to compute a relative position for
each LiDAR ray endpoint; by adding the absolute position of the robot, we obtain the absolute LiDAR
ray obstacles positions, these are the input for qobstacle in Eq. 4.4. For example, in Fig. 4.1b, the LiDAR
sensor would output the raw data containing 16 angles and 16 distances. Using basic trigonometry as
in Eq. 4.23, we calculate the absolute positions of the 16 yellow sphere obstacles. These positions are
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fed into the symbolic root node, shown in Fig. 4.2 by the arrow connecting the LiDAR and symbolic
root node.

qobstacle =

[
cos(αobstacle)
sin(αobstacle)

]
xobstacle + qrobot (4.23)

Second, the symbolic root node is updated with the current configuration of the robot. Additionally,
the symbolic goal node variables within the root node can be adjusted anytime, allowing for dynamic
modifications to the robot’s goal configuration. Finally, the symbolic root node is resolved to generate
a motion policy, which is then transferred to the robot for execution.

Figure 4.2: Overview of the motion generation process with DSI optimization fabrics.

4.3. Scaling of DSI optimization fabrics
The proposed method is an alternative to formally detecting obstacles and using that information to
create collision-avoidance components with corresponding energies. Our method represents the real
physical obstacles by multiple small surface spheres with a small radius. This results in multiple opti-
mization fabric components for one real physical obstacle instead of only one. This is a fundamental
adjustment to the equations used for motion generation, so the resulting behavior is possibly affected.
Using DSI or regular optimization fabrics should result in similar behavior in similar scenarios. The
multiple collision-avoidance components need to be adjusted accordingly to obtain similar behavior.

We propose a simplified scenario to investigate the analytical influence of utilizing multiple collision-
avoidance components for one obstacle. Fig. 4.3a depicts a scenario with a point robot and a single
obstacle using direct sensor integration. Depending on the sensor resolution, multiple LiDAR rays hit
the obstacle, and these relative positions are used for collision-avoidance components. We simplify
this scenario by bundling all the LiDAR rays hitting the obstacle, creating multiple collision-avoidance
components at a single relative position, as shown in Fig. 4.3b.



4.3. Scaling of DSI optimization fabrics 31

R

O

(a) Multiple LiDAR rays hitting a single obstacle

R

nobs

O

(b) Simplified scenario, nobs number of rays hitting the obstacle
at a single point

Figure 4.3: Point robot (green and denoted with letter R) in a scenario with a single obstacle (red and denoted with letter O).
The lines show the LiDAR rays; at every endpoint of a LiDAR ray, a small obstacle is designed for the optimization fabric

(shown as the small yellow spheres). Left (a) shows how DSI optimization fabrics perceive the obstacle. The right (b) shows
the scenario simplified with all rays perceiving the obstacle at a single point.

The simplification results in multiple similar collision-avoidance components. Since the components
are identical, the summation can be simplified by multiplying the component by the number of rays
instead of creating one component for each separate ray and summing the components. We create a
single collision-avoidance component with a geometry and an energy, as we did similarly in the previous
section.

First, we create the collision-avoidance geometry using the collision-avoidance differential map xo de-
fined in Eq. 4.4. This is the basic geometry used for all obstacles.

h2o(x, ẋ) = λoẋ
2∂x

1

xo
(4.24)

Then, we design a Lagrangian energy and a metric to weigh the single components.

Leo =
ẋ2

2x
(4.25)

Meo = ∂2
ẋẋLeo (4.26)

The total Lagrangian energy is a summation of all energies; in the simplified case, the summation can
be replaced by a multiplication of the energy by the total number of obstacles or rays.

Le = nobsLeo (4.27)

Me = ∂2
ẋẋLe (4.28)

Me = nobs∂
2
ẋẋLeo (4.29)

The motion policy q̈ can be derived using the above equations. The summation of the pulled-back
collision-avoidance components can again be replaced by a simple multiplication of the term by the total
number of obstacles or rays. The ratio of the total weighted system motion policy with nobs collision-
avoidance components over 1 collision-avoidance component is given by:

q̈nobs

q̈1obs
=

−
(
nobs∂

2
ẋẋLeo

)−1
(
nobs

(
−JTMeoJ̇ q̇ − JTMeoh2o

))
− (∂2

ẋẋLeo)
−1
(
−JTMeoJ̇ q̇ − JTMeoh2o

) = 1 (4.30)

This simplified scenario, with only collision-avoidance components and every obstacle having a similar
position, results in a motion policy ratio of 1. The inverse of the summed metric is multiplied by the
pulled-back and summed geometry; the number of obstacles or rays scales both, but the effect on the
motion policy is canceled out due to the inverse multiplication.





5
Experiments & Results

This chapter evaluates the proposed DSI optimization fabrics method through a series of experiments.
The first three experiments are conducted in a simulated environment using a point robot equipped with
a LiDAR sensor, while the fourth experiment involves a qualitative study using a real-world robot with
an actual LiDAR sensor.

The experiment setup is described in detail in Section 5.1, providing insights into the configurations
and conditions employed. In Section 5.1.1, we introduce the performance metrics utilized to assess
the effectiveness and efficiency of the method. Section 5.1.2 formulates a hypothesis based on the
research question of the thesis, which serves as the foundation for the subsequent experiments.

The first experiment, presented in Section 5.2, aims to empirically investigate the scaling behavior of
the collision-avoidance components by comparing the scaled and unscaled methods. Experiment 2,
discussed in Section 5.3.2, focuses on examining the influence of the number of LiDAR rays through an
ablation study. In the third set of experiments, presented in Section 5.4, we compare the performance
of the direct sensor integrated optimization fabrics to regular optimization fabrics, where the obstacle
locations are known. Finally, in Experiment 4 (Section 5.5), we demonstrate a real-world application of
direct sensor integrated fabrics.

Throughout these experiments, we aim to validate the efficacy and applicability of the DSI optimization
fabrics method, providing valuable insights and practical implications for its potential use in various
robotic applications.

5.1. Experiment setup
The simulation environment employs a point robot with a 2-dimensional LiDAR sensor, shown in Fig.
5.1. The point robot is a 2-degree-of-freedom holonomic robot, and the LiDAR sensor is mounted on
top of the robot. The LiDAR sensor provides a distance and angle measurement for each ray; these
are translated into positions relative to the robot. The relative positions are modeled as small sphere
obstacles with a radius of r = 0.1m, visible as the yellow spheres in Fig. 5.1. As mentioned in 4.2.1, we
want the radius to be small. To be consistent, we selected 0.1 m for all experiments. Setting the radius
to a higher value would increase the safety margin, which we do not desire for these experiments as
we are deliberately testing the limits of the method.

33
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(a) Side view of the simulation environment (b) Top view of the simulation
environment

Figure 5.1: Simulation environment examples: (a) side view and (b) top view. The white disk in the center represents the point
robot. Obstacles are depicted as red spheres, and LiDAR rays as red horizontal cylinders. LiDAR detections are shown as

yellow spheres.

All experiments are performed with N = 30 randomized runs. The performance metrics described
in 5.1.1 are used to assess the performance in all experiments. The randomization and environment
details for each scenario are described in the corresponding sections. Each method is evaluated with
identical randomized runs, and the performance metrics are only assessed for successful runs that
reach the goal without collision. The performance metrics for composition and solving time are evalu-
ated only in the first scenario of experiment 2 (5.3.1), as subsequent experiments do not impact these
metrics.

5.1.1. Performance metrics
This study uses a set of performance metrics to evaluate the method. Minimal clearance is measured
to track the minimum distance between the robot and obstacles using the following equation with n as
the total number of obstacles and T as the total number of simulation time steps.

Minimal Clearance = min
qd∈Qd

qobs∈Qobs

{||qd − qobs|| − (rrobot + robs)}

Qd = {q0, . . . , qT }
Qobs = {qobs1 , . . . , qobsn}

(5.1)

Time-to-goal and path length are measured to compare the total time to reach the goal and the trajectory
length with the following two equations. The tgoal reached variable is the time at which the robot has
reached the goal, tstart the time at the start of the simulation, and T is the total number of simulation
time steps again.

Time-to-Goal = tgoal reached − tstart

Path Length =

T∑
d=1

||qd − qd−1||
(5.2)

Success, failure-to-reach, and collision rates are tracked to assess if the method can reach the goal,
becomes stuck in a local minimum, or collides with an obstacle. If the robot has not reached the goal
in time, a value of −2 is returned; if the clearance is lower than 0, a value of −1 is returned; otherwise,
we return 1 and consider it a successful run.
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Succes =


−2, if the goal is not reached
−1, if Minimal Clearance < 0

1, otherwise
(5.3)

Composition time and solving time are measured to analyze the influence of increasing the number of
LiDAR rays on time required to build the optimization fabric and the time needed to solve it at runtime.
The composition and solving time correspond to steps one and two in the motion generation process
described above.

5.1.2. Hypothesis
The method introduced in this thesis utilizes optimization fabrics with direct sensor integration. We
first want to understand how direct sensor integration impacts the method of optimization fabrics. After
that, we want to evaluate how our method compares to the baseline method of regular optimization
fabrics with a perfect perception pipeline. The hypothesis introduced serves as the foundation for the
experiments conducted in the following chapter; it is based on several key statements:

1. Using a varying number of LiDAR rays will result in similar collision-avoidance behavior due to
the scaling ratio of the motion policy.

2. Direct integration of sensor data into optimization fabrics for reactive robot control is feasible in
terms of computational complexity and performance metrics.

3. An increase in the number of LiDAR rays will lead to an improvement in performance metrics,
e.g., higher success ratio, shorter path length, and less time-to-goal.

4. Direct sensor integrated fabrics are expected to show worse performance, e.g., lower success
ratio, longer path length, and more time-to-goal, compared to regular optimization fabrics with a
perfect perception pipeline.

In the upcoming experiments, the hypothesis will be verified. The first statement is tested in experiment
1 (5.2). Experiment 2 in 5.3.2 tests the second and third parts of the hypothesis through an ablation
study. The comparison between DSI optimization fabrics and regular optimization fabrics is performed
in Experiment 3 in 5.4; this experiment will examine the last statement of the hypothesis.

5.2. Experiment 1: Scaling factor

Figure 5.2: Setup for experiment 1.

In this experiment, we will verify our theoretical finding from section 4.3
by comparing direct sensor-integrated optimization fabrics with and
without a scaling factor. We introduce a scaling factor that adjusts λo
inside the collision-avoidance geometry (4.24) by dividing it by the to-
tal number of LiDAR rays as follows: h2o(x, ẋ) =

λo

nrays
ẋ2∂x

1
xo
. The

robot is placed at a distance of 3.5 m from an obstacle with a radius
of r = 0.5 m and an initial velocity of 0.3 m/s toward the obstacle. No
goal-guiding geometry is used; the robot moves toward the obstacle
due to the initial velocity. An example of the setup can be seen in Fig.
5.2. The following number of LiDAR rays are tested: 1, 32, 64, 128,
and 256. The clearance metric is used to assess how the scaling fac-
tor influences performance. This experiment tests the first statement
of the hypothesis, which states that using no scaling creates similar
collision-avoiding behavior with a varying number of LiDAR rays.
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5.2.1. Results
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(a) Clearance evaluation without scaling factor
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(b) Clearance evaluation with scaling factor

Figure 5.3: Clearance without scaling factor (a) and with (b)

The clearance metric results for this experiment are shown in Fig. 5.3.
Both (a) and (b) show the clearance metric for a varying number of LiDAR rays, (a) without any scaling
and (b) with a scaling factor.

5.2.2. Discussion
The results have not been able to confirm the first statement of the hypothesis. Using no scaling results
in unpredictable behavior, as seen in the clearance metric. Utilizing a scaling factor that scales the
collision-avoidance components by the total number of LiDAR rays creates stable behavior independent
of the sensor resolution; using a scaling factor results in a similar clearance for all LiDAR rays used. In
all subsequent experiments, this scaling factor will be utilized.

5.3. Experiment 2: Ablation study on sensor resolution
In this ablation study, we assess the viability of our approach and investigate the impact of the number
of LiDAR rays on performance, testing the second and third statements of the hypothesis. A total of
three different and randomized scenarios are used. First, all three experiment scenarios are described
in more detail. Second, the results of the first scenario are presented. Third, the combined results of
the second and third scenarios are presented, and finally, the results are discussed.

5.3.1. Scenario A: Room environment
The robot is tested in a room scenario with the following number of LiDAR rays: 1, 2, 4, 8, 16, 32, 64,
128, 256, 512, 1024, and 2048. A total of N = 30 trials is conducted for each number of rays. The
robot starts at one end of the room and must reach the goal at the opposite end at a distance of 5 ∼ 7
m while navigating around ten randomly placed spherical obstacles with a radius of 0.4m. An example
of the setup can be seen in Fig. 5.4.
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Figure 5.4: Setup for experiment 2A. The initial position is shown on the bottom, and the goal position is shown on the top left
as the green sphere. In between are ten randomly placed spherical obstacles.

5.3.2. Scenario B: Corridor environment with global planner
In this scenario, we focus on a reduced set of LiDAR rays, specifically 4, 16, 64, 256, and 512, com-
pared to the first experiment. The reason for choosing a reduced set of LiDAR rays is that this and
subsequent experiments do not explore the composition and solving time aspects. Preliminary results
have indicated that a low number of LiDAR rays is inadequate for achieving the goal, and increasing
the number beyond 512 does not significantly impact the performance metrics. Hence, we select the
previous set for further investigation.

In this scenario, we opt for a corridor environment to introduce a more significant challenge for our
method. The corridor setup ensures no randomized runs where the robot can easily reach the goal
without obstacles. Three obstacles, each with a radius of r = 0.4 m, are randomly placed within
separate corridor segments. Figure 5.5 provides an example of the experimental setup.

To guide the robot through the corridor, we employ a global motion planner in the form of a simple spline
modeled along the corridor. This global planner, depicted by the green line in the visualization, does
not consider the presence of obstacles.

Figure 5.5: Setup for experiment 2B. The initial position is shown on the left, and the goal position is shown on the right as the
green sphere. In between are three randomly placed spherical obstacles, in each segment one. The spline used as a global

planner is shown by the green line.

5.3.3. Scenario C: Obstacle size
In this experiment, the impact of obstacle size is examined. The previous scenario changed the setup,
but the obstacle shape and type remained the same. To assess performance with a different kind of
obstacle, relatively small cylinder obstacles are used in this scenario. The setup consists of a single
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corridor with 16 randomly placed cylinder obstacles with a radius of r = 0.025 m between the starting
and goal positions with a total distance of 15m. No global motion planner is used since the environment
consists only of a single corridor. An example of the experimental setup is shown in Fig. 5.6.

Figure 5.6: Setup for experiment 2C. The initial position is shown in the bottom left, and the goal position is shown in the top
right as the green sphere. In between are 16 randomly placed cylindrical obstacles.

5.3.4. Results scenario A
The composition and solving time are fundamental aspects of the DSI motion generation process. The
composition time represents the duration required to entirely compose the optimization fabric before
runtime, while the solving time refers to the time necessary to compute a motion policy at runtime.

The evaluation of composition time differed from other performance metrics due to the nature of the
optimization fabric, which was composed once and used for all runs. Consequently, there was only one
composition time per ray for evaluation. We repeated the composition process four more times to obtain
a reliable estimate and calculated the mean composition time. The results, depicted in the left section
of Fig. 5.7, indicate that the composition of the fabric with a single LiDAR ray takes approximately 0.06
s. However, this time increases to 1330 s (equivalent to 22 minutes) exponentially when employing
2048 rays.

The evaluation of solving time followed a different approach. We computed the mean solving time per
trial and then determined the average solving time across all trials for a specific number of LiDAR rays.
The resulting mean solving time, shown in the right section of Fig. 5.7, exhibits a linear increase with
the number of LiDAR rays. The mean solving time remains below 0.01 s for up to 512 LiDAR rays. With
the maximum number of LiDAR rays, an average solving time of 0.043 s (corresponding to a frequency
of 23 Hz) is achieved.

Figure 5.7: The mean composition time (left) and mean solving time (right) in seconds, with the number of LiDAR rays
displayed on the x-axes.
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Figure 5.8 presents the performance metrics for scenario A. The figure in the top row on the left il-
lustrates the ratio of successful, not reached, and collided runs for each configuration of LiDAR rays.
This provides insights into the effectiveness of different ray configurations in achieving the goal. The
minimum clearance between the robot and all obstacles is depicted on the top row on the right. The
bottom row of the figure displays the time-to-goal and path-length performance metrics. These metrics
provide information on the efficiency and effectiveness of the robot’s navigation in terms of reaching
the goal and the distance traveled along the path, respectively.
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(c) Time-to-Goal metric evaluation for successful
experiments
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Figure 5.8: Metrics evaluation for scenario A (room).

5.3.5. Results scenario B & C
Fig. 5.9 displays the performance metrics for scenarios B and C. Scenarios B and C are shown in the
left and right columns, respectively. Each row shows a performance metric. The first row displays the
ratio of successful, not reached, and collided runs for each number of LiDAR rays used. The minimum
clearance between the robot and all obstacles can be seen in the second row. The third and final rows
show the time-to-goal and path-length performance metrics.

Due to the low success rate with four rays, no data is available for other performance metrics in scenar-
ios B and C. Also, with 16 rays, the success rate is low; hence, the performance metrics are evaluated
on fewer cases.
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Figure 5.9: Metrics evaluation for scenarios B and C. The left column shows results for scenario B (corridor with a global
planner), and the right column for scenario C (obstacle size).
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5.3.6. Discussion
The results indicate that direct sensor integration for optimization fabrics is a feasible method in terms
of solving time. A frequency of 23 Hz was achieved even with the maximum number of rays (2048),
which is a higher sensor resolution than required in most use cases. However, it should be noted that
robots with more degrees of freedom will result in increased solving times. Although the composition
time increases with the number of rays, it is possible to compose the optimization fabric once and save
it for future use.

The experiments demonstrate that the minimally required number of LiDAR rays to achieve a high
success rate depends on the complexity of the scenario. In scenario A, the robot has a low success
rate with less than 16 rays. Using between 16 to 2048 rays, the success rate remains constant at an
average of 23 successful runs out of 30, resulting in a success rate of 0.77. Fig. 5.10 illustrates three
instances of failure using 128 LiDAR rays. These failures occur due to local minima created by narrow
passages in the environment. When moving toward a narrow passage, the robot either decelerates
too excessively to reach the goal on time, gets stuck, or collides. The second scenario shows similar
success performance; using only four rays, the robot had a success rate of 0.1. With 16 rays or more,
the success rate is high, averaging 0.96. In scenario C, using four rays, the robot has a success rate of
0.07; this improves to 0.3 with 16 rays and reaches 0.7 with 64 rays or more. Utilizing less than 32 rays
provides insufficient information from the environment, as demonstrated by Fig. 5.1a, which shows a
point robot with 16 rays. This sensor resolution is sufficient to detect the presence of obstacles of this
size, but significant parts of the obstacles remain unknown to the robot. In scenario C, using less than
32 rays even results in not detecting some obstacles at all. However, scenario C also shows that DSI
optimization fabrics can generalize over different types of obstacles, which regular optimization fabrics
cannot do without fundamentally adjusting the design.

(a) Too slow through passage (b) Stuck in local minimum (c) Collision in local minimum

Figure 5.10: Three failure examples from scenario A with 128 LiDAR rays.

The success rate in all scenarios with less than 16 rays is low; this influences the other metrics as
these are only evaluated for successful runs. In most cases, the runs are successful because these
randomized environments make the goal easy to reach. Therefore, the time-to-goal and path length
metrics show low values. In scenario B, due to using a global motion planner in this experiment, the
time-to-goal and path length metrics are not showing a performance increase since the robot is already
capable of following the global motion path with 16 rays. Therefore, these two metrics are influenced
mainly by the path and time parametrization of the global motion plan itself. The local motion planner
can slightly increase or decrease the path length or the time-to-goal, but the effect in this experiment is
minimal. The results of using smaller obstacles emphasize the need for a sufficient number of LiDAR
rays. In scenario B, 16 rays were adequate, but in scenario C, a success ratio of only 0.3 was achieved
with 16 rays.

The experiments verify the second statement of the hypothesis, the direct sensor integrated optimiza-
tion fabricsmethod is feasible for reactive control in terms of computational complexity and performance.
A high solving frequency is obtainable even with a high sensor resolution. Using sufficient LiDAR rays
results in satisfactory performance for reactive robot control. The results indicate that the number of
LiDAR rays required depends on the complexity of the environment. Utilizing more than the minimally
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required number of LiDAR rays does not necessarily improve clearance, time-to-goal, and path length
performance. Therefore, the third statement of the hypothesis is confirmed but with a restriction.

5.4. Experiment 3: DSI fabrics vs. regular fabrics
In this experiment, we compare the performance of our direct sensor integrated (DSI) optimization fab-
rics to regular optimization fabrics, verifying the last statement of the hypothesis. Based on the positive
performance observed in previous experiments, we have chosen to utilize the DSI fabric method with
64 rays. The regular optimization fabric is given obstacle information such as position and size at each
time step through a simulated perception pipeline. The following two sections describe two different
randomized scenarios in more detail. After that, the combined results are presented together with a
discussion.

5.4.1. Scenario A: Static obstacles
This scenario consists of a plane with six randomly placed static sphere obstacles, with a radius of
r = 0.4 m, between the starting and goal positions, with a total distance of 14 m. Walls were not used
for practical reasons, as the regular fabric method would need to be enhanced to handle such obstacles.
Thus, the two methods are compared using sphere obstacles in the environment. An example of the
experimental setup is shown in Fig. 5.11.

Figure 5.11: Setup for experiment 3A. The initial position is shown in the bottom left, and the goal position is shown in the top
right as the green sphere. In between are six randomly placed obstacles.

5.4.2. Scenario B: Moving obstacles
This scenario features ten randomly placed moving spheres with a radius of r = 0.4m; the position and
velocity are randomized. An example of the experimental setup can be found in Fig. 5.12. The robot
is initially assigned a velocity of 0.1 m/s towards the goal position to prevent collisions with nearby
moving obstacles at the start. This non-zero velocity ensures that the robot can safely navigate the
environment without encountering immediate crashes with obstacles nearby and moving toward the
robot at the beginning of the experiment.
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Figure 5.12: Setup for experiment 3B. The initial position is shown in the bottom left, and the goal position is shown in the top
right as the green sphere. In between are ten randomly placed moving obstacles. Previous positions of the robot, moving

obstacles, and detections are shown by transparent visualizations.

5.4.3. Results
Figure 5.13 provides a comprehensive overview of the performance metrics for the two experiments.
The left and right columns represent the first and second scenarios, respectively, while each row cor-
responds to a specific performance metric.

In the first scenario, both methods achieved a 100% success ratio in all 30 trials, as depicted in Figure
5.13a. The DSI method exhibited a slightly lower clearance than the regular fabric, as illustrated in
Figure 5.13c. The time-to-goal metric (Figure 5.13e) showed minimal differences between the two
methods. Furthermore, both methods demonstrated comparable path lengths, as shown in Figure
5.13g.

Both methods achieved a success ratio of 0.93 in the second scenario, as depicted in Figure 5.13b.
Notably, the DSI method maintained a higher clearance than the regular fabric in the presence of
moving obstacles, as highlighted in Figure 5.13d. The time-to-goal and path length metrics exhibited
similar performance between both methods, as shown in Figure 5.13f and Figure 5.13h, respectively.
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Figure 5.13: Metrics evaluation for experiment 3; comparing regular fabrics with direct sensor integrated (DSI) fabrics utilizing
64 LiDAR rays. The left column shows results for scenario A with static obstacles, and the right column shows results for

scenario B with moving obstacles.
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5.4.4. Discussion
In the first scenario, both methods demonstrate successful goal achievement in all trials. However,
in the second scenario, where moving obstacles are present, both methods exhibit a slightly lower
success ratio than the previous scenario. Out of the total of 60 runs, there were four failure cases.
The figures below illustrate these failure instances. Each figure provides a top view of the scenario,
including the goal, obstacles, and robots. The movement of robots and obstacles is represented by
displaying their previous positions in lighter colors. The first figure (Figure 5.14a) depicts a scenario
where the regular fabric fails due to a collision while the DSI fabric successfully reaches the goal. In
the second figure (Figure 5.14b), the regular fabric reaches the goal while the DSI fabric fails to reach
it in time. The DSI fabric moves toward the top right, with three obstacles moving similarly. Although
the robot does not collide, it moves along with the obstacles until the maximum time limit is reached.
In this case, the robot should have moved backward, highlighting an example where a local minimum
can result in a longer trajectory than necessary. This problem can be addressed by implementing a
periodic global planner. The last figure (Figure 5.15) demonstrates a scenario where both the regular
and DSI fabric fail due to a collision with an obstacle. In all collision cases, the robot slows down as the
obstacles approach. However, as the robot’s velocity decreases, the collision-avoidance components
have a diminished effect on the robot’s behavior. These specific scenarios show that the robot reacts
too slowly to the obstacles. This issue arises from the current implementation of optimization fabrics,
which do not consider obstacle dynamics. In the existing approach, the position of obstacles at each
time step is used to compute a motion policy. When the robot’s velocity is very low, the collision-
avoiding component activates too late. An extension of optimization fabrics called dynamic fabrics [42]
addresses this problem by incorporating the dynamics of the environment. This extension considers
the velocity of the obstacles, offering a solution to the collision examples mentioned above.

(a) Regular fabric collision with two obstacles (b) DSI fabric failure to reach the goal

Figure 5.14: Top view of failures from experiment 3 with moving obstacles of regular fabric (a) and DSI fabric (b).

Figure 5.15: Top view of the regular and DSI
fabric collision.

Both methods continue to demonstrate comparable perfor-
mance metrics. The regular optimization fabric exhibits a
slightly higher clearance in the first scenario. In contrast, in
the presence of moving obstacles, the DSI fabric maintains a
higher clearance than the regular fabric. These differences in
clearance are minor and can be attributed to the tuning of both
methods. Both methods perform similarly regarding the time-
to-goal and path length metrics in both scenarios. However,
the DSI fabric method shows a slightly lower time-to-goal and
higher path length when moving obstacles are present. As
a result, the DSI fabric method achieves a higher average
velocity. The collision-avoidance components have a more
significant impact with increased velocity, leading to a higher
clearance.
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5.5. Experiment 4: Real-world showcase
In this experiment, we present a real-world showcase of our method and discuss the observed perfor-
mance. By experimenting with a real-world setting, we aim to assess our method’s practical viability
and effectiveness in addressing the challenges and complexities encountered outside of simulation
environments. Sim-to-real transfer, which involves transitioning from simulated scenarios to real-world
implementation, is often challenging in robotics research. However, one advantage of optimization fab-
rics is that sim-to-real transfer is easily facilitated, allowing for a smoother integration of the method into
real-world applications. Apart from the transfer of the optimization fabrics method, additional challenges
are associated with the sim-to-real transfer, which will be discussed in the final section.

5.5.1. Experiment Setup
The experiment involved testing ourmethod on a holonomic ground robot equippedwith a LiDAR sensor
[39]. The setup is illustrated in Figure 5.16. We utilized the ROS framework [31] to integrate the LiDAR
sensor with our DSI fabric method. Similar to the simulation experiments, we selected a subset of rays
from the LiDAR sensor for integration with the DSI fabric. We tested with 49, 90, and 190 rays for this
particular experiment, but the results presented below are based on utilizing 49 rays.

Figure 5.16: Setup for the real-world experiment in the retail store environment lab of AIRLab Delft [1], showing the ground
robot to the right and two random obstacles in the middle.

To facilitate localization, we employed the LiDAR sensor to create a map of the environment using the
gmapping ROS package [11]. The map was then used by the AMCL (Adaptive Monte Carlo Localiza-
tion) algorithm [9] to localize the robot within the map together with odometry data based on the wheels
encoder data, calculated using [24]. Our system’s complete source code and implementation details
will be publicly available for further reference and reproducibility [45].

5.5.2. Results
Figure 5.17 showcases the robot’s motion during the real-world experiment in one scenario. The sce-
nario demonstrates a simple showcase of our method with two obstacles between the robot and the
goal location. The figure illustrates the robot’s ability to navigate the environment using our DSI fabric
method. Despite not having an entire perception pipeline, the robot successfully avoids collision using
only the raw sensor data output from the LiDAR sensor.
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Figure 5.17: Motion of the robot during the real-world experiment in an environment with two obstacles. The robot’s initial
location is shown at the bottom, while the goal location is positioned at the top right.

5.5.3. Discussion
The discussion focuses on qualitative observations from the robot’s motion during the real-world show-
case and testing. Comparing the observed behavior in the real-world experiment and testing with the
results obtained from simulation experiments, we find that tuning the fabric parameters remains crucial
for achieving desired performance. However, due to the real-time nature of the experiments, parameter
tuning is a slower process than in simulation. As a result, we have not yet achieved the same level of
observed performance as in the simulation experiments.

In real-world experiments, several factors influence the performance of our method. One significant
factor is the presence of noise introduced by the localization methods. Unlike the simulation environ-
ment, where perfect knowledge of the robot’s position and velocity is available, real-world experiments
heavily rely on localization techniques that introduce noise. While this noise has minimal impact on
the collision-avoidance components, as the obstacle positions are relative to the robot’s position, it can
affect other crucial aspects of our method, including goal guidance components and speed control.

To address the challenge of providing accurate velocity commands to the robot, we encountered dif-
ficulties due to noisy localization. While the motion policy we provide to the robot is in the form of
acceleration, the robot requires velocity commands for control. Since obtaining a stable estimate of the
robot’s velocity was challenging, we opted to multiply the motion policy by the time step and provide it
as the velocity command. Improving the accuracy of the robot’s position and velocity estimates would
enable us to provide the integrated motion policy to the robot, which is expected to enhance overall
performance.

Additionally, the LiDAR sensor data in real-world experiments introduces additional noise that can im-
pact the performance of the collision-avoidance components. However, despite the presence of noise,
it is evident that the overall performance can still mostly be improved through further fine-tuning of the
optimization fabric parameters, enhancing localization techniques, and carefully selecting the appropri-
ate number of LiDAR rays.





6
Conclusion & Future work

This chapter marks the conclusion of the thesis, consolidating the key findings and contributions made
throughout the research. The study has introduced and evaluated the direct sensor integrated (DSI)
optimization fabrics method, showcasing its effectiveness in motion generation and collision avoidance.
The results obtained from the experiments have provided valuable insights into the performance of
the DSI method under various scenarios and conditions. Based on these findings, there are several
potential areas for future research and development.

6.1. Conclusion
In this thesis, we have adjusted the method of optimization fabrics to incorporate sensor data directly.
We show that our proposed method of DSI optimization fabrics is feasible in terms of computational
complexity and performance in various goal-reaching tasks. Our analytical analysis has shown that
direct sensor integration does not require scaling adjustments to the regular collision-avoidance equa-
tions. Our method eliminates the need for a complex perception pipeline while maintaining comparable
performance to the regular optimization fabrics approach that utilizes a perception pipeline.

We have performed multiple simulation experiments to verify the theoretical findings. First, we showed
that a scaling factor is required to adjust the collision-avoidance equations correctly. The empirically
found scaling factor has been used in all subsequent experiments. The second set of experiments has
shown that it is possible to directly integrate sensor data into optimization fabrics regarding computa-
tional complexity, achieving a frequency of 23 Hz even with the maximum sensor resolution of 2048
LiDAR rays. The results also indicate that the performance metrics of time-to-goal, total path length,
minimal clearance from obstacles, and success rate do not necessarily improve with an increase in
the number of LiDAR rays. Increasing the number of LiDAR rays up to a certain amount is crucial for
the robot to detect all obstacles and their shapes; increasing the number of rays past the minimally
required does not increase performance any further. The third set of experiments demonstrated that
our method achieved comparable performance with the regular optimization fabrics method using a
simulated perception pipeline that detected all obstacles. Contrary to initial expectations, our method
demonstrated comparable performance to the regular optimization fabric, defying the assumption of
potential underperformance. The performance metrics revealed minimal disparities between the two
approaches, with the most notable distinction observed in the clearance metric. In the scenario with
static obstacles, the regular method demonstrates higher clearance, while in the scenario with moving
obstacles, the DSI method shows a higher clearance. These findings highlight the robustness and ef-
fectiveness of our approach, as it successfully maintained comparable performance to the established
method while adapting to dynamic environments.

Our research has addressed the question of how to integrate sensor data into optimization fabrics
directly. Through our proposed method, which involves designing separate collision-avoiding behavior
components for every sensor data point and tuning the combined optimization fabric with a scaling
factor dependent on the sensor resolution, we have shown that it is possible to achieve comparable
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performance to regular optimization fabrics method without requiring a complex perception pipeline.

The main contribution of this thesis is introducing a novel method that uses optimization fabrics com-
bined with direct sensor integration. Specifically, this thesis has made the following contributions. First,
it presents an approach to adjust the optimization fabrics method to incorporate sensor data for collision
avoidance directly. Second, it proposes an empirically derived scaling factor for the collision-avoidance
equations. Third, the feasibility of DSI optimization fabrics is demonstrated through multiple simula-
tion experiments. In summary, our work provides a practical solution to the challenge of integrating
perception and motion planning, which can benefit a wide range of robotic applications in dynamic
environments.

6.2. Future work
While this study has provided valuable insights into the performance and capabilities of the DSI opti-
mization fabric method, several opportunities for future work can further enhance its applicability and
effectiveness.

6.2.1. Increased complexity environment & robot
One direction for future research is to investigate the application of the DSImethod in different real-world
environments and with robotic platforms of increased complexity. For example, testing the method with
non-holonomic robots with more degrees of freedom would present a more challenging and realistic
scenario. This would allow a more thorough evaluation of the method’s capabilities and limitations
in complex and dynamic environments. Furthermore, to improve the performance of the DSI method
in real-world experiments, it is essential to address the impact of localization noise to enhance the
accuracy of the robot’s position and velocity estimates. Fine-tuning the optimization fabric parameters
specifically for real-world scenarios and investigating different configurations of LiDAR rays can also
contribute to better collision-avoidance performance.

6.2.2. Higher resolution LiDAR
In this study, a two-dimensional LiDAR sensor was used for perception. Exploring using higher resolu-
tion LiDAR sensors, such as three-dimensional LiDAR, can enable the method to handle more complex
environments and provide more detailed perception information. This can lead to improvedmotion plan-
ning and collision avoidance capabilities.

6.2.3. Processing of LiDAR data
While the proposed method aims to eliminate the need for a traditional perception pipeline, future re-
search could explore incorporating a simplified perception pipeline that processes LiDAR data to pro-
vide additional context and information. This could strike a balance between the simplicity of the DSI
approach and the benefits of processed sensor data, potentially improving the overall performance and
adaptability of the system.

6.2.4. Other sensor types
Expanding the integration of additional sensors and sensor modalities can enhance the perception
capabilities of the system. Exploring the fusion of LiDAR data with other sensor types, such as depth
cameras, can provide complementary information and improve the robustness and reliability of the
method in different scenarios.

6.2.5. Dynamic fabrics
Future research can focus on exploring the combination of dynamic fabrics ([42]), which consider the
dynamics of the environment and moving obstacles, with direct sensor integration. This integration can
significantly enhance the method’s ability to handle dynamic scenarios and improve the efficiency of
collision avoidance. The experiments conducted with moving obstacles have highlighted failure cases
that could have been prevented by incorporating dynamic fabrics. The method can effectively address
these challenges by developing and implementing dynamic fabrics in conjunction with direct sensor
integration and ensure safer and more robust robot navigation in dynamic environments.



6.3. Insights and Reflections 51

6.2.6. Tuning of the method
The tuning of optimization fabrics is a crucial aspect that directly impacts the method’s performance.
Currently, the tuning process requires expert knowledge and manual parameter adjustments. However,
future research can explore automated tuning approaches to streamline and improve the tuning pro-
cess. One promising area is auto-tuning techniques, as demonstrated in work referenced as [40]. By
leveraging auto-tuning, the method’s parameters can be automatically adjusted based on performance
metrics and objective functions, leading to more efficient and effective collision avoidance behavior.
Applying auto-tuning techniques can significantly reduce the burden of manual tuning and potentially
uncover optimal parameter settings that may not be easily identifiable through manual methods. This
future research direction can contribute to the scalability and adaptability of the method, making it more
accessible and applicable in various robotic applications.

By pursuing these future research directions, the proposed DSI optimization fabrics method can con-
tinue to evolve and contribute to the advancement of robotic motion planning and control, enabling
robots to navigate complex environments with improved safety and efficiency.

6.3. Insights and Reflections
Throughout this research, I have gained valuable knowledge and insights that have deepened my un-
derstanding of robotics and motion planning. This research journey has been a transformative learning
experience, broadening my perspective and enhancing my skills in the field.

One of the most significant learning experiences throughout my research journey has been the deep
understanding and application of the optimization fabrics technique. Exploring and implementing this
method has given me invaluable insights into its principles, functionalities, and practical implications.
Through rigorous study and experimentation, I have gained a comprehensive understanding of how
optimization fabrics can be leveraged for motion planning and collision avoidance in robotics.

Another key lesson is the opportunities presented by integrating sensor data directly into optimization
fabrics. This approach simplifies the overall system architecture and enhances the real-time perfor-
mance and efficiency of collision avoidance. The empirical exploration and analysis conducted during
this thesis have highlighted the critical role of carefully selecting and tuning the optimization fabrics’
parameters for optimal performance.

Furthermore, this research has underscored the significance of considering the limitations and trade-
offs associated with different sensor configurations. The simulations provided valuable insights into
the method’s behavior in controlled environments, while the real-world experiments highlighted the
challenges and differences between simulation and reality. Understanding these differences has em-
phasized the need for robustness and adaptability in the proposed method when deployed in practical
scenarios. Beyond the technical aspects, this thesis has also fostered my skills in experimental design,
data analysis, and critical thinking. The collaborative work with my research colleagues and the guid-
ance of my thesis supervisors have provided me with invaluable insights into the research process and
robotics.
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