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Abstract

The ZebRo (Dutch abbreviation: Zesbenige Robot, six-legged robot), is a walking robot de-
signed by the TU Delft [1], with its foundations on the RHex[2]. The current version of the
Zebro project, the DeciZebro[3], is made for the research to swarming in robotics, and is
about the size of an A4-paper.
The most important feature of legged robots, is the walking. Creating a walking pattern
depends on a lot of variables, such as the size and weight of the robot, the amount of legs,
the shape and amount of links of the legs, the power of the engines, etc. The locomotion
pattern of the RHex is determined by a central pattern generator (CPG) which contains a
time-based function for the legs to follow. This method is computationally cheap, but lacks
certain aspects. Most importantly, when legs are hindered or delayed, the standard pattern
needs to be changed for all legs to counter the delay. Switching between different gaits, as
well as the construction of new gaits also requires recalculations of the walking pattern.
To counter these shortcomings, Max-Plus algebra can be used for the timing of the legs of
walking robots. This can be done by modeling a walking cycle as two discrete events. These
events are the times of the lift-off and touchdown, and can be determined by using a Max-Plus
Discrete Event System (DES) framework. The main purpose of these events is to determine
two separate periods; the stance period, and the swing or flight period.
Max-Plus algebra is defined as a semi-ring over the union of real numbers and minus infinity.
The standard binary operations are taking the maximum (⊕) and addition (⊗), which can
be used for scalar and matrix operations.
Using these matrix operations, a Max-Plus linear (MPL) system can be constructed, of the
form: v(k + 1) = A ⊗ v(k).[4] The Max-Plus linear systems contains the gait matrix A, and
the vector v(k) containing the lift-off and touchdown times of vector instance k. One of the
strengths of this method is the ability to change gaits, by simply changing the A-matrix. This
then results in the switching Max-Plus linear (SMPL) system: v(k + 1) = Ak ⊗ v(k).[4]
This SPML system determined in [4] only contains gaits with successive recirculating leg-
groups, where the synchronization of the lift-off of a certain leg-group i relies on the touch-
down of the leg-group i− 1. This allows for gaits like walking for humans, or a slow trot for
horses, where a leg-group remains on the ground until the previous leg-group has recirculated.
In order to increase the amount of possible gaits, the synchronization of successive leg-groups
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is extended to not only contain the previous leg-groups’ touchdown times, but also their
lift-off times. This extension allows for gaits containing multiple rotation leg-groups at the
same time, making gaits like the gallop possible. Because of the desired stable situation of
grounded legs, the synchronization is chosen to not extend the timing of the touchdown, as
delays should not hinder the return of the legs to their grounded position.
Using the new system and the work of W. Suriana [23], which proposed a novel method of
using SMPL-systems for turning gaits, a complete locomotion was introduced in the Zebro.
The work of Suriana was previously validated using simulations, but is shown to work in
actual robot implementations as well.
The performance of different gaits is tested on different surfaces, to determine the influence
of the amount of legs on the ground, and determining whether gait changes could influence
the success rate of the system regarding traversing rough terrain. Inertia measurement units
(IMU) are used for detecting rough terrain, and tests show that the body movement of a
Zebro on both flat and rough terrain are heavily influenced by the gaits used.
Because of several limitations regarding the actuation of the legs, gaits containing moments of
static instability could not be tested. However, the framework for implementation regarding
the Max-Plus is lain, and tested using simulations.

Keywords: legged locomotion, max-plus, discrete event system, gait switching, Zebro
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Chapter 1

Introduction

1-1 Background

Steadily, the impact of robots on our everyday life is increasing. While some warehouses are
completely automated, using either driving robots or railed systems, the adaptations neces-
sary for completely automating processes are quite extensive. Walking robots could be an
intermediate step in between humans and wheeled robots, by being able to go anywhere hu-
mans can go.
The development of these walking robots is relative complicated. Companies such as Boston
Dynamics show great promise with their robots [5], which have either two [6], four [7] or six
legs[8]. Other walking robots like the Asimo [9], and TU Delft’s Zebro (Zesbenige Robot,
Dutch for Six-Legged Robot)[3][10] are also in constant development, and may be able to
demonstrate their effectiveness. Some of these robots may be used to assist humans inside
difficult terrain, like woods, indoors or rocky areas. While fallen trees and boulders can be
major obstacles, indoor places like offices can contain other difficult areas, like stairs and
doorsteps, which are much easier conquered by walking robots than their wheeled counter-
parts.
In order to walk, there needs to be some kind of synchronization between legs, so the robot
does not fall down. Two-legged animals like kangaroos and ostriches, but also humans, have
a small repertoire of gaits, walking styles. These gaits consist of walking, hopping, skipping
and running, where differences lie in the legs used and the order of legs touching down and
lifting off. Depending on the situation at hand, there might be a change in what gait is the
most efficient to use. [11]
Compared to two-legged animals, the gait options for four- and six-legged animals are much
more numerous, as can be seen by the different gaits of horses. A method to capture all these
gaits, and implement them in different robots by generating the timing, can be achieved us-
ing various methods[12][13]. In this report, the method of using Max-Plus algebra for gait
generation[4] is researched and implemented.
Max-Plus algebra changes certain aspects from the standard algebra, by replacing the times-
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2 Introduction

operator by the plus-operator and the plus-operator by the max-operator. Max-Plus algebra
allows timed events to be easily captured in linear systems, which is especially useful for the
planning and timing of train schedules, factory processes and gait generation[14].

1-2 Problem Statement

1. How should Max-Plus discrete event systems (DES) be implemented for the locomotion
of a walking robot?

2. How can the current Max-Plus model be extended for gaits with aerial phases?

3. What is the performance of the Max-Plus locomotion system?

1-2-1 Current Situation

For the timing of walking robots, widely used methods are the Central Pattern Generator
(CPG) and the Buehler clock. A CPG generates reference trajectories for each leg, by solving
sets of differential equations [4]. The Buehler clock uses a reference trajectory in every leg,
which is (in the case of the RHex) tracked by a PID-controller [2].
In these implementations, delay handling and gait change requires a change in the trajectory
generation of all legs, and every change in speed or performance problems require hard-coded
gaits and routines.
These (mostly static) gaits are widely used in a lot of walking robots. Robots with running
gaits are not that widespread, due to the difficulty of making the control algorithms, but
also due to the costs of strong and light actuators, reliable sensors and the requirements of
computing power inside the walking system. The implementation of this more complicated,
dynamic running behavior of the robots is mostly reserved for more expensive systems.

1-2-2 Improved situation

In order to improve the shortcomings of the current gait-generation, switching Max-Plus
linear systems will be implemented and tested. The aim is to make an adaptable, complete
locomotion module for the Deci-ZebRo[3]. The main use of the Deci-ZebRo will be to test
swarming within a group of robots, much like ants, fish or birds. This testing will be done
indoors and outdoors, which makes a walking robot the perfect platform for testing.
Handling rough terrain, stairs, hills and flat ground should be in the repertoire of the Zebro,
in order to allow the swarming to function without problem. Nature can be a good source of
inspiration in order to find ways to handle these different environments. It can be seen that
animals change their gaits when increasing or decreasing their speed[15], or while walking on
difficult terrain [16]. It makes sense this will also be incorporated in the walking robot, as the
switching Max-Plus linear system allows for fluent and fast changes in the gait, which can be
optimized for the situation at hand.
When the robot needs to transverse a big plot of land, the speed requirement will increase.
Running gaits can improve the speed, but have difficulties to solve certain parameters0, like
stability, body movement and timing issues. Especially in robots with limited computing
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1-3 Scope and outline 3

power and feedback, the full state of the body is hard to determine, and even harder to control
real-time. It will be tried to solve this problem with relative simple control mechanics.

1-2-3 Subproblems

• What are the best performing gaits for the different terrains?

• Using limited sensor input, how can the optimal gait change be determined?

• How can a controller help to improve the performance of running gaits?

1-3 Scope and outline

This report will be about the implementation of a complete Max-Plus discrete event system
based locomotion module. The module is responsible for the execution of instructions by a
governing top-level controller. It should be capable to provide the timing of the steps of each
individual leg, creating and changing gaits appropriate for the task at hand. The module is
not responsible for the direct control of the leg-motors, and not responsible for the choice of
direction or speed, although some situations can make the locomotion module to limit the
speed of the robot.
Furthermore, it should be able to control the robot in such a way that it can make corners,
handle delays and solve defects. The locomotion module should essentially translate the
directions of above lying decision making to the individual leg controllers so the robot can
complete its tasks. A simplified overview of the system can be seen in Figure 1-1.

Figure 1-1: A simplified overview of the control system in the Zebro

The top-level controller uses input from communication or vision modules (other mid-level
controllers) for the desired walking direction and speed. In order to translate these instruc-
tions for the leg controllers, the locomotion controller is used. These translated instructions
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4 Introduction

are abstracted to contain the desired position and direction of rotation in a certain amount
of time. The leg controller will then make a linear interpolation between the current position
and the desired position of the leg, and follow that path using a PID-controller.

Next to this, the addition of running gaits in Max-Plus will be researched. For now, the gait
generation in Max-Plus for legged locomotion focuses on static gaits. Extending this to hav-
ing the possibility to construct a lot more different gaits increases the range of performance.
Running gaits are defined as gaits with either moments of statical instability or aerial time.
This allows for a tool which can incorporate the dynamics of the body of the walking robot,
which opens the path for combining the Max-Plus discrete event systems with the dynamics
of its system.

L.D. Kinkelaar Master of Science Thesis
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Chapter 2

Max-Plus Algebra

The purpose of this chapter is to give a general outline to the basics of Max-Plus algebra.
In the first section, the operators, algebraic properties and special elements of the Max-Plus
algebra will be presented. The second chapter will give the link between the use of Petri
nets, a kind of graphs, and Max-Plus algebra, as this sets the basics for using Max-Plus to
determine timed events. After this, the calculation and use of matrices and eigenvalues in
Max-Plus will be explained. This foundation will be used to define the state space systems
necessary for the timing of the locomotion in the fourth section of this chapter.

2-1 Basics

To use Max-Plus algebra in controlling the legs of the robot, the foundation of the Max-Plus
algebra needs to be fully understood. Therefore, this section covers the basics of Max-Plus
algebra.

2-1-1 Scalar operations

Standard algebra consists of several operations learned in elementary school, addition and
multiplication. These operations can be expanded to division, subtraction, powers , etc.
Max-Plus algebra differs from most standard algebra, in the way that addition is replaced by
taking the maximum of the two elements and multiplication is replaced by addition. These
operations are denoted by a plus-symbol and a multiplication symbol surrounded by a circle:

Master of Science Thesis L.D. Kinkelaar



8 Max-Plus Algebra

x⊕ y = max(x, y) (2-1)
x⊗ y = x+ y (2-2)

With: x, y ∈ Rε (2-3)
Where: Rε , R ∪ −∞ (2-4)

Because of major analogies between ⊕ and ⊗ on one side and + and × on the other side, the
choice is made to make the signs similar, and to call the ⊕ operator the Max-Plus addition,
and the ⊗ operator the Max-Plus multiplication. Furthermore, the Max-Plus power operation
is defined as:

x⊗y =
y times︷ ︸︸ ︷

x⊗ x⊗ . . . x = y × x (2-5)
Contrary to standard algebra however, there are no inverts of addition and multiplication
used in Max-Plus algebra. These are used in regular algebra (minus and division), and this
is one of the major differences between Max-Plus and regular algebra. A few examples can
be seen in: Appendix A-1 to A-3 and Appendix A-4 to A-6.

2-1-2 Definitions and properties

For standard algebra, we have 0 and 1 as the zero and unit element for respectively addition
and multiplication. For Max-Plus algebra, these elements are respectively defined by ε = −∞
and e = 0 such that:

x⊕ ε = x (2-6)
x⊗ ε = ε (2-7)
x⊗ e = x (2-8)

It can be seen that the zero-element ε shows similarities with zero in regular algebra, where:
x+ 0 = x, x× 0 = 0 and x× 1 = x.

The algebraic properties of Max-Plus that are shared with the properties of standard algebra
are:

Commutativity: For x, y ∈ Rε:
x⊕ y = y ⊕ x (2-9)
x⊗ y = y ⊗ x (2-10)

Associativity: For x, y, z ∈ Rε:
x⊕ (y ⊕ z) = (x⊕ y)⊕ z (2-11)
x⊗ (y ⊗ z) = (x⊗ y)⊗ z (2-12)

Distributivity: For x, y, z ∈ Rε:
x⊗ (y ⊕ z) = (x⊗ y)⊕ (x⊗ z) (2-13)

Some examples can be seen in: Appendix A-7 to A-13.
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2-1 Basics 9

2-1-3 Vector and Matrix calculations

The Max-Plus algebra can be extended to matrix and vector operations. These operations
show a lot of similarities with regular algebra. Matrix addition in Max-Plus algebra is defined
as:

For A,B,C ∈ Rn×mε : (2-14)
A⊕B =C, with: (2-15)

ci,j =ai,j ⊕ bi,j (2-16)

Similarly to regular algebra matrix addition, this is solely possible if A and B are of the same
size.

In order to describe matrix multiplications, it is easiest to first define matrix-vector multipli-
cations:

For A ∈ Rn×mε , B ∈ Rm×1
ε and C ∈ Rn×1

ε : (2-17)
A⊗B = C, where: (2-18)
ci = ai,1⊗b1 ⊕ ai,2 ⊗ b2....⊕ ai,m ⊗ bm (2-19)

Now, we can now define matrix multiplication as:

For A ∈ Rn×mε , B ∈ Rm×pε and C ∈ Rn×pε : (2-20)
A⊗B = C, Where: (2-21)

ci,j = ai,1⊗b1,j ⊕ ai,2 ⊗ b2,j ....⊕ ai,m ⊗ bm,j (2-22)

Additionally, the zero and identity matrix of regular algebra (0n×n and In×n) have Max-Plus
algebra counterparts. These are defined by E and E, where E , the zero matrix, is a matrix
consisting only of ε = −∞. E is the identity matrix, which consists of e = 0 on the diagonal
(Eij = e for i = j), and ε = −∞ on all other entries. The identity matrix is strictly square
(E ∈ Rn×nε ).
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10 Max-Plus Algebra

En×n =

n︷ ︸︸ ︷ε . . . ε
... . . . ...
ε . . . ε

}n (2-23)

En×n =

n︷ ︸︸ ︷
e ε . . . ε ε
ε e ε . . . ε
... . . . . . . . . . ε
ε . . . ε e ε
ε . . . ε ε e


}
n (2-24)

Now, define matrix An×m ∈ Rεn×m, the following properties of E and E are used:

A⊕ Em×m =A (2-25)
A⊗ Em×m =En×m (2-26)
A⊗ Em×m =A (2-27)

As can be seen, the matrix multiplication is the same in Max-Plus algebra as it is in regular
algebra, with the only difference that the + is replaced by ⊕ and the × is replaced by ⊗.
Again, some examples can be seen in: Appendix A-14 to A-17.

Eigenvalues and eigenvectors

Like in regular algebra, the eigenvectors and eigenvalues of matrices in Max-Plus algebra
posses useful information about the matrix. Let A ∈ Rn×nε , then if there exists a λ ∈ Rε and
v 6= En×1 ∈ Rnε , such that A ⊗ v = λ ⊗ v. In this case, λ is a Max-Plus algebraic eigenvalue
of A, with v as its corresponding eigenvector. There are multiple ways to determine the
eigenvalues and eigenvectors. One of them is the power algorithm, the method used in this
report and in the implementation. An extended explanation of this method can be read in
the article ’The Power Algorithm in Max Algebra’[17].

For now, the regular power algorithm is used, which is given by [17]:

1. Take an arbitrary vector x0 6= En×1.

2. Multiply this vector with A several times, until Ak+m ⊗ x0 = λmAkx0.

3. Let x(l) = Ak+lx0 with l = 0, . . . ,m. Then x(m) = λmx(0).

4. Define the vector v = 1
m [x(0) + x(1) · · ·+ x(m− 1)].

An example can be seen in Appendix A-1-3
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2-2 Graphs 11

2-2 Graphs

The method of visualizing a certain timed event by using graphs increases the understanding
of the whole system, which helps the use of Max-Plus algebra in discrete event systems. [14]

The graphs that are of importance to the Max-Plus algebra are directed weighted graphs.
Every graph consists nodes and arcs, or more formal: graph G consists of (N ,D), With N a
(finite) set of nodes, and D ⊂ N ×N , the arcs that connect them.

For directed graphs, there is the possibility that the arc of node i to node j (arc(i,j)) might
be different than arc(j,i) or even non-existent. For undirected arcs, this is not the case. To
add a value to a certain path in graphs, weights (w(i, j) ∈ Rε) are added to each arc.

The use of graphs for events like trains arriving at and leaving from stations, arriving at
certain parts of supply lines in factories or the walking of a legged robot can show clear
overviews of the events in a certain procedure. An example of a graph and its corresponding
Max-Plus matrix can be seen in Figure 2-1. The Max-Plus matrix is a representation of the
time or other quantity between two certain phases or events. The path from node i to node
j is defined in the jith element of the matrix. It is not always possible to go from every node
to every other node. In this case, the path will have a length of ε = −∞ to signify this.

Figure 2-1: Example of a directed weighted graph

The corresponding Max-Plus matrix A for this graph then becomes:

A =

ε 3 ε
2 1 ε
5 4 0

 (2-28)

An example regarding this graph and matrix can be seen in Appendix A-2-1.

For any two nodes i and j, a series of interconnection arcs form a path p = (ik, jk) ∈ D(A)
with k ∈ 1, 2, . . . ,m, i1 = i, jk = ik+1 for k < m, and jm = j.

The length of the path is defined by the m, with the following notation: |p|l = m. The weight
of a path |p|w is defined by the sum of the weights of all arcs that the path consists of. Finally,
the average weight of a path p is defined as |p|aw = |p|w

|p|l .
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12 Max-Plus Algebra

Special types of paths are circuits, which are paths which end where they begin (i = j). An
elementary circuit is a circuit where all nodes of the circuit have one outgoing and one ingoing
path, allowing for only one possible circuit.

The weight of the path from node i to node j can be seen clearly if the path is only one arc
long. The maximal weight of the path from node i to node j in a certain amount of steps can
also be calculated using Max-Plus algebraic matrix powers:

A⊗k =
k times︷ ︸︸ ︷

A⊗A⊗ · · · ⊗A (2-29)

The maximal path |pkij |w from node i to node j in k steps then becomes:

|pkij |w = [A⊗k]ji (2-30)

Some examples regarding this can be seen in A-2-2.

This concept can be taken even further, by defining the maximal path from a certain node to
a certain node, regardless of the amount of steps.

A+ ,
∞⊕
k=1

A⊕k (2-31)

This matrix can be simplified if the average weight of the circuits is smaller than e:

For: A ∈ Rn×nε (2-32)

A+ ,
n⊕
k=1

A⊕k (2-33)

This relation will later be used in the construction for the gait matrices.
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Chapter 3

Max-Plus in Legged Locomotion

Now the foundation of understanding Max-Plus algebra has been lain, the next step is to
understand how the Max-Plus can be used for the implementation as central pattern generator
(CPG). A CPG is module that generates the order legs of a robot or even an animal should
move in. Needless to say, the CPG is crucial in order to make a robot walk. In several
researches [12],[13],[18],[2], different methods to define gaits have been used.

Even though the manual implementation of patterns is relatively straightforward, implement-
ing different gaits and gait transitions is harder to achieve. The use of Max-Plus algebra for
the central pattern generator allows for more variety in this regard, and makes rapid addition
of new gaits possible when the general framework is in place.

3-1 Basics

In order to model a certain gait using Max-Plus, the gait needs to be fitted as a discrete event
system (DES). In order to discretize the continuous event of a step, points of interest need to
be determined. This is done by defining the touchdown and lift-off times of each separate leg.
This information can than be used to make a trajectory for each leg, which can be followed by
the leg controller. The use of Max-Plus for the control of the legs has been clearly explained
in the research of G. A. D. Lopes, B. Kersbergen, T. J. J. van den Boom, B. De Schutter and
R. Babuška[4]. This section is a short recap of this article.

The touchdown and lift-off times are concatenated in a vector x(k) which contains the in-
formation of event k, the kth full rotation of each leg[19]. The parameters and variables of
interest can be seen in 3-1.
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14 Max-Plus in Legged Locomotion

Sign Parameters and state variables
x(k) Total state vector of the touchdown and lift-off times of the separate legs of event k
ti(k) Touchdown time of leg i at event k
li(k) Lift-off time of leg i at event k
i Leg index
k Event counter
θl Lift-off angle of the legs
θt Touchdown angle of the legs
τ Current time
τf Flight time of the leg
τg Ground time of the leg
τδ Double stance time

Table 3-1: Gait parameters and state variables [19]

The flight, ground and double stance time can be adjusted to influence the velocity of the
robot. The flight time is the duration the leg spends in the air to return to the position
needed to make the next step. The double stance time is the overlapping time between two
subsequent steps, and is used to synchronize the legs before the next step is taken. The
ground time of the leg represents the duration the leg spends in the supporting phase.

For a six-legged robot, the total state vector of touchdown and lift-off times x(k) is as follows:

x(k) =



t1(k)
t2(k)
t3(k)
t4(k)
t5(k)
t6(k)
l1(k)
l2(k)
l3(k)
l4(k)
l5(k)
l6(k)


The touchdown time can be calculated by adding the flight time to the moment of lift-off.
The lift-off time is more difficult to determine, as it depends ground time. The ground time
on its turn depends on the gait that is used, and on the flight and double stance time.

This results in two simple equations, which can determine the lift-off and touchdown times[19]:

ti(k + 1) = li(k + 1)⊗ τf (3-1)
li(k + 1) = ti(k)⊗ τg (3-2)

In Equations 3-1 and 3-2, it can be seen that the legs do not rely on other legs in order to
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3-1 Basics 15

move. For almost all gaits, it is strongly preferred that the legs react on delays or inaccuracies
of not only itself, but also on the position of other legs.

This can be done by adding terms that define a certain order in which the robot is supposed
to move its legs. For example, in the case of the wave gait (1 → 2 → 3 → 4 → 5 → 6), it is
necessary to add extra conditions to the time instants.

ti(k + 1) = li(k + 1)⊗ τf (3-3)

li(k + 1) =
{
ti(k)⊗ τg ⊕ t6(k)⊗ τδ for i = 1
ti(k)⊗ τg ⊕ ti−1(k + 1)⊗ τδ for i = 2, ..., 6

(3-4)

As can be seen from Equations 3-1 to 3-4, the touchdown times of event k+ 1 depend on the
lift-off times of k + 1 and vice versa. This results in a system where x(k + 1) is defined as
Equation 3-5, and show dependency of both x(k) and x(k + 1).

x(k + 1) = A0x(k + 1)⊕A1x(k) (3-5)

Now, following Equations 3-1 to 3-2 for all legs, and implementing this in Equation 3-5, results
(for a six-legged robot) in the system seen in 3-6. On the diagonal of A1, e = 0 is placed.
This is to make sure that the lift-off and touchdown events of iteration k + 1 can never be
earlier than the events of iteration k.

x(k + 1) =
(
E6×6 τf ⊗ E6×6
E6×6 E6×6

)
⊗ x(k + 1)⊕

(
E6×6 E6×6

τg ⊗ E6×6 E6×6

)
⊗ x(k) (3-6)

Now, as can be seen in the results of adding a certain sequence to the movement of the
different legs in Equations 3-3 and 3-4, some additional terms need to be included in the
matrices to define the order of the legs. These terms are defined by the matrices P and Q.
The method for the generation of these matrices will be explained in Section 3.2. The system
is now extended to Equation 3-7:

x(k + 1) =
(
E6×6 τf ⊗ E6×6
P E6×6

)
⊗ x(k + 1)⊕

(
E6×6 E6×6

τg ⊗ E6×6 ⊕Q E6×6

)
⊗ x(k) (3-7)

Due to P being nilpotent in the Max-Plus sense, which is further explained in the research
of Lopes et al.[20], it is possible to calculate A∗0.

A+
0 =

∞⊕
k=0

A⊕k (3-8)

A∗0 = E ⊕A+
0 (3-9)
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16 Max-Plus in Legged Locomotion

This allows for the description of x(k + 1) in a non-implicit form, which results in Equation
3-12.

x(k + 1) = A0 ⊗ x(k + 1)⊕A1 ⊗ x(k) (3-10)
x(k + 1) = A∗0 ⊕A1 ⊗ x(k) (3-11)
x(k + 1) = A⊗ x(k) (3-12)

This A-matrix contains all the information needed for the implementation of a certain gait
in the system.

3-2 Gait Matrices

For the implementation of the gaits, it is important to understand how the matrices P and
Q can be defined. It is possible to devise a huge amount of gaits using these two matrices.
It has to be noted, that using this method, it is only possible to let each leg rotate once per
cycle, or never at all.

First, the order in which the legs make their steps needs to be determined. This is done by
making groups of legs which depart after the arrival of the group before them. This overview
of groups of legs and the order in which they depart is called the gait, with the following
definition:

G = l1 ≺ l2 · · · ≺ lm (3-13)

Where li is defined as a group of legs from the set 1, 2, . . . , n for a n-legged system. Between
two groups of legs, there will be no overlap in the included legs. The more formal definition
of this is given in [Optimal gait switching for legged locomotion]:

m⋃
p=1

lp = 1, 2, . . . , n (3-14)

∀i 6= j : li ∩ lj = ∅ (3-15)

Now, the construction of the matrices P and Q is possible using any gait determined accord-
ing to Equations 3-13 to 3-15.
This is done following the procedure defined in Equations 3-16 - 3-17.

Let P and Q be square matrices of the size n× n with n the number of legs.
To define P , for ∀j = {1, ...,m− 1}, with m the amount of leg groups, ∀p ∈ lj+1 and ∀q ∈ lj :

Pi,j =
{
τδ for Pp,q

ε for every other Pi,j
(3-16)
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3-3 Gait Switching 17

To determine Q, for ∀v ∈ l1 and ∀w ∈ lm:

Qi,j =
{
τδ for Qv,w

ε for every other Qi,j
(3-17)

The determined P and Q matrices can now be implemented in Equation 3-7 in order to
calculate the A0 and A1 matrices. For a gait defined by:

Gs = {1, 2} ≺ {3, 4} ≺ {5, 6} (3-18)

This results in the following P and Q matrices:

P =



ε ε ε ε ε ε
ε ε ε ε ε ε
τδ τδ ε ε ε ε
τδ τδ ε ε ε ε
ε ε τδ τδ ε ε
ε ε τδ τδ ε ε


, Q =



ε ε ε ε τδ τδ
ε ε ε ε τδ τδ
ε ε ε ε ε ε
ε ε ε ε ε ε
ε ε ε ε ε ε
ε ε ε ε ε ε


(3-19)

A fully worked out example can be found in Appendix A-3.

3-3 Gait Switching

The transition between gaits in animals are almost always optimal. For walking robots, the
transitions between those gaits need to be defined for stable behaviour. The research of B.
Kersbergen et al. [21], accurately describes how gaits can transition into each other. The
report will be followed for the gaits of a six-legged robot.

3-3-1 Gait Transitions

To fully understand the transitions, the difference between gaits need to defined accurately.
As gaits are defined by the order in which legs move, there are almost infinite possibilities
to walk. For a six-legged robot, there already are numerous walking patterns. Let’s look at
three different tripod 2-grouped gaits, i.e. gaits with 2 groups of 3 legs that revolve:

Tripod gait 1: Gt1 = {1, 4, 5} ≺ {2, 3, 6} (3-20)
Tripod gait 2: Gt2 = {2, 3, 6} ≺ {1, 4, 5} (3-21)
Tripod gait 3: Gt3 = {1, 3, 5} ≺ {2, 4, 6} (3-22)

As can be seen, the gaits are all different. However, gait 1 and gait 2 have the same groups
of legs that alternate. Gait 3 has different groups of legs that rotate together.
The behaviour of a robot walking with gait 1 will be identical to the behaviour of the same
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18 Max-Plus in Legged Locomotion

robot walking with gait 2, while gait 3 will operate remarkably different.
In the transient behaviour while changing gaits, the difference between gait 1 and gait 2
will show, due to the difference in starting step. The use of Max-Plus algebra makes sure
the transitions between gaits are always done with enough legs on the ground, but if the
subsequent gaits are not compatible, the time to make a transition will be big. For faster and
more elegant movement, this transition time needs to be minimized.
To illustrate the difference in transient behaviour between gaits 1 and 2, the transition to gait
Gts = {1, 4} ≺ {3, 6} ≺ {2, 5} will be shown in Figure 3-1.

Figure 3-1: Difference in gait transition from Gt1 or Gt2 to Gts, where coloured blocks represent
the leg on the ground (τf = 1[s], τδ = 0.25[s], τg = 1[s] )

It can be seen that, because of the sloppy gait transition, the same amount of steps take
approximately 1 second longer. This is due to the way Max-Plus works in calculating the
new lift-off times, when it is required for the legs to stay on the ground for τg when they just
touched down.
The transition from gait 2 shows a moment when all legs are on the ground for an relative
long period around 11 seconds, after legs {1, 4, 5} have touched down. Now because legs
{1, 4} need to recirculate immediately, but are also required to stay on the ground for τg, this
results in a delay. Now, following [21] again, the method to quantify the effectiveness of the
gait transition is done by determining how certain legs move to different groups.

When the Zebro switches gaits, this means that one or more legs changes the group it operates
in. For instance, one leg changes from group i to group j. Now assume every cycle starts at
a new t = 0. For a certain leg in group i, the leg lifts off at time instant:

t = (τf ⊗ τδ)⊗i (3-23)

Of course, when the leg is in group j, the time of lift-off becomes:

t = (τf ⊗ τδ)⊗j (3-24)
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3-3 Gait Switching 19

Now, the time it takes for the leg to synchronize with the new group depends on how many
groups the leg moves. So the larger the difference between i and j, the bigger the ground
time variance will be.
For j > i, this results in an extra ground time for the switching leg, defined by:

(τf ⊗ τδ)⊗j−i) (3-25)

Equivalently, if i > j, not the switching leg, but the group the leg switches to will have a
postponed lift-off. The duration of this delay will be given by:

(τf ⊗ τδ)⊗i−j) (3-26)

So, the difference between i and j determines the amount of delay. For instance, the transition
of the gait for the following gaits:

{1} ≺ {2, 3} ≺ {4,5} ≺ {6} → {1} ≺ {2, 3} ≺ {4} ≺ {5, 6} (3-27)

Will result in a smaller delay than the transition between the gaits:

{1} ≺ {2,3} ≺ {4, 5} ≺ {6} → {1} ≺ {2} ≺ {4, 5} ≺ {3, 6} (3-28)

To measure the ’quality’ of the gait transition, B. Kersbergen et al. suggests to derive a
quantification for how well the system performs during the transition by using:

σ̄ = σ(τg1, τg2, . . . τgn)
τg

(3-29)

Where τgi for i = 1 . . . n in a n-legged system, is the actual time spent on the ground during
the transition. The standard deviation of the ground time during the transition is denoted by
σ. For the transitions seen in Equations 3-27 & 3-28, the resulting gait transitions and can
be seen in Figure 3-2. For the gait transition in Equation 3-27, the σ̄ = 0.51, for Equation
3-28, σ̄ = 1.02
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20 Max-Plus in Legged Locomotion

Figure 3-2: Gait transitions given by Equation 3-27 & 3-28.

3-3-2 Transition Parameters

To optimize the transition between gaits, individual flight times of the legs can be changed
during the transition[4][21]. The synchronization will then not be hindered by certain legs
staying on the ground longer than necessary.
This is done by changing the system slightly to allow for different flight times in one gait.
The system changes from Equation 3-30 to Equation 3-31.

x(k + 1) =
(
E6×6 τf ⊗ E6×6
P E6×6

)
⊗ x(k + 1)⊕

(
E6×6 E6×6

τg ⊗ E6×6 ⊕Q E6×6

)
⊗ x(k) (3-30)

x(k + 1) =
(
E6×6 R

P E6×6

)
⊗ x(k + 1)⊕

(
E6×6 E6×6

τg ⊗ E6×6 ⊕Q E6×6

)
⊗ x(k) (3-31)

With: R =


τf1 ε . . . ε
ε τf2 ε . . .
... . . . . . . ...
ε . . . ε τf6

 (3-32)

So, the A-matrix depends on the gait, but also on the variables like the double stance time.
A can be defined as a function dependent on these variables:

A(G, τf ⊗ E, τg, τδ) (3-33)

To determine the R-matrix, calculating the eigenvectors of the different gait matrices is nec-
essary. Using the method described in Section 2-1-3, the eigenvectors can be determined. For
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gaits G1 and G2, the corresponding eigenvectors are given by:

v1 =



tG11
...

tG16
lG11
...

lG16


=
(
tG1
lG1

)
and v2 =



tG21
...

tG26
lG21
...

lG26


=
(
tG2
lG2

)
(3-34)

Following the algorithm proposed in the research of B. Kersbergen et al.[21], the transition
τf parameters can be determined.
Given gaits G1 and G2 and their respective A-matrices:

1) Determine τextra following Equation 3-35

τextra = (lG2 − tG1)−min(lG2 − tG1) (3-35)

2) If τfG1 ≥ max(τextra), a transition vector can be computed using:

τtrans1 =

 τfG1 − τextra(1)
...

τfG1 − τextra(6)

 (3-36)

R is defined as:
R = diag(τtrans1) (3-37)

The sequence of A-matrices during the transition can then be defined as:
...

A(G1, τfG1 ⊗ E, τgG1, τδG1)

A(G1, R(τtrans1), τgG1, τδG1)

A(G2, τfG2 ⊗ E, τgG2, τδG2)
...

3) For the case that τfG1 < max(τextra), two transmission matrices are necessary:

A(G1, R(τtrans1), τgG1, τδG1) (3-38)
A(G2, R(τtrans2), τgG2, τδG2) (3-39)

The transition vectors are calculated using:

τtrans1(i) = max(min(τextra(i), τfG1), τfmin) (3-40)
τtrans2(i) = τfG2 − (τtrans1(i)− τextra(i))−min(τtG1 − τextra) (3-41)

Where τfmin is defined as the minimal flight time possible due to the physics of the
robot.
The sequence of the A-matrices then becomes:
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...

A(G1, τfG1 ⊗ E, τgG1, τδG1)

A(G1, R(τtrans1), τgG1, τδG1)

A(G2, R(τtrans2), τgG2, τδG2)

A(G2, τfG2 ⊗ E, τgG2, τδG2)
...

Using these steps, the transition can be improved even further. An example to illustrate the
difference between using no optimal gait change, no gait transitional parameters and using
gait transition parameters can be seen in Figure 3-3. The gaits are defined as:

G1 ={1, 4, 5} ≺ {2, 3, 6} (3-42)
G2 ={3, 6} ≺ {1, 4} ≺ {5, 2} (3-43)
G3 ={1, 4} ≺ {2, 5} ≺ {3, 6} (3-44)

It can be noticed that the transition from gait 1 to gait 3 is the optimal one due to the
smallest amount of changes in the leg groups.

Figure 3-3: Gait transitions given by Equations 3-42 - 3-44. The gait parameters are the same
for each gait, and are given by: {τf , τg, τδ} = {1, 1, 0.25}, and the minimal leg flight time
τfmin = 0.5. After 5 steps, the simulation is stopped.

It is interesting to see the difference in the time it takes to complete the gait transition with
or without transition parameters. Furthermore, the time it takes to change the gait for the
non-optimal transition shows a slightly faster result. It can however be seen that the walking
pattern after the gait transition is not fully stable yet, and that an additional step is required
to obtain a regular walking pattern.
The standard deviation measure to determine the quality of the gait change σ̄ (Equation
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3-29) is calculated for these four situations and can be seen in Table 3-2:

Gait transition
Gaits Transition parameters σ̄

G1 → G2 No 1.5309
G1 → G2 Yes 0.6275
G1 → G3 No 0.6847
G1 → G3 Yes 0.2739

Table 3-2: Gait transition quality for the gait transitions given by Equations 3-42 - 3-44. The
gait parameters are the same for each gait, and are given by: {τf , τg, τδ} = {1, 1, 0.25}

The stability of the leg movement is better when the transition parameters are used. Even
though the gait change with the sub-optimal gait transition was faster, the walking behaviour
of the robot shows less variance when the optimal transition is used. The effectiveness of the
gait transition parameters are obvious, and can be seen in both the time as well as the variance
of the steps.

3-4 Modeling delays

Fluctuations in the height of the terrain walked on may result in a different time of touch-
down or lift-off. In the research of D. van Amstel et al.[22], multiple models of handling these
disturbances are suggested.

The main problem remains however, that the predicted event time can only be approxi-
mated by the current rotational position of the leg, when the actual event has not happened
yet. Gathering information that suggests at which angle the leg will touchdown or lift-off, is
not in the scope of this project. For flat ground, this angle can be determined quite easily,
for more rough terrain, this requires sensors that are currently not on board of the Zebro.

Therefore, the exact time of interest can only be determined when it has happened, and
can only then be updated. One solution for this is implementing more sensors, which can
measure the relative distance between the leg and the ground. This will not be done in this
project due to the difficulty of implementation, as well as the (projected) relative small effect
it will have on the performance of the system.

The three methods of modelling the disturbance on the modelled system which are defined
by [22], though slightly changed, will be explained.

• Additive Disturbance
Max-Plus additive disturbance is used to calculate the updated state by using Max-Plus
addition:

x̂(k) = x(k)⊕ d(k) (3-45)

Where d(k) are the actual lift-off and touchdown times, x(k) the calculated state and
x̂(k) the updated state. It can be seen that the resulting updated state is never earlier
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than the calculated state.

• Multiplicative Disturbance
For the multiplicative disturbance, the delays are modelled to be represented by a dis-
turbance matrix, which contains the delays (de(k)) on the diagonal: D(k) = diag(de(k)).

x̂(k) = D(k)⊗ x(k) (3-46)

Events that happen ahead of schedule will be propagated in this method, contrary to
the case where the additive disturbance is used.

• Change of holding times
The method which is most compatible with the actual physical event is to change
the holding times. Because the flight time and ground time actually change, these
fluctuations are reflected in the A-matrix. Again, the implementation will guarantee
the delays will be processed. However, if the system is ahead of schedule, the system
will not be influenced by this.

x̂(k) = (A⊕Adis(k))x(k − 1) (3-47)

Where Adis(k) is of the same dimensions as A, and incorporates the actual lift-off and
touchdown times.

The implementation of the additive disturbance can be altered to incorporate the events that
happen before schedule. The easiest method is to just use the actual lift-off and touchdown
times as the updated state. This is the least computational heavy method to deal with the
delays, and is implemented in the Zebro[22]. For simulation purposes however, the change of
holding times with a random defined small time instant is the most accurate to implement,
and reflects the actual situation the best.
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Chapter 4

Locomotion Module

The main part of my research is to make a locomotion module capable of processing general
walking instructions, in order to instruct the separate legs to walk. For the implementation,
the requirements of the locomotion module need to be defined strictly. The input and output
of the module should be known, the interaction between separate modules and its place in
the whole system should be clear.

4-1 Module Design

When designing the module, two domains need to be combined. The theoretical part of
the Max-Plus vector generation, and the mechanical implementation of controlling the leg
modules need to do what is required, together. For this implementation and the combination
of these two domains, the bigger picture must be understood and the functions of the module
clearly defined.

4-1-1 Locomotion Overview and Project Outline

A complete locomotion system should be able to process instructions regarding a desired
position and complete the correct navigation from the current location of the robot to the
desired location. This process requires a great deal of steps in between the path planning and
the actuation of the legs. A complete overview of the steps necessary for this process can be
seen in Figure 4-1.
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Figure 4-1: Schematic overview of the locomotion control scheme of a walking robot. The
feedback loops are denoted in the dashed lines, while the control flow can be seen in the normal
lines. The dash-dotted line delimits the scope of this research. This part will be called the
locomotion module.

To fully explain the locomotion control scheme, the parts outside the scope of this project
(which are not part of the locomotion module), will be described in this chapter. The parts
of the locomotion module; the function of the Gait Decision Supervisor (Chapter: 4-3),
Max-Plus Scheduler (Chapter: 4-2-1) and Continuous Time Scheduler (4-2-2) will be
explained later in this chapter.

Top Level Controller

The locomotion control of a robot is first determined by the path planning needed to reach a
certain goal. This goal or objective might also be the motion itself, for example, the following
of a certain object. From this motion, or the path planning, a certain speed (or distance in
an amount of time) and direction are necessary. These directions can contain turning on the
spot, regular turning and walking straight. This report only focuses on the walking straight
ahead, but the turning on the spot will be implemented as well. Currently, research is done
to turning while walking using Max-Plus algebra. The performance of this regular, car-like
turning is promising, and will be implemented later on.

Leg Trajectory Scheduler

The locomotion module supplies the leg trajectory scheduler with a specific location and time
the leg needs to be somewhere. In order to process this information and to make a trajectory
the legs can follow, the leg trajectory scheduler must generate a desired location for the leg
at a certain time, and update this gradually to complete the step. The motor-controller of
the legs then knows on which location the leg should be controlled.
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Physical System

The physical system of the ZeBRo contains the actual body of the robot, along with its legs
and leg motors. Using the desired trajectory supplied by the trajectory scheduler, the motor
of the leg is controlled. The legs supply the feedback of the leg position, and if possible more
information about the functioning of the leg, for instance the temperature of the motor in
case of overheating.

Physical Environment

The physical environment is made up of the direct surroundings of the ZeBRo, most notably
the walking surface and direct obstacles. Because of the influence of the ruggedness of the
surface, irregularities in the height and the material composition of the surface, the effects of
the environment on the body of the ZeBRo can have a big impact. Feedback of this impact
can for instance be measured by an inertia measurement unit (IMU) in order to view how
the system is impacted by the environment in terms of body rotations and accelerations.

4-1-2 Statement of Requirements

In order to fully determine the requirements of the module, specifications and tasks need to be
determined. The locomotion module should be capable of executing these tasks sufficiently,
while also being generally robust and able to recognize and solve errors where possible.
The locomotion module should be able to:

• Communicate with a higher-level instructor, either man or machine, which instructs on
a direction and speed. Additionally, extra requirements regarding stability or special
situations can be added.

• Use the supplied desired speed and direction to instruct the legs on how to move, using
Max-Plus calculations for the timing of the locomotion. Besides walking straight ahead,
the locomotion module must include turning.

• Make sure the walking is done safe and secure, and is executed without harming the
robot or its surroundings.

• Use available sensors to determine the limits of locomotion, and adapt the walking style
of the robot to optimize for speed or stability in an array of situations.

4-2 Locomotion Program

In order to explain how the required functions of the locomotion module will be fulfilled, the
different parts of the program will be explained in this chapter.
The main locomotion program can be divided in certain functions. The main decisions will
be made by the Switch Decision function, which will decide what A-matrix will be used in the
further calculations. The processing of this Max-Plus matrix and the Max-Plus calculations
will be handled in Section 4-2-1.
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For the processing of the Max-Plus implementation to information suitable for the motors, the
Continuous Time Scheduler function will be used. This will be further explained in chapter
4-2-2.
The locomotion program is programmed in C++ language, because of the limited available
processing power, and the possibility for embedded implementation.

4-2-1 Max-Plus implementation

The central part of the Locomotion program is the Max-Plus implementation of the locomo-
tion. Essentially, Chapter 3 needs to be implemented as an environment capable of updating
the lift-off/touchdown vector when needed, while keeping the processing power as low as
possible.

Max-Plus Gait Matrix Calculation

In order to use the gaits in the ZeBRo, the P and Q-matrices need to be generated through
an algorithm. This does however require the entry of leg orders which can be used. While
the amount of different gaits relies on the input of these gaits to work with, the flight, double
stance and ground times can all be changed to whatever value required, which changes the
speed of the ZeBRo

In order to encompass all calculations necessary for Max-Plus algebra, a toolbox for C + +
needs to be made, which contains functions that perform Max-Plus operations. This toolbox
contains the following functions (among others):

• Standard Max-Plus operations (with a, b ∈ R−∞)

– Addition (a⊕ b, or standard max(a, b)-function)

– Multiplication (a⊗ b or standard addition a+ b function)

– Power (a⊗b or standard multiplication function a× b)

• Vector and Matrix operations (with x ∈ Rn×1
−∞ , and v,w ∈ Rn×n−∞ )

– Matrix addition (v⊕w)

– Matrix multiplication (v⊗ x or v⊗w)

– Max-Plus Eigenvector and Eigenvalue calculator ( Eigen(v) )

– Kleene Star operation (A∗0 =
⊕∞

k=0A
⊕k)

• Legged Locomotion Max-Plus implementation

– Gait Decider function (Used by the Gait Decision Supervisor)

– P - and Q-matrix builder (Used by the Gait Decision Supervisor)

– A0- and A1-matrix builders (Following 3-1)

– τf , τδ and τg decider (Used by the Gait Decision Supervisor)
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– Transition Matrix Calculator (Following 3-3-2)

These functions are needed for the building of the Max-Plus gait matrices, while also allow-
ing for the more difficult operations. The functions are needed as well for the Kleene Star
operation, but also for calculating the Eigenvalues en Eigenvectors needed for the calculation
of the transition gait matrix.
The relative heavy calculations of the changing gait matrices and transition gait matrices
need to be done when other (time depended) processes are not executed.

4-2-2 Continuous Time Scheduler

When the gait matrices are determined, the lift-off/touchdown vectors can be calculated,
by starting with initial lift-off/touchdown vector v0 = {0}12×1. The next lift-off/touchdown
vector can than be calculated by:

vi+1 = A(i) ⊗ vi for i ∈ N (4-1)

With A(i) the gait matrix on instance i.
For the processing of the Max-Plus framework in order to reach continuous time leg control,
multiple steps need to be taken. These are described in parts.

Max-Plus Vector Processing

In order to instruct the legs at any given time, more than one lift-off/touchdown vector needs
to be in memory. For instance, two succeeding lift-off/touchdown vectors can be seen in
Equations 4-2, where the first six instances represent the touchdown times of the six legs, and
the last six instances represent the lift-off times.

v1 =



9.6
10
10
9.6
9.6
10
9.3
9.7
9.7
9.3
9.3
9.7



, v2 =



10.4
10.8
10.8
10.4
10.4
10.8
10.1
10.5
10.5
10.1
10.1
10.5



(4-2)

As can be seen, the vectors represent a tripod gait ({1, 4, 5} ≺ {2, 3, 6}), with τf = 0.3 and
τδ = 0.1. At time instant t = 9.9, the next event for legs 2, 3 and 6 is the touchdown at time
instant t = 10. If the current time instant t > max(v1), the new vector v3 will be calculated
following Equation 4-1. However, if the path for the other 3 legs needs to be made in order
to get them at the right place, information of the next vector is required.
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Event List at t = 9.9
Leg Number Current Event Time Next Event Time Current Event Type
1 10.1 10.4 Lift-Off
2 10 10.5 Touchdown
3 10 10.5 Touchdown
4 10.1 10.4 Lift-Off
5 10.1 10.4 Lift-Off
6 10 10.5 Touchdown

Table 4-1: Event list of the ZeBRo continuous time scheduler at t = 9.9.

Therefore, there are always two vectors active within the program, and the most relevant
time instances for each leg are stored within an event-list. An example of the contents of the
event-list at time t = 9.9 can be seen in Table 4-1.

Now, when the time will go on, and t > 10, there are two actions to be taken: the first one
is to change the instructions the event-list for leg group {2, 3, 6}. This implies updating the
current event time to become the next event time, while also changing the current event type.
The addition of the next event time is to increase the response time of the system. Instead
of first updating the event list and calculating the new current event time, sending the new
leg instructions afterwards, the information about the next event time can be send directly,
with the program catching up after sending instructions.
Because of the limited computational power of the system, and the time dependence of the
leg actuation, this implementation is more solid in situations requiring more calculations.
For instance, gait changing, which requires a great deal of computational power, can take up
precious time which can influence the execution of faster gaits.

Event-List Processing

For the sending of information to the leg modules, the decision needs to be made between
sending an desired angle which needs to be reached in a desired time period, or sending a
sequence of angles on which the leg consecutively sets its control set-point.
This depends for a large part on the ease of communication between the locomotion module
and the separate leg modules. On the other side, the calculation power of the leg module
itself is important for this decision as well. This trade off needs to be made for the optimal
result, and will be made in deliberation with the leg module designers.
For the leg positioning itself, there are two angles of importance, coupled to the event type.
The lift-off angle defines the desired position of the leg on the lift-off event, while the touch-
down angle does the same for the touchdown event. In Section 4-3-3, the make-up of these
angles is explained, and their impact on the performance of the system analysed.
If the choice is made to continuously update the control angle of each leg, a simple linear
interpolation will be used between the lift-off and touchdown angles. This will ensure optimal
use of the maximal speed of the leg motors in the aerial phase. Likewise, the actuation of
the legs in the ground phase will keep the system in an approximately constant speed. The
continuously updating of the leg control angles must be done at a high enough rate in order
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to keep the leg moving smoothly.
On the other hand, when the leg decides its own path, the desired leg angle needs to be send
right when the event-list needs updating. The system becomes less flexible and relies more
on the leg module, but the decrease of traffic decreases the possibility of communicational
problems.

4-2-3 Delay Processing

For performance evaluation, but also for safety considerations, the leg locations need to be
monitored. The monitoring makes delay-handling possible, and can prevent situations result-
ing in falling down due to the lack of legs on the ground. Following the logic of Section 3-4,
and combining the low processing power restriction with this theory, the choice is made to
implement the additive disturbance.
When the event list needs updating, the leg check can be performed. Some of the legs might
be in between certain events, and their location is not of the biggest importance to check
(regarding time delay!). The other legs, which need to be at their destination at the current
time instant, require monitoring in order to give them their next instructions.
If the positions are correct, the lift-off/touchdown vectors need no updating. When one of
the legs has a small delay, the new instructions for the legs will not be send. While waiting
for the delayed leg, the system will add the delay to the lift-off/touchdown vector, pauses for
a short amount of time, after which the leg angle will be measured again, until the leg is at its
correct place. If some delay is present, the calculation of the next vector need to be redone as
well, in order to incorporate the delay throughout the system. This calculation can be seen
in Equation 4-4.
As an example, for t = 9.6 using the lift-off/touchdown vectors of Equation 4-2, the leg an-
gles are measured. However, leg number one has not arrived at its touchdown location. The
system waits a tdelay = α < 0.1 amount of time, after which the system updates the vector v1
with the delay vector d to v̂1 (Eq:4-3). Note that the delay vector contains the actual lift-off
and touchdown times, or the current time instance when the lift-off and touchdown times are
in the future.

v̂1 = v1 ⊕ d1 =



9.6
10
10
9.6
9.6
10
9.3
9.7
9.7
9.3
9.3
9.7



⊕



9.6
10⊗ α

10
9.6
9.6
10
9.3
9.7
9.7
9.3
9.3
9.7



=



9.6
10⊗ α

10
9.6
9.6
10
9.3
9.7
9.7
9.3
9.3
9.7



(4-3)

The next lift-off/touchdown vector can than be calculated using vector v̂1 and the current
gait matrix A.
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v2 = A⊗ v̂1 (4-4)

This system does however only work on the propagation of delays onto the next state vector.
There are situations possible in which the system needs faster delay handling. This requires
delaying the step of the next leg-group for a certain amount of time. When a delay in the
legs is present, the system can predict the minimal delay time, and can use this to calculate
its effect on the planning of the other legs. This requires the usage of the A∗0-matrix, which
keeps the relations between the timing of the legs in place after the delay of other legs. The
matrix A∗0 can be calculated using Equation 3-8.

v̂1 = A∗0 ⊗ v̂1 (4-5)

An example of the system response of the Max-Plus gait generation system due to delay
with and without updating during the vector can be seen in 4-2. The updating of the vector
happens following Equation 4-5.

(a) Gait schedule of the system without inter-
mediate updating

(b) Gait schedule of the system with intermedi-
ate updating

Figure 4-2: System response of the Max-Plus gait generation with lift-off delay of one second,
and a touchdown delay of 1.5 second on Leg 1 (the striped part). Gait: Tetrapod ([1, 4] ≺ [3, 6] ≺
[2, 5]), τf = 0.5, τg = 1 and τd = 0.25

.

The resulting gait schedule shows the delay of Leg 1, and the resulting delay of the lift-off
of all other legs. As can be seen in Figure 4-2a, the gait schedule only updates the next
state vector (increasing ground times after the delay), while the current state vector has not
responded to the delay of the first leg. Figure 4-2b shows an increased ground time during
the delay period, reacting faster and without lifting the legs before the delayed leg touches
down.
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For the safety of the robot, but mainly for the safety of bystanders, several layers of security
need to be added to the system as a whole. The leg-module has an own safety stop, measuring
the energy consumption is a method to guarantee the legs do not try to do things it is not
supposed to do, destroying parts, hurting people, etc. Adding to this, when the delay of one
the legs is at a certain level, some assumptions can be made about the (lack of) performance.
The robot should be able to work in a safe environment, which it should not make (any) more
dangerous.

4-3 Gait Decision Supervisor

The changing conditions the ZeBRo has to face influences the way the ZeBRo will walk. This
will be done by changing the Max-Plus calculations, but also by changing certain parameters
of the legs. The Max-Plus part of the changing gait can be denoted by a changing A-matrix.
The calculation of every new lift-off/touchdown vector is than described by:

x(k + 1) = A(k)(µ(k))⊗ x(k) (4-6)

With µ(k) the switching function. The A-matrix depends on the inputs of the top-level
controller, but also on the input of the sensors, which will together be processed by the
switching function. Alongside with the changing of the A-matrix, which encompasses the
type of gait, but also the time between the steps, the lift-off and touchdown angles can
also be altered. For some situations, smaller steps might be more beneficial, but for other
situations, the step size can be increased, or even both angles can be changed.

4-3-1 Gait Stability

Examples of gaits for six-legged creatures or robots are the tripod and the tetrapod gaits.
The leg orders of these gaits are given by:

Gtripod = {1, 4, 5} ≺ {2, 3, 6} (4-7)
Gtetrapod = {1, 4} ≺ {3, 6} ≺ {2, 5} (4-8)

These leg orders can be switched around, but the general idea about the number of legs on
the ground, and make-up of the leg groups remains the same. To achieve static equilibrium
after each step, at least 3 legs must be in contact with the ground. For the tetrapod gait, this
means that one of these legs is redundant. However, for extreme uneven terrain, this extra
leg can compensate for the loss of ground contact of one of the other legs. There remains
one problem for the stability, and that is the location of legs that make ground contact. In
order to keep the system stable, the centre of mass needs to lie within the triangle spanned
by the supporting legs. An example of a stable system and an unstable system can be seen
in Figure 4-3. For the ease of calculations , the centre of mass is placed in the middle of
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the robot. In the actual ZeBRo, this centre of mass will be very near the middle, due to the
double symmetry inside the robot.

C.O.M C.O.M

C.O.M C.O.M

Figure 4-3: Top view of a simplified walking robot with the center of mass (C.O.M.) in the
middle. The black squares are grounded legs, the white squares are legs in the air. The top-left
picture shows the standard tripod stance and its support triangle, while the bottom-left shows the
case that the left front leg is in the air, while the left middle leg is grounded. The right pictures
depicts two scenarios, one with the right front leg on the ground and the right middle leg in the
air, and vice versa. It can be seen that this last situation (bottom-right) does not encompass the
center of mass in its support triangle.

.

So, it can be seen that in order to keep the system stable, at least one leg should be on each
side. Additionally, there must be at least one leg be grounded at the back, and one at the
front in order to keep the support triangle encompassing the center of mass. For the case
that two of the three supporting legs are the middle legs, the six-legged robot is unstable;
a small deviation in the pitch will result in a tilting and falling down of the robot. So, for
maximal stability, the pentapod gait (example of a possible leg order can be seen in Equation
4-9) might be the best choice.

GPentapod = {1} ≺ {2} ≺ {3} ≺ {4} ≺ {5} ≺ {6} (4-9)

However, the rotation speed of the legs are limited and therefore, there have to be some con-
siderations for the maximal allowed body rotations, while still maintaining a certain speed.
For some situations, the allowed body rotations might be smaller due to a special payload,
while other situations just require fast traversing of terrain.
Therefore, two different situations are proposed to be tested: one situation which focuses on
speed, and one situation focusing on keeping the platform as stable as possible. To quantify
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these situations, and judge their performance, criteria need to be composed.
The most important judge of performance is the amount of body rotation at a certain moving
speed. This can than be compared to the results of different gaits. Other criteria are the
maximal speed possible using the gait, and the minimal body roll of each gait. The rota-
tional and translational accelerations also play an important roll in the determination of the
performance, in order to make sure the robot does not suffer damage.

4-3-2 Turning Gaits

For the implementation of turning, there are three methods which can be used:

1. Turning on the spot. By changing the direction of rotation of the legs on either the
left or right side, the robot will turn on the spot to respectively left and right.

2. Creating step size differences between right and left legs will result in a difference in
traveled distance on the left and right side.

3. Utilizing speed difference between left and right side of the robot by implementing
the research of W. Suriana[23]. This implementation uses changes in the timing of
the actuation of the legs by changing the Max-Plus matrix A to create a difference in
distance covered by the legs on the two sides.

The use of turning on the spot is not only required for sharp turning in corners, but also for
quickly reversing the walking direction. The other two methods are used for gentle turning.
Slightly increasing and decreasing the step size on the left and right side of the robot results
in slight turning in the direction where the step size is decreased.
Implementing the researched method of W. Suriana should also result in slight turning, with-
out the negative effects of tilting due to the step size difference (Figure 4-4). The imple-
mentation of the Max-Plus method is however one with a slight delay, as the changing of leg
angles can be added during walking, while the next lift-off/touchdown vector needs to wait
on the end of the current.

4-3-3 Changing Leg Angles

In order to improve the walking, not only the gait, but also the further processing of the gait
is important to consider. The shape of the leg, the type of movement, the time in between
steps, all have influence on the walking pattern. Because the shape of the leg (C-shaped) and
the type of the movement (a 1-link rotating leg) are already determined, adapting the leg
angles is the next part of increasing the stability of the system.
The height of the leg attachment point should be the same for the lift-off and touchdown-
position. An illustration of this situation can be seen in Figure 4-4.
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Figure 4-4: Sideview of a simplified walking robot. Due to the height difference of the legs in
the right part of the picture, the robot will bounce up and down with every step, resulting in
unwanted body movement

There can be varied with the height difference in the step. Increasing the angles increases the
step size (and accordingly, the speed), but also the height difference within each step. The
resulting consequence is an increase in required motor torque.
With an increasing height difference, the amount of vertical movement increases, which may
be detrimental for a payload or even the robot itself. Limiting this in order to limit body
accelerations could be required.
When the double stance time is made bigger than zero, the leg angles should change accord-
ingly in order to keep the robot as leveled as possible.

4-3-4 V-Rep Testing

In order to make the Gait Decision Supervisor as effective as possible, there need to be tests
which measure the performance of gaits, and the influence of parameters on these gaits.
Testing the robot in different scenarios can give important information regarding the limits
of performance and the changes in behavior along different situations.

V-Rep

For the simulations, V-Rep is used as a test environment. V-Rep is a robot simulator pro-
gram, which allows for simulations containing the dynamics of robots, and allowing for using
different kind of programs for the control of these simulated robots. Alongside simulating the
ZeBRo itself, different environmental settings (empty planes, bumpy patches, staircases) can
be implemented to see how the physics are influenced. More information about the V-Rep
simulation tool can be seen on the website of Coppelia Robotics [24].

From the TU Delft, there is already a model of the ZeBRo available, which can be used for
the simulations. The model, and all code in V-Rep and Matlab which makes the simulation
run is adapted from the code of dr. Gabriel Lopez. There is, however a difference between the
dimensions of the virtual ZeBRo and the real-life ZeBRo. Because of these differences, the
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results cannot be copied 1:1 to the actual ZeBRo. Unfortunately, changing certain parame-
ters results in the loss of performance of the simulated ZeBRo, therefore, the choice is made
to not change the model. As a result, the performance of the simulated ZeBRo can not be
compared 1:1 to the real ZeBRo. The tests will show qualitative results about the behavior
of the system as a function of gaits, gait parameters and environment.

Parameter V-REP ZeBRo Real-life ZeBRo
Body Length [mm] 440 260
Body Width [mm] 240 160
Body Height [mm] 67,5 64,5
Leg Height [mm] 145 74
Mass [kg] 7 2

Table 4-2: Comparison between the simulated V-Rep ZeBRo, and the current installation of the
real-life ZeBRo

As can be seen in Table 4-2, the size of the simulated ZeBRo exceeds the size of the real-life
version. The increased height of the center of mass (half of the body height plus the leg
height) of the simulated ZeBRo can result in the system being more susceptible to losing
balance. For both ZeBRos, the center of mass is considered to be in the absolute center of
the (body of the) robot.

Gaits

In order to research the effectiveness of the gaits in each situation, 5 different kind of gaits
to research are proposed. To limit the amount of gaits researched, gaits with the same order,
but different starting groups (e.g. {1, 4, 5} ≺ {2, 3, 6} and {2, 3, 6} ≺ {1, 4, 5}) are considered
the same.
The researched gaits are as follows:

1. Tripod gait: {1, 4, 5} ≺ {2, 3, 6}

2. Tetrapod gait: {1, 4} ≺ {3, 6} ≺ {2, 5}

3. Metapod gait: {1} ≺ {4, 5} ≺ {2, 3} ≺ {6}

4. Pentapod gait: {1} ≺ {6} ≺ {2} ≺ {5} ≺ {3} ≺ {4}

5. Climb gait 1: {1, 2} ≺ {3, 4} ≺ {5, 6}

6. Climb gait 2: {5, 6} ≺ {3, 4} ≺ {1, 2}

For the tripod, tetrapod and pentapod gaits, the reason of implementation is quite simple;
varying the amount of legs on the ground while maintaining an leg order which varies the
actuated leg in a logical order (maintaining the support triangle). The climb gait is added in
order to validate its behavior on stairs. To investigate which climbing gait has better results,
the order in which the legs recirculate is slightly altered.
The metapod (name is chosen because it is between (Greek: Metá) the tetrapod and pentapod
gait) gait however, has a different amount of legs in the different leg groups. This is done to
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keep the system from having two legs of the front and back rows in the recirculation. This
might improve the stability with regards to the tetrapod gait, while it may be faster than the
pentapod gait.

Parameters

Two types of parameters need to be changed: the Max-Plus implementation flight, ground
and double stance time, and the leg angles. For the leg angles, following Section 4-3-3, is a
matter of increasing the distance covered in the ground phase by increasing the angle of liftoff
and touch-down with respect to the normal of the ground. For the Max-Plus parameters, it
is chosen to research six different sets of flight, ground and double stance times. These can be
seen in Table 4-3. It is chosen to set the ground time the same as the flight time, so the gaits
with no double stance time actually show the desired behavior. This also applies to the gaits
with double stance time, where the actual double stance time is determined by the ground
time if this exceeds a gait determined limit.

Time Parameter τf τg τδ
Fast Set 1 0.5 0.5 0.0
Fast Set 2 0.5 0.5 0.2
Normal Set 1 0.8 0.8 0.0
Normal Set 2 0.8 0.8 0.3
Slow Set 1 1.1 1.1 0.0
Slow Set 2 1.1 1.1 0.5

Table 4-3: Overview of the different Max-Plus parameter sets

For the leg angles, steps of 10 degrees are proposed, ranging from 10 degrees to 30 degrees.
The angles tested can be seen in Table 4-4.

Leg Angles Touchdown αtd Lift-off αlo
Angle Set 1 10◦ −10◦
Angle Set 2 20◦ −20◦
Angle Set 3 30◦ −30◦
Angle Set 4 40◦ −40◦

Table 4-4: Overview of the different Max-Plus parameter sets

Terrains

The tests will be performed on 4 different type of terrains:

Flat Plane A leveled surface with a flat ground

Slopes Surface with sloping hills (max. 30◦ steep)

Spikes Spiked surface with a very uneven ground (ranging from 1 cm to 25 cm high spikes,
random distribution)
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Stairs Regular stairs with steps appropriately sized for the legs of the ZeBRo (∼ 15 cm in
height)

The surfaces can be seen in Figure 4-5.

(a) Flat Plane (b) Slopes

(c) Spikes (d) Stairs

Figure 4-5: The different surfaces on which the V-REP ZeBRo will be tested.

4-4 Results V-REP Tests

In order to classify the results from all the tests, there are three major criteria the system
will be judged on. First and foremost, the speed of traversing the terrain will be researched.
Body movement is also recorded, in order to determine the vertical and sideways movement
of the body during walking. The body rotations are tracked to measure the stability of the
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system. Every test is performed 5 times for 20 seconds.

4-4-1 Gait Performance On Flat Terrain

The most interesting part of the tests is the comparison of different gaits and how they
perform on each of the surfaces. To start the comparison, first the gaits are tested on a flat
plane. The Max-Plus τf and τδ and the leg angles are kept constant at: τf = 0.5, τδ = 0.1,
angle of lift-off αlo = −30◦, angle of touchdown αtd = 30◦.
The difference in distance traveled by the robot on flat terrain using different gaits can be seen
in Figure 4-6. The results of all 5 tests are very similar to the results of the test portrayed.

Figure 4-6: Comparison of distance traveled with different gaits on flat terrain

As can be seen, the movement of the ZeBRo is a lot faster using the tripod gait than using
any other gait, which could be expected. Assuming every step size is independent of the gait,
the ratio of the seperate gaits traveled distance can be compared using the eigenvectors of
the A-matrices of the gaits. However, the actuation of the legs when different groups are on
the ground results in a smaller distance traveled, due to partly overlapping paths.
The vertical movement and body rotations of the ZeBRo on flat terrain can be seen in Figure
4-7a.
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(a) Vertical movement (b) Body Roll

(c) Body Yaw (d) Body Pitch

Figure 4-7: Comparison of body movement and rotations using different gaits ( τf = 0.5,
τδ = 0.1, αlo = −30◦, αtd = 30◦) on a flat surface

As can be expected, the bigger amount of leg groups, the more constant the vertical height
of the ZeBRo. Comparing the body rotations however, shows that the tripod gait scores the
best on rotational stability. Furthermore, interesting behaviour can be seen when watching
the yaw progression of the tetrapod gait, which seems to be slightly turning. The rotational
stability of the tetrapod and metapod gait show some difficulties on the leveled terrain.
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4-4-2 Gait Performance On Difficult Terrain

Comparing the same gaits on the bumpy terrain shows about the same results, with compara-
ble body rotations and distance ratio between the gaits. More interesting results to show, are
the ones on the spiked floor, which were not completed successfully by all gaits. An example
of the distance traveled and the body rotations can be seen in Figure 4-8. The vertical body
movement is discarded due to the alternating height of the floor.
An interesting moment can be noticed: the sudden body roll and pitch change of the robot
using the tetrapod gait (which indicates the robot falling over).

(a) Distance travelled (b) Body Roll

(c) Body Yaw (d) Body Pitch

Figure 4-8: Comparison of body movement and rotations using different gaits (τf = 0.5, τδ = 0.1,
αlo = −30◦, αtd = 30◦) on a spiked surface
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The spiked surface had some interesting results regarding the performance of the robot, as
several simulations resulted in flipping over, which qualifies as a failed test. When the results
of all tests are filtered, the amount of failed tests regarding the gaits, step size, double stance
time and overall speed can be reviewed. It has to be noted that the distance covered has a
big impact on the test results, as the amount of spikes encountered is simply higher than the
spikes encountered while walking with a lower speed. Even while keeping this in mind, some
conclusions can be made about the performance of the system.
The results of these tests can be seen in Tables 4-5 to 4-8.

Failed Test Percentage Test 1 Test 2 Test 3 Test 4 Test 5 All Tests Average Distance
Pentapod 21% 50% 33% 25% 25% 31±12% 0.84 [m]
Metapod 29% 42% 29% 38% 38% 35±6% 1.30 [m]
Tetrapod 54% 67% 63% 67% 50% 60±8% 1.53 [m]
Tripod 67% 71% 50% 46% 54% 58±11% 2.60 [m]

Table 4-5: Failed test percentage on the spiked surface divided per gait, with the average distance
of the successful runs.

Failed Test Percentage Test 1 Test 2 Test 3 Test 4 Test 5 All Tests Average Distance
τδ 6= 0 38% 52% 44% 25% 38% 39±10% 1.28 [m]
τδ = 0 48% 63% 44% 63% 46% 53±9% 1.67 [m]

Table 4-6: Failed test percentage on the spiked surface divided over walking with and without
double stance time, with the average distance of the successful runs.

Failed Test Percentage Test 1 Test 2 Test 3 Test 4 Test 5 All Tests Average Distance
Angle Set 1 21% 54% 38% 38% 29% 36±11% 0.84 [m]
Angle Set 2 46% 63% 46% 38% 50% 48±8% 1.40 [m]
Angle Set 3 38% 54% 29% 46% 38% 41±9% 1.40 [m]
Angle Set 4 67% 58% 63% 54% 50% 58±7% 1.67 [m]

Table 4-7: Failed test percentage divided on the spiked surface over the different lift-
off/touchdown angle sets, with the average distance of the successful runs.

Failed Test Percentage Test 1 Test 2 Test 3 Test 4 Test 5 All Tests Average Distance
τf = τg = 1.1 31% 47% 28% 22% 34% 33±9% 1.13 [m]
τf = τg = 0.8 28% 59% 47% 47% 28% 42±12% 1.53 [m]
τf = τg = 0.5 69% 66% 56% 63% 63% 63±5% 1.93 [m]

Table 4-8: Failed test percentage on the spiked surface divided for different values of τf = τg,
with the average distance of the successful runs.

The resulting percentages show a clear overview of the success rate of the different settings
on the spiked environment. It has to be noted that this type of environment, and especially
the dimensions of the spikes, were extremely demanding for the robot to complete. On com-
parison, the unsuccessful runs on the bumpy environment did not exceed the 5%.
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Considerable differences with respect to the flat surface can be seen on multiple points, for
example on the distance travelled using the different angle sets, but also on the performance
of the different gaits.
For the stairs climbing, the ZeBRo encountered a terrain which required heavy-duty perfor-
mance. Like the spiked surface, the stairs were supposed to be unforgiving in nature, and
might have been somewhat difficult for the ZeBRo to walk on. However, due to the rough
selection, the performance of the gaits can be reviewed well.

4-4-3 Gait Performance on Stairs

For the same gait parameters used in Figure 4-7, the climbing of the stairs in 4 test can
be seen. Note that the stairs did not change, but the starting coordinates did (slightly).
The body rotations are not portrayed, as they are not clear to read due to all the different
movements during the climbing of the stairs.
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(a) Vertical movement of the ZeBRo, Stairs test 1 (b) Vertical movement of the ZeBRo, Stairs test 2

(c) Vertical movement of the ZeBRo, Stairs test 3 (d) Vertical movement of the ZeBRo, Stairs test 4

Figure 4-9: Comparison of the vertical movement of the ZeBRo using different gaits (τf = 0.5,
τδ = 0.1, αlo = −30◦, αtd = 30◦) on the stairs

To show the difference in performance, not just between the gaits, but also the performance
of the gaits in different tests, the results of 4 different stair climbing test can be seen in Figure
4-9. From these four tests, it can be seen the performance of the stair climbing gaits is not
great. Again, it can be seen that several times during test 2, the ZeBRo manages to fall of the
stairs. This could be due to a big jaw change, due to the slightly altered starting conditions.
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4-4-4 Gait and Parameter Selection

Using the data of the V-Rep tests, the selection for situation-specific gaits can be determined.
Separating the different situations and watching the performance on the environments show
that the tripod gait is the most versatile, as well as the fastest gait. Changing of the gait is
most important when encountering extreme uneven terrain. The gait which can be changed
to could be the pentapod or the metapod gait.
Other interesting findings are the performance of slower gaits on the difficult terrain, the
increase of the success rate with addition of double stance time, and the success rate of the
Angle Set 3, which shows good results on every terrain.
The moment of gait change can be found in Figures 4-7 and 4-8, as the tripod gait shows very
low body roll on even terrain. On the more uneven terrain however, the body rotations can
increase drastically. It makes sense to incorporate these results, and allow the gait to change
in the situation of difficult terrain. Classifying when the terrain changes, requires measuring
when body rotations exceeds certain values.
Deciding for what values the gaits needs to be changed can be done by determining the body
roll on the easier planes, and resetting the gait back to the tripod after a certain time of
limited body roll.
A pseudo-code example of this implementation can be seen in Algorithm 1.

Data: Gait Change Algorithm
Result: Allows for changing the gait from tripod to a slower gait when the body

rotations exceed certain values

initialization ZeBRo-processes ;
initialization Tripod A-Matrix ;
start Walking Modus ;

while In Walking Modus do
Calculate Max-Plus lift-off/touchdown vector using A-matrix;
Readout Body Rotations;
if Body Rotations > Max-Allowable Rotation then

A-Matrix = Metapod/tetrapod Gait;
else if Body Rotations(Last n Seconds <Max-Allowable Rotation) then
A-Matrix = Tripod Gait;

end
Algorithm 1: Gait change pseudo-code

Implementing this code in the simulation requires determining two variables: the Max-
Allowable Rotation, and the value for n. n is defined as the variable which decides how
long after receiving the last time instance exceeding the MaxAllowable Rotation, the robot
resets to the tripod gait.
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4-4-5 Adaptive Gait Implementation

The choice for these variables is somewhat arbitrarily, as the system will not gain a massive
stability increase when n is changed from 1.1 second to 1 or vice versa. More important is
the choice for the allowed body rotation before the system shifts to a more conservative gait.
For now, this is chosen to be the metapod gait. Testing with the real system might prove
which gait (pentapod or metapod) is more capable.
The body rotation variable needs to be well outside the range of normal, straight floor use.
Ideally, slightly rugged terrain is also still conquered using the tripod gait. Therefore, the
delta angle of the Max-Allowable rotation will be slightly larger than the angles the ZeBRo
needs to face on the bumpy terrain, which is about 30◦. However, the determination of this
angle should be seen in qualitative context, as different robots undergo different movements
due to the surface they walk on.
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Chapter 5

Gaits With Aerial Phases

To define the difference between static walking and dynamic walking, the easiest explanation
is to look at us, humans. While walking and running have the same order of legs to take off
and touch down, there are some major differences in speed and energy consumption. Regular
walking has moments with both legs on the ground, and moments with one leg on the ground.
When both legs are on the ground, the stability of your body increases, especially in rugged
terrain. Running however, has moments where both legs are in the air, so the body is not in
contact with the ground. While this is not preferred on difficult terrain, the maximal speed
of running is a lot higher than the speed of walking.

Besides running and walking, which both feature the leg order: (leg (1) → leg (2)), other
gaits are possible, like hopping (leg (1, 2) → leg (1, 2)) and skipping (leg (1) → leg (1)), but
also more complex gaits like the triple jump (leg (1)→ leg (1)→ leg (2)→ leg (1, 2)).

With the current implementation of the Max-Plus algebra, these gaits are not possible. How-
ever, when the gait construction is extended, much more gaits can be constructed using the
Max-Plus system. In section 5-1, the construction of strictly running gaits is done. Some
gaits, like the gallop gait of horses, contains both aerial and double stance phases. Therefore,
the section 5-2 contains the method for constructing a much wider array of gaits, extending
the method for gait generation by allowing for more synchronization options in the creation
of the walking patterns.

5-1 Max-Plus Gait Generation with Aerial Time

For the Max-Plus implementation of the dynamic gait, several aspects of the Q and P matrices
need to be considered. The main aspects of successful implementation are the transition from
walking gaits to dynamic and the frequency at which the different gaits take place. In order
to use Max-Plus for dynamic gaits, some factors come into play that were not considered in
the generation of the walking gaits with double stance times.
If the aerial phases are implemented, this will imply changes for the times in the succeeding
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lift-off and touchdown vectors. For example, some lift-off times of vector x(k + 1) can be
smaller (and happen earlier) than the touchdown times of vector x(k). This has consequences
for the generation of the A-matrix, but also for the implementation on the ZeBRo and further
processing of the leg instructions.

5-1-1 Constructing the A-matrix

For the implementation of the running gaits, the construction of A-matrix needs to be con-
sidered again. In Chapter 3 can be seen that the A1-matrix contains the coupling between
the touchdown times of x(k) and the lift-off times of x(k + 1), and that the A0 contains the
coupling between the lift-off times of x(k + 1) and its touchdown times.
For this system, the synchronization will happen during the double stance time. The syn-
chronization is done every instance of x(k).
Now, for a running gait, we want the synchronization to happen during the aerial phase time
(τa) instead of during the double stance phase. This would require changes in the method of
constructing the A0 and A1 matrix, but will solve the problem of non-chronological succeed-
ing lift-off/touchdown vectors (i.e. max(x(k)) > min(x(k + 1)). Another method, proposed
by M. Shahbazi Aghbelagh [25], is to simply switch the meaning of the first half of the vector
from being touchdown moments to being lift-off moments and vice versa. However, altering
the A0 and A1 matrices will have the same results, without changing the make-up of the
lift-off/touchdown vector. This method requires less shifting in methods of controlling the
timing, as the changing of gaits from static to dynamic will be the same as changing one
static gait for another; by changing the A-matrix.

We start again using the first assumption that the legs will lift off after they have been on
the ground for a certain time (τg). After this, the legs will stay in the air for some time (τf ),
and finally will touch down. Contrary to Equations 3-1 and 3-2, we will invert the order of
touchdown and lift-off. This results in Equations 5-1-5-2. For a six-legged system, i = 1...6.

ti(k + 1) = li(k)⊗ τf (5-1)
li(k + 1) = ti(k + 1)⊗ τg (5-2)

Now, if we again want to implement the wave gait (1→ 2→ 3→ 4→ 5→ 6) as an example,
we have additional terms to indicate the order in which the legs move. This time however,
we want two consecutive leg groups in the air at the same time for τa seconds

ti(k + 1) =
{
li(k)⊗ τf ⊕ l6(k)⊗ τa for i = 1
li(k)⊗ τf for i = 2, ..., 6

(5-3)

li(k + 1) =
{
ti(k + 1)⊗ τg for i = 1
ti(k + 1)⊗ τg ⊕ li(k + 1)⊗ τa for i = 2, ..., 6

(5-4)

Again, rewriting this results in the following Max-Plus linear system:
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x(k + 1) =
(
E6×6 P

τg ⊗ E6×6 E6×6

)
⊗ x(k + 1)⊕

(
E6×6 τf ⊗ E6×6 ⊕Q
E6×6 E6×6

)
⊗ x(k) (5-5)

The generation of P and Q matrices remains the same, as the same order is still being
maintained, but implemented differently. The only difference is the replacement of the double
stance time τd by the double air time τa. The construction of these matrices can be seen in
Section 3.2.

A comparison between the two methods of making the A-matrix can be seen in Appendix
A-3. An important result of generating matrices using this method is the switching of the
order of touchdown and lift-off inside each event vector x(k). For the walking gait, the last
time instant of touchdown is always larger than the last time instant of lift-off, for the running
gait, vice versa. For implementation purposes, this order switching can be solved by making
an event list (Section 4-2-2), which updates the next touchdown and lift-off times, regardless
of their order.

5-1-2 Gait Schedules

In the standard walking of six-legged animals, the tripod gait is the gait containing the least
legs on the ground while still maintaining a constant state of static balance. However, for the
running implementation, this changes the situation. This gait is used as an example of how
Max-Plus can be used for running gaits.
For the Max-Plus lift-off/touchdown vector generation, the Max-Plus matrix of the running
tripod gait needs to be constructed. The P and Q matrices are again determined using the
method supplied in Chapter 3-2. This results in the following matrices:

P =



ε ε ε ε ε ε
τα ε ε τα τα ε
τα ε ε τα τα ε
ε ε ε ε ε ε
ε ε ε ε ε ε
τα ε ε τα τα ε


, Q =



ε τα τα ε ε τα
ε ε ε ε ε ε
ε ε ε ε ε ε
ε τα τα ε ε τα
ε τα τα ε ε τα
ε ε ε ε ε ε


(5-6)

Then, Equation 5-5 and 3-8 to 3-12 can be followed to construct the A-matrix. This results
in the following gait schedule of Figure 5-1

For the tetrapod gait, the aerial phases concern the biggest part of the locomotion, as the leg
groups wait for each other before touching down and lifting off again. The gait schedule can
be seen in Figure 5-2.

5-1-3 Delay Handling

When legs are hindered to reach their position on time, the Max-Plus algebra automatically
shifts the next events forward. For the static implementation, this poses no problem, as the
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Figure 5-1: Schematic overview of the state of the legs in the running tripod gait. The black
squares represent the time the legs are on the ground, while the white space represents the time
the legs are in the air (with τf = τg = 1, τα=0.25 )

Figure 5-2: Schematic overview of the state of the legs in the running tetrapod gait. The black
squares represent the time the legs are on the ground, while the white space represents the time
the legs are in the air (with τf = τg = 1, τα=0.25 ), and yes, the lines look like they are diagonal
instead of horizontal!
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Figure 5-3: Delay of leg 2 during the running tetrapod gait. As can be seen, the touchdown
events of the next leg-group are shifted further in time.

stability is not affected. For the dynamic implementation, this can result in problems, as
these delays can shift moments of touchdown forward. An example of a delayed lift-off can
be seen in Figure 5-3.

The main purpose of the implementation of the automatic delay handling in Max-Plus is to
hinder the system from getting in unwanted states. Implementing this delay handling results
in unwanted behavior, and should only be used to delay a legs lift-off, not their touchdown
event. When a choice can be made, the ground time should be extended. This can be done
by making the gaits synchronize on their lift-off times, instead of their touchdown times.

5-1-4 Static to Dynamic Transition

The transition of walking gaits to running gaits requires understanding the dynamics of the
walking system. However, the transition from static to dynamic gaits for the Max-Plus gait
generation requires the implementation of a transition in order to correctly switch. This is
due to the swapping of the order of the lift-offs and touchdowns with respect to the static
gait generation.
The other way around might be less important, but still, the A-matrix for both transitions
needs to be determined. The symbols Gs and Gd are the static and dynamic implementations
of the respective gaits. For walking to running, the A-matrix sequence becomes, where τxGs

and τxGd
are the time parameters for respectively the static and dynamic implementations of

their gaits for ∀x = d, g, t :

A(Gs, τfGs, τgGs, τdGs) (5-7)
A(Static-to-Dynamic Transition) (5-8)
A(Gd, τfGd, τgGd, τdGd) (5-9)

And vice versa:
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A(Gd, τfGd, τgGd, τdGd) (5-10)
A(Dynamic-to-Static Transition) (5-11)
A(Gs, τfGs, τgGs, τdGs) (5-12)

Without a transition matrix, the transition happens non-optimally. This can be seen in Figure
5-4. The static part of the walking is completed, but the dynamic walking has not started
yet to allow for dynamic movement. To resolve this problem, it is necessary to start all gaits
with the lift-off of the first leg-group.

Figure 5-4: Schematic overview of the state of the legs transitioning from the walking tetrapod
the running tetrapod gait. The black squares represent the time the legs are on the ground, while
the white space represents the time the legs are in the air (with τf = τg = 1, τα=0.25 ). The
aerial times start before the rest of the dynamic behaviour is in place.

To solve the drawbacks regarding transitions and delays, and complete the list of possible gaits
which cannot be constructed using the method suggested in this chapter, the next section will
add the insights of this section and the regular Max-Plus gait generation together to create a
full gait generation method.

5-2 Max-Plus Complete Gait Generation

The use of Max-Plus as the base for gait construction has interesting upsides. The automatic
delay handling, easy gait construction and good documented gait transition possibilities allow
for use in legged robots, no matter the amount of legs. However, as can be seen in Chapter
5-1, the delay handling can also have downsides. It is therefore chosen to make a total gait
construction method which relies on the synchronization of the lift-off events of the leg. The
most important reason for choosing the lift-off events instead of the touchdown events, is the
overall stability of the robots, as this is (most of the time) negatively influenced by delaying
the touchdown events, not by delaying lift-off events.
For the construction of the gaits in this section, the physics of the implemented system are
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not taken in consideration, merely the Max-Plus method of defining them. We start again
with the Max-Plus linear discrete event system:

x(k + 1) = A0 ⊗ x(k + 1)⊕A1 ⊗ x(k) (5-13)

Because the lift-off moments are the moments of synchronization, all these moments are
either coupled to a touchdown or a lift-off. The touchdowns however, are only coupled to
their preceding lift-offs. Every gait always starts with the lift-off of the first leg-group.

Using the system of lift-off synchronization, the A-matrices can be constructed following
Equations 5-14 & 5-15.

A0 =
(
En×n Tf
Pt Pl

)
(5-14)

A1 =
(
En×n En×n
Tg ⊕Qt En×n ⊕Ql

)
(5-15)

It is important to notice the change made to the A0 matrix, and whether this impacts the
possibility of using the Kleene Star operation (creating A∗0). Because the Pl matrix contains
its non-ε instances on the same places as the Pt matrix, and always has an epsilon on its
diagonal, the A∗0-matrix can still be constructed:

Theorem 3.20 of [26]: If A of the precedence graph G(A) has no circuit with positive weight,
then

A∗ = E ⊕A⊕A⊗2 ⊕ ...⊕A⊗n−1 (5-16)

where n is the dimension of A.

Due to the way the matrix and its sub-matrices are build, there is no circuit in the A0-matrix.
This can be observed when calculating P⊗bl , with b ∈ N the amount of leg-groups or, because
the instances of Pt are always smaller than Pl, any combination P⊗cl ⊗ P⊗dt , with c, d ∈ N
and c + d = b. The resulting matrix will always devolve to the E-matrix, due to the lack of
circuits in the P -matrices.

In order to generate a full array of gaits, the standard system of Max-Plus static gait gen-
eration is taken, and complemented by the Pl and Ql matrices, which contain the lift-off
to lift-off synchronization. The name of the P and Q matrices is changed to Pt and Qt to
indicate the touchdown to lift-off synchronization. The gallop gait will be used as an example
for the construction of the A-matrix [27], due to the difference in construction with respect
to the standard gait construction method developed by [4].
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Figure 5-5: Famous animation sequence of a galloping horse by Eadweard Muybridge

5-2-1 Gait Notation

In order to define gaits that contain both aerial and stance phases, the notation of the gait
order needs to be defined properly. For a random gait describing a walking method for a
n-legged system, the gait order consists of multiple leg-groups lifting off after each other. The
time in between these successive lift-offs of the leg-groups can vary.
It is important to emphasize the gait order is defined by the order of the lift-offs of the gait.
The reason for this choice is the discrepancy between the method of Section 3 and Section
5-1, where the focus is either on starting with all legs on the ground, or all legs in the air.
With the insights gained from Section 5-1, having the synchronization of the lift-off based on
the touchdown results in problems regarding delays. Therefore, constructing a gait around
the lift-off is chosen because of the stable performance regarding the delay.
For the construction of the gait, it is important to not make legs lift-off more than once in
one gait instance, as one state vector can only contain the lift-off and touchdown information
of one cycle. The notation will be of the form:

{leg t, ..., leg w}
τf1

≺
τs1

. . . ≺
τs(m−1)

{leg p, ..., leg q}
τfm

, ≺
τsm

, or (5-17)

l1
τf1
≺
τs1

. . . ≺
τs(m−1)

lm
τfm

≺
τsm

(5-18)

With m ≤ n ∈ N the amount of leg-groups, li leg-group i with i ∈ m, t, w, p, q ≤ n ∈ N . The
τsi signifies a 2× 1 vector which contains the synchronization between the lift-off of the next
leg-group on one side, and the touchdown of and lift-off of the earlier leg-group on the other
side. These times can be written as τsli (the lift-off synchronization) and τsti (the touchdown

L.D. Kinkelaar Master of Science Thesis



5-2 Max-Plus Complete Gait Generation 59

synchronization).

τsi =
(
τsli
τsti

)
with: (5-19)

τsli =
{
Lift-off to lift-off synchronization times between leg-groups i and i+ 1 for 0 < i < m

Lift-off to lift-off Synchronization time between leg-groups m and 1 for i = m

(5-20)

τsti =
{
Touchdown to lift-off synchronization times between leg-groups i and i+ 1 for 0 < i < m

Touchdown to lift-off Synchronization time between leg-groups m and 1 for i = m

(5-21)

The τfi are the flight times of the legs in leg-group i.
For most gaits, only one of these synchronizations is necessary for the gait to work. However,
more difficult gaits can be made to rely on both the lift-off and the touchdown of the previous
leg-group. Especially running gaits can benefit from this addition, as the gait can rapidly be
adjusted for body movement or other influences from the outside. The τsti can be determined
to be negative for this implementation. This will be more extensively explained in Section
5-2-4. The gait notation of the gallop gait can be seen in Equation 5-22.

{4}
tf1

≺
ts1
{3}
tf1

≺
ts2
{2}
tf1

≺
ts3
{1}
tf1

≺
ts4

(5-22)

When the double synchronization is not necessary, the synchronization vector can be con-
structed following Equations 5-23 - 5-24. The moment of lift-off and touchdown of leg-group
i are noted by loi and tdi

τsli =
{
ε if loi+1 ≥ tdi
a if loi+1 < tdi with 0 < a < τfi

(5-23)

τsti =
{
b if loi+1 ≥ tdi with b > 0
ε if loi+1 < tdi

(5-24)

5-2-2 Constructing A0 and A1-matrices

Now, for the construction of both matrices, certain differences are made with regards to the
regular walking gaits Chapter(3-1). The notation has added the synchronization time (τsi),
which signifies the relation between the lift-off of group i and the lift-off of i + 1. When
the synchronization time is smaller than the flight time, the next lift-off happens before the
touchdown of the current leg-group.

Alongside the gait order, three vectors containing the flight, ground and synchronization
time need to be determined. These vectors are the flight time vector tf = [τf1, ..., τfm],
ground time vector tg = [τg1, ..., τgm], and synchronization time vector ts = [τs1, ..., τsm] =

[
[
τsl1
τst1

]
, ...,

[
τslm
τstm

]
] . These times correspond with the legs contained in leg-group 1 to m.
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Pl, Pt, Ql and Qt matrices

The method for constructing the Pl, Pt, Ql and Qt matrices is similar to the construction of
the P and Q matrices determined by Section 3-2. Let Pl, Pt, Ql and Qt be square matrices
of the size n × n with n the number of legs. To define Pl and Pt, we use j = {1, ...,m − 1},
with m the amount of leg groups, ∀p ∈ lj+1 and ∀q ∈ lj , where p and q represent the separate
legs in the leg-groups.

P lx,y =
{
τslj for P lp,q
ε for every other P lx,y

(5-25)

P tx,y =
{
τstj for P tp,q
ε for every other P tx,y

(5-26)

To determine Ql and Qt, for ∀v ∈ l1 and ∀w ∈ lm:

Qlx,y =
{
τslm for Qlv,w
ε for every other Qlx,y

(5-27)

Qtx,y =
{
τstm for Qtv,w
ε for every other Qtx,y

(5-28)

Tf & Tg matrices

Constructing the Tf and Tg matrices is a lot more straight-forward. The desired ground and
air times can be filled in an diagonal matrix. For the Tf matrix, the construction depends
on the values of τfi. The legs in the different leg-groups determine the position of the flight
times. Again, i = 1, ...,m, with m the amount of leg-groups, li leg-group i.

T fx,y =
{
τfi for y = x, x ∈ li
ε for every other T fx,y

(5-29)

For the Tg matrix, a comparable method is used:

T gx,y =
{
τgi for y = x, x ∈ li
ε for every other T gx,y

(5-30)

The construction of the diagonal matrices is simple, the method of determining the variables
τfi and τgi is more difficult. Depending on the type of gait, either the flight time or the ground
time is leading for the performance of the gait. For example, for static gaits with multiple
leg-groups, the time legs spend on the ground mainly depends on the amount of leg-groups
and their respective flight times.
For the static implementation, described in Section 3, the flight times need to be shorter than
the synchronization times with respect to the lift-off (Equations 5-23 and 5-24). This would
result in the return of the rotating leg-group before the next group takes off.
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Horse Gallop Gait

Now, having all these sub-matrices, the A0 and A1 of the gallop gait can be constructed using
the values of Table 1 of [27]. This results in:

{4}
τf1
≺
ts1
{3}
τf2
≺
τs2
{2}
τf3
≺
ts3
{1}
τf4
≺
ts4

, with: (5-31)

tf =[0.268 0.273 0.278 0.274] (5-32)
tg =[0.107 0.102 0.097 0.101] (5-33)

ts =
[
0.057 0.064 0.076 0.133
ε ε ε ε

]
(5-34)

And, when implemented correctly, this results in the A0 and A1 matrices in Equations 5-35
and 5-36 and the gait schedule which can be seen in Figure 5-6. The resulting A-matrix is
calculated using the method described in Equations 3-7 to 3-12.

A0 =
(
En×n Tf
Pt Pl

)
=



ε ε ε ε τf4 ε ε ε
ε ε ε ε ε τf3 ε ε
ε ε ε ε ε ε τf2 ε
ε ε ε ε ε ε ε τf1
ε ε ε ε ε τs3 ε ε
ε ε ε ε ε ε τs2 ε
ε ε ε ε ε ε ε τs1
ε ε ε ε ε ε ε ε


(5-35)

A1 =
(
En×n En×n
Tg ⊕Qt En×n ⊕Ql

)
=



0 ε ε ε ε ε ε ε
ε 0 ε ε ε ε ε ε
ε ε 0 ε ε ε ε ε
ε ε ε 0 ε ε ε ε

τg4 ε ε ε 0 ε ε ε
ε τg3 ε ε ε 0 ε ε
ε ε τg2 ε ε ε 0 ε
ε ε ε τg1 τs4 ε ε 0


(5-36)

Implementing this result in the equation v(k + 1) = A ⊗ v(k) results in the gait schedule
portrayed in 5-6, with v(0) = [0, 0, 0, 0, 0, 0, 0, 0]T .

Master of Science Thesis L.D. Kinkelaar



62 Gaits With Aerial Phases

Figure 5-6: Gait schedule of the gallop gait with time constants supplied by the research of N.
Deuel and L. Lawrence [27] . This is the schematic representation of the galloping horse of Figure
5-5.

5-2-3 Gait Transitions

In order to improve the transition between two different gaits, the method explained in Section
3-3-2, uses a change in the individual flight times of the legs to accommodate improved
transitions [21]. This can be extended to the new system. Due to the variable flight times of
the leg-groups, slight changes need to be made in the algorithm derived by the research of B.
Kersbergen et al. [21].
The main difference is the determination of the Tf -matrix, which is slightly altered with
respect to Equation 5-29, due to the difference between the movement of the legs within the
same leg-group (which is necessary to optimize the transition).
Adapted from the research of [21], the system then becomes:

x(k + 1) =
(
E6×6 R

Pt Pl

)
⊗ x(k + 1)⊕

(
E6×6 E6×6

τg ⊗ E6×6 ⊕Qt E6×6 ⊕Ql

)
⊗ x(k) (5-37)

Where the sub-matrix R is the diagonal matrix made up according:

R =

τtrans1 E
. . .

E τtransn

 (5-38)

Where the transition flight times which fills the R-matrix is calculated as the τtrans in Equa-
tions 3-35 to 3-41. The main purpose of this method is to decrease the extra ground time in
transitions between two static gaits.
For transitioning between running gaits to walking gaits, the method is effective for decreas-
ing the transition time, and with either the starting point or ending point in the transition
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having all legs on the ground, no major problems can be expected in this implementation.
Running gaits show more difficulties, as the dynamics of the gaits need to be observed in
order to achieve a reliable transition.
However, new possibilities in gaits also result in more possibilities regarding the transitions
between them. Constructing in-between gaits that share similarities with both gaits may
yield better results in the transitions.
For example, consider the transition from the pentapod to the tripod gait. When the legs
rotate in a comparable leg order, the in-between gait can contain behavior which has elements
from both gaits.
The tripod(Gt) and pentapod gait (Gp) are defined by the following gait-orders. For both
gaits, τfi = 0.75, τgi = 1, τsi = [ε, 0, 25]T , ∀i :

Gp ={1}
τf1
≺
τs1
{4}
τf2
≺
τs2
{5}
τf3
≺
τs3
{2}
τf4
≺
τs4
{3}
τf5
≺
τs5
{6}
τf6
≺
τs6

(5-39)

Gt ={1, 4, 5}
τf1

≺
τs1
{2, 3, 6}

τf2
≺
τs2

(5-40)

Because of the similarities in leg order of both gaits, a comparison can be made to show the
differences in the synchronization time between the lift-offs of the separate legs:

Gp ={1} ≺
1
{4} ≺

1
{5} ≺

1
{2} ≺

1
{3} ≺

1
{6} ≺

1
(5-41)

Gt ={1} ≺
0
{4} ≺

0
{5} ≺

1
{2} ≺

0
{3} ≺

0
{6} ≺

1
(5-42)

Simply taking the average of the ground, flight and synchronization time results in the gait:

Gtrans ={1} ≺
0.5
{4} ≺

0.5
{5} ≺

1
{2} ≺

0.5
{3} ≺

0.5
{6} ≺

1
(5-43)

The transition gait has the same ground and flight times as the other two gaits. This results
in the gait scheme of Figure 5-7.
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(a) Gait schedule of the six-legged system with
the transition following Equation 5-37.

(b) Gait schedule of the six-legged system with
the transition gait following Equation 5-43.

Figure 5-7: Transitioning from the pentapod gait defined in Equation 5-41 to the tripod gait
defined in Equation 5-42 using two different methods.

5-2-4 Time Delays

The handling of time delays can be done as as explained in Section 4-2-3. To illustrate the
impact of the double synchronization on the delay in running gaits, several examples of the
same gait are shown. The gaits are characterized by:

G = {1, 4, 5}
τf1

≺
ts1
{2, 3, 6}

τf2
≺
τs2

, with: (5-44)

tf =[1 1] (5-45)
tg =[0.5 0.5] (5-46)

With changing τs vector for the three implementations:

tsG1 =
[
0.75 0.75
ε ε

]
(5-47)

tsG2 =
[

ε ε
−0.25 −0.25

]
(5-48)

tsG3 =
[

0.75 0.75
−0.25 −0.25

]
(5-49)

The difference in response of the systems to the one second delay in the (projected!) touch-
down of leg 1 can be seen in Figure 5-8.
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(a) Gait schedule of the system with delay up-
dating, G1

(b) Gait schedule of the system with delay up-
dating (G2 and G3)

Figure 5-8: System response of the Max-Plus gait generation with touchdown delay (in grey) of
one second on Leg 1 during the running tripod gait.

As can be seen in the difference of the system response between gait 1 on one side and gait
2 & 3 on the other side, the response to the projected delay in the touchdown has a different
impact. The systems with the negative touchdown synchronization recognizes the delay and
deal with the consequences, while the system without the negative touchdown synchronization
handles the delay for the next step.
The reason for adding the double synchronization comes from the possibility of creating a
time frame in which lift-off happens. This possibility will be illustrated using a two-legged
system, with the following parameters:

G = {1}
τf1
≺
ts1
{2}
τf2
≺
τs2

, with: (5-50)

tf =[1 1] (5-51)
tg =[0.5 0.5] (5-52)

ts=

[
0.75 0.75
−0.35 −0.35

]
(5-53)

The minimal lift-off time of leg two is limited by two synchronized moments:

lo2 =lo1 ⊗ 0.75⊕ td1 ⊗−0.35 (5-54)
lo2 =lo1 ⊗ 0.75⊕ lo1 ⊗ 1⊗−0.35 (5-55)
lo2 =lo1 ⊗ 0.75⊕ lo1 ⊗ 0.65 = lo1 ⊗ 0.75 (5-56)
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Without delays, the synchronization with respect to the lift-off time is leading in the timing of
leg 2. The difference between these two times, is a time window which allows for consequence
free delay in the touchdown. The gait schedule can be seen in Figure 5-9.

Figure 5-9: Gait schedule of the two legged system with double synchronization. The light-gray
part represents the touchdown-based synchronization, the dark-grey part represents the lift-off
based synchronization. The black part represents the complete synchronization (which the leg
follows). The size of the delay window can be seen as the striped part.

Now, when the system has a delay in the lift-off of leg 1, the lift-off of leg 2 shifts further to
the future. If the leg has already experienced its lift-off, and the future touchdown of leg 1
has an anticipated delay, the lift-off of leg 2 is extended. This is only when the delay is larger
than the difference in synchronization time (the time window) (for the example of Equation
5-2-4, this means the delay has to be larger than 0.1 second). The resulting gait schedules
after a delay of 0.05 and 0.2 seconds in the touchdown of leg 1 can be seen in Figure 5-10.
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(a) Delay of 0.05 seconds, or half the time window.
As can be seen, the ground time of leg 2 is not
adjusted.

(b) Delay of 0.2 seconds, or twice the time window.
The total ground time of leg 2 is increased due to
the touchdown synchronization.

Figure 5-10: Gait schedule of the two legged system with double synchronization subject to
different lengths of delay. The light-gray part represents the touchdown-based synchronization,
the dark-grey part represents the lift-off based synchronization. The black part represents the
complete synchronization which the leg will follow. The delays are represented by the dotted
outline.

5-3 Hopping gait

Jumping with all legs at the same time, or hopping, is mainly done by two-legged animals, like
kangaroos or humans. However, 4-legged animals can also jump, and some are even known for
it. For instance, the African springboks. More common (at least, for Dutch people) animals
like lambs and goats can be seen hopping when excited. In the domain of insects, jumping
happens more often than not. However, for testing and implementing the performance of
the dynamic gaits in Max-Plus, the hopping is one of the most interesting gaits to research
in terms of stability and transitioning. This is mainly due to the (in the ideal situation)
lack of roll, pitch and yaw while running. However, small irregularities can disturb this ideal
situation.
Sadly, the hopping cannot be implemented on the ZeBro in its current state. The legs are
not able to contain the springy behavior required for the hopping, and the motors of the legs
are not strong or fast enough to lift the ZeBro from the ground. Therefore, this section will
be strictly about the theoretical implementation of hopping in walking robots.

The leg order of the hopping gait consists of one single group:

Gh = {1, 2, 3, 4, 5, 6}
τf1

≺
τs1

(5-57)
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The determination of the ground and flight times depend heavily on the dynamics of the
system. For the synchronization times, it is enough to assume that the touchdown/lift-off
synchronization is equal to the ground time, and the lift-off/lift-off synchronization equal to
the total of the ground and flight time, τst1 = τg and τsl1 = τf ⊗ τg.

Following the procedure of Chapter 5-2-2, the P and Q matrices are defined by:

Pl = Pt = E6×6 (5-58)

Qt =



τst1 τst1 τst1 τst1 τst1 τst1
τst1 τst1 τst1 τst1 τst1 τst1
τst1 τst1 τst1 τst1 τst1 τst1
τst1 τst1 τst1 τst1 τst1 τst1
τst1 τst1 τst1 τst1 τst1 τst1
τst1 τst1 τst1 τst1 τst1 τst1


(5-59)

Ql =



τsl1 τsl1 τsl1 τsl1 τsl1 τsl1
τsl1 τsl1 τsl1 τsl1 τsl1 τsl1
τsl1 τsl1 τsl1 τsl1 τsl1 τsl1
τsl1 τsl1 τsl1 τsl1 τsl1 τsl1
τsl1 τsl1 τsl1 τsl1 τsl1 τsl1
τsl1 τsl1 τsl1 τsl1 τsl1 τsl1


(5-60)

(5-61)

Using these matrices, the A-matrix is constructed. The resulting lift-off and touchdown
schedule of the robot transitioning from tripod gait to the hopping gait can be seen in Figure
5-11. The gait parameters are of big importance when applying the hopping gaits. In order
to determine the flight and ground times, the dynamics of the robot need to be incorporated
in the Max-Plus system.

5-3-1 SLIP model

The use of the Spring-Loaded Inverted Pendulum model (SLIP-model) in the modeling of
legged locomotion allows for better understanding of the dynamics of the legs hitting the
ground. The SLIP-model represents the legs as loss-less springs, which support the body. This
model can be extended to include the inevitable energy losses in the legs (due to deformation),
by extending the system to contain a damping factor. A schematic overview of the SLIP model
with one leg connected to the center of mass of the robot can be seen in Figure 5-12.
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Figure 5-11: Gait schedule of a six-legged system transitioning from the tripod gait to the
hopping gait, with the same ground and flight times of the legs.

C.O.M.
C.O.M.

C.O.M.

θ θ
θ

Figure 5-12: SLIP-model of a robot with one leg, acting under different angles

The system can be expended to have more than one leg, and to determine the physics of the
system in different situations. For example, a two-legged robot can have 3 different states,
the flight state (no legs on the ground), the single-stance state and the double stance state.
Using the dynamics of the legs and the rest of the system, simulations can be made to help
the implementation of a controller for hopping. For the dynamics simulations in Matlab, the
aim is to portray the dynamics of the ZeBRo. For dynamic gaits, the SLIP model is extended
to contain the forward and upward movement of the system, while also including the time no
leg makes contact with the ground.

5-3-2 One-Dimensional Hopper

The easiest form to describe the ZeBRo is by describing it as a hopping mass, consisting of
a mass and a (lossless) spring, which moves in one direction, and consists of two phases: an
aerial phase, when the spring is not in contact with the ground, and the ground phase, when
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the spring is being under compression and is exerting a force on the body.
However, this description does not capture the body rotations which portray the movements
resulting from asymmetric actuations or ground fluctuations.

Figure 5-13: Schematic overview of the independent hopper model

Therefore, for the first (simple) model, we use an independent hopper. The dynamics of the
spring are modeled as follows:

Fy =f(y) · k0 · (y−l0) (5-62)

where f(y) =
{

1 if 0 < y ≤ l0
0 if y > l0

(5-63)

With the following variables and constants:

Sign Variable/Constant
m Mass of hopper
g Gravitational constant
y y-coordinate mass of hopper
x x-coordinate mass of hopper
F Vertical force delivered by the spring of the hopper
l0 Uncompressed length of the spring of the hopper
k0 Spring constant of the spring of the hopper
c0 Spring damping constant of the hopper
ω Natural frequency of the spring-mass system (ω2 = k/m)

Table 5-1: Constants and variables of the hopper-simulation

As the Max-Plus hopping gait tries to keep the system in a regular pattern, it is tried to keep
the system in this repeating state, ’repairing’ small fluctuations in the body movement. The
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system is modeled to contain a spring that exerts a regularly timed force. Before this force is
implemented though, the natural frequency of the hopper needs to be determined. Following
[28] for Equations 5-64 to 5-82, using a linear spring, the equation of motion when in contact
with the ground is defined as:

ÿ + ky = mg (5-64)

Which has the following solution for the differential equation (the i subscript is discarded due
to the identical dynamics of both hoppers):

y(t) = a sin(ωt) + b cos(ωt) + g/ω2 (5-65)

Setting y(t = 0) = 0 for the moment of touchdown (where F = 0) results in:

y(0) = b+ g/ω2 = 0 (5-66)
b = −g/ω2 (5-67)

Now, using ẏ(t = 0) = ẏtd for the velocity while landing, a can be determined:

ẏ(t) = aω cos(ωt)− bω sin(ωt) (5-68)
ẏ(0) = aω = ẏtd (5-69)
a = ẏtd/ω (5-70)

Which results in the complete differential equation:

y(t) = ẏtd/ω sin(ωt)− g/ω2 cos(ωt) + g/ω2 (5-71)

Because the velocity of the mass is equal to zero halfway the time on the ground (when all
energy is contained in the compressed spring, t = th), this moment can be calculated using:

ẏ(th) = ẏtdω cos(ωth) + g/ω sin(ωth) = 0 (5-72)
tan(ωth) = −ẏtdω/g (5-73)

th = tan−1(yloωg)/ω (5-74)

The hopping height is limited to 5 cm above the length of the springs (l0i), in order to not
damage the legs and the rest of the system. Using this information, the (vertical) lift-off
velocity can be determined using the energy balance:

mẏ2
lo

2 = 0.05×mg (5-75)

ẏlo = −0.99 [m/s] (5-76)
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Due to energy conservation, the touchdown velocity is equal to the negative lift-off velocity
(ẏtd = −ẏlo).
Substituting the constants k = 5000 [F/m], m = 1 [kg] per hopper, ẏtd = 0.99[m/s] and
g = 9.81 [m/s2] in Equation 5-74 results in th = 0.025 [s]. These constants are roughly the
constants of the current ZeBRo, where the spring, and further in this chapter, the damping
constant, are both roughly estimated.
After lift-off, the robot spends some time in the air. This aerial time can be calculated using
the lift-off velocity (ignoring the tae = 0 result):

y(t) = ẏlotae − ÿ
t2ae
2 = 0 (5-77)

ẏlot = −g t
2
ae

2 (5-78)

tae = 0.20 (5-79)

The total time of one hopping cycle thc will then take thc = tae + 2th = 0.25 [s]. Using these
results, the τf , τg and τδ can be determined.

Adding damping to the legs is necessary to achieve a closer likeness to the actual system.
Like the spring constant k, the damping constant is hard to determine. For now, it is set
on 15 [Fs/m], as the bouncing behavior shows similarities with the real system. For the
implementation in Chapter 7, these constants will be examined further. The equations of
motion are slightly different now with respect to Equation 5-64, adding the damping term.

mÿ + cẏ + ky = mg (5-80)

This also changes the natural frequency slightly, due to the adding of the damping. In order
to determine this change, the damping ratio ζ needs to be determined:

ζ = c

2
√
mk

(5-81)

ζ = 0.12 (5-82)

Using the ζ value to compute the damped frequency, results in a comparable value and is not
significant different than the result of Equation 5-79. A comparison of the system response
with and without damping can be seen in Figure 5-14. Note that the initial velocity of the
hoppers is different, in order to illustrate the continuous effect of a slight difference in the
frequency of the system.
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Figure 5-14: Vertical height of two hoppers with different initial conditions in two hopping
simulations: without damping and actuation and with damping but no actuating (with y1 = 0.115,
y2 = 0.125, ẏ1 = 0 and ẏ2 = −0.5 )

In order to keep the system hopping, energy needs to be added to the hoppers. During the
descent of the hopper, the spring is used to decelerate the mass. After the hopper has reached
its lowest point, a force can be exerted by the legs to propel the hopper upwards again. The
energy loss (Eloss) after one hop cycle can be calculated by observing the difference in height
the hopper reaches at the apex.

Eloss = mg∆h (5-83)
Eloss = 1 ∗ 9.81 ∗ 0.031 = 0.3[J] (5-84)

This energy needs to be added again in the upwards motion. Using the compressed distance
(∆scomp), the force that needs to be added can be calculated.

Eloss = Fleg∆scomp (5-85)

Fconst = Eloss
∆scomp

(5-86)

Fconst = 0.3
0.015 = 20[N] (5-87)

When this is implemented in the simulation, the results start to look like the undamped
hopping.

Master of Science Thesis L.D. Kinkelaar



74 Gaits With Aerial Phases

Figure 5-15: Vertical height of two hoppers with different initial conditions in two hopping
simulations: without damping and actuation and with both damping and constant actuating
(with y1 = 0.115, y2 = 0.125, ẏ1 = 0 and ẏ2 = −0.5 )

In Figure 5-15, it can be seen that the height difference, and alongside, the frequency dif-
ference, is solved by implementing the damping and actuation. The resulting lower height
than anticipated is probably due to the extra damping caused by the additional speed of the
hopper. This can easily solved by slightly increasing the actuation force.

5-3-3 Gait Dependent Implementation

To implement the running behavior in the ZeBRo, the time delay between the different legs
and the movement of the body need to understood. To find out how the controllers need
to be implemented, the expected body movement resulting from the gait with aerial phases
can be analyzed. Because the body movement is heavily influenced by the leg order, three
different gaits with aerial or non-static phases will be reviewed. In order to keep the ZeBRo
leveled during the implementation of these gaits, a controller is implemented. The working
principles of this controller can be seen in Section 5-4.
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Hopping

The gait with the biggest likeness to the independent hoppers is the simple hopping gait,
characterized by the following leg order:

Ghopping4 = {1, 2, 5, 6} ≺ {1, 2, 5, 6} (5-88)
Ghopping6 = {1, 2, 3, 4, 5, 6} ≺ {1, 2, 3, 4, 5, 6} (5-89)

The resulting behavior will be like the hopper, with four or six parallel springs acting at the
same time. Without disturbances in the ground height and with stable body movement, the
movement of the body will roughly be comparable to the movement of Figure 5-15.

Bounding Gait

The bounding gait is a gait mostly used by predators, as it allows for rapid acceleration. The
corresponding leg sequence is given by:

Gbounding = {1, 2} ≺ {5, 6} (5-90)

Because of the alternation of the actuation between the front and hind legs, the system will
act like a double hopper system. Therefore, the reference trajectory of the robot should be
two hoppers in anti-phase. This would then result in similar parameters as are applicable on
the hopping gait, but another Max-Plus implementation.
The Max-Plus parameters can then again be calculated using the method of Section 5-3-2.
If the aerial time and the ground time of the example (Equations 5-74 and 5-79) is followed,
the parameters are as follows: τf = tae, τg = 2th.

5-4 Touchdown Controller

Because the computing power of the ZeBRo is too small to implement a controller which can
accurately use a model of the system to calculate the full state of the robot, it is chosen to
focus on a relative simple PID-like controller for body stability, focusing on the input of an
IMU (inertia measurement unit) and the leg encoder. The research of Chun-Kai Huang et
al.[29] shows a method for dynamic hopping with a Rhex-like robot. Important parts of the
control loop are processed by an external computer, even though the robot itself should allow
for more calculating power inside its body due to the difference in size.
The research of M. Shahbazi and G.A.D. Lopes [30] shows a controller making use of Max-
Plus for the synchronization of hoppers, which shows very promising results. The controller
is made to synchronize multiple mass-hopper systems, which could be seen as an abstraction
of a walking system. Part of the modeling tactics of this report are used for the behavior of
the system, but the overall controller requires more accurate sensing and computing power
to incorporate in the ZeBRo than it currently possesses.
The controller should be able to make changes in the timing or leg angles, and should make the
ZeBRo more stable in its performance during gaits with unstable phases. The implementation
will mainly rely on slightly changing the leg angles to make sure the touchdown and lift-off of
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Figure 5-16: Change of the touchdown angle of the leg due to body roll (up) and body pitch
(down)

Figure 5-17: Left: Leg in neutral position, right: Illustration of the change of the touchdown
angle and the resulting change in height. It can be noticed that the point of ground contact of
the leg changes with a changing touchdown angle.

the leg-groups happen with a smaller time difference, to keep the ZeBRo as leveled as possible.

As can be seen in Figure 5-16, the height of the touchdown angle of the legs is slightly changed
for the body roll and pitch. It has to be noted that there should be a limit on the leg angle
change, due to the actuation distance of the legs. Therefore, saturation is introduced to limit
the influence of the controller up to a certain degree. The controller consists of two parts,
one with respect to the pitch, and one with respect to the roll. The pitch controller adjusts
the front and rear legs, while the roll controller adjusts the right and left legs. To minimize
the difference in distance traveled by the individual legs (to prevent yaw), the lift-off angle is
changed with the same delta angle as the touchdown angle. For the determination of kr and
kp, the ratio between the body width or length on one side, and the length of the legs on the
other side.
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θtdC = θtd + kp
[
−θp −θp 0 0 θp θp

]
+ kr

[
θr −θr θr −θr θr −θr

]
(5-91)

θloC = θlo − kp
[
−θp −θp 0 0 θp θp

]
− kr

[
θr −θr θr −θr θr −θr

]
(5-92)
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Chapter 6

Implementation of the Locomotion
Module in the ZeBRo

In order to make the ZeBRo walk, the locomotion module needs to be physically implemented
in the ZeBRo. This locomotion module needs to be capable of controlling the separate legs of
the robot, in order to move as efficient as possible. For the implementation of the locomotion
module, the information transmission between the surrounding modules needs to be clearly
defined, and will be explained in section 6-1. After this, the structure of the locomotion
program will be explained.

6-1 Control Structure

For the current iteration of the ZeBRo, multiple levels of control are defined. The top-level
controller is responsible for making decisions about where the ZeBRo has to go, what the
ZeBRo should do, and how it needs to complete these tasks. The top-level controller can be
autonomous, or can contain manual instructions of an operator.
Below this top-level controller are the mid-level controllers. The locomotion module is one of
these. The main function of the mid-level controllers is to give the top-level controller feed-
back about the current state of affairs, while also performing the tasks defined by the top-level
controller. These tasks will then be processed in order to make workable instructions for the
low-level controllers.
Finally, the low-level controllers are responsible for gathering information and executing com-
mands. The leg modules are examples of low-level controllers, and are responsible for the
actuation of the legs.
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6-1-1 Overview

To give an overview of the systems architecture, Figure 6-1 can be observed. This simplified
overview is made to illustrate the information streams in the robot system. The locomotion
can be viewed as a mid-level controller. An other examples of mid-level controllers are the
communication controller for interacting with other ZeBRos. The information contained in
these streams are explained in the next section.

Figure 6-1: A simplified overview of the control system in the ZeBRo

6-1-2 Information transferral

For the transfer of information, the ZeBRo-bus system is used[verwijzing naar]. This system
uses the I2C-protocol to transfer the data between the modules.

Top-level controller to locomotion controller

The information of the locomotion module receives is defined by the vector Ψ, which contains
information about the direction, speed and the mode of operation:

Ψ =

Turning radius
Speed
Surface

 (6-1)

Turning radius Contains the turning radius in the direction the ZeBRo wants to go. Turn-
ing will be done on the spot if a sharp turn is required. More gentle ways of turning
will be done by increasing or decreasing the size of steps taken on both size, creating
a difference in traveled distance on the two sides. Another method of turning is by
implementing the research of W. Suriana [23].
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Speed The speed is a number from 0− 9, and will influence the gait (for example, a tripod
gait for high speeds, a pentapod gait for low speeds), but also the ground, flight and
double stance times of the ZeBRo.

Surface Contains information regarding the roughness of the terrain.

The turning radius is now divided up in several discrete setting for the turning radius. This
ranges from a turning radius of 40 cm to a turning radius of about 3 meter, and is done by
increasing and decreasing the step sizes on both sides. For a correct implementation of the
research of Suriana[23], more research needs to be done to the possibilities en limitations.
The surface information can mainly be divided into three distinct categories: normal terrain,
difficult terrain and stairs. The recognizing of the terrain will be added later to the robot
itself, for now the recognition is done by gathering data of the inertia measurement unit.

Locomotion controller to top-level controller

The information send to the top-level controller is mostly based on the current state of the
locomotion. If both the locomotion controller and the separate legs are operating at their
required performance, the communication can be limited to sending a signal of the current
state of operations and the ability to full-fill these properly.
When the locomotion controller is not able to perform its required tasks however, the in-
formation needs to contain the nature of malfunctioning. The system should also be able
to convey the possibilities left for performance. This could for instance be that one of the
legs is not operating as required, but can be solved by slowing down and altering the gait used.

Π =
(
State of operation
Error Situation

)
(6-2)

The state of operation is limited to being in walking mode and resting. This resting is done
to prevent overheating of the leg-motors, but also allows other moving parts to cool down.

Locomotion controller to leg-module

The main information send from the locomotion controller to the legs will be the required
location of the leg at a specific time. Along with the direction, this message will contain all
necessary information to make the legs function. The information send by the locomotion
controller to the legs is defined by Γ:

Γ =


Required leg location

Time of arrival
Rotational direction
Special instructions

 (6-3)

Required leg location The leg location which the specific leg needs to move to in order to
make steps. For a walking gait, the locations of lift-off and touchdown are determined
using performance measurements.
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Time of arrival In order to make the ZeBRo walk, the time the legs need to be at a specific
location needs to be send to the legs. The time of the locomotion module will constantly
be used to update and synchronize the time on the leg modules.

Rotational direction The direction of the legs determines which way the individual legs
turn. For turning the robot or walking backwards, the legs need to rotate backwards.

Special instructions For special operations like calibrating, stopping, laying down or emer-
gency stopping, some special instructions which overrides the current operations are
necessary.

Using the location, time and direction, the leg modules can make a trajectory to follow. The
reason the trajectory making is done in the leg modules is to limit the amount of informa-
tion send between the modules, effectively making the modules more independent. All the
information related to walking is gathered from the Max-Plus calculations running on the
background. More information about the processing of the lift-off and touchdown times can
be seen in Chapter 6-2.

Leg-module to locomotion controller

The feedback of the independent legs to the locomotion controller allows the controller to
check the performance and location of the legs. Moderation of the movement of the legs is
necessary for knowing when to update the required position. The information send from the
leg-modules to the locomotion controller is defined by χ:

χ =

Leg location
Temperature
Leg state

 (6-4)

Leg location The current location of the legs are important in order to find out if the legs
are at the required location on time.

Temperature Returns the temperature to give the locomotion module a signal if the motors
become to warm.

Leg state The state of the leg gives information about the current situation the legs is in.
For instance, if the leg encounters internal problems, it may stop functioning and will
go in an emergency state.

If the legs function properly, the feedback of the location of the leg is necessary to keep on
walking. If the robot’s leg are constricted or malfunctioning in any way, the feedback of the
legs can be combined in order to determine the current problem.

6-2 Locomotion program

In order to process the information received from the top-level controller, the locomotion
module needs to take multiple steps. These steps are divided in blocks, which are explained
in this section. Each part of the locomotion program is briefly explained here. The technical
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report can be seen as the more detailed explanation, and can provide a manual to the use of
the locomotion program.

Initialization

Before the ZeBRo can start its locomotion routine, connections between the Top-level con-
troller, the IMU (inertia measurement unit) and the separate leg modules need to start.
Furthermore, multiple different walking gaits are defined and calculated before the start of
the walking sequence. This is done to decrease the workload of the processor while walking.
The clock is also started for the internal time measurements.

Input processing

The input for the locomotion can come from three different sources:

Top-level The input received from the top-level include the direction and speed the ZeBRo
is required to walk.

IMU The IMU constantly updates the body rotation of the ZeBRo. The body roll and body
pitch are monitored to check whether the ZeBRo is scaling uneven surface.

Leg Modules The leg modules are checked for their position and temperature. The position
is used for calculating possible delays, while the temperature is monitored in order to
determine when the motors are overheating and the robot needs to cool down.

Vector and Event-list updating

Within the locomotion program, the system checks whether the Max-Plus A-matrix needs
updating due to changing speed and direction requirements. The Max-Plus vectors are com-
pared with the internal time measurements to calculate the new lift-off/touchdown vector
when necessary. Using these vectors, an event-list is filled with the current and next events,
containing the information whether movement to the lift-off or touchdown position is required,
following the method proposed in Section 4-2-2.

Delay Processing

When legs do not reach their position on time, several steps need to be taken. First and
foremost, the delay needs to be estimated. The estimation is done by dividing the angle
which needs to be traveled by the maximal angular speed of the leg. With this estimation,
the method of Section 4-2-3 can be used to determine the updated current lift-off/touchdown
vector. This vector can then be used for the calculation of the next event vector.
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Turning

Three different methods of turning are implemented, where the first method is used for turn-
ing on the spot. This is simple done by swapping the lift-off and touchdown position, and
reversing the direction of actuation on the side the robot wants to turn.
For the gentle turning, both the method of changing the step sizes and the Max-Plus turn-
ing implementation have been tested. For more detailed information about the Max-Plus
implementation for the turning, the exact method and the simulation results, the research
of W. Suriana[23] can be read. Because of the limited implementation in the actual robots,
several small tests were done in order to confirm the results of the simulations. Four different
implementations of Suriana’s method are tested, with the following gaits and gait parameters:

Tripod 1: τf = 0.8, τg = 0.40, τδ = 0.10, τp = 0.2

Tripod 2: τf = 0.8, τg = 0.40, τδ = 0.10, τp = 0.4

Tetrapod 1: τf = 0.8, τg = 0.40, τδ = 0.10, τp = 0.2

Tetrapod 2: τf = 0.8, τg = 0.40, τδ = 0.10, τp = 0.4

All these gaits are tested to go left and to go right, in order to see how the different parameters
result in behavioral differences. This is especially interesting regarding the non-symmetrical
tetrapod gait. The results can be seen in Table 6-1. The > 300 cm radius describes a turning
radius way bigger than 3 meter, or almost walking straight.
It has to be noticed the tetrapod gait can be made up with different leg orders. In order to
investigate the leg order on the performance, two tetrapod gaits are researched. The names
in Equations 6-5 and 6-6 are given by respectively the left and right front foot that starts the
gait.

Tetrapod Left Gait = {1, 6} ≺ {2, 3} ≺ {4, 5} (6-5)
Tetrapod Right Gait = {2, 5} ≺ {1, 4} ≺ {3, 6} (6-6)
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Gait Direction Turning Radius
[cm]

Expected Turning
Radius [cm]

Tripod 1 Left 158± 21 176
Tripod 1 Right 160± 27 176
Tripod 2 Left 68± 10 108
Tripod 2 Right 87± 6 108
Tetrapod Left 1 Left 186± 29 324
Tetrapod Left 1 Right > 300 324
Tetrapod Left 2 Left 188± 16 196
Tetrapod Left 2 Right > 300 196
Tetrapod Right 1 Left > 300 324
Tetrapod Right 1 Right > 300 324
Tetrapod Right 2 Left > 300 196
Tetrapod Right 2 Right > 300 196

Table 6-1: Average turning radius with number of tests n = 3 . After each test, the legs are
re-calibrated.

Figure 6-2: Example of the turning of the ZeBRo using Max-Plus based turning

As can be seen from the results, the effectiveness of turning using the Max-Plus implemen-
tation depends on the gait. Due to unwanted body movements in the tetrapod gaits, the left
and right hind leg sometimes lose their contact with the ground, resulting in small changes
within the yaw of the ZeBRo. This behavior was also noticed in the V-Rep tests, and is
illustrated in Figure 4-6c. When the tripod gait is used however, the turning performance is
more in accordance with the expected turning radius.

Output

The output of the locomotion module is defined by the communication with the leg-controllers
and the top-level controller. For now, the leg controllers are updated regularly with informa-
tion on the position they need to be at within a certain time. The frequency of updating the
instructions depends on the required performance; if a gait is faster, the system might need
more frequent updates regarding the timing. The output to the top-level is for now limited
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to communicating the state of the system, which indicates whether the ZeBRo is in rest or
able to walk. The resting is mainly to prevent overheating of the leg motors.

6-3 Performance Gaits

For the verification of the results of Section 4-4, testing the body movement of the actual
ZeBRo needs to be done. Testing is done by gathering the internal IMU data, while making
the ZeBRo walk through several different situations. This is done to test for the optimal
settings for the different gaits, while also checking their performance on the more rugged
terrain. The performance is measured by using the success rate, the body rotations and
the time of completing the track. The reason body rotations are used, and not the body
accelerations is due to the direct coupling in the calculation of the accelerations and body
rotations in the IMU. Using both metrics, the results would be similar. Each test is performed
as many times until 5 successful runs have been recorded.

6-3-1 Flat Terrain

To check the performance of the different gaits on flat terrain, the gaits are not extensively
tested on different settings. Using the τf , τg and τd, the approximate same speed is used to
cover 2 meters on flat terrain. The resulting performance is mainly tested on body movement
and speed of the ZeBRo. While processing the IMU-data, it became clear the noise of the
system is relative high, due to the impact forces of every step. Therefore, a moving mean of
the data of the last 5 data points is used to dismiss faulty measurements. An example of the
difference between the measured and the processed data can be seen in Figure 6-3.

(a) Measured values of the pitch (b) Moving mean values of the pitch

Figure 6-3: Difference between the measured values of the IMU (a) and the moving mean values
(b) of the same test.

Where peaks of more than 50◦ can be seen in the unfiltered data, the moving mean data
shows much more realistic value, as the pitch in this particular test did not actually exceed a
body pitch of 20◦.

L.D. Kinkelaar Master of Science Thesis



6-3 Performance Gaits 89

Gait Average standard
deviation body roll

Average standard
deviation body
pitch

Average time
elapsed for com-
pletion track

Tripod (τf = 0.7, τg =
0.7, τd = 0.05)

0.126± 0.004 [rad] 0.048± 0.004 [rad] 7.23 [s]

Tetrapod (τf = 0.5,
τg = 0.5, τd = 0.05)

0.162± 0.006 [rad] 0.068± 0.010 [rad] 7.64 [s]

Metapod (τf = 0.4,
τg = 0.4, τd = 0)

0.121± 0.007 [rad] 0.079± 0.006 [rad] 8.05 [s]

Pentapod (τf = 0.3,
τg = 0.3, τd = 0)

0.113± 0.006 [rad] 0.095± 0.009 [rad] 7.14 [s]

Table 6-2: Average performance of the ZeBRo using different gaits on flat terrain (the office
floor) on a 2-meter track with number of tests n = 5

As expected, the resulting body movement of every gait shows periodic behavior of steps
being taken, which is most easy to spot in the body roll. The average standard deviation of
the body pitch and roll is portrayed in Table 6-2, with an additional average time in which
the 2 meter was completed.

As can be seen from the results, the body roll is relative small and the difference between the
different gaits are small as well. It has to be noted that even though the completion times
are similar in this test, the speed of the tripod gait can still be doubled, while the speed of
the robot using the pentapod gait was nearly at its max.

6-3-2 Difficult Terrain

For the testing of the performance on more difficult terrain, and the resulting movement
of the ZeBRo itself, a small test track has been made for benchmarking how difficult the
terrain needs to be for changing the gait and walking methods. The test track contains
multiple height differences along the way, about the same height as the legs (±7 cm height
differences). Additionally, a small incline and some moving objects are also placed in the test
track.
The same gaits as for the flat terrain are used for the testing, with an additional fast walking
tripod gait. This gait is added for checking the influence of the legs rotation speed on the
system. It should be noted that the slow tripod (τf = 0.7, τg = 0.7, τd = 0.05) was the only
gait which failed 3 of its runs, where the rest of the gaits only failed one time.

The results are somewhat surprising, as the faster moving tripod gait shows less body rota-
tional movement than the slower implementation. Additionally, the failure rate of the slower
tripod makes for a interesting result, as the change of the flight, ground and double stance
time seems to have a bigger impact on the performance than the gaits themselves.

Master of Science Thesis L.D. Kinkelaar



90 Implementation of the Locomotion Module in the ZeBRo

Gait Average standard
deviation body roll

Average standard
deviation body
pitch

Average time
elapsed for com-
pletion track

Tripod (τf = 0.7, τg =
0.7, τd = 0.05)

0.334± 0.086 [rad] 0.275± 0.101 [rad] 8.54 [s]

Tripod (τf = 0.4, τg =
0.4, τd = 0)

0.285± 0.024 [rad] 0.205± 0.020 [rad] 4.25 [s]

Tetrapod (τf = 0.5,
τg = 0.5, τd = 0.05)

0.256± 0.024 [rad] 0.136± 0.017 [rad] 11.5 [s]

Metapod (τf = 0.4,
τg = 0.4, τd = 0)

0.273± 0.024 [rad] 0.153± 0.012 [rad] 12.7 [s]

Pentapod (τf = 0.3,
τg = 0.3, τd = 0)

0.261± 0.026 [rad] 0.140± 0.015 [rad] 13.4 [s]

Table 6-3: Performance of the ZeBRo using different gaits on difficult terrain on a 2-meter track
with number of tests n = 5

6-4 Gait Switch Function

In order to implement the switch decision function suggested in Section 4-4-5, the imple-
mentation in the actual system requires an IMU (Inertia Measurement Unit) to register the
body rotations of the ZeBRo. The IMU is a relative simple and small component, and some
also allow for measuring more data that could benefit the robots possibilities, like having a
compass and magnetic field sensor on board.
The IMU is coupled to a simple Arduino board, which can read-out the data provided, and if
necessary, can also make the required computations to check whether gait change is necessary.
Communications with the Raspberry Pi will be required to transfer this information.
The registration of when the gait switch is needed, depends on the body rotation values
over a certain amount of time. Because of the sensor inaccuracies of the ZeBRo, the relative
simple gait change algorithm of Section 4-4-5 cannot be used, and therefore, a more robust
implementation is required.
Using the data from both the flat terrain and the difficult terrain measurements, the major
differences can be noticed quite easily. The average deviation with respect to the leveled body
is bigger, and the (absolute) biggest measured rotations are bigger. In Table 6-4, the average
of the ten biggest measured body rotations are portrayed. From this table, it can be clearly
seen that the difference in measured body rotations is present. Therefore, the ZeBRo can use
the measurements of the IMU in order to classify rough terrain.

However, when the robot walks on sloped terrain, there will be an offset for the system, even
when the sloped terrain is relative flat. This leads to the conclusion that not only the absolute
maximal values of the IMU-measurements need to be monitored, but the difference between
the peaks and valleys in both directions.
Using this for the implementation of the gait switch function, the quality of the difficult terrain
testing can be researched. For this test, the amount of good and false terrain identifiers need
to be determined by testing the ZeBRo on different kind of surfaces.
Because of too many gait changes, the final ZeBRo has been implemented to have a dead-
zone regarding gait changes. This results in less gait changing, along with less false positives.
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Gait Roll on flat
terrain

Roll on diffi-
cult terrain

Pitch on flat
terrain

Pitch on dif-
ficult terrain

Tripod (τf = 0.7,
τg = 0.7, τd = 0.05)

0.399 [rad] 1.03[rad] 0.231[rad] 1.37[rad]

Tetrapod (τf = 0.5,
τg = 0.5, τd = 0.05)

0.456[rad] 0.764[rad] 0.323[rad] 0.650[rad]

Metapod (τf = 0.4,
τg = 0.4, τd = 0)

0.402[rad] 0.906[rad] 0.412[rad] 0.744[rad]

Pentapod (τf = 0.3,
τg = 0.3, τd = 0)

0.348[rad] 0.802[rad] 0.405[rad] 0.704[rad]

Table 6-4: Comparison of the average of the ten (absolute) biggest body rotations on both the
difficult and flat terrain with number of tests n = 5.

Difficult terrain in-
stances

Correct difficult ter-
rain identifiers

False difficult ter-
rain identifiers

10 10 2

Table 6-5: Results of outdoor terrain recognition .

Because the tetrapod gait resulted in problems on flat terrain, resulting in false flags for
difficult terrain, the pentapod gait is chosen for as the gait for difficult terrain, along with
the gait transition described in Equation 5-43. When the ZeBRo does not detect large body
movements for a certain amount of time, the switch back to the tripod (with the same gait
transition) is made.

6-4-1 Difficult terrain recognition

During testing, the ZeBRo was taken out for difficult terrain in the outdoors. The test ground
was mainly flat, with some obstacles littering about, like large branches and ditches. In 30
minutes of walking the ZeBRo encountered 10 instances of difficult terrain, which where all
recognized (Table 6-5). However, during the walking, there were still several false positives.

In this test, the main result shows the superior performance of the tripod gait, which was
performing better in the woods than the pentapod gait. Comparing this with the performance
on the test track of Section 6-3-2, it only shows the importance of the terrain recognition.
Using other feedback than strictly the body movement, more detailed terrain recognition can
be utilized.

6-5 Conclusions

For the implementation of a total locomotion program using Max-Plus in a walking robot, the
system contains all necessary requirements. The relative low computational power required
for the updating of the timing of the legs, combined with the simplicity to change gait, the
delay handling and turning makes for a powerful, complete locomotion program.
The results of the gait testing are interesting, as the gait performance shows to rely heavily
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on the gait parameters, and less on the gaits themselves. For implementation purposes, this
would mean the system is performing better while changing its gait when another speed is
required, than simple changing the gait parameters.
Other interesting results, regarding the turning using Max-Plus gait change, shows to be a
new, but reliable and powerful tool for complete robotic walking. Using this total system,
a Max-Plus locomotion path planner can be build, and could be used for a lot of different
legged robots, with a varying amount of legs. The turning remains somewhat more difficult
to implement in the strict Max-Plus sense. Even though the Max-Plus turning shows great
promise, the characteristics are not fully understood, and therefore, the implementation can-
not be implemented for high precision walking. So currently, the ZeBRo remains equipped
with a change of leg-angles, as the step size change (and consequently, the turning radius)
can easily be calculated.
For now, due to implementation issues regarding the position feedback, the Max-Plus delay
handling cannot be used as reliable as should be. The framework for dealing with the delays
using the Max-Plus is however capable of correcting the walking when necessary, and makes
the performance of the ZeBRo (when implemented), much more reliable.
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Simulating Running in the Zebro

The framework for constructing a wider arrangement of gaits is in place, which can now be
used for running with the Zebro. Because the actual Zebro does not have enough power and
speed to implement the running behavior, this is tested on the V-Rep model.
While the V-Rep model does not capture the correct physics of the actual Zebro, the per-
formance can give an indication of how the system handles certain inputs, and how the
limitations in the motors influence the possibilities the robots has for dynamic movement.
For the determination of the gait parameters,

7-1 V-REP Simulations

In order to test the performance of the controller on the Zebro, it is chosen to first implement
the controller in the V-Rep environment. Due to speed restrictions in the actuation, hopping
with all legs is not possible, as the maximal allowed rotation speed of the motors in V-Rep
would not be enough to recirculate before the robot falls down. This is in lesser extent also
applies to the pacing and bounding. Therefore, the controller will be tested using the tripod
gait, where the legs only need to recirculate half as much, and will not be affected by this
speed restriction. The implementation is somewhat different than the implementation of the
controller for the hopper. Instead of varying the length of the legs, the angles where the
actuation happens change. For this test, the weight of the Zebro is altered to 2 kg. The
legs however, remain rigid in this simulation, so the only results from these tests show the
difference in actuation by the legs.

In order to test the performance of the controller, 4 different scenarios are tested:

• Dynamic Tripod without controller

• Dynamic Tripod with pitch controller
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• Dynamic Tripod with roll controller

• Dynamic Tripod with full controller

In order to compare them, the distance traveled is compared. More importantly, the body
rotations are also compared, using the variance with respect to the horizontal. It has to
be noted that the system without controller is already stable. Therefore, the goal of the
controller is to decrease the body rotations of the Zebro, and to reject potential disturbance.

The dynamic tripod used is given by:

Gdt = {1, 4, 5}
τf1

≺
τs1
{2, 3, 6}

τf2
≺
τs2

(7-1)

τf = [0.2 0.2] (7-2)
τg = [0.1 0.1] (7-3)

τs =
[
0.1 0.1
ε ε

]
(7-4)

These parameters are determined by trial and error, as the limitations regarding rotation
speed impact the performance of the Zebro. It is chosen to take gait parameters which are in
the range of the real gait parameters.

7-1-1 Flat Ground

To test the basic functionality of the controller the first stability tests are performed on flat
ground, starting with a static tripod gait, the system runs 10 seconds with a running tripod
gait. The implementation of the controller is relative simple, as it changes its lift-off and
touchdown angles using the measurements of the V-Rep simulation of the body rotation. The
full implementation will then result in the recalculation of the leg angles (θlo and θtd) using
the pitch and roll angles (θp and θr). These are stored in a vector for all separate legs (θloC
and θtdC).
Pitch Controller:

θtdC = θtd + k1
[
−θp −θp 0 0 θp θp

]
(7-5)

θloC = θlo − k1
[
−θp −θp 0 0 θp θp

]
(7-6)

Roll Controller:

θtdC = θtd + k2
[
θr −θr θr −θr θr −θr

]
(7-7)

θloC = θlo − k2
[
θr −θr θr −θr θr −θr

]
(7-8)

Full Controller:

θtdC = θtd + k3
[
−θp −θp 0 0 θp θp

]
+ k4

[
θr −θr θr −θr θr −θr

]
(7-9)

θloC = θlo − k3
[
−θp −θp 0 0 θp θp

]
− k4

[
θr −θr θr −θr θr −θr

]
(7-10)
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The {k1, k2, k3, k4} ∈ R are all different, in order to accommodate for the difference between
the length of the side and front of the Zebro. Furthermore, the values of full controller are
smaller than the values of the independent controllers, due to the possibility of a too large
difference with the leveled leg angles, which influences the behavior negatively. The tests are
performed multiple times. The most important the results can be seen in Table 7-1. Note that
the traveled distance does not change with the changing of the controller. For comparison,
the walking gait with almost the same parameters except for introducing double stance time
only covers half the distance of the dynamic gait implementation.

Dynamic tripod gait Average standard
deviation body roll

Average standard
deviation body
pitch

Average distance

Without controller 0.101± 0.014 [rad] 0.135± 0.014 [rad] 7.74 [m]
With pitch con-
troller

0.097± 0.029 [rad] 0.110± 0.028 [rad] 7.74 [m]

With roll controller 0.102± 0.017 [rad] 0.135± 0.016 [rad] 7.74 [m]
With full controller 0.096± 0.013 [rad] 0.119± 0.014 [rad] 7.74 [m]

Table 7-1: Performance of the Zebro using different controllers for the dynamic tripod gait

From the results, it is hard to conclude how much the controller contributes to the decrease
of body rotations. However, the system shows to be slightly more leveled using the pitch and
full controller. It is interesting to see the performance of the roll controller, which does not
seem to have a significant impact on the response of the system. The performance of the
controller might be more pronounced when disturbance is added, and more control action is
needed.

7-1-2 Disturbance Rejection

Similar tests are performed with the addition of low bars across the field. These low bars (2
cm in height) are supposed to impose the system to slight disturbances in the hopping.

Figure 7-1: Disturbances added in the V-Rep simulation environment for the dynamic tripod
gait
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The results are not that different from the results of the test on flat ground. Note that the
tests are performed in a shorter time period to capture a bigger part of the effects of the
disturbance. The results of these tests can be seen in Table 7-2.

Dynamic tripod gait Average standard
deviation body roll

Average standard
deviation body
pitch

Average distance
traveled

Without controller 0.106± 0.013 [rad] 0.150± 0.019 [rad] 5.94 [m]
With pitch con-
troller

0.097± 0.018 [rad] 0.118± 0.019 [rad] 5.94 [m]

With roll controller 0.103± 0.015 [rad] 0.125± 0.021 [rad] 5.94 [m]
With full controller 0.111± 0.019 [rad] 0.133± 0.011 [rad] 5.94 [m]

Table 7-2: Disturbance rejection of the Zebro using different controllers for the dynamic tripod
gait

Surprisingly, the controller with the overall best results is the pitch controller, which shows a
very limited increase in body movement after the addition of the disturbances. The response
of the full controller is somewhat disappointing, but still has a better performance than the
uncontrolled system, especially regarding the disturbance rejection.
However, some connotations need to be placed with respect to the results of the simulations.
The V-Rep simulation environment does not capture deformations of the legs of the Zebro,
what can result in behavior which is not accurately describing the actual response of the
system. Furthermore, the resulting distance being exactly the same every instance raises
questions about the accuracy of the simulation, as the distance traveled does not seem to be
changing between tests, which may be an indicator of the limited difference the controller
makes.
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Chapter 8

Conclusion

The main goal of this thesis has been to develop a complete, working locomotion system
based on the switching Max-Plus discrete event systems. The locomotion system should be
the basis of the walking DeciZeBRo, but should also be adaptable to other implementations
of walking robots, with varying amounts of legs. Following this goal, the resulting product is
a working locomotion program, which can be implemented in a microprocessor and is suitable
for the use in embedded systems.
The contributions for the completion of this task let to a novel method of using the theoretical
Max-Plus framework and the implementation of proven and unproven concepts of the Max-
Plus framework as a whole:

1. A new method for the calculation of the timing of running gaits using the Max-Plus
framework (Chapter 5)

2. Proving the working principles of the research of W. Suriana in an actual walking robot
([23], Chapter 6)

3. Delivering a complete locomotion system implementing optimal gait changing ([21]) and
Max-Plus based turning ([23]) for the walking Deci-ZeBRo.

8-1 Max-Plus Complete Locomotion

In order to allow for constructing a wide array of gaits, the Max-Plus discrete event system
for legged locomotion is extended to contain additional synchronization possibilities for the
different leg-groups. These added synchronization is visible in the addition of the Pl and Ql
matrices, which allow for synchronization between the lift-offs of the consecutive leg-groups.
The discrete event system is defined as:

x(k + 1) = A0 ⊗ x(k + 1)⊕A1 ⊗ x(k) (8-1)
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With the matrices A0 and A1 defined by:

A0 =
(
En×n Tf
Pt Pl

)
(8-2)

A1 =
(
En×n En×n
Tg ⊕Qt En×n ⊕Ql

)
(8-3)

For this method to be implemented, τs is introduced, which contains the synchronization
times τsl (the synchronization time between the lift-offs of the successive leg-groups), and
τst (the synchronization time between the touchdown of leg-group i and lift-off of leg-group
i+ 1).

τsi =
(
τsli
τsti

)
=
{
Synchronization times between leg-groups i and i+ 1 for 0 < i < m

Synchronization times between leg-groups m and 1 for i = m

(8-4)

The addition of this set of synchronizations also allows for better delay handling in the more
complex gaits, as the synchronization can be doubled to account for both delays in the lift-
off and touchdown. The construction of the Pl, Pt,Ql and Qt matrices remains similar to
the construction of the P and Q matrices of the research of [4]: Let Pl, Pt, Ql and Qt be
square matrices of the size n × n with n the number of legs. To define Pl and Pt, we use
j = {1, ...,m − 1}, with m the amount of leg groups, ∀p ∈ lj+1 and ∀q ∈ lj , where p and q
represent the separate legs in the leg-groups.

P lx,y =
{
τslj for P lp,q
ε for every other P lx,y

(8-5)

P tx,y =
{
τstj for P tp,q
ε for every other P tx,y

(8-6)

To determine Ql and Qt, for ∀v ∈ l1 and ∀w ∈ lm:

Qlx,y =
{
τslm for Qlv,w
ε for every other Qlx,y

(8-7)

Qtx,y =
{
τstm for Qtv,w
ε for every other Qtx,y

(8-8)

The introduction of the lift-off based synchronization allows for more complete delay handling.
It also allows the system to make delay windows, which allow small delays without changing
the gait pattern. This allows for easier controller implementation and more control over the
gaits.
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8-2 Locomotion and gait switching

One of the best qualities of a Max-Plus algebra based locomotion system is the portability.
For example, even though the system is currently used for six-legged robots, small changes
can make the system perform as well on robots with any amount of legs, purely by changing
the leg-group order and the size of the sub-matrices of the A0 and A1 matrices. While other
robots depend on other types of the central pattern generators for the complete movement of
the system, which require (manual) changes for other walking rhythms, the Max-Plus timing
can easily be changed for different types of locomotion systems.
The main downside of the Max-Plus generation is that the information is relative limited
(containing the lift-off/touchdown events), and additional movement details regarding how
to perform a step has to be made more concrete in layers below the Max-Plus system. This
does allow for low computational strain on the system, which is especially useful in small
embedded systems, where walking is a sublayer of the system.
The switching function µ(k) depends on the dimensions of the platform implemented on. The
main use for optimal gait change using Max-Plus in legged locomotion, and to a certain extent
the whole use of the Max-Plus framework for legged locomotion, is the ability to quickly and
efficiently change gaits. This extends from changing the order of leg groups, to the change of
the individual parameters and the speed of the platform.
One of the main purposes however, is to effectively use the gait switch function. Because of
limitations in feedback of the current Deci-ZeBRo, the information available for gait change
is relatively limited. The framework for gait changing however, is fully functional and able to
change the walking gaits on the fly, maintaining stability and working principles.
For now, the main gait change parameters considered are the body movement of the ZeBRo
and resulting gait performance when terrain is detected that influences the walking. The
resulting effects of the gait change in difficult situations show an increase in stability of the
Deci-ZeBRo, and make the robot able to conquer heavy terrain better.

8-3 Max-Plus based turning

For more information about the Max-Plus based turning, which is researched by W. Suriana,
the research [23] can be viewed. The performance of this method relies on creating a differ-
ence in speed between the two different sides of the walking robot, by extending the ground
and double stance time of the legs on one side, and decreasing the ground and double stance
time on the other side. The side on which the ground time is decreased, the speed of the
steps itself is increased, which results in a bigger distance traveled. The result of the tests
done can be seen in Table 8-1, the explanation of the tested gaits can be seen in Section 6-2.
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Gait Direction Turning Radius Expected Turning
Radius

Tripod 1 Left 158± 21 cm 1.76 cm
Tripod 1 Right 160± 27 cm 1.76 cm
Tripod 2 Left 68± 10 cm 1.08 cm
Tripod 2 Right 87± 6 cm 1.08 cm
Tetrapod Left 1 Left 186± 29 cm 3.24 cm
Tetrapod Left 1 Right >300 cm 3.24 cm
Tetrapod Left 2 Left 188± 16 cm 1.96 cm
Tetrapod Left 2 Right > 300 cm 1.96 cm
Tetrapod Right 1 Left > 300 cm 3.24 cm
Tetrapod Right 1 Right > 300 cm 3.24 cm
Tetrapod Right 2 Left > 300 cm 1.96 cm
Tetrapod Right 2 Right > 300 cm 1.96 cm

Table 8-1: Average turning radius with number of tests n = 3 . After each test, the legs are
re-calibrated.

Because the results are ambiguous, and the Max-Plus based turning does not work for the
tetrapod gait under normal circumstances, it is for now chosen to have the legs slightly in-
crease/decrease their step size for the turning. The Max-Plus based turning is however a
very promising method for changing direction, and if researched further, might be a great
alternative for the method with the variable step size. Currently, using a slightly modified
locomotion, one of the ZeBRos is equipped with the Max-Plus turning. This robot is per-
forming similar to the other ZeBRos.

8-4 Discussion and recommendations

With the extension of the Max-Plus locomotion framework, almost all situations can now be
handled with the implementation of certain aspects of this system. Adding the possibility for
a wider array of gaits, including running, and more synchronization options for the determina-
tion of the lift-off of the legs, allows for using Max-Plus in a great amount of different walking
robots. Additionally, the Max-Plus implementation of the turning, following the research of
[23], even extends this to make a complete path planning algorithm using Max-Plus possible.
The handling of delays is one of the most powerful parts of using Max-Plus in the walking
robot, and can be a major reason for the decision to use Max-Plus instead of other central
pattern generation.
However, the main downside of the Max-Plus system is the relative big computational back-
bone that needs to be in place for the system to work. This is mainly caused by the calculation
of the A-matrix, which requires a lot of calculations for the determination of the A∗0. For em-
bedded real-time calculations of this matrix, the calculation time may intervene the standard
locomotion pattern. This can however be countered by calculating the gait matrices before
walking.
The framework of the implementation of the Max-Plus locomotion system on a walking robot
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also requires a centralized locomotion system, with a library which contains the necessary
functions for Max-Plus algebra, gait-matrix construction and event vector processing. This
requires a lot more overhead than applying time-based functions for the separate legs. Gait
transitions, gait parameter change and delay handling make up for these shortcomings, but
require relative accurate leg control to completely grasp the full possibilities.

8-4-1 Further research recommendations

• Research of a Max-Plus based path planning algorithm, using Max-Plus based turning,
applying the research of W. Suriana [23]. This requires solid understanding of the
mechanics of the robot, and the consequences of extending double stance times. The
complete turning characteristics need to be understood, and implementation of this
system on a actual robot with extended path planning need to be executed for testing.
This path planning can be done by desiring separate speeds for the left and right side of
the body. Coupled to the mechanics of the robot, this allows for specific turning radii.

• Applying Max-Plus running gaits in actual robots, using the full dynamics of the body
and legs to increase the possible speed of the robot. Not only new (springy) legs are
required for this to work, but the actuation of the robot legs need to be fast and strong
enough for the robot to achieve certain accelerations and leg rotation speeds. Applying
this would an increase in the cost of the robot, due to the costs of a more powerful set of
electric motors. Additionally, the design of a controller which can be used for handling
body rotations during different running gaits, like hopping or skipping, can be added
and tested.

• Optimize gaits for certain environments, by applying self learning algorithms and al-
lowing the robots to walk in these environments by themselves, applying the research of
D. van Amstel [22]. This requires the addition of power and velocity measurements in
the ZeBRo, and should optimize for both these parameters. The environment detection
could be coupled to this.

• Use other methods for environment detection, by having more input from different sen-
sors. This can include cameras, power consumption measurements or sound detectors.
From the results of this thesis, it shows that adaptive gait patterns can increase the
stability of the system as a whole. Because the inertia measurement unit can only be
used after the surface has changed, an environment detection system which uses (stereo)
cameras increases the detectability of more separate environments.

Master of Science Thesis L.D. Kinkelaar



102 Conclusion

L.D. Kinkelaar Master of Science Thesis



Appendix A

Max-Plus examples

In this part of the appendix, examples of calculations using Max-Plus algebra can be seen.

A-1 Basics

A-1-1 Basic operations

Some basic calculations of Max-Plus algebra can be seen below:

Max-Plus addition

5⊕ 7 = 7 (A-1)
2⊕−1 = 2 (A-2)
−1⊕−5 = −1 (A-3)

Max-Plus multiplication

4⊗ 5 = 9 (A-4)
3⊗−2 = 1 (A-5)
−2⊗−3 = −5 (A-6)

Commutativity

1⊕ 2 = 2⊕ 1 = max(2, 1) = 2 (A-7)
1⊗ 2 = 2⊗ 1 = 1 + 2 = 2 + 1 = 3 (A-8)
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Associativity

2⊕ (4⊕ 7) = max(2,max(4, 7)) = 7 (A-9)
(2⊕ 4)⊕ 7 = max(max(2, 4), 7) = 7 (A-10)
3⊗ (4⊗ 7) = (3⊗ 4)⊗ 7 = 3 + 4 + 7 = 14 (A-11)

Distributivity:

2⊗ (3⊕ 4) = 2 + max(3, 4) = 2 + 4 = 6 (A-12)
(2⊗ 3)⊕ (2⊗ 4) = max(2 + 3, 2 + 4) = max(5, 6) = 6 (A-13)

A-1-2 Matrix calculations

Matrix addition:

[
2 1
4 2

]
⊕
[
3 1
2 8

]
=
[
max(3, 2) max(1, 1)
max(4, 2) max(2, 8)

]
=
[
3 1
4 8

]
(A-14)

Matrix-vector Multiplication:

[
6 1 5
2 4 3

]
⊗

3
2
2

 =
[
6⊗ 3⊕ 1⊗ 2⊕ 5⊗ 2
2⊗ 3⊕ 4⊗ 2⊕ 3⊗ 2

]
=
[
max(6 + 3, 1 + 2, 5 + 2)
max(2 + 3, 4 + 2, 3 + 2)

]
=
[
9
6

]
(A-15)

Matrix multiplication

[
6 1
2 4

]
⊗
[
3 1 4
1 2 4

]
=
[
6⊗ 3⊕ 1⊗ 1 6⊗ 1⊕ 1⊗ 2 6⊗ 4⊕ 1⊗ 4
2⊗ 3⊕ 4⊗ 1 2⊗ 1⊕ 4⊗ 2 2⊗ 4⊕ 4⊗ 4

]
(A-16)

=
[
max(6 + 3, 1 + 1) max(6 + 1, 1 + 2) max(6 + 4, 1 + 4)
max(2 + 3, 4 + 1) max(2 + 1, 4 + 2) max(2 + 4, 4 + 4)

]
=
[
9 7 10
5 6 8

]
(A-17)

A-1-3 Eigenvalues & Eigenvectors

Define matrix A and vector x0 as:

A =

2 6 ε
5 ε 3
ε 2 ε

 (A-18)

x0 =

0
0
0

 (A-19)
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Now multiply x0 several times with A, we get the following sequence:

x0 =

0
0
0

 , x(1) =

6
5
2

 , x(2) =

11
11
7

 , x(3) =

17
16
13

 , x(4) =

22
22
18

 (A-20)

Now, to check whether there is a returning periodic behaviour, the difference between each
instance of x is calculated:

∆x(1) =

6
5
2

 , ∆x(2) =

5
6
5

 , ∆x(3) =

6
5
6

 , ∆x(4) =

5
6
5

 (A-21)

As can be seen, after the first step, the system shows periodic behaviour with a period of 2
time steps. Now, if we calculate the increase in one period, we can define the eigenvalue:

x(4) = 11⊗ x(2) (A-22)

Now, the eigenvalue is calculated by dividing the increase in one period by the duration of
one period: λ = 11

2 = 5.5. The eigenvector is then calculated as:

v = 1
2

17⊕ 11
16⊕ 11
13⊕ 7

 =

 14
13.5
10

 (A-23)

Now, to check whether the eigenvector and eigenvalue are correct:

A⊗ v =

19.5
19

15.5

 = λ⊗ v (A-24)

A-2 Graphs and Petri-nets

Two examples regarding graphs and Petri-nets can be followed in this section.

A-2-1 Graphs

To explain the use of graphs with respect to Max-Plus algebra further, the example in Figure
A-1 will be regarded as a (overly) simplified hypothetical train network, where the nodes
signify stations and the routes signify the distance between the stations.
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Figure A-1: Example of a directed weighted graph

In this system, it is possible to go from station 1 to station 2, from station 2 to station 1,
to change tracks in station 2 (which is the distance it takes to go from station 2 to station
2) and to go from all stations to station 3. The next trains can depart when all incoming
trains have arrived. Therefore, it is important to have a good overview of moment that the
last trains have arrived.

Now, imagine having enough trains at every station. The moment they are ready to departure
from their current location can be described in a vector x(k), where k is the current iteration.
For calculation purposes, we define x(1) as:

x(1) =

2
1
8

 (A-25)

Now, using the matrix of 2-28, the arrival times of the latest trains (y(k)) can be calculated
by using Max-Plus matrix multiplication:

y(1) = A⊗ x(1) =

ε 3 ε
2 1 ε
5 4 e

⊗
2

1
8

 =

4
4
8

 (A-26)

A-2-2 Paths

For the determination of the weight of a certain path with a certain length, the Max-Plus
algebraic matrix power is used. First, we want to calculate the weight of the longest path
from node 2 to node 3 in 4 steps:
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A⊗4 =

10 9 ε
8 7 ε
11 13 e

 (A-27)

|pkij |w = |p4
2,3|w = [A⊗4]3,2 = 13 (A-28)

|p4
2,3|aw =

|p4
2,3|w
|p4

2,3|l
= 13

4 = 3.25 (A-29)

And indeed, the longest path from node 2 to node 3 is the sequence:

node 2 3−→ node 1 2−→ node 2 3−→ node 1 5−→ node 3 (A-30)

Now, to define the circuit from node 1 to node 1 in three steps, we use the same method as
before:

A⊗4 =

 6 8 ε
4 6 ε
10 9 e

 (A-31)

|pkij |w = |p3
1,1|w = [A⊗3]1,1 = 6 (A-32)

|p3
1,1|aw =

|p3
1,1|w
|p3

1,1|l
= 6

3 = 2 (A-33)

Where again, the path in three steps is given by:

node 1 2−→ node 2 1−→ node 2 3−→ node 1 (A-34)

A-3 Gait Matrices P and Q

Following the procedure of Section 3-2, a fully worked out example may improve the under-
standing of the generation of the P and Q matrix.
For demonstration purposes, a 5-legged gait in a 6 legged system will be explained. This may
be necessary for situations where one of the legs is not functioning properly. The gait will be
defined by:

Gr5 = {1, 3}, {4, 6}, {5} (A-35)

For the observant reader, leg 2 is indeed missing. The actual performance of this gait would
be questionable at best. This will not influence the method of constructing the P and Q
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matrices.
Now, define the number of leg groups m = 3 and number of legs n = 6. j is defined as:

j = {1, 2} (A-36)

The groups of legs are defined as:

l1 = {1, 3} (A-37)
l2 = {4, 6} (A-38)
l3 = {5} (A-39)

Now first, for every j, the pj and qj are defined following Equations 3-16 & 3-17:

p1 = {4, 6} p2 = {5} (A-40)
q1 = {1, 3} q2 = {4, 6} (A-41)

So, the elements of P that are equal to τδ are:

For j=1: P4,1 =τδ P4,3 = τδ (A-42)
P6,1 =τδ P6,3 = τδ (A-43)

For j=2: P5,4 =τδ P5,6 = τδ (A-44)

Using the information of Equations A-42 - A-44, combined with the 6-legged system, we get:

P6×6 =



ε ε ε ε ε ε
ε ε ε ε ε ε
ε ε ε ε ε ε
τδ ε τδ ε ε ε
ε ε ε τδ ε τδ
τδ ε τδ ε ε ε


(A-45)

Now, for Q, we want to define the v and w.

v = {1, 3} w = {5} (A-46)

So again, elements of Q that are equal to τδ are:

Q1,5 = τδ Q3,5 = τδ (A-47)

Now, the Q matrix can be constructed:
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Q6×6 =



ε ε ε ε τδ ε
ε ε ε ε ε ε
ε ε ε ε τδ ε
ε ε ε ε ε ε
ε ε ε ε ε ε
ε ε ε ε ε ε


(A-48)

Example of dynamic walking with respect to static walking

For comparison, a two-legged system is used (for example, a human!). First, standard walking
with double stance time will be implemented. After this, the A-matrix for running will be
made. Following the standard procedure, the P and Q matrices are generated as:

Ps =
(
−∞ −∞
τd −∞

)
Qs =

(
−∞ τd
−∞ −∞

)
(A-49)

Pd =
(
−∞ −∞
τa −∞

)
Qd =

(
−∞ τa
−∞ −∞

)
(A-50)

Plugging in these matrices in Equation 3-7 for the walking gait and in Equation 5-5 for the
running gait results in Equations A-51 and A-52 respectively:

x(k + 1) =


−∞ −∞ τf −∞
−∞ −∞ −∞ τf
−∞ −∞ −∞ −∞
τd −∞ −∞ −∞

⊗ x(k + 1)⊕


0 −∞ −∞ −∞
−∞ 0 −∞ −∞
τg τd 0 −∞
−∞ τg −∞ 0

⊗ x(k)

(A-51)

x(k + 1) =


−∞ −∞ −∞ −∞
−∞ −∞ τa −∞
τg −∞ −∞ −∞
−∞ τg −∞ −∞

⊗ x(k + 1)⊕


0 −∞ τf τa
−∞ 0 −∞ τf
−∞ −∞ 0 −∞
−∞ −∞ −∞ 0

⊗ x(k)

(A-52)
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