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ARTICLE OPEN

Noise-robust exploration of many-body quantum states on
near-term quantum devices
Johannes Borregaard 1,2, Matthias Christandl1 and Daniel Stilck França 1✉

We describe a resource-efficient approach to studying many-body quantum states on noisy, intermediate-scale quantum devices.
We employ a sequential generation model that allows us to bound the range of correlations in the resulting many-body quantum
states. From this, we characterize situations where the estimation of local observables does not require the preparation of the entire
state. Instead smaller patches of the state can be generated from which the observables can be estimated. This can potentially
reduce circuit size and number of qubits for the computation of physical properties of the states. Moreover, we show that the effect
of noise decreases along the computation. Our results apply to a broad class of widely studied tensor network states and can be
directly applied to near-term implementations of variational quantum algorithms.

npj Quantum Information            (2021) 7:45 ; https://doi.org/10.1038/s41534-021-00363-9

INTRODUCTION
Quantum computers offer computational power fundamentally
different from classical computers. A universal quantum computer
may solve classically intractable problems within areas ranging
from many-body physics to quantum chemistry1. There has been
impressive experimental progress in developing quantum com-
puters on different architectures2–4. Although achieving fault-
tolerant computation remains a challenge, noisy intermediate-
scale quantum (NISQ) devices are expected to be available in the
near future5. These are devices containing a few hundred qubits
with small error rates but without error-correction. An outstanding
question is what kind of computations such devices may facilitate.
Algorithms designed for NISQ devices should run on a

moderate number of qubits and be resilient to noise. The specific
hardware may also pose further restrictions regarding the
connectivity of the device, as not all qubits can interact directly
with each other2,4. Promising frameworks that fulfill these
conditions are the quantum approximate optimization algorithm6

and the quantum variational eigensolver (VQE)7,8. In these
frameworks, the task of the quantum computer is roughly
speaking to compute the expectation value of local Hamiltonians
on some many-body quantum state. Recent work has character-
ized a number of conditions for which this can be done in a noise-
robust way9–13. Due to the limited resources of NISQ devices, it is
also important to run such algorithms as efficiently as possible in
terms of circuit size and number of qubits.
We address this outstanding problem by developing a general

framework for computing physical properties of quantum many-
body states efficiently on NISQ devices. In particular, we upper
bound the circuit size and number of qubits necessary to estimate
the expectation values of local observables. Importantly, these
bounds can significantly decrease the resource requirements
compared to previous works for a number of circuit topologies
and sizes. Specifically, we are able to show that the energy of a
many-body quantum state can be estimated with a constant-sized
quantum circuit if the correlation functions exhibit an exponential
decay. This is the case for non-trivial states such as ground states
of gapped Hamiltonians, surface codes and quantum states

described by a multiscale entanglement renormalization ansatz
(MERA) or the larger class of deep MERA (DMERA)12,13. The latter is
believed to capture Chern insulators.
Our framework is akin to sequentially generated14–16 or finitely

correlated states17. This enables us to control the size of the past
causal cone18–20 of local observables. Combined with the notion
of mixing rate of local observables under the circuit12,13 we
determine after how many layers of the circuit, expectation values
stabilize. To estimate these expectation values, it suffices to
implement the potentially small subset of the circuit under which
they stabilize instead of producing the entire many-body state or
its past causal cone. Consequently, the necessary number of
qubits and quantum gates can be reduced significantly from
scaling with the size of the many-body state to even a constant
number.

RESULTS
Basic setup
We consider three basic operations, which are iterated T times to
generate a many-body quantum state. The first operation adds
qubits to the existing system. The second operation lets them
interact with each other and a bath via a constant depth circuit. In
the third operation, some of the existing qubits may be discarded.
By introducing a separate bath, we allow for situations where a
fixed sized quantum processor (the bath) iteratively prepares a
quantum state on the system qubits. This allows e.g. the
construction of arbitrary matrix product states (MPS) (see Example
1 below).
More specifically, we will start with a system S0 consisting of n0

qubits initialized in some fixed state ρ0 and a bath system B
consisting of sB qubits initialized in some fixed state ρB. At each
iteration t, we introduce new subsystems St with nt qubits and
ancillary states At with at qubits, all initialized in some fixed
quantum state. These new subsystems then interact with the
existing ones and finally, the ancillary system is discarded, which
concludes the iteration. The procedure is iterated for a total of T
iterations to produce the entire state.
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Interaction scheme
The structure of the final quantum state is determined by the
allowed interactions between qubits during the iterative prepara-
tion. In order to get a handle on how the correlations of the
final state evolve during the preparation, we will fix the allowed
interactions according to a given interaction scheme. Our
construction of such an interaction scheme is inspired by so-
called graph states21. These can be visualized by letting the
vertices of a graph denote qubits and edges denoting correlations
between them. In a similar way, we define an interaction scheme
as a sequence of T graphs {Gt= (Vt, Et)} where a vertex (Vt) denotes
a qubit and an edge (Et) implies that it is possible to implement
unitary gates between these two qubits in that time step. We
further restrict this unitary gate such that at most D rounds of two-
qubit operations are applied with the condition that on each
round at most one unitary acts on each qubit. Figure 1 showcases
a simple example of one iteration of the procedure illustrating all
aspects of the framework. While such a simple interaction scheme
serves the purpose of illustration, our framework encompasses
arbitrary interaction graphs in each iteration step. This allows it to
capture a number of widely studied tensor networks states, as
illustrated in the two examples below.
Definition 1 (MPS and higher dimensional versions) MPS have

been studied in a sequential interaction picture22,23 and adapt
naturally to our framework. The initial system S0 consists of one
qubit and the dimension of the bath gives the bond dimension.

At each iteration t, we add a system consisting of one qubit St to
the system. The graph Gt only has edges between the qubits in
the bath and the newest added qubit St. Note that we are
considering a proper subset of MPS since we restrict to unitaries
implementable with D two-qubit gates for each edge. Never-
theless, the bond dimension of the resulting MPS scales
exponentially with the number of qubits in the bath. It is
straightforward to generalize such sequentially generated states
by considering the case in which a bath interacts with a subsystem
of dimension d rather than a single qubit at each iteration12,15.
Definition 2 (Deep multiscale entanglement renormal-ization

ansatz) The DMERA, introduced in ref. 13, is a variation of the
MERA19 tailored for NISQ devices. In our framework, the initial
system S0 consists of one qubit and there is no bath. We then
define the graphs Gt recursively: at each iteration we add one

Fig. 1 Generation procedure. Example of one iteration of the
generation procedure broken down into five steps. The first line (1)
represents the initial system before the iteration. We start with two
system qubits (orange circles) and a bath (blue triangles). The first
operation (line 1–2) is to add two new system qubits and two
auxiliary qubit (red diamond). The new qubits are placed to the right
of the old ones. The second operation (line 2–3) is to act with a
unitary U between the indicated qubits and from (3) to (4) we apply
another layer of unitaries and, thus, D= 2 for this example. Finally, in
line (4)–(5) we discard the auxiliary systems.

Fig. 2 Mixing and support growth in the Heisenberg picture.
Evolution in the Heisenberg picture of an observable initially
supported on the last two incoming qubits in the lower right corner
(filled orange corner) at the fourth time step. The U indicates that we
apply a unitary between the involved qubits and the dashed arrows
indicate that old qubits are shifted to the left. Note that we
suppressed the unitaries that do not contribute to the expectation
value. The distance of the observables to the identity is indicated by
how filled the element, i.e., empty shapes indicate that the
observable is proportional to the identity on that system. Note that
as in the Heisenberg picture we discard qubits, this causes the
observables to mix. Moreover, we see that after two iterations the
observables are essentially proportional to the identity and it
suffices to implement that part of the circuit to estimate it.
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qubit in between every existing qubit and nearest neighbors
interact, resulting in a tree structure.

Past causal cone
Formally, the final state of the system can always be written as

ρ ¼ trB Φ½0;T �
� �

ρ0 � ρBð Þ� �
; (1)

where Φ[0, T]=ΦT∘ΦT−1∘…∘Φ0 and Φt are quantum channels of the
form Φt ¼ Dt � U t � At . Here At adds the new subsystems and
auxiliary qubits, U t is a unitary channel that consists of D two-
qubit gates for each edge in Gt and Dt traces out the ancillary
systems. An important property of our framework is that it allows
to bound the number of qubits that can influence the value of a
local observable, referred to as the causal cone of an observa-
ble18,19. The growth of the casual cone depends on the geometry
of the graph Gt. To see this, consider an observable OT on the final
state ρ. According to Eq. (1), the expectation value is

tr ρOTð Þ ¼ tr Φ�
½0;T � OT � 1Bð Þ

h i
ρ0 � ρB

� �

where Φ�
½t;T � ¼ Φ�

t � Φ�
tþ1 � � � � � Φ�

T . Here Φ�
t is the evolution in the

Heisenberg picture.
We can use our framework to bound the size of the radius of

the support of OT on the final state i.e. the number of qubits on
the final state that OT involves. Going back to the t’th iteration, we
denote the observable Ot ¼ Φ�

½t;T � OT � 1Bð Þ. Let R(Ot) be the radius
of the smallest ball in Gt containing the support of Ot. That is, Ot

differs from the identity on qubits that are at most 2R(Ot) edges
away in the graph Gt. To analyze the growth of the support and its
past causal cone we consider the action of Φ�

T ¼ A�
T � U�

T � D�
T .

First, D�
T acts by tensoring the identity operator on the auxiliary

qubits, not increasing the support. In the next step, U�
T increases

the support. As OT has radius R(OT), it will be mapped to an
observable with radius at most R(OT)+ D by U�

T according to the
locality assumptions of U�

T (i.e. the restriction of D two-qubit gates
for each edge). The map A�

T will then map this observable to OT−1

supported on qubits that correspond to vertices in GT−1, as it
traces out all the qubits added at iteration T. This can potentially
decrease the support of the observable, as in DMERA.
Given the graphs Gt and a constant D, it is straightforward to

track the support of the observable and the past causal cone with
the above procedure. This allows us to find the maximum number
of unitaries (NU(t, r)) and qubits (NQ(t, r)) in the past causal cone of
an observable with radius of support of r on the final state going
back to iteration t. Note that NQ(t, r) keeps track of the total
number of qubits necessary to implement the past causal cone
and thus also includes those that were discarded at a
previous step.

Estimating local observables
So far we have devised a way of keeping track of the unitaries in
the past causal cone of local observables. However, we are also
interested in quantifying how much each iteration of the past
causal cone contributes to the expectation value. In case the
expectation value of the observable stabilizes after a couple of
iterations, we can find smaller quantum circuits than the entire
causal cone that will approximate the desired expectation value.
Inspired by refs. 12,13, we assume that the maps Φ�

½t;T � are locally
mixing. To this end, let us define the mixing rate as:

δðt; rÞ � sup
RðOT Þ�r;jjOT jj1�1

inf
c2R

jjΦ�
½t;T � OTð Þ 	 c1jj1:

Here ∥⋅∥∞ is the operator norm. The mixing rate, δ(t, r), quantifies
how close observables on the final state, whose support is
contained in a ball of radius r, are to the identity after going back
to the t’th iteration of the evolution in the Heisenberg picture
(Fig. 2). Intuitively speaking, δ(t, r) measures how many steps of

the circuit contribute to the expectation value of local observables
before it stabilizes, as we are interested in the regime in which
c approaches tr ρOð Þ for large enough t. This is also connected to
the memory of the evolution24. The next lemma formalizes this
intuition (see “Methods” for a proof):
Lemma Let OT be an observable supported in a ball of radius

r. Then

tr Φ½t;T � ρ0ð ÞOT
� �	 tr ρOTð Þ�� �� � 2δðt; rÞ k OTk1; (2)

where ρ ¼ trB Φ½0;T � ρ0 � ρBð Þ� �
, which holds for all ρ0.

In other words, only the last T− t steps of the circuit are
necessary to approximately compute the expectation value of OT

up to an error of 2δ(t, r)∥OT∥∞. Note that the expectation value is
independent of the initial state ρ0, which we furthermore may
restrict to the qubits that are in the support of Ot. We may further
reduce the size of the circuit that needs to be implemented by
restricting to the past causal cone. Combining these two
observations leads to the statement of our main result:
Theorem Let OT be an observable supported in a ball of radius

r and ρ0 be a state on the qubits that are in the support of Ot. It is
possible to compute tr ρOTð Þ up to an additive error 2δ(t, r) by
implementing a circuit consisting of NU(t, r) two-qubit gates on
NQ(t, r) qubits.
The theorem implies a way of performing VQE given bounds on

δ(t, r) using a potentially smaller NISQ device than preparing the
whole state. This is because implementing the smaller, effective
circuit, requires fewer qubits and gates.

Robustness to noise
Consider the objective of calculating the ground state energy of a
two local Hamiltonian H, in the sense that it only acts on nearest
neighbors in GT, with each local term Hi satisfying ∥Hi∥∞ ≤ 1. It
suffices to estimate all Hi individually to obtain an estimate of the
global energy of the state by adding up the energy terms. Now
suppose that we can implement each 2-qubit gate with an error ϵU
in operator norm and can prepare each initial qubit up to an error
ϵP. This implies that the total error of implementing the causal
cone and measuring each Hi is bounded by ϵUNU(t, 2)+ ϵPNQ(t, 2).
Thus, by only implementing the circuit from iteration t to T, it is
possible to estimate the energy of each term with an error of

2δðt; 2Þ þ ϵUNUðt; 2Þ þ ϵPNQðt; 2Þ: (3)

This generalizes to observables with arbitrary radius r and can
be improved to by exploiting the fact that :

2δðt; rÞ þ PT

k¼tþ1
δðk 	 1; rÞϵU NUðk; rÞ 	 NUðk 	 1; rÞð Þ

þ PT

k¼tþ1
δðk 	 1; rÞϵP NQðk; rÞ 	 NQðk 	 1; rÞð Þ:

(4)

To see this, recall that δ(k, r) measures how close the operator
Ok is to being proportional to the identity, as there exists an
operator Ak with the same support as Ok such that Ok can be
decomposed into Ok= c1+ δ(k, r)Ak. At the k’th iteration, any
evolution in the Heisenberg picture only acts non-trivially on Ak
and changes the expectation value of the observable w.r.t. to any
state by at most δ(k, r)∥OT∥. Thus, if we actually implement a noisy
version of the original evolution which is ϵU close to it, then we
can only notice the effect of the noise in the part given by δ(k, r)Ak.
We conclude that each noisy unitary contributes with an error at
most ϵUδ(t, r), i.e., the effect of noise decreases in time if δ(t, r)
decays. As there are NU(k, r)− NU(k− 1, r) new unitaries in the
causal cone at the iteration, we obtain the bound. We note that
the noise robustness we obtain is of the same order as the one
obtained implementing the whole circuit, as in refs. 12,13, and refer
to Supplementary Information for a detailed discussion.
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These results are related with the fact that δ(t, r) and the
geometry of the interactions govern the correlations present in
the state produced. For ET, FT two observables of disjoint support
of radius r and t be the largest t such that Et and Ft have supports
that intersect we can show that:

tr ρET � FTð Þ 	 tr ρETð Þ tr ρFTð Þj j � 6δðt; rÞ:
As the decay of δ(t, r) also governs the noise robustness, we see

that there is a trade-off between the correlation length and the
robustness to noise. For instance, one should expect δ(t, r) to be
exponentially decaying for states with finite correlation length.

Estimating convergence
It is necessary to bound δ(t, r) in our approach in order to bound
the error. Thus, it is important to find conditions that guarantee
the decay of the mixing rate and to develop protocols to estimate
the mixing rate on a NISQ device. In the translationally invariant
case, one can apply the large toolbox available to estimate
mixing time bounds25–29, as further explained in Supplementary
Information.
However, it is important to acknowledge that obtaining

rigorous mixing time bounds is notoriously difficult even for
classical systems30. But this has not kept Markov Chain Monte
Carlo algorithms from being one of the most successful methods
to simulate physical systems31. There exist many heuristic
methods for classical systems32 and here we also discuss a
heuristic method to determine when the circuit has stabilized. As
made transparent by Eq. (2), whenever the circuit has converged,
the output of the circuit is independent of the initial state ρ0. Thus,
one possible way of checking that the circuit has indeed
converged is testing several different initial states and making
sure that the expectation value of the output with respect to the
observable does not depend on the input. This can be done by
picking a set of initial states that is overcomplete, i.e., spans the
space of all states as detailed in the “Methods” section.
In short, the approach is to pick random initial product states on

the support of the observable Ot and compare the value of the
expectation value to that of the initial state where all qubits in the
support are in state 0j i. If the expectation value with respect to
different initial states all coincide, we build confidence that the
computation has indeed converged. On the other hand, if the
expectation values differ for two different initial states, then
we have not converged and must go deeper and decrease t. We
denote the maximal difference of the expectation value for the
several different choices of initial state by Δz and refer to
the “Methods” section for a precise definition. An example of the
approach is shown in Fig. 3 for a matrix product states with both
fast and slow convergence.
As we can see from the figures, estimating Δz gives reliable

convergence diagnostics. Importantly, this is obtained with only a
modest number of randomly selected input states. This suggests
that estimating the convergence does not outweigh the overall
advantage of bounding the circuit size for estimating local
observables with our framework. We do note, however, that this
is a heuristic and not rigorous approach. For rigorously establish-
ing convergence, it would in general require a sample complexity
increasing exponentially with the support. We refer to the
supplementary information for more details.

DISCUSSION
To demonstrate the implications of our results, we summarize the
noise robustness and required number of gates and qubits in
Table 1 for some interaction schemes. We are able to significantly
decrease the number of unitaries and qubits compared to the
approach of refs. 12,13. This is because we only require the circuit
corresponding to the past causal cone until it stabilizes to be

Fig. 3 Convergence check. Illustration of convergence check for
MPS in a rapid and slow mixing scenario. We consider a bath of 9
qubits arranged on a line. In each iteration a new system qubit is
added and a fixed circuit is run between the bath and the new
system qubit. In the rapid mixing case, we perform a depth 3 circuit
between the system qubit and the bath such that each gate is
followed by a depolarizing channel with probability 5%. The
complete state was evolved for 50 time steps and, thus, consists
of total of 50 qubits, and we measured Pauli observables on the last
two qubits. In the slow mixing we perform a depth 2 circuit instead.
If we denote by Xt the expectation value of the state evolved by
t steps, we define the relative error to the true value to be ∣1− Xt/
X50∣, as X50 corresponds to preparing the whole state. To generate
each plot, we have generated 50 instances where the gates in the
circuits were picked at random for each instance. The figures display
the logarithm in base 10 of the average of the quantities. Even with
moderate levels of noise, we can faithfully reproduce the expecta-
tion value up to a relative error of 10−2 after 5 iterations, giving an
order of magnitude saving in the number of qubits in the rapid
mixing scenario, while in the slow mixing, we required around 13.
Moreover, we have picked 20 random initial states to estimate Δz, as
more initial states did not seem to improve the estimate. As we can
see, Δz is a good proxy for the relative distance to the true
expectation value.

Table 1. Summary of resources.

Scheme Error Gates Qubits

DMERA ϵUλ
−1D2+ ϵPλ

−1D tϵD
2 tϵD

MPS ϵUλ
−2D2+ ϵPλ

−1D t2ϵD
2 tϵD

RI-d ϵUλ
−d−1Dd+1+ ϵPλ

−dDd tdþ1
ϵ Ddþ1 tϵD

d

Error and resources required for implementing the effective causal cone, as
in (2), for different interaction schemes under the assumption that δ(t, r)=
ce−λ(T−t). RI-d refers to the case in which a d—dimensional bath interacts
with a d—dimensional system at each iteration. All entries are only up to
leading order in D, T and λ. For λ independent of system size, we see that it
is possible to approximate all expectation values with quantum circuits of
constant size.
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implemented, in contrast to the the whole causal cone. Clearly,
these results also imply that it is possible to approximate these
expectation values classically if the resulting effective circuits are
of a classically simulatable size.
Our results provide an intuitive understanding of the stability of

these computations. Each iteration contributes less to the value of
expectation values, which implies that there is a small effective
quantum circuit underlying the computation. Furthermore, the
size of this circuit is related to the correlation length of the state
and the effect of noise decreases proportionally to the correlations
between regions.
Although rigorously testing at which iteration the circuit has

converged might require exponential resources, we see that
chosing a few random initial states and comparing the different
expectation values provides useful guidance to check wether
convergence has occurred. This shows that it is feasible to build
confidence in the convergence and required depth with moderate
resources using such heuristics. However, it would still be
interesting to establish more rigorous protocols under suitable
additional assumptions.
There are significant challenges in scaling up current qubit

technologies33–35. The reduction in the number of qubits that we
have shown above means that it may be possible to explore
many-body quantum states with NISQ devices with substantially
fewer qubits, potentially bringing such tasks into reach for current
technology3,4. The possible reduction in the number of gates also
reduces the necessary runtime of the circuits, which is important
for hardware subject to qubit loss over time such as trapped
atoms36. Note that the objective of this method is to expand the
simulating capabilities of NISQ devices subject to strict hardware
limitations. This is in contrast to other techniques, like measure-
ment regrouping8,37–41, that focus on optimizing resources given
the ability to implement the whole circuit that prepares a
given state.

METHODS
Proofs and checking mixing
The main result of our work is based on the lemma in the main text. In
order to prove this lemma, we have used a method based on viewing the
generation as a quantum channel in the Heisenberg picture. The formal
proof is given below.
Proof By the definition of δ(t, r), we see that

Φ�
½t;T �ðOT Þ ¼ Ot ¼ c1þ δðt; rÞA; (5)

where A is some observable supported on supp(Ot) satisfying ∥A∥∞ ≤ ∥OT∥∞.
As Φ�

½0;t	1� is a quantum channel in the Heisenberg picture, Φ�
½0;t	1�ð1Þ ¼ 1

and k Φ�
½0;t	1�k1!1 � 142. Thus,

Φ�
½0;t	1� � Φ�

½t;T �ðOT Þ ¼ c1þ δðt; rÞΦ�
½0;t	1� Að Þ; (6)

where k Φ�
½0;t	1� Að Þk1 �k OTk1 . We conclude that

tr Φ½t;T � ρ0ð ÞOT
� �	 tr ρOTð Þ�� �� ¼ tr ρ0Φ�

½t;T � OTð Þ
� �

	 tr ρ0 � ρBΦ
�
½0;T � OTð Þ

� ����
���

¼ δðt; rÞ tr ρ0Að Þ 	 tr ρ0 � ρBΦ
�
½0;t	1� Að Þ

� ����
���

� 2δðt; rÞ k OTk1
by combining (5) and (6). □
Our results show that having an estimate for the mixing rate δ(t, r) allows

to bound the number of qubits and circuit size needed to estimate local
observable on a many-body quantum state. While certain classes of states
are known to have rapid mixing leading to fast convergence of the
observables (like ground states of gapped Hamiltonians), we have
developed a heuristic method for estimating the convergence of local
observables. The method relies on the observation that we can expand any
density matrix using a basis of single qubit states. Let ρt=Φ[0, t](ρ0⊗ ρb) be
the state we obtain by evolving from time 0 to t and OT be defined as
usual. Moreover, let m= NQ(r, t) be the number of qubits in the support of
Ot. To check the convergence of the circuit, we prepare input states
ψzj i¼ Nm

i¼1 zij i, where zij i 2 f 0j i; 1j i; þj i; 	j ig. The states ψxj i thus
corresponds to various product state combinations of the states

0j i; 1j i; þj i and 	j i on the support of the observable Ot. It is well-
known that these states form a basis of the space of Hermitian matrices.
We can therefore expand ρt as

ρt ¼
X

z

az ψzj i ψzh j;

where az 2 C. Furthermore, it is easy to see that ∑zaz= 1 by taking the
trace. Now define Δz to be given by:

Δz ¼ tr ðð ψzj i ψzh j 	 0j i 0h j�mÞOtÞ:
From this, we immediately obtain that:

tr ðρtOtÞ ¼ tr 0j i 0h j�mOt
� �þ

X

z

azΔz : (7)

Equation (7) suggests the simple protocol of picking random initial
product states ψzj i and comparing the expectation value with the
outcome for initial state 0j i�m to estimate the convergence. If the
expectation value with respect to different initial states ψzj i all coincide
with the one of 0j i�m, we build confidence that all Δz are small,
thus ensuring that the expectation value is similar as picking the initial
state to be 0j i�m.
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