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Abstract. This paper describes a continuum/kinetic hybrid approach for simulating the
continuum to free molecule, multi-scale flows. Domain decomposition strateqy is adopted
for coupling the continuum and kinetic approaches. Instead of the direct simulation Monte
Carlo method, a deterministic solver based on a kinetic model Boltzmann equation is
adopted for kinetic regions, while a Navier-Stokes solver adopted for continuum regions.
Reliable solution can be obtained for both subsonic and supersonic flows with the hybrid
solver at lower computational costs compared to the direct simulation Monte Carlo method.
Numerical results obtained with the hybrid solver have been compared with those of the
Navie-Stokes solver for slip flow regime and those of the direct simulation Monte Carlo
method for rarefied flow regime. The comparison is fairly good.

1 INTRODUCTION

Numerical flow simulation about micro devices is one of the recent new frontiers of
computational fluid dynamics (CFD). It may provides essential understanding about the
fluid behavior around micro-electro-mechanical systems (MEMS). Since the flows about
the micro devices range from continuum to free molecule, numerical methods designed for
simulating the multi-scale flows, from continuum to free molecule flows, are preferable.

In the past decade, several studies about continuum/kinetic hybrid approaches have
been reported [1-7]. Most of them are hybrid approaches using the Navier-Stokes (NS)
method and the direct simulation Monte Carlo (DSMC) method [8]. These NS/DSMC
hybrid methods, however, have severe deficiency caused from inherent statistical scatter
of the DSMC method. A large number of sample size in the DSMC method is generally
required to obtain the macroscopic flow quantities at every coupling time step between
the NS method and DSMC method. The hybrid method may becomes a poor simulation
tool for low speed flows about micro devices, because huge sample size may be required
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to reduce the statistical scatter of DSMC method to a level of the small changes of flow
quantities in the low speed flows [9, 10].

In contrast to the DSMC method, a numerical Boltzmann solver based on a kinetic
model Boltzmann equation [11, 12] is free from the statistical scatter. The numerical
Boltzmann solver is definitely superior to the DSMC method for simulating the subsonic
flows, although it is rather expensive for hypersonic flow simulation [13]. Moreover a
Navier-Stokes/Boltzmann hybrid method, an universal tool for analyzing continuum to
molecule multi-scale flows, may be easily constructed, since the same CFD methods can be
adopted for the kinetic model Boltzmann equation as well as the Navier-Stokes equations.

In this study, a novel continuum/kinetic hybrid solver is proposed for simulating the
continuum to free molecule, multi-scale flows, by coupling the Navier-Stokes solver and
the kinetic model Boltzmann solver. The rest of the paper is organized as follows. The
kinetic approach is described in Section 2 and the continuum approach in Section 3.
Section 4 describes the continuum/kinetic hybrid approach. Validation of the kinetic
model Boltzmann solver as well as the Navier-Stokes solver is demonstrated numerically
in Section 5. The validation of the continuum/kinetic hybrid approach is carried out in
Section 6. Finally, Section 7 describes some concluding remarks.

2 KINETIC APPROACH

The motion of gas molecules at any Knudsen number is governed by the well known
Boltzmann equation. In the transition regime from continuum to free molecular flows,
especially, it is naturally desirable to obtain the solution of the Boltzmann equation
instead of the Navier-Stokes equation. Because of its complex collision integral term,
however, the solution of the Boltzmann equation requires an exceedingly formidable task
except for few simple problems. In this paper, instead of the full Boltzmann equation, we
use a kinetic model equation [14], which correctly resembles the lower 13 moments (the
density, three components of the velocity, six components of the stress tensor, and three
components of the heat flux) of the Boltzmann equations.

2.1 Kinetic model equation

The kinetic model Boltzmann equation in nondimensional form without any external
force may be written as follows:

0 0
Lo - ()

where f is the velocity distribution function which depends on the time ¢, the physical
space x, and the molecular velocity c. The distribution function f; of the BGK model
[15], which is the most fundamental model, is the local equilibrium distribution function

: o= e (-7 ®)

2



Koji Morinishi

where n is the number density, u the macroscopic flow velocity, and T the temperature.
For a higher order model equation which correctly resembles the lower 13 moments of the
Boltzmann equation [14], the distribution function fy is given as

fo=1. [1+2(1—Pr)(c ;p‘;)'q (2(";“)2 —5)] (3)

where p is the pressure, q the heat flux vector, and Pr the Prandtl number (=2/3 for a
monatomic gas).
The macroscopic flow quantities are obtained from the distribution function as

a=[(c—we - u?fde
The pressure p is obtained from the equation of state:
p=nT (5)

All these quantities are normalized with a reference length L, a reference number density
Nso, a reference temperature T,,, and a reference velocity Cy. The reference velocity Cy,
is the most probable molecular thermal speed which is defined as:

C., = \/2RT,, (6)

The collision frequency v is usually defined as:

_ 8nT' )
- 57Kn

14

where Kn is the reference Knudsen number based on the reference length L and the
molecular mean free path A\, at reference state which is defined as

= ©)
5NN/ 2T RT 5

where p is the viscosity coefficient, m the mass of a molecule, and R the gas constant.
The viscosity coefficient is assumed to depend on the temperature as:

Aso

o T° (9)
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where the Maxwell molecules correspond to the power s of 1 and the hard sphere molecules
to 0.5. In this study, the hard sphere molecules is adopted.

For two dimensional flow problems, the following reduced distribution functions g and h
are conveniently introduced so that the operational count and storage of the computation
can be reduced.

g(t,z,y, ey 0y) = /fdcz
(10)

M2y, enry) = [ Efde

The kinetic model Boltzmann equation (1) can be rewritten for the reduced distribution
functions ¢ and h as:

dg dg dg
AR 4

at+ ax+cya_yzy(go_g)

(11)
oh oh oh
I e P~ yhe — b
3t+08x+cy6y v(ho )

The distribution functions gy and hy can be obtained from equations (3) and (10) as:

— ll 431 ppyee= 1+ (6 =) (2(c— w? 4>]

5pT T

T
ho = =ge ll +2(1 — Pr)

/ (o —u)gz + (cy — v)gy (2((: —w 2)]

opT

with the reduced local equilibrium distribution function g,:

o= exp (_ (cz —u)? + (¢y — v)2> (13)

7T T

The macroscopic flow quantities are obtained from the reduced distribution function

as:
n= //g de, dey
n(u, v)T = //(cx, cy)Tg de, de,
(14)

5t = [ [ [fe0 = + ey — 0] s dey

(¢ q,)" = //(cm —u, ¢y —v)" [(cz —u)® + (¢, — U)Q] g dcy de, + //h de, de,
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2.2 Numerical procedure

Any conventional numerical methods, such as finite difference, finite volume, and finite
element methods can be adopted for the solution of the kinetic model Boltzmann equation.
In this study an upwind gridless method [16, 17] is adopted for estimation of the convective
terms of the equation.

Gradients of any function f at a computational point i may be evaluated with the
following linear combination form in the cloud of neighboring points C'(7).

Vi= Y awfa (15)

kCC(3)

where the subscript & denotes the index of the point which belongs to the cloud C(i).
The sum is obtained over all member points of C(7) except the point i itself. The function
values f;; are evaluated at the midpoint between the points 7 and k.

The coefficients a;; are once obtained at the beginning of computation and stored if the
points remain stationary. Several methods can be used for obtaining the coefficients. If the
approximation (15) is applied in a finite volume cell, the coefficients may be obtained from
the unit normal and area of the cell surface, and the cell volume. If the approximation
(15) is applied for points distributed arbitrarily, the x-component of the coefficients, for
an example, a,;; can be obtained with solving the following system of equations using QR
or singular value decompositions.

Z amff,l") = d™ (16)

kCC(3)
Here the components of f(™ and d™ are given with:

f(m)E(l,l',y,Z,ZUZ,yZ,ZZ,Z’y,"') (17)

and
d™ €(0,1,0,0,0,0,0,0,---). (18)

The convective terms of the kinetic model equations (11) can be evaluated with the
gridless method, for an example, as:

dg dg
(Cx% + Cya_y> ‘Z = Z (amkcm + ayikcy)gik

kCC(i)

(19)
= Z ikYik
kCC(i)
where &, is defined as:
gik = QgikCy + Qyyik Cy (20)
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The numerical flux &, ¢;. are estimated as

SikGik = % {Sik(gﬁg + gir) — |&ik] (g3 — gﬁc)} (21)

The third order accurate weighted essentially non-oscillatory (WENO) method [18] is used
for reconstructing the midpoint distribution function g [19].

After evaluating the convective and collision terms, following implicit Euler method is
used for the temporal discretization of the kinetic model equation.

1
(At~ v+ Y ;,;) Agi+ Y. &:Agr = RHS; (22)

kCC (i) kCC(i)

where RHS are the evaluation of the convective and collision terms and ¢+ are defined
as follows

£ = (e +1e) (23)

The solution of this linear system of equation (22) can be obtained with a lower-upper
symmetric Gauss-Seidel (LU-SGS) procedure [20] as:

Ag; = D;! (RH Si— Y. fﬁA%) (24)
kCL(i)

Agi=Agi = D' > & A (25)
kCU (i)

where C'(i) = L(i) JU (i) and D; are defined with
1 1
t kCC(3)
The distribution function at the next time step ¢"*! is obtained as:
gt =g + Ag; (27)

where the superscript n denotes the time index.
The macroscopic flow quantities, for example, the number density, can be obtained
with numerical quadrature as

n://gdczdcy:z:wg (28)

where w are the weights of quadrature. Simple equally spaced trapezoidal rule is used in
this study.
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2.3 Boundary conditions

Perfect diffuse reflection is assumed for the interaction between molecules and solid
walls. That is, molecules which strike the solid surface are subsequently emitted with
fully accommodating to the wall temperature T,, and velocity (uy,v,). The reduced
distribution function g for the molecules reflecting from the wall surface is given by:

N (cz — uyw)? + (¢y — v)?
w — ——— — " 2
g Ty, exp ( Ty ¢n >0 ( 9)

The density of molecules diffusing from the surface is determined from the following mass
balance condition:

// CnGw deg dey = — // cng deg dey, (30)
cn>0 cn<0

Substituting ( 29 ) into the left hand side of ( 30 ) and applying the numerical quadrature
to both the integrals, the density can be obtained as:

Ny = —— Z wepg (31)

At the beginning of computation, © are once obtained from the following equation and
stored at each point on the wall surface.

0= ¥ Yo (_ 6z — uw)QTZ (cy — vw)2> (32)

cn >0 w

At inlet and outlet boundaries, the local equilibrium distribution functions are specified
for incoming molecules. For outgoing molecules, simple extrapolation of the distribution
function is used, which may not affect numerical results because the distribution functions
on inner computational points are updated with the upwind gridless solver.

3 CONTINUUM APPROACH

The basic equations of continuum approach is the compressible Navier-Stokes equations
which may be written in the following nondimensional form.
0Q 1
“*41V-F=—V- R 33
ot Re (33)
where Q is the conservative vector, F the convective flux, R the viscous flux, and Re the
reference Reynolds number. The conservative vector and the flux terms are given with:

p pu 0
Q=| u , F=1] puu+pl , R= T (34)
e u(e +p) u-7—q
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where e is the total energy per unit volume, which is given for a perfect gas as:

p L,
= ——+4 - 35
o= s+ 5o (3)
Here 7 is the ratio of specific heats. The viscous stress tensor 7 and the heat flux vector
q are defined with:

= — S 36

Tij a (633] + 8£UZ 3 ‘7833]-) ( )
v p oT

=——1 37

¢ v —1Pr Ox; (37)

All these quantities in the continuum approach are normalized with a reference length
L, a reference density po, (= mn), a reference temperature T,,, and a reference velocity
Us. The reference velocity Uy, is defined as:

Uso = \/RTw (38)

where nondimensional velocities in the continuum approach are greater than those in the
kinetic approach by the ratio of v/2.

The Navier-Stokes equations are also solved using the upwind gridless and LU-SGS
methods [16, 17]. The convective terms are evaluated with:

V-Fl,= > (aw-Fi)

kCC(3)

= ZGik

kCC(i)

(39)

The flux term G at the midpoint between the point ¢ and point j is expressed for two
dimensional flows as:

pU
pulU + azp

= 4

G pvU + ayp (40)
Ule + p)
where U is defined by
U = azu+ ayv (41)
The numerical flux G, are estimated as:
1, - S e Al

Gir = 5 {G(Q)) + G(Qy) — 1AX(QF — Qi) (42)
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where () are the primitive variables defined as:

P
~ U
Q=|, (43)
p
The flux Jacobian matrices A is introduced as:
~ G
0Q
and . o
|A| = X|A[X ! (45)

Here A are the eigenvalue matrices and X! are the right eigenvector matrices. The
primitive variables Qﬁc at the midpoint are reconstructed with the third order accurate
WENO method [19].

The viscous terms of the Navier-Stokes equations are also evaluated with the gridless
method, for an example, as:

o (o
0x Max

While a simple arithmetical average is used for obtaining i, the first derivatives at the
midpoint is evaluated with the following method.
0
) A (_“ )] (47)
k dy k

= > | (o (M%) ) (46)

i kcC(i

| o
. Oz

ou

dy

ou Ax 1 Ay l Ay <8u
ox

dw|, ~ AT W TR M 5

[ [

where Az, Ay, and As? are defined with:
Ar =x, — x5
Ay =yk —yi (48)
As? = Az? + Ay?

After evaluating the convective and viscous terms, a linearized implicit Euler method
is obtained for the temporal discretization of the Navier-Stokes equations as:

( T Y Ai(Q?)) AQi+ Y. AL(Q)) =RHS, (49)

kCC(4) kCC(4)
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where RHS are the evaluation of the convective and viscous terms and the split flux
Jacobian matrices A* are geiven with:

A* = XAFX (50)
The solution of this linear system of equation (49) is obtained with a LU-SGS procedure
as:
AQ; =D;! (RHSZ- -2 AM(Q@AQZ) (51)
kCL(i)
AQi =AQ; —D;' > Au(Q)AQk (52)
kCU(i)

where D; are defined with

D= (Alt KCOG) )> o

At the wall surface, the first order slip conditions are implemented as:

2 — o, o ou \/7 N
— Uy = Kn 4
s ™ o oy oV 1w 8n pT 85 (54)

2—0; 2y Kn pu 0T

o, v+ 1 PrpyT, on
where n and s denote the normal and tangential directions to the surface, respectively.
The momentum accommodation coefficient o, and the energy accommodation coefficient

o, are set to unity in all the computation presented here.
For inlet and outlet boundaries, characteristic boundary conditions are implemented.

T, —T, =

(55)

4 CONTINUUM/KINETIC HYBRID APPROACH

Domain decomposition strategy is adopted for the continuum /kinetic hybrid approach.
A multi-scale computational domain is decomposed into the continuum regions and the
kinetic regions. Since computational points (cells) belong to either the continuum regions
or the kinetic regions, no overlapping points exist in this study. The Navier-Stokes solver
works on the points in the continuum regions and the kinetic model Boltzmann solver in
the kinetic regions.

At the interface between the continuum and kinetic regions, information exchange is
necessary at every time step over the two layers of either side of the interface, because the
stencil of the third order accurate WENO reconstruction is generally five. At the points
in the continuum regions two layer inside from the interface, the following Chapman-
Enskog distribution functions for the kinetic model Boltzman equations (1) with (3) are
constructed.

10
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1.00F ' ' 1.00F
Mg=0.4 , Kn=0.01
— Kinetic
075" __ bsmc 0-751 __ Kinetic
—— DSMC
% 0.50 % 0.50
My=0.4, Kn=0.01
0.25 0.25
0.00 ¢, : : : a 0.00 ¢, : : : a
0.00 025 050 0.75 1.00 0.0 0.1 0.2 0.3 0.4
(u+U,)/2u 2(T-T )/ (u2)
Figure 1: Comparison of velocity profiles for a Figure 2: Comparison of temperature profiles for
Couette flow at M., = 0.4 and Kn = 0.01. a Coutte flow at M., = 0.4 and Kn = 0.01.

fzfe{l—% [%(Ci_“i)}cj_vj) o (%‘ g) C;ugﬂ} (56)

On the other hand, the numerical flux of the Navier-Stokes equations can be simply
evaluated over the interface, since the macroscopic flow quantities are obtained using the
equation (14) at every time step even in the kinetic regions. For conservation of numerical
flux, however, the numerical flux Gy of the equation (39) at the interface is replaced with
the following flux obtained from the corresponding flux of the kinetic model Boltzmann
equations.

V2 [ [ &irgir dey de,
2 [ [ colingin de, dCy

2 [ [ cy&ingin deg dey

V2 [ [(ci + )Gk + fikhik] dey dey

5 VARIDATION OF BOLTZMANN SOLVER

In order to validate the kinetic model Boltzmann solver as well as the Naiver-Stokes
solver with the slip boundary conditions, Couette flows and supersonic flows over a circular
cylinder are simulated and results are compared with those obtained with the DSMC
method.

11
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Figure 3: Comparison of velocity profiles for a Figure 4: Comparison of temperature profiles for
Couette flow at M., = 0.4 and Kn = 0.1. a Coutte flow at M, = 0.4 and Kn =0.1.

5.1 Couette flow

Couette flow is a well defined benchmark problem to validate a numerical method. In
this study, upper and lower parallel plates move in the opposite direction each other with
the velocity Uy and —U,, respectively. The reference length is the distance between the
two plates. Figures 1 and 2 show the comparison of the velocity and temperature profiles
obtained at a Knudsen number of 0.01 and a Mach number, based on the plate speed, of
0.4. For this low Knudsen number case, the Navier-Stoke solver with the slip boundary
conditions predicts good results compared to those predicted with the Boltzmann solver
and the DSMC method.

Similar comparison is made at a Knudsen number of 0.1 in Figs. 3 and 4. The Mach
number based on the plate speed is unchanged at 0.4. While the Navier-Stokes solver
predicts the velocity profile well except for the slight difference observed just by the
plates, it fails to predict the temperature profile at this moderate Knudsen number case.
Comparison between the results of the Boltzmann solver and those of the DSMC method
is still quite good.

5.2 Supersonic flow over a circular cylinder

Supersonic flows about a circular cylinder at a free stream Mach number of 2.0 and
Knudsen numbers of 0.01 and 0.1 are simulated. The Knudsen number is estimated based
on the diameter of the circular cylinder and the reference mean free path at the free
stream. The results obtained with the kinetic model Boltzmann solver, the slip Navier-
Stokes solver, and the DSMC method are compared with one another.

Figures 5 and 6 show the comparison of the density contours and temperature contours,
respectively. The results are obtained at the free stream Knudsen number of 0.01. While
the computations are carried out for the whole two dimensional domain with 1024 x 512

12
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Figure 5: Density contours obtained with kinetic Figure 6: Temperature contours obtained with
model Boltzmann solver and DSMC method at kinetic model Boltzmann solver and DSMC
Mo =2.0 and Kn = 0.01. method at Mo, = 2.0 and Kn = 0.01.

NS-SlipB.C. '\

Figure 7: Density contours obtained with kinetic Figure 8: Temperature contours obtained with
model Boltzmann solver and slip NS solver at kinetic model Boltzmann solver and slip NS
Mo =2.0 and Kn = 0.01. solver at Mo, = 2.0 and Kn = 0.01.

cells, the results of the kinetic model Boltzmann solver are plotted for the upper half
domain and the DSMC results for the lower half domain. Very good agreement between
the kinetic model results and the DSMC results is generally observed over the whole flow
field.

Comparison between the kinetic model results and the slip Navier-Stokes results is
made in Figs. 7 and 8. At this low Knudsen number, the comparison between the kinetic
results and the continuum results is quite good in the whole flow field except for the slight

13
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Figure 9: Temperature contours obtained with Figure 10: Temperature contours obtained with
kinetic model Boltzmann solver and DSMC kinetic model Boltzmann solver and slip NS
method at M, = 2.0 and Kn =0.1. solver at Mo, = 2.0 and Kn = 0.1.

difference observed just behind the circular cylinder, where the density is lower than the
free stream density and the rarefactive effect may be pronounced.

Temperature contours obtained at a free stream Mach number of 2.0 and a Knudsen
number of 0.1 are compared in Figs. 9 and 10. Each computation is carried out for
the whole two dimensional domain with 128 x 64 cells. Figure 9 shows the comparison
between the kinetic results and the DSMC results. The comparison is still quite good
over the whole flow field. Figure 10 shows the comparison between the kinetic results and
the continuum results. Although the continuum results fail to predict the temperature
distribution in the wake region, the results in front region are fairly good.

Figure 11 shows the comparison of temperature contours obtained with the kinetic
model Boltzmann solver and the DSMC method at a higher free stream Knudsen number
of 1.0. If the Knudsen number is not small, there may be no theoretical guarantee for the
kinetic model collision operator. The comparison between the kinetic model results and
the DSMC results, however, is generally good even for the high Knudsen number flow
case.

Figure 12 shows the drag coefficients as a function of the Knudsen number. In addition
to the three numerical results, the experiments of Maslach and Schaaf [21] are plotted
with square symbols. Very good agreement between the kinetic model results and the
DSMC results is again observed. The results of the Navier-Stokes equations with slip
boundary conditions well agree with the kinetic model results if the Knudsen number is
less than 0.1.

14
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Figure 11: Temperature contours obtained with
kinetic model Boltzmann solver and DSMC
method at M, = 2.0 and Kn = 1.0.
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Figure 13: Comparison of temperature profiles
for a Coutte flow at Mo, = 0.4 and Kn = 0.01.
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Figure 12: Comparison of drag coefficients as a
function of Knudsen number.
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Figure 14: Comparison of temperature profiles
for a Coutte flow at M., = 0.4 and Kn = 0.1.

6 VARIDATION OF CONTINUUM/KINETIC HYBRID SOLVER

Validation of the continuum/kinetic hybrid solver are carried out for the Couette flows
and the supersonic flow over a circular cylinder. The results are compared with those
obtained with the full kinetic solver, the full Navier-Stokes solver, and the DSMC method.

6.1 Couette flow

Figure 13 shows the comparison of the temperature profiles obtained at the Knudsen
number of 0.01 and the plate speed Mach number of 0.4. The continuum/kinetic interface
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Figure 15: Density contours obtained with Figure 16: Temperature contours obtained with
full kinetic solver and continuum/kinetic hybrid full kinetic solver and continuum/kinetic hybrid
solver at M., = 2.0 and Kn =0.1. solver at Mo, = 2.0 and Kn = 0.1.

in the hybrid solver is located at 10 mean free path away from each plate. Since neither
oscillation nor wiggle are found in the temperature distribution, it is confirmed that the
continuum /kinetic coupling works quite well.

Figure 14 shows the comparison of the temperature distribution obtained at the higher
Knudsen number of 0.1 and the Mach number based on the plate speed of 0.4. Since
the distance between the two plates is 10 mean free path at this Knudsen number, the
interface between the continuum and kinetic regions in the hybrid solver is located at only
2.5 mean free path away from each plate. Although the results of the continuum/kinetic
hybrid solver seem to be better than the results of the full continuum solver, the full
kinetic solver is preferable for the Couette flow at this Knudsen number.

6.2 Supersonic flow over a circular cylinder

The continuum /kinetic hybrid simulation is carried out for the supersonic flow about a
circular cylinder at a free stream Mach number of 2.0 and a Knudsen number of 0.1. The
results are compared with those obtained with the full kinetic model Boltzmann solver.
Figures 15 and 16 show the comparison of the density contours and temperature contours,
respectively. In the hybrid method, the solution is computed with the kinetic model
Boltzmann equation on the inner field of broken line circle and with the Navier-Stokes
equations on the outer field. Although, as is seen in Fig. 10, the full continuum results
fail to predict the temperature distribution in the wake region at this Knudsen number,
the continuum/kinetic hybrid solver succeeds in predicting the density and temperature
contours over the whole flow field.
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7 CONCLUSIONS

A continuum /kinetic hybrid approach is developed for simulating the continuum to free
molecule, multi-scale flows. Domain decomposition strategy is adopted for coupling the
continuum and kinetic approaches. A multi-scale computational domain is decomposed
into the continuum regions and the kinetic regions. A compressible Navier-Stokes solver is
adopted for the continuum regions, while a deterministic solver based on a kinetic model
Boltzmann equation is adopted for the kinetic regions. The continuum/kinetic coupling
works quite well. The hybrid solver produces reliable solution for both subsonic and
supersonic flows at lower computational costs compared to the direct simulation Monte
Carlo method. Numerical results obtained with the hybrid solver have been compared
with those of the Navie-Stokes solver for slip flow regime and those of the direct simulation
Monte Carlo method for rarefied flow regime. The comparison is fairly good.

This study was partly supported by a Grant-in-Aid for Scientific Research (17360079)
from the Japan Society for the Promotion of Science.
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