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Scenario tree airline fleet planning for demand uncertainty

Martijn G.J. Repkoa, Bruno F. Santosa,∗

aAir Transport and Operations, Faculty of Aerospace Engineering, Delft University of Technology,
Kluyverweg 1, 2629 HS Delft, The Netherland

Abstract

This paper proposes an innovative multi-period modeling approach to solve the airline fleet
planning problem under demand uncertainty. The problem is modeled using a scenario
tree. The tree is composed of nodes, which represent points of decision in multiple time
stages of the planning horizon, and branches, representing demand variation scenarios. The
branches link the decision nodes in consequent time stages and compose scenario paths. Fleet
decisions are modeled according to these scenario paths, resembling the real-life process in
which fleet plans are not defined in a single moment but instead are adjusted according to
the demand development. Given that some scenario paths share common decision nodes,
decisions among scenarios are synchronized. A mixed-integer linear programming model is
proposed to determine the ideal fleet composition for each scenario. Results for two real-
world based case studies show that the proposed approach can provide flexible multi-period
airline fleet plans.
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1. Introduction

The airline industry is one that faces many challenges. Whilst demand has grown steadily
at an average of around 5% over the past 30 years, the industry still struggles to be prof-
itable (Belobaba et al., 2009; Pearce, 2013). Profits have shown to be cyclical, with airlines
generating major losses in some years and some profits in others. As all other operational
decisions are dependent on the available fleet, it is of vital importance for an airline to op-
timize the fleet for their operations (Bazargan, 2010). The process of determining the ideal
fleet to operate is called fleet planning. It entails deciding between many different aircraft
families and types, their quantities and when to acquire them.

Much research has already been done in the field of vehicle fleet planning. However,
most research has focused on other industries than the airline industry. Nonetheless, the
general problem of determining the right vehicle and number of vehicles in a fleet can
generally be applied. The simplest approach is to use a deterministic model that optimizes
the fleet for a certain expected future. Research dates back to Gertsbach and Gurevich
(1977) and Abara (1989), who developed methods to respectively minimize an uniform fleet
of vehicles and aircraft to serve a particular schedule. The following research developments
have focused on studying how to optimally change the schedule depending on the capacity
and available demand. Bertsekas (1998) performed this optimization for a general fleet
planning problem using a single vehicle type, minimizing the fleet size whilst serving all
available demand. Similarly, Xinlian et al. (2000) optimized a fleet of ships to serve all
demand whilst minimizing the cost of doing so. The authors already considered the case of
fleets composed of vehicle with different characteristics. Revenue maximization has been the
focus of most recent works. Instead of serving all demand, Sayarshad and Ghoseiri (2009)
optimized a rail car fleet for profit. Demand could thus be spilled if this would improve the
profitability. In a fairly recent study, Bazargan and Hartman (2012) compared the options
of aircraft purchasing and leasing in the airline fleet replacing problem. The results showed
that aircraft leasing is, up to a certain extend, preferable to the purchase of aircraft.

A downside of the aforementioned models is their deterministic basis. In real life, the
future almost never turns out as expected. An airline that does not consider this might be
left short-handed if the future turns out more favorable than expected, or on the other hand
might be stuck with overcapacity in case of a downturn. In an industry that has low profit
margins at best, a well-structured fleet can be the difference between thriving or perishing.
Stochastic programming is the most common method to consider this uncertainty. List
et al. (2003) constructed such a type of model, in which the decision process is split into
two stages. In the first stage, the fleet sizing decision is made, after which these aircraft are
assigned to routes in the second stage. These second stage decisions are based on demand
forecast values that are modeled according to random variables. The generation of these
random demand values can be done in various ways. A traditional approach to this is to
assume that demand values follows a normal distribution. These distributions are used
for their simplicity (Sherali and Zhu, 2008). Other approaches proposed in the literature to
model the randomness of demand include, for instance, Gaussian white noise (Bojovi, 2002),
upper partial moment to avoid too high losses (List et al., 2003), Monte Carlo simulations

2



for probability prediction (Khoo and Teoh, 2013) and scenario based approaches to limit
the required computing power (Listes and Dekker, 2005). Each approach has its benefits,
with a decision for a model mainly being driven by the allowed complexity of the model and
which risks an airline wants to protect itself from.

This paper focuses on the long-term airline fleet planning problem. This problem involves
decisions that are not always taken at the same time. Airlines may decide to invest (or
disinvest) in their fleets in multiple stages, adapting their plans to new information and
spreading the investment over time. Thus, to model this long-term problem, it is necessary
to include several years in the optimization. A scenario tree can be used to model this
multi-stage decision process and to capture the development of uncertain parameters over
time. In generic terms, there are two options in the way the scenario tree approach can
be used to optimize a fleet. The first option comprises the optimization of a singular fleet
development plan. In such a case, the optimizer finds one fleet that leads to the most
optimal result considering the various scenarios. This was the model adopted by Hsu et al.
(2011). The authors focused on the multi-period aircraft replacement problem. However,
they have only dealt with uncertainty in two stages, after which the remaining stages were
presumed to be equal for all scenarios. The second option is to find the optimal fleet for
each individual scenario, whilst considering the fact that, due to the scenario tree structure,
these scenarios overlap early on in the time horizon and it is hence required to have the
same fleet at these overlapping nodes. This is a better representation of the actual fleet
planning process in which the plans are adjusted according to how the future unfolds. The
principle, first described by Ahmed et al. (2003), was used by Pantuso et al. (2015b) to
optimize a fleet of ships considering many factors on the available ships. Their model was
still limited though, as it only had two stages, of which the second stage spanned multiple
years. Also, the outcome could only be used for here-and-now decisions, limiting the use of
the multi-period model. In a consecutive paper, Pantuso et al. (2015a) improved their model
by making it a true multi-stage model. Because of the computational problems inherent to
these problems, they however focused their research on a novel solution technique and failed
to explore the potential benefit and application of such a model.

The work presented in this paper aims to develop a modeling approach that best resem-
bles the decision process of an airline and helps it to hedge against uncertainty. Therefore,
it will make use of a scenario tree and provide multiple fleet development paths similar to
Pantuso et al. (2015a). The modeling approach consists of aggregated level decisions, deter-
mining at each stage which fleet to operate in the next period, and detailed level decisions
about how to assign these aircraft to different routes. Stochastic programming will be used
to capture the corresponding uncertainty in demand and to model decisions over the multi-
ple periods considered in the planning horizon. The optimal solution will be determined on
the basis of the estimated airline operations profit maximization. The Pyomo based PySP
software package (Watson et al., 2012) is used in combination with th IBM CPLEX linear
optimizer. Our work will be the first to apply such modeling approach to the airline fleet
planning problem. In addition, given that the work from Pantuso et al. mainly focused on
the difficulties in solving these models, our study will be the first to focus on the benefit of
adopting such type of modeling approach in the fleet planning problem under uncertainty
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and to show the feasibility of this approach to provide robust multi-period fleet plans for
practical case studies.

Two case studies are used in this paper to explore the possible applicability and potential
benefit of adopting the model approach proposed. First, a proof of concept is performed
with a simple real-word based case involving the definition of the fleet of an airline flying
ten long-haul routes. This simple case study is used to highlight the potential benefits
of the approach proposed. The second case study is performed on a real-life problem of
a major intercontinental airline involving different fleet development strategies. For this
case the model is more limited in its options, since the airline brings several operational
requirements with it. Nevertheless, this case study allows to form a better understanding
of the use of the model in a real-life problem. All simulations will be run using IBM ILOG
CPLEX 12.6 on an Intel Core i5-2450M CPU with 4Gb RAM.

The remainder of this paper is structured as follows. First, the scenario tree structure
will be introduced, followed by the mathematical model itself, explaining the assumptions
it is based on, sets and parameters it includes and the constraints it is subject to. Next, the
two case studies are explained, followed by an analysis of the outcome of the simulations.
Finally, conclusions are drawn which will be provided together with recommendations for
further research.

2. Scenario tree modeling

Finding a single solution for a fleeting decision years from now is not an accurate repre-
sentation of the real-life decision process. Instead, each year the fleet plan will be reviewed
and decisions will be made dependent on how the uncertain parameters have developed. This
can be modeled with the introduction of a scenario tree. An example of a representation of
such tree is given in Figure 1.
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Example for 3 stages 

Scenario tree 

Today 

Low Medium High 

L M H L M H L M H 

50% 30% 20% 

20% 20% 20% 50% 50% 50% 30% 30% 30% 

4% 10% 6% 10% 25% 15% 6% 15% 9% 

Introduction      Methodology      Results      Conclusions 

A B C D E F G H I 

Ti
m

e
 

Scenarios 

Figure 1: Example three-stage scenario tree

In this figure, there are multiple decision nodes (represented by rectangles) in which
fleet decisions are possible. The horizontal dashed lines separate different time stages in
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the planning horizon. Three stages are considered, meaning that decisions can be taken
at three points in time. Each node in the first and second stage has tree branches linking
the decisions in the initial stages with the decisions of future stages. The tree branches are
formed by their respective demand change (Low, Medium or High) and the probability of
each demand change to happen (20%, 50% or 30%). Scenarios are represented in this figure
by the paths linking the root node (‘Today’) with the end nodes at the bottom of the figure.
There are in total nine scenarios in this figure – named A, B, . . . , I. This representation
of a scenario tree allows solutions to vary across the scenarios. Nevertheless, each of the
nine scenarios originates from the same node in the first stage. This means that a single
decision has to be made in the first stage and this decision needs to be considered in the
following stages of each scenario. In the second stage, each node is still relevant for multiple
scenarios, but not to all. For example, the decisions in the second stage have to be the
same for scenario A, B and C, but these can differ from scenario D, E and F, and G, H
and I. Finally, each scenario has an individual node in stage three, and the decisions can
hence be completely different. Each scenario thus consists of a demand growth path with
the probability of occurring formed by the multiplication of the probabilities of each stage.

In some particular cases, we can assume that different nodes in the scenario tree represent
the same future situation in terms of demand. That is the case, e.g., of the final nodes in
scenarios B and D in Figure 1. Both scenarios follow a low and medium demand variation in
the two stages represented. However, these variations take place in a different order for each
scenario. That is, despite the fact that both scenarios may have the same demand value at
the end of stage two, they describe a different demand development pattern. The scenarios
should therefore be modeled differently and the resulting fleets may end up being different.
This path dependency aspect is modeled in our approach by considering that each scenario
has its own independent variables and that these variables are bounded by constraints. The
constraints need to guarantee an equal value for the decision variables referring to decision
nodes where scenarios overlap. This means that decisions may be different for each scenario
but fleets need to be equal for nodes common to multiple scenarios. In this scenario tree
approach proposed one is completely free to bound different nodes of the tree and the scenario
tree can thus take on any form. Figure 2 illustrates how to structure these constraints for
the case of the scenario tree presented in Figure 1.
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Example for 3 stages 

Scenario tree 

Introduction      Methodology      Results      Conclusions 

A B C D E F G H I 

Scenarios 

t1 

t2 

t3 

x1A x1B x1C x1D x1E x1F x1G x1H x1I 

x2A x2B x2C x2D x2E x2F x2G x2H x2I 

x3A x3B x3C x3D x3E x3F x3G x3H x3I 

N 1 
1 

N 2 
1 N 2 

2 N 2 
3 

N 3 
1 N 3 

2 N 3 
3 N 3 

4 N 3 
5 N 3 

6 N 3 
7 N 3 

8 N 3 
9 

Figure 2: Scenario tree constraints example

In this example, the vertical lines represent individual scenarios, each with a variable
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x in t1, t2, and t3. The decision nodes are represented by the boxes. They are given
a name N dependent on the time and the number of nodes at that specific time stage.
Whenever the scenarios fall into the same node, their variables have to be equal. Hence,
x1A = x1B = ... = x1I because they are all part of N1

1 . Next, x2A = x2B = x2C and
x2D = x2E = x2F , but, since the first are part of N1

2 and the latter of N2
2 , the two sets do

not have to be equal. In such a manner, all variables at overlapping nodes are bounded to
each other.

3. Mathematical model

A mixed-integer linear programming model is used to determine the ideal fleet composi-
tion in multiple periods. It does so considering several demand scenarios and the structure
of constraints discussed in the previous section. We start this section by presenting the
nomenclature used, followed by the model formulation. The explanation and justification of
the model is presented in the final part of this section.

Sets:
T set of time periods (t = t1, .., t|T |), where |T | is the number of periods

considered in the model;
A set of aircraft type (a = a1, .., a|A|);
R set of routes (r = r1, .., r|R|);
S set of scenarios (s = s1, .., s|S|).

Decision variables:
xsta number of aircraft of type a owned in period t and scenario s;
ystar assigned weekly frequency of aircraft type a on route r in period t and

scenario s;
zsta number of aircraft of type a that are acquired in period t and scenario s;
usta number of aircraft of type a that are disposed in period t and scenario s;
qstr number of passengers transported on route r in period t and scenario s.

Model Formulation:

maximize:
∑
s∈S

ps
∑
t∈T

δt×nt

∑
a∈A

∑
r∈R

[2× farer × qstr − (vcar × ystar + fcta × xsta + penta × usta)]

(1)
Subject to:

BTa × xsta ≥ 2×
∑
r∈R

(OTr + TATa)× ystar , ∀t ∈ T, a ∈ A, s ∈ S (2)

qstr ≤ dems
tr , ∀t ∈ T, r ∈ R, s ∈ S (3)

qstr ≤
∑
a∈A

capa × LFr × ytar , ∀t ∈ T, r ∈ R, s ∈ S (4)
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Parameters:
ps probability of scenario s;
δt discount factor translating the profit of period t into its present day value;
fcta cost of owning aircraft type a in period t;
vcar cost of operating route r with aircraft type a;
penta penalty cost related to disposing of an aircraft of type a in period t;
farer average fare paid by a passenger for one leg on route r;
BTa block time (i.e. the maximum number of operating hours per week) that is

available for aircraft type a;
OTr time required to operate route r;
TATa turnaround time of aircraft type a;
dems

tr average weekly demand on both legs of route r in period t and scenario s;
nt number of weeks in period t;
capa the seat capacity of aircraft type a;
LFr the maximum load factor on route r;
MFrqtrminimum frequency on route r in period t;
IFa aircraft of type a that are already owned or leased for the first period;

W s,s′

t auxiliary matrix with value of 1 whenever the decision node of scenario s is
equal to the node of scenario s′ at period t, and 0 otherwise.

∑
a∈A

ystar ≥MFrqtr , ∀t ∈ T, r ∈ R, s ∈ S (5)

xs1a ≥ IFa , ∀a ∈ A, s ∈ S (6)

And:

xsta = xs(t−1)a + zs(t−1)a − us(t−1)a , ∀t = (2, ..., T ), a ∈ A, s ∈ S (7)

W s,s′

t (xsta − xs
′

ta) = 0 ∀t ∈ T, a ∈ A, s, s′ ∈ S (8)

W s,s′

t (ystar − ys
′

tar) = 0 ∀t ∈ T, a ∈ A, r ∈ R, s, s′ ∈ S (9)

W s,s′

t (zsta − zs
′

ta) = 0 ∀t ∈ T, a ∈ A, s, s′ ∈ S (10)

W s,s′

t (usta − us
′

ta) = 0 ∀t ∈ T, a ∈ A, s, s′ ∈ S (11)

W s,s′

t (qstr − qs
′

tr) = 0 ∀t ∈ T, r ∈ R, s, s′ ∈ S (12)

With:
xsta ∈ Z+, ystar ∈ Z+, zsta ∈ Z+, usta ∈ Z+, qstr ∈ R+ (13)

The objective function (1) concerns the maximization of the sum of the discounted
operational profit of all the considered periods for multiple demand scenarios multiplied
by their probability. The first term represents the probability that a scenario occurs (ps),
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followed by the discount factor by which the result of each period is multiplied by (δt). The
expected operational profit per time period is computed with the four terms included in
the square brackets. The first term refers to the revenue obtained per week by transporting
passengers and the second term represents the weekly operational costs, which are generated
when aircraft are operated. These costs are calculated on a route and frequency basis and
comprise airport and en-route taxes, fuel, crew, and maintenance cost. These two terms
are computed assuming a standard week of operations during period t. To convert these
values to the full period they are multiplied by the number of weeks in the period (nt) and
by 2 in order to include both legs of each route. The third term in the square brackets
represents ownership costs. They reflect either the lease costs or the depreciation costs per
period. For the sake of simplicity, it is assumed in this formulation that these costs are
exactly the same but the formulation can be easily extended to include different ownership
costs in the case of leased or purchased aircraft. The airline is subjected to this cost for
each aircraft in the fleet, regardless of whether it is operated or not. The last term is a
penalty cost related to disposing an aircraft. For leased aircraft, this consists of the charge
that will be applied when an aircraft is returned before the end of the leasing contract. For
aircraft owned by the airline, this penalty cost can reflect the difference between the selling
value and its ’book’ value. This cost for purchased aircraft can be caused by the imbalance
between the accounting depreciation and the actual depreciation of the aircraft and can be
either positive or negative. Figure 3 provides an example of this imbalance when linear
depreciation is used for accounting purposes and the real value of the aircraft depreciates
according to an exponential decay function.
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Figure 3: Penalty for sale of owned aircraft

We can divide the constraints from the model in two parts. The first part, including the
five set of constraints following the objective function (2-6), refers to the basic functionality
of the single period fleet planning model. Constraints 2 assure that the operated hours per
aircraft type cannot exceed the available block time per week, given the frequency per route
and the number of aircraft available in the fleet. Next, the sets of constraints 3 and 4 ensure
that the number of transported passengers can neither exceed the available demand nor the
capacity offered. A maximum load factor can be set to account for the fact that on average
some routes never exceed a certain load factor. An important aspect of constraints 3 is that
not all the demand needs to be served and some passenger may be spilled. Constraint 5 is
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added to allow the model to be forced to operate certain routes with a particular minimum
frequency. For some strategic or political reasons, the airline may decide to operate routes
even if they are not profitable. The initial fleet of the airline is considered in the last set of
constraints 6.

The second part of the constraints (8 - 12) extend the single period fleet planning model
to a multi-period fleet planning framework. Constraints 7 reflect the fact that decisions in
one period t − 1 only take effect in the following period t. They also guarantee that for
each scenario there is consistency between the fleet in period t − 1, the acquisition of new
aircraft or disposal of existing aircraft and the fleet in period t. The other five sets (8-12)
are used to enforce the scenario tree structure. The constraints are only active in the case
W s,s′

t is equal to 1. This happens whenever two scenarios overlap at a certain decision node.
In these cases, the decision variables value for scenarios s and s′ should be the same for time
period t in which the constraint apply.

Finally, equations 13 governs the fact that x, y, z and u can only take on non-negative
integer values, whereas q can assume non-negative continuous values.

The model is meant to be a strategic planning model. Hence, average fares and a
frequency schedule are used. To further simplify the model, in order to limit the required
computing power, some additional assumptions were made. In particular, demand was
assumed to be inelastic and the network to be point-to-point. That is, demand is assumed
to be leg-based. This means that the outbound and inbound leg of a route can be combined
into a single flight, halving the number of flights under consideration. This also means that
no constraints were required to ensure that the outbound leg is flown by the same aircraft
as the inbound leg. In addition, a single cabin type is assumed and the potential influence
of cargo is not considered. Finally, all parameters are given on a weekly basis, with that
week being representative for the entire period of a time stage.

4. Case studies

We make use of two cases studies to test the proposed methodology and to illustrate the
type of results that can be obtained with it. Both case studies are based on real-world data
from a reference intercontinental carrier and they provide the required flexibility to explore
the performance of the scenario tree methodology. The first case concerns the definition of
the fleet composition to operate in a set of long-haul routes of the carrier. The second case
study focus on planning the transition between generations of aircraft, studying a set of fleet
composition options with the scenario tree approach proposed.

4.1. Case 1: Fleet composition
To validate the premise of the research that the novel model would help airlines better

hedge against uncertainty, a small case is used to to explore the relation between the degree
of uncertainty and the benefit of the novel model. The network resembles part of the long-
haul network of the reference carrier and the parameters values are estimate based on actual
operational figures provided by the carrier.

A detailed description is given of the used parameters, followed by a discussion of the
performance of the model and how its results can be used for long-term fleet planning.
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4.1.1. Model parameters

The parameters can be separated into three categories: aircraft related, route related,
and aircraft-route related. The applied values of the parameters of these categories are
therefore also given in three separate tables. First, a selection is made of three aircraft
types, with significantly different capacities and cost figures. We opted for these three
aircraft because the reference airline was able to provide operational data for them. Table 1
gives the ownership cost, capacity, available block time, turnaround time and penalty cost
for each aircraft type. The ownership costs and penalty costs are both assumed to be equal
in all periods. Next, the operating time (or block time), average fare, average demand of
each route and maximum load factor are given in Table 2. Average fares are calculated by
dividing the total revenue on a route by the number of passengers, and are thus the combined
average of both flight legs. These include taxes and fuel surcharge. Demand is taken as the
average of the forecasts of both flight legs of each route. Finally, the only route-aircraft
related parameters are the operational cost of each aircraft type per route. These figures
are provided in Table 3 in thousands of dollars.

Table 1: Case 1 aircraft related parameters

Aircraft fc cap BT TAT pen

[$/week] [seats] [h/week] [h/flight] [$]

B772 140,000 322 96 1.5 10,000

B773 175,000 401 96 1.5 10,000

B788 95,000 234 96 1.0 10,000

Table 2: Case 1 route related parameters

OT fare dem1 LF

Route [h/flight] [$/pax] [-/week] [%]

A 9.00 435 3365 90

B 6.10 267 3091 90

C 8.70 504 1724 90

D 5.25 226 2137 90

E 9.00 500 2569 90

F 3.50 298 768 90

G 3.00 260 729 90

H 4.25 325 2655 90

I 9.60 350 5000 90

J 10.50 477 1366 90

To provide more flexibility to the model and to eliminate the influence of contextual
parameters on the outcome of the fleet optimization model, it was assumed that there is
no minimum frequency required (i.e., MFreq = 0) and that the airline does not have any
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Table 3: Case 1 variable costs per aircraft-route combination (*1000 USD)

Aircraft A B C D E F G H I J

B772 207 132 207 113 225 72 75 93 200 240

B773 249 158 249 136 269 87 90 112 240 288

B788 150 95 150 82 161 52 54 67 144 173

initial fleet (i.e., IF = 0). In addition, it was assumed that each period represents a year
(i.e., nt = 52 for all t). For the sake of simplicity, the discount factor δt was considered to be
equal to 1 in each period, meaning that it was presumed that all future values are constant
and equal to their present day value. Discount factors lower than one would mean that
futures values (costs and revenues) would have a lower importance in the objective function,
resulting in more fleet changes due to lower discounted penalty costs in later stages.

For this case study, we assumed a tree with three branches at each node and a three-
stage model like the one presented in Figure 1 and discussed in Section 2. The L/M/H
branches are considered to be related to demand changes of -10%/+5%/+15% and prob-
abilities 20%/50%/30%, respectively. The most likely demand growth reflects the average
demand growth in the air transport industry over the last 30 years (Pearce, 2013) and the
other values were obtained by consulting some of the carrier strategic planning experts.
They reflect the extreme annual growth scenarios assumed by these experts. It is assumed
that on all routes the demand changes in a similar way and there are thus no differences
between routes.

4.1.2. Results

The analysis of the results for this case study is divided in two parts. First we discuss
the results from the scenario tree methodology presented in this paper. In the second part of
this sub-section we compare these results with the results obtained following a deterministic
single scenario approach.

Scenario tree results
The best fleet for each decision node in the scenario tree is presented in Table 4. The

first column in the table indicates the stage of the decision node, while the second column
describes each node according to the L/M/H branches followed by the scenario path. The
next two columns indicate the demand variation and the probability associated with each
decision node. The demand variation reflects the ratio between the demand considered in
the decision node and the initial demand. The last four columns present the number of
aircraft per aircraft type considered and in total in the fleet.

The ideal fleet for the first node of the tree comprise ten aircraft, 7 B773s and 3 B788s.
This is also the ideal fleet for the three decision nodes in Stage 2. Meaning that given the
uncertainty for Stage 2 the best option is not to change the fleet when making decisions in
Stage 1. However, depending on the branch in the second stage, the fleets vary for Stage
3. For the scenarios with high demand variation in the second stage, the solution for the
third stage involves the acquisition of two more aircraft, one B773 and one B788. For the
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Table 4: Ideal fleet for each scenario path for Case 1

Stage Node Demand variation Probability B772 B773 B788 Total

1 - 1.00 1.00 0 7 3 10

2 H 1.15 0.30 0 7 3 10
2 M 1.05 0.50 0 7 3 10
2 L 0.95 0.20 0 7 3 10

3 HH 1.32 0.09 0 8 4 12
3 HM 1.21 0.15 0 8 4 12
3 HL 1.09 0.06 0 8 4 12
3 MH 1.21 0.15 0 7 3 10
3 MM 1.10 0.25 0 7 3 10
3 ML 1.00 0.10 0 7 3 10
3 LH 1.09 0.06 0 6 3 9
3 LM 1.00 0.10 0 6 3 9
3 LL 0.90 0.04 0 6 3 9

medium demand variation scenarios (in the second stage) there is no variation on the fleet
while for the low demand variation scenarios the solution for the third stage is to dispose of
one of the B773s. The B772 aircraft is never chosen to be part of any of the ideal fleets.

It is important to notice the path dependency effect in these results. For instance, the
scenario ending at the node ’HM’ is equivalent to the scenario ending at the node ’MH’ -
demand variation of 1.21 and probability of 15%. However, the fleets for both scenarios are
different. This reflects the fact that it is less risky to investing in a larger fleet when being
at Stage 2, in a node with a high demand scenario (15% more than in the initial node).
That is, when deciding the Stage 3 fleet for nodes branching from the high demand scenario
in Stage 2, there is 80% probability that the demand variation in Stage 3 will be higher
or equal to 1.21. For branches deriving from the medium demand scenario in Stage 2 the
probability of having a demand variation of 1.21 is only equal to 30%. The inverse effect can
be observed when comparing the medium demand scenario with the low demand scenario.

The analysis of the previous table, especially in the case that more stages and branches
per node are considered, can be a hard task for the decision-maker. Thus, another way to
present the results is to do it in terms of a fleet probability table, such as the one presented
in Table 5. For each period, aircraft type and number of aircraft, the probabilities of the
scenarios in which this instance occurs are summed to give an individual probability distri-
bution for each aircraft type. A similar process is used for the total fleet size, but without
making a distinction between aircraft type. The percentages resemble the probability that
a particular number of aircraft is advised. This is an important feature of the presented
methodology. While other methods focus on providing a single fleet solution, the modeling
methodology proposed takes into consideration future uncertainty to provide the probability
that a certain number of aircraft is necessary for future operations.

Table 5 presents this fleet probability for the last stage of our Case 1. It can be concluded
from this table that, according to our analysis, with 100% certainty no B772 is advised. The
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Table 5: Fleet probability for Stage 3 for Case 1

Stage 3

# aircraft B772 B773 B788 Total

0 100%
1
2
3 70%
4 30%
5
6 20%
7 50%
8 30%
9 20%
10 50%
11
12 30%

fleet for Stage 3 should have at least 9 aircraft. But most likely it should have 10 aircraft.
The other option is to consider 12 aircraft in the fleet, but that solution would only results
in profit for 30% of the scenarios. This can help the decision-maker to decide to plan the
fleet for 10 aircraft and consider, for instance, the purchase option or the short-term leasing
of 2 more aircraft in the case of high-demand outcome. Curious is the fact that no scenario
resulted in a fleet of 11 aircraft. In terms of fleet composition, it seems that the fleet should
have, at least, 3 B788s and 6 B773s. In the case of going for a 10 aircraft fleet, the 10th
aircraft should be a B773 (with 80% chances of being needed). The 12 aircraft option should
consist of one more B773 and another B788.

Scenario tree vs single scenario solutions
To compare the proposed scenario tree approach with the traditional approach of using

a single scenario to plan the future fleet, we computed the optimal fleet for each scenario
independently. These best fleets per scenario are of course always better or equal to the
solution obtained from the scenario tree approach for each scenario. The computation of
the best fleets does not consider the demand uncertainty or the interdependencies between
stages, it just involves a three-stages model with a single scenario. The objective function
values for the best solution for each scenario, the worst solution from the ones tested, the
solution for the most likely scenario (the ’MM’ scenario) and the scenario tree solution are
provided in Table 6 for every scenario in the scenario tree. The second column in the ’most
likely solution’ and the ’scenario tree solution’ refers to the decay in the objective function
value when compared with the best solution. The last line of the table presents the results for
the entire set of scenarios, considering the performance of each solution and the probability
per scenario.

The most important conclusion that can be derived from these results is that the scenario
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Table 6: Comparison of results per scenario between the scenario tree solution and single-scenario solutions
- operational profits in 103 USD/week

Scenario Probability
Best solution Worst solution Most likely solution Scenario tree solution

OF OF OF Dif.Best OF Dif.Best

HH 0.09 2567.9 2448.5 2533.1 -1.36% 2549.4 -0.72%
HM 0.15 2482.2 2394.6 2464.0 -0.73% 2471.9 -0.42%
HL 0.06 2350.4 2254.2 2332.1 -0.78% 2293.0 -2.41%
MH 0.15 2408.7 2333.7 2400.1 -0.36% 2392.7 -0.67%
MM 0.25 2327.5 2227.1 2327.5 0.00% 2324.7 -0.12%
ML 0.10 2203.7 2049.1 2162.1 -1.89% 2192.8 -0.49%
LH 0.06 2156.7 1978.3 2114.8 -1.94% 2108.2 -2.25%
LM 0.10 2085.4 1874.5 2008.7 -3.68% 2047.8 -1.80%
LL 0.04 1979.7 1708.4 1864.0 -5.80% 1925.9 -2.72%

Total - 2305.5 2221.9 2297.9 -0.33% 2305.5 0.00%

tree solution is more robust than the most likely solution, or than any other single optimal
solutions computed. The scenario tree solution is never as good as the optimal solution for
each scenario, but it always performs reasonably well in all the scenarios. The maximum
difference to the best value of the objective function is -2.72% while the most likely solution
can result in profit losses of 5.80%. This is even more evident if we compare it with the
potential lost of adopting some of the other optimal solutions for single scenarios. For
instance, the profit lost can be of almost 14% if we adopt the best solution obtained for
the ’HH’ scenario and scenario ’LL’ turns out to be the one better describing the demand
evolution. This may represent a lost of 271.3 thousand USD per average week, even for this
simple case study. The scenario tree solution performs really well in scenarios with high
probability of happening and less well for scenarios with low probability of happening. It is,
however, the best solution when we computed the objective function for the entire scenario
tree.

The drawback of the proposed methodology is the computational effort needed to de-
termine the best solution for the scenario tree. Given the complexity of the problem, the
scenario tree approach is very demanding with regard to computing power, as discussed by
Pantuso et al. (2015b). After one hour of computation, the scenario tree provided a solution
that is 0.33% better than the most likely scenario solution. The single scenario solution was
however computed in less than 8 minutes. The optimality gap in the case of the scenario
tree solution was equal to 0.54%, meaning that the scenario tree approach can potentially
lead to even better results if the optimizer runs for longer times. Despite this long com-
puting times, it is important to notice that after 5 minutes of computation it could already
provide solutions with a gap lower than 1.0%. This last solution was already better than the
solution for the most likely scenario and it could have been already used as a ’good enough’
solution to support the robust long-term fleet planning decisions. Nonetheless, it needs to
be recognized that the complexity of the scenario tree approach raises some challenges in
the case we want to study a problem with more stages, more branches and more aircraft
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options.

4.2. Case 2: NextGen Aircraft

The second case study concerns a real case fleet planning problem faced by the reference
airline. The airline currently operates a fleet of ten B737s that are usually dedicated to 22
medium-haul routes of its network. With the next generation B737 on the market, the airline
is exploring options to transition to this NextGen aircraft. In addition the airline is set to
expand this network with two additional routes and to increase frequency on some other
routes. The purpose of this case study is therefore twofold. The primary goal is to asses
the benefit of the model when more limiting considerations are introduced, and secondary
to prove the value of the proposed methodology in advising an airline on how the transition
between aircraft technologies and different fleet composition options.

We start by setting-up the case study, discussing the options available and how the
optimization model needs to be adapted in order to capture all the feature of this particular
problem. Next we present the model parameters, followed by the discussion of the results.

4.2.1. Study set-up

The airline currently has four options under consideration to structure their fleet (Table
7). Each of which entails different ways of transition (or not) to the NextGen aircraft. The
horizon is limited to the year 2027 because that would be the end term of any lease on
current generation B737s. The fleet options considered are defined according to possible
combinations of the following four lease alternatives:

• CGC – Current Generation aircraft Currently detained by the airline (referring to five
B737s operational until 2019 via a long-term lease that can be extended until 2027);

• CGL – newly Current Generation aircraft acquired via Long-term lease;

• CGS – newly Current Generation aircraft acquired via Short-term lease; or

• NG – NextGen aircraft acquired via long-term leased aircraft and that is only available
to the airline from 2020.

Table 7: Different fleet options under consideration by the airline

Option 2016-2019 2020-2027

No NextGen CGC & CGL CGC & CGL

Mixed CGC & CGS CGC & NG

Reverse Mixed CGC & CGL CGL & NG

Full NextGen CGC & CGS NG

In the ’No NextGen’ option, the airline will continue to operate the CGCs until 2027 and
for any additional aircraft it acquires CGLs. Similarly, for the ’Mixed’ option it operates
the CGCs until 2027, but the airline can acquire CGSs for the first four years, which will be
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then replaced by NGs in 2020. For the ’Reverse Mixed’, the airline gets CGLs and replaces
the CGCs with NGs in 2020. Finally, the ’Full NextGen’ option consists of CGCs and CGSs,
which will be then all replaced by NGs in 2020. Additionally, for the sake of comparison,
a fifth option is considered where no restriction is imposed in terms of the combination of
leasing options and the optimal fleet can be obtained. This fifth option we called the ’Free’
option.

The transition problem will be modeled using a five-stage scenario tree. Starting in 2016,
the first four stages represent two years of operations each (i.e., nt = 2 × 52), whereas the
final stage will span four years (i.e., nt = 4× 52). These four stages between 2016 and 2023
and the single stage between 2024-2027 represent the periods in which the airline expects to
be able to make changes to the fleet. Figure 4 gives a graphical representation of the set-up
and the notation corresponding to each period.

4 

2016-2017 2018-2019 2020-2021 2022-2023 2024-2027 

1 2 3 4 5 

Stage 

16-17 18-19 20-21 22-23 24-27 

Period 

Figure 4: NextGen case study model set-up

The case study comprises some contextual requirements that need to be considered in
the optimization model. For instance, the number of CGCs may not increase beyond the
five the airline has in its initial fleet. We can easily incorporate this requirement by adding
an additional set of constraints to enforce this. This can be done by using the following
formulation:

xst,CGC ≤ 5 ∀t ∈ T, s ∈ S (14)

Several other context requirements are considered. That is the case of newly acquired
current generation aircraft. They can only either be CGL or CGS. The NextGen aircraft
will only be available in period three and CGCs could only be handed back in the year 2020,
coinciding with the assumed earliest delivery date of the NextGen aircraft. Once a new
long-term lease starts with a current generation aircraft or a NextGen aircraft is acquired,
the contracts can not be canceled before 2027. To ensure all these requirements, instead of
adding additional constraints to the model, we made use of very large ownership or penalty
costs coefficients in the objective function. These large costs, expressed by a constant M ,
are associated to some of the lease alternatives in stages that these these alternatives can
not be started or broken. This way, we ensure that the associated variable will be equal
to zero in the obtained solution. For example, a large ownership cost will be assumed for
the NextGen aircraft in the years 2016 to 2019 in all options in consideration, in order to
not select this leasing option in stages that these new aircraft are not yet available. Table 8
illustrates which parameters are set to M . In this table, the dashes represent periods where
the cost values do not change.
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Table 8: Costs associated to the starting and ending of leasing option

Aircraft Parameter 16-17 18-19 20-21 22-23 24-27

CGS pen M - - - -

CGC pen M - M M M

CGL pen M M M M M

NG
fc M M - - -

pen M M M M M

4.2.2. Model parameters

Once again, we divided the main parameters of the model in three tables. All aircraft
parameters are provided in Table 9; the route related parameters for period 16-17 are pro-
vided in Table 10; while the variable cost are provided in Table 11. The values from these
tables were obtained from current operational airline’s records, from a five-year plan recently
produced by the airline and via some interviews with airline’s operators.

Table 9: Case 2 aircraft related parameters for the 4 leasing options

Lease option
fc cap BT TAT pen IF

[$/week] [seats] [h/week] [h/flight] [$] [-]

CGS 106,350 145 110 0.75 0 0

CGC 90,000 145 110 0.75 23,000 5

CGL 90,000 145 110 0.75 - 0

NG 110,000 162 110 0.75 - 0

Aircraft of different leasing alternatives may have differences in cost. These lease costs
were obtained from current market prices. The weekly leasing costs of CGS aircraft is
higher than the costs of the other CG leasing options given that they involve shorter leasing
periods (of two or four years). The NextGen leasing was assumed to be 22% more expensive
to reflect the additional costs of acquiring a new, more efficient and higher capacity aircraft.
The penalty cost of early lease termination of these CGCs is estimated using the knowledge
of previous leasing deals. It was assumed that short leasing contracts can be stopped in
any of the five periods of analyses with no penalty costs and that long-term leasing options,
namely CGL and NG can not be canceled. The block times per aircraft per week are also
presented in Table 9. These values were considered to be equal to all aircraft, regardless of
the lease alternative, and were set as such that the optimization leads to the same number
of aircraft in the first stage as the airline has in its five-year plan. A discount factor δ of 1
is also considered in this case study.

The demand values and the minimum frequency values per routes for the initial stages
were obtained from the five-year plan of the airline. The plan presents frequency schedules,
expected fares and demand forecast values on the routes considered in our case study. It
was assumed that from 2020 onward the minimum frequency schedule and the fares remain
the same. Uncertainty is introduced by multiplying the base demand forecast values for
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Table 10: Case 2 route related parameters for the period 16-17

Route
OT MFrq16−17 fare dem16−17 LF

[h/flight] [flights/week] [$/pax] [pax/week] [%]

A 9.05 3 418 340 85

B 8.25 4 389 501 85

C 7.63 3 386 345 85

D 8.71 3 387 309 85

E 5.96 7 282 808 85

F 4.09 3 326 311 85

G 5.55 0 330 (316) 85

H 1.38 7 178 803 85

I 4.45 3 314 311 85

J 5.43 4 236 429 85

K 2.96 3 282 375 85

L 1.83 3 301 252 85

M 3.64 5 270 608 85

N 3.38 2 270 202 85

O 4.13 19 330 2000 85

P 4.17 2 284 218 85

Q 5.00 7 353 700 85

R 5.57 3 364 336 85

S 3.38 2 277 198 85

T 1.00 6 100 761 85

U 4.33 2 354 203 85

V 3.00 3 216 315 85

W 4.38 4 327 462 85

X 3.33 0 354 (343) 85

Table 11: Case 2 variable costs per aircraft-route combination (*1000 USD)

Aircraft A B C D E F G H I J K L M N O P Q R S T U V W X

CG 97 109 102 113 55 44 50 17 43 50 37 36 34 38 42 45 53 65 38 13 43 37 43 34

NG 92 103 96 107 52 42 48 16 41 48 35 34 32 36 40 42 50 62 36 12 41 35 41 32

16-17 with a yearly change of -2%/+2%/+6%. Because the time between the start of each
period is two years, the model uses -4.0%/+4.0%/+12.4%. The probabilities to each growth
branch are chosen to be 25%/50%/25%, respectively. This results in a scenario tree with
81 scenarios, with demand in the final period ranging between +59.4% and -14.9% of the
base demand, with a most likely variation of +17.2%. Routes G and X are two new routes
in which the airline plans to start operations in the period 18-19. It was assumed that,
although the airline is not being flown in 16-17, their potential demand in 16-17 is equal
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to 316 and 343 passengers per week, respectively for route G and X. After this period the
scenario tree demand uncertainty branches were applied to estimate the future demand on
these two routes. The maximum load factor for all the routes in the network was assumed
to be 85%. This value is in line with the estimations described in the five-year plan, but
it is higher than the current average load-factor experienced by the airline in its long-haul
network. Still, we assumed it to be realistic for this case study.

The variable cost for the current generation aircraft are taken from the reference airline’s
records. Around 65% of these cost are deemed to aircraft dependent cost (i.e., fuel and
maintenance cost). Manufacturer information suggests that the NextGen aircraft has an
operational efficiency gain of 8%. Thus, the cost of the NextGen are taken as 94.8% of the
current generation aircraft.

4.2.3. Results

The fleet compositions an operational profit for the four fleet option under consideration
by the airliner and for the free option are given in Table 12.

Table 12: Fleet compositions and operational profit for the different options

Option
Leasing Period Operational

profit

alterna-
tives

16-
17

18-
19

20-
21

22-
23

24-
27

[103

USD/week]

No NextGen
CGC 5 5 5 5 5

1 306.5
CGL 5 6 7 7-8 7-9

Mixed

CGC 5 5 5 5 5

1 569.9CGS 5 6 0 0 0

NG 0 0 7 7-8 7-9

Reverse mixed

CGC 5 5 0 0 0

1 565.6CGL 5 6 6 6 6

NG 0 0 6 6-7 6-8

Full NextGen

CGC 5 5 0 0 0

1 619.0CGS 5 6 0 0 0

NG 0 0 12 12 12-
13

Free

CGC 5 5 0 0 0

1 631.8
CGS 4 5 0 0 0

CGL 1 1 1 1 1

NG 0 0 11 11 11-
12

The results suggest that, among the four options considered by the airline, the full
renovation of the fleet in 2020 with new generation aircraft (NG) is the one that results in
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a higher operational profit. Nevertheless, a solution involving the CGS and CGL leasing
alternatives together with the NG aircraft, such as the one suggested by the ’Free’ option,
seems to be even better than the ’Full NextGen’ option. The difference between these two
options is estimated to be of almost 13 thousand USD for an average week of operations.
The difference is larger when we compare with the ’No NextGen’ option, which turned
out to be the least profitable option. The ’Full NextGen’ option results in a weekly profit
312.5 thousand USD higher than the ’No NextGen’ option. The two mixed options give
intermediate results, when compared with these two last options.

In terms of fleet size, all solutions suggest an increase in fleet from ten aircraft in period
16-17 to twelve aircraft in period 20-21, regardless of the scenario in the scenario tree.
For the periods 22-23 and 24-77, the ’No NextGen’, the ’Mixed’ and the ’Reversed Mixed’
options involve the acquisition of one more aircraft per period in the case of scenarios with
higher demand. This fleet enlargement is done with additional NG aircraft or, in the case of
the ’No NextGen’ option, with a long-term leasing of a CG aircraft. In the case of the two
other options, the extra capacity of the NG aircraft acquired in period 20-21 is enough to
cope with the demand variation until period 24-27. Only in this last period it suggested the
acquisition of an additional NG aircraft for the extreme high demand scenarios. This can
be observed in Table 13 where the fleet probabilities for the ’No NextGen’ and the ’Free’
options are compared. It is clear that with a high probability the most profitable fleet is
composed of one CGL and eleven NG aircraft. The thirteenth aircraft is only profitable
with 2.0% of probability. For the ’No NextGen’ option, with almost 80% probability the
most profitable fleet will be composed by the current five CGC and seven extra CGL. One
additional CGL aircraft should be acquired in the case of high demand scenarios. There is a
18.8% probability of these scenarios to happen. The second additional CGL aircraft is only
profitable with a probability of 1.6%.

5. Conclusions

In this paper an innovative multi-period scenario tree methodology aimed to help airlines
better hedge against uncertainty is proposed. The methodology adopts the concept of sce-
nario paths to develop fleet plans according to potential demand evolution scenarios. Given
that some scenario paths share common decision points, the scenarios are solved dependently
of each other. A mixed-integer linear programming model is used to determine the ideal
fleet composition for each scenario in the tree and to capture these interdependencies. With
two case studies inspired in real-world problems, it was demonstrated that the proposed
methodology can be used for long-term fleet planning. The multi-period scenario approach
leads to flexible and robust fleet plans. The plans are flexible because they comprise fleet
composition solutions for all decision nodes in the scenario tree, reflecting in one hand the
evolution of the fleet from previous time stages and on the other hand the potential de-
mand evolution scenarios for future stages. This results in smooth transitions between fleet
solutions along the multiple time stages of the scenario tree, facilitating the development
of coherent and adaptable multi-period fleet investment plans. The fleet plans obtained
with this approach are also more robust than the ones that can be determined by using the
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Table 13: Fleet probability for Period 24-27 according to the ’No NextGen’ and ’Free’ options

No NextGen Free

# aircraft CGC CGS CGL NG Total # aircraft CGC CGS CGL NG Total

0 100% 100% 0 100% 100%
1 1 100%
2 2
3 3
4 4
5 100% 5
6 6
7 79.7% 7
8 18.8% 8
9 1.6% 9
10 10
11 11 98.0%
12 79.7% 12 2.0% 98.0%
13 18.8% 13 2.0%
14 1.6% 14

traditional deterministic single-scenario approach usually followed in the literature. This
happens because in the proposed approach multiple scenarios are taken into consideration
when defining the best fleet for each decision node in the scenario tree.

The multi-scenario approach leads to as many advised fleets per stage as the number of
decision nodes considered in each stage. When these fleets differ from each other, it is not
possible to provide a single advise on the best fleet per stage. Although at first this can be
seen as a limitation of the proposed method, this is in fact one strong point of the scenario
tree approach. It generates additional information that can better help the fleet planner to
hedge against uncertainty. By summing the probabilities of the scenarios resulting in the
same fleet outcome, it is possible to construct fleet probability tables for each time stage in
the scenario tree. These tables show the probabilities of having various fleet compositions
as the best fleet for future stages. The tables provide, for example, advise on what is the
most probable profitable fleet composition or on what is the minimum number of aircraft in
the fleet necessary to have profit in a given percentage of the future scenarios considered.
Depending on the airline’s risk aversion and on the investment capabilities, the fleet planner
can use this information to better decide on how many aircraft to order and how many of
these orders should be via short-term or longer-term contracts. This is a very useful outcome
for any fleet planner, given additional flexibility and robustness to the fleet planning process.

The case studies used in this paper demonstrated that the approach can be already
used to solve real long-term fleet planning problems. Nevertheless, this paper opens the
opportunity for further research. There are several topics that can still be further explored.
For instance, it will be interesting to consider differing demand variations for different routes
in the network. The impact of uneven growth of demand and the correlation between these
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growths may provide more realism to the case studies. The single period fleet planning mode
in future studies can also be extended to consider the demand over origin-destination markets
may involving connections at the airline hub. Other sources of uncertainty, not included in
this paper, such as fuel prices, discount factor fluctuations or technology development may
be object of analysis in future studies. When implementing these proposed extensions to
the proposed approach, one has to bare in mind that the scenario tree methodology is very
demanding in terms of computing power. The current version of the modeling approach,
connecting Pyomo based PySp software package with the commercial IBM CPLEX linear
optimizer, limits the application of the approach to large scenario trees or to handle very
detailed fleet planning problems. Thus, further research can also focus on developing faster
and more efficient solution techniques to handle the scenario tree approach proposed.
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