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Perceptual Eigenmode Distortion Analysis for Motion Cueing
Evaluation in Fixed-Wing Aircraft Simulators

G.H.J. Tillema∗

The Perceptual Eigenmode Distortion (PEMD), an extension to the Eigenmode Distortion
(EMD), is a method for objectively evaluating simulator motion fidelity, developed at TU Delft.
EMD investigates motion cue distortions, imposed by the Motion Cueing Algorithm (MCA), in
terms of eigenvectors, which represent the dynamic modes of a linear system. In this paper,
EMD is extended by a human perception model, which was assumed to help in assessing the
various motion cue contributions. Additionally, a new automatic MCA tuning approach is
introduced. The method is applied to a combined linear model of the Cessna Citation 500
for asymmetrical flight and the Classical Washout Algorithm (CWA). The automatic tuning
algorithm is used to create an MCA parameter set and is compared to the current state-of-the-
artmethod for objective evaluations, theObjectiveMotionCueing Test (OMCT). A pilot-in-the-
loop experiment was performed, with six pilots in the SIMONA Research Simulator, to assess
three CWA motion configurations, which were compared in a double-blind pairwise format.
Throughout each run, the Dutch roll eigenmode was externally excited with a gust of semi-
random amplitude and direction. Two hypotheses were tested using subjective preferences
and through measuring the Dutch roll suppression performance. Preferences varied between
pilots and within-pairs, and similar results for PEMD and OMCT were found. A significant
improvement in performance was found, however, between a no-motion condition and the
PEMD. Therefore, PEMD seems to have considerable potential.

Nomenclature

� = Generic symbol placeholder fy = Sway specific force
α = Angle-of-attack g = Gravitational acceleration
δa = Aileron deflection I� = Vehicle moments of inertia
δr = Rudder deflection K� = Gain of subscripted CWA channel
λ� = Eigenvalue L�, M� = Non-dimensional moment derivatives
ω� = Break frequency of filter in CWA channel l� = Actuator lengths
φ, θ, ψ = Roll, pitch and yaw angle l� = Pilot station moment arms
ζ� = Damping ratio of CWA channel m = Representative manoeuvre
�̌ = Quantity in perception thresholds p = MCA parameters
Û� = Quantity derivative p, r = Roll and yaw rate
�0 = Quantity trim point u� = Input vector
�EOM = Quantity augmented vehicle system u, v, w = Longitudinal, lateral and vertical velocity
�MCA = Quantity in simulator V� = Matrix of right eigenvectors
A� = System matrix v� = Actuator velocities
a� = Actuator accelerations W�� = Weight of eigenmode motion cue
a� = Acceleration in subscripted axis x, y, z = Axes of reference frame
B� = Input matrix x�� = Eigenvector
B� = Actuator buffer x� = State vector
C� = Output matrix Y� = Non-dimensional lateral force derivative
C� = Eigenmode cost function y� = Output vector
C� = Force or moment coefficient Z = Objective function
D� = Feedthrough matrix z = Modal response
D�� = Euclidean distance

∗MSc. student, Delft University of Technology, Faculty of Aerospace Engineering, Control & Simulation section, Kluyverweg 1, 2629HS Delft,
The Netherlands, e-mail: g.h.j.tillema@student.tudelft.nl
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I. Introduction
Full flight simulators are standalone devices to replicate all motions and forces as would be perceived by the pilot in an
aircraft. Ideally, the perceived motions and forces in the flight simulator are identical to the real aircraft. However,
where an aircraft has an (almost) infinite motion space, flight simulators have physical limitations.

The Motion Cueing Algorithm (MCA) has been developed to deal with these physical limits and is an algorithm between
the flight model (i.e., Equations of Motion (EOM)) and a motion platform [1]. An MCA ensures that the simulated
motion platform does not exceed its limits (e.g., actuator lengths).

The MCA was in the past only subjectively tuned by MCA-tuning experts, who tuned the variables of the algorithm until
the pilot was satisfied. The resulting performance was generally expressed in terms of fidelity, whereby high-fidelity
means a high match between simulator and aircraft. As this fidelity rating was subjective, resulting tuning variables
were different per pilot, but also dependent on the task and workload of the pilot [2].

The undesirability of only subjective evaluations was already recognized in the 1970s and improved objective evaluations
have been developed since, such as Sinacori [3], Schroeder [4] and Gouverneur [5].

These developments resulted in the current state-of-art method: the Objective Motion Cueing Test (OMCT) [6]. This
method has improved the tuning process and gives an objective and detailed picture of the performance of the MCA and
motion platform combined. This analysis is performed in the frequency domain and obtains the frequency response
function, which provides magnitude- and phase distortions introduced by the MCA and motion platform.

Despite the power of OMCT, this method also has its shortcomings, such as its sine-wave input signals not representing
realistic motion experienced during flight. Also vehicle dynamics are not evaluated in this test. Moreover, within
OMCT, each signal is studied in isolation, while aircraft motions are linked through the vehicle dynamics.

To tackle these shortcomings, the Control & Simulation section at the Faculty of Aerospace Engineering in TU Delft
has developed a novel objective evaluation method, the Eigenmode Distortion (EMD) [7]. The EMD method uses a
different approach to evaluate objective fidelity. Rather than analyzing in the frequency domain, this method investigates
distortions of motion cues imposed by the MCA in terms of eigenvectors, which represent the dynamic modes of a
vehicle linear model. This was achieved by combining linearized vehicle dynamics and a linearized MCA, into a
single combined linear time-invariant system. Initially, EMD was developed for and applied to rotorcraft simulators [8].
Recent work of Stoev et al. [9] has extended this to fixed-wing aircraft simulations applied to a linear model of the
Cessna Citation 500 for symmetric flight in combination with the Classical Washout Algorithm (CWA) [1] as the MCA.

The purpose of this study is to improve the EMD method, by incorporating a human perception model, which is referred
to as Perceptual Eigenmode Distortion (PEMD). With PEMD, contributions of individual motion cues can be better
identified in an eigenmode. In this paper, EMD is applied to a lateral model of the Cessna Citation 500 for asymmetrical
flight and the CWA is used as the MCA. Besides, a new automatic tuning approach is introduced and a pilot-in-the-loop
experiment is conducted on the SIMONA Research Simulator (SRS) [10] at the Delft University of Technology, which
evaluates the OMCT and PEMD with both subjective and objective metrics. The objective metric is designed as pilot
opinions in Stoev’s pilot-in-the-loop experiment were hampered by inconsistencies both between- and within subjects,
which underlined the need for objective results.

This paper is structured as follows; the EMD and its implementation to the lateral model of the Cessna Citation 500
is elaborated in Section II. The EMD pilot perception model addition is elaborated in Section III, yielding PEMD.
The PEMD analysis is used to derive a tuning algorithm in Section IV. The potential of PEMD is evaluated with an
experiment discussed in Section V. The results of this experiment are elaborated in Section VI. Lastly, a discussion,
recommendation and conclusion is given in Section VII, VIII and IX, respectively.
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II. Eigenmode Distortion

A. Methodology
Despite the power of OMCT, which is at the time of writing the state-of-the-art method for evaluating objective motion
cueing fidelity, the method has its shortcomings. OMCT captures the performance of the MCA and motion platform
combined, however the simulated vehicle dynamics are not included. Furthermore, the simulated response to each
signal is studied in isolation, while aircraft motions are linked through dynamics. It was shown that several intricate
interactions between aircraft- and MCA dynamics could therefore not be captured [8].

The EMD method, developed by Miletović [7], is an objective evaluation method to address these shortcomings. EMD
investigates the distortion of motion cues, imposed by the MCA, in terms of eigenmodes. Whereas eigenvalues provide
information about the nature of an eigenmode, eigenvectors provide information on how different states interact in each
eigenmode in terms of phase and magnitude. Moreover, these eigenvectors can be used to determine the MCA imposed
motion cue distortions by taking the difference between the eigenvectors of the aircraft model and the MCA distorted
equivalent.

To obtain these motion cue distortions, a combined linear model of the flight model (i.e., Equations of Motion (EOM))
and MCA is used. The linear model structure for the EOM in asymmetric flight is given in Equations 1 to 3. These
EOM describe the dynamic behaviour of the aircraft and represent motion as experienced by the pilot in the aircraft.

ÛxEOM = AEOM xEOM + BEOM uEOM (1)

xEOM =
[
v φ p r

]T
(2)

uEOM =
[
δa δr

]T
(3)

Apart from the linear EOM, a linear model of the MCA is required. While the xEOM state vector is known from flight
dynamics, the formulation of xMCA depends on the used MCA. Equation 4 formulates a generic linear MCA structure.

ÛxMCA = AMCA xMCA + BMCA uMCA (4)

uMCA =
[

f EOM
yp

pEOM rEOM

]T
(5)

A system coupling, indicated by �COUP , is designed to combine the systems in the form of Equations 6 to 8.

ÛxEMD = AEMD xEMD + BEMD uEMD →
[
ÛxEOM

ÛxMCA

]
=

[
AEOM 0
ACOUP AMCA

] [
xEOM

xMCA

]
+

[
BEOM

BCOUP

]
uEOM (6)

yEMD = CEMD xEMD + DEMD uEMD →
[
yEOM

yMCA

]
=

[
CEOM 0
CCOUP CMCA

] [
xEOM

xMCA

]
+

[
DEOM

DCOUP

]
uEOM (7)

yEMD =
[

f EOM
yp

pEOM rEOM f MCA
yp

pMCA rMCA

]T
(8)

The output vector yEMD contains the motion cues as experienced by the pilot in the aircraft and in the simulator,
indicated by �EOM and �MCA , respectively. It must be noted that the motion cues for any trajectory can be compared,
but to reduce the dependence on specific trajectories only inherent eigenmodes are used.

This linear system is used for the EMD analysis. First, eigenvectors of the state matrix AEMD are determined. To obtain
eigenvectors expressed as pilot experienced quantities, the eigenvectors of the state matrix are multiplied with the output
matrix CEMD . With these eigenvectors, the imposed motion cue distortion can be determined by taking the difference
between the eigenvector of the aircraft model and the coupled system, e.g., compare the individual (aircraft) components
of the eigenvector with their distorted (simulator) equivalent.
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B. Linearized Flight Model
In this paper, the EMD is applied to an asymmetrical flight condition. Equation 9 shows the dimensional asymmetric
EOM, which can be derived from flight dynamics. After some rewriting, these equations can be expressed in state-space
form presented in Equations 1 to 3.

W cos θ0φ + Yvv + YÛv Ûv + Ypp + Yrr + Yδa δa + Yδr δr = m(Ûv + rV0)
Lvv + Lpp + Lrr + Lδa δa + Lδr δr = Ixx Ûp − Ixz Ûr

Nvv + N Ûv Ûv + Npp + Nrr + Nδa δa + Nδr δr = Izz Ûr − Ixz Ûp
Ûψ = r

cosθ0

Ûφ = p + r tan θ0

(9)

Equation 9 is derived in the stability reference frame and assumes a steady, straight and symmetric flight condition with
a flat non-rotating Earth. The CWA requires rotational rates and specific forces as input, which must therefore be the
output of the EOM state-space system. The roll- and yaw rate are available as states, but an expression for sway specific
force needs to be formulated.

Specific force is defined as the non-gravitational force per unit mass [1], which implies that the gravitational component
needs to be removed from the lateral acceleration.

f bycg = ab
ycg
− g cos θ sin φ

= Ûv + ru − pw − g cos θ sin φ
(10)

The sway specific force, shown in Equation 10, is defined in the body reference frame, as required for the CWA. As the
EOM in Equation 9 are defined in the stability reference frame, a transformation from stability to body frame is required.
It must be mentioned that this transformation is not required if the EOM are defined in body frame or the MCA uses the
stability frame as a reference.

The next step is to express the sway specific force at the pilot station. This transformation becomes increasingly
important for larger aircraft. For example, for a larger aircraft, the distance between the centre of gravity and the pilot
station is larger. This increased distance acts as a moment arm, giving additional experienced specific forces due to
rotational rates and accelerations. For light aircraft, the pilot is sitting close to the centre of gravity, which implies
that this transformation is not very important. However, for the Cessna Citation 500 (the aircraft used in this paper)
this distance is not negligible. The transformation from centre of gravity to pilot station is given by Equation 11. For
the Cessna Citation 500, the moment arms are lx = 3.2 [m] and lz = 1.0 [m], for horizontal and vertical distance,
respectively [11].

fyp = f bycg + Ûplz + Ûrlx (11)

To construct the state-space output- and feedthrough matrices, CEOM and DEOM , respectively, linearization is required.
Equation 12 shows the result of this linearization. Here, subscript 0 denotes the trim point.

fyp = Ûv − gφ − u0α0p + u0r + lz Ûp + lx Ûr (12)

As a linear expression for sway specific force is derived, the yEOM can be constructed. Roll- and yaw rates are directly
available as states in the state-space, and the sway specific force can be constructed as a combination of states and inputs.
This concludes the derivation of the state-space output- and feedthrough matrices, where yEOM is the resulting output
vector, shown in Equations 7 and 8.

C. Linearized MCA
The MCA yields positions and orientations to control the motion platform. To find the motion cue distortions caused
by the MCA, the inputs and outputs need to be related to each other. Specific forces and rotational rates, defined in
body reference frame, are inputs to the Classical Washout Algorithm (CWA), which is the MCA used in this study. The
outputs are modified to output specific forces and rotational rates instead of positions and orientations, Figure 1 depicts
this modification for the lateral CWA.
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Fig. 1 The Classical Washout Algorithm Adapted for Lateral Motions [1]

The CWA is the MCA used in this paper and is constructed for lateral motions, so longitudinal channels are removed.
As of nonlinearities, this CWA is linearized for the EMD analysis. Besides, a small angle approximation is used for
the transformations, and the rate limiter in the tilt-coordination channel is removed. After linearization, this gives the
state-space system- and input matrices, AMCA and BMCA , respectively.

The state-space output matrix (CMCA ) and feedthrough matrix (DMCA ) are formulated to output sway specific force,
roll- and yaw rate. The resulting output vector is yMCA , shown in Equations 7 and 8.

D. System Coupling
To make EMD analysis possible, linear models of the EOM and MCA are combined into a single state-space system.
This is possible as the outputs of the EOM are inputs to the MCA (Figure 2). So-called coupling matrices are defined to
express the MCA inputs as EOM states and inputs. For this, BMCA is reformulated as ACOUP and BCOUP , and DMCA

is reformulated as CCOUP and DCOUP . Finally, this gives a state-space system as in Equations 6 to 8.

Fig. 2 EMD System Coupling

E. Eigenvector Distortion Analysis
When analyzing aircraft eigenmodes, eigenvalues are usually used, which provide information about the nature (i.e.,
periodic or aperiodic), timing and decay of a mode. For example, the Dutch roll has two complex poles, meaning that it
is a periodic mode, whereas the spiral mode has one real pole close to the imaginary axis, meaning that it is an aperiodic
mode of slow nature.

AEMD xEMD

i = λEMD

i xEMD

i (13)

Vx =
[
xEMD

1 · · · xEMD
n

]
(14)

Additionally, eigenmodes can be analyzed using eigenvectors, which provide information on how the components of
xEMD interact in each eigenmode. Equation 13 presents the formulation for determining the ith eigenvector and its

5



associated eigenvalue for an individual mode. Eigenvectors of different modes can be combined in a matrix, Vx , see
Equation 14. These eigenvectors can be used to determine motion cue distortions. First, eigenvectors of the AEMD

matrix are determined, which are expressed in xEMD states. To obtain the motion cue distortions, these eigenvectors
are multiplied with the output matrix, CEMD , Equation 15.

Vy = CEMD Vx (15)

The resulting eigenvectors, expressed in aircraft and simulator cues, are shown in Figure 3 for the lateral model of the
Cessna Citation 500 in cruise configuration, Table 3, and representative MCA settings. In Figure 3, the solid lines
represent the motion cues as experienced by the pilot in the actual aircraft. Furthermore, the dashed lines represent the
motion cues as experienced in the flight simulator. The magnitude- and phase distortions between the solid- and dashed
lines are caused by the MCA and form the basis of the EMD method.

It must be stated that a comparison in magnitudes between specific forces and rotational rates has to take into account
their different units. For example, the magnitude of the sway specific force components is larger than that of the roll rate.
However, it would be wrong to conclude that the sway specific force is thus a more dominant motion cue in this mode.
This is also the motivation for the EMD method extension described in Section III.

The magnitude distortion is defined as the ratio between the magnitudes of �EOM and �MCA components. Additionally,
phase distortion is defined as the angle between these components. If a complex eigenvector that corresponds to the
positive conjugate eigenvalue is visualized, counter-clockwise and clockwise phase distortion indicates phase lead and
lag between the two components with respect to the actual aircraft, respectively.

Figure 3a depicts eigenvectors corresponding to the Dutch roll. The following observations can be made; sway
specific force, f MCA

yp
, has a magnitude distortion of | fy | =

| f MCA
yp |
| f EOM
yp | = 0.64 and a phase distortion of ∠ fy = 16.3° lead

(counter-clockwise) for this tuning. Furthermore, the roll rate, pMCA , has a magnitude distortion of |p| = 0.62 and phase
distortion of ∠p = 18.1° lead. Finally, the yaw rate, rMCA , has a magnitude distortion of |r | = 0.69 and phase distortion
of ∠r = 24.5° lead. These observations are supported by analyzing the time-domain response. Figure 4 illustrates the
time-traces to a zero-input response, in which 2Re(vi) is the initial condition. In here, vi is the eigenmode-associated
eigenvector, i.e., the Dutch roll eigenvector is used to excite the Dutch roll eigenmode.

These distortions can be compared to the distortions found by OMCT at the frequency of the Dutch roll eigenmode.
The natural frequency of the Dutch roll is 3.2738 rad/s. The nearest OMCT test frequency is 3.9810 rad/s and gives
as distortions; for sway specific force (test 8) | fy | = 0.75 and ∠ fy = 29.7° lead, for roll rate (test 3) |p| = 0.68 and
∠p = 19.9° lead and for raw rate (test 5) |r | = 0.68 and ∠r = 19.9° lead. Especially the coupled sway and roll channels
show relatively large differences between EMD and OMCT results, underlining the value of using eigenmodes instead
of isolated sinusoids.

Magnitude distortions for the other eigenmodes, using EMD, are shown in Table 1. As the aperiodic roll and spiral
mode are both aperiodic modes, only a magnitude distortion and possibly a sign change can be obtained. Interesting to
observe is the large magnitude distortion of the roll- and yaw rate for the spiral mode. The time-domain representation
of the spiral mode (Figure 6) depicts these motion cues as essentially zero. Which is explained by the eigenvalue being
close to the imaginary axis, e.g., λsm = −0.0018, and the high-pass rotation channels that strongly attenuate these cues.

Aircraft motions can be described in the time domain by a continuously varying combination of eigenmodes. The
influence of a particular mode at a particular time can be expressed by the system’s modal response. The modal
coordinate transformation, which can be computed as z(t) = V−1

x xEMD (t), yields complex variables representing the
system’s modal response in the time domain. The Mode Participation Factor (MPF) is the absolute value of this complex
variable z and reveals how each mode participates at each time point in a particular manoeuvre [12] and also depends
on pilot inputs, e.g. if the pilot is exciting a particular mode, then the MPF yield a larger participation of that particular
mode. Moreover, MPFs have been used to identify dominant modes in a particular manoeuvre or tasks [7].

MPFs are useful to identify important modes, e.g., identify which modes are excited in a particular manoeuvre. In
the experiment performed by Stoev et al. [9], the short period eigenmode was excited by the pilot as illustrated by the
dominant MPF. The short period is a desired mode necessary for performing manoeuvres, such as pitch captures, and
is easily excited. On the other hand, the Dutch roll is an unpleasant mode and usually damped with a yaw damper.
Therefore, this study differs in its use of the MPF from the earlier study performed by Stoev et al. [9].
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(a) Dutch Roll
(λdr = −0.2778 ± 3.2616i)

(b) Aperiodic Roll
(λar = −4.0740)

(c) Spiral Mode
(λsm = −0.0018)

Fig. 3 Example of Eigenvector Distortion Plots

Fig. 4 Time Histories of Dutch Roll Eigenmode Excitation

Fig. 5 Time Histories of Aperiodic Roll Eigenmode Excitation

Fig. 6 Time Histories of Aperiodic Spiral Mode Excitation
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Table 1 Example Magnitude- and Phase Distortions

Dutch Roll Aperiodic Roll Spiral Mode
| fy | = 0.64 ∠ fy = 16.3° lead | fy | = 1.59 | fy | = 0.80
|p| = 0.62 ∠p = 18.1° lead |p| = 0.76 |p| = 0.003
|r | = 0.69 ∠r = 24.5° lead |r | = 1.02 |r | = 0.00

III. Perceptual Eigenmode Distortion
A. Methodology
The EMD method was introduced to overcome the shortcomings of the OMCT method. For this, a different method is
used to perform the distortion analysis, in which motion cue distortions are investigated using eigenvectors. Yet this
method has its limitations, the resulting components of the eigenvectors for specific forces and rotational rates cannot
easily be compared to one-another because of their different units. Which implies that a dominant motion cue is not
apparent by analyzing and comparing the component magnitudes.

The Perceptual Eigenmode Distortion (PEMD) introduced in this paper is an extension to the EMD analysis, in which
the EMD is extended with a perception model. Initially, the PEMD had two additions. The derived eigenvectors assume
a vestibular system that perceives motion cues one-to-one, whereas an actual vestibular system introduces an additional
magnitude- and phase distortion. The first addition was to include a linear model of the vestibular system. However, as
the EOM outputs, yEOM , and MCA outputs, yMCA , pass through the same vestibular system, their relative magnitude-
and phase distortions remain the same.

In the derivation, this addition increased the complexity as the number of states almost doubled. A critical point is that
the vestibular system model is an idealization and simplification of an actual vestibular system. As the limitation of the
EMD can also be solved without this addition, the linear vestibular system addition is left out.

The second addition is to re-express the output vector in terms of motion perception thresholds instead of engineering
units. The threshold for motion perception is the value that motion is not perceived by humans anymore [13]. After
re-expressing the output vector, all motion cues have the same unit, which is called the threshold unit and is dimensionless.
When motion cues in an eigenmode have the same magnitude, these cues have the same chance of exceeding its threshold
when exciting that mode with a certain magnitude. As the output vector is re-expressed, the output matrix is also
changed (CEMD → CPEMD ). The same eigenvector analysis is performed, using the new output matrix, which results
in eigenvectors all expressed in threshold units. As the eigenvectors now have the same units the components of the
eigenvectors can be compared to one-another and a dominant motion cue can be identified.

B. Perception Model Extension
The problem with using perception thresholds is that these vary per person and depend on factors such as workload and
task [2]. Furthermore, these thresholds tend to vary per frequency [14] and are affected by motion in different directions.
This paper attempts to incorporate perception thresholds in the eigenvector analysis. Developing a complete threshold
model would be too ambitious as this stage. Therefore, the perception thresholds used are chosen as constants.

The threshold values used are obtained from a recent simulator study [13]. These values are, however, not constant with
frequency and therefore, average values are used [14]. The used threshold values for sway specific force, roll- and yaw
rate are, f̌y = 0.0743 [m/s2], p̌ = 0.00521 [rad/s] and ř = 0.0166 [rad/s], respectively.

The reformulated output vector, Equation 17, is obtained by dividing the elements of the CEMD matrix by its associated
threshold value, which is illustrated in Equation 16. In here, the symbol ∨ indicates that threshold units are used. As the
outputs are scaled to the same unit, the different output states can be compared in magnitude.

CPEMD =



CEMD (1)/ f̌y
CEMD (2)/p̌
CEMD (3)/ř
CEMD (4)/ f̌y
CEMD (5)/p̌
CEMD (6)/ř



(16)
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y̌PEMD =
[

f̌ EOM
yp

p̌EOM řEOM f̌ MCA
yp

p̌MCA řMCA

]T
(17)

C. Eigenvector Distortion Analysis
Now, the eigenvector analysis is performed for PEMD in the same way as for EMD. First, the eigenvectors of the AEMD

matrix are determined, which are expressed in xEMD states. To obtain the motion cue distortions expressed in threshold
units, the eigenvectors are multiplied with the new output matrix, CPEMD :

Vy̌ = CPEMD Vx (18)

These new eigenvectors are used to determine the motion cue distortions. The individual magnitude- and phase distortions
are identical to the EMD’s, as each relative distortion remains unchanged. Figure 7 shows the new eigenvectors.

As all components of the eigenvectors are now expressed in the same unit, the magnitudes can be compared to
one-another. Therefore the following observations can be made; for the Dutch roll, Figure 7a, roll rate is the dominant
motion cue. Also, sway specific force and yaw rate are about equal. For the aperiodic roll, Figure 7b, roll rate is the
dominant motion cue and yaw rate is least dominant. For the spiral mode, Figure 7c, yaw rate is the most dominant
motion cue. Yet, this motion cue is not simulated as depicted by the zero magnitude of řMCA . Furthermore, the
simulated roll rate is negligible.

It must be noted that magnitudes of the eigenvectors in Figure 7 vary in time, e.g., the magnitudes gets smaller as the
mode decays. Therefore, the axes contain no numbers. However, the relative magnitudes and phase remain always the
same over time for a given mode and flight condition.

(a) Dutch Roll (b) Aperiodic Roll (c) Spiral Mode

Fig. 7 Example of Eigenvector Distortion Plots

It is hypothesized that a larger eigenvector component magnitude implies a larger contribution of a motion cue in an
eigenmode. It must be stated that this contribution depends on the flight condition. In this paper, the Cessna Citation
500 in cruise condition is used, as defined in Table 3. The contribution of each motion cue per eigenmode for a given
flight condition, which is defined as e.g., W� = |�̌EOM |/

(
| f̌ EOM
yp

| + | p̌EOM | + |řEOM |
)
for a given eigenmode, is given

in Table 2. This contribution can be used as a weighting factor for tuning, as described in next section.

Table 2 Eigenmode Motion Cue Contribution for Flight Condition Table 3

fy p r
Dutch Roll WDR

fy
= 0.188 WDR

p = 0.635 WDR
r = 0.177

Aperiodic Roll W AR
fy
= 0.337 W AR

p = 0.651 W AR
r = 0.013

Spiral Mode WSM
fy
= 0.103 WSM

p = 0.078 WSM
r = 0.819
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IV. Tuning Algorithm
In the latest OMCT evaluation method, magnitude- and phase distortions are evaluated separately. The study done by
De Ridder and Roza [15] uses OMCT for automatically tuning the MCA parameters. The work of Fu [16] gave another
perspective on formulating this objective function.

In the study done by Fu [16] it was found that a change of dynamics in control loading is not perceived by humans
when the change in eigenvalue that occurs fall within a threshold region in the complex plane. For control loading, this
threshold region is a square. As a result, it does not matter whether it is a magnitude distortion and/or phase distortion
As long as the distortion is within this threshold region, it is not perceived by the human operator. Only a change
outside this region is detected by the human operator. Although Fu [16] considered the system’s eigenvalue and PEMD
is focused on the system’s eigenvector, the similarity inspired a new way of defining an objective function for tuning.

For PEMD, rather than optimizing only the magnitude distortion or phase distortion, an objective function is formulated
in which the Euclidean distance between the �EOM and �MCA components is minimized. Figure 8 illustrates this
Euclidean distance, D�� with the top index denoting the mode and the bottom index the cue. Equation 19 shows the
Euclidean distance for sway specific force of the Dutch roll. The p indicates the MCA parameters that can be varied to
change this distance. The other distances are formulated similarly.

DDR
fy
(p) = | | f̌ EOM

yp
− f̌ MCA

yp
(p)| |DR (19)

Next, the contributions of each motion cue per eigenmode, from Table 2, is added. For example, in Figure 8a the
magnitude of roll rate, p̌EOM , is larger than that of the sway specific force, f̌ EOM

yp
, and yaw rate, řEOM . Consequently,

it is more important to minimize the Euclidean distance for roll rate than for sway specific force and yaw rate. By
multiplying the individual contributions (weights), W�� , with its associated Euclidean distance, this effect is achieved.
Equations 20 to 22 show the cost functions, C�, for Dutch roll, aperiodic roll and spiral mode, respectively.

CDR(p) = WDR
fy
· DDR

fy
(p) +WDR

p · DDR
p (p) +WDR

r · DDR
r (p) (20)

CAR(p) = W AR
fy
· DAR

fy
(p) +W AR

p · DAR
p (p) +W AR

r · DAR
r (p) (21)

CSM (p) = WSM
fy
· DSM

fy
(p) +WSM

p · DSM
p (p) +WSM

r · DSM
r (p) (22)

Finally, an objective function can be formulated. The objective function, as in Equation 23, minimizes the Euclidean
distance for the eigenvectors in the selected eigenmodes. Eigenmodes can be prioritized by changing the values of α, β
and γ, where α + β + γ = 1 and 0 ≤ α, β, γ ≤ 1.

min : Z(p) = α · CDR(p) + β · CAR(p) + γ · CSM (p) (23)

Ideally, all Euclidean distances would be zero. However, most full flight simulators have motion limitations. The motion
is limited by the actuators driving the motion platform. Apart from the actuator lengths, the maximum velocity and
acceleration it can achieve is limited. Therefore, actuator constraints are added. Equations 24 to 26 show the actuator
constraints in length, velocity and acceleration, respectively.

lmin + Bl ≤ lresponse(p,m) ≤ lmax − Bu (24)
|vresponse(p,m)|max ≤ vmax (25)
|aresponse(p,m)|max ≤ amax (26)

In here, m represents a representative manoeuvre, which can be used to ensure that the available motion space is not
exceeded. Buffers can be introduced to further restrict the available motion space, i.e., the lower- and upper buffer
distances (Bl and Bu , respectively) can be increased.

The formulation of the tuning algorithm allows for great flexibility. The user can specify which eigenmode is tuned.
Furthermore, different representative manoeuvres can be used to optimize for different training tasks. Also, the actuator
buffer distance in Equation 24 can be used to limit the motion space. A similar tuning algorithm can also be derived for
a linear vehicle model in symmetric flight.
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One approach is to use genetic algorithms to implement this automatic tuning algorithm. Genetic algorithms are
stochastic global search and optimization methods which apply the principle of natural biological evolution through
survival of the fittest [17]. In this study, the automatic tuning algorithm was implemented in Matlab/Simulink using the
built-in genetic algorithm, i.e., the ga function.

(a) (b)

Fig. 8 Euclidean Distance

V. Pilot-in-the-Loop Experiment
To investigate the potential of the PEMD, the automatic tuning algorithm and validate the resulting motion cueing
solution, a pilot-in-the-loop experiment was performed with the TU Delft’s SIMONA Research Simulator [10]. The
simulated aircraft was a nonlinear model of the Cessna Citation 500 business jet. Three different MCA configurations
were used in the experiment, which were compared in a double-blind pairwise pattern and with an objective performance
metric. In total seven pilots participated in the experiment. After a discussion of the three MCA configurations, some
general information of the participants is given, which is followed by a review of the apparatus and experiment task.
Finally, hypotheses and corresponding dependent measures are given.

A. Independent Variables: MCA Configurations
This study applied the tuning algorithm to a lateral model of the Cessna Citation 500 in cruise configuration, Table
3. The lateral model has three eigenmodes, namely: Dutch roll, aperiodic roll and spiral mode. Ideally, the MCA
parameters are optimized for all eigenmodes concurrently. Yet, only the Dutch roll and aperiodic roll were selected for
tuning the configurations. The spiral mode was left out as motion simulators have a limited motion space and are thus
better in simulating high-frequency motions than low-frequency [1]. Furthermore, the Dutch roll and aperiodic roll can
be excited with a small deviation from the trim conditions, whereas large deviations are required for the spiral mode.

This paper analyzed a total of three CWA configurations. The first configuration is the baseline configuration, B, which
was separately tuned by an MCA tuning expert and was based on experience and rules of thumb. Additionally, this
configuration satisfied the latest OMCT criteria, specified in ICAO - Manual of Criteria for the Qualification of Flight
Simulation Training Devices [6]. The second configuration, O, was tuned to only satisfy the OMCT tests. The last
configuration, P, was tuned according to the tuning algorithm of Section IV. For this, the spiral mode was excluded.
Pilot feedback from previous experiments indicated that simultaneous tuning could improve the realism of motion
cues [9], and therefore α = β = 0.5 was chosen. For all configurations, a representative Dutch roll manoeuvre, in
which the Dutch roll was excited by the pilot with a repeated rudder input, was simulated to ensure that the found MCA
settings did not exceed the available motion space. It is important to note that m, in Equations 24 to 26, represent
the time history of this representative manoeuvre. Tables 4 and 5 present the resulting CWA parameter settings and
distortions, respectively. As the yaw cue was the least dominant motion cue for both the Dutch roll and aperiodic roll,
all configurations have identical MCA parameters for yaw. These yaw parameters were tuned to satisfy the OMCT yaw
due to yaw test, i.e., test 5.
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Table 3 Asymmetric Stability and Control Derivatives for Cessna Citation 500, condition: Cruise

CYβ = −0.0750 Clβ = −0.1061 Cnβ = 0.1305 V = 160.3 [m/s] CL = 0.2239 [−]
CYp = −0.0109 Clp = −0.5209 Cnp = −0.0672 h = 5000 [m] ρ = 0.7361 [kg/m3]
CYr = 0.8499 Clr = −0.1522 Cnr = −0.2089 S = 24.2 [m2] K2

XX = 0.019 [−]
CYδa= −0.0400 Clδa = −0.1848 Cnδa= −0.0140 m = 5207 [kg] K2

ZZ = 0.042 [−]
CYδr = 0.2300 Clδr = 0.0358 Cnδr = −0.0947 b = 13.36 [m] KXZ = 0.002 [−]

For all configurations, the eigenvector distortions are depicted in Figures 9 to 11 and quantified in Table 5. From
inspection, it can be observed that configurations B and O have rather similar distortions. For the Dutch roll, both
configurations preserve a rather low phase distortion for fy and p, e.g., a maximum of 14.8° for fy . For aperiodic roll,
both configurations exhibit reasonable magnitude distortions of no more than 17%. However, both contain a sign change
for the roll cue, i.e., the roll cue is simulated in the opposite direction in this mode. Configuration P has the lowest
phase distortion in fy for the Dutch roll. The p has a larger phase distortion but almost no magnitude distortion, making
the Euclidean distance smaller than for the B- and O configuration. From Figure 11b it can be observed that the fy and
p motion cues for the aperiodic roll exactly match the aircraft dynamics.

The eigenvalues for Dutch roll, aperiodic roll and spiral mode, shown in Equation 27, aid in the understanding of how the
tuning algorithm behaves. These eigenvalues provide information about the nature, timing and decay of an eigenmode.
As the Dutch roll eigenvalue is closer to the imaginary axis than the eigenvalue of the aperiodic roll, the decay is slower.
To cue the Dutch roll more realistically, the motion platform would require more motion space. It must be stated that
the motion space, in Equations 24 to 26 are configured such that the available motion space is comparable to the used
motion space of configurations B and O. Otherwise, pilots can identify the P configuration by only focusing on the
magnitude of the motion. Furthermore, would the pilot make a control error, the simulator would automatically run to
its limits if the P configuration was tuned to use all available motion space.

λdr = −0.2778 ± 3.2616i λar = −4.0740 λsm = −0.0018 (27)

Offline OMCT tests were applied to the three MCA configurations. In here, motion platform dynamics were excluded
[18]. The results of these tests are depicted in Figure 12. The configurations B and O complied with the fidelity
boundaries defined by ICAO 9625 [6]. As this is an offline test, it must be noted that for example, the outliers in Figure
12c will likely be within the boundaries due to an additional lag of the actuator dynamics [18].

The frequency response for the P configuration performed the worst on the OMCT test. As can be observed, the
P configuration lies slightly outside the fidelity boundary for the second half and first half of the roll test 3 and 4,
respectively. Furthermore, it partly lies outside the fidelity boundary of the sway test 8.

Table 4 Classical Washout Algorithm Filter Parameters for all Configurations used in the Experiment

K fy ωn fy
ωb fy

ζfy ωnt ζt Kp ωnp ζp Kr ωnr ζr

[−] [rad/s] [rad/s] [−] [rad/s] [−] [−] [rad/s] [−] [−] [rad/s] [−]
B 0.70 0.80 0.00 1.00 2.00 1.00 0.70 0.80 1.00 0.70 0.80 1.00
O 0.60 1.00 0.00 1.00 2.00 1.00 0.60 0.80 0.80 0.70 0.80 1.00
P 0.60 0.75 0.00 0.911 1.50 0.80 1.067 0.928 0.70 0.70 0.80 1.00

Table 5 Magnitude- and Phase Distortions for all CWA Configurations

Dutch Roll Aperiodic Roll
| fy | ∠ fy [°] |p| ∠p [°] |r | ∠r [°] | fy | |p| |r |

B 0.535 13.077 lead 0.651 3.076 lead 0.687 27.929 lead 0.921 0.911 1.084
O 0.393 14.768 lead 0.599 0.976 lag 0.687 27.929 lead 0.836 0.882 1.084
P 0.472 5.089 lag 1.010 15.305 lead 0.687 27.929 lead 1.000 1.000 1.084

12



(a) (b)

Fig. 9 Configuration B

(a) (b)

Fig. 10 Configuration O

(a) (b)

Fig. 11 Configuration P
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(a) Test 3 (b) Test 4

(c) Test 5

(d) Test 8 (e) Test 9

Fig. 12 Objective Motion Cueing Test Results for all Configurations
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B. Participants
Seven pilots participated in the experiment and performed a series of pair-wise comparisons between the three MCA
configurations. However, due to problems with the visual system the original Pilot 3 was removed and replaced in the
analysis by Pilot 7. Therefore, from now on only six pilots are considered. The order, in which the different motion
conditions were evaluated, was designed using a Latin Square distribution. All participating pilots, except Pilot 5, had
flying experience with the Cessna Citation 550 aircraft. Pilots 1 to 6 had, at the time of participating, approximately
2,400, 1,300, 3,900, 5,800, 12,600 and 13,000 hours of flight experience, respectively. Also, Pilots 1 and 2 indicated
to operate in general aviation, Pilots 3 and 4 indicated to operate in general- and civil aviation, and Pilots 5 and 6
indicated to operate in civil aviation. Furthermore, all pilots, except Pilot 1, deemed to have experience in performing
motion simulation experiments. Lastly, all participating pilots were men. This experiment was approved by the Human
Research Ethics Committee of the TU Delft, and informed consent was obtained from each pilot.

Table 6 Latin Square Matrix of the Experiment Conditions for all Pilots

Pilot Conditions
1 O - P O - B P - B B - P B - O P - O
2 P - B O - P O - B B - O P - O B - P
3∗ O - B P - B O - P P - O B - P B - O
4 B - P B - O P - O O - P O - B P - B
5 B - O P - O B - P P - B O - P O - B
6

Training

P - O B - P B - O

N
o
M
ot
io
n

O - B P - B O - P

N
o
M
ot
io
n

∗Pilot 3 has been replaced due to problems with the visual system.

C. Apparatus
The SIMONA Research Simulator (SRS) [10], features a hydraulic Steward motion platform of six degrees of freedom.
An impression of the SRS is shown in Figure 13a. It has a collimated display system with a field-of-view of 180° and
40°, in horizontal- and vertical direction, respectively. Three projectors, mounted on top of the simulator, are used as
visual system and have a refresh rate of 120 Hz. FlightGear Flight Simulator was used to render the outside visuals. The
flight instruments presented to the pilot, Figure 13b, were rendered using OpenGL. To mask the noise coming from the
motion platform, aircraft engine noise was played over the headset.

The simulated aircraft was a nonlinear model of the Cessna Citation 500 business jet. It was trimmed at an altitude
of 5,000 m with a weight of 5,207 kg and velocities VT AS = 160 m/s and VI AS = 245 kts. The aircraft was in cruise
configuration with flaps and gear UP and thrust at 94.8% Fan RPM. It was controlled with the control column and
rudder pedals. Finally, the yaw damper and the longitudinal CWA were disabled, so lateral motion cues were clearly felt
while longitudinal motion cues were not simulated.

(a) SIMONA Research Simulator (b) Flight Instruments

Fig. 13 Flight Simulator
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D. Experiment Task
In the experiment, a series of pair-wise comparisons between the three MCA configurations were performed on the
SRS as a subjective evaluation. This format was based on the experiment by Stoev et al. [9], which received positive
feedback. The pilot was instructed to compare pairs of different MCA configurations and select a winner for each
pair, which corresponds to the configuration that resembles real flight most realistically. Due to the subtle differences
between configurations and recommendations of Stoev et al. [9], the pilot was asked to give a confidence level ranging
from 0 to 2, where; 0 is no confidence, 1 is normal confidence and 2 is high confidence. With a confidence level of 0,
the pair-wise comparison is not taken into account.

Throughout each run, the Dutch roll eigenmode was excited externally with a specially-designed gust of semi-random
amplitude and direction. The gust was a single sine-shaped pulse∗ with its frequency matching the Dutch roll eigenmode
and was injected, every 10 seconds, as a side-slip angle. With this gust, the Dutch roll was excited. However, the
aperiodic roll was also excited slightly. Within each evaluated pair, one run lasted for 130 seconds and consisted of a
passive- and active part. After 10 seconds, the Dutch roll was excited every 10 seconds for 12 times.

The first 6 times constitute the passive part, in which the pilot was not allowed to touch the controls. Here the pilot gets
acquainted with the motion signature and natural response of the aircraft. The last 6 times constitute the active part, in
which the pilot was instructed to suppress the Dutch roll eigenmode at the moment the aircraft was excited. As the
aircraft was specially trimmed for the flight condition, as in Table 3, the pilot was instructed to minimize all altitude
and heading deviations with respect to the altitude and heading after the passive part. In here the pilot was allowed to
use their preferred strategy, i.e., using rudder and/or aileron. As the aircraft was trimmed, the altitude and heading
differences between before and after the passive part were negligible.

Besides the 6 pair-wise comparisons, two additional runs were performed and served as a baseline. The aircraft
configuration was exactly the same but the MCA was disabled, so the motion platform remained at its neutral position.
These runs contained only an active part, which lasted for 130 seconds instead of 60. One of these runs was after the
third pair and one after the sixth. In here, no preferred configuration had to be stated, as this single run was only used to
gather reference performance data.

Training was similar to the experiment performed by Stoev et al. [9] and lasted approximately 20 minutes for each pilot,
during which the pilot flew all the MCA configurations twice in randomized order based on the Latin Square matrix.
Each training run lasted 130 seconds, during which the pilot can practice to suppress the Dutch roll, as well as obtaining
a feeling of the aircraft motion signature. Including briefing and training, the experiment lasted for approximately 1.5
hours.

E. Dependent Measures
The main recorded variables are the preferred MCA configurations in each evaluated pair, i.e., subjective choice, together
with a confidence level ranging from 0 to 2. The preferred configuration is the configuration which represents the
motion cues most realistically.

The influence of motion parameters on performance is tested by determining the Dutch roll suppression performances
for each pilot. The Dutch roll MPF’s are used for this purpose. Given an external Dutch roll excitation, the dashed line
in Figure 14 illustrates the aircraft’s natural response, i.e., without pilot input. In the active part, the pilot was instructed
to suppress the Dutch roll, giving the actual aircraft response, illustrated by the solid line. Would the actual response
lie below the natural response, then this is identified as positive performance (P+), indicated in green, i.e., green area
integrated over time. Contrarily, would the actual response lie above the natural response, then this is identified as
negative performance (P−), indicated in red, i.e., red area integrated over time.

For every 10 seconds, in the active part, the performance P10s is calculated using Equation 28. In here, Pn is the natural
response integrated over time. Would the performance be greater than 0, the pilot has a positive performance and has a
better Dutch roll suppression than the natural response. Contrarily, would the performance be lower than 0, the pilot has

∗Which looks like: βgust =
A
2 cos(ωDR · t −π)+ A

2 ,
[
0, 2π

ωDR

]
, where: A andωDR are the amplitude and Dutch roll frequency, respectively.
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Fig. 14 Visualization of Dutch Roll Suppression Performance

negative performance and the natural response is better than the actual response. To calculate this performance, the
aircraft states and pilot inputs are recorded.

P10s =
P+ − P−

Pn
· 100% (28)

F. Hypotheses
1) It was hypothesized that the PEMD tuned configuration was preferred over the OMCT and baseline tuned

configurations, for an aircraft which was excited in the Dutch roll. This was hypothesized as the aircraft dynamics
were taken into account during the PEMD tuning process. This hypothesis was rejected if the PEMD tuned
configuration received a lower overall score than the OMCT and/or baseline tuned configuration.

2) It was hypothesized that the pilot had a better performance in suppressing the Dutch roll eigenmode with the PEMD
tuned configuration than with the OMCT and baseline tuned configurations. This hypothesis was rejected if no
significant difference was found, with α = 0.05.

VI. Results
Pilot preference for the different motion configurations is analyzed through the results of all pair-wise comparisons.
Figure 15 presents the results of all pair-wise comparisons evaluated by all pilots. In here, the bar height represents
the number of times a configuration has been preferred, multiplied with the associated confidence level (0, 1 or 2).
Furthermore, each pilot is visualized by a different color. Additionally, the raw data are presented in the appendix.

Fig. 15 Results of Pair-wise Comparisons for Evaluated Pairs (See Appendix for Raw Data)

As every pair is evaluated twice per pilot, e.g., B-O and O-B, within-pair consistency is present when a pilot prefers the
same configuration in both evaluations. Analyzing Figure 15 reveals that Pilot 2 has a within-pair inconsistency in pair
B-O, Pilot 5 in pair O-P, and Pilot 6 in pairs B-O and B-P. Not visible from the figure is the number of times that a
confidence level of 0 is given. In total, pair B-O received four times a confidence level of 0, twice by Pilot 1 and 4.
Additionally, pair B-P received once a confidence level of 0 by Pilot 4, and pair O-P once by Pilot 3.

Statistical modelling is used to make a data-based ranking between the three different configurations. For this, data are fit
to a Bradley-Terry pattern model. The Bradley-Terry model is chosen as this model is popular for pair-wise comparisons
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of highly dependent data [19]. A Matlab implementation∗, which uses the Newton-Raphson method, is used to estimate
the worth parameters, which provide the probability that configuration i is preferred over j, Equation 29.

P(i > j) = πi
πi + πj

(29)

After normalizing, i.e., πB + πO + πP = 1, the resulting worth parameters are {πB, πO, πP} = {0.601, 0.165, 0.234}.
From ranking based on these worth parameters, the B configuration is the winning configuration, with πB = 0.601,
followed by configuration P with πP = 0.234. Finally, configuration O with πO = 0.165. Using Equation 29, the
probability that configuration P is preferred over configuration B and O is 0.280 and 0.586, respectively.

This leads to the conclusion that the first hypothesis is rejected, as the B configuration received a higher subjective
rating than the P configuration. Yet, the P configuration received a marginally higher rating than the O configuration.

The influence of motion parameters on performance is tested by determining the Dutch roll suppression performance.
This performance is calculated for each pilot for the active parts of each run, resulting in 96 data points per pilot. Which
can be divided into 24 data points for each condition, e.g., the three configurations and the no-motion condition. To
compare the different conditions, a within-subjects design is used. In a within-subject design, each subject tests all the
conditions, yielding one data point for each condition. To fit in within-subject design, the average performance for each
pilot and condition is used, i.e., calculating the average of the 24 data points for each pilot and condition. The raw
results for all conditions are presented in Figure 16.

Fig. 16 Performance per Configuration - Not Corrected for Between-Subject Variability

From Figure 16, different observations can be made; Pilots 1 and 4 have the highest performance for all conditions.
Pilots 2 and 5 have on average a negative performance, where Pilot 5 even has negative performance for all conditions,
meaning that the Dutch roll is excited instead of suppressed. Also, all pilots, except Pilot 6, have lowest performance
with the no-motion condition. However, these data are not corrected for between-subject variability, e.g., every pilot
has on average a different performance. To better observe trends over the motion conditions, Figure 17 depicts the
performance data corrected for between-subject variability.

Comparing Figures 16 and 17, it can be observed that the performances per condition are more concentrated after
the between-subject variability correction. Data are concentrated the most for the B- and P configuration. It can be
observed that pilots suppressed 19.3%, on average, of the Dutch roll with the P configuration. Furthermore, on average,
pilots suppressed 14.9% and 10.7% of the Dutch roll with configurations B and O, respectively. When the motion was
turned-off, pilots were exciting the Dutch roll by approximately 2.0% instead of suppressing it.

For statistical analysis, a Repeated-Measures ANOVA test is used, as the data were found to satisfy the sphericity- and
normality assumption. The results are F(3,15) = 13.832 and p < 0.0005, indicating that a significant difference can
be identified. Post-hoc tests using the Bonferroni correction, with α = 0.05, revealed that the pilot performance is
significantly better with the P configuration than without motion (p = 0.017). However, the improvement in performance

∗http://personal.psu.edu/drh20/code/btmatlab/, accessed on December 20, 2019
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Fig. 17 Performance per Configuration - Corrected for Between-Subject Variability

between the B configuration and the no-motion condition is not significant (p = 0.063). Between the P configuration and
B configuration no significant difference in performance is found (p = 0.291). Furthermore, between the P configuration
and O configuration no significant difference is found (p = 0.224). The pilots have similar performance with the B and
O configurations (p = 0.966).

The Repeated-Measures ANOVA results are used to test the performance. On average, pilots have the highest performance
with the P configuration. A significant improvement is found for the P configuration in comparison to the no-motion
configuration. Yet, as no significant differences are identified between the B, O and P configurations, the second
hypothesis is rejected.

VII. Discussion
The purpose of this paper is to extend EMD with a pilot perception model, apply the EMD to the lateral model of the
Cessna Citation 500, derive an automatic tuning algorithm and validate the resulting motion cueing solution with a
pilot-in-the-loop experiment. Six pilots performed pair-wise comparisons of three MCA configurations in an experiment,
in which they had to suppress the Dutch roll eigenmode which was externally excited.

After performing the experiment the majority of pilots indicated to have difficulties in picking a preferred configuration,
as the three configurations felt similar. The pair-wise comparison format used (including confidence levels) received
positive feedback. Also, the way each run was divided into a passive- and active part was deemed beneficial for picking
a preferred configuration, as the passive part allowed for focus on the motion signature. Also, several pilots suggested to
increase the number of pairs to allow for more comparisons as the differences between configurations are very subtle.

Additionally, most pilots indicated deficiencies in the slip indicator. The initial ball direction was correct, but the
ball was under-damped. Some pilots even indicated that this influenced their Dutch roll suppression performance.
Furthermore, some pilots indicated that the yoke was too sensitive and resulted in over-correction, which sometimes led
to exciting the Dutch roll rather than suppressing it.

Different Dutch roll suppression techniques were used by the pilots. First, some pilots only used rudder, whereas others
used ailerons, or a combination of both. Second, some pilots gave a single pulse as input, whereas others gave several
inputs, e.g. a doublet input. Pilots 1 and 4, which had the highest performance for all conditions, gave mostly doublet
inputs to the rudder.

The values for α and β in the tuning algorithm were chosen rather arbitrarily. When the Dutch roll is externally excited,
the aperiodic roll is excited a little as well. Should this external eigenmode excitation be used in the future, an approach
would be to choose values for α and β based on the relative MPFs given a certain external excitation.

The P configuration was configured such that the available motion space was similar to the used motion space in
configurations B and O. Motion cue distortions, associated to the Dutch roll, could have been less if more motion space
was available to the tuning algorithm.
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Finally, the differences in results for both hypothesis are at first unexpected. The B configuration is the winner for the
first hypothesis. Whereas, the P configuration is the winner in the second, however, not significant. It must be noted that
the first hypothesis evaluates perceptual fidelity [11], while the second hypothesis evaluates pilot performance. These
are two different evaluations and are not necessarily related, e.g., the pilot can perceive something as realistic, but this
does not imply that its performance is good.

VIII. Recommendations
In general, EMD/PEMD has shown great potential but a possible drawback compared to OMCT is that OMCT evaluates
fidelity over a range of frequencies, whereas EMD/PEMD only evaluates particular eigenmodes. EMD/PEMD tuning
might be improved by evaluating eigenmodes corresponding to different flight conditions.

Clearly visible from the results of pair B-O is the need to further refine the OMCTfidelity boundaries. Both configurations
satisfy the OMCT fidelity criteria. Among pairs, a confidence level of 0 was given the most to this pair (four times,
whereas other pairs only once). Additionally, this pair has two within-pair inconsistencies. This indicates that both
configurations are quite similar. Yet, the B configuration performed better on the subjective rating. Furthermore, pilots
have a higher suppression performance with this configuration. Both indicate the need for further refinement of the
OMCT fidelity boundaries.

Constant perception thresholds are used in the current PEMD. In reality, these vary per person and frequency but also
depend on factors such as workload and task [2, 14]. The next step for PEMD could be to use perception thresholds
which correspond to the frequency of different eigenmodes. Also, personalized motion cueing can be considered by
obtaining someone’s perception thresholds and use these to optimize for a motion configuration, which can be useful for
training purposes.

In motion cueing, motion is often perceived as too intense if cued one-to-one [20]. This is confirmed by some pilots
who indeed reported that perceived motion for the P configuration was too intense. A follow-up study could be to scale
the aircraft model associated eigenvectors in the tuning algorithm, which has influence on the relative importance of
magnitude- and phase distortion minimization. However, less motion space will be necessary.

IX. Conclusion
This paper presents the application of the Perceptual Eigenmode Distortion applied to a lateral fixed-wing aircraft model.
It is shown that by re-expressing the output vector eigenvectors, different units can be compared and the contributions of
different motion cues in an eigenmode can be identified. Furthermore, an automatic tuning algorithm was introduced in
which an MCA parameter-set can be obtained that minimizes the eigenvector distortions for a given flight condition and
representative manoeuvre.

A pilot-in-the-loop experiment was performed for testing the hypotheses. The first hypothesis, which evaluated the pilot
preference using pair-wise comparisons, was rejected as the baseline configuration scored highest instead of the PEMD
tuned configuration. However, subjective ratings were complicated by pilot inconsistencies and uncertainties. An
assessment method that minimizes the pilot bias would be beneficial for future subjective evaluations. Even though pilots
have highest performance with the PEMD tuned configuration; the second hypothesis, which evaluated the influence of
motion parameters on Dutch roll suppression performance, was rejected as this difference was not significant.

In general, PEMD and associated tuning algorithm yield a method for evaluating and tuning motion cueing algorithms.
The method has potential and can be used as a stepping stone to further improve objective evaluation methods.
Furthermore, the methodology can be applied to any vehicle model and might be used to enhance objective motion
cueing as a whole.

Appendix
Table 7 Pilot Selected Winner for each Pair, with Corresponding Confidence Level

Pilot Conditions
1 O - P 1 O - B 0 P - B 1 B - P 1 B - O 0 P - O 1
2 P - B 1 O - P 2 O - B 1 B - O 1 P - O 2 B - P 1
3 O - B 2 P - B 1 O - P 2 P - O 0 B - P 2 B - O 2
4 B - P 1 B - O 0 P - O 1 O - P 1 O - B 0 P - B 0
5 B - O 2 P - O 2 B - P 2 P - B 1 O - P 1 O - B 2
6

Training

P - O 1 B - P 2 B - O 1

N
o
M
ot
io
n

O - B 2 P - B 2 O - P 1

N
o
M
ot
io
n
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A
Decomposition of the Extended Aircraft

State-Space System

This appendix defines every element of the aircraft state-space system. For clarity, the di-
mensional equations of motion are shown first (Equation A.1). The symbols appearing in
Equations A.2 and A.3 are recapitulated in Tables A.1 and A.2, respectively.

W cosθ0∆φ+Yv∆v +Yv̇∆v̇ +Yp∆p +Yr∆r +Yδa∆δa +Yδr∆δr =m(∆v̇ +∆r V )

Lv∆v +Lp∆p +Lr∆r +Lδa∆δa +Lδr∆δr = Ixx∆ṗ − Ixz∆ṙ

Nv∆v +Nv̇∆v̇ +Np∆p +Nr∆r +Nδa∆δa +Nδr∆δr = Izz∆ṙ − Ixz∆ṗ

∆ψ̇ = ∆r
cosθ0

∆φ̇ =∆p +∆r tanθ0

(A.1)
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Table A.1: Symbols Appearing in the General State-Space Representation of
Equation A.2
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Table A.2: Symbols Appearing in the Output Vector State-Space Representation
of Equation A.3
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B
Decomposition of the Modified CWA

State-Space System

This appendix defines every element in the state-space system corresponding to the modi-
fied Classical Washout Algorithm. The symbols appearing in Equations B.2 to B.6 are reca-
pitulated in Tables A.1 and A.2 or originate from the high- and low-pass filter parameters.
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Figure B.1: Classical Washout Algorithm Adapted for Lateral EMD [16]
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C
Decomposition of the State-Space System

Coupling

This appendix defines every element of the coupling matrices necessary for combining the
aircraft state-space and CWA state-space. The symbols appearing are recapitulated in Ta-
bles A.1 and A.2.
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D
Pilot Briefing

D.1. Purpose
Flight simulators exist already for more than a century and are popular as they achieve a
high behavioural fidelity (meaning that the pilot behaves similar in both aircraft and flight
simulator), which is effective for training. In modern pilot training, flight simulator train-
ing is a major part of the learning curriculum. Several qualifications are performed on these
simulators to ensure this high quality training. The current state-of-the-art objective eval-
uation method has, however, its limitations. To tackle these, a novel objective evaluation
method is currently being developed in the Control & Simulation group at the Faculty of
Aerospace Engineering in TU Delft. This method specifically targets the cueing of Dutch
Roll eigenmode dynamics. This experiment uses several configurations and uses subjec-
tive pilot feedback to determine the potential of this alternative method.

D.2. Apparatus
The TU Delft’s SIMONA Research Simulator (SRS), which is located at the Faculty of Aero-
space Engineering, is used for this experiment (Figure D.1a). Inside the simulator, a full
outside visual (e.g. out the window imagery) is provided. In the cockpit, a basic instrument
panel is displayed in front of the pilot, as depicted in Figure D.1b. The simulator motion
system will be used to simulate the aircraft responses. Also, you will wear noise cancelling
headphones which play engine noise sound, this to mask the false auditory cues coming
from the hydraulic motion actuators. The aircraft configuration used is the Cessna Citation
500 aircraft in cruise. The control column and rudder paddles can be used to control the
aircraft.

(a) SIMONA Research Simulator (b) Primary Flight Display

Figure D.1: Flight Simulator

D.3. Experiment Task
In the experiment taking place, you will perform a series of pair-wise comparisons (Ta-
ble D.1) between a total of three configurations of the Classical Washout Algorithm (CWA)
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in the SRS. Your goal during the experiment is to compare pairs of different CWA config-
urations and select a winner for each pair. The winner would be the configuration that
resembles the real flight most realistically. Besides this you are asked to give a confidence
level ranging from 0 to 2, where: 0 is no confidence, 1 is normal confidence and 2 is high
confidence. Please note that when a confidence level of 0 is given, the pair-wise compari-
son is not taken into account, as no difference could be identified. Throughout the run the
Dutch Roll eigenmode will be externally excited using a gust of random amplitude. Each
run last for 2 minutes and consists of a passive and active part. The passive part last for 70
seconds, in which you just sit in the aircraft and do not respond to the external excitation
of the Dutch Roll. The aim of this passive part is to get sufficiently acquainted with the
lateral motion signature. The researcher then indicates when the passive part switches to
the active part. During the active part, you aim to suppress the Dutch Roll eigenmode at
the moment that the aircraft is excited. Furthermore, you try to minimize the altitude and
heading deviations. This active part lasts for 60 seconds after which the run is stopped by
the researcher. The aircraft is fully controllable, however, only the lateral motions will be
felt. Also, the yaw damper will be disabled, to allow for a better determination of the lat-
eral motion signature. During the experiment you must stick to the following experiment
boundaries:

– No full deflections of the control column and rudder are allowed.
– The airspeed deviation must be minimized.
– No throttle changes.

Table D.1: Experiment Test Pairs

Pair 1 Pair 2 Pair 3 Run Pair 4 Pair 5 Pair 6 Run
Training A - B A - B A - B No motion A - B A - B A - B No motion

Please note, Table D.1 only indicates 2 configurations, e.g. A and B. The real experiment has
more than two configurations in which the order will be randomized.

Besides the 6 pairs that will be evaluated in the pair-wise comparison, to additional runs
will be performed. The aircraft configuration for these runs is exactly the same, but, the
motion platform will be turned off. In these runs, there is only an active part, which lasts
for 130 seconds instead of 60. One of the runs is after the third pair and one after the sixth
pair (Table D.1). Furthermore, no preferred configuration has to be stated, as this is a single
run.

D.4. Experiment Procedure
After meeting at the coffee area in the SIMONA building this briefing will be discussed. Any
questions you have will be answered by the researcher. Also, you will be asked to sign a
consent form. Before the experiment starts you will be given a safety briefing.

The complete experiment is conducted in one day, and will take approximately one and a
half hour. During the experiment, you will receive approximately 20 minutes of training,
during which you will fly all individual configurations twice in randomized order. Each
training run will last two minutes. Once the training is completed the evaluation phase will
start in which you will compare the different CWA configurations.
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D.5. Experiment Execution
For each evaluated pair, the subsequent procedure will be followed:

1. The researcher applies the settings of the first configuration (A) of the evaluated pair.

2. The researcher checks whether the participant is ready to proceed and initiates the
run after a countdown from 3 (3-2-1-go).

3. The participant gets acquainted with the motion signature and does not control the
aircraft for 70 seconds (passive part).

4. The researcher informs the pilot that the active part starts.

5. The participant flies the aircraft for 60 seconds and tries to suppress the Dutch Roll
eigenmode (active part).

6. The researcher applies the settings of the second configuration (B) of the evaluated
pair.

7. The researcher checks whether the participant is ready to proceed and initiates the
run after a countdown from 3.

8. The participant gets acquainted with the motion signature and does not control the
aircraft for 70 seconds (passive part).

9. The researcher informs the pilot that the active part starts.

10. The participant flies the aircraft for 60 seconds and tries to suppress the Dutch Roll
eigenmode (active part).

11. The participant indicate the preferred configuration, together with a confidence level
(0 - 1 - 2).

D.6. Contact Information

Contact Information Researcher Contact Information Research Supervisor
Guido Tillema Ir. O. Stroosma
G.H.J.Tillema@student.tudelft.nl O.Stroosma@tudelft.nl
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E
Verification and Validation

E.1. Verification
The derivation of the complete EMD model is quite extensive and therefore prone to er-
rors. To ensure a correct derivation, a verification environment is built. In Figure E.1 the
Simulink verification environment is depicted. In here the outputs of 1 are from the non-
linear MCA, which is also illustrated in Figure E.2. During the EMD derivation this non-
linear MCA is linearized, in the verification environment this linearized MCA is represented
with 2. To check whether this linearization is performed correctly, the outputs of 1 and 2
must be identical. Another essential step in the derivation of the complete EMD system
is the coupling between EOM and MCA. To verify that this system coupling is derived cor-
rectly, the responses of 2 and 3 must be identical.

Figure E.1: Verification Environment in Simulink
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Figure E.2: Non-linear Simulink Model of the Classical Washout Algorithm
(sub-system 1 of Figure E.1)

Figure E.3 depicts the response to an aileron and rudder step input of 1 degree. As is clearly
evident the response of 1, 2 and 3 are identical. From here it can be verified that the deriva-
tion and implementation of the EMD system is performed correctly.

Figure E.3: Verification of the Motion Cues
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E.2. Validation
In order to validate that the right model of the Cessna Citation 500 is implemented, a sim-
ulation is performed. In this simulation the response of the complete Cessna Citation 500
is compared to the response of the linear (simplified) model.

Figure E.4: Validation Model of Cessna Citation 500

Figure E.5 depicts the response to an rudder pulse input of 0.5 degrees. As depicted in this
figure, the responses of the different motion cues of the linear EOM resemble the complete
EOM to a high degree. Therefore, it is concluded that the correct model of the Cessna Cita-
tion 500 is implemented.

Figure E.5: Validation of the Motion Cues
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F
Individual Pilot Results

This appendix contains an analysis for each pilot individually. This appendix is divided into
7 sections, each corresponding to a single pilot. Each section starts with a subjective eval-
uation, in here the pilot preferred configuration is indicated together with corresponding
confidence level. Furthermore, the pilot comments are included. Hereafter, a general eval-
uation is given, in which pilot feedback towards the complete experiment is stated. Also,
general observations are stated here. Finally, an objective evaluation which shows the ob-
jective performance for each run visually. Also, the means per configuration are calculated
and a One-Way ANOVA is performed. Here, the winning configuration is marked in bold,
also, the significance is marked if found significant.
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F.1. Pilot 1
F.1.1. Subjective Evaluation

Table F.1: Pilot 1 - Subjective Rating

Pair Confidence Pilot Comment
MCA: O - MCA: P 1 There was barely a difference between the two

motion configurations, however the second con-
figuration felt slightly more intense and realistic.

MCA: O - MCA: B 0 The two configurations did not feel different.
MCA: P - MCA: B 1 The two configurations felt quite similar, however

with the second configuration the Dutch Roll was
easier to suppress and therefore this configura-
tion is preferred.

No Motion (1) N.A. The visual system is very strong, making it feel
that actual motion is perceived even if there isn’t.

MCA: B - MCA: P 1 The seat is getting to feel a little hard. There are
only slight differences between the two configu-
rations. The first configuration felt slightly more
intense and realistic.

MCA: B - MCA: O 0 Tried to focus on different things, listen to actua-
tor noise, instrument response and magnitude of
motions but no difference could be identified.

MCA: P- MCA: O 1 Both configurations quite similar, however, the
first configuration had more roll motion cues
which felt more realistic.

No Motion (2) N.A. -

F.1.2. General Evaluation
– It is very difficult to make a decision as you don’t know on what exactly you have

to focus, e.g. you don’t know what the exact differences are between the different
configurations.

– Sometimes the evaluation was based on the perceived noise coming from the actua-
tors.

– The Dutch Roll was only suppressed with a rudder input. The ailerons were not used
for this purpose.

– The length of the experiment was fine. The way of evaluating in pairs was experi-
enced as pleasant.
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F.1.3. Objective Evaluation

Table F.2: Pilot 1 - Mean Performance per Configuration

MCA Mean N Std. Deviation
No Motion .2665 24 .2240
MCA: B .3354 24 .3244
MCA: O .3111 24 .2865
MCA: P .3766 24 .2001
Total .3224 96 .2623

Table F.3: Pilot 1 - Multiple Comparison (Tukey HSD)

(I) MCA (J) MCA Mean Difference Std. Error Sig. 95% Confidence Interval
(I-J) Lower Bound Upper Bound

No Motion MCA: O -.0445 .0760 .9362 -.2435 .1544
MCA: P -.1101 .0760 .4731 -.3091 .0889
MCA: B -.0688 .0760 .8022 -.2678 .1301

MCA: B No Motion .0688 .0760 .8022 -.1301 .2678
MCA: O .0243 .0760 .9886 -.1747 .2233
MCA: P -.0413 .0760 .9482 -.2402 .1577

MCA: O No Motion .0445 .0760 .9362 -.1544 .2435
MCA: P -.0656 .0760 .8242 -.2645 .1334
MCA: B -.0243 .0760 .9886 -.2233 .1747

MCA: P No Motion .1101 .0760 .4731 -.0889 .3091
MCA: O .0656 .0760 .8242 -.1334 .2645
MCA: B .0413 .0760 .9482 -.1577 .2402

Figure F.1: Pilot 1 - No Motion
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Figure F.2: Pilot 1 - Pair 1

Figure F.3: Pilot 1 - Pair 2

Figure F.4: Pilot 1 - Pair 3
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Figure F.5: Pilot 1 - Pair 4

Figure F.6: Pilot 1 - Pair 5

Figure F.7: Pilot 1 - Pair 6
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F.2. Pilot 2
F.2.1. Subjective Evaluation

Table F.4: Pilot 2 - Subjective Rating

Pair Confidence Pilot Comment
MCA: P - MCA: B 1 There was not a lot of difference between the two

motion configurations. The first configuration felt
a little bit too intense. The second configuration
was slightly more pleasant.

MCA: O - MCA: P 2 The second configuration felt too intense.
MCA: O - MCA: B 1 There was not a lot of difference between the two

configurations, however, the second configura-
tion felt a bit softer which was more pleasant.

No Motion (1) N.A. Focused on horizon during the run, as the visual
is very strong it felt as if there was actual mo-
tion. This configuration can easily result in mo-
tion sickness.

MCA: B - MCA: O 1 There was not a lot of difference between the con-
figurations. Felt that there was a larger effect to
control errors in the second configuration.

MCA: P - MCA: O 2 The first configuration felt slightly too intense.
The second configuration felt softer, also pulling
the control column was easier.

MCA: B - MCA: P 1 When overcompensating the second configura-
tion felt too intense, therefore the first configura-
tion was chosen.

No Motion (2) N.A. Felt that with motion the performance was way
better, because of the motion cue onsets.

F.2.2. General Evaluation
– The slip indicator felt under-damped.
– The controls were very sensitive and little control force was required, which easily

resulted in over-correction.
– The breakout for the rudder was too large.
– The visual system was very strong making it feel that there are longitudinal motion

cues even when the selective-gains were zero.
– The flight model felt correct.
– The are no remarks on the way of evaluating the motion pairs.
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F.2.3. Objective Evaluation

Table F.5: Pilot 2 - Mean Performance per Configuration

MCA Mean N Std. Deviation
No Motion -.2519 24 .1889
MCA: B .0453 24 .2641
MCA: O .0142 24 .2335
MCA: P .0114 24 .2921
Total -.0452 96 .2720

Table F.6: Pilot 2 - Multiple Comparison (Tukey HSD)

(I) MCA (J) MCA Mean Difference Std. Error Sig. 95% Confidence Interval
(I-J) Lower Bound Upper Bound

No Motion MCA: O -.2662 .0715 .0019 -.4532 -.0791
MCA: P -.2633 .0715 .0022 -.4504 -.0763
MCA: B -.2972 .0715 .0004 -.4843 -.1102

MCA: B No Motion .2972 .0715 .0004 .1102 .4843
MCA: O .0311 .0715 .9723 -.1560 .2182
MCA: P .0339 .0715 .9645 -.1531 .2210

MCA: O No Motion .2662 .0715 .0019 .0791 .4532
MCA: P .0028 .0715 1.0000 -.1842 .1899
MCA: B -.0311 .0715 .9723 -.2182 .1560

MCA: P No Motion .2633 .0715 .0022 .0763 .4504
MCA: O -.0028 .0715 1.0000 -.1899 .1842
MCA: B -.0339 .0715 .9645 -.2210 .1531

Figure F.8: Pilot 2 - No Motion
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Figure F.9: Pilot 2 - Pair 1

Figure F.10: Pilot 2 - Pair 2

Figure F.11: Pilot 2 - Pair 3
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Figure F.12: Pilot 2 - Pair 4

Figure F.13: Pilot 2 - Pair 5

Figure F.14: Pilot 2 - Pair 6
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F.3. Pilot 3a (replaced)
F.3.1. Subjective Evaluation

Table F.7: Pilot 3a - Subjective Rating

Pair Confidence Pilot Comment
MCA: O - MCA: B 2 The slip indicator is difficult to use as guidance.

Initial onset is correct but then start to move
under-damped.

MCA: P - MCA: B 2 -
MCA: O - MCA: P 0 Felt there was better control in the second config-

uration. However, no difference in the perceived
motion.

No Motion (1) N.A. -
MCA: P - MCA: O 2 -
MCA: B - MCA: P 2 -
MCA: B - MCA: O 2 Getting the timing right to suppress the Dutch Roll

is difficult as the ball is not always moving in the
correct direction.

No Motion (2) N.A. The run without motion felt very doable.

F.3.2. General Evaluation
– The slip-indicator is not correct, therefore it is very difficult to control the lateral mo-

tion of the aircraft and a PIO easily occurs.
– No difference between the Dutch Roll period was experienced between the different

configurations.
– The slip-indicator is usually the easiest indicator for lateral motion cues. Alterna-

tively, the sky pointer could be used, however, this one was not very accurate.
– The outside visual felt too slow.
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F.3.3. Objective Evaluation

Table F.8: Pilot 3a - Mean Performance per Configuration

MCA Mean N Std. Deviation
No Motion -.0243 24 .1452
MCA: B -.1185 24 .2745
MCA: O -.2386 24 .5209
MCA: P -.1807 24 .2950
Total -.1405 96 .3413

Table F.9: Pilot 3a - Multiple Comparison (Tukey HSD)

(I) MCA (J) MCA Mean Difference Std. Error Sig. 95% Confidence Interval
(I-J) Lower Bound Upper Bound

No Motion MCA: O .2143 .0973 .1306 -.0404 .4690
MCA: P .1564 .0973 .3798 -.0983 .4111
MCA: B .0942 .0973 .7681 -.1605 .3489

MCA: B No Motion -.0942 .0973 .7681 -.3489 .1605
MCA: O .1201 .0973 .6073 -.1346 .3748
MCA: P .0622 .0973 .9190 -.1925 .3169

MCA: O No Motion -.2143 .0973 .1306 -.4690 .0404
MCA: P -.0578 .0973 .9336 -.3126 .1969
MCA: B -.1201 .0973 .6073 -.3748 .1346

MCA: P No Motion -.1564 .0973 .3798 -.4111 .0983
MCA: O .0578 .0973 .9336 -.1969 .3126
MCA: B -.0622 .0973 .9190 -.3169 .1925

Figure F.15: Pilot 3a - No Motion
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Figure F.16: Pilot 3a - Pair 1

Figure F.17: Pilot 3a - Pair 2

Figure F.18: Pilot 3a - Pair 3
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Figure F.19: Pilot 3a - Pair 4

Figure F.20: Pilot 3a - Pair 5

Figure F.21: Pilot 3a - Pair 6
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F.4. Pilot 3
F.4.1. Subjective Evaluation

Table F.10: Pilot 3 - Subjective Rating

Pair Confidence Pilot Comment
MCA: O - MCA: B 2 The second configuration had more motion and

was more pleasant to control.
MCA: P - MCA: B 1 The two configurations were extremely similar,

however, the first configuration felt slightly more
realistic.

MCA: O - MCA: P 2 In the first configuration the yaw was dominant,
but there was only little sway. The second config-
uration was easier to control.

No Motion (1) N.A. Without motion cues, suppressing the Dutch Roll
is tough. Also, it feels a bit unnatural.

MCA: P - MCA: O 0 The two configurations were extremely similar,
the second had just slightly less sway. No differ-
ence was identified.

MCA: B - MCA: P 2 In the second configuration, the roll and sway
were more present, which was easier to control
and felt more realistic.

MCA: B - MCA: O 2 The first configuration felt more realistic than the
second configuration. Also, there was more roll
motion in the first. However, it felt that it was eas-
ier to control the second.

No Motion (2) N.A. Missing motion onset cue.

F.4.2. General Evaluation
– There was usually a clear difference between the configurations, which also trans-

lated to performance.
– Every configuration felt way better than the run without motion.
– The pilot sometimes closed its eyes during the passive part to identify the motion

signature.
– The pairwise comparisons received a positive feedback.
– The passive part of the run was not necessary.
– The experiment could have been longer, e.g. evaluating more pairs.
– In general, no false cues were identified. Only, sometimes the amplitude felt a bit low.
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F.4.3. Objective Evaluation

Table F.11: Pilot 3 - Mean Performance per Configuration

MCA Mean N Std. Deviation
No Motion -.0977 24 .2471
MCA: B .1840 24 .1789
MCA: O .1182 24 .1719
MCA: P .2724 24 .1722
Total .1192 96 .2361

Table F.12: Pilot 3 - Multiple Comparison (Tukey HSD)

(I) MCA (J) MCA Mean Difference Std. Error Sig. 95% Confidence Interval
(I-J) Lower Bound Upper Bound

No Motion MCA: O -.2159 .0563 .0013 -.3633 -.0686
MCA: P -.3701 .0563 .0000 -.5175 -.2227
MCA: B -.2818 .0563 .0000 -.4291 -.1344

MCA: B No Motion .2818 .0563 .0000 .1344 .4291
MCA: O .0658 .0563 .6478 -.0815 .2132
MCA: P -.0883 .0563 .4017 -.2357 .0590

MCA: O No Motion .2159 .0563 .0013 .0686 .3633
MCA: P -.1542 .0563 .0367 -.3015 -.0068
MCA: B -.0658 .0563 .6478 -.2132 .0815

MCA: P No Motion .3701 .0563 .0000 .2227 .5175
MCA: O .1542 .0563 .0367 .0068 .3015
MCA: B .0883 .0563 .4017 -.0590 .2357

Figure F.22: Pilot 3 - No Motion
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Figure F.23: Pilot 3 - Pair 1

Figure F.24: Pilot 3 - Pair 2

Figure F.25: Pilot 3 - Pair 3
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Figure F.26: Pilot 3 - Pair 4

Figure F.27: Pilot 3 - Pair 5

Figure F.28: Pilot 3 - Pair 6
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F.5. Pilot 4
F.5.1. Subjective Evaluation

Table F.13: Pilot 4 - Subjective Rating

Pair Confidence Pilot Comment
MCA: B - MCA: P 1 -
MCA: B - MCA: O 0 No difference between the two configurations

could be identified. The success of the Dutch Roll
suppression depends on whether you have the
onset right, otherwise you excite rather than sup-
press.

MCA: P - MCA: O 1 There was no clear difference between the two
configurations, however there was a slight prefer-
ence for the first configuration.

No Motion (1) N.A. As the visual is quite strong, the missing of motion
was not perceived that much.

MCA: O - MCA: P 1 -
MCA: O - MCA: B 0 Experiment was getting a little bit long, coffee

would have been nice.
MCA: P - MCA: B 0 No difference could be identified.

No Motion (2) N.A. As the motion onset was missing, the initial exci-
tation was sometimes perceived slightly later.

F.5.2. General Evaluation
– In the beginning there was a rudder offset as the control were not centered.
– The success of the suppression depends on whether you have the initial direction

right, if not, it is difficult to suppress.
– Sometimes only one pulse was enough to suppress the Dutch Roll, however some-

times an additional push was necessary.
– Even though he said confidence level of 1, it sometimes could also have been 0.
– Without motion you miss the motion onset.
– Did not use the slip indicator to suppress the Dutch Roll as the ball was not reliable.

Used outside visual instead.
– The way of evaluating the different motion configurations was experienced pleasant.
– The passive part gave most information about the motion signature.
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F.5.3. Objective Evaluation

Table F.14: Pilot 4 - Mean Performance per Configuration

MCA Mean N Std. Deviation
No Motion .2235 24 .2294
MCA: B .4048 24 .2260
MCA: O .3914 24 .1910
MCA: P .4553 24 .2065
Total .3687 96 .2279

Table F.15: Pilot 4 - Multiple Comparison (Tukey HSD)

(I) MCA (J) MCA Mean Difference Std. Error Sig. 95% Confidence Interval
(I-J) Lower Bound Upper Bound

No Motion MCA: O -.1679 .0617 .0384 -.3294 -.0064
MCA: P -.2318 .0617 .0017 -.3933 -.0703
MCA: B -.1813 .0617 .0214 -.3428 -.0198

MCA: B No Motion .1813 .0617 .0214 .0198 .3428
MCA: O .0134 .0617 .9964 -.1481 .1749
MCA: P -.0505 .0617 .8455 -.2120 .1110

MCA: O No Motion .1679 .0617 .0384 .0064 .3294
MCA: P -.0639 .0617 .7289 -.2254 .0976
MCA: B -.0134 .0617 .9964 -.1749 .1481

MCA: P No Motion .2318 .0617 .0017 .0703 .3933
MCA: O .0639 .0617 .7289 -.0976 .2254
MCA: B .0505 .0617 .8455 -.1110 .2120

Figure F.29: Pilot 4 - No Motion
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Figure F.30: Pilot 4 - Pair 1

Figure F.31: Pilot 4 - Pair 2

Figure F.32: Pilot 4 - Pair 3
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Figure F.33: Pilot 4 - Pair 4

Figure F.34: Pilot 4 - Pair 5

Figure F.35: Pilot 4 - Pair 6
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F.6. Pilot 5
F.6.1. Subjective Evaluation

Table F.16: Pilot 5 - Subjective Rating

Pair Confidence Pilot Comment
MCA: B - MCA: O 2 Somehow the engine noise turned-off in the sec-

ond run. The second configuration was bad as
there was barely any bank information.

MCA: P - MCA: O 2 The first configuration was fairly okay. The second
configuration did not cue any bank and yaw was
only perceived slightly. Evaluation was performed
with eyes closed.

MCA: B - MCA: P 2 The first configuration was the best till now. The
second configuration missed sway motion cues,
also had the feeling that the point of rotation was
somewhat next to you. It is difficult to get the side-
slip completely to zero.

No Motion (1) N.A. Had the feeling that motion cues are very benefi-
cial for performing the task.

MCA: P - MCA: B 1 In the second configuration the bank was missing
a little bit. However, this configuration was cho-
sen as it was easier to correct.

MCA: O - MCA: P 1 The first configuration felt slightly more realistic,
however no large differences between the two.

MCA: O - MCA: B 2 In the first configuration had the feeling that you
were sitting in front of the centre-of-gravity. The
second configuration had a better correlation be-
tween visual and motion. Also, sway and yaw were
present and correcting was easier.

No Motion (2) N.A. -

F.6.2. General Evaluation
– The desired speed and altitude were quite confusing, e.g. 245 kts and 16,400 ft.
– Usually a pilot only has to give one rudder input and let the aircraft damp the Dutch

Roll itself. However, during the experiment the pilot was asked to actively suppress
the Dutch Roll.

– The slip-indicator was not correct, felt a little bit under-damped.
– The way the experiment evaluated the different pairs was good. The experiment

could even have been longer as the difference between the configurations are so
small.
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F.6.3. Objective Evaluation

Table F.17: Pilot 5 - Mean Performance per Configuration

MCA Mean N Std. Deviation
No Motion -.3033 24 .2409
MCA: B -.2377 24 .1485
MCA: O -.2030 24 .2376
MCA: P -.1640 24 .1502
Total -.2270 96 .2029

Table F.18: Pilot 5 - Multiple Comparison (Tukey HSD)

(I) MCA (J) MCA Mean Difference Std. Error Sig. 95% Confidence Interval
(I-J) Lower Bound Upper Bound

No Motion MCA: O -.1003 .0576 .3081 -.2510 .0503
MCA: P -.1393 .0576 .0805 -.2899 .0114
MCA: B -.0657 .0576 .6654 -.2163 .0850

MCA: B No Motion .0657 .0576 .6654 -.0850 .2163
MCA: O -.0346 .0576 .9313 -.1853 .1160
MCA: P -.0736 .0576 .5789 -.2243 .0770

MCA: O No Motion .1003 .0576 .3081 -.0503 .2510
MCA: P -.0390 .0576 .9056 -.1896 .1117
MCA: B .0346 .0576 .9313 -.1160 .1853

MCA: P No Motion .1393 .0576 .0805 -.0114 .2899
MCA: O .0390 .0576 .9056 -.1117 .1896
MCA: B .0736 .0576 .5789 -.0770 .2243

Figure F.36: Pilot 5 - No Motion
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Figure F.37: Pilot 5 - Pair 1

Figure F.38: Pilot 5 - Pair 2

Figure F.39: Pilot 5 - Pair 3
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Figure F.40: Pilot 5 - Pair 4

Figure F.41: Pilot 5 - Pair 5

Figure F.42: Pilot 5 - Pair 6
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F.7. Pilot 6
F.7.1. Subjective Evaluation

Table F.19: Pilot 6 - Subjective Rating

Pair Confidence Pilot Comment
MCA: P - MCA: O 1 For the first configuration it felt that the motion

was lagging behind the visual. In the second con-
figuration the yaw motion was better, but there
was not a lot of roll response.

MCA: B - MCA: P 2 The first configuration felt somewhat soft. Also,
sometimes you feel a response that you do not
expect. The second configuration felt better and
there was good correlation between visual and
motion.

MCA: B - MCA: O 1 There was too little response in the first configu-
ration. In the second configuration the yaw was
more realistic. There was not a lot of difference in
roll between the two configurations.

No Motion (1) N.A. This configuration feels weird as the motion (on-
set) is missing. Not a lot of difference in the con-
trol task was experienced.

MCA: O - MCA: B 2 There was only little roll in the first configuration,
but the yaw was fine. The Dutch Roll was easy
to suppress. The second configuration felt just
slightly better.

MCA: P - MCA: B 2 The motion is lagging behind the visual in the first
configuration. In the second configuration, the
yaw was clearly present, but there was not a lot of
roll. The correlation between visual and motion
was good.

MCA: O - MCA: P 1 There was only little difference between the two
configurations, however, the first felt slightly bet-
ter as there was a larger roll amplitude.

No Motion (2) N.A. The motion onset cue is missing.

F.7.2. General Evaluation
– Pilot uses the outside visual for the Dutch Roll suppression and uses the clouds as

reference. Therefore, the side-slip indicator was not perceived as incorrect or annoy-
ing.

– The pilot was active in giving a continuous opposite rudder input to suppress the
Dutch Roll.

– The difference between the different configurations was sometimes very little, mak-
ing evaluation difficult.

– Experiment could have been longer in which the pairs are evaluated even more times.
– The way the experiment was conducted was good.
– The way that a run was divided into a passive and active part was pleasant.
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F.7.3. Objective Evaluation

Table F.20: Pilot 6 - Mean Performance per Configuration

MCA Mean N Std. Deviation
No Motion .0466 24 .2633
MCA: B .1594 24 .3413
MCA: O .0110 24 .2487
MCA: P .2091 24 .2372
Total .1065 96 .2831

Table F.21: Pilot 6 - Multiple Comparison (Tukey HSD)

(I) MCA (J) MCA Mean Difference Std. Error Sig. 95% Confidence Interval
(I-J) Lower Bound Upper Bound

No Motion MCA: O .0356 .0796 .9700 -.1726 .2438
MCA: P -.1625 .0796 .1800 -.3707 .0457
MCA: B -.1128 .0796 .4914 -.3210 .0954

MCA: B No Motion .1128 .0796 .4914 -.0954 .3210
MCA: O .1484 .0796 .2502 -.0598 .3566
MCA: P -.0497 .0796 .9239 -.2579 .1585

MCA: O No Motion -.0356 .0796 .9700 -.2438 .1726
MCA: P -.1981 .0796 .0682 -.4063 .0101
MCA: B -.1484 .0796 .2502 -.3566 .0598

MCA: P No Motion .1625 .0796 .1800 -.0457 .3707
MCA: O .1981 .0796 .0682 -.0101 .4063
MCA: B .0497 .0796 .9239 -.1585 .2579

Figure F.43: Pilot 6 - No Motion



F.7. Pilot 6 68

Figure F.44: Pilot 6 - Pair 1

Figure F.45: Pilot 6 - Pair 2

Figure F.46: Pilot 6 - Pair 3
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Figure F.47: Pilot 6 - Pair 4

Figure F.48: Pilot 6 - Pair 5

Figure F.49: Pilot 6 - Pair 6
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G
Repeated Measures ANOVA Results

Table G.1: Descriptive Statistics and Test of Normality

Mean Std. Deviation N Shapiro-Wilk
Statistic df Sig.

No Motion -.0194 .2391 6 .919 6 .498
MCA: B .1485 .2288 6 .942 6 .679
MCA: O .1071 .2175 6 .956 6 .789
MCA: P .1935 .2322 6 .951 6 .749

Table G.2: Mauchly’s Test of Sphericity

Within Subjects Effect Mauchly’s W χ2 df Sig. Epsilon
Greenhouse-Geisser Huynh-Feldt Lower-bound

Motion Condition .318 4.268 5 .524 .637 1.000 .333

Table G.3: Tests of Within-Subject Effects

Source Type III Sum
of Squares

df Mean
Square

F Sig. Partial Eta
Squared

Motion Condition Sphericity Assumed .151 3 .050 13.832 .000 .734
Greenhouse-Geisser .151 1.911 .079 13.832 .002 .734
Huynh-Feldt .151 3.000 .050 13.832 .000 .734
Lower-bound .151 1.000 .151 13.832 .014 .734

Error(Motion Condition) Sphericity Assumed .055 15 .004
Greenhouse-Geisser .055 9.556 .006
Huynh-Feldt .055 15.000 .004
Lower-bound .055 5.000 .011

Table G.4: Pairwise Comparisons

(I) MCA (J) MCA Mean Difference Std. Error Sig.∗ 95% Confidence Interval
(I-J) Lower Bound Upper Bound

No Motion MCA: B -.168 .042 .063 -.346 .010
MCA: O -.127 .046 .238 -.320 .067
MCA: P -.213 .039 .017 -.378 -.047

MCA: B No Motion .168 .042 .063 -.010 .346
MCA: O .041 .025 .966 -.065 .148
MCA: P -.045 .017 .291 -.118 .028

MCA: O No Motion .127 .046 .238 -.067 .320
MCA: B -.041 .025 .966 -.148 .065
MCA: P -.086 .031 .224 -.216 .043

MCA: P No Motion .213 .039 .017 .047 .378
MCA: B .045 .017 .291 -.028 .118
MCA: O .086 .031 .224 -.043 .216

∗Adjustment for multiple comparisons: Bonferroni
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H
Two-Way ANOVA Results

The Dutch Roll suppression performance is calculated for each pilot for the active parts of
each run, resulting in 96 data-points per pilot. Which can be divided into 24 data-points
for each condition, e.g. the three configurations and the no-motion condition. To com-
pare the different conditions, a within-subjects design is used. In a within-subject design,
each subject tests all the conditions, yielding one data point for each condition. To fit in
within-subject design, the average performance for each pilot and condition is used, i.e.
calculating the average of the 24 data-points for each pilot and condition. As of this, a lot of
variance data gets lost. Therefore, a Two-Way ANOVA is also performed, the results of this
test is not included in the paper and serve as an extension of the analysis. This appendix
presents the results for the Two-Way ANOVA test.
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Table H.1: Descriptive Statistics

Pilot MCA Mean Std. Deviation N
1 No Motion .2665 .2240 24

MCA: O .3111 .2865 24
MCA: P .3766 .2001 24
MCA: B .3354 .3244 24
Total .3224 .2623 96

2 No Motion -.2519 .1889 24
MCA: O .0142 .2335 24
MCA: P .0114 .2921 24
MCA: B .0453 .2641 24
Total -.0452 .2720 96

3 No Motion -.0977 .2471 24
MCA: O .1182 .1719 24
MCA: P .2724 .1722 24
MCA: B .1840 .1789 24
Total .1192 .2361 96

4 No Motion .2235 .2294 24
MCA: O .3914 .1910 24
MCA: P .4553 .2065 24
MCA: B .4048 .2260 24
Total .3687 .2279 96

5 No Motion -.3033 .2409 24
MCA: O -.2030 .2376 24
MCA: P -.1640 .1502 24
MCA: B -.2377 .1485 24
Total -.2270 .2029 96

6 No Motion .0466 .2633 24
MCA: O .0110 .2487 24
MCA: P .2091 .2372 24
MCA: B .1594 .3413 24
Total .1065 .2831 96

Total No Motion -.0194 .3171 144
MCA: O .1071 .3022 144
MCA: P .1935 .2995 144
MCA: B .1485 .3282 144
Total .1074 .3211 576
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Table H.2: Tests of Between-Subject Effects

Source Type III Sum
of Squares

df Mean
Square

F Sig. Partial Eta
Squared

Corrected Model 28.917 23 1.257 22.843 .000 .488
Intercept 6.649 1 6.649 120.805 .000 .180
Pilot 23.981 5 4.796 87.141 .000 .441
MCA 3.626 3 1.209 21.958 .000 .107
Pilot * MCA 1.311 15 .087 1.587 .072 .041
Error 30.381 552 .055
Total 65.947 576
Corrected Total 59.298 575

Table H.3: Pairwise Comparisons - Motion Condition

(I) MCA (J) MCA Mean Difference Std. Error Sig.∗ 95% Confidence Interval
(I-J) Lower Bound Upper Bound

No Motion MCA: O -.127 .028 .000 -.200 -.053
MCA: P -.213 .028 .000 -.286 -.140
MCA: B -.168 .028 .000 -.241 -.095

MCA: B No Motion .168 .028 .000 .095 .241
MCA: O .041 .028 .809 -.032 .115
MCA: P -.045 .028 .629 -.118 .028

MCA: O No Motion .127 .028 .000 .053 .200
MCA: P -.086 .028 .011 -.160 -.013
MCA: B -.041 .028 .809 -.115 .032

MCA: P No Motion .213 .028 .000 .140 .286
MCA: O .086 .028 .011 .013 .160
MCA: B .045 .028 .629 -.028 .118

∗Adjustment for multiple comparisons: Bonferroni
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Table H.4: Pairwise Comparisons - Pilot

(I) Pilot (J) Pilot Mean Difference Std. Error Sig.∗ 95% Confidence Interval
(I-J) Lower Bound Upper Bound

1 2 .368 .034 .000 .268 .467
3 .203 .034 .000 .103 .303
4 -.046 .034 1.000 -.146 .053
5 .549 .034 .000 .450 .649
6 .216 .034 .000 .116 .316

2 1 -.368 .034 .000 -.467 -.268
3 -.164 .034 .000 -.264 -.065
4 -.414 .034 .000 -.514 -.314
5 .182 .034 .000 .082 .282
6 -.152 .034 .000 -.252 -.052

3 1 -.203 .034 .000 -.303 -.103
2 .164 .034 .000 .065 .264
4 -.250 .034 .000 -.349 -.150
5 .346 .034 .000 .246 .446
6 .013 .034 1.000 -.087 .113

4 1 .046 .034 1.000 -.053 .146
2 .414 .034 .000 .314 .514
3 .250 .034 .000 .150 .349
5 .596 .034 .000 .496 .696
6 .262 .034 .000 .162 .362

5 1 -.549 .034 .000 -.649 -.450
2 -.182 .034 .000 -.282 -.082
3 -.346 .034 .000 -.446 -.246
4 -.596 .034 .000 -.696 -.496
6 -.334 .034 .000 -.433 -.234

6 1 -.216 .034 .000 -.316 -.116
2 .152 .034 .000 .052 .252
3 -.013 .034 1.000 -.113 .087
4 -.262 .034 .000 -.362 -.162
5 .334 .034 .000 .234 .433

∗Adjustment for multiple comparisons: Bonferroni



I
Optimized P Configuration

In the discussion section it is claimed that the motion cue distortion could have been less
for the P configuration if more motion space was available to the tuning algorithm. This
appendix illustrates a CWA parameter set that could have been obtained from the auto-
matic tuning algorithm if the complete motion space of the SIMONA Research Simulator
was used.

K fy ωn fy
ωb fy

ζ fy ωnt ζt Kp ωnp ζp

[−] [r ad/s] [r ad/s] [−] [r ad/s] [−] [−] [r ad/s] [−]
0.613 0.777 0.500 0.600 1.198 0.600 1.060 0.500 0.600

Figure I.1: Optimized P Configuration

Figure I.2: Visualization of Actuator Responses
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III
Preliminary Thesis Report

Preliminary thesis report has
been graded already
Included for completeness
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1
Introduction

Full flight simulators are standalone devices to replicate all motions and forces as would be
perceived by the pilot in an aircraft. Ideally, the perceived motions and forces in the flight
simulator are identical to the real aircraft, but where an aircraft has an (almost) infinite
motion space, flight simulators have their physical limitations
The Motion Cueing Algorithm (MCA) has been developed to deal with these physical limits.
Basically, the MCA is an algorithm between the flight model (Equations of Motion (EOM))
and motion platform (Figure 1.1). An MCA ensures that the motion platform is controlled
in a safe way and ensures that the actuators, driving the motion platform, do not exceed
their limits (e.g. actuator lengths).
In the past MCA-tuning experts tuned the variables of the algorithm until the pilot was
satisfied. The resulting performance was generally expressed in terms of high-fidelity and
low-fidelity, whereby high-fidelity means a high match between simulator and aircraft. As
this fidelity-rating was subjective, the resulting tuning variables were different per pilot, but
also dependent on the task and workload of the pilot.
The undesirability of only subjective evaluations was already recognized in the 70s and
improved tuning procedures have been developed since, such as Sinacori [12], Schroeder
[11] and Gouverneur [1].

Motion Cueing
Algorithm

Flight Model
(EOM) Motion Platform

Figure 1.1: Flight Simulator: Motion Cueing Algorithm

These developments resulted in the current state-of-the-art method for objective evalua-
tion of the flight simulator’s fidelity: the Objective Motion Cueing Test (OMCT). This method
has improved the tuning process and gives an objective and detailed picture on the perfor-
mance of the MCA and motion platform combined (Figure 1.2). This analysis is performed
in the frequency domain and uses the Fast Fourier Transform to obtain the frequency re-
sponse function, which provides the magnitude- and phase distortions introduced by the
MCA and motion platform.

Motion Cueing
Algorithm

Flight Model
(EOM) Motion Platform

Figure 1.2: Flight Simulator Evaluation: Objective Motion Cueing Test

Despite the power of OMCT, this method has its shortcomings, such as its sine-wave input
signals do not represent realistic motion experienced during flight and vehicle dynamics
are not included in this test. Also, within OMCT each signal is studied in isolation, where
aircraft motions are actually linked through dynamics.
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To tackle these, the Control & Simulation section at the Faculty of Aerospace Engineering
in TU Delft has developed a novel objective evaluation method, the Eigenmode Distortion
(EMD). This EMD method uses a different approach to evaluate objective fidelity. Rather
than analyzing in the frequency domain, this method investigates distortions of the motion
cues imposed by the MCA in terms of eigenvectors, which represent the dynamic modes.
To find these, the flight model is included in the test (Figure 1.3).

Motion Cueing
Algorithm

Flight Model
(EOM) Motion Platform

Figure 1.3: Flight Simulator Evaluation: Eigenmode Distortion Analysis

Despite the potential of this method, also this model has its complexity. The resulting
eigenvectors are not comparable to one-another because the different eigenvectors have
different units.
In this report, the extension of the EMD method with a so-called perception model, which
is a mathematical representation of the human perception, is investigated to solve this lim-
itation. In this report, this extension is referred to as the Perceptual Eigenmode Distortion
(PEMD) (Figure 1.4).

Motion Cueing
Algorithm

Flight Model
(EOM)

Perception 
Model

Figure 1.4: Flight Simulator Evaluation: Eigenmode Distortion Analysis with
Perception Model Extension

The current implementation of the OMCT test, analyses the magnitude and phase distor-
tions separately. Also, for the EMD method the resulting distortions are evaluated sepa-
rately. Currently, there is no prioritizing in either optimizing magnitude- or phase distor-
tions as these are considered equally important. This report, also, makes a step forward in
the distortion minimization by considering simultaneous optimization. For this purpose,
a new optimization function will be formulated.

The research objective of this thesis is to further evaluate the EMD method, particularly the
influence of incorporating a so called pilot perception model (PEMD), by comparing the
PEMD with a baseline and OMCT tuned configurations. A pilot-in-the-loop experiment
with the SIMONA Research Simulator (SRS), which is the flight simulator at the Faculty
of Aerospace Engineering, will be designed in order to evaluate the hypothesis (Chapter
8). This report, however, only focuses on the lateral model of the Cessna Citation 500 as
previous work has been done already for the longitudinal model.

To realize this dissertation project the following central question and sub-questions are
formulated:

To what extent is the Perceptual Eigenmode Distortion an improvement to
the Eigenmode Distortion and Objective Motion Cueing Test (for the lateral

model of the Cessna Citation 500)?
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To answer this central question, the following sub-questions will be discussed and an-
swered in the subsequent chapters of this report:

1. What are the fundamental differences between the EMD and OMCT methods for ob-
jective evaluation of simulator motion cueing fidelity?

(a) Why is objective evaluation preferred over subjective evaluation of the simula-
tor motion cueing fidelity?

(b) Which other objective evaluation methods are available in practice?
(c) What are the main principles of EMD?
(d) What are the main principles of PEMD?
(e) What are the main principles of OMCT?

2. How is the MCA currently implemented on the SIMONA Research Simulator?

3. How to apply the EMD method to the lateral model of the Cessna Citation 500 air-
craft?

(a) How was the EMD method previously applied on the linear symmetric model?
(b) How to implement the lateral model of the Cessna Citation 500 aircraft?

4. How to incorporate a suitable pilot model?

(a) What type of pilot models exist?
(b) How to best model perceived specific forces and rotational rates?
(c) What are the human vestibular thresholds and how to model these?

5. What is a suitable experiment set-up to evaluate and compare the PEMD configura-
tion with the Baseline and OMCT tuned configuration?

This report is divided into different chapters where each of the earlier introduced concepts
is elaborated in detail and the individual sub-questions are answered. The report is struc-
tured as follows:

– Chapter 2; describes the terminology used in this report. Furthermore, the Motion
Cueing Algorithm is explained, which is the algorithm used to control the motion
platform of the flight simulator. Lastly, an in-depth look into a hexapod 6 Degree of
Freedom is given;

– Chapter 3; describes how motion cues are perceived by a human. It focuses on the
vestibular system, which can be divided into the otolith and semi-circular canals. A
mathematical representation of these is given as well. Lastly, not every motion cue
is perceived, only motion cues above the perception thresholds are perceived, these
perception thresholds are explained here;

– Chapter 4; describes the current state-of-the-art objective evaluation method, the
Objective Motion Cueing Test. Rather than in the time domain, this method evaluates
the Flight Simulator Training Device fidelity in the frequency domain by analyzing
the response to sine-wave inputs;

– Chapter 5; contains a detailed derivation of the Eigenmode Distortion method. This
method tries to tackle the shortcomings of the OMCT. Rather than using the fre-
quency domain, this method evaluates the motion cue distortions by taking the ve-
hicle dynamics into account and represents the distortions in terms of eigenvectors
representing the dynamic modes of the aircraft;
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– Chapter 6; contains a further development of the Eigenmode Distortion method. The
problem with the resulting eigenvectors was that the magnitudes could not be com-
pared. Therefore, two extensions of this EMD method will be analyzed. These exten-
sions are refered to as the Perceptual Eigenmode Distortion as basically a perception
model is added;

– Chapter 7; contains an optimization algorithm that can be used to find optimal Mo-
tion Cueing Algorithm settings to achieve highest performance in the previously de-
signed Perceptual Eigenmode Distortion;

– Chapter 8; describes the experiment that is designed to answer the complete research
question. An experiment is designed that evaluates the performance of an OMCT and
PEMD tuned MCA;

– Chapter 9; establishes a conclusion of this report and answers the research questions.



2
Design of a Flight Simulator

Modern (high-fidelity) flight simulators consist of many hard- and software systems (Figure
2.1), all these systems work together to give the pilot the feeling of the actual aircraft. In gen-
eral two types of simulators exist, ones with and without a moving motion platform. This
report is about optimizing the settings of the algorithm that drives this motion platform.
This algorithm is often referred to as Motion Cueing Algorithm (MCA) or Motion Drive Algo-
rithm (MDA). The TU Delft’s SIMONA Research Simulator (SRS) uses a MCA that is called the
Classical Washout Algorithm (CWA). This algorithm is popular as of its simplicity, a detailed
description of this algorithm is given in Section 2.2.
As depicted in Figure 2.1 the MCA is driven by the Equations of Motion (EOM). These EOM
contain replicating equations that govern the physical behaviour of the actual aircraft. As
can be seen in the figure, these EOM are based on many modules, such as the aerodynamic
model and weather model. For this report, the linearized set of EOM are of relevance and
therefore a detailed description of the connecting modules is left out.
The signals that leave the MCA are inputs to the motion platform, which moves the flight
simulator with actuators. This movement is in such a way that the motion perception in the
flight simulator is similar to that in the actual aircraft. A more detailed explanation of this
motion platform is given Section 2.3. Before going into detail, some terminology needs to be
emphasised, which is done in Section 2.1.

Figure 2.1: Principle of a Flight Simulator

2.1. Flight Simulator Terminology
2.1.1. Fidelity
Generally speaking the performance of a flight simulator is expressed in terms of high-
fidelity and low-fidelity. In the modelling and simulation industry the term fidelity is lack-
ing an absolute definition. Actually, it is used in a contradicting and a confusing manner.
The definition used for now is according to Z.C. Roza [29]: "Fidelity measurement is some-
how based on the comparison between reality, or some abstraction of reality, and the sim-
ulated representation of this reality". For the sake of clarity, when a flight simulator has a
high-fidelity it matches the actual aircraft to a very high degree. Different types of fidelity
exist, i.e.:
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1. Model fidelity: Match of the mathematical model input/output, this fidelity is as-
sessed with a proof-of-match and is purely software based.

2. Objective fidelity: Match of measured motion cues, such as measuring the motion
cues with an IMU and comparing it to the aircraft IMU data.

3. Perceptual fidelity: Match of the perceived cues in the simulator with the perceived
cues in the actual vehicle, with this fidelity the human limits, such as perception
thresholds, are taken into account.

4. Behavioural fidelity: Match of pilot behaviour.

2.1.2. Motion Cues
The term motion cues is commonly used in the simulator industry. Therefore, a well un-
derstanding about motion cues is required. Looking up the internet revealed several defini-
tions. Each slightly different from one another. This section provides three definitions for
the term cue, to see it from different perspectives. In the Webster’s Encyclopedic Dictionary
the word cue is defined as follow [28]:

"... a hint meant to guide behaviour."

R.H. Forgus and L.E. Melamed define cue in a slightly different way [22]:

"... stimuli which have cue value, i.e., which trigger some kind of reactive or adaptive
action."

M. Baarspul defines a cue more related to an aircraft or flight simulator [18]:

"A cue is a cluster of sensory stimuly[i] - acting on the pilot via any of his sensory chan-
nels - closely correlated with a characteristic of the aeroplane and its behaviour, which
is relevant to the pilot when flying the aeroplane."

When mentioning motion cue, the sensory stimuli required for motion perception is re-
ferred to.

2.1.3. Motion Cue Errors
The cueing of motions is a complicated process in which errors are not excluded. Grant
[21] categorizes motion cue errors into four groups:

1. False Cues; either a motion cue that is in opposite direction to that experienced in
an aircraft, a motion cue that occurs in the simulator which normally would not be
experienced in the aircraft or a relatively high frequency distortion.

2. Missing Cues; a motion cue that is normally expected in an aircraft but missing in the
flight simulator.

3. Phase Errors; for returning the motion platform to its neutral position a so called
washout filter is used. This washout filter is n-order high-pass filter in which phase
leads may be generated. Near the break frequency of the high-pass filter these phase
errors may be noticed by the pilot.

4. Scaling Errors; in order to simulate an aircraft movement and also stay within the
physical limits of the flight simulator, the movements are scaled down. Sometimes
the motion is scaled too much resulting in scaling errors.
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2.2. Motion Cueing Algorithm
Whenever a flight simulator is equipped with a moving motion platform, this platform
needs to be connected to the EOM. This connection between motion platform and EOM
is usually by means of a so called Motion Cueing Algorithm (MCA). This MCA takes the
signals that leave the EOM and transforms these into positions and orientations of the Mo-
tion Reference Point (MRP). The parameters in this MCA are tuned in such a way that max-
imum cueing is achieved while keeping the simulator within the available motion space.
In modern simulators different cueing algorithms can be implemented, these can become
extremely advanced by including predictive control. However, most of these algorithms
originate from the same, and known, Classical Washout Algorithm (CWA). This CWA was
already developed in 1985 [16]. The CWA is, due its simplicity, the common used MCA
for flight simulation, see Figure 2.2. The SRS also uses this CWA for motion cueing, there-
fore, this algorithm will be explained in detail in this section. The CWA basically consists of
three channels, namely the specific force channel, tilt coordination channel and rotational
channel. These channels are explained in detail next.

High-pass Specific Force Channel

Tilt Coordination Channel

High-pass Rotational Channel
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Figure 2.2: Classical Washout Algorithm

High-Pass Specific Force Channel
Usually the high-pass specific force channel handles 3 DOF, namely surge, sway and heave,
see Figure 2.3. As surge, sway and heave are all translations, this channel is often also re-
ferred to as the high-pass translational channel. The signals entering this channel are the
specific forces, which originate from the EOM. After these signals enter, the first step is to
scale these. The scaling is used to decrease the overall amplitude of the input signals for
mainly two reasons. Firstly, if the input is not scaled, the motion space limits are easily
reached. However, over-scaling may result in no-motion. Secondly, people would perceive
the motions as too intense if this input is not scaled. The actual high-pass filter filters ac-
celerations, whereas the inputs of the channel are the specific forces. Specific force is the
non-gravitational force per unit mass, so to make these into accelerations the gravitational
components need to be added. This is done with the summation block after the scaling
(Figure 2.3). Here gS represent the different gravitational components, where:

gS =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

−g sinθ
g cosθ sinφ
g cosθcosφ

⎤
⎥
⎥
⎥
⎥
⎥
⎦

(2.1)

After this summation, the signals are acceleration in x, y and z directions, however, these
accelerations are in body reference frame. As filtering is only effective in the inertial frame,
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these acceleration components need to be transformed from the body- to the inertial-
frame. This transformation is done with the TI b block. Now the signals are finally ready to
be filtered. The filter used is a third order high-pass filter. A high-pass filter is used so that
only the fast motions are cued, as the slow motions will require too much motion space to
be simulated. As the name already implies, only high frequency signals are passed through,
whereas the low frequency signals are blocked. The reason for using a 3r d order filter is that
this filter is able to washout a step on specific force, this occurs for example during takeoff.
This washout ensures that the motion platform always returns to its neutral position. This
can be proven by the Final Value Theorem:

lim
t→∞

x(t) = lim
s→0

sX (s)

= lim
s→0

s(HP3(s)
1

s
)

1

s2

= lim
s→0

s(
K ⋅ s2

s2+2ζωn s +ω2
n

s

s +ωb

1

s
)

1

s2

= 0

(2.2)

In this proof the 1/s indicates that a step signal is used and the 1/s2 integrates the signal
twice to get position instead of acceleration. With this it is proven that a 3r d order high-
pass filter ensures that the motion platform returns back to its neutral position after a step
input. The last step of the specific force channel is to integrate the signal leaving the high-
pass filter twice in order to get positions. These positions are the x, y and z positions of the
flight simulator platform.
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Figure 2.3: CWA - Specific Force Channel

Tilt Coordination Channel
Sustained specific forces are sensed by the pilot as a long-term change in magnitude and
direction of the specific force in the absence of rotational motion [16]. Unfortunately, just
a standard hexapod is not able to simulate these sustained specific forces, as of the limi-
tations in motion space. However, on Earth there exists a continuous acceleration, which
is the gravity. The gravitational force is used in the tilt coordination channel, by tilting the
motion platform in such a way that the pilot experiences a continuous specific force. For
example, when performing a take-off, the airplane experiences a sustained acceleration, to
mimic this the motion platform is slowly tilted upwards such that the gravitational compo-
nent pulls the pilot back in its seat (Figure 2.4).
As mentioned, this tilt coordination channel only simulates the sustained specific forces,
to do so, a low-pass filter is used to filter out the high-frequency content of the signal. This
low-pass filter is also the first block in the tilt coordination channel, see Figure 2.5. Here-
after, the filtered signal is transformed into simulator tilt angles that represent these specific
forces. Basically this tilt coordination channel rotates the simulator, however, it is impor-
tant that these rotations are not experienced by the pilot as this would result in false cues.
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Figure 2.4: Tilting the motion platform upwards to provide surge acceleration [3]

In order to ensure that this tilting stays below the vestibular thresholds (Section 3.3) a rate
limiter can be introduced. This rate limiter is also the last block of the tilt coordination
channel, the resulting angles are added to the angles of the rotational channel, which will
be explained next.
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Figure 2.5: CWA - Tilt Coordination Channel

High-Pass Rotational Channel
The high-pass rotational channel deals with the aircraft rotational rates. These rates come
from the EOM and are the roll-, pitch- and yaw rate. The rotational channel discussed here
is based on the CWA developed initially by Reid and Nahon [16]. Instead of using rota-
tional rates, rotational accelerations could be used as well as input to the channel. The SRS
for example also uses rotational accelerations, however, this itself has some implications,
which will be discussed. For similar reasons as with the specific force channel, the first step
is to scale the rotational rates from the EOM. The resulting signals, however, are in body
reference frame. Therefore, a transformation from body to Euler frame is performed. This
transformation is indicated in Figure 2.6 as TEb . If rotational accelerations were used the
partial derivative of this transformation would have been used, namely TEbω̇+ ṪEbω. After
this transformation the signals can be filtered, also here only the high-frequency content
of the signal is simulated. Now a second-order high-pass filter is used in order to even
washout steps on rotational rates.
The next step is to integrate the filtered signals to get simulator angles. If rotational accel-
erations were the inputs to this channel, a double integration would have been necessary.
The resulting angles are summed with the angles from the tilt coordination channel, which
together gives the simulator tilting angles.
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Figure 2.6: CWA - Rotational Channel

The resulting position coordinates and angles are send to the motion platform, which is
responsible for actually moving the simulator through space. The motion platform kine-
matics is, therefore, elaborated in next section.

2.3. Motion Platform
2.3.1. History of Motion Platforms
In approximately 100 years the flight simulation industry experienced an enormous evo-
lution. In these years many inventors have been busy with flight simulation technology.
The first approach on building a flight simulator was by anchoring a real aircraft to the
ground, this approach was already in 1910 by Sanders Teacher [5]. He used a modified air-
craft that was positioned somewhere in an exposed field, such that it faced the wind. With
this approach the trainee was able to practice control responses from the wind. In the same
year two other approaches were developed as well. The first one was The Walters machine,
which did not rely on wind, instead it used disturbances that were created by the instruc-
tor. The student tried to maintain equilibrium by using the controls that were connected by
wires and pulleys to the frame [14]. Antoinette used a similar approach but used two half
sections of a barrel that were moved by the instructor [20]. These movements represented
the pitch and roll of the aircraft. None of these three approaches were successful that time,
the wind was not reliable and the phase between the instructor and student was too big
and created a mismatch.
Since 1920 experiments using compressed air actuators and/or electric motors started.
These motion systems had the intention to mimic the feel of a real aircraft. However, all
these experiments failed due to the lack of realistic dynamic responses. Nine years later the
first effective ground based pilot training device was created. This device, which was de-
signed by Ed Link, is nowadays known as the Link Trainer [17]. Several developments took
place in the years after.
In the early 1950’s the modern flight simulator started taking its form [20]. Yet, these sim-
ulators did not yet include motion systems. These motion systems started coming back
in the late 1950’s, with the production of 2 Degree of Freedom (DOF), 3 DOF and 4 DOF
systems. In the early 1960’s Link developed a 3 DOF system, this became a standard in the
flight simulation industry for quite some years.
In 1965 Steward developed a 6 DOF motion platform that was able to effectively combine
linear and angular motions [4]. This platform is often referred to as hexapod. Hexapod
indicates the six independent hydraulic or electric legs of the motion platform. There have
been major improvements in the performance of actuator systems, as well as the geometry
of these platforms. However, the basic configuration of this hexapod remained unchanged
to today.
In modern flight simulators, the cabin is usually placed on top of the payload platform.
For high fidelity flight simulators it can happen that these exceed a mass of 18,000 kg [3].
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Furthermore, the centre of gravity of the cabin is usually above the mounting points of the
actuators, which illustrates the extreme demands for these mechanical systems.
A pilot in an aircraft experiences both linear and angular motions along the three body
axes of the aircraft. A hexapod motion platform is able to simulate linear motions, namely:
surge, sway and heave, as well as angular motions: roll, pitch and yaw. Together these six
different motion cues make up for 6 DOF. These motion cues are simulated using the actu-
ators attached to the motion platform. One of the requirements of these actuators is hav-
ing enough power to smoothly create these motion cues. Nowadays, motion platforms are
usually equipped with electrical actuators, however, in the past hydraulic actuators were
used instead. These hydraulic actuators had several disadvantages such as the amount of
maintenance and use of dangerous hydraulic fluids.
As the motion platform is moved by the actuators, these actuators also define the limita-
tions of the motion platform. These limitations are in motion space, defined by the actuator
lengths, as well as the maximum actuator velocities and accelerations. These actuators are
controlled usually by a motion computer that uses the output from the MCA, which con-
tains position coordinates (x, y and z) and angles (φ, θ and ψ). These position coordinates
and angles altogether describe the orientation of the motion platform.

2.3.2. Actuator Space
The MCA parameters are usually tuned such that the motion platform stays within its phys-
ical limits. This tuning can be done to some extend offline by looking at the actuator re-
sponses of a particular test signal. In order to do so, the MCA outputs must be expressed in
actuator space. This transformation is derived next.
One way of transforming the DOF-space into the actuator space is by expressing the actua-
tors as vectors. Figure 2.7 illustrates the hexapod actuators as vectors. In the next derivation
the payload platform centroid is the Motion Reference Point (MRP).

(a) Motion Platform Orientation (b) Vector relationship for actuator i

Figure 2.7: Vector relationships between the origins of each coordinate system
and the actuator attachment points of a hexapod motion platform [13]

From Figure 2.7b an expression for each actuator with respect to the centroid of the payload
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platform and fixed platform can be derived. From there the following two vector relations
are derived:

r i = Ai +R (2.3)

r i =B i + l i (2.4)

Combining these equations gives the following relationship:

l i = Ai +R −B i (2.5)

This equation, however, is derived with respect to the fixed reference frame. Whereas, the
known Ai ,S are defined with respect to the moving simulator frame. Therefore, an Euler
transformation is required to determine the vectors Ai . The following Euler transformation
is used:

Ai = TI b Ai ,S (2.6)

where:

TI b =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

cosψcosθ cosψsinθ sinφ− sinψcosφ cosψsinθcosφ+ sinψsinφ
sinψcosθ sinψsinθ sinφ+cosψcosφ sinψsinθcosφ−cosψsinφ
−sinθ cosθ sinφ cosθcosφ

⎤
⎥
⎥
⎥
⎥
⎥
⎦

(2.7)

Substituting Equation 2.6 into 2.5 yields:

l i = TI b Ai ,S +R −B i (2.8)

Now the actuator lengths can easily be determined by determining the magnitudes of the
l i vectors.

∣ l i ∣=
√

l 2
i ,x + l 2

i ,y + l 2
i ,z (2.9)

This concludes the derivation for determining the actuator lengths. These lengths can
now be compared with the maximum and minimum lengths to determine whether the
flight simulator stays within the available motion space. Another limitation might be the
maximum actuator speed and acceleration, these can be determined simply by taking the
derivative of the actuator lengths.



3
Motion Perception

Motions acting on the human body result in some kind of signals in the central nervous sys-
tem inside the brain. Motion can be perceived with different organs, such as the vestibular
system, eyes or by touch. This chapter focuses on the motion perception with the vestibular
system, which is described in Section 3.1. To employ the PEMD this vestibular system needs
to be modelled (Section 3.2). Lastly, the perception thresholds are elaborated in Section 3.3.

3.1. Vestibular System
Inside the human brain the central nervous system is the part where the sense of motion,
perceived by a human, is processed. The signals entering are emanated from visual (eyes),
haptic (touch) and/or vestibular sensors. This chapter only covers the vestibular system
and its representative model. The vestibular system is responsible for the perception of
specific forces and angular accelerations. This particular system is extremely important for
the perception of motion in the absence of vision. This vestibular organ can generally be
divided into two parts; the Otoliths for perceiving the translational specific forces and the
Semi-Circular Canals for perceiving the angular accelerations.

3.1.1. Otolith
Specific force is defined as the non-gravitational force per unit mass and is perceived by
the otolith. The otolith, which is located in the inner ear, consists of two parts. Firstly,
the utricle, which share common base with the Semi-Circular Canals, is for vertical heave
sensitivity. Secondly, the downward extension of the utricle, called the saccule. This saccule
is for horizontal sensitivity, thus surge and sway specific forces. Both the utricle and saccule
have vestibular hair cells, which are called the macula [15].
Each macula is covered with an otolithic membrane. On top of this membrane are oto-
conia, which are calcium carbonate crystals. The purpose of these crystals is to make the
otolithic membrane heavier than the structures and fluids that surrounding it. So when a
specific force is applied to the body the crystals will shear the otolithic membrane, which
causes the stereocilia (vestibular hairs) to bend. Bending of these vestibular hair cell will
alter the neuron firing rate to the central nervous system in the brain.
The otolith itself is, however, not capable to make a distinction between head tilt and sus-
tained acceleration. In flight simulators this imperfection of the vestibular organ is used
to simulate linear accelerations. Which is also the reason for the tilt coordination channel
in the MCA. To pursue this perception of acceleration, the motion platform is slowly tilted,
such that the gravitational vector enforces the stereocilia in a certain direction, creating the
illusion of constant acceleration. This is also the reason for the rate limiter that is present in
the tilt coordination channel, this enforces the rotational rate to stay below the rotational
perception threshold so that this rotation is not experienced.
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3.1.2. Semi-Circular Canals
Angular accelerations are perceived by the Semi-Circular Canals (SCC), which consists of
three circular canals in approximately three orthogonal planes. These canals are filled with
a liquid that is called endolymph. Each canal has an enlargement called the ampulla. In
this enlargement there is a gelatinous membrane, which is called the cupula. This cupula
covers the crista ampullaris which itself contain hair cells [15].
When a rotational acceleration is applied to the body and thus outside the SCC, the fluid
lags behind and moves relative to the cupula. This moving fluid causes the cupula to deflect
in opposite direction to the direction of rotation. This deflection of the cupula alters the
neural firing rate in the ampullary nerve fibers toward the central nervous system inside
the brain. This change in neural firing rate indicates an angular acceleration. However,
when the rotational acceleration is sustained and constant, the fluid flow velocity becomes
equal to the rotational rate of the body. When this happens, the cupula will not be deflected
anymore and no rotational rate is detected.
The mass of the cupula is equal to that of the endolymph, which makes the Semi-Circular
Canals almost completely insensitive to linear accelerations.

3.2. Perception Model
The brain is a complicated system, in which some parts, such as the vestibular system, can
be modelled by transfer functions. The reason for deriving these linear transfer functions
for the vestibular system is that these models will be used in Chapter 6 to extend the EMD
method with a perception model. The representative models of the vestibular system that
will be presented next have been derived from experiments of large groups of participants.
Apart from humans, numerous experiments with squirrel monkeys have been performed
as well [2]. Next the resulting transfer functions of the vestibular system are presented.

3.2.1. Otolith Model
The representative model for the Otolith (OTO) is based on an accelerometer with over-
damped mass-spring-dashpot characteristics.

HOT O(s) =
K (τ1s +1)

(τ2s +1)(τ3s +1)
(3.1)

The parameters of this otolith model have been found by means of experiments. However,
as several institutions have performed these experiments, some of which even with slightly
different setups, the resulting parameters tend to vary. The parameters used in this report
are based on Reid and Nahon [16], and are: K = 0.4, τ1 = 13.2 s, τ2 = 5.33 s and τ3 = 0.66
s. It is maybe not the most up-to-date model, however, it provides an accurate enough
representation to illustrate the ultimate goal of this report, which is the development of the
PEMD analysis.

3.2.2. Semi-Circular Canal Model
The representative model for the Semi-Circular Canals (SCC) is based on an overdamped
torsion-pendulum model.

HSCC(s) =
τ1τ2s2

(τ1s +1)(τ2s +1)(τ3s +1)
(3.2)
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Also here different formulations exists, however, again the model from Reid and Nahon is
used. The parameters associated to this transfer function are: τ1 = 30.0 s, τ2 = 10.2 s and
τ3 = 0.1 s.

3.3. Perception Thresholds
Apart from motion perception dynamics, perception thresholds are also to be taken into
account. The threshold for motion perception is the value that motion is not perceived any-
more by humans. Two different thresholds exist; the upper and lower thresholds. The up-
per threshold is the value at which the stimulus switches from not perceived to perceived,
the lower threshold is when the opposite occurs. As will become clear later in the report,
these perception thresholds play a crucial part in the development of the PEMD.
The inclusion of these perception thresholds becomes apparent when analyzing test sig-
nals. So is it possible that a non-zero input into the model gives a non-zero output signal,
however, this does not guarantee that this motion cue is actually perceived. For example,
this motion cue could have been below the perceivable threshold and remain unnoticed.
Unfortunately the problem with these thresholds is that these are not just a constant value.
In reality many factors, such as workload, are involved. Furthermore, these thresholds tend
to vary per frequency.
As it would be too ambitious to incorporate all these effects and because the PEMD requires
linear models, these thresholds are chosen as constants somewhere in the normal opera-
tional range [6, 7]. The perception thresholds as given in Table 3.1 will be the ones used for
the remainder of this report.

Table 3.1: Absolute Thresholds for Six Motion Axes [6]

Sensor Motion Threshold

OTO
Surge 7.42 ⋅10−2 m/s2

Sway 7.43 ⋅10−2 m/s2

Heave 1.23 ⋅10−1 m/s2

SCC
Roll 5.21 ⋅10−3 r ad/s
Pitch 7.34 ⋅10−3 r ad/s
Yaw 1.66 ⋅10−2 r ad/s



3.3. Perception Thresholds 96

This page is intentionally left blank.



4
Objective Motion Cueing Test

Chapter 2 discussed the general design of a flight simulator and how a MCA can control the
motion platform. The performance of this MCA can be expressed in terms of fidelity. In the
past this was by means of subjective tuning. However, modern simulators use objective tests,
such as the Objective Motion Cueing Test, which is explained in Section 4.1. Hereafter, the
actual test procedure is explained in Section 4.2. Lastly, the fidelity boundaries, which are
necessary to rate the objective fidelity, are explained in Section 4.3.

4.1. OMCT Background
In the past, MDAs filter settings were tuned by means of subjective test. Herein, pilots had
to fly certain missions after which they gave feedback to the tuning experts. These experts
then changed some tuning parameters of the MDA, the pilot then had to fly again a certain
manoeuvre. This process was repeated until the pilots were satisfied with the perceived
motions. However, the problem is that every person perceives motion in a slightly different
way. For example, perception thresholds may vary per person, furthermore, these thresh-
olds can also depend on the pilot’s task and workload [6]. This resulted in big differences
in tuning values of similar flight simulators. The undesirability of purely subjective evalua-
tion was already recognized in the 70s and different tuning procedures have been proposed
since, such as; Sinacori [12], Schroeder [11] and Gouverneur [1].
All these developments resulted in the current state-of-the-art method for objective evalu-
ation of the flight simulator’s fidelity: the Objective Motion Cueing Test (OMCT). As of its
successes the OMCT is now part of the ICAO - Manual of Criteria for the Qualification of
Flight Simulation Training Devices [9]. This method increases the transparency of the tun-
ing process. Rather than the time domain, each OMCT test is performed in the frequency
domain by analyzing the response to 12 different sine-wave input signals. These sine-wave
input signals are generated by a signal generator, see Figure 4.1, and are directly inserted to
the MCA.

Figure 4.1: Objective Motion Cueing Test [9]

The OMCT then analyses the difference between the input signal (FPA) and the resulting
output measured at the pilot station on the motion platform (FPS). These differences give
a magnitude and phase distortion, which are then plotted onto Bode plots. ICAO’s OMCT
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Manual also provides desired boundaries, with these the objective fidelity can be assessed.
In total OMCT consists of 10 separate tests which measures either direct outputs, such as
roll due to roll, or cross-coupling outputs, such as roll due to sway. Altogether, this method
gives a detailed picture of the combined performance of the MCA and motion platform
dynamics [23].

4.2. OMCT Test Procedure
As mentioned, OMCT consists of 10 individual test, where each test injects and measures
12 separate frequencies. The 10 OMCT test defined by ICAO are:

• OMCT test 1: Pitch response due to pitch input;
• OMCT test 2: Surge response due to pitch input;
• OMCT test 3: Roll response due to roll input;
• OMCT test 4: Sway response due to roll input;
• OMCT test 5: Yaw response due to yaw input;
• OMCT test 6: Surge response due to surge input;
• OMCT test 7: Pitch response due to surge input;
• OMCT test 8: Sway response due to sway input;
• OMCT test 9: Roll response due to sway input; and
• OMCT test 10: Heave response due to heave input.

Each of these tests contain 12 test frequencies, which are inserted either to the specific force
channel or the rotational channel. For the specific force channel, the following specific
force equation is defined to model the sine-wave input signals.

f x,y,z
PA = A sin(ωt) (4.1)

For the rotational channel, the following angular acceleration equations are defined to
model the sine-wave input signals.

ṗPA =−Aω2 sin(ωt) (4.2)

q̇PA =−Aω2 sin(ωt) (4.3)

ṙPA =−Aω2 sin(ωt) (4.4)

The associated input frequencies and amplitudes for each test are shown in Table 4.1. The
test frequencies are the same for each of the OMCT test.
Figure 4.1 visualizes where the signals from the OMCT signal generator are inserted to the
MDA. These input sine-wave signals are processed trough the MCA and, hereafter, simu-
lated by the motion platform. The response to each of these input signals is measured with
accelerometers at the OMCT reference point, which is 35 cm below the DERP. Research has
shown that offline tuning can also be performed, which avoid the complexity to some ex-
tent [19]. Frequency response functions are used to relate the output response to the input.
A complete overview of these functions for each test is shown in Appendix F. These trans-
fer functions, H , are computed in the frequency domain. A fast fourier transform is used to
compute these frequency response functions, which results in complex numbers. With this
complex number a magnitude distortion, ∣H ∣, and phase distortion, ∠H , between FPA and
FPS can be determined. These distortions can then be plotted onto Bode plots and checked
whether these are between the provided fidelity boundaries.
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Table 4.1: Specific force and rotational input amplitudes [9]

Frequency
signal
number

Frequency
ω [r ad/s]

Specific
force
amplitude
A [m/s2]

Angular ac-
celeration
amplitude
Aω2 [°/s2]

1 0.100 1.00 0.060
2 0.158 1.00 0.150
3 0.251 1.00 0.251
4 0.398 1.00 0.398
5 0.631 1.00 0.631
6 1.000 1.00 1.000
7 1.585 1.00 1.585
8 2.512 1.00 2.512
9 3.981 1.00 3.981
10 6.310 1.00 6.310
11 10.000 1.00 10.000
12 15.849 1.00 10.000

4.3. OMCT Boundaries
The fidelity boundaries for magnitude and phase distortion have been defined by ICAO.
These boundaries have been determined by simulating a limited number of FSTD with ei-
ther electric of hydraulic driven motion platforms. As there are still some concerns about
the current boundaries, future changes of these boundaries are not ruled out. The bound-
aries used in this report boundaries defined by ICAO [9], which was last updated in 2015.
The so-called fidelity boundaries indicate for each OMCT test frequency if the FSTD re-
sponse can be classified as high-fidelity or low-fidelity. Lies the response between the
boundaries, then it can be classified as high-fidelity, if not, as low-fidelity. Figure 4.2 vi-
sualizes the fidelity boundaries for the roll response due to a roll input.

Figure 4.2: OMCT Fidelity Boundaries for Test 3
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5
Eigenmode Distortion

The previous chapter discussed the Objective Motion Cueing Test. Here an alternative to this
evaluation method is presented, the Eigenmode Distortion (EMD) analysis. Firstly, the EMD
methodology is elaborated in Section 5.1. Hereafter, an eigenvector analysis is performed
for the symmetric model of the Cessna Citation 500, Section 5.2. This section illustrates the
reasons for linearizing both EOM and MCA. Then the actual linearization is performed for
the asymmetric EOM (Section 5.3.1) and MCA (Section 5.3.2). The aircraft model and MCA
model need to be combined into a single system, this is done in Section 5.3.3. Finally, Section
5.3.4 contains an eigenvector analysis performed on the asymmetrical system.

5.1. Eigenmode Distortion Methodology
Despite the power of OMCT, this method has its shortcomings. First of all, the sine-wave
input signal does not represent realistic motion experienced during flight. Secondly, the
simulated vehicle dynamics are not included in this test. However, research revealed that
this might have an influence on the OMCT results [26], and finally, the response to each sig-
nal is studied in isolation, while aircraft motions are actually linked through dynamics. The
EMD method, developed by Miletović et al [8], is an objective evaluation method to address
these shortcomings. EMD investigates the distortion of the motion cues imposed by the
MCA in terms of eigenvectors, which represent the dynamic modes, such as phugoid and
short-period. Figure 5.1 illustrates how the EMD method differs from the OMCT method.

Motion Cueing
Algorithm

Flight Model
(EOM) Motion Platform

EMD OMCT

  

Figure 5.1: Domain of Evaluation Method

EMD investigates the motion cue distortions in term of eigenvectors. However, to get these
eigenvectors a linear model of the complete system is required. For this, the EMD uses lin-
ear models for both EOM and MCA. The linear model structure for the EOM in asymmetric
flight is given in Equations 5.1 to 5.3. These EOM describe the dynamic behaviour of the
aircraft and represent the motion as experienced by the pilot in the aircraft. In these equa-
tions, the ∆ indicates that these motions are actually perturbations relative to a trimmed
and linearized initial condition. The∆x EOM state vector is exactly known from flight dynam-
ics and is further elaborated in Section 5.3.1.

∆ẋ EOM = AEOM ∆x EOM +B EOM ∆uEOM (5.1)

∆x EOM = [∆vs ∆φ ∆pb ∆rb]
T

(5.2)

∆uEOM = [∆δa ∆δr ]
T

(5.3)
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With a flight simulator motions resulting from the EOM are cued by a MCA. This MCA is for
the EMD analysis also linearized. However, the exact formulation of the ∆x MC A state vector
depends on the MCA used. In Section 5.3.2 the state space for the CWA is derived.

∆ẋ MC A = AMC A∆x MC A +B MC A∆uMC A (5.4)

∆uMC A = [∆ f EOM
yp

∆ṗEOM ∆ṙ EOM ]
T

(5.5)

In order to make EMD possible the two linear systems need to be coupled into one single
system. This single system is then only exited by means of pilot inputs ∆uEOM which are
the control surface deflections. In order to effectively combine the two systems a coupling
between the two is designed in Section 5.3.3, which will have the form as in Equations 5.6
to 5.8

∆ẋ E MD = AE MD∆x E MD +B E MD∆uE MD → [
∆ẋ EOM

∆ẋ MC A ] = [
AEOM 0
ACOU P AMC A

][
∆x EOM

∆x MC A
]+[

B EOM

B COU P
]∆uEOM

(5.6)

∆y E MD =C E MD∆x E MD +DE MD∆uE MD →∆y E MD = [
C EOM 0
C COU P C MC A

][
∆x EOM

∆x MC A
]+[

DEOM

DCOU P
]∆uEOM (5.7)

∆y E MD = [∆ f EOM
yp

∆pEOM ∆r EOM ∆ f MC A
yp

∆p MC A ∆r MC A ]
T

(5.8)

This combined linear system result is used for the EMD analysis. After determining the
eigenvectors of the AE MD a transformation is performed. This transformation allows to re-
late the eigenvectors of the aircraft model and MCA to one another. By analyzing these
resulting eigenvectors, the magnitude and phase distortion between aircraft and simula-
tor can be visualized. These distortions are caused by the MCA and depend on the chosen
settings of this MCA.
This report focuses mainly on the lateral aircraft model, however, to illustrate the actual
eigenvector analysis the analysis is first performed for the eigenvectors of the symmetric
aircraft model in next section. This section aims to illustrate the reasons for linearizing
the EOM and MCA to perform the eigenvector analysis. The complete derivation of this
linear model for the symmetric aircraft model is not included in this chapter, but can be
found in Appendix C. As becomes evident from Appendix C, the formulas become quite
elaborate and, therefore, the∆ notation is dropped for the remaining of this chapter, but in
fact represent perturbations from their trimmed and linearized conditions.

5.2. Eigenvector Analysis for Symmetric Model
Usually when analyzing aircraft eigenmodes, eigenvalues are used. These eigenvalues give
information about the nature of the mode. For example, a Dutch Roll has two complex
poles, meaning that it is a periodic mode or the Spiral mode has one real pole on close to
the imaginary axis, meaning that it is an aperiodic mode of slow nature.

AE MDV =λE MDV (5.9)

Additionally eigenmodes can be analyzed in terms of eigenvectors, Equation 5.9. These
eigenvectors provide information on how different states interact in each eigenmode. These
can also be used to determine the distortions. In order to do so, first the eigenvectors of the
AE MD matrix need to be determined. These eigenvectors are expressed in the xE MD states.
However, the distortion analysis is between the specific forces and rotational rates from
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the EOM and MCA. To get these, the eigenvectors can simply be multiplied with the C E MD

matrix.
Vy =C E MD ⋅V (5.10)

y = [ f EOM
xp

f EOM
zp

qEOM f MC A
xp

f MC A
zp

q MC A]
T

(5.11)

Figure 5.2 is a visualization of this eigenvector analysis applied to the Cessna Citation 500
using the settings as described in [24], given in Tables A.1 and B.1. In here the solid lines
represent the motion cue eigenvectors as experienced in the actual aircraft, furthermore,
the dashed lines represent the motion cue eigenvectors as experienced in the flight simu-
lator. Any phase and magnitude difference between these solid and dashed lines is, con-
sequently, caused by the MCA. These plots can for example be used as tuning strategy to
minimize the phase and magnitude distortion between the eigenvectors from the EOM and
MCA.
One must realize that a comparison in magnitudes between specific forces and rotational
rates is not possible as of their different dimensions. For example, the x specific force eigen-
vector has a much larger magnitude than the pitch rate eigenvector. However, it would be
completely wrong to conclude from this that the specific force is therefore a more dom-
inant motion cue. This is also part of the motivation of continuing the research into the
EMD analysis and incorporating a pilot model (Chapter 6). Applying this pilot model re-
veals that actually the pitch rate is more dominant than the x specific force, which sup-
ports the statement that a comparison between magnitudes cannot be made at this stage
between specific forces and rotational rates.
The magnitude distortion of an eigenvector can be defined by the ratio between EMD and

MCA magnitudes, namely: ∣∆∣ =
∣∆MC A

∣

∣∆EOM ∣
. Furthermore, the phase distortions are defined by

the angle between the eigenvector. If the eigenvector corresponding to the positive con-
jugate eigenvalues are visualised, counter-clockwise and clockwise phase distortion indi-
cate phase lead and lag, respectively. From Figure 5.2a, which illustrates the short period
eigenvectors, the following can be concluded; f MC A

xp
has a phase distortion of 24.3° lead

(counter-clockwise) and magnitude distortion ∣ fxp ∣ =
∣ f MC A

xp ∣

∣ f EOM
xp ∣

= 0.81. Furthermore, f MC A
zp

has

a phase distortion of 92.93° lead and magnitude distortion ∣ fzp ∣ = 0.70. Lastly, q MC A has
a phase distortion of 23.3° lead and magnitude distortion ∣q ∣ = 0.70. These observation are
supported by analyzing the time domain plots in Figure 5.3. These time traces are the result
of a zero-input response, where the system has an initial condition of 2Re(vi). In here vi is
the eigenvector associated to the eigenmode, so for the short period eigenvector is used to
excite the short period eigenmode.
Previously the results for the short period were elaborated, however, the symmetric EOM
also contain a so called phugoid eigenmode. The eigenvectors associated to this phugoid
motion are illustrated in Figure 5.2b. Here the following can be concluded: f MC A

xp
has a

phase distortion of 23.1° lag (clockwise) and magnitude distortion ∣ fxp ∣ = 0.79. Further-
more, f MC A

zp
has a phase distortion of 108° lag and magnitude distortion ∣ fzp ∣ = 0.0006.

Lastly, q MC A has a phase distortion of 94.2° lag and magnitude distortion ∣q ∣ = 0.11. In-
teresting are these significant differences in magnitudes for both the z specific force and
pitch rate, which in time domain (Figure 5.4) give an almost zero output. The reason for
this is that a flight simulator has not enough motion space to simulate these components
of the phugoid motion.
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(a) Short Period (b) Phugoid

Figure 5.2: Example of Eigenvector Distortion Plots

(a) (b) (c)

Figure 5.3: Time Histories of Short Period Eigenmode Excitation

(a) (b) (c)

Figure 5.4: Time Histories of Phugoid Eigenmode Excitation

5.3. Asymmetric Model
Whereas previous section only illustrated the actual eigenvector analysis, this section will
performs all steps involved for the asymmetrical model which are necessary to perform this
analysis. Furthermore, it must be mentioned again that for all presented formulas the ∆
notation is dropped but in fact represent perturbations from their trimmed and linearized
conditions.

5.3.1. Aircraft Model
The dimensional asymmetric EOM, given in Equations 5.12 to 5.16, are the linearized equa-
tions that replicate the asymmetrical behaviour of the aircraft. These equations are derived
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in the stability reference frame and assume a steady, straight, symmetric flight conditions
with a flat and non-rotating Earth.

W cosθ0φ+Yv v +Yv̇ v̇ +Yp p +Yr r +Yδaδa +Yδrδr =m(v̇ + r V ) (5.12)

Lv v +Lp p +Lr r +Lδaδa +Lδrδr = Ixx ṗ − Ixz ṙ (5.13)

Nv v +Nv̇ v̇ +Np p +Nr r +Nδaδa +Nδrδr = Izz ṙ − Ixz ṗ (5.14)

ψ̇ = r
cosθ0

(5.15)

φ̇ = p + r tanθ0 (5.16)

These dimensional EOM are transformed into a dimensionless state-space representation
using the steps as in classical flight dynamics [10], yielding:

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

β̇

φ̇
ṗb
2V
ṙ b
2V

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

yβ yφ yp yr

0 0 2V
b 0

lβ 0 lp lr

nβ 0 np nr

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

β

φ
pb
2V
r b
2V

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

+

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

yδa yδr

0 0
lδa lδr

nδa nδr

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

[
δa

δr
] (5.17)

The definition of the newly introduced symbols are recapitulated in Table 5.1.

Table 5.1: Symbols Appearing in the General State-Space Representation of
Equation 5.17

yi li ni

i =β V
b

CYβ

2µb

V
b

Clβ
K 2

Z+CnβKX Z

4µb(K
2
X K 2

Z−K 2
X Z )

V
b

Clβ
KX Z+CnβK 2

X

4µb(K
2
X K 2

Z−K 2
X Z )

i =φ V
b

CL
2µb

0 0

i = p V
b

CYp

2µb

V
b

Clp K 2
Z+Cnp KX Z

4µb(K
2
X K 2

Z−K 2
X Z )

V
b

Clp KX Z+Cnp K 2
X

4µb(K
2
X K 2

Z−K 2
X Z )

i = r V
b

CYr −4µb
2µb

V
b

Clr K 2
Z+Cnr KX Z

4µb(K
2
X K 2

Z−K 2
X Z )

V
b

Clr KX Z+Cnr K 2
X

4µb(K
2
X K 2

Z−K 2
X Z )

i = δa
V
b

CYδa
2µb

V
b

Clδa
K 2

Z+Cnδa
KX Z

4µb(K
2
X K 2

Z−K 2
X Z )

V
b

Clδa
KX Z+Cnδa

K 2
X

4µb(K
2
X K 2

Z−K 2
X Z )

i = δr
V
b

CYδr
2µb

V
b

Clδr
K 2

Z+Cnδr
KX Z

4µb(K
2
X K 2

Z−K 2
X Z )

V
b

Clδr
KX Z+Cnδr

K 2
X

4µb(K
2
X K 2

Z−K 2
X Z )

The state-space system in Equation 5.17 uses dimensionless states, these are made dimen-
sional by realizing the following relationships:

v =βV v̇ = β̇V

Applying these relationships to the state-space of Equation 5.17 results in a state-space
system that has dimensional states:

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

v̇
φ̇

ṗ
ṙ

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

yβ yφV yp
b
2 yr

b
2

0 0 1 0
lβ

2
b 0 lp lr

nβ
2
b 0 np nr

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

v
φ

p
r

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

+

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

yδa V yδr V
0 0

lδa
2V
b lδr

2V
b

nδa
2V
b nδr

2V
b

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

[
δa

δr
] (5.18)

Next the output vector with the C- and D matrices must be formulated. As this is the asym-
metrical EOM the specific force in sway direction and rotational roll and yaw rates are of
interest. The rotational rates are directly available from the state-space representation of
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Equation 5.17. The sway specific force, however, must be derived. Following the same steps
as in previous section and including the transformation from stability to body frame (as the
EOM are derived in stability frame) results in the following formulation:

fyp = u̇s sinβ+ v̇s cosβ+ rbus cosβcosα− rb vs sinβcosα− rb ws sinα−pbus cosβsinα+

pb vs sinβsinα−pb ws cosα− g cosθ sinφ+ ṗblz + ṙblx

(5.19)

This sway specific force formulation represent the sway specific forces as perceived at pi-
lot position in the aircraft simply by filling in the moment arms lx and lz , however, this
formulation is not in the correct form. In order to write this equation as output vector, it
must be linearized. Linearizing and imposing the trim conditions results in the following
formulation:

fyp = v̇s − gφ−us0α0p +us0 r + lz ṗ + lx ṙ (5.20)

Now the output vector can be formulated, yielding:

y EOM =
⎛
⎜
⎝

f EOM
yp

pEOM

r EOM

⎞
⎟
⎠
=

⎡
⎢
⎢
⎢
⎢
⎢
⎣

C fy v C fyφ C fy p C fy r

0 0 1 0
0 0 0 1

⎤
⎥
⎥
⎥
⎥
⎥
⎦

x +

⎡
⎢
⎢
⎢
⎢
⎢
⎣

D fyδa D fyδr

0 0
0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

u (5.21)

This concludes the derivation of the sway specific force, roll- and yaw-rotational rate for-
mulation experienced at pilot position. The definition of the newly introduced symbols of
Equation 5.21 are recapitulated in Table 5.2.

Table 5.2: Symbols Appearing in the Output Vector State-Space Representation
of Equation 5.21

C fy i C ṗi C ṙ i

i = v yβ+ lβ
2
b lz +nβ

2
b lx lβ

2
b nβ

2
b

i =φ yφV − g 0 0
i = p yp

b
2 −us0α0+ lp lz +np lx lp np

i = r yr
b
2 +us0 + lr lz +nr lx lr nr

D fy i D ṗi D ṙ i

i = δa yδa + lδa
2V
b lz +nδa

2V
b lx lδa

2V
b nδa

2V
b

i = δr yδr + lδr
2V
b lz +nδr

2V
b lx lδr

2V
b nδr

2V
b

5.3.2. Linearization of the Motion Cueing Algorithm
This section contains the linearization of the adapted CWA. This CWA was adapted to out-
put sway specific force as well as roll- and yaw rates. This adaption is visualized in Figure 5.5
for the asymmetrical formulation of the CWA. The CWA as explained in Chapter 2 is highly
non-linear, and is therefore linearized to allow for the EMD analysis. Previous section lin-
earized the EOM, which are the inputs to the CWA, as of this, these inputs now represent
deviation from the initial condition.
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Figure 5.5: Classical Washout Algorithm Adapted for Lateral EMD [16]

The different components of this CWA (Figure 5.5) are presented in Equations 5.22 to 5.26.

TI b = [sinφsi m sinθsi m sinψsi m +cosφsi m cosψsi m] TbI = T T
I b (5.22)

TEb = [
1 cosφsi m tanθsi m

0 cosφsi m
cosθsi m

] TbE = [
1 −sinθsi m

0 cosθsi m cosφsi m
] (5.23)

HP3 fy =
s2

s2+2ζ fyωn fy
s +ω2

n fy

s

s +ωb fy

→
s3

s3+ A fy s2+B fy s +C fy

(5.24)

HP2i =
s2

s2+2ζiωni s +ω2
ni

→
s2

s2+ Ai s +Bi
(5.25)

where: i = p and i = r for the roll- and yaw- rotational channel, respectively.

LP =
ω2

nt

s2+2ζtωnt s +ω2
nt

→
Bt

s2+ At s +Bt
(5.26)

Appendix C.2 contained an illustration of the linearization of the surge specific force chan-
nel. The exact same principles are applied to all channels of the asymmetric formulation
of the CWA. These steps are not again visualized in this section as assumed general knowl-
edge for control theory. The resulting linearized state-space formulation of the CWA can be
written in the form:

ẋ MC A = AMC A x MC A +B MC A uMC A (5.27)

where the state- and input-vector are:

x MC A = [AI
y S I

y V I
y φr ot φ̇r ot φt i l t φ̇t i l t φsi m φ̇si m ψsi m ψ̇si m p f i l t]

T

(5.28)

uMC A = [ f EOM
y ṗEOM ṙ EOM]

T
(5.29)
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in there the system- and input matrices are:

AMC A =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0

−C fy −B fy −A fy 0 0 0 0 g 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 −Bp −Ap 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 −Bt −At 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 −Bp −Ap −B 2

t −At Bt 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 −Br −Ar 0
0 0 0 −Bp −Ap −B 2

t −At Bt 0 0 θ0Br θ0 Ar 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(5.30)

B MC A =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0
0 0 0

K fy 0 0
0 0 0
0 Kp θ0Kr

0 0 0

−
K fy

g 0 0

0 0 0

−
K fy Bt

g Kp θ0Kr

0 0 0
0 0 Kr

−
K fy Bt

g Kp 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(5.31)

As illustrated in Figure 5.5, the sway specific force, roll- and yaw-rate are the MCA outputs,
this results in the following formulation of the output vector:

y MC A =
⎛
⎜
⎝

f MC A
yp

pMC A

r MC A

⎞
⎟
⎠
=C MC A x MC A +D MC A uMC A (5.32)

C MC A =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

−C fy −B fy −A fy 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 1 0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

(5.33)

DMC A =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

K fy 0 0
0 0 0
0 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

(5.34)

This concludes the derivation of the sway specific forces, roll- and yaw rates filtered by the
MCA experienced by the pilot in the flight simulator.

5.3.3. System Coupling
Now that the EOM and CWA are both formulated as separate state-space formulations,
these must now be combined in one state-space formulation. As the MCA uses the EOM
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outputs as inputs, these must be reformulated. This reformulation results in so-called cou-
pling matrices that couples both individual state-space representations into one system.
Figure 5.6 illustrates how the EOM and MCA are related to one-another.

Equations of
Motion

Motion Cueing
Algorithm

��

��

� ���
�

�

����

���� ����

� ���
�

�

����

Figure 5.6: EOM and MCA Relation

For the EMD analysis to be possible, these two separate systems must be combined into
one. This eventually results in a state-space of the form:

ẋ E MD = AE MD x E MD +B E MD uE MD (5.35)

where the state- and input-vector are:

xE MD = [vs φ pb rb AI
y S I

y V I
y φr ot φ̇r ot φt i l t φ̇t i l t φsi m φ̇si m ψsi m ψ̇si m p f i l t]

T (5.36)

uE MD = [δa δr ]
T

(5.37)

Equations 5.31 and 5.34 use the EOM outputs as inputs. These must thus be transformed
to allow the system coupling, which eventually can be written in the form:

AE MD = [
AEOM 0
ACOU P AMC A] (5.38)

B E MD = [
B EOM

BCOU P] (5.39)

y E MD =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

f EOM
yp

pEOM

r EOM

f MC A
yp

pMC A

r MC A

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

= [
C EOM 0
CCOU P C MC A]x E MD +[

DEOM

DCOU P]uE MD (5.40)

In here Equation 5.31, B MC A, which uses the EOM outputs as input, is rewritten as ACOU P

and BCOU P , which expresses these EOM outputs using the EOM states and pilot inputs.
The same is done for Equation 5.34, DMC A, which is in its turn transformed into CCOU P

and DCOU P for the same reason. The resulting coupling matrices are:

ACOU P =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 0
0 0 0 0

K fy C fy v K fy C fyφ K fy C fy p K fy C fy r

0 0 0 0
KpC ṗv +θ0Kr C ṙ v KpC ṗφ+θ0Kr C ṙφ KpC ṗp +θ0Kr C ṙ p KpC ṗr +θ0Kr C ṙ r

0 0 0 0

−
K fy

g C fy v −
K fy

g C fyφ −
K fy

g C fy p −
K fy

g C fy r

0 0 0 0

−
K fy Bt

g C fy v +KpC ṗv +θ0Kr C ṙ v −
K fy Bt

g C fyφ+KpC ṗφ+θ0Kr C ṙφ −
K fy Bt

g C fy p +KpC ṗp +θ0Kr C ṙ p −
K fy Bt

g C fy r +KpC ṗr +θ0Kr C ṙ r

0 0 0 0
Kr C ṙ v Kr C ṙφ Kr C ṙ p Kr C ṙ r

−
K fy Bt

g C fy v +KpC ṗv −
K fy Bt

g C fyφ+KpC ṗφ −
K fy Bt

g C fy p +KpC ṗp −
K fy Bt

g C fy r +KpC ṗr

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(5.41)
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BCOU P =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0
0 0

K fy D fyδa K fy D fyδr

0 0
Kp D ṗδa +θ0Kr D ṙδa Kp D ṗδr +θ0Kr D ṙδr

0 0

−
K fy

g D fyδa −
K fy

g D fyδr

0 0

−
K fy Bt

g D fyδa +Kp D ṗδa +θ0Kr D ṙδa −
K fy Bt

g D fyδr +Kp D ṗδr +θ0Kr D ṙδr

0 0
Kr D ṙδa Kr D ṙδr

−
K fy Bt

g D fyδa +Kp D ṗδa −
K fy Bt

g D fyδr +Kp D ṗδr

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(5.42)

CCOU P =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

K fy C fy v K fy C fyφ K fy C fy p K fy C fy r

0 0 0 0
0 0 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

(5.43)

DCOU P =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

K fx D fxδa K fx D fxδr

0 0
0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

(5.44)

This concludes the derivation of the complete state-space system, which is now ready for
the EMD analysis performed in next section.

5.3.4. Eigenvector Analysis
Now that the complete state-space for the asymmetrical EMD analysis has been derived,
the actual eigenvector analysis can be performed. For this the eigenvectors of the AE MD

matrix are determined.
Vy =C E MD ⋅V (5.45)

y = [ f EOM
yp

pEOM r EOM f MC A
yp

pMC A r MC A]
T

(5.46)

The resulting eigenvectors are then multiplied with the C E MD matrix to express the eigen-
vectors in the desired states, namely the sway specific force, roll- and yaw rate experienced
in the actual aircraft and in the flight simulator. The derived eigenvectors are visualized in
Figure 5.7, which use the Cessna Citation 500 parameters from Table A.1 and example MCA
parameters of Table B.2. As the aperiodic roll and spiral mode only have real eigenvalues,
these only give a magnitude distortion, Figures 5.7b and 5.7c, respectively. The Dutch roll
eigenmode has a complex pair of eigenvalues, which gives a distortion in both magnitude
and phase, Figure 5.7a. The associated distortions are given in Table 5.3.
From the distortions of Table 5.3 it can be seen that the MCA is not capable to simulate the
roll and yaw rates of the spiral mode. This has to do with the fact that this eigenmode is
extremely slow and therefore require a lot of motion space to effectively simulate this with
a flight simulator. However, a flight simulator motion space is limited by its actuator length
making it impossible to cue this eigenmode with a standard hexapod motion platform.
Besides the eigenvectors the time traces of the individual eigenmodes are given in Figures
5.8 to 5.10. These figures support the distortions as given in Table 5.3, and are the result of
a zero-input response where the system has an initial condition of 2Re(vi).
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Table 5.3: Distortion in Magnitude and Phase

Dutch Roll Aperiodic Roll Spiral Mode
∣ fy ∣ = 0.64 ∠ fy = 16.3° lead ∣ fy ∣ = 1.59 ∣ fy ∣ = 0.80
∣p ∣ = 0.62 ∠p = 18.1° lead ∣p ∣ = 0.76 ∣p ∣ = 0.003
∣r ∣ = 0.69 ∠r = 24.5° lead ∣r ∣ = 1.02 ∣r ∣ = 0

(a) Dutch Roll (b) Aperiodic Roll (c) Spiral Mode

Figure 5.7: Example of Eigenvector Distortion Plots

(a) (b) (c)

Figure 5.8: Time Histories of Dutch Roll Eigenmode Excitation

(a) (b) (c)

Figure 5.9: Time Histories of Aperiodic Roll Eigenmode Excitation
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(a) (b) (c)

Figure 5.10: Time Histories of Aperiodic Spiral Mode Excitation



6
Perceptual Eigenmode Distortion

Previous chapter contained the Eigenmode Distortion analysis, however, the resulting plots
in the complex plane showed limitations in the determination of dominant motion cues.
Therefore, this chapter expands this EMD analysis by incorporating a so called perception
model, namely the Perceptual Eigenmode Distortion (PEMD). This PEMD method is elabo-
rated in Section 6.1, and has basically two extensions. The first extension is incorporating a
model of the vestibular system, Section 6.2. The second extension is the use of motion percep-
tion thresholds, Section 6.3. Hereafter, an eigenvector analysis is performed for the symmet-
rical model (Section 6.4). Then, the effects of the two extensions are evaluated in Section 6.5.
Finally, the results, of this evaluation, are used for the eigenvector analysis performed on the
asymmetrical model (Section 6.6).

6.1. Perceptual Eigenmode Distortion Methodology
Previously it was elaborated that despite the potential of OMCT, this method has its short-
comings, such as the unrealistic test signals, exclusion of vehicle dynamics and the isola-
tion of each test signal. To overcome these shortcomings the EMD analysis was introduced
in previous chapter, this method used a different approach to investigate the distortions
of the motion cues imposed by the MCA in terms of eigenvectors. These eigenvectors are
visualized in the complex plane, from which the magnitude and phase distortions can be
determined. Yet, this method has its disadvantages such as; the resulting eigenvectors for
specific forces and rotational rates cannot be compared with one-another due to their dif-
ferent units. Thus, the dominant motion cue cannot be determined simply by looking at
the magnitudes. Furthermore, the current eigenvectors assume a vestibular system that
perceives the motion cues 1-to-1, whereas in real life this vestibular system introduces an
additional magnitude and phase distortion. However, as the EOM outputs and MCA out-
puts pass through the vestibular system, their relative magnitude and phase distortions
remain the same.
In this chapter two extensions of the EMD methods will be analysed. Firstly, the effects of
including the vestibular system into the analysis. Secondly, the effect of including motion
perception thresholds into the analysis. These extensions to the EMD method are referred
to as the Perceptual Eigenmode Distortion (PEMD), as this new method incorporates a pi-
lot perception model. Figure 6.1 illustrates how the PEMD method differs from the EMD
method.

Motion Cueing
Algorithm

Vestibular
System

Perception
Thresholds

Flight Model
(EOM)

EMD PEMD

Figure 6.1: Domain of EMD and PEMD Methods
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The PEMD method makes use of the resulting state-space system of the EMD method.
Hereafter, the Otolith (OTO) and Semi-Circular Canals (SCC) of the human vestibular sys-
tem are transformed into a state-space representation. Then, a state-space system is for-
mulated that has as inputs the outputs of the EMD method and outputs how these are
perceived, thus:

uPER = [ f EOM
xp

f EOM
zp

qEOM f MC A
xp

f MC A
zp

q MC A]
T

(6.1)

y PER = [ f̃ EOM
xp

f̃ EOM
zp

q̃EOM f̃ MC A
xp

f̃ MC A
zp

q̃ MC A]
T

(6.2)

Like with the EMD method, the vestibular system must also be coupled to formulate one
single system that has as input the control surface deflections given by the pilot. Therefore,
a system coupling is formulated. The next step is to extend the system with the perception
thresholds, this is done by dividing the output y PER equation by the associated perception
thresholds.

y̌ PER
= [ ˇ̃f EOM

xp
ˇ̃f EOM
zp

ˇ̃qEOM ˇ̃f MC A
xp

ˇ̃f MC A
zp

ˇ̃q MC A]
T

(6.3)

If the eigenvectors are then multiplied with the C matrix, the resulting eigenvectors can
be compared by magnitude as the units represent perception thresholds. This also allows
for detecting the dominant motion cues in each mode. The two extensions of the PEMD
method are first analysed for the symmetrical aircraft model of the Cessna Citation 500.
This resulting system is then used for an eigenvector analysis. Hereafter, an evaluation of
the two extensions is performed. Furthermore, in this evaluation the used tuning criteria
for the symmetrical EMD model are revisited. The conclusions of the different extensions
in the evaluation will be used for the eigenvector analysis of the asymmetric model of the
Cessna Citation 500.

6.2. Vestibular System Extension to Symmetric Model
6.2.1. Vestibular System
Chapter 3 elaborates the working principles of the vestibular system, involving how trans-
lational and rotational motion are perceived with the OTO and SCC, respectively. The sym-
metric model, however, only includes specific forces in x and z direction and pitch rota-
tional rate. This means that the vestibular system can modelled as illustrated in Figure
6.2. In the remainder of this chapter the tilde (~) represents the perceived motion by the
vestibular system.

 

Otolith

Otolith

Semi-Circular
Canals

�
�

�
�

�

� ̃ 
�

� ̃ 
�

� ̃ 

Vestibular System

Figure 6.2: Systematic Representation of Vestibular System
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Otolith
The OTO is responsible for the perception of specific forces and can be modelled as a trans-
fer function [16]:

f̃i

fi
=

K f̃i
(τ f̃i1

s +1)

(τ f̃i2
s +1)(τ f̃i3

s +1)
→

K f̃i
τ f̃i1

B f̃i
s +K f̃i

B f̃i

s2+ A f̃i
s +B f̃i

(6.4)

where: i = x and i = z for the specific force in x- and z-direction, respectively.

In order to make the PEMD analysis possible, this transfer function must be written as
state-space. In state-space representation this transfer function can be written as:

[
ẋ fi1

ẋ fi2

] = [
0 1

−B f̃i
−A f̃i

][
x fi1

x fi2

]+[
0
1
] fi (6.5)

f̃i = [K f̃i
B f̃i

K f̃i
τ f̃i1

B f̃i
][

x fi1

x fi2

]+ [0] fi (6.6)

Typical OTO parameter values are given in Table 6.1, and will be used in this chapter.

Semi-Circular Canals
The SCC is responsible for the perception of rotational rates, which means that for the sym-
metrical model the SCC perceives the pitch rates. The SCC is modelled with the transfer
function [16]:

q̃

q
=

τq̃1τq̃2 s2

(τq̃1 s +1)(τq̃2 s +1)(τq̃3 s +1)
→

τq̃1τq̃2C q̃ s2

s3+ Aq̃ s2+Bq̃ s +C q̃
(6.7)

Again for the PEMD analysis this transfer function was transferred to state-space represen-
tation, which yields:

⎡
⎢
⎢
⎢
⎢
⎢
⎣

ẋq1

ẋq2

ẋq3

⎤
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0 1 0
0 0 1

−C q̃ −Bq̃ −Aq̃

⎤
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎣

xq1

xq2

xq3

⎤
⎥
⎥
⎥
⎥
⎥
⎦

+

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0
0
1

⎤
⎥
⎥
⎥
⎥
⎥
⎦

q (6.8)

q̃ = [0 0 τq̃1τq̃2C q̃]

⎡
⎢
⎢
⎢
⎢
⎢
⎣

xq1

xq2

xq3

⎤
⎥
⎥
⎥
⎥
⎥
⎦

+ [0]q (6.9)

Typical SCC parameter values are given in Table 6.1, and will be used in this chapter.

Table 6.1: Vestibular Parameter Values from Reid & Nahon [16]

Ki [−] τi1 [s] τi2 [s] τi3 [s]
i = fx 0.4 13.2 5.33 0.66
i = fz 0.4 13.2 5.33 0.66
i = q - 30.0 10.2 0.1

6.2.2. Vestibular State-Space
Now that the state-space representation of OTO and SCC is complete these can be com-
bined into one single system that contains the whole vestibular system of the pilot. For this
analysis it is essential to visualize how the pilot would perceive the motion in the aircraft,
e.g. output of EOM. Furthermore, to compare these the pilot perception in the simulator
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must be included as well, e.g. output of MCA. This means that two separate vestibular sys-
tems must be designed. Figure 6.3 visualizes these vestibular systems in combination with
the earlier derived EMD model.
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Figure 6.3: Incorporation of Vestibular System

The goal of this section is to formulate a state-space system that contains the two vestibular
systems with its components. This state-space system must have the EMD outputs as in-
put. Combining the state-space representations of the OTO and SCC this perception model
is eventually modelled as:

ẋ PER = APER x PER +B PER uPER (6.10)

Where the state-vector and input-vector are:

xPER = [xEOM

fx1
xEOM

fx2
xEOM

fx1
xEOM

fx2
xEOM

q1 xEOM
q2 xEOM

q3 xMC A

fx1
xMC A

fx2
xMC A

fx1
xMC A

fx2
xMC A

q1 xMC A
q2 xMC A

q3 ]
T

(6.11)

uPER = [ f EOM
xp

f EOM
zp

qEOM f MC A
xp

f MC A
zp

q MC A]
T

(6.12)

APER =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 1 0 0 0 0 0 0 0 0 0 0 0 0
−B f̃x

−A f̃x
0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 −B f̃z

−A f̃z
0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 −C q̃ −Bq̃ −Aq̃ 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 −B f̃x

−A f̃x
0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 −B f̃z

−A f̃z
0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 −C q̃ −Bq̃ −Aq̃

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(6.13)
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B PER =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(6.14)

As output the perceived specific forces and rotational rates in both aircraft and simulator
are given by:

y PER = [ f̃ EOM
xp

f̃ EOM
zp

q̃EOM f̃ MC A
xp

f̃ MC A
zp

q̃ MC A]
T

=C PER x PER +DPER uPER
(6.15)

C PER =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

K f̃x
B f̃x

K f̃x
τ f̃x1

B f̃x
0 0 0 0 0 0 0 0 0 0 0 0

0 0 K f̃z
B f̃z

K f̃z
τ f̃z1

B f̃z
0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 τq̃1τq̃2C q̃ 0 0 0 0 0 0 0
0 0 0 0 0 0 0 K f̃x

B f̃x
K f̃x

τ f̃x1
B f̃x

0 0 0 0 0

0 0 0 0 0 0 0 0 0 K f̃z
B f̃z

K f̃z
τ f̃z1

B f̃z
0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 τq̃1τq̃2C q̃

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(6.16)

DPER =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(6.17)

This concludes the derivation of the vestibular perception state-space representation. Next,
this perception model is connected to the EMD model into a single state-space represen-
tation.

6.2.3. System Coupling
In order to make the PEMD analysis possible the EMD and perception model must be con-
nected combined into one state-space representation. Essentially this means that the in-
puts of the perception model must be written as states that form the EMD model. This
resulting model will only have control surface deflections as inputs. This system coupling
is visualized in Figure 6.4.
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Figure 6.4: Coupling EMD with Vestibular System

This figure basically illustrates that the EMD and perception models are two separate mod-
els, which must be combined into one single system. In order to do so, again a system
coupling matrix must be designed. The resulting PEMD system can be written as:

ẋ PE MD = APE MD x PE MD +B PE MD uPE MD (6.18)

Where the state-vector and input-vector are given by:

xPE MD = [xE MD xPER]
T

(6.19)

uPE MD = [δe δt]
T

(6.20)

In here xE MD represents the state-vector of the EMD system given in Equation C.57 and
xPER represents the state-vector of the perception model given in Equation 6.11. Note that
this results in a total system state-vector that contains 30 states. The PEMD state-space
representation including the coupling matrices can be written as:

APE MD = [
AE MD 0
ACOU P APER] (6.21)

B PE MD = [
B E MD

BCOU P] (6.22)

y PE MD =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

f̃ EOM
xp

f̃ EOM
zp

q̃EOM

f̃ MC A
xp

f̃ MC A
zp

q̃ MC A

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

= [
C E MD 0
CCOU P C PER]x PE MD +[

DE MD

DCOU P]uPE MD (6.23)

In here Equation 6.14, B PER , which uses the EMD outputs as input, is rewritten as ACOU P

and BCOU P , which expresses these EMD outputs using the EMD states and pilot inputs.
The same is done for Equation 6.17, DPER , however as this is a zero matrix, the resulting
CCOU P and DCOU P matrices are zero matrices as well. The resulting coupling matrices are:
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ACOU P =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
C fx u C fx w C fxθ C fx q 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
C fz u C fz w C fzθ C fz q 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

K fx C fx u K fx C fx w K fx C fxθ K fx C fx q −C fx −B fx −A fx 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

K fz C fz u K fz C fz w K fz C fzθ K fz C fz q 0 0 0 −C fz −B fz −A fz 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(6.24)

BCOU P =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0
D fxδe D fxδt

0 0
D fzδe D fzδt

0 0
0 0
0 0
0 0

K fx D fxδe K fx D fxδt

0 0
K fz D fzδe K fz D fzδt

0 0
0 0
0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
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⎥
⎥
⎥
⎥
⎥
⎥
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⎥
⎥
⎥
⎥
⎥
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⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(6.25)

CCOU P = zer os(6,16) (6.26)

DCOU P = zer os(6,2) (6.27)

This concludes the derivation of the complete state-space system, the next step would be
to adapt the output equations to incorporate the perception thresholds, after which the
actual PEMD analysis is possible.

6.3. Perception Thresholds Extension to Symmetric Model
The EMD eigenvector analysis revealed that the magnitude of the specific force and rota-
tional rate eigenvectors could not be compared with one another, because of the difference
in dimensions. A way to solve this is to express all eigenvectors in the same units allowing
for a magnitude comparison. For this the threshold unit is chosen, basically the output
vector of the PEMD is divided by the associated threshold value. This results in dimension-
less eigenvectors that can be compared in magnitude, by comparing this magnitude the
dominant motion cues can be identified. Basically all that needs to be done is dividing the
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C PE MD and DPE MD matrices by their associated threshold values, yielding:

Č PE MD =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

C PE MD(1)/ ˇT H fx

C PE MD(2)/ ˇT H fz

C PE MD(3)/ ˇT H q

C PE MD(4)/ ˇT H fx

C PE MD(5)/ ˇT H fz

C PE MD(6)/ ˇT H q

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

ĎPE MD =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

DPE MD(1)/ ˇT H fx

DPE MD(2)/ ˇT H fz

DPE MD(3)/ ˇT H q

DPE MD(4)/ ˇT H fx

DPE MD(5)/ ˇT H fz

DPE MD(6)/ ˇT H q

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(6.28)

This gives the dimensionless output vector as:

y̌ PER
= [ ˇ̃f EOM

xp
ˇ̃f EOM
zp

ˇ̃qEOM ˇ̃f MC A
xp

ˇ̃f MC A
zp

ˇ̃q MC A]
T

(6.29)

In here the check mark (∨), indicates that threshold units are used. For this stage the fol-
lowing threshold values are ˇT H fx = 0.0742 [m/s2], ˇT H fz = 0.123 [m/s2] and ˇT H q = 0.00734
[r ad/s], based on [6, 7]. This stage is mainly for illustration purpose, a later stage will re-
quire a better substantiated determination of these thresholds.

6.4. Eigenvector Analysis on Symmetric Model
Now that the entire PEMD state-space has been derived the eigenvector analysis can be
performed. This eigenvector analysis is again performed using the same steps as described
in Section 5.2.

y = [ ˇ̃f EOM
xp

ˇ̃f EOM
zp

ˇ̃qEOM ˇ̃f MC A
xp

ˇ̃f MC A
zp

ˇ̃q MC A]
T

(6.30)

This results in eigenvectors expressed in the desired terms, namely the perceived specific
forces and pitch rate. These eigenvectors are again plotted in the complex plane. This plot
reveals the magnitude and phase distortions between the EOM and MCA.
Unlike with the EMD the magnitudes of all eigenvectors can now be compared with one
another. As example the same parameters and settings for the Cessna Citation 500 aircraft
as in Section 5.2 are used for illustration. The magnitude and phase distortions between
EOM and MCA still remain the same as is evident in Table 6.2. However, looking at Figure
6.5 the magnitudes of the individual motion cues can now be compared. The resulting
complex plane plots can be analyzed in the following way; consider Figure 6.5a, if someone
can barely feel the pitch rotational rate, that person can certainly not feel the surge specific
force as the magnitude is much smaller, but that person will most certainly be able to feel
the heave specific force as the magnitude is larger. As can be seen, the heave specific force
is the dominant motion cue and for the short period the surge specific force is the least
present motion cue. This observation was not possible with the standard EMD as evident
in Figure 5.2. This observation is quite useful, imagine that someone is tuning the MCA
parameters for the short period mode and has to make a trade-off between pitch rate and
surge specific force, then it is better to tune for pitch rate.

Table 6.2: Distortion in Magnitude and Phase

Short Period Phugoid
∣ fx ∣ = 0.81 ∠ fx = 24.3° (lag) ∣ fx ∣ = 0.79 ∠ fx = 23.1° (lead)
∣ fz ∣ = 0.70 ∠ fz = 92.9° (lag) ∣ fz ∣ = 0.0006 ∠ fz = 108° (lead)
∣q ∣ = 0.70 ∠q = 23.3° (lag) ∣q ∣ = 0.11 ∠q = 94.2° (lead)
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(a) Short Period (b) Phugoid

Figure 6.5: Example of Eigenvector Distortion Plots for PEMD

6.5. Evaluation of the Perception Model Extension of Symmet-
ric Model

Incorporating the complete vestibular system increases the complexity of this eigenvector
analysis significantly. For example, the number of states increased from 16 to 30 simply
by including the vestibular system. As of this, the change of making a small error in the
derivation increases as well. In order to determine whether this vestibular system incorpo-
ration is worth it, the thresholds are included in the EMD analysis as well. This was possible
simply by adapting the C E MD matrix. This resulted in:

Č E MD =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

C E MD(1)/ ˇT H fx

C E MD(2)/ ˇT H fz

C E MD(3)/ ˇT H q

C E MD(4)/ ˇT H fx

C E MD(5)/ ˇT H fz

C E MD(6)/ ˇT H q

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(6.31)

This adjusted Č E MD is then used in the eigenvector analysis. The resulting eigenvectors
together with the eigenvectors from the PEMD analysis are together visualized in Figures
6.6 and 6.7. In here the effect of incorporating only the vestibular system can be seen. As
is evident from here, the relative magnitude and phase distortions remain the same, the
only difference is that the overall magnitude is adjusted, as well as the system is rotated.
In here, Figures 6.6a and 6.7a illustrate the same but have the f EOM

zp
aligned. As is evident

from these figures, the same conclusion of dominant motion cues can be made. Another
critical point is that the vestibular model derived in Section 6.2.2 is also an idealization and
simplification of the actual vestibular system. For example the vestibular parameter values
given in Table 6.1 vary per person. Also, the transfer functions used are just a simplification
of the actual human vestibular system. For these reasons, the vestibular system is left-
out in the remaining of the PEMD analysis, however, the incorporation of the perception
thresholds will still be included as these allow the determination of dominant motion cues.
With keeping this knowledge about the dominant cues in mind, the proposed criteria used
to determine the MCA settings can be revisited. These settings are given in Table B.1 and
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originate from [24]. According to this paper, the following tuning criteria were used, shown
in their order of importance:

1. Minimize the phase distortion of all motion cues;
2. Maintain the relative phase between motion cues;
3. Minimize the magnitude distortion of all motion cues; and
4. Maintain a similar magnitude distortion level of all motion cues.

The resulting MCA settings were optimized for the short period eigenmode. Now with the
new knowledge of dominant motion cues all motion cues do not have to be treated equally.
For example, the PEMD revealed that the heave specific force is the dominant motion cue in
the short period eigenmode, whereas the surge specific force is the least important motion
cue. It makes therefore sense to optimize the magnitude and phase distortion for the heave
specific force, rather than for all motion cues simultaneously.

(a) Actual (b) Aligned

Figure 6.6: Short Period - Comparison between EMD and PEMD

(a) Actual (b) Aligned

Figure 6.7: Phugoid - Comparison between EMD and PEMD
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6.6. Eigenvector Analysis on Asymmetric Model
Previously the vestibular system that was connected to the EMD model, however, this ad-
dition seemed not worth the effort and increases the complexity significantly, e.g. 16 EMD
states increased to 30 PEMD states. Therefore, for the lateral EMD model, which was de-
rived in Section 5.3.3, the addition of vestibular system is left-out. However, the second
step of the PEMD that includes the perception thresholds is still done, as this will reveal the
dominant motion cues for each eigenmode.
The EMD analysis from Section 5.3.4 resulted in magnitude and phase distortions that
could not be compared to one another, because of the differences in dimensions. To solve
this problem again, the eigenvectors are all expressed in the same unit, namely thresholds.
In order to do so, the rows in the C E MD matrix must be divided by their associated threshold
value, yielding:

Č PE MD =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

C E MD(1)/ ˇT H fy

C E MD(2)/ ˇT H p

C E MD(3)/ ˇT H r

C E MD(4)/ ˇT H fy

C E MD(5)/ ˇT H p

C E MD(6)/ ˇT H r

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(6.32)

In here the check mark (∨), indicates that threshold units are used. For this stage these
threshold values are ˇT H fy = 0.0743 [m/s2], ˇT H p = 0.00521 [r ad/s] and ˇT H r = 0.0166 [r ad/s],
based on [6, 7]. This stage is mainly for illustration purpose, a later stage will require a bet-
ter substantiated determination of these thresholds.
After again performing the eigenvector analysis, now with the Č PE MD , the resulting eigen-
vectors are expressed in the desired terms, namely:

y = [ f̌ EOM
yp

p̌EOM ř EOM f̌ MC A
yp

p̌MC A ř MC A]
T

(6.33)

This matrix contains the same eigenvectors as in Section 5.3.4, however, now all expressed
in threshold units. After plotting the resulting magnitude and phase distortions for each
eigenmode the distortions can be compared to one another. The resulting distortion plots
are illustrated in Figure 6.8 and uses the same parameters as in Section 5.3.4.
Looking at the resulting figures, the following observations can be made. For the Dutch
Roll, the roll rate is the dominant motion cue, furthermore, the sway specific force and yaw
rate are almost equally important. For the aperiodic roll also the roll rate is the dominant
motion cue. The yaw rate is the least important motion cue for the aperiodic roll. For the
spiral mode the yaw rate is the most important motion cue, however, this motion cue is not
simulated by the flight simulator as can be seen by the zero magnitude. Furthermore, the
magnitude of the roll rate that is simulated by the flight simulator is negligible. As the spiral
mode is a very slow eigenmode, the conventional hexapod flight simulator is not capable
to correctly simulate this as of the limitations in motion space.
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(a) Dutch Roll (b) Aperiodic Roll (c) Spiral Mode

Figure 6.8: Example of Eigenvector Distortion Plots

It was shown that for the EMD analysis of the symmetrical model, all the motion cues were
treated equally important. However, by using the perception threshold extension domi-
nant motion cues can be identified for a given flight condition. This information can be
used in a smart way to find better MCA settings for minimizing the motion cue distortions.
For the experiment of the symmetrical model, the MCA settings were selected manually.
Next chapter uses the results of the PEMD eigenvector analysis to formulate a optimization
function that automatically finds the most optimal MCA settings.



7
Tuning Algorithm

Previous chapter revealed some interesting insight on how human perception thresholds
could be used to improve the EMD method. This chapter used this insight to construct an
objective function that could be used to optimize the MCA tuning parameters for a given
eigenmode. Section 7.1 constructs this objective function. Apart from the objective function,
some constraints must be imposed as well, this is done in Section 7.2. Finally, an overview of
the different parameter of this tuning algorithm is given in Section 7.3

7.1. Objective Function
The OMCT evaluation method, which is currently used to objectively evaluate the flight
simulator’s fidelity, evaluates the magnitude- and phase distortion separately. Initially an
objective function was designed where the magnitude- and phase distortion could be op-
timized separately. The work of Wei Fu [27] gave, however, some interesting insight for an
alternative formulation of this objective function. Figure 7.1 depicts the dynamics of an
arbitrary system at a single frequency, this will be used to explain his findings. He found
that a change of dynamics, in the control loading, is not perceived by humans when the
change that occurred fall within the threshold region (the grey square). So it does not mat-
ter whether it is a magnitude distortion and/or phase distortion, as long as the distortion is
within the threshold region it will not be perceived by the human operator. Only a change
is detected by the human operator if the dynamics change exceeds this threshold region.

Figure 7.1: Threshold for Altered Perception of the System Dynamics [27]

Rather than just optimizing only the magnitude distortion or phase distortion, an alterna-
tive approach is chosen. The objective function formulated in this chapter aims to mini-
mize the Euclidean distance between the eigenvectors from the EOM and the eigenvectors
of the MCA. This Euclidean distance is illustrated for the Dutch Roll and Aperiodic Roll in
Figures 7.2a and 7.2b, respectively.

125
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(a) (b)

Figure 7.2: Euclidean Distance

Next it is important to determine the relative importance of the individual motion cues per
eigenmode. For example, in Figure 7.2a the magnitude of the roll rate, p̌EOM , is larger than
that of the sway specific force, f̌ EOM

yp
, and yaw rate, ř EOM . This observation became possi-

ble, since the eigenvectors are now expressed in threshold units. Using this insight the mag-
nitudes can be used as indication for dominance of a certain motion cue per eigenmode. In
this report, this is referred to as the dominance of a motion cue. It must be mentioned that
these dominance’s depend also on the flight condition. Table 7.1 shows the dominance of
the motion cues for the flight condition as stated in Appendix A.

Table 7.1: The Dominance of Motion Cues per Eigenmode

fy p r
Dutch Roll %DR fy = 0.188 %DRp = 0.635 %DRr = 0.177
Aperiodic Roll %AR fy = 0.337 %ARp = 0.651 %ARr = 0.013
Spiral Mode %SM fy = 0.103 %SMp = 0.078 %SMr = 0.819

Finally an objective function can be formulated, the objective function aims to minimize
the Euclidean distances between the eigenvectors of the selected eigenmode. In the formu-
lated objective function, an individual or several eigenmodes can be selected by changing
the values of α, β and γ. For example, if it is desired to only optimize the Dutch Roll then α
can be set to 1 and the β and γ can be set to 0. This option is added as every flight simulator
has different characteristics. For example, the motion space of the SRS is limited in such
a way that it cannot mimic the Aperiodic Spiral Mode, due to its slow nature. In this case
γ can, for example, be set to 0. Equation 7.1 shows the resulting objective function. This
objective function is minimized by varying the MCA parameters, which is indicated by x .

mi n ∶ Z(x) =α ⋅DR(x)+β ⋅ AR(x)+γ ⋅SM(x) (7.1)



7.2. Constraints 127

where

x = [K fy ωn fy
ωb fy

ωnt ζ fy ζt Kp ωnp ζp Kr ωnr ζr ]
T

(7.2)

α+β+γ = 1 (7.3)

0 ≤α,β,γ ≤ 1 (7.4)

The eigenmodes appearing in the objective function, Equation 7.1, can each be written in
terms of motion cue dominance’s and Euclidean distances. This formulation is given in
Equations 7.5 to 7.7. What is nice about incorporating these dominance terms is that when
a motion cue has a high dominance then it is more important to minimize the Euclidean
distance than for a motion cue with low dominance. Exactly this behaviour is achieved with
the current formulation of the objective function.

DR(x) =%DR fy ⋅ ∣DR(x)∣ fy +%DRp ⋅ ∣DR(x)∣p +%DRr ⋅ ∣DR(x)∣r (7.5)

AR(x) =%AR fy ⋅ ∣AR(x)∣ fy +%ARp ⋅ ∣AR(x)∣p +%ARr ⋅ ∣AR(x)∣r (7.6)

SM(x) =%SM fy ⋅ ∣SM(x)∣ fy +%SMp ⋅ ∣SM(x)∣p +%SMr ⋅ ∣SM(x)∣r (7.7)

with, e.g.:
∣DR(x)∣ fy = ∣∣ f̌ EOM

yp
− f̌ MC A

yp
(x)∣∣DR (7.8)

The x indicate the MCA tuning parameters, as given in Equation 7.2, that can be changed
in such a way that the objective function is minimized.

7.2. Constraints
Ideally the Euclidean distances between all the eigenvectors would be zero, this would im-
ply that the flight simulator mimics the actual aircraft perfectly. However, as of reasons
explained in Sections 2.2 and 2.3 this would require a huge motion space for the motion
platform. This is usually not available as the motion space is limited by actuator lengths.
Apart from the lengths, the actuators also have limitations in the maximum velocity and
acceleration it can achieve.

Figure 7.3: Time Traces of Representative Dutch Roll Excitation

Therefore, the objective function is extended with some constraints. For every parame-
ter combination, the time traces of Figure 7.3 are simulated, u = f ( fy(t), ṗ(t), ṙ (t)). The
resulting actuator responses of this simulation are checked whether these stay within the
limitations. The actuator constraints are formulated as follows:

lmi n +Bl ≤ lr esponse(x ,u) ≤ lmax −Bu (7.9)

∣vr esponse(x ,u)∣max ≤ vmax (7.10)

∣ar esponse(x ,u)∣max ≤ amax (7.11)
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7.3. Tuning Algorithm Overview
Now the complete tuning algorithm has been derived, it is good to have a look at the differ-
ent steps involved. This tuning algorithm was basically a continuation on the PEMD results,
therefore a quick summary will be given. Where the OMCT test gave a detailed picture on
the performance over a given frequency domain, the EMD and PEMD methods give distor-
tion information for a given flight condition. Before using the tuning algorithm, the flight
condition needs to be chosen which is used to linearize the EOM. These linearized EOM
are then coupled to the linearized MCA using the steps described in Chapter 5. Hereafter,
the output matrix must be divided by the vestibular thresholds to give all motion cues the
same unit (threshold unit). After obtaining the eigenvectors of the system matrix and mul-
tiplying those with the output matrix (in threshold unit), the eigenvector distortions can be
determined. These distortions indicate the amount of distortions caused by the MCA.

When taking the magnitude of the eigenvectors corresponding to the EOM, the dominance
of each motion cue per eigenmode can be determined. The resulting dominance is con-
stant for the earlier flight condition. In the tuning algorithm, these dominance are used to
optimize the MCA settings for the given flight condition.

The formulation of the cost function allows for great flexibility. For example, the user can
decide for which eigenmode is optimized, which is useful as different flight simulators have
different performances. Also, when training a pilot how to operate an aircraft with a broken
yaw damper, the settings can be optimized for simulating the Dutch Roll and aperiodic roll
rather than the spiral mode.
Besides the cost function, the constrains also allow for flexibility. For example, different
time histories, corresponding to different tasks, can be used. Also, a buffer distance is in-
cluded in the actuator length constraint. So, by increasing this distance, the cost function
will optimize the MCA parameters for a smaller motion space.

On paper this tuning approach seems to have great potential, however, to confirm this a
pilot-in-the-loop experiment will have to be performed. When the EMD analysis was de-
signed for linear model of the Cessna Citation 500, also a pilot-in-the-loop experiment was
performed. For this experiment the MCA settings were selected manually and optimized
for the short period eigenmode. During the experiment, the pilot was instructed to excite
the short period eigenmode of the aircraft and was asked to give feedback on the realism of
the motion signature.
The experiment corresponding to this report will differ from the experiment with the linear
model of the Cessna Citation 500. Rather than selecting the MCA settings manually, the
derived tuning algorithm will be used to optimize the MCA settings. Also, instead of excit-
ing the short period mode, for this experiment the Dutch Roll will be excited. The Dutch
Roll is chosen for this experiment, as it is more interesting to analyze than the aperiodic
modes. The last difference is that the aircraft will be excited externally while the pilot is in-
structed to minimize the altitude and heading deviations. There are mainly two reasons for
this. Firstly, there is more control over the amount of motion that the pilot is subjected to.
Secondly, the task becomes an active flight task where the pilot has to control the aircraft.
A more detailed explanation of this pilot-in-the-loop experiment will be given in the next
chapter.



8
Pilot-in-the-Loop Experiment

A part from the main research question has been answered in last chapters, however, to an-
swer the complete research question an experiment needs to be performed. This chapter de-
signs this experiment which will be performed with the SRS.

In order to investigate the predictive capabilities of the PEMD methodology and validate
its inherent assumptions, a pilot-in-the-loop experiment will be performed in the SRS. In
total three different MCA configurations will be used.

8.1. Hypothesis
– It is hypothesized that the PEMD tuned configuration is preferred over the OMCT

and baseline tuned configurations, for an aircraft which is externally excited by Dutch
Roll. This is hypothesized because the aircraft dynamics are taken into account dur-
ing the PEMD tuning process. This hypothesis is rejected if the PEMD tuned config-
uration receives a lower overall fidelity rating than the OMCT tuned configuration.

– It is hypothesized that the pilot has a better performance to suppress the Dutch Roll
eigenmode with the PEMD tuned configuration than with the OMCT and baseline
tuned configurations.

In order to test these hypothesis, different MCA configurations will be used. Table 8.1 shows
these configurations, in here the Greek symbols refer to the optimization function in Equa-
tion 8.1.

mi n ∶ Z(x) =α ⋅DR(x)+β ⋅ AR(x)+γ ⋅SM(x) (8.1)

Table 8.1: Labels and Description of the five used Configurations of the CWA

Label Description
B Baseline configuration (Appendix G)
O OMCT tuned configuration with bad performance in PEMD (Appendix H)
P PEMD tuned configuration with α =β = 0.5 and γ = 0.0 (Appendix I)

Even though the experimental task will be to control the aircraft in which the Dutch Roll is
externally excited, the P configuration is tuned for both Dutch Roll and Aperiodic Roll. The
reason for this is that pilot feedback from a previous experiment with the longitudinal EMD
indicated that tuning could be improved by considering simultaneous tuning, as all eigen-
modes are always excited together, see Figure 8.1. The Aperiodic Spiral Mode, however, is
not taken into account during tuning. This is because the SRS motion space is limited, and
is therefore not able to cue this mode.
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Figure 8.1: Mode Participation Factor of Flight on November 27, 2019

8.2. Experimental Task
The experimental task is to fly the Cessna Citation 500 aircraft and minimize the altitude
and heading deviations. During the experiment, the Dutch Roll will externally be excited
with a gust that introduces a side slip, see Figure 8.2. The yaw damper of the configured
aircraft is disabled, so lateral motion cues will be clearly present. The surge, heave and
pitch motions will be disabled, so the pilot can still control the aircraft in pitch, although
these cues are not felt. Furthermore, the yaw motion settings are kept the same for all
MCA configurations. After each evaluated pair, the pilot has to indicate a preferred MCA
configuration. This judgement will be based on the sway and roll perceived motion cues.
As the motion filters are tuned for a specific flight condition, it is important that the aircraft
does not deviate too much from this trimmed condition, therefore, the following conditions
have to be satisfied at all times:

– No full deflections of the control column and rudder are allowed.
– The airspeed deviation must be minimized.
– No throttle changes are allowed.

Figure 8.2: Motion Participation Factors of Dutch Roll Excited Aircraft
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8.3. Experiment Structure
8.3.1. Simulator Setup
The simulated aircraft is a non-linear high fidelity model of the Cessna Citation 500 busi-
ness jet. The initial trim condition is at an altitude of 5000m and Mach number of 0.5 with
corresponding velocities VT AS = 160 m/s and VI AS = 245 kt s.

– Visuals: A full outside visual is provided at all times.
– Sound: Engine noise is played while the pilots are performing the task in order to

mask any noise coming from the motion actuators.
– Control devices: Control column and rudder paddles are used for controlling the air-

craft.
– Aircraft configuration: The aircraft is in cruise configuration:

– Flaps: UP
– Gear: UP
– Thrust: 94.8% Fan RPM
– δe0 = 0.3 deg
– Yaw damper: DISABLED

Figure 8.3: Instrument Panel used during Experiment

8.3.2. Dependent Measures
The main recorded variables are the preferred MCA configuration from each paired com-
parison together with a confidence level ranging from 0 to 2, where: 0 is no confidence, 1 is
normal confidence and 2 is high confidence. Pilots are briefed to select the ’winner’ as the
configuration which presents the most realistic motion cues. For validation purpose, the
following time histories are recorded:

– Pilot inputs;
– Aircraft states;
– Specific forces;
– Simulation motion cues; and
– Pilot’s preference and confidence level.

8.3.3. Independent Variables
The independent variables are three different MCA configurations which will be tuned us-
ing the offline test environment in Matlab. The resulting MCA parameters will be used in
the online experiment with the SRS.
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8.3.4. Control Variables
For isolating the hypotheses, which is based on subjective rating from pilots, it is extremely
important that all other factors that affect the pilot’s behaviour do not vary over the differ-
ent experimental conditions, and therefore the following control variables are defined:

– The display/instrument panel is kept constant.
– The controlled dynamics are kept constant, namely: same flight condition and same

accurate high fidelity Citation model.
– Manipulator and its settings are kept constant
– Procedural variables: every pilot receives the same instructions and amount of train-

ing.

8.3.5. Training
Each pilot receives approximately 15 minutes of training, during which the pilot flies all the
MCA configurations twice in randomized order. Every training run is one minute, during
which the pilot can get a feeling of the aircraft control behaviour.

8.3.6. Subjects
In total 12 experienced pilots will be required. Experienced pilots are necessary as a sub-
jective judgement (preferred MCA configuration) has to be made about the realism of the
perceived motion cues. Table 8.2 contains a proposed Latin Square Matrix that visualizes
the configurations to be flown by the different subjects.

Table 8.2: Latin Square Matrix of the Experiment Conditions for all Pilots

Subject Conditions
1 B - O B - P O - P P - O P - B O - B
2 O - P B - O B - P P - B O - B P - O
3 B - P O - P B - O O - B P - O P - B
4 P - O P - B O - B B - O B - P O - P
5 P - B O - B P - O O - P B - O B - P
6 O - B P - O P - B B - P O - P B - O
7 B - O B - P O - P P - O P - B O - B
8 O - P B - O B - P P - B O - B P - O
9 B - P O - P B - O O - B P - O P - B

10 P - O P - B O - B B - O B - P O - P
11 P - B O - B P - O O - P B - O B - P
12

Training

O - B P - O P - B B - P O - P B - O



9
Conclusions

Throughout the report the different sub-questions have been answered. The answers to
these individual questions help to answer the the central research questions, which was:

To what extent is the Perception Eigenmode Distortion an improvement to
the Eigenmode Distortion and Objective Motion Cueing Test (for the lateral

model of the Cessna Citation 500)?

The first part of this research question has, however, already been answered. By including
the perception thresholds in the derivation of the EMD, all the eigenvectors have the same
unit. As of this, the magnitudes of the different motion cues can now be compared to one
another in each eigenmode. Furthermore, a dominant motion cue can be identified for
each eigenmode. So, for the flight condition used in Chapter 6 the dominant motion cues
are roll rate for the Dutch Roll and aperiodic roll, and yaw rate for the spiral mode. Besides
the use of vestibular threshold values, a model which included the vestibular system was
formulated. This vestibular extension increased the complexity significantly, e.g. the sys-
tem of 16 states became a system of 30 states. This extension is, however, removed as it was
prone to errors without adding extra value.
The second part of this research question, the performance of the PEMD with respect to
the OMCT will be evaluated using the proposed pilot-in-the-loop experiment.
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A
Cessna Citation I Stability and Control

Derivatives

Table A.1: Symmetric and Asymmetric Stability and Control Derivatives for
Cessna Citation 500, condition: Cruise

V = 160.3 [m/s] h = 5000 [m] K 2
X X = 0.019 [−]

S = 24.2 [m2] m = 5207 [kg ] K 2
Y Y = 1.114 [−]

c̄ = 2.022 [m] ρ = 0.7361 [kg/m3] K 2
Z Z = 0.042 [−]

b = 13.36 [m] CL = 0.2239 [−] KX Z = 0.002 [−]
CX0 =−0.0277 CZ0 =−0.2160 Cm0 = 0.2130
CXu =−0.0698 CZu =−0.4702 Cmu = 0.0561
CXα = 0.0744 CZα =−5.6149 Cmα =−0.4982
CXα̇ = 0.0259 CZα̇ =−0.2039 Cmα̇ = 0.1689
CXq =−0.4179 CZq =−5.8339 Cmq = 10.152
CXδe

=−0.0131 CZδe
=−0.5814 Cmδe

=−1.2269
CXδt

= 0.0000 CZδt
= 0.0000 Cmδt

= 0.0000

CYβ =−0.0750 Clβ =−0.1061 Cnβ = 0.1305
CYp =−0.0109 Clp =−0.5209 Cnp =−0.0672
CYr = 0.8499 Clr =−0.1522 Cnr =−0.2089
CYδa

=−0.0400 Clδa
=−0.1848 Cnδa

=−0.0140
CYδr

= 0.2300 Clδr
= 0.0358 Cnδr

=−0.0947
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B
Motion Cueing Algorithm Settings for

Examples

Table B.1: CWA Filter Parameters used for Symmetric EMD and PEMD Examples

K fx 0.8 [−]
ωn fx

1.0 [r ad/s]
ωb fx

0.0 [r ad/s]
ζ fx 1.0 [−]
ωnt 1.0 [r ad/s]
ζt 1.0 [−]
K fz 0.5 [−]
ωn fz

2.5 [r ad/s]
ωb fz

0.2 [r ad/s]
ζ fz 1.0 [−]
Kq 0.7 [−]
ωnq 0.7 [r ad/s]
ζq 1.0 [−]

Table B.2: CWA Filter Parameters used for Asymmetric EMD and PEMD
Examples

K fy 0.8 [−]
ωn fy

1.0 [r ad/s]

ωb fy
0.0 [r ad/s]

ζ fy 1.0 [−]
ωnt 1.0 [r ad/s]
ζt 1.0 [−]
Kp 0.7 [−]
ωnp 0.7 [r ad/s]
ζp 1.0 [−]
Kr 0.7 [−]
ωnr 0.7 [r ad/s]
ζr 1.0 [−]
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C
Eigenmode Distortion on Symmetric

Aircraft Model

C.1. Aircraft Model
This appendix derives the EMD applied for the symmetrical motion of the Cessna Cita-
tion 500 aircraft. In order to do so, the longitudinal Equations of Motion (EOM) must be
defined. The dimensional symmetric EOM, given in Equations C.1 to C.4, are a set of lin-
earized equations that replicate the physical behaviour of the actual aircraft. These derived
linearized equations assume a steady, straight, symmetric flight condition with a flat and
non-rotating Earth.

−W cosθ0∆θ+Xu∆u+Xw∆w +Xq∆q +Xδe∆δe +Xδt∆δt =m∆u̇ (C.1)

−W sinθ0∆θ+Zu∆u+Zw∆w +Zẇ∆ẇ +Zq∆q +Zδe∆δe +Zδt∆δt =m(∆ẇ −∆qV ) (C.2)

Mu∆u+Mw∆w +Mẇ∆ẇ +Mq∆q +Mδe∆δe +Mδt∆δt = Iy y∆q̇ (C.3)

∆θ̇ =∆q (C.4)

The above equations are a linearized set of EOM, however not yet in state-space represen-
tative form. Following the steps as in classical flight dynamics, these equations can we
written as a non-dimensional linear time invariant state-space form [10]:

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∆ ˙̂u
∆α̇

∆θ̇
∆q̇ c̄

V

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

xu xα xθ xq

zu zα zθ zq

0 0 0 V
c̄

mu mα mθ mq

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∆û
∆α

∆θ
∆qc̄

V

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

+

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

xδe xδt

zδe zδt

0 0
mδe mδt

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

[
∆δe

∆δt
] (C.5)

The definition of the newly introduced symbols are recapitulated in Table C.1.

Table C.1: Symbols Appearing in the General State-Space Representation of
Equation C.5

xi zi mi

i =u V
c̄

CXu
2µc

V
c̄

CZu
2µc−CZα̇

V
c̄

Cmu+CZu
Cmα̇

2µc−CZα̇
2µc K 2

Y

i =α V
c̄

CXα
2µc

V
c̄

CZα
2µc−CZα̇

V
c̄

Cmα+CZα
Cmα̇

2µc−CZα̇
2µc K 2

Y

i = θ V
c̄

CZ0
2µc

-V
c̄

CX0
2µc−CZα̇

-V
c̄

CX0

Cmα̇
2µc−CZα̇

2µc K 2
Y

i = q V
c̄

CXq

2µc

V
c̄

2µc+CZq

2µc−CZα̇

V
c̄

Cmq+Cmα̇

2µc+CZq
2µc−CZα̇

2µc K 2
Y

i = δe
V
c̄

CXδe
2µc

V
c̄

CZδe
2µc−CZα̇

V
c̄

Cmδe
+CZδe

Cmα̇
2µc−CZα̇

2µc K 2
Y

i = δt
V
c̄

CXδt
2µc

V
c̄

CZδt
2µc−CZα̇

V
c̄

Cmδt
+CZδt

Cmα̇
2µc−CZα̇

2µc K 2
Y

141



C.1. Aircraft Model 142

The states in the state-space system in Equation C.5 are non-dimensional. However, for the
continuation of this chapter these states are made dimensional by realizing the following
relationships:

û =
u

V
˙̂u =

u̇

V

α =
w

V
α̇ =

ẇ

V

q =
V

c̄

qc̄

V

Applying these to the non-dimensional state-space of Equation C.5 yields a dimensional
state-space system, Equation C.6. It must be mentioned that this system is defined in the
stability frame and, therefore, will require a transformation to body frame later on.

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∆u̇s

∆ẇs

∆θ̇

∆q̇

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

xu xα xθ ⋅V xq ⋅ c̄
zu zα zθ ⋅V zq ⋅ c̄
0 0 0 1

mu
c̄

mα
c̄

V
c̄ mθ

V
c̄ mq

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∆us

∆ws

∆θ

∆q

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

+

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

xδe ⋅V xδt ⋅V
zδe ⋅V zδt ⋅V

0 0
mδe

V
c̄ mδt

V
c̄

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

[
∆δe

∆δt
] (C.6)

As been mentioned, the derived state-space system in Equation C.6 assumes a steady, straight,
symmetric flight condition with a flat non-rotating Earth, for this the following trim condi-
tions were imposed:

us0 =V (C.7)

ws0 = 0 (C.8)

γ0 = 0 (C.9)

θ0 = arcsin(
CX0

1
2ρV 2S

W
) (C.10)

α0 = θ0−γ0 (C.11)

The next step is to formulate the specific forces as experienced at pilot position. Specific
force is defined as the non-gravitational force per unit mass, which can be formulated as:

f b
cg = ab −g S (C.12)

where (see Figure C.1):

g S = [
−g sinθ
g cosθ

] (C.13)
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Figure C.1: Relation between Inertial and Body Axis
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In order to formulate the specific forces, the accelerations need to be determined first, after
which the gravitational components can be subtracted. The accelerations defined in body
frame are:

ab
x = u̇b +qb wb (C.14)

ab
z = ẇb −qbub (C.15)

As now is directly clear, a transformation between stability and body frame is required as
the specific forces and accelerations are defined in body frame. These states in stability
frame can easily be transformed to body frame using:

ub =us cosα−ws sinα (C.16)

wb =us sinα+ws cosα (C.17)

Combining Equations C.12 to C.17 yields the specific forces in body frame at the centre of
gravity:

f b
xcg

= u̇s cosα− ẇs sinα+qbus sinα+qb ws cosα+ g sinθ (C.18)

f b
zcg

= u̇s sinα+ ẇs cosα−qbus cosα+qb ws sinα− g cosθ (C.19)

The next step is to express these specific forces at pilot position. This transformation be-
comes increasingly important as the aircraft gets bigger. For example, if the aircraft gets
bigger, the distance between centre of gravity and cockpit increases as well. This increased
distance acts as a moment arm giving additional experienced specific forces due to a pitch
rate. For light aircraft the pilot is sitting close to the centre of gravity, which implies that this
transformation is not very important. However, for the Cessna Citation 500 this distance is
not negligible. The translation from centre of gravity to pilot position is given in Equations
C.20 and C.21. For the Cessna Citation the moment arms are lx = 3.2 [m] and lz = 1 [m], for
horizontal and vertical distance, respectively.

fxp = f b
xcg

− q̇blz (C.20)

fzp = f b
zcg

− q̇blx (C.21)

Finally, by combining Equations C.12 to C.21 an expression for the specific forces at pilot
position using the states of the EOM state-space system is formulated. This expression is
formulated as:

fxp = u̇s cosα− ẇs sinα+qbus sinα+qb ws cosα+ g sinθ− q̇blz (C.22)

fzp = u̇s sinα+ ẇs cosα−qbus cosα+qb ws sinα− g cosθ− q̇blx (C.23)

The advantage of this formulation is that effect of aircraft size can easily be analyzed simply
by choosing different values for the moment arms lx and lz . The next step is to formulate an
output vector of the form y =C x +Du. Unfortunately, the current formulation of this spe-
cific force does not allow this formulation as of the non-linearity’s. Luckily, after linearizing
Equations C.22 and C.23 this output vector formulation becomes possible. Important to re-
alize is that due to this linearization the region of validity is limited. Next the linearization
surge specific force are visualized, the same steps apply for the heave specific force.

∆ fxp =
∂ fxp

∂us
∣
0
∆us +

∂ fxp

∂ws
∣
0
∆ws +

∂ fxp

∂u̇s
∣
0
∆u̇s +

∂ fxp

∂ẇs
∣
0
∆ẇs +

∂ fxp

∂θ ∣
0
∆θ+

∂ fxp

∂qb
∣
0
∆qb +

∂ fxp

∂q̇b
∣
0
∆q̇b +

∂ fxp

∂α ∣
0
∆α (C.24)
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where:

∂ fxp

∂us
∣
0
= qb0 sinα0

∂ fxp

∂θ
∣
0
= g cosθ0

∂ fxp

∂ws
∣
0
= qb0 cosα0

∂ fxp

∂qb
∣
0
=us0 sinα0+ws0 cosα0

∂ fxp

∂u̇s
∣
0
= cosα0

∂ fxp

∂q̇b
∣
0
=−lz

∂ fxp

∂ẇs
∣
0
=−sinα0

∂ fxp

∂α
∣
0
=−u̇s0 sinα0− ẇs0 cosα0+qb0 us0 cosα0−qb0 ws0 sinα0

These partial derivatives can be simplified by imposing the following conditions:

us0 ≠ 0 u̇s0 = 0

ws0 = 0 ẇs0 = 0

θ0 ≠ 0 qb0 = 0

α0 ≠ 0

After performing the exact same steps for the heave specific forces yields the following lin-
earized specific forces:

∆ fxp =∆u̇s cosα0−∆ẇs sinα0+us0 sinα0∆qb + g cosθ0∆θ− lz∆q̇b (C.25)

∆ fzp =∆u̇s sinα0−∆ẇs cosα0−us0 cosα0∆qb + g sinθ0∆θ− lx∆q̇b (C.26)

As a final step it is assumed that the the θ0 andα0 angles are small, which allows for a small
angle approximation. This assumption is reasonable, as the EMD analysis is performed at
cruise conditions. Finally, the length of equations and number of states increases vastly,
therefore, the ∆ notation is for the remainder of the report dropped from the inputs, out-
puts and states. The linearized specific forces now become:

fxp = u̇s − ẇsα0+us0α0qb + gθ− lz q̇b (C.27)

fzp = u̇sα0− ẇs −us0 qb + gθ0θ− lx q̇b (C.28)

The next step is to actually formulate the output vector and its C - and D matrices. To sim-
plify this step the individual appearing states in above equations are illustrated next:

u̇s = [xu xα xθV xq c̄]x + [xδe V xδt V ]u (C.29)

ẇs = [zu xα zθV zq c̄]x + [zδe V zδt V ]u (C.30)

θ = [0 0 1 0]x + [0 0]u (C.31)

qb = [0 0 0 1]x + [0 0]u (C.32)

q̇b = [mu
c̄

mα
c̄

V
c̄ mθ

V
c̄ mq]x + [mδe

V
c̄ mδt

V
c̄ ]u (C.33)

Now by combining the knowledge of Equations C.27 to C.33 the final output vector can be
formulated.

y EOM =
⎛
⎜
⎝

f EOM
xp

f EOM
zp

qEOM

⎞
⎟
⎠
=

⎡
⎢
⎢
⎢
⎢
⎢
⎣

C fx u C fx w C fxθ C fx q

C fz u C fz w C fzθ C fz q

0 0 0 1

⎤
⎥
⎥
⎥
⎥
⎥
⎦

x +

⎡
⎢
⎢
⎢
⎢
⎢
⎣

D fxδe D fxδt

D fzδe D fzδt

0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

u (C.34)
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This concludes the derivation of the specific forces and pitch rate experienced at pilot po-
sition. The definition of the newly introduced symbols of Equation C.34 are recapitulated
in Table C.2.

Table C.2: Symbols Appearing in the Output Vector State-Space Representation
of Equation C.34

C fx i C fz i C q̇i

i =u xu −α0zu − lz
mu

c̄ α0xu + zu − lx
mu

c̄
mu

c̄
i = w xα−α0zα− lz

mα
c̄ α0xα+ zα− lx

mα
c̄

mα
c̄

i = θ xθV −α0zθV + g − lz
V
c̄ mθ α0xθV + zθV + gθ0− lx

V
c̄ mθ

V
c̄ mθ

i = q xq c̄ −α0zq c̄ +us0α0− lz
V
c̄ mq α0xq c̄ + zq c̄ +us0 − lx

V
c̄ mq

V
c̄ mq

D fx i D fz i D q̇i

i = δe xδe V −α0zδe V − lzmδe
V
c̄ α0xδe V + zδe V − lx

V
c̄ mδe

V
c̄ mδe

i = δt xδt V −α0zδt V − lzmδt
V
c̄ α0xδt V + zδt V − lx

V
c̄ mδt

V
c̄ mδt

C.2. Linearization of the Motion Cueing Algorithm
As have been explained in Chapter 2 the MCA usually gives simulator positions and angles
for controlling the motion platform driving the simulator. However, for this study those
outputs are of no relevance. In the SRS a CWA is used as MCA. This CWA is therefore
adapted to output specific forces rather than positions. Figure C.2 illustrates this adapted
CWA for longitudinal motions. As this section only covers the longitudinal motions, the
following assumptions were imposed for the adaptation of this CWA: φsi m = ψsi m = 0. As
been covered, this MCA is highly non-linear, because of the components, such as, trans-
formations and rate limiters, and is therefore linearized in this section. Previous section
linearized the EOM which are inputs to the CWA, as of this linearization these inputs now
represent deviations from an initial condition.
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Figure C.2: Classical Washout Algorithm Adapted for Longitudinal EMD [16]

The different components of the CWA, indicated in Figure C.2, are presented in Equations
C.35 to C.39.

TI b = [
cosθsi m sinθsi m

−sinθsi m cosθsi m
] TbI = [

cosθsi m −sinθsi m

sinθsi m cosθsi m
] (C.35)

TEb = cosφ = 1 TbE = cosφ = 1 (C.36)
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HP3i =
s2

s2+2ζiωni s +ω2
ni

s

s +ωbi

→
s3

s3+ Ai s2+Bi s +Ci
(C.37)

where: i = fx and i = fz for the specific force x- and z-channel, respectively.

HP2 =
s2

s2+2ζqωnq s +ω2
nq

→
s2

s2+ Aq s +Bq
(C.38)

LP =
ω2

nt

s2+2ζtωnt s +ω2
nt

→
Bt

s2+ At s +Bt
(C.39)

Now that all components of the CWA are covered, it can be linearized and written in state-
space notation. This linearization and state-space formulation is considered basic knowl-
edge and is therefore illustrated for the specific force x-channel only. This specific force
channel is depicted as block diagram in Figure C.3.
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Figure C.3: CWA Specific Force x Channel Adapted for Longitudinal EMD

The first step for writing this channel in state-space formulation is to write the high-pass
filter, denoted as HP3, in state-space formulation. For the specific force x-channel this
high-pass filter is formulated as:

HP3 fx =
s3

s3+ A fx s2+B fx s +C fx

(C.40)

In order to write this transfer function into state-space formulation, the polynomial degree
of the numerator must be strictly smaller than the polynomial degree of the denominator.
This is, however, not the case and therefore the following trick is used:

HP3 fx =
s3

s3+ A fx s2+B fx s +C fx

−
s3+ A fx s2+B fx s +C fx

s3+ A fx s2+B fx s +C fx

+1

=
−A fx s2−B fx s −C fx

s3+ A fx s2+B fx s +C fx

+1 =
a I

x f i l t

a I
xsc

(C.41)

The effect of this trick is visualized in Figure C.4. As can be seen here, this high-pass filter
has a direct feed-through part, which will eventually result in a non-zero D-matrix.
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Figure C.4: Visualization of HP3 Transfer Function
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The first block of Figure C.4 can easily be written in state-space formulation. In this state-
space the state x represent the AI

x , S I
x and V I

x , which are the simulator absement, displace-
ment and velocity in inertial surge direction, respectively.

⎡
⎢
⎢
⎢
⎢
⎢
⎣

ȦI
x

Ṡ I
x

V̇ I
x

⎤
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0 1 0
0 0 1

−C fx −B fx −A fx

⎤
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎣

AI
x

S I
x

V I
x

⎤
⎥
⎥
⎥
⎥
⎥
⎦

+

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0
0
1

⎤
⎥
⎥
⎥
⎥
⎥
⎦

a I
xsc

(C.42)

The input to this high-pass filter is the x-acceleration expressed in inertial frame. This
acceleration is linearized and can be expressed such that it inputs the f EOM

xp
, which is the

specific force resulting from the EOM. This is illustrated with next equation:

a I
xsc

= ab
xsc

cosθsi m +ab
zsc

sinθsi m

≈ ab
xsc

= f b
xsc
− g sinθsi m ≈K fx f EOM

xp
− gθsi m

(C.43)

Substituting Equation C.43 into Equation C.42, yields:

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ȦI
x

Ṡ I
x

V̇ I
x

θ̇si m

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 1 0 0
0 0 1 0

−C fx −B fx −A fx −g
. . . .

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

AI
x

S I
x

V I
x

θsi m

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

+

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0
0

K fx

.

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

f EOM
xp

(C.44)

This gives the state-space representation of the A- and B-matrices of the specific force x-
channel. Important to note is that an exact formulation of the θ̇si m cannot be given at this
point as this depends on both the tilt coordination and rotational channel and is therefore
left blank.
The next step is to construct the output vector, looking at Figure C.4 the output, a I

x f i l t
, is a

combination of the state (x) and input (a I
xsc

), which can be written as:

a I
x f i l t

= a I
xsc
− A fx V I

x −B fx S I
x −C fx AI

x = [−C fx −B fx −A fx ]

⎡
⎢
⎢
⎢
⎢
⎢
⎣

AI
x

S I
x

V I
x

⎤
⎥
⎥
⎥
⎥
⎥
⎦

+ [1]a I
xsc

(C.45)

For this study it is essential to output the specific forces f MC A
xp

, which can be related to the

filtered acceleration output a I
x f i l t

using the following:

f MC A
xp

= ab
x f i l t

+ g sinθsi m = a I
x f i l t

cosθsi m −a I
z f i l t

sinθsi m + g sinθsi m ≈ a I
x f i l t

+ gθsi m (C.46)

Finally, substituting Equations C.43 and C.46 into Equation C.45 gives the state-space for-
mulation of the C - and D-matrices, which are:

f MC A
xp

= [−C fx −B fx −A fx ]

⎡
⎢
⎢
⎢
⎢
⎢
⎣

AI
x

S I
x

V I
x

⎤
⎥
⎥
⎥
⎥
⎥
⎦

+ [K fx ] f EOM
xp

(C.47)

Previous steps illustrated how specific force x-channel can be linearized and formulated in
state-space format. Applying these same steps to the remaining channels of the CWA yields
a complete state-space representation of the CWA, which can be written in the form:

ẋ MC A = AMC A x MC A +B MC A uMC A (C.48)
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where the state vector and input vector are:

x MC A = [AI
x S I

x V I
x AI

z S I
z V I

z θr ot θ̇r ot θt i l t θ̇t i l t θsi m θ̇si m]
T

(C.49)

uMC A = [ f EOM
x f EOM

z q̇EOM]
T

(C.50)

AMC A =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0

−C fx −B fx −A fx 0 0 0 0 0 0 0 −g 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 −C fz −B fz −A fz 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 −Bq −Aq 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 −Bt −At 0 0
0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 −Bq −Aq −B 2

t −At Bt 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(C.51)

B MC A =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0
0 0 0

K fx 0 0
0 0 0
0 0 0
0 K fz 0
0 0 0
0 0 Kq

0 0 0
K fx

g 0 0

0 0 0
K fx Bt

g 0 Kq

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(C.52)

As illustrated in Figure C.2, the MCA is adapted to output specific forces and pitch rate, this
results in the following formulation of the output vector:

y MC A =
⎛
⎜
⎝

f MC A
xp

f MC A
zp

q MC A

⎞
⎟
⎠
=C MC A x MC A +D MC A uMC A (C.53)

C MC A =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

−C fx −B fx −A fx 0 0 0 0 0 0 0 0 0
0 0 0 −C fz −B fz −A fz 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1

⎤
⎥
⎥
⎥
⎥
⎥
⎦

(C.54)

DMC A =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

K fx 0 0
0 K fz 0
0 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

(C.55)

This concludes the derivation of the specific forces and pitch rate filtered by the MCA which
are experienced by the pilot in the flight simulator.
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C.3. System Coupling
In order to make the EMD analysis possible, the linear model of the EOM and the MCA must
be combined into one single linear system that is only exited by pilot inputs. These pilot
inputs are the control surface deflections. The relation between the EOM and the MCA is
illustrated in Figure C.5.
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Figure C.5: EOM and MCA Relation

As evident from this figure, the outputs of the EOM are the inputs to the MCA. The goal is
now to express the MCA inputs in EOM states and pilot inputs, which eventually yields a
single state-space of the form:

ẋ E MD = AE MD x E MD +B E MD uE MD (C.56)

where the state vector and input vector are:

xE MD = [us ws θ qb AI
x S I

x V I
x AI

z S I
z V I

z θr ot θ̇r ot θt i l t θ̇t i l t θsi m θ̇si m]
T

(C.57)

uE MD = [δe δt]
T

(C.58)

Equations C.52 and C.55 use the EOM outputs as inputs. In order to make a single state-
space representation, these equations must be transformed. This transformation is re-
ferred to as system coupling, as it couples the EOM with the MCA. The complete system
can be written as

AE MD = [
AEOM 0
ACOU P AMC A] (C.59)

B E MD = [
B EOM

BCOU P] (C.60)

y E MD =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

f EOM
xp

f EOM
zp

qEOM

f MC A
xp

f MC A
zp

q MC A

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

= [
C EOM 0
CCOU P C MC A]x E MD +[

DEOM

DCOU P]uE MD (C.61)

In here Equation C.52, B MC A, which uses the EOM outputs as input, is re-formulated as
ACOU P and BCOU P , which expresses these EOM outputs using the EOM states and pilot
inputs. The same is done for Equation C.55, DMC A, which is in its turn transformed into
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CCOU P and DCOU P for the same reason. The resulting coupling matrices are:

ACOU P =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 0
0 0 0 0

K fx C fx u K fx C fx w K fx C fxθ K fx C fx q

0 0 0 0
0 0 0 0

K fz C fz u K fz C fz w K fz C fzθ K fz C fz q

0 0 0 0
KqC q̇u KqC q̇w KqC q̇θ KqC q̇q

0 0 0 0
K fx

g C fx u
K fx

g C fx w
K fx

g C fxθ
K fx

g C fx q

0 0 0 0
K fx Bt

g C fx u +KqC q̇u
K fx Bt

g C fx w +KqC q̇w
K fx Bt

g C fxθ +KqC q̇θ
K fx Bt

g C fx q +KqC q̇q

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(C.62)

BCOU P =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0
0 0

K fx D fxδe K fx D fxδt

0 0
0 0

K fz D fzδe K fz D fzδt

0 0
Kq D q̇δe Kq D q̇δt

0 0
K fx

g D fxδe

K fx
g D fxδt

0 0
K fx Bt

g D fxδe +Kq D q̇δe

K fx Bt

g D fxδt +Kq D q̇δt

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(C.63)

CCOU P =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

K fx C fx u K fx C fx w K fx C fxθ K fx C fx q

K fz C fz u K fz C fz w K fz C fzθ K fz C fz q

0 0 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

(C.64)

DCOU P =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

K fx D fxδe K fx D fxδt

K fz D fzδe K fz D fzδt

0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

(C.65)

This concludes the derivation of the complete state-space system. This system is now ready
for the actual EMD analysis.



D
Motion Platform Geometry

Table D.1: Platform Characteristics SRS

Upper Circle Radius Ar 1600 [mm]
Lower Circle Radius Br 1650 [mm]
Upper Gimbal Spacing 2P 200 [mm]
Lower Gimbal Spacing 2D 600 [mm]

Table D.2: Actuator Characteristics SRS

Retracted Length Lmi n 2081 [mm]
Maximum Length Lmax 3331 [mm]
Stroke S 1250 [mm]
Lower Buffers Bl 50 [mm]
Upper Buffers Bu 50 [mm]
Maximum Operational Length Lmax,o 3281 [mm]
Minimum Operational Length Lmi n,o 2131 [mm]
Operational Stroke So 1150 [mm]
Maximum Speed vmax 0.8 [m/s]
Maximum Acceleration amax 1.0 [g]

P = Ar sin(γp)

D =Br sin(γb)
(D.1)

Figure D.1: Geometry Definition of Stewart Platform [25]
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E
Verification and Validation

Verification and validation is an essential part to ensure a correct implementation of the
design. This appendix contains the verification and validation for the lateral model derived
in throughout the report.

E.1. Verification
The derivation of the complete EMD model is quite extensive and due to the different cou-
plings prone to errors. In order to ensure that the derivation is done correctly, verification is
an essential step. In Figure E.1 the Simulink verification environment is illustrated. In here
the outputs of 1 are from the non-linear MCA, which is also illustrated in Figure E.2. Dur-
ing the EMD derivation this non-linear MCA is linearized, in the verification environment
this linearized MCA is represented with 2. To check whether this linearization is performed
correctly, the outputs of 1 and 2 must be identical. Another essential step in the deriva-
tion of the complete EMD system is to couple the EOM and MCA. To verify that this system
coupling is performed correctly, the responses of 2 and 3 must be identical.

Figure E.1: Verification Environment in Simulink
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Figure E.2: Non-linear Simulink Model of the Classical Washout Algorithm
(sub-system 1 of Figure E.1)

Figure E.3 depicts the response to an aileron and rudder step input of 1 degree. As is clearly
evident the response of 1, 2 and 3 are identical. From here it can be verified that the deriva-
tion and implementation of the EMD system is performed correctly.

Figure E.3: Verification of the Motion Cues
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E.2. Validation
In order to validate that the right model is implemented of the Cessna Citation 500, a sim-
ulation is performed. In this simulation the responses of the complete Cessna Citation are
compared with the responses of the linear (simplified) model.

Figure E.4: Validation Model of Cessna Citation 500

Figure E.5 depicts the response to an rudder pulse input of 0.5 degrees. As can be seen
from this figure, the responses of the different motion cues of the linear EOM resemble the
complete EOM to a high degree. Therefore, it is concluded that the correct model of the
Cessna Citation 500 is implemented.

Figure E.5: Validation of the Motion Cues
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F
OMCT Test Plan

Table F.1: Input signal and transfer functions per OMCT test [19]

OMCT Test 1: Pitch response to pitch input
Input signal Transfer function
f z

PA =−g
H1(ω) =

q̇PS
q̇PA

(ω)
q̇PA =−Aω2 sin(ωt)

OMCT Test 2: Surge response to pitch input
Input signal Transfer function
f x

PA = g sin(θPA(t))
H2(ω) =

f x
PS−g sin(θPS)

q̇PA
(ω)f z

PA =−g
q̇PA =−Aω2 sin(ωt)

OMCT Test 3: Roll response to roll input
Input signal Transfer function
f z

PA =−g
H3(ω) =

ṗPS
ṗPA

(ω)
ṗPA =−Aω2 sin(ωt)

OMCT Test 4: Sway response to roll input
Input signal Transfer function
f z

PA =−g
H4(ω) =

f y
PS

ṗPA
(ω)ṗPA =−Aω2 sin(ωt)

OMCT Test 5: Yaw response to yaw input
Input signal Transfer function
f z

PA =−g
H5(ω) =

ṙPS
ṙPA

(ω)
ṙPA =−Aω2 sin(ωt)

OMCT Test 6: Surge response to surge input
Input signal Transfer function
f x

PA = A sin(ωt)
H6(ω) =

f x
PS

f x
PA

(ω)
f z

PA =−g

OMCT Test 7: Pitch response to surge input
Input signal Transfer function
f x

PA = A sin(ωt)
H7(ω) =

θPS
f x

PA
(ω)

f z
PA =−g

OMCT Test 8: Sway response to sway input
Input signal Transfer function
f y

PA = A sin(ωt)
H8(ω) =

f y
PS

f y
PA

(ω)
f z

PA =−g

OMCT Test 9: Roll response to sway input
Input signal Transfer function
f y

PA = A sin(ωt) H9(ω) =
φPS

f y
PA

(ω)
f z

PA =−g

OMCT Test 10: Heave response to heave input
Input signal Transfer function
f z

PA = A sin(ωt)− g
H10(ω) =

f z
PS

f z
PA

(ω)
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G
Baseline Configuration

Table G.1: B Classical Washout Algorithm Filter Parameters

K fy = 0.70 ωb fy
= 0.00 Kp = 0.70 Kr = 0.70

ωn fy
= 0.80 ωnt = 2.00 ωnp = 0.80 ωnr = 0.80

ζ fy = 1.00 ζt = 1.00 ζp = 1.00 ζr = 1.00

Table G.2: Resulting Distortions for B Configuration

∣ fy ∣ [−] ∣∠ fy ∣ [○] ∣p ∣ [−] ∣∠p ∣ [○] r ∣ [−] ∣∠r ∣ [○]
Dutch Roll 0.535 13.077 0.651 3.076 0.687 27.929

Aperiodic Roll 0.921 0.0 0.911 180.0 1.084 0.0

Figure G.1: Eigenvector Distortions and Actuator Responses

159



160

Figure G.2: Objective Motion Cueing Test Results



H
OMCT Tuned Configuration

Table H.1: O Classical Washout Algorithm Filter Parameters

K fy = 0.60 ωb fy
= 0.00 Kp = 0.60 Kr = 0.70

ωn fy
= 1.00 ωnt = 2.00 ωnp = 0.80 ωnr = 0.80

ζ fy = 1.00 ζt = 1.00 ζp = 0.80 ζr = 1.00

Table H.2: Resulting Distortions for O Configuration

∣ fy ∣ [−] ∣∠ fy ∣ [○] ∣p ∣ [−] ∣∠p ∣ [○] r ∣ [−] ∣∠r ∣ [○]
Dutch Roll 0.393 14.768 0.599 0.976 0.687 27.929

Aperiodic Roll 0.836 0.0 0.882 180.0 1.084 0.0

Figure H.1: Eigenvector Distortions and Actuator Responses
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Figure H.2: Objective Motion Cueing Test Results



I
PEMD Tuned Configuration

Table I.1: P Classical Washout Algorithm Filter Parameters

K fy = 0.600 ωb fy
= 0.00 Kp = 1.067 Kr = 0.70

ωn fy
= 0.750 ωnt = 1.500 ωnp = 0.928 ωnr = 0.80

ζ fy = 0.911 ζt = 0.800 ζp = 0.700 ζr = 1.00

Table I.2: Resulting Distortions for P Configuration

∣ fy ∣ [−] ∣∠ fy ∣ [○] ∣p ∣ [−] ∣∠p ∣ [○] r ∣ [−] ∣∠r ∣ [○]
Dutch Roll 0.472 5.089 1.010 15.305 0.687 27.929

Aperiodic Roll 1.000 0.0 1.000 0.0 1.084 0.0

Figure I.1: Eigenvector Distortions and Actuator Responses
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Figure I.2: Objective Motion Cueing Test Results
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