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The Impact of Gate Recess on the H2 Detection
Properties of Pt-AlGaN/GaN HEMT Sensors

Robert Sokolovskij , Jian Zhang, Hongze Zheng, Wenmao Li, Yang Jiang, Gaiying Yang, Hongyu Yu ,
Senior Member, IEEE, Pasqualina M. Sarro, Fellow, IEEE, and Guoqi Zhang, Fellow, IEEE

Abstract—The present work reports on the hydrogen gas
detection properties of Pt-AlGaN/GaN high electron mobil-
ity transistor (HEMT) sensors with recessed gate structure.
Devices with gate recess depths from 5 to 15 nm were fab-
ricated using a precision cyclic etching method, examined
with AFM, STEM and EDS, and tested towards H2 response at
high temperature. With increasingrecess depth, the threshold
voltage (VTH) shifted from −1.57 to 1.49 V. A shallow recess
(5 nm) resulted in a 1.03 mA increase in signal variation
(�IDS), while a deep recess (15 nm) resulted in the highest
sensing response (S) of 145.8% towards 300 ppm H2 as
compared to reference sensors without gate recess. Transient
measurements demonstrated reversible H2 response for all
tested devices. The response and recovery time towards 250 ppm gradually decreased from 7.3 to 2.5 min and from
29.2 to 8.85 min going from 0 nm to 15 nm recess depth. The power consumption of the sensors reduced with increasing
recess depth from 146.6 to 2.95 mW.

Index Terms— ALGaN/GaN, HEMT, H2 sensor, platinum, gate recess, cyclic etching, enhancement mode.
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I. INTRODUCTION

THE natural reserves of fossil fuels are depleting and com-
bustion of these hydrocarbons is a major source of green-

house gases and air pollutants such as CO, CO2, NOx, SOx
and particulates that have adverse health effects [1]. Hydrogen
is a clean, renewable synthetic fuel that is widely adopted
in spacecraft propulsion systems by several nations [2]. A
number of technological hurdles still have to be resolved to
advance H2 utilization for personal and commercial vehicles.
Storage and transportation of gaseous or liquid H2 is chal-
lenging due to its physical and chemical properties. It is an
odorless and colorless gas with high diffusivity, low boiling
point of −253 ◦C and broad flammability range 4–75% in
air [3]. Therefore, sensors capable of detecting a wide range
of hydrogen concentrations are of critical importance for
monitoring and prevention of leakage.

Various types of H2 sensors including optical, electro-
chemical, acoustic, catalytic and chemi-resistive have been
developed over the last few decades [4]–[6]. The later type
of transducer has been comprehensively investigated. Metals,
polymers, carbon-based materials and metal oxide semicon-
ductors (MOS) have been employed as H2 sensitive layers.
Utilizing MOS-based nanostructures (nanowires, nanosheets,
nanospheres etc.) and carbon materials (carbon nanotubes,
graphene) resulted in a further enhancement in gas response
due to increased surface-to-volume ratio, compared to their
thin film equivalents [7].

Field effect devices such as MOS capacitors, Schottky
diodes and MOSFETs are extensively studied for H2 sensing
ever since the first Si-FET with Pd gate was demonstrated [8].

1558-1748 © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
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The narrow energy bandgap of Si limits the maximum oper-
ating temperature of MOSFETs to approximately 200 ◦C.
Moreover, FET-type sensors often suffer from baseline drift
due to contaminants present in the gate oxide and hydrogen
induced drift which results in very long recovery time [9].

Other semiconductor materials including GaAs [10],
AlGaAs [11], InAlAs [12] or SiC [13] were investigated for
H2 sensor applications in order to improve sensing charac-
teristics and operate in harsh environments. Wide bandgap
gallium nitride (GaN) has attracted immense interest for
developing electronic devices [14] and next generation high
electron mobility transistor (HEMT)-based sensors [15] due
to its superior electronic, chemical, thermal and mechanical
properties. Furthermore, AlGaN/GaN heterojunctions exhibit
strong polarization effects, forming a high carrier density and
mobility two-dimensional electron gas (2DEG) channel at the
interface. Since the initial report of the AlGaN/GaN HEMT
H2 sensor with Pt gate [16] several modifications to the sensor
structure have been studied in order to enhance the sensing
characteristics [17]–[20]. Detection of numerous other gases
has also been reported with GaN-based sensors [21]–[24].

A specific and widely studied modification of AlGaN/GaN
HEMTs is the recess etching of the thin (20-30 nm) AlGaN
barrier in order to achieve enhancement-mode (E-mode) oper-
ation [25] and to reduce the contact resistance of Au-free,
CMOS compatible ohmic contacts [26]. Nevertheless, only
few reports have investigated the impact of AlGaN bar-
rier recess on sensing performance of HEMT-based sensors.
An open gate, two-terminal AlGaN/GaN NO2 sensor with
varying barrier recess depths was reported by [27]. Thinning
the AlGaN barrier was found to increase the response to
low NO2 concentrations. A pH and glucose biosensor with
recessed barrier and functionalized with ZnO nanorods was
demonstrated by [28]. Photoelectrochemical (PEC) etching
using H3PO4 solution and He-Cd laser was utilized to par-
tially recess the AlGaN barrier as well as to form a gate
oxide layer consisting of Al2O3/Ga2O3. Sensitivity towards
pH and glucose was increased using the recessed structure.
To our knowledge, three-terminal HEMT-based gas sensors
with recessed barrier and catalytic metal gate have not been
studied so far. Several methods of AlGaN/GaN recess etch-
ing have been previously demonstrated including low power
inductively coupled plasma reactive ion etching (ICP-RIE)
using Cl2/BCl3 plasma, digital etching, PEC and thermal
oxidation [29]–[32].

In this work, we expand upon our initial results [33] on
the impact of gate recess on H2 sensing characteristics of Pt-
AlGaN/GaN HEMT-based sensors. A modified cyclic recess
etching process [34] was utilized to fabricate sensors with
several depths of gate recess. To analyze static and transient
characteristics of these sensors, measurements in H2 gas
ambient with controlled concentrations in the ppm range were
conducted.

II. EXPERIMENTAL

A. Sensor Micro-Fabrication
The starting AlGaN/GaN heterostructure, grown by

MOCVD on 2-inch c-plane sapphire wafers, was supplied by

a commercial vendor. Starting from the substrate the epitaxy
consists of a proprietary nucleation layer, a 1.8 μm GaN
buffer layer, a 1 nm AlN spacer, a 21 nm Al0.26Ga0.74N
barrier and a 1.5 nm GaN capping layer. The process started
with wafer cleaning using piranha solution (3:1/H2SO4:H2O2)
followed by acetone, isopropanol and DI water rinsing to
remove any particulates or organic contaminants. Mesa etching
was then performed using ICP-RIE with BCl3/Cl2 plasma
to the depth of 100 nm. Afterwards 200 nm of PECVD
SiO2 were deposited and patterned by buffered oxide etching
(BOE) to be used as hard mask for barrier recess. Plasma
oxidation of the GaN cap and AlGaN barrier layers was
performed in a Naura GSE 200 Plus ICP-RIE tool. The recipe
parameters were similar to those used in [34], with ICP power
450 W, O2 flow rate of 40 sccm, base pressure 8 mtorr and
180 s oxidation time. The RF power was varied in the range
of 20–75 W to modify the oxidation depth rate per cycle.
A solution of 1:4/HCl:H2O was used to etch the formed
plasma oxide. Sensors with four different recess depths were
fabricated for comparison, denoted as samples B, C, D and E,
while sample A was the reference sample without gate recess.
The SiO2 mask was then removed by BOE etching. The ohmic
contact patterns were formed by photolithographic patterning,
e-beam evaporation of Ti/Al/Ti/Au (20/110/40/50 nm) and lift-
off. Prior to the metal deposition a dip in 1:4/HCl:H2O was
done in order to remove any native oxide. Rapid thermal
annealing (RTA) at 850 ◦C for 45 s in N2 ambient was
performed to lower the contact resistance. A 10 nm-thick layer
of Pt was then e-beam deposited and patterned to form the
sensing gate electrode. Afterwards the interconnect bi-layer
of Ti/Au with thickness 20/300 nm was processed by e-beam
evaporation and lift-off. Device passivation was then carried
out by depositing 200 nm of PECVD SiNx in order to protect
the GaN surface and metal interconnects from scratches and
contamination. The SiNx was then patterned by a combination
of ICP-RIE followed by wet BOE etching to expose the Pt gate
to the ambient and the contact pads for wire bonding. The
schematic cross-section view of the HEMT-sensor structure
with a recessed gate electrode is shown in Fig. 1a and an
optical micrograph of the processed sensor (top view) in
Fig. 1b. The dimensions of the gate electrode exposed to the
ambient were 4 μm × 400 μm, the source-gate and gate-drain
spacing was 6 μm.

B. Sensor Testing
The fabricated sensors were wire-bonded to ceramic sub-

strates and placed in a stainless steel 100 ml volume chamber
equipped with a heater and a humidity sensor. The concentra-
tion of the test gas and the relative humidity (RH) inside the
testing chamber were controlled with mass flow controllers
using a commercial gas mixing system from Beijing Elite
Tech Co. The test gas was supplied from H2 cylinders with
known concentration, diluted in N2. The background gas
was synthetic air (O2/N2 = 21%/79%) and RH∼0%. The
combined total gas flow was set to 400 sccm. Electrical con-
nections to the sensors were made with probe needles inside
the test chamber and current-voltage (I-V) characteristics were
measured using two Keithley 2450 sourcemeters. A schematic
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Fig. 1. Schematic cross-section of the recessed gate Pt-AlGaN/GaN
HEMT H2 sensor (a). Optical micrograph (top view) of the fabricated
sensor (b).

Fig. 2. Cross-section STEM images of (a) the pattern edge exposed to
oxygen plasma treatment and (b) a magnified view of the oxidized AlGaN
surface. (c) EDS element mapping of the oxygen plasma exposed region.
The area between the dashed lines indicates the oxidized AlGaN surface.

diagram of the gas testing system is shown in fig. S1 and an
image of a sensor mounted in the testing chamber in fig. S2.
Prior to H2 sensing, as fabricated sensors underwent a burn-in
process at 260 ◦C for 12 h in order to reduce the baseline
signal drift.

III. RESULTS AND DISCUSSION

A. Gate Recess Characterization
In order to validate the cyclic nature of the two-step barrier

recess process, scanning transmission electron microscopy
(STEM) imaging was conducted on test samples using FEI
Talos STEM with 200 kV acceleration voltage. Fig. 2a shows
the cross-sectional view of the patterned sample after 180 s
ICP-RIE oxidation at 40 W RF power. The Au and carbon
layers were deposited to protect the chip surface during TEM
sample preparation using focused ion beam (FIB). A thin

Fig. 3. Depth profiles obtained by AFM scans of samples B, C, D and
E across 5 µm wide test trenches.

TABLE I
RF POWER OF OXIDATION RECIPES, ETCH DEPTH AND RECESSED

REGION RMS SURFACE ROUGHNESS OF SENSORS B-E,
MEASURED BY AFM

layer of oxide has formed on the plasma exposed surface and
some of the AlGaN layer was consumed in the process. The
thickness of the oxide was 4.1 nm as determined from the
magnified view of the oxidized area shown in fig. 2b. The
results of energy dispersive spectroscopy (EDS) analysis are
shown in fig. 2c. The presence of O, Al and Ga is clearly
observed in the oxidized film, whereas N concentration is
diminished, which suggests that a Ga2O3/Al2O3 layer was
formed. The likely reaction mechanism of the ICP plasma
oxidation is:

2AlGa N + 6O∗ → Ga2 O3 + Al2 O3 + N2 ↑ (1)

where O∗ are the exited oxygen plasma atoms. The depth of
the recess was measured by atomic force microscopy (AFM)
using Bruker Dimension Edge. The depth profiles of the
barrier recess across a 5 μm wide test structure are shown
in fig. 3. The RF power settings of the plasma oxidation
recipes, the measured recess depth and trench RMS surface
roughness of samples B–E are summarized in Table I. A low
RMS roughness was measured for all depths which indicates
a minimal AlGaN surface damage during barrier etching.
Samples B–D required two oxidation/etching cycles to obtain
the desired etching depth, while three cycles were used for
sample E. The cross-section STEM image of the non-recessed
and recessed AlGaN regions of sample E is shown in fig. 4a.
Cyclic etching resulted in a tapered recess profile and smooth
surface. The remaining AlGaN thickness was approximately
2.3 nm. An interfacial layer of about 2 nm was observed
between the Pt gate and the AlGaN layer. EDS analysis,
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Fig. 4. (a) Cross-section STEM image of the non-recessed and recessed
regions of the AlGaN barrier. (b) EDS element mapping of the recessed
region under the Pt gate electrode.

shown in fig. 4b, indicates that this layer was O and Al rich,
likely Al2O3. It is possible that this oxide was formed due to
exposure to atmosphere and during contact RTA, as residual
H2O and O2 may be present in the N2 atmosphere of the
annealing chamber [35]. No oxide etching treatments were
performed prior to Pt gate metal deposition, as the interfacial
oxide enhances H2 detection [24], [36].

B. Gas Sensing Measurements
Electrical measurements were conducted in order to deter-

mine the influence of the gate recess depth on the character-
istics of the studied sensors prior to gas sensing experiments.
The transfer curves (IDS-VGS) of sensors A-E at 30 ◦C
and VDS = 7 V are shown in fig. 5a. A clear shift of the
curves towards positive values is observed with increasing
depth of barrier recess. The threshold voltages (VT H ) of these
devices were extracted by fitting a tangent line at the point of
maximum transconductance (gm,max) to the x-axis intercept
(i.e. IDS = 0) [37]. The gm,max values for sensors A-E
are given in Table II. Fig. 5b shows the shift of VT H with
increasing recess depth. VT H increased from −1.57 V for
the non-recessed sensor A to VT H = 1.49 V for sensor
E with 15 nm recess depth, which resulted in enhancement
mode device. The VT H of an AlGaN/GaN HEMT can be
expressed as:

VT H = φB − �EC − q NDd2
AlGaN

2εAlGaN
− qns

εAlGaN
dAlGaN (2)

where φB is the gate Schottky barrier height, �EC is the
conduction band discontinuity between AlGaN and GaN, q
is the elementary charge, ns is the sheet carrier density
of the 2DEG and ND , dAlGaN and εAlGaN are the doping
concentration, thickness and dielectric permittivity of AlGaN,
respectively. The barrier recess etching reduces the ns and
increases the gate capacitance (Cg = εAlGaN /dAlGaN ), leading
to the observed positive VT H shift.

Sensing characteristics of the fabricated sensors were exam-
ined by exposing them to increasing concentrations of H2
in dry air (RH∼0%) at 240 ◦C. The measured transfer
characteristics of sensors A-E at VDS = 7 V exposed
to 5-300 ppm H2 are shown fig. 6a-e. All devices demonstrated
a response to low H2 concentrations as evident from the VT H

shift towards more negative values. The threshold voltage
shift (�VT H = VT H,air-VT H,H2) of the tested sensors with

Fig. 5. (a) Transfer characteristics (IDS-VGS) of sensors A-E at 30 ◦C.
The inset shows the magnified view for sensor E. (b) Measured threshold
voltage values with increasing depth of barrier recess.

TABLE II
MAXIMUM TRANSCONDUCTANCE VALUES OF

SENSORS A-E AT 30 AND 240 ◦C

increasing recess depth upon exposure to 300 ppm of H2
is shown in fig. 6f. Compared to the reference sensor A the
�VT H was higher for sensors B and C, while it reduced for
sensors D and E, which corresponds to the measured maxi-
mum transconductance (gm,max) values at 240 ◦C (Table II).
The corresponding output characteristics upon H2 exposure are
shown in fig. 7. The gate voltage was stepped from −3 V to
1 V with 1 V increments for sensors A-D and from −1 V
to 3 V for sensor E. The devices still maintained proper
HEMT characteristics at high temperature above the Si-based
FET limit. The saturation drain current decreased with deeper
recess depth due to lowering of the electron density under the
gate electrode and increase in the channel resistance (Rch)
according to [25]:

Rch = Lgtr
μεAlGaN (VGS − VT H − φB)

(3)

where Lg is the gate length, tr the thickness of the AlGaN bar-
rier under the gate and μ is the electron mobility. The relation
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Fig. 6. Transfer characteristics (IDS-VGS) of (a) sensor A, (b) sensor B, (c) sensor C, (d) sensor D and (e) sensor E exposed to different H2
concentrations at 240 ◦C. The insets show the magnified view of the dashed box area. (f) The threshold voltage shift (ΔVTH) from air to 300 ppm
H2 as a function of recess depth.

Fig. 7. Output characteristics (IDS-V DS) of (a) sensor A, (b) sensor B, (c) sensor C, (d) sensor D and (e) sensor E exposed to different H2
concentrations at 240 ◦C. (f) The drain current variation (ΔIDS) from air to 300 ppm H2 as a function of recess depth.

between the 2DEG density of the non-recessed (ns) and
recessed (nsr ) region can be expressed as:

nsr = ns

(
1 − tcr

tr

)
(4)

where tcr is the critical thickness of AlGaN to form the
2DEG [38] and is expressed as:

tcr = (φB − �EC)εAlGaN

qns
(5)

The dependence of threshold voltage on the barrier thickness
can then be expressed as:

VT H = φB + qns

εAlGaN
(tcr − tr ) (6)

Compared with other sensors the drain current of device E
reduced substantially. This is attributed to significant reduction
of 2DEG density as the barrier was recessed down to near
critical thickness (tcr ). Furthermore, the voltage difference
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Fig. 8. H2 sensing response of sensors A-E at 240 ◦C. The VGS = 0 V
for A-D, and VGS = 2 V for sensor E. The inset shows the magnified S
toward 5 ppm.

(VGS-VT H ) is reduced for E-mode HEMT leading to addi-
tional increase of the channel resistance (Rch). Biasing the
device at higher gate voltage leads to forward bias gate leakage
as evident from the shift of the drain voltage axis crossing
point and hence reverse current flow at low VDS (see fig. 7e).
The drain current (IDS) increased upon H2 exposure down to
5 ppm in air. The detection mechanism is based on catalytic
dissociation of H2 molecules into 2H atoms at the surface
of the Pt gate. Some of these atoms rapidly diffuse through
the Pt towards the metal-semiconductor interface and form a
dipolar layer. The dipoles cause a reversible lowering of the Pt
work function, which results in the observed negative threshold
voltage shift (�VT H ) and output current increase (�IDS) [39].

To characterize and compare the H2 sensing performance
of the studied sensors the drain current variation (�IDS) and
sensing response (S) were determined. The S is defined as:

S(%) = IDS,H2 − IDS,air

IDS,air
× 100% = �IDS

IDS,air
× 100% (7)

where IDS,H2 and IDS,air is the drain current magnitude under
H2 containing and air ambient, respectively. The drain current
variation (�IDS) as a function of recess depth is shown in
fig. 7f. The drain bias of all devices was VDS = 5 V and the
gate bias (VGS) was 1 V for devices A-D and 3 V for device E.
Compared to sensor A the �IDS increased from 2.68 mA
to 3.71 mA for sensor B and 3.22 mA for sensor C when
exposed to 300 ppm H2 and decreased with deeper recess.
The H2 sensing response (S) of the tested sensors is shown
in fig. 8. The VDS = 5 V for all sensors and VGS = 0 V
for sensors A-D and VGS = 2 V for sensor E. The S towards
300 ppm of H2 increased from 13.23 % for sensor A to 35.84,
33.76, 42.15 and 145.77 % for sensors B-E, respectively.
An 11x increase in sensing response was obtained for a 15 nm
recess depth compared to non-recessed sensor. The increase
of sensing response with deeper recess is attributed to the
reduction of the baseline signal value in air (IDS,air).

Transient response characteristics of the Pt-AlGaN/GaN
HEMT sensors at 240 ◦C towards 10-250 ppm H2 are shown
in fig. 9. The sensors A-D were biased at VGS = 0 V and
sensor E at VGS = 1.5 V, while the VDS = 5 V for all
tested sensors. The drain current increased immediately after

Fig. 9. Transient response characteristics upon injection and purge of H2
at 240 ◦C for sensors A-E with increasing depth of recess. The VGS = 0 V
for sensors A-D and VGS = 1.5 V for sensor E.

the gas was introduced into the test chamber. The response
(tres) and recovery time (trec) of the tested sensors towards
250 ppm with increasing recess depth is shown in fig. 10.
The tres is defined as the time required for the sensors to
reach 90 % of the equilibrium IDS value in H2 and trec is the
time needed for IDS to return to 10 % above the value in air.
Both tres and trec gradually decreased with thinning the AlGaN
barrier. The response time decreased from 7.26 min for non-
recessed sensor A to 2.5 min for sensor E with 15 nm recess
and the recovery time decreased from 29.2 min to 8.85 min,
respectively.

Sensor signal repeatability was studied by exposing them to
three successive cycles of 250 ppm H2 for 25 min followed by
air purging for 60 min as shown in fig. 11. Repeatable sensor
signal variation was observed for all sensors, indicating that
recessing the barrier does not deteriorate the transient sensor
operation and improves the recovery to baseline value in air.

Reducing the power consumption of GaN-HEMT based
micro-sensors is crucial for integration into portable and
battery powered gas detectors. The comparison of continuous
power consumption (P) is presented in fig. 12. The power
values were calculated at VDS = 5 V and VGS of 0 and
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Fig. 10. The response (tres) and recovery (trec) times of sensors A-E
as a function of recess depth. The VGS = 0 V for A-D, and VGS = 1.5 V
for sensor E.

Fig. 11. Repeatability of sensor response upon injection and purge
of 250 ppm H2 at 240 ◦C for sensors A-E with increasing depth of recess.
The VGS = 0 V for sensors A-D and VGS = 1.5 V for sensor E.

1 V for sensors A-D, while for sensor E the VGS was 2 and
3 V. The power consumption decreased from 85.2 (146.6) mW
to 1.8 (2.95) mW when comparing sensors A and E at
VGS 0 (1) V and 2 (3) V, respectively. The measured decrease

Fig. 12. Power consumption values for sensors A-E at 240 ◦C and
VDS = 5 V.

of the power consumption is attributed to the lowering of the
baseline drain current value (IDS) due to increased channel
resistance for deeper recess depth as indicated from the
data reported in fig. 9. The obtained 48x power reduction is
significant as additional power would be required to raise the
operating temperature of the sensors via integrated microheater
in real-world application scenario.

IV. CONCLUSION

The H2 sensing characteristics of Pt-AlGaN/GaN HEMT
sensors with recessed gate structure were analyzed and com-
pared to non-recessed sensors. Sensors with increasing barrier
recess depths from 5 to 15 nm were fabricated using the
highly controllable, low damage cyclic barrier etching method.
The depth and surface roughness of the recessed regions was
studied with AFM and the Pt-AlGaN interface was examined
by STEM and EDS. A positive shift of threshold voltage
(VT H ) from −1.57 V to 1.49 V was obtained going from
0 nm to 15 nm recess depth, due to the lowering of the
2DEG density under the thinner AlGaN layer under the gate
electrode.

High temperature (240 ◦C) static and transient H2 sensing
characteristics were studied and compared with the baseline
sensor. Exposure to H2 resulted in the increase in drain
current (�IDS) and negative shift of threshold voltage
(�VT H ). All the tested sensors were able to detect low H2
concentrations down to 5 ppm in air. The largest �IDS and
�VT H of 3.71 mA and 0.25 V at 300 ppm was obtained for
sensors with the 5 nm recess. These values were 1.03 mA
and 0.08 V higher than of the reference sensor. The sensing
response at 300 ppm gradually increased with recess depth
from 13.2 % for non-recessed sensor to 145.8 % for sensor
with 15 nm recess depth. Comparing non-recessed and 15 nm
recessed sensors the response (recovery) time decreased
from 7.3 (29.2) min to 2.5 (8.85) min, respectively. Power
consumption of the sensors was effectively reduced by
implementing the barrier recess from 146.6 mW to 2.95 mW.
Therefore, precisely etching a recess in the barrier layer
under the gate electrode is an effective method to enhance
the H2 sensing properties of AlGaN/GaN HEMT based
sensors.
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