

Delft University of Technology

Divide and Code
Efficient and Real-time Data Recovery from Corrupted LoRa Frames
Yazdani, Niloofar; Kouvelas, Nikolaos; Lucani, Daniel E.; Venkatesha Prasad, R.

DOI
10.1109/SECON55815.2022.9918571
Publication date
2022
Document Version
Final published version
Published in
2022 19th Annual IEEE International Conference on Sensing, Communication, and Networking, SECON
2022

Citation (APA)
Yazdani, N., Kouvelas, N., Lucani, D. E., & Venkatesha Prasad, R. (2022). Divide and Code: Efficient and
Real-time Data Recovery from Corrupted LoRa Frames. In 2022 19th Annual IEEE International Conference
on Sensing, Communication, and Networking, SECON 2022 (pp. 235-243). IEEE.
https://doi.org/10.1109/SECON55815.2022.9918571
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/SECON55815.2022.9918571
https://doi.org/10.1109/SECON55815.2022.9918571

Green Open Access added to TU Delft Institutional Repository

'You share, we take care!' - Taverne project

https://www.openaccess.nl/en/you-share-we-take-care

Otherwise as indicated in the copyright section: the publisher
is the copyright holder of this work and the author uses the
Dutch legislation to make this work public.

Divide and Code: Efficient and Real-time Data
Recovery from Corrupted LoRa Frames
Niloofar Yazdani∗†, Nikolaos Kouvelas†‡, Daniel E. Lucani∗, R Venkatesha Prasad†

†Embedded and Networked Systems, Delft University of Technology, The Netherlands ‡ IMEC, The Netherlands
∗DIGIT and Department of Electrical and Computer Engineering, Aarhus University, Denmark

{n.yazdani,daniel.lucani}@ece.au.dk, {n.kouvelas,r.r.venkateshaprasad}@tudelft.nl

Abstract—Due to power limitations and coexistence in ISM
bands, up to 50% of the Long Range (LoRa)-frames are
corrupted at low signal strengths (≈ −115dBm) and the built-in
redundancy schemes in LoRa-Wide Area Network (LoRaWAN)
cannot correct the corrupted bytes. To address this, higher
Spreading Factors (SF) are used resulting in wasted energy,
increased traffic load, and highly compromised effective data
rate. Our on-field experiments showed a high correlation in the
corruption of close-by frames. We propose a novel Divide &
Code (DC) scheme for LoRaWANs as an alternative to using
higher SF. DC pre-encodes LoRa payloads using lightweight and
memoryless encoding. After receiving a corrupted frame, DC
uses a combination of most probable patterns of errors, Time
Thresholds (TT), and splitting of payloads into subgroups for
batch processing to recover frames effectively and maintain low
complexity and timely operation. By implementing DC on our
LoRa-testbed, we show it outperforms vanilla-LoRaWAN and
Reed-Solomon codes in decoding and energy consumption. Our
schemes decode up to 80.5% of corrupted payloads on SF10
by trying only 0.03% of all patterns of error combinations. TT
keeps processing times below 2 ms with only minor reductions in
the decoding ratio of corrupted payloads. Finally, we showcase
that introducing 30% redundancy with DC results in minimum
energy consumption and high decoding ratio at low SNRs.

I. INTRODUCTION

Long Range (LoRa) is one of the prominent technologies
for providing easy, low-power, and inexpensive Internet ac-
cess to IoT devices using sub- GHz ISM bands. LoRa-PHY
(referred to as LoRa from now on) is a proprietary modulation
scheme developed by SemTech [1]. LoRa Wide Area Network
(LoRaWAN) is an open standard [2]. Through a series of
configurable parameters –including transmission power, carrier
frequency, channel bandwidth, Spreading Factor (SF), Coding
Rate (CR) –LoRaWAN trades-off data rate, which can reach up
to 46.88 kbps, and operational range, reaching up to 5 km and
20 km in dense urban and rural environments, respectively [3],
[4]. The SF dictates the number of raw bits of information per
transmitted symbol (e.g., SF8 = 8 bits = 28 = 256 chips).
The topology of a LoRa network (LoRaWAN) is depicted in
Fig. 1, wherein a LoRa-frame is received directly by at least
one gateway (GW), which forwards it to a network server
over the Internet. The server removes any duplicate frames
and sends the data to the application server. The MAC layer
of LoRaWAN uses unslotted Aloha, wherein any frame is
transmitted unconditionally upon generation.

A. Frame Corruption in LoRaWAN

Causes. LoRa network operates in the ISM bands thus it has to
coexist with other ISM-based technologies. Therefore, LoRa
devices must regulate their transmission power and duty cycle
to reduce radio interference and conform with the regulations

En
d

de
vi

ce
s

Gat
ew

ay
s

Network
server

￼￼

Application
server

TC
P

/ I
P

TCP / IP

Lo
R

a

Figure 1: A Typical LoRaWAN network
of ISM bands. The combination of long transmission range –
which increases the number of hidden devices– and low trans-
mission power results in LoRa-frames being corrupted. Their
received signal strength (RSS) is low due to multipath fading,
shadowing, and scattering, and in Non-Line of Sight (NLoS)
scenarios RSS can be as low as ≈ −115 dBm. In addition,
the ALOHA type of MAC allows simultaneous/asynchronous
transmissions, increasing the number of collisions, and leading
to frame corruption.
Consequences. Most IoT applications involve data-driven
systems of sensors, thus data corruption heavily compromises
their seamless operation. LoRaWAN does not employ Au-
tomatic Repeat reQuest (ARQ) with ACK-messages since it
is practically infeasible in networks involving thousands of
LoRa-devices due to the duty-cycle limitation of 1% (that
applies to both GWs and devices) and the absence of unicast
between devices and the GW. If the ACKs were employed the
devices would retransmit increasing the traffic in the network,
and leading to increased interference which in turn results in
even more corrupted frames. Data from The Things Network
(TTN), which is a large-scale open LoRa network [5] involving
229 gateways and data from 488 devices, showed that only
3.47% frames were received by GWs using ACKs [6].
Data Recovery in LoRaWAN. LoRa-modems utilize For-
ward Error Correction (FEC) to detect and correct corrupted
symbols. Soft Hamming codes [7] are used to create data-
redundancy with different CR represented by 4

4+𝑥 , where 𝑥

is extra coded bits for every 4 bits and 𝑥 ∈ {1, 2, 3, 4}. All
four CRs can detect single errors, but 4/7 and 4/8 can further
correct single errors or detect double errors. Moreover, 2 B,
and 4 bits of Cyclic Redundancy Check (CRC) can be added
at the end of the payload and header, respectively, to support
the error detection.
Statistics on LoRa frame corruption. Xia et al. claimed
that the reception of LoRa-frames relies primarily on detecting
the frame-preambles, which –if not detected– usually lead to

2022 19th Annual IEEE International Conference on Sensing, Communication, and Networking (SECON)

978-1-6654-8643-9/22/$31.00 ©2022 IEEE 235

20
22

 1
9t

h
An

nu
al

 IE
EE

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 S

en
sin

g,
 C

om
m

un
ic

at
io

n,
 a

nd
 N

et
w

or
ki

ng
 (S

EC
O

N
) |

 9
78

-1
-6

65
4-

86
43

-9
/2

2/
$3

1.
00

 ©
20

22
 IE

EE
 |

 D
O

I:
10

.1
10

9/
SE

CO
N

55
81

5.
20

22
.9

91
85

71

Authorized licensed use limited to: TU Delft Library. Downloaded on November 18,2022 at 07:26:24 UTC from IEEE Xplore. Restrictions apply.

Figure 2: Portion of corrupted and correctly received frames
out of 5000 transmitted frames, 𝑑 bytes of payload
complete loss of the frame [8]. Further, Marcelis et al. found
that up to 53% of the frames were lost at distances of 6 km
between devices and GWs [9]. However, the vast majority of
their frames, i.e., 95%, were transmitted on SF12. Although
the above would necessitate the adoption of erasure coding
mechanisms, Rahmadhani et al. [10], and Yazdani et al. [11]
showed considerable amounts of received frames ending up
corrupted. Specifically, they reported frame corruption of 32%
and 50% in SF8, using multiple GWs and single-GW, respec-
tively. Marcelis et al. proposed a novel use of convolutional
and fountain codes to recover data from the frames that were
already received but not recovering the frames [9]. Therefore,
we delved into the characterization of frame corruption under
various scenarios (more details in § II) and we observed up
to 49.72% and 29.06% of frames being received corrupted on
SF8 and SF10, respectively (see Fig. 2).
B. Constraints and Contributions

Accounting for the above observations and expecting a large
portion of the projected 41 billion IoT devices by 2027 [12] to
use LoRaWAN, recovering corrupted LoRa-frames is highly
critical –not only to preserve the battery life of the already
constrained LoRa-devices but also for the efficient utilization
of the spectrum. Thus, we focus on how to efficiently recover
corrupted LoRa-frames and avoid dropping them, in real-
time, independently of the built-in error correction and any
other FEC at the application layer. To address the question,
we need to consider the constraints herein: 1 The gate-
ways and the existing network infrastructure should remain
unchanged. 2 No coordination through ACKs is allowed,
since it increases the message overhead and listening times,
costing energy. 3 Any introduced byte redundancy due to
encoding should be minimal, especially for high SFs, because
the allowed payload size is limited (i.e., 51 B for SF10-SF12).

4 The encoding should be memoryless, i.e., using block
codes to ensure the freshness of data. DaRe [9] corrects the
frames based on the reception of subsequent frames, thus it
is unsuitable for time-critical applications and it only recovers
data but not the corrupted frames. 5 The decoding should be
real-time, e.g., before reception of a future (or next) frame.
Our Contributions. To this end, we introduce DC, Divide &
Code1– a novel coding scheme for LoRaWAN frame recovery.
DC uses lightweight block codes to pre-encode the payload
of a LoRa-frame and adds a limited number of encoded
bytes before LoRa-FEC is applied, to provide robustness. The
decoder of DC: (a) limits the decoding time to acceptable
values; (b) segments large payloads to save decoding time;

1This is similar to the Divide & Conquer principle.

and (c) prioritizes the decoding of certain bytes in a frame
based on their probability of being corrupted. Specifically,
1 We measure frame-corruption in LoRa networks and ana-

lyze patterns of (bursts of) errors and the correlation among
errors within a frame (see § II). 2 We design a novel,
memoryless coding scheme, called DC, that can work with the
current LoRa standard transparently. DC recovers corrupted
frames efficiently and in real-time well beyond the built-in
error-correcting capability (see § III). 3 We define specific
decoding algorithms depending on frame size and using the
characteristics of frame corruption in LoRaWAN (see subsec-
tion III-C). 4 We provide a probabilistic analysis of successful
decoding in DC (see § IV). 5 Through simulations and real-
world experiments using our testbed of LoRa-modules, we
compare DC not only to the built-in error-correcting scheme
of LoRaWAN but also to Reed Solomon codes and the recent
scheme ReDCoS, which also applies pre-encoding of LoRa
payloads but its decoder is far less sophisticated compared
to DC [11]. Furthermore, we dictate the ratio among data
bytes and error-correcting bytes that optimizes consumption
and decoding ratio (see § V).

II. CHARACTERIZATION OF ERROR PATTERN

Before we develop more effective, faster, and energy-
efficient data recovery algorithms, we first attempt to charac-
terize frame corruption in LoRaWAN. We find the conditions
under which most corrupted frames are observed. Further,
we evaluate which parts of LoRa-frames are more prone to
corruption, analyze various aspects of symbol corruption, and
understand how errors occur and if there is a pattern to them.

Data Collection. We conduct experiments on our testbed using
SX1261 LoRaWAN modules. We vary the transmitter-receiver
distance between 100− 300 m, using low transmission powers
(0 dBm) under (N)LoS conditions, employing different types
of isotropic antennas (0 − 2 dBi gain). The devices operate
at 868.1 MHz, using the bandwidth of 125 kHz on SF8 and
SF10. The following four cases are studied: (SF8, 𝑑 = 28,
no CR), (SF8, 𝑑 = 18, CR = 4/5), (SF10, 𝑑 = 22, no CR),
and (SF10, 𝑑 = 18, CR = 4/7) where 𝑑 is the number of
bytes within the payload. 5000 frames with random data are
transmitted for each case. Note that we used relatively small
frames for our on-field experiments (Fig. 2) considering the
data from TTN, which shows 75.3% of the frames having at
most 30 B payload [6].
Frame corruption. As seen in Fig. 2, the frames received
with SNR values between [−10,−13] dB and [−16,−19] dB
for SF8 and SF10, respectively, have high probabilities of
being corrupted. These values correspond to RSSI of around
−115 dBm. Frames received with SNR values above this range
are correctly decoded and below this range are lost completely.
For example, 33.32% of the 5000 frames (i.e., 1675) that
were transmitted on SF8 with 28 B payload, i.e., 𝑑 = 28,
were received corrupted when SNR was −12 dB. For high
SFs, the total number of corrupted frames is reduced due
to more robust encoding, i.e., 49.72% frame corruption for
SF8 compared to 29.06% for SF10 as shown in Fig. 2(a) and
Fig. 2(c), respectively. We did not focus on SF11 and SF12
because frame loss is mostly observed instead of corruption, as

2022 19th Annual IEEE International Conference on Sensing, Communication, and Networking (SECON)

236Authorized licensed use limited to: TU Delft Library. Downloaded on November 18,2022 at 07:26:24 UTC from IEEE Xplore. Restrictions apply.

Figure 3: (a) Byte Error Rate (𝛽) versus byte position, (b) Probability of number of corrupted bytes.

Figure 4: Heat-map of correlation between corrupted frames: (a) SF8, 𝑑 = 28 (b) SF8, 𝑑 = 18, CR = 4/5 (c) SF10, 𝑑 = 18, CR = 4/7

Marcelis et al. have confirmed [9]. With in-built redundancy
using CR, part of the corrupted bytes could be retrieved as
seen in Fig. 2(b) and Fig. 2(d). However, the sheer amount
of corrupted (bursts of) bytes render the simple LoRa-FEC
unable to correct them, still leading to 32.82% and 25.78% of
frames being corrupted at SF8 and SF10, respectively.
Byte error probability vis-á-vis position. Fig. 3(a) depicts the
probability of a byte being corrupted based on its position in a
payload for the above cases. For SF8, the first byte has the low-
est probability of being corrupted. For SF10, the first and the
second bytes have the lowest probability of being corrupted.
At SF8, except for the first byte, there is a pattern where 3
bytes have an average probability of being corrupted (∼18%
for 𝑑 = 28 and ∼14% for 𝑑 = 18) and the fourth byte has a
higher probability (∼22% for 𝑑 = 28 and ∼18% for 𝑑 = 18).
This pattern repeats per 4 B. At SF10 except for the first and
the second bytes, there is a similar pattern where there is 4
bytes with an average probability of being corrupted (∼12%)
and 1 byte with a higher probability (∼15%). This pattern
repeats per 5 bytes.
Number of corrupted bytes. Fig. 3(b) shows the probability
of receiving a payload with different number of corrupted
bytes for the previous 4 cases. Apart from the case of no
corruption (0 bytes), a peak is observed for 3, 4 (4, 5)
corrupted bytes per received payload in SF8 (SF10) confirming
our observations regarding bursts of errors in Fig. 3(a).
Correlation among corrupted bytes. We arrange received
data bytes (of corrupted frame) as a row having 𝑑 columns
corresponding to a byte/symbol. Each element takes a value
0/1; 1 if the associated byte is corrupted, and 0 otherwise. We
define 𝐴𝑖 as the 𝑖-th column associated with the 𝑖-th byte of

the received payload where 𝑖 ∈ {0, 1, ..., 𝑑 − 1}. The Pearson
correlation coefficient between any 𝐴𝑖 and 𝐴 𝑗 depicts the
strength of linear correlation between the given two columns.
It ranges from −1 to 1. The correlation coefficient of 0 depicts
no correlation while 1 and −1 depict the highest correlation.
Fig. 4 visualizes the correlation matrix as a heatmap for (SF8,
𝑑 = 28), (SF8, 𝑑 = 18, CR = 4/5), and (SF10, 𝑑 = 18, CR =
4/7). As depicted in Fig. 4, there is a pattern for each SF.
Considering SF8, for any 𝛼 ∈ Z and 𝛽 ∈ Z, considering
𝛼′ = (𝛼 ⊕ 𝜃) and 𝜉 = (𝛼 − 𝛼′ + 𝛾) we have:

𝜌(𝐴𝛼, 𝐴𝛽)


≥ 0.3 if 𝛼′ = 𝛾 & 𝛽 ∈ [𝛼 − 𝜃, 𝛼 + 𝜃]
≥ 0.3 if 𝛼′ ≠ 𝛾 & 𝛽 ∈ [𝜉, 𝜉 + 𝜃]
< 0.3 otherwise,

(1)

where (𝜃 = 4, 𝛾 = 0) for SF8, (𝜃 = 5, 𝛾 = 1) for SF10, and ⊕
is the modulo operation. For SF10, 𝐴0 is an exemption as the
correlation coefficient between 𝐴0 and any other byte is less
than 0.3. The previously observed patterns are only dependent
on the SF and not on the CR or payload size.

We verified these patterns in various environments, loca-
tions, transmission distances, SFs, and with different devices
to ensure that external noise was not causing them. We believe
the patterns are the result of mechanisms and steps involved in
decoding the incoming LoRa messages on SX1261. It seems
that for every 4th/5th byte the hardware buffer gets refreshed
or that internal noise pulls the RSSI further down, creating the
aforementioned patterns. SemTech does not describe publicly
the decoding schemes on SX1261 at the hardware level.

III. PROPOSED IDEA
Divide & Code (DC) scheme for LoRaWAN pre-encodes the

payload of frames using lightweight schemes. This is indepen-

2022 19th Annual IEEE International Conference on Sensing, Communication, and Networking (SECON)

237Authorized licensed use limited to: TU Delft Library. Downloaded on November 18,2022 at 07:26:24 UTC from IEEE Xplore. Restrictions apply.

Figure 5: The encoder and decoder of the corrupted frame.

Figure 6: Data retrieval example for Case 3: (a) Transmitted
payload, (b) Received payload (corrupted bytes marked with
star), (c) All 𝑘-combinations generating correct CRC.
dent of LoRa-FEC, which is added afterwards. DC exploits the
frame-corruption patterns of LoRaWAN to improve the speed
of decoding and packet recovery.
A. Encoder

Although DC can use different CRCs and ECCs, we focus
on CRC-32 and Reed-Solomon codes (RS) [13]. In particular,
we use systematic 𝑅𝑆256 (𝑛, 𝑘) over the finite field 28 with 𝑛
and 𝑘 being the byte-size of the codeword and the message,
respectively. We define 𝑡 and 𝑙 as the number of error-
correcting bytes and CRC check bytes, respectively, where
𝑛 = 𝑘 + 𝑡. The encoded data is generated by attaching 𝑡 RS
error-correcting bytes to the original data. The payload of the
LoRaWAN frame is generated by concatenating the encoded
data and a CRC of length 𝑙 = 4 bytes calculated over the
encoded data. If CR is on, LoRa’s FEC is added to the frame
before transmitting (see Fig. 5).

B. Decoder
DC’s decoder is located at the network server, as in Fig. 5,

but it could be placed at GW if it is computationally powerful.
Potentially corrupted encoded data and the CRC are parsed at
the DC’s decoder. The DC’s decoder recovers the data if one
of the following cases is true:
Case 1 The received encoded data and CRC are not corrupted.
Case 2 The received CRC is not corrupted and at least 𝑘 bytes
out of the 𝑘 + 𝑡 are correct in the received encoded data.
Case 3 A minimum of 𝐻 bytes of the received CRC are not
corrupted (to verify the recovered CRC) and a minimum of
𝑘+1 bytes of the received encoded data are not corrupted. 𝐻 is
determined by the user (usually 𝐻 ≥ 2), depending on the size
of CRC, and determines the strictness of CRC verification.
From the given set of 𝑘+𝑡 elements, the decoder tries all the 𝑘-
combinations, i.e., a total of 𝐶 (𝑘 + 𝑡, 𝑘) = (𝑘+𝑡)!

𝑘!𝑡! combinations.
For each 𝑘-combination, the decoder calculates the remaining
𝑡 bytes of the encoded data by decoding the RS coded data,
encoding the recovered data, and then calculating the associ-
ated CRC. DC’s decoder is detailed in Algorithm 1, where 𝑇
is the maximum allowed computation time, after which the
decoding procedure stops (see subsubsection III-C3).
Example 1. Let us consider 𝑘 = 5, 𝑡 = 3, 𝐻 = 2.
Then, the data bytes {𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5} are mapped to the
encoded data {𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑟1, 𝑟2, 𝑟3}, and transmitted.

Obviously, if all the received bytes are uncorrupted, data is
retrieved (Case 1). But let us assume the gateway receives
{𝑥1, 𝑥

∗
2, 𝑥3, 𝑥4, 𝑥

∗
5, 𝑟
∗
1, 𝑟2, 𝑟3} where a corrupted byte is shown

with a star and CRC is uncorrupted. Then, the decoder tries
different 𝑘-combinations. Once, it selects the uncorrupted
bytes {𝑥1, 𝑥3, 𝑥4, 𝑟2, 𝑟3}, it generates the correct encoded data
and the correct CRC, which is verified using the received CRC.
Hence, data is retrieved (Case 2). Now we assume 2 bytes of
the received CRC are corrupted and the received encoded data
is {𝑥1, 𝑥2, 𝑥3, 𝑥

∗
4, 𝑥5, 𝑟

∗
1, 𝑟2, 𝑟3} as shown in Fig. 6. Then, every

time the decoder selects a 𝑘-combination from the set of the
correct bytes {𝑥1, 𝑥2, 𝑥3, 𝑥5, 𝑟2, 𝑟3}, the same correct CRC is
generated, i.e., 𝐶 (6, 5) = 6 = 𝑘 + 1 times, see Fig. 6 (c). This
CRC has 𝐻 = 2 bytes which are equal to their counterparts
from the received CRC and hence is verified. Thus, the data
can be retrieved (Case 3).

C. Proposed Schemes for Realtime Decoder
In Algorithm 1, we propose three different schemes to

decode in realtime as described hereafter.
1) Utilizing the Pattern of CRCs Repetitions (PCR): Re-

garding Case 3, instead of repeating the correct CRC at least
𝐶 (𝑘 +1, 𝑘) = 𝑘 +1 times to retrieve the payload, we show that
the repetition of the same CRC 2 times is enough to guarantee
that it will be repeated a minimum of 𝑘 + 1 times. Thus, we
stop the procedure earlier saving time and computations. Let
us take an example.
Example 2. In Fig. 6, we assume that the decoder
has tried two 𝑘-combinations of {𝑥1, 𝑥2, 𝑥3, 𝑥5, 𝑟2} and
{𝑥1, 𝑥3, 𝑥5, 𝑟2, 𝑟3}. If they generate the same CRC, then the
generated encoded data is also equal. Thus, the generated
𝑟3 by the first combination must be equal to the selected
𝑟3 in the second combination. Hence, any 𝑘-combination
out of the concatenation of these two 𝑘-combinations, i.e.,
{𝑥1, 𝑥2, 𝑥3, 𝑥5, 𝑟2, 𝑟3} will generate the same CRC.

Accordingly, in Algorithm 1, line 30 we check if a CRC is
repeated 2 times, not 𝑘 + 1 times. In general, if the decoder
tries all the 𝑘-combinations, a given CRC can be repeated
(𝑘 + 𝑖, 𝑘) times –not any other value in between– where
𝑖 ∈ {0, 1, 2, .., 𝑡}. If the encoded data is uncorrupted, there
exists only one CRC which is repeated 𝐶 (𝑘 + 𝑡, 𝑘) times.
Otherwise, normally there are plenty of CRCs which are
repeated only 𝐶 (𝑘, 𝑘) = 1 time, and a few CRCs which are
repeated 𝐶 (𝑘+𝑖, 𝑘) for 𝑖 ∈ {1, 2, ..𝑡}. Fig. 7 depicts an example
of the number of CRC repetitions when the decoder tries
all the 𝑘-combinations considering corrupted encoded data.
Among 𝐶𝑅𝐶#3, 𝐶𝑅𝐶#5, or 𝐶𝑅𝐶#7, the one that has 𝐻 bytes
in common with the received CRC is considered the correct
CRC. Increasing 𝐻 decreases the possibility of false decoding,
as it employs stricter CRC verification.

2) Utilizing the Pattern of Errors (PE): As mentioned
in subsection III-B, the decoder tries up to 𝐶 (𝑘 + 𝑡, 𝑘) dif-
ferent 𝑘-combinations. For selecting 𝑘 bytes for generating
each 𝑘-combination, a Boolean vector, 𝑉 , of size 𝑘 + 𝑡 is
generated in which the 𝑡 leftmost elements are ones, and
the remaining elements are zero. The indices of the zero
elements in this vector represent the indices for the current 𝑘-
combination. To generate the next 𝑘-combination, the Boolean

2022 19th Annual IEEE International Conference on Sensing, Communication, and Networking (SECON)

238Authorized licensed use limited to: TU Delft Library. Downloaded on November 18,2022 at 07:26:24 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1: DC’s decoder:
Input: 𝐷_𝑟 : received data, 𝐸_𝑟 : received error correcting bytes, 𝐶𝑅𝐶_𝑟 :

received CRC
Output: 𝐷: retrieved data, failed decoding

1 𝑡𝑖𝑚𝑒𝑟 = 0 // Keeps the time in ms, increases with time
2 𝑝𝑐 = 0 // Permutation counter
3 𝐶𝑅𝐶_𝑡 ← {} // Pairs of (CRC:#repetition)
4 𝑉 ← [0].𝑠𝑖𝑧𝑒 (𝑘 + 𝑡) // A Boolean vector
5 V[k:k+t-1] = 1 // Set the last 𝑡 elements
6 Step 1: Check if the received encoded data is uncorrupted.
7 𝑥 ← 𝑓 𝑖𝑛𝑑_𝐶𝑅𝐶 (𝐷_𝑟 , 𝐸_𝑟)
8 if 𝑥 == 𝐶𝑅𝐶_𝑟 then
9 𝑟𝑒𝑡𝑢𝑟𝑛(𝐷 = 𝐷_𝑟) // End: SUCCESS (Case 1)

10 𝐷𝑒,𝑟 ← 𝑐𝑜𝑛𝑐𝑎𝑡𝑒𝑛𝑎𝑡𝑒 (𝐷𝑟 , 𝐸𝑟)
11 while 𝑝𝑐 < (𝐶 (𝑘 + 𝑡 , 𝑘)) do
12 Step 2: Using time threshold (TT).
13 if 𝑡𝑖𝑚𝑒𝑟 ≥ 𝑇 then
14 𝑟𝑒𝑡𝑢𝑟𝑛(“𝐹𝑎𝑖𝑙𝑒𝑑 𝐷𝑒𝑐𝑜𝑑𝑖𝑛𝑔”) // End: Failed

15 Step 3: Generate an uncorrupted encoded data candidate: Try a
𝑘-combination

16 𝑦 ← [].𝑠𝑖𝑧𝑒 (𝑘 + 𝑡)
17 𝑦 ← 𝑠𝑒𝑙𝑒𝑐𝑡_𝑘_𝑏𝑦𝑡𝑒𝑠 (𝐷𝑒,𝑟 , 𝑉) // The indices of the

zero elements in V indicates the selected bytes
18 𝑦 ← 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒_𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔_𝑡_𝑏𝑦𝑡𝑒𝑠 (𝑦)
19 𝑥 ← 𝑓 𝑖𝑛𝑑_𝐶𝑅𝐶 (𝑦)
20 Step 4: Check if the candidate matches the received CRC
21 if 𝑥 == 𝐶𝑅𝐶_𝑟 then
22 𝐷 = 𝑝𝑖𝑐𝑘_ 𝑓 𝑖𝑟𝑠𝑡_𝑘_𝑏𝑦𝑡𝑒𝑠 (𝑦)
23 𝑟𝑒𝑡𝑢𝑟𝑛(𝐷) // End: SUCCESS (Case 2)

24 Step 5: Save/Check the recovered CRC.
// Check key 𝑥 availability in CRC table 𝐶𝑅𝐶_𝑡

25 if ! 𝑓 𝑖𝑛𝑑_𝑘𝑒𝑦 (𝑥, 𝐶𝑅𝐶_𝑡) then
26 𝐶𝑅𝐶_𝑡 [𝑥] = 1
27 else
28 𝐶𝑅𝐶_𝑡 [𝑥]+ = 1
29 Step 6: Check CRC repetition (PCR).
30 if 𝐶𝑅𝐶_𝑡 [𝑥] == 2 then
31 ℎ← 𝑓 𝑖𝑛𝑑_#𝑠𝑖𝑚𝑖𝑙𝑎𝑟_𝑏𝑦𝑡𝑒𝑠 (𝑥, 𝐶𝑅𝐶_𝑟)
32 Step 7: Verify the recovered CRC.
33 if ℎ ≥ 𝐻 then
34 𝐷 = 𝑝𝑖𝑐𝑘_ 𝑓 𝑖𝑟𝑠𝑡_𝑘_𝑏𝑦𝑡𝑒𝑠 (𝑦)
35 𝑟𝑒𝑡𝑢𝑟𝑛(𝐷) // End: SUCCESS (Case 3)

36 Step 8: Permute V.
37 if 𝑝𝑐 < (𝑘 + 1) then
38 𝑉 = 𝑟𝑜𝑡𝑎𝑡𝑒_𝑙𝑒 𝑓 𝑡 (𝑉) // PE: Rotate by 1 byte

39 else
40 𝑉 = 𝑙𝑒𝑥_𝑝𝑒𝑟𝑚𝑢𝑡𝑒 (𝑉) // Permute to reverse

lexicographic order, skip those tested by PE

41 pc++

42 Step 9: return failure if the algorithm has not ended yet by a return
43 𝑟𝑒𝑡𝑢𝑟𝑛(”𝐹𝑎𝑖𝑙𝑒𝑑 𝐷𝑒𝑐𝑜𝑑𝑖𝑛𝑔”) // End: Failed

vector is permuted to the reverse lexicographical order [14]
(Algorithm 1. line 40). Accordingly, finding the correct 𝑘-
combinations might take a long time. To alleviate this issue,
we utilize the insights from § II to make this search process
more efficient. Our goal is to select 𝑘 bytes while 𝑡 bytes
are left unselected. Eq. 1 represents the correlation between
corrupted bytes. As observed in Fig. 4, adjacent bytes have a
higher probability of being corrupted. Therefore, the decoder
should prioritize them. For example, in SF8 if 𝐴3 is corrupted,
there is a relatively higher probability that 𝐴0, 𝐴1, 𝐴2, 𝑜𝑟 𝐴4 are
corrupted as well. Afterwards, if data is not decoded yet, the
decoder tries all the remaining combinations in reverse lexico-
graphical order. To select the few 𝑘-combinations, initially, the
𝑡 rightmost elements are set to zero (Algorithm 1. line 5). To
generate the next 𝑘-combination, the Boolean vector is rotated
to the left by 1 byte. The process stops when all the leftmost
elements are ones, i.e., after 𝑘 rotations. This technique is
called PE (Algorithm 1. line 38), hereafter. Accordingly, PE

Figure 7: Number of CRC repetitions if decoder tries all 𝑘-
combinations considering corrupted encoded data.

Figure 8: Decoding large payloads (a) Making subsets of
bytes, (b) Proposed idea for large payloads.
checks only 𝑘 + 1 𝑘-combinations initially which is much
lower than the total number of 𝑘-combinations. For instance,
considering 𝑘 = 20 and 𝑡 = 4, the PE checks only 21 𝑘-
combinations initially while there are 10626 of them.

3) Setting Time Threshold (TT): There is a considerable
portion of large frames which cannot be decoded due to lots
of corrupted bytes. The time needed for the decoder to dictate
that decoding is not possible would be immense as all the
𝐶 (𝑘 + 𝑡, 𝑘) 𝑘-combinations must be tried. Since using the PE
most of the payloads are decoded in a short time, we define
a time threshold (TT) discarding any payload not decoded
before this specified boundary. In § V, we study the effect of
changing the 𝑇 . We call this TT technique.

D. Decoding Large Payloads (DLP)
DLP is a complement to Algorithm 1. Assume DLP is not

used unless otherwise stated. Although the main focus of DC
is applications with small payloads, transmissions of relatively
larger payloads can occur, especially at SF7 and SF8 which
allow up to 222 B of payload [2]. Although the encoding
is lightweight, the decoding of relatively large payloads can
become problematic due to the sheer numbers of different 𝑘-
combinations that have to be examined.
Example 3. Assuming that a payload with 𝑘 = 20, 𝑡 = 4
needs 0.458 s to decode (See § V), we focus on finding the
time needed for a payload with 𝑘 = 40, 𝑡 = 8. The number
of 𝑘-combinations increases by a factor of 𝐶 (48,40)

𝐶 (24,20) = 35, 512.
Further, using Gaussian elimination, the complexity increases
by 403

203 = 8. Thus, the total complexity increases by a factor
of 284, 096, and hence the expected decoding time would be
284, 096 × 0.14 ≈ 113627 𝑠 ≈ 31.5 ℎ𝑜𝑢𝑟𝑠.
Solution. In this section, we investigate the solution for
the aforementioned problem that leads to immense decoding
times. We expand the 𝑘 + 𝑡 bytes into subsets with 𝑄 bytes
where 𝑄 > 1, 𝑘 ⊕ 𝑄 = 0, and 𝑡 ⊕ 𝑄 = 0. The aforementioned
conditions guarantee that all subsets have exactly 𝑄 bytes and
each subset has either data bytes (referred to as data subset,
hereafter) or error-correcting bytes (referred to as an error-
correcting subset, hereafter) and not both. This consideration

2022 19th Annual IEEE International Conference on Sensing, Communication, and Networking (SECON)

239Authorized licensed use limited to: TU Delft Library. Downloaded on November 18,2022 at 07:26:24 UTC from IEEE Xplore. Restrictions apply.

Figure 9: Example of DLP.
is both at the encoder and the decoder. Then, every error-
correcting subset is a linear combination of data subsets. This
decreases the computational complexity dramatically, as the
number of combinations and Gaussian elimination complexity
for a payload with 𝑘, 𝑡, and 𝑄 parameters become equal to the
ones for 𝑘 ′ = 𝑘

𝑄
, 𝑡 ′ = 𝑡

𝑄
, and 𝑄 ′ = 1. However, the above

can lead to a decrease in the probability of decoding the data
as even one corrupted byte renders its whole corresponding
subset useless, and any combination made by the decoder
using that subset leads to corrupted results. This worsens by
increasing 𝑄 for larger payloads, as it increases the probability
of having at least one corrupted byte per subset. We account
that the 𝑖-th byte in a given error-correcting subset is only
dependent on the 𝑖-th bytes in all data subsets (see Fig. 8(b),
red lines). Accordingly, the 𝑘 + 𝑡 bytes of the encoded data
form 𝑄 groups where group 𝑖 for 𝑖 ∈ {0, 1, ..., 𝑄 − 1} contains
𝑖-th byte of each subset. For instance, group 0 in Fig. 8
includes the first byte of all the subsets. We define 𝐾 = 𝑘

𝑄
and

𝑇 = 𝑡
𝑄

as the number of data subsets and the number of error-
correcting subsets, respectively. Then, we try to find uncor-
rupted groups, individually. The whole uncorrupted encoded
data can be found by putting the uncorrupted groups together.
DLP uses the same decoding procedure as in Algorithm 1
with the following main modifications: 1 Decoder tries 𝐾-
combinations by selecting 𝐾 subsets out of 𝐾 +𝑇 subsets and
generates the remaining 𝑇 subsets. 2 DLP keeps track of the
CRC repetitions for each group, individually, rather than for
the whole encoded data. Thus every time the decoder tries
a 𝐾-combination, it calculates 𝑄 CRCs. 3 If a CRC for a
given group is repeated 2 times (PCR), it is considered a
candidate and its corresponding group is saved. 4 If more
than one groups have CRC candidates, these are combined,
and a resulting CRC is calculated from the combination. If
𝐻 bytes of the calculated CRC match the corresponding bytes
of the received CRC, the encoded data candidate is correct.
Note that DLP still accounts for PCR, TT, and PE as adjacent
subsets have a high probability of being in a similar condition
regarding being corrupted especially for low values of 𝑄.

Example 4. Fig. 9 shows an example where 𝑄 = 2. 𝑥1 and 𝑟2
are corrupted during the transmission. As 𝐾 = 4, the decoder
tries different 4-combinations out of 7 subsets. There are a
total of 𝐶 (7, 4) K-combinations. In each trial, the receiver
selects 𝐾 = 4 subsets and generates the remaining 3 subsets.
As shown in Fig. 9, on the first try, the first, third, fourth,
and seventh subsets are selected. This means that 𝑥∗1 is one
of the selected bytes. Since it is the first byte in its subset, all
the first bytes in the generated subsets are corrupted. But, the
second byte in the generated subsets, associated with group 1,
is uncorrupted. Accordingly, in the second try, the second
bytes of the generated subsets are corrupted while the first
bytes are uncorrupted. Therefore, although in both tries there

Table I
Mapping of the Datasets

Dataset (§ II) Dataset (§ V)
(SF8, 𝑑 = 28) (SF8, 𝑘 = 20, 𝑡 = 4)

(SF8, 𝑑 = 18, CR = 4/5) (SF8, 𝑘 = 10, 𝑡 = 4, CR = 4/5)
(SF10, 𝑑 = 22) (SF10, 𝑘 = 10, 𝑡 = 8)

(SF10, 𝑑 = 18, CR = 4/7) (SF10, 𝑘 = 10, 𝑡 = 4, CR = 4/7)

was 1 corrupted byte, the first and second tries generated the
uncorrupted bytes for groups 1 and 0, respectively.

DLP recovers the data in the aforementioned three cases
in subsection III-B. However, in Case 2, a minimum of 𝐾
uncorrupted subsets are required, and in Case 3, a minimum
of 𝐾+1 bytes in each group needs to be uncorrupted. The latter
corresponds to a minimum of 𝑄(𝐾 + 1) = 𝑄𝐾 + 𝑄 = 𝑘 + 𝑄
uncorrupted bytes out of the 𝑘+𝑡 bytes of the received encoded
data where the corrupted bytes are uniformly distributed
between the groups.

IV. ANALYSIS OF DC
We evaluate DC in terms of decoder throughput, decoding

ratio, and false decoding ratio for Byte Error Rates, denoted
as 𝛽. 𝛽 is the probability of a byte getting corrupted during the
transmission and is calculated as the ratio of corrupted bytes
over transmitted bytes. We characterized frame corruption and
error pattern in § II. In this section for the sake of simplicity,
we assume that 𝛽 is i.i.d. See § V to analyze the effect
of our assumptions. We define the decoder throughput as
the amount of data (i.e., excluding CRC and error-correcting
bytes) processed. The Decoding Ratio (DR) indicates the ratio
of decoded over total received payloads. The False Decoding
Ratio (FDR) is the ratio of falsely decoded payloads over
the total. Increasing 𝐻 reduces the FDR as the recovered
CRC must be validated more strictly, i.e., requiring more byte
matches.
Decoding Probability. We define 𝑃(𝑤, 𝑒) as the probability
of having 𝑒 corrupted out of 𝑤 given bytes,

𝑃(𝑤, 𝑒) = 𝐶 (𝑤, 𝑒)𝛽𝑒 (1 − 𝛽)𝑤−𝑒,∀𝑒 ∈ [0, 𝑤] (2)

Received CRC is uncorrupted: The probability of receiving
an uncorrupted CRC is 𝑃(𝑙, 0). In this case, DC recovers the
data if up to and including 𝑡 bytes are corrupted out of the
𝑘 + 𝑡 bytes which happens with probability Σ𝑡

𝑖=0𝑃(𝑘 + 𝑡, 𝑖).
Matched bytes between recovered and received CRC greater

or equal to 𝐻 and less than 𝑙: The number of corrupted bytes
of the CRC is within [1, 𝑙−𝐻] which happens with probability
Σ𝑙−𝐻
𝑖=1 𝑃(𝑙, 𝑖). In this case, DC recovers the data if up to and

including 𝑡 − 1 bytes are corrupted out of the 𝑘 + 𝑡 bytes,
i.e., a minimum of 𝑘 + 1 bytes are intact, which happens with
probability Σ𝑡−1

𝑖=0𝑃(𝑘 + 𝑡, 𝑖).
Matched bytes between recovered and received CRC less

than 𝐻: Decoding is not possible. Accordingly, the probability
of successfully decoding a frame is,

P𝐷 = 𝑃(𝑙, 0)Σ𝑡
𝑖=0𝑃(𝑘 + 𝑡, 𝑖) +Σ

𝑙−𝐻
𝑖=1 𝑃(𝑙, 𝑖)Σ

𝑡−1
𝑖=0𝑃(𝑘 + 𝑡, 𝑖) (3)

Decoding Probability of DLP. A subset is corrupted if it has
a minimum of one corrupted byte. The probability of a subset
getting corrupted during the transmission, denoted as Γ, is:

Γ = 1 − {𝐶 (𝑄, 0)𝛽0 (1 − 𝛽)𝑄−0} = 1 − (1 − 𝛽)𝑄 . (4)

The probability of 𝐸 corrupted out of 𝑊 given subsets is:

2022 19th Annual IEEE International Conference on Sensing, Communication, and Networking (SECON)

240Authorized licensed use limited to: TU Delft Library. Downloaded on November 18,2022 at 07:26:24 UTC from IEEE Xplore. Restrictions apply.

Figure 10: Portion of decoded payloads and tried k-
combinations using DC’s PE feature compared to ReDCoS

P(𝑊, 𝐸) = 𝐶 (𝑊, 𝐸)Γ𝐸 (1 − Γ)𝑊−𝐸 ,∀𝐸 ∈ [0,𝑊] . (5)
Following a similar approach as for Eq. 3, DC using DLP
recovers the data with the probability,

P𝐷 = 𝑃(𝑙, 0)Σ𝑇
𝑖=0P(𝐾 + 𝑇, 𝑖) + Σ

𝑙−𝐻
𝑖=1 𝑃(𝑙, 𝑖)Σ

𝑇−1
𝑖1=0Σ

𝑇−1
𝑖2=0 ...

...Σ𝑇−1
𝑖𝑄=0𝑃(𝐾 + 𝑇, 𝑖1)𝑃(𝐾 + 𝑇, 𝑖2)...𝑃(𝐾 + 𝑇, 𝑖𝑄), (6)

where Σ𝑇
𝑖=0P(𝐾 + 𝑇, 𝑖) is the probability of up to and in-

cluding 𝑇 subsets are corrupted out of 𝐾 + 𝑇 subsets, and
Σ𝑇−1
𝑖2=0 ...Σ

𝑇−1
𝑖𝑄=0𝑃(𝐾 + 𝑇, 𝑖1)𝑃(𝐾 + 𝑇, 𝑖2)...𝑃(𝐾 + 𝑇, 𝑖𝑄) is the

total probability of every group having a maximum of 𝑇 − 1
corrupted bytes out of the 𝐾 + 𝑇 bytes.

V. PERFORMANCE EVALUATION

Dataset and Setup. We used the data collected by our testbed
as described in § II unless stated otherwise. Each data set
corresponds to a given 𝑘 and 𝑡 value, as depicted in the
Table. I. Note that 𝑑 = 𝑘 + 𝑡 +4, where 4 bytes are used for the
CRC. For our experiments, we use 𝑅𝑆256 (𝑘 + 𝑡, 𝑘) as the ECC
in the DC algorithm with random data in the payload. The
encoder and decoder are implemented as a C++ library. The
transmitted LoRaWAN frames contain 8 and 2 LoRa bytes for
preamble and physical header, respectively. The decoding is
done on a Core i7-7820HQ, 2.90GHz network server using a
single thread. We consider 𝐻 = 2 and a large time threshold
to process all payloads unless stated otherwise.
Schemes for comparison. We compare DC with No-Added-
ECC and RS-ECC. The latter uses a Reed-Solomon code,
𝑅𝑆256 (𝑘+𝑡, 𝑘), to recover the data, if the CRC is not corrupted,
up to and including ⌊ 𝑡2 ⌋ of corrupted bytes of encoded data.
Effect of PE. As mentioned in subsubsection III-C2, PE tries
a limited set of 𝑘-combinations with a high probability of
decoding the data. PE’s portion of 𝑘-combinations is equal
to 𝑘+1

𝐶 (𝑘+𝑡 ,𝑘) . Fig. 10 shows the ratio of decoded payloads by
PE over a total of decoded payloads considering corrupted
payloads. For instance, for SF10, 𝑘 = 10, 𝑡 = 8, PE decodes
80.46% of the corrupted payloads received which are decod-
able by trying only up to 0.03% of all the 𝑘-combinations, and
the remaining 19.54% can be decoded using the rest 99.97%
𝑘-combinations. Further, DC outperforms ReDCoS regarding
the number of 𝑘-combinations needed to achieve the same
percentage of decoding. As seen in Fig. 10 ReDCoS tries 125×
more 𝑘-combinations than DC to decode 80% of payloads at
(SF8, 𝑘 = 20, 𝑡 = 4). For all cases, we found FDR=0.

Figure 11: Decoding ratio per processing time using TT.

Figure 12: DLP’s (a) decoding ratio and (b) throughput
Effect of TT. Fig. 11 compares the decoding ratio of DC
using different time thresholds against ReDCoS, RS-ECC, and
No-Added-ECC. We proposed a similar approach as TT for
ReDCoS (labelled as ReDCoS(STT)) for a fair comparison.
After a point, increasing the time threshold does not affect
the decoding ratio as the payloads are either decoded or
failed to decode. We assume that RS-ECC and No-Added-
ECC process the payload instantly. The initial sharp increase
in decoding ratio for DC and ReDCoS corresponds to the
uncorrupted payloads (instantly decoded). We also observe a
sharp increase in decoding ratio for DC due to the use of
PE, i.e., trying the most likely 𝑘-combinations. DC for SF8,
𝑘 = 20, 𝑡 = 4 outperforms RS-ECC and No-Added-ECC after
average processing time of as low as 0.27 ms and 0.083 ms.
The average processing time can be further reduced from
458 ms to 1.91 ms at the expense of only 5.4% lower decoding
ratio in DC for SF8, 𝑘 = 20, 𝑡 = 4. In contrast, ReDCoS’
decoding ratio decreases by 19.7% when reducing the average
processing time from 458 ms to 1.91 ms. According to Fig. 11,
the decoding ratio deviates at most 16% from the experimental
results. For the analysis, we consider the average 𝛽.
Effect of DLP. Fig. 12 studies the DLP in terms of decoding
ratio, and throughput over 10 different values for Byte Error
Rate, 𝛽, considering 𝑘 = 40 and 𝑡 = 8. We consider synthetic
data to study different 𝛽 values, i.e., bytes are corrupted at
random considering the given 𝛽. The decoder throughput is
calculated as in Example. 3. DC-with-DLP provides up to
30.79% and 80.6% better decoding ratio compared to RS-ECC
and No-Added-ECC, respectively. The increased probability
of having at least one corrupted byte per subset reduces the
decoding ratio of DC-with-DLP compared to DC-without-DLP
by up to 35.57%. However, this is a small price to be paid for
encoding large payloads as seen in the throughput results.

2022 19th Annual IEEE International Conference on Sensing, Communication, and Networking (SECON)

241Authorized licensed use limited to: TU Delft Library. Downloaded on November 18,2022 at 07:26:24 UTC from IEEE Xplore. Restrictions apply.

Fig. 12(b) shows that the use of DLP mechanism improves
the throughput of the decoder by up to 180, 854×. Although
ReDCoS reports similar values of decoding ratio compared to
DC (Fig. 12(a)), it has a throughput similar to DC-without-
DLP, i.e., it is unable to process large frames. The encoder’s
throughput for DC with DLP reaches 1.9 MB/s, while the FDR
is zero for all cases with 𝐻 = 3. The simulated results for the
decoding ratio of DC using DLP in Fig. 12 are consistent with
the analysis in § IV.
False decoding ratio of DC. Throughout our experiments
we reported an FDR of 0. In contrast, ReDCoS reports an
FDR of 0.13% for 𝑘 = 10 and 𝑡 = 8 and 0.11% for 𝑘 = 20
and 𝑡 = 4 [11], i.e., more than 0.1% of decoded payloads of
ReDCoS are falsely decoded.
Finding the Optimum Point. Given a fixed 𝑘 + 𝑡, we evaluate
the optimum value for 𝑘

𝑘+𝑡 , i.e., which fraction of the encoded
payload corresponds to information bytes and which to added
redundancy, to deliver a high decoding ratio while keeping
energy consumption low. For No-Added-ECC, 𝑘 + 𝑡 changes
only by changing 𝑘 . For fairness, No-Added-ECC’s results are
shown for the same 𝑘 value as in DC and RS-ECC. Fig. 13
shows the decoding ratio, transmission energy per bit, and
the total number of 𝑘-combinations utilized. For each case,
the on-field experiments are performed for a specific 𝑘 , see
vertical dashed lines, and the rest of the values are calculated
accordingly. For SF8, 𝑑 = 28, DC provides up to 1.84× and
2.49× better decoding ratio compared to RS-ECC and No-
Added-ECC, respectively.

The main source of energy consumption in an end device is
data transmission. Energy per transmission can be calculated
by multiplying the transmission power by the frame time on-
air, which depends on the used SF, CR, and bandwidth [1].
Transmission energy per bit in Fig. 13 is measured as

𝐸 =
𝑋10−6𝑁𝑇

8𝑘𝑁𝐷

[𝜇J], (7)

where 𝑋 is the energy consumed per transmission, 𝑁𝑇 is
the number of transmitted frames, and 𝑁𝐷 is the number of
decoded payloads. Thus, Eq. 7 indicates the average energy
consumed to receive one data bit, correctly, by the decoder.
If a frame is not correctly received, it is re-transmitted. Eq. 7
includes 𝑁𝑇

𝑁𝐷
to capture this effect of frame losses. DC and

RS-ECC include error-correcting bytes, which lead to extra
energy consumed compared to No-Added-ECC for a given
𝑘 . Furthermore, the 8 · 𝑘 data bits in a frame carry the main
information. For SF8, 𝑑 = 28 and SF8, 𝑑 = 18, CR = 4/5, with
decreasing 𝑘

𝑘+𝑡 , transmission energy initially decreases as the
probability of decoding increases. Subsequently, it increases
as 𝑘 decreases while there is a fixed overhead per frame
coming from error-correcting bits, preamble, and physical
header. The latter one is the dominant factor for SF10, 𝑑 = 22
and SF10, 𝑑 = 18, CR = 4/7. For SF8, 𝑑 = 18, CR =
4/5, DC consumes 1.49× and 1.99× less energy for correctly
transmitting each data bit compared to RS-ECC and No-
Added-ECC, respectively. Fig. 13 also shows the total number
of 𝑘-combinations (= 𝐶 (𝑘+𝑡, 𝑘)) per case. This is an indication
of the throughput of the decoder. The total number of 𝑘-
combinations peaks at 𝑘 = 𝑡, i.e., 𝑘

𝑘+𝑡 = 0.5.
Overall, to minimize the transmission energy while keeping

Figure 13: Optimum value for 𝑘
𝑘+𝑡 considering a fixed 𝑘 + 𝑡.

As 𝑘 + 𝑡 is constant, the payload size for RS-ECC and DC is
constant and equal to 𝑑 = 𝑙 + 𝑘 + 𝑡 for each case. The payload
size for No-Added-ECC chooses 𝑘 with 𝑡 = 0.
a relatively high decoding ratio, 𝑘

𝑘+𝑡 should be chosen close to
0.7 (with 𝑘+𝑡 fixed). Therefore, for a fixed 𝑑 while 𝑙 = 4 bytes
are allocated to the CRC, roughly 70% of the remained bytes
should be data and 30% error correcting bytes to minimize the
transmission energy and keep a high decoding ratio.

VI. RELATED WORKS

Marcelis et al. introduced DaRe, a LoRaWAN application
layer coding scheme to retrieve lost data. DaRe combines
convolutional and fountain codes, recovering 99% of data
using CR = 4/8 at 40% frame loss [9]. Sandell and Raza
showed that the benefit of adding more redundancy is bounded
due to the interference caused by the increased size of the
encoded frames [15]. Thus, DaRe will not work for high frame
losses [15]. DC excels in such cases by recovering frames.
Indeed, DC coding complements DaRe scheme to retrieve
more data by providing more uncorrupted (received) frames
at the application layer. DaRe requires reception of multiple
frames, whereas DC applies to only one corrupted frame at a
time. Montejo-Sánchez et al. transmit the encoded redundancy
in independent frames, whose number is decided based on
range, configuration, and quality of service requirements [16].
Elshabrawy and Robert proposed a non-binary Single Parity
Check (SPC) code with soft-decision decoding, trading off
the increase in coding gains with increased Time on Air. The
optimal application of the SPC code rate enhances the capacity
of LoRa networks up to 65% [17]. They reduced Bit Error
Rate (BER) by applying bit interleaved coded modulation in
channels with Rayleigh fading and additive white Gaussian
noise, and showed gains up to 8 dB in BER [18].

Coutaud et al. designed LoRaFFEC wherein frames are
encoded using pseudo-random linear combinations of already
sent data. Combined with data-fragmentation –to cater to the

2022 19th Annual IEEE International Conference on Sensing, Communication, and Networking (SECON)

242Authorized licensed use limited to: TU Delft Library. Downloaded on November 18,2022 at 07:26:24 UTC from IEEE Xplore. Restrictions apply.

variety of LoRa-frame sizes– LoRaFFEC manages a data
delivery ratio of 98% for channels with 0.4 probability of
frame error [19]. Further, Coutaud and Tourancheau propose
CCARR, which encodes frames using RS-coding, adapting the
size of the added redundancy dynamically [20]. Borkotoky et
al. suggest windowed and selective coding at the application
layer of delay-intolerant LoRaWANs with minimum feedback.
Windowed encoding accounts for all the non-delivered and
non-expired transmitted symbols, while a selective mechanism
chooses a few among them according to feedback [21]. Wang
et al. focus on convolutionally encoded frames received on
high SNR values. They design algorithms assisted by the
outcome of CRC: (i) Partial Iterative Decoding-Detecting
retrieves possible errors on bits with the highest log-likelihood
of being erroneous, (ii) Soft-Decision Syndrome Decoding
technique identifies patterns of errors in frames [22]. Sant’Ana
et al. propose a hybrid coding scheme, comprised of packet-
replication and the use of linear XOR operations for the
extension of battery lifetime [23]. Chen et al. use Luby
Transform codes on multiple versions of the same frame
received by several gateways to recover the correct parts of
the frame [24]. Angelopoulos et al. apply rateless encoding
on frames of 𝑘 symbols before transmission. Upon reception,
they evaluate the algebraic consistency of frames by applying
the algebraic consistency rule to 𝑘 +1 of their symbols. When
corrupted symbols are spotted, they are recovered through an
iterative decoding algorithm assisted by CRC [25]. DC builds
on this idea to provide a novel and lightweight coding scheme.

VII. CONCLUSIONS

On our LoRa testbed, we measured large portions of cor-
rupted LoRa-frames being received under challenging condi-
tions, e.g., for an SNR∈ [−16,−19] dB one-third of LoRa-
frames of 22 B at SF10 have errors. Our tests showed corrup-
tions in bursts of up to 5 or 6 bytes, with 70%-80% probability
for a byte to be erroneous when located next to a corrupted
byte. The in-built Hamming codes in LoRa cannot repair these
frames, leading to data loss and frequent (re)transmissions.

In this work, we introduced Divide & Code, a novel,
real-time, coding scheme for LoRaWAN. DC encodes inde-
pendently and proactively the LoRa-payloads before the CR
of LoRa-FEC (or DaRe-like schemes) is applied, increasing
the robustness of transmitted frames. The decoder of DC
incorporates our findings regarding the locations of errors
and reduces decoding time and complexity by setting time
thresholds and defining subgroups of data bytes within large
frames. On-field experiments showed that targeted error cor-
rection around erroneous bytes can decode 79.24% of the
corrupted frames while trying only 0.20% of 𝑘-combinations
at SF8 for 20 B payloads. Further, we compared with RS-
coding and vanilla LoRaWAN and showed that DC boosts
the decoding ratio by ≈ 2x and 2.5x while consuming 1.5x
and ≈ 2x less energy per correctly received data-bit. DC
does not require any deviation from the LoRaWAN standard
and/or change of infrastructure. DC has no dependency on data
from multiple frames to encode/decode, thus supporting time-
critical applications. Finally, DC sustains low network traffic
(without ACKs) while adding minimal frame redundancy.

VIII. ACKNOWLEDGEMENT

This research was funded by InSecTT (www.insectt.eu)
project that has received funding from the ECSEL Joint
Undertaking (JU) under grant agreement No 876038. The JU
receives support from the European Union’s Horizon 2020
research and innovation program and Austria, Sweden, Spain,
Italy, France, Portugal, Ireland, Finland, Slovenia, Poland,
Netherlands, and Turkey. The document reflects only the
author’s view and the European Commission is not responsible
for any use that may be made of the information it contains.

REFERENCES

[1] Semtech, “LoRa® and LoRaWAN®: A Technical Overview,” [Online].
[2] LoRa™ Alliance, “LoRaWAN® Specification v1.1,” [Online].
[3] B. Reynders, W. Meert, and S. Pollin, “Power and spreading factor

control in low power wide area networks,” in IEEE Int. Conf. on
Communications (ICC), 2017, pp. 1–6.

[4] M. Bor and U. Roedig, “LoRa Transmission Parameter Selection,” in
Int. Conf. on Dist. Comp. in Sensor Sys. (DCOSS), 6 2017, pp. 27–34.

[5] “The Things Network,” https://www.thethingsnetwork.org/, [Online].
[6] A. Rahmadhani and F. Kuipers, “Understanding collisions in a lorawan,”

SURF Wiki, 2017.
[7] O. Bernard, A. Seller, and N. Sornin, “Low power long

range transmitter,” in Semtech Corporation, Application No.
13154071.8/EP20130154071, Publication No. EP2763321A1, 2015.

[8] X. Xia, Y. Zheng, and T. Gu, “FTrack: Parallel Decoding for LoRa
Transmissions,” in Proceedings of the 17th Conference on Embedded
Networked Sensor Systems, ser. SenSys ’19. ACM, 2019, p. 192–204.

[9] P. Marcelis, N. Kouvelas, V. S. Rao, and V. Prasad, “DaRe: Data
Recovery through Application Layer Coding for LoRaWAN,” IEEE
Transactions on Mobile Computing, pp. 1–1, 2020.

[10] A. Rahmadhani and F. Kuipers, “When LoRaWAN Frames Collide,” ser.
WiNTECH ’18. ACM, 2018, p. 89–97.

[11] N. Yazdani, N. Kouvelas, R. V. Prasad, and D. E. Lucani, “Energy
Efficient Data Recovery from Corrupted LoRa Frames,” arXiv, 2021.

[12] Bosch, “Market size and connected devices: Where’s the future of IoT?”
[13] S. B. Wicker and V. K. Bhargava, Reed-Solomon codes and their

applications. John Wiley & Sons, 1999.
[14] S. Pemmaraju and S. Skiena, Computational discrete mathematics:

Combinatorics and graph theory with mathematica®. Cambridge
university press, 2003.

[15] M. Sandell and U. Raza, “Application layer coding for iot: Benefits,
limitations, and implementation aspects,” IEEE Systems Journal, vol. 13,
no. 1, pp. 554–561, 2019.

[16] S. Montejo-Sánchez, C. A. Azurdia-Meza, R. D. Souza, E. M. G.
Fernandez, I. Soto, and A. Hoeller, “Coded Redundant Message Trans-
mission Schemes for Low-Power Wide Area IoT Applications,” IEEE
Wireless Comms. Letters, vol. 8, no. 2, pp. 584–587, 2019.

[17] T. Elshabrawy and J. Robert, “Enhancing LoRa Capacity using Non-
Binary Single Parity Check Codes,” in Int. Conf. on Wireless and Mobile
Comp., Networking and Comm. (WiMob), 2018, pp. 1–7.

[18] ——, “Evaluation of the BER Performance of LoRa Communication
using BICM Decoding,” in IEEE ICCE, 2019, pp. 162–167.

[19] U. Coutaud, M. Heusse, and B. Tourancheau, “Fragmentation and
forward error correction for lorawan small mtu networks,” ser. ACM
EWSN ’20. Junction Publishing, 2020, p. 289–294.

[20] U. Coutaud and B. Tourancheau, “Channel Coding for Better QoS in
LoRa Networks,” in IEEE WiMob, 2018, pp. 1–9.

[21] S. S. Borkotoky, U. Schilcher, and C. Raffelsberger, “Application-
Layer Coding with Intermittent Feedback Under Delay and Duty-Cycle
Constraints,” in IEEE ICC, 2020, pp. 1–6.

[22] R. Wang, W. Zhao, and G. B. Giannakis, “CRC-assisted error correction
in a convolutionally coded system,” IEEE Trans. on Comm., vol. 56,
no. 11, pp. 1807–1815, 2008.

[23] J. M. d. S. Sant’Ana, A. Hoeller, R. D. Souza, S. Montejo-Sánchez,
H. Alves, and M. d. Noronha-Neto, “Hybrid Coded Replication in LoRa
Networks,” IEEE TII, vol. 16, no. 8, pp. 5577–5585, 2020.

[24] G. Chen, J. Lv, and W. Dong, “Exploiting Rateless Codes and
Cross-Layer Optimization for Low-Power Wide-Area Networks,” in
IEEE/ACM IWQoS, 2020, pp. 1–9.

[25] G. Angelopoulos, A. P. Chandrakasan, and M. Médard, “PRAC: Ex-
ploiting partial packets without cross-layer or feedback information,” in
IEEE Int. Conf. on Communications (ICC), 2014, pp. 5802–5807.

2022 19th Annual IEEE International Conference on Sensing, Communication, and Networking (SECON)

243Authorized licensed use limited to: TU Delft Library. Downloaded on November 18,2022 at 07:26:24 UTC from IEEE Xplore. Restrictions apply.

