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Abstract—LCL filter is widely adopted for strict standard
compliance of grid-tied voltage source converters (VSCs). The
third order low-pass filtering provides great attenuation for the
high frequency harmonics generated by the power electronics
guaranteeing low output currents noise injection into the grid.
A major concern of the implementation of the LCL-filter is to
safeguard the system stability by providing effective damping
of the filter resonances. Active damping methods are preferred
because it does not result in substantial power losses as it
would result by the utilization of passive damping circuits.
Capacitor-current active damping (CCAD) technique can be
effective while realizing only a proportional feedback. However,
the suitable feedback gain for maintaining stability remains
to be identified. Another control issue related to the grid-tied
VSC is the harmonics compensation of the currents due to
the grid voltage distortion. Therefore, this paper proposes an
improved resonator with phase compensation to suppress the
harmonics distortion while maintaining stability with properly
design capacitor current feedback. The capacitor feedback gain
for stability is analytically derived in this paper. The proposed
control scheme is verified by both simulation and experimental
results.

Index Terms—Capacitor-current feedback Active damping
(CCAD), Harmonics resonator, LCL filter, VSC

I. INTRODUCTION

Pulse-Width Modulated (PWM) voltage source converters
(VSCs) are the main building blocks for interfacing distributed
generation (DG) units, power flow control and emerging smart
loads with hybrid ac-dc distribution grids [1]–[4]. Continuous
PWM strategy such as Sinusoidal PWM (S-PWM) is widely
used for the modulation of VSCs due to the simplicity and
better harmonics performance, instead of discontinuous PWM
strategies [5], [6]. LCL filter is preferably adopted in VSCs for
attenuating high frequency harmonics in the output waveforms.
However, special attention must be paid to the LCL filter
resonance which usually needs to be damped to safeguard the
system stability. In renewable generation applications the grid-
connected VSCs are generally controlled in Current-Control
Mode (CCM). The choice of the converter or grid-side current
control is influenced by the resonance of LCL filter based on
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a European co-funded innovation project on Semiconductor Industry. The
project receives grants from the European H2020 research and innovation
program, ECSEL Joint Undertaking, and National Funding Authorities from
eight involved countries under grant agreement No. 826417. The participating
countries are Austria, Finland, Germany including the Free States of Saxony
and Thuringia, Hungary, the Netherlands, Slovakia, Spain and Switzerland.

the ratio between the resonance frequency fr and the PWM
sampling frequency fs [7]. Recently, studies on the single-
loop control revealed that the grid-side current control can be
more stable if the the resonance frequency fr lies between
1
6 fs (critical frequency) and 1

2 fs (Nyquist frequency) if
the symmetric sampling and single-update PWM pattern is
adopted [8]. For the double-update case, the critical frequency
shifts to 1

4 fs [9]. Correspondingly, stability with converter-
side current control can be ensured without any additional
means if the fr is found below the critical frequency.
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Fig. 1. Three-phase grid-tied voltage source converter with a LCL filter.

Achieving stable control is possible while operating in the
previously described unstable control region defined by the
chosen LCL filter and sampling frequency. However, a filter
resonance damping measures becomes necessary for guaran-
teeing enough stability margin for the system. Passive damping
solutions, i.e., parallel or series connection of resistor with the
capacitor and/or inductor offers satisfactory performance but
has consequence on the overall size and system efficiency [10].
On the other hand, the active damping schemes can improve
the stability while not influencing the efficiency [7]–[9]. These
methods can be classified into two main categories [8], [11],
[12]: 1) multi-loop control methods; and 2) filter-cascaded
methods.
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The filter-based active damping methods, shown in Fig.1,
are mainly realized by cascading the filter in the current con-
troller loop. The notch filter (NF) method typically employs
a second order digital filter which creates an anti-resonance
at the pre-set LCL filter resonance frequency to improve the
system attenuation around this frequency [11], [13]. Other
filter-based methods, i.e, IMC (Internal Model Control) is
derived based on the model of the control plant and are studied
in [14]. However, both the NF and IMC model are sensitive to
system parametric variations, e.g, the change of the LCL filter
component values with the current bias and/or the intrinsic
unknown grid impedance (represented by Lg and Rg in Fig.1).
The adaptive or self-commissioned filter methods are proposed
in [15] to improve the robustness against the circuit parametric
uncertainties and dynamic variations, however, at the cost of
control complexity. On the other hand, the multi-loop active
damping method uses the available state signals in the circuit
through feedback control to form an equivalent virtual resistor
in series or parallel with the LCL filter elements, e.g., the
filter capacitor and inductors. While both capacitor voltage
and current feedback based control have been reported, cost
of the voltage sensor can be lower compared to the high-
bandwidth current ones. On the other hand, capacitor voltage
active damping (CVAD) [16] requires the implementation of
the differentiators in the feedback loop, which is difficult to
implement in practice. By contrast, capacitor current active
damping (CCAD), shown in Fig.1, only requires a proportional
feedback [17]. If the influence of the digital control delay is
considered, the proportional feedback of the capacitor current
may result in a negative virtual resistor in some cases [12],
leading to an undesired non-minimum phase system. However,
this negative virtual resistor can be avoided if the resonance
frequency is smaller than 1

6 fs with maximum possible delay.
Another control issue in a grid-connected VSC system is

the control of the current harmonics due to the distorted grid
voltage. Full feed-forward (FF) scheme of the grid voltage is
reported to be able to effectively compensate the harmonics by
fully canceling out the influence of the grid voltage [18]. How-
ever, full FF scheme needs to implement the first and second-
order differentiators which is hard to precisely discretize in
the digitally controlled system. In contrast, harmonic resonant
controller is widely adopted to realize the selective harmonics
compensation, which enlarges the loop gain at the tuned fre-
quency. From the control point of view, the harmonics current
can be suppressed due to the infinitely large grid impedance at
the harmonics frequencies [2], [19], [20]. However, a resonator
controller requires phase compensation [20], [21] to ensure
enough phase margin due to the system delay. In this paper, an
improved harmonics resonator with phase compensation along
with a design guideline for capacitor current active damping
is presented. The main contributions are 1) The analytical
derivation of suitable capacitor current feedback gain ensuring
system stability 2) The derivation of an improved resonator
controller with phase compensation.

Section II presents the system description and basic control
scheme. The analysis of capacitor current active damping
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Fig. 2. Block diagram of the control plant of LCL-filtered VSC.

and harmonics control are introduced in Section III and IV
respectively. Simulations and experimental results are carried
out in Section V. Conclusion and future work are presented
in Section VI.

II. SYSTEM MODELING AND CONTROL

A. Circuit Modeling

The VSC connected to the grid with a LCL filter is depicted
in Fig. 1. The described grid is assumed to be a stiff grid
which contains low-order harmonics such as 5th, 7th, 11th
and 13th. Therefore, the grid interface components Rg and
Lg are neglected in this paper and hence, VPCC = Vg. The
filter resistors R1 and R2 represent the internal resistance
of the converter-side inductor L1 and grid-side inductor L2,
respectively. Additionally, the equivalent resistance due to the
conduction losses of the VSC is incorporated into R1. Fig.2
shows the average switched model of the control plant of a
VSC with LCL filter, where Vt(s) is the VSC terminal voltage.
The Z1(s), Z2s and ZC(s) are the impedance of L1, L2 and
C and given as:

Z1(s) = sL1 +R1 (1)

Z2(s) = sL2 +R2 (2)

ZC(s) =
1

sC
(3)

The transfer function relating the grid-side output current i2
and the converter terminal voltage Vt is:

Gi2(s) =
i2(s)

Vt(s)
=

1

αs3 + βs2 + γs+ δ
(4)

where, constants are given by α = L1L2C, β = R2L1C +
R1L2C, γ = R1R2C+L1 +L2 and δ = R1 +R2. Considering
that R1 and R2 are negligible, (4) can be simplified and given
by (5).

Gi2(s) =
1

L1L2Cs

(
1

s2 + ω2
r

)
(5)

where, the resonance frequency (ωr) of the LCL filter is
given by (6).

ωr =

√
L1 + L2

L1L2C
(6)

B. Basic Control of the VSC

The block diagram of the grid-side current control of VSC
without any active damping and harmonics compensation is
shown in Fig. 3.
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Fig. 3. Block diagram of the basic VSC grid current control scheme without
active damping and harmonic suppression.

The compensator Gc(s) used for current control is typically
a PR (proportional-resonant) controller in stationary (αβ)
frame or a PI controller in rotating (dq) frame [2], [19].

Gc(αβ)(s) = kp +
krs

s2 + ω2
1

Gc(dq)(s) = kp +
ki

s

(7)

The control and computation delay in the digitally controlled
system is noted as Gc(s). The mechanism of the computation
delay depends on the sampling and update of the implemented
PWM [17]. If the symmetric sampled PWM with single update
(sampling happens at the upper peak of the triangular wave) is
adopted, the computation delay is given by Gd(s) = e-sTs . fs
and fsw are the sampling and switching frequency respectively
such that Ts = 1

fs
and Tsw = 1

fsw
. Ginv(s) is the transfer

function representing the PWM process, which is given by (8).

Ginv(s) =
KpwmGh(s)

Ts
(8)

where, the PWM gain Kpwm is the ratio of the dc voltage Vin
and amplitude of the triangular carrier wave Vtri and taken as
1 to simplify the analysis.

The Zero-Order Hold (ZOH) characteristics of the PWM
process is modeled as an equivalent transfer function Gh(s)
as approximated by (9) using frequency domain analysis.

Gh(s) =
1− e-sTs

s
≈ Tse

- 12 sTs (9)

Combining (8) and (9), the total delay Gtd can be expressed
as (10).

Gtd(s) ≈ e- 32 sTs (10)

III. CAPACITOR CURRENT FEEDBACK ACTIVE DAMPING

A. Virtual Resistor

The allowable gain while ensuring stable operation of a VSC
is limited when no active damping is used, as shown in Fig. 4
where the maximum controller gain is limited to Kad = 0.5.
Table. I lists the used parametric specifications.

TABLE I
SYSTEM PARAMETERS

L1 , L2 R1 , R2 C VDC kp kr krh ωc
1.5 mH 0.2 Ω 20µF 700 V 5 2500 1000 2

As a consequence, the small bandwidth of the closed-loop
system leads to undesired slow system response. Consider the
equivalent circuit of the LCL filter with capacitor current ic

shown in Fig. 5. The feedback of ic is equivalent to adding
an impedance (Zad = Rad + jXad) in parallel with the filter
capacitor [12].

In CCAD, the current control loop is modified using feed-
back of ic via gain Kad(s) as shown in Fig. 6. The relation
between Zad and Kad(s) is described by (11).

Zad(s) =
L1

Kad(s)Gtd(s)C
(11)

Without consideration of the delay Gtd(s), the equivalent
impedance behaves like a virtual resistor if the proportional
feedback gain Kad is used [12], which is expressed by (12):

Rad =
L1

KadC
(12)

However, the proportional feedback results in the virtual
impedance if the system delay is included. By substituting
(10) into (12), the impedance can be derived as (13):

Zad(s) =
L1

KadC
e-sTs = Rade

-sTs (13)

Substituting s = jω yields (14).

Zad(jω) = Rad [cos(
3

2
ωTs) + jsin(

3

2
ωTs)] (14)

As noted in (14), the delay influences both the resistive and
inductive (or capacitive) parts. The imaginary term may alter
the LCL filter resonance frequency and influence the precision
of the control [16]. Meanwhile, it can be proven that the
resistive part becomes negative when the frequency f (ω/2π)
is above 1

6fs, which leads to a non-minimum phase behavior
of the grid-side current [12]. Hence, the proportional feedback
gain of the capacitor current should be properly designed.
Furthermore, the identification of the range of the gain Kad
which guarantees the stability of the system is essential for
designing a well-tuned controller.

B. Range of Feedback Gain for Stability of the System
After the capacitor current feedback to the control loop, the

equivalent control plant G
′

i2 can be expressed by (15):

G
′

i2(s) =
1

L1L2Cs3 +Gtd(s)KadL2Cs2 + L2)s

=
1

L1L2Cs

1

s2 +KadGtd(s)/L1s+ ω2
r

(15)

Based on the previously discussed control elements of the
controlled system, the open-loop transfer function from the
reference input to the output grid-side current is derived in
(16):

Gol(s) = Gc(s)GdG
′

i2(s)

=
Gc(s)Gtd(s)

L1L2Cs(s2 +KadGtd(s)/L1s+ ω2
r )

(16)

In order to derive the analytical formulations from the delay-
influenced system, the delay Gd(s) can be approximated with
the rational polynomial form in (17):

Gtd(s) = e−sTd = (
1− Tds

2n

1 + Tds
2n

)n (17)
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where n= 2 can give a precise approximation. Therefore, it can
be noted that the pole of the open-loop can be located in the
right-half part of the s plane or outside the unit circle of the
corresponding z plane, with the increase of the feedback gain.
Thus, the critical Kad c is defined as the gain which proceeds
a imaginary pole s = jωx, namely

pole(Gol(jωx)) = 0 (18)

Substitute (16) and (17) into (18), ωx is solved as:

ωx =

√
−b−

√
b2 − 4ac

2a

a = (
Td

4
)4, b = −3

8
T 2

d , c = 1,

(19)

and Kad c hence is expressed in (20):

Kad c =
(ω2

x − ω2
r )(1 + ω2

xT
2
d /16)2L1

ω2
xT

2
d (1− ω2

xT
2
d /16)

(20)

From (19) and (20), it is observed that the imaginary pole
ωx is the new resonance frequency shifted by the delay and
it is solely determined by the value of the delay. Meanwhile,
the maximum feedback gain Kad allowing non-right-half-plane
(RHP) poles is restrained by the LCL filter parameters and
delay together. Above Kad c, the system can be still stable
despite the open-loop poles located in RHP. Since the open-
loop system has one pair of conjugate poles in the RHP, the
boundary of this gain can be derived by forcing the open-
loop system encircle the point (-1,0) once anti-clock-wisely in
the half nyquist plot, where ω increases from 0 to ∞. Since
the −180◦ crossing occurs at ωx, it can be mathematically
expressed as:

|Gol(jωx)| ≥ 1 (21)

The upper boundary Kad u is then derived in (22).

Kad u =
(∆ω2 + ω2

x − ω2
r )(1 + ω2

xT
2
d /16)2L1

ω2
xT

2
d (1− ω2

xT
2
d /16)

∆ω2 =

√
k2

p + (kr/ωx)2

ωxL1L2C
≈

kp

ωxL1L2C

(22)

The expression (22) shows that the maximum feedback gain
for achieving stability of the close-loop system is altogether
determined by the controller parameters, the time delay and
the LCL filter parameters. The difference between this gain
and the previously derived Kad c points out that the controlled
VSC with LCL filter can be still stable with the control of
the current controller despite the open-loop poles in the RHP.
However, such an unstable open-loop system is not preferred
in practice and thus Kad c is taken as the maximum set value:

Kad-max = Kad c (23)

The minimum value of Kad can be obtained by forcing the
open-loop system to not encircle the point (-1,0) in the nyquist
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plot. The −180◦ occurs at the resonance frequency ωr, hence
it can be mathematically expressed in (24):

|Gol(jωr)| ≤ 1 (24)

which yields (25).

Kad-min =

√
k2

p + (kr/ωr)2

ω2
rL2C

≈
kp

ω2
rL2C

(25)

Specifically, Kad-min is equal to kp/2 when L1 = L2 is
satisfied. Therefore, the suitable range of feedback gain is:

Kad ∈ (Kad-min,Kad-max) (26)

Based on the parameters in Table.I, the pzmap of the close-
loop system and the bode plot of the open-loop system are
drawn in Fig.8, when the controller gain kp is chosen as
5. Kad c and Kad u, as well as Kad−min, are indicated in
Fig.8a, which coincide with the calculated values based on
the derived equations. Besides, Fig.8b shows the bode plot
of the open-loop system with different Kad, which presents
the shifted resonance and the negative −180◦ crossing. Fig.7
demonstrates the nyquist plot of the open-loop system with
the Kad around Kad c and Kad u. As the gain exceeds Kad c,
a negative −180◦ along with a resonance (>1 dB) occurs
in the bode plot which corresponds the one anti-clockwise
encirclement of (-1,0) in the half nyquist plot. Meanwhile,
the open-loop system has one conjugate pair of RHP poles.
According to the nyquist stability criterion, the close-loop
system is stable as the numbers of anti-clockwise encirclement
equal the number of open-loop RHP poles. However, after kad
becomes larger than Kad u, the resonance is smaller than 1 dB
which means there is no encirclement of (-1,0). Hence, the
close-loop system has the same numbers of RHP poles as the
open-loop system has.

C. Stability Margins

In order to achieve stable control, an appropriate gain and
phase margin should be guaranteed by properly setting up the
feedback gain Kad and controller gain kp. The gain and phase
margins of the controlled system are given by (27):

GM = −20 lg|Gol(jωr)|
PM = π + ∠|Gol(jωco)|

(27)

where ωco is the gain crossover frequency where the open-loop
gain |Gol(jω)| reaches 1 and the phase crossover frequency is
equal to ωr. The gain margin can be further expressed in (28):

GM = −20 lg
∣∣∣
√
k2

p + (kr/ωr)2

Kadω2
rL2C

∣∣∣
≈ −20 lg

∣∣∣ kp

Kadω2
rL2C

∣∣∣
≈ 20(lg(

Kad

kp
) + lg(ω2

rL2C))

(28)

It can be noted that for a given LCL filter, the phase margin
is proportional to Kad and inversely proportional to kp in
logarithmic scale. To express the phase margin analytically,
the gain crossover frequency is approximated in (29):

ωco ≈

√
−b+

√
b2 − 4ac

2a

a = (
Kad

L1
)2, b = ω4

r , c = −(
kp

L1L2C
)2

(29)

The phase margin can be further derived in (30):

PM =
π

2
− ωcoTd − tan-1(

kr

ωcokp
)

− tan-1(
ωcoKadcos(ωcoTd)

L1(ω2
r − ω2

co − ωcosin(ωcoTd))
)

(30)

The derived relations are plot in Fig.9. It is noteworthy that
both the gain and phase margin drop with the increase of Kad.
Usually, a gain margin with 10 dB guarantees a good stability.
The corresponding Kad is derived as 8, which indicates a phase
margin of 69◦.

IV. HARMONICS COMPENSATION BASED ON RESONANT
CONTROLLER

Harmonics resonators are widely used for suppressing the
harmonics caused by the grid distortions by simply introducing
single or multiples resonators tuned at the corresponding har-
monics frequencies in parallel with the basic current controller.
The generalized non-ideal resonators with two integrators [19]
in αβ frame are expressed in (31):

Gh(s) =
∑

h=3,5,7...

Kph +
2Krhωcs

s2 + 2ωcs+ (hω1)2 (31)

where Krh and ωc represent the resonant controller gain
and cut-off frequency (or damping factor) respectively. The
bandwidth is adjusted by setting ωc appropriately. A small
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Fig. 8. Control loop with Capacitor-current feedback (kp = 5) (a) Poles-zeros map (b) Bode Plot.
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Fig. 9. Gain and Phase Margin versus Kad.

cut-off frequency is usually chosen for high rejection per-
formance [19]. One typical problem associated with the res-
onators is the phase deterioration caused by the delay. This
can be improved by certain phase compensation methods, for
example the introduction of a lead-filter [2] cascaded with the
resonant controller. The generalized form of a lead filter (Flead)
is given by (32)

Flead =
s/ωf + 1

sα/ωf + 1
(32)

where ωf and α are the tuning parameters determined by the
required phase compensation φmax at the specified frequency
ωmax, which is described in (33).

√
α =tan(

π

4
− φmax

4
)

ωf =ωmax
√
α

(33)

The bode plot in Fig.10 shows that the phase at the resonance
frequency is improved by the lead filters and the phase margin
is hence increased.
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V. SIMULATION AND EXPERIMENTAL VERIFICATION

A. Simulation Results

To verify the accuracy of the identified range of the
capacitor-current feedback gain, simulations are conducted in
MATLAB/SIMULINK. The operating parameters are listed in
Table I. The system operates in inverter mode at a power
Pac = 3 kW with a feedback current control loop connected
to a 400 V 50 Hz 3-phase grid.

Fig.11 shows the grid-side current waveform with different
Kad values under an ideal sinusoidal voltage. At Kad = 2.6,
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Fig. 11. Simulation results: grid voltages and grid-side currents under different
Kad.
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which is close to the theoretical value 2.5, the grid -side
current becomes marginally stable and the resonance occurs
in the waveform with the frequency of ωr (1300 Hz). With
Kad = 8, at which the system is supposed to have a GM
of 10 dB and PM of 69◦, the grid-side current follows close
to a sinusoidal 50 Hz waveform. After the Kad increases
to 19.5, the new resonance component arises in the grid-
side current, the frequency of which is around the shifted
resonance frequency ωx (2800 Hz). Therefore, the stability
range identified from the simulation is close to the theoretical

one [2.5,20.8].
The simulation of the harmonics control is shown in Fig.12,

where the distorted grid voltage containing low-order fre-
quency harmonics with amplitudes of 5% of the fundamental
rated voltage at the 5th, 7th, 11th, 13th is considered. The
proposed resonator parameters are listed in Table.I and the
lead filters are designed to provide 60◦ at each harmonics
frequency. The harmonics control is enabled at 0.3 s and the
results show that the harmonics components in the grid-side
current is quickly rejected by the resonators and the current
achieves a satisfactory THD of about 0.5%.

B. Experimental Verification

The experimental part of this paper is conducted in a
commercial two-level VSC, i.e. Triphase/PM5F30C. The sys-
tem is set to operate as a shunt active filter generating
1000 VAR reactive power to the distorted grid. The grid
voltage is depicted in Fig.13, which contains in relation to
the fundamental frequency component: 0.5% 5th, 2%7th, 0.5%
11th, 0.3%13th. As expected, the grid-side current is severely
distorted due to the considerable filter capacitor, which leads to
a quite large low-order harmonics in the current. Hence, the
results in Fig.13 show the same tendency as the simulation
results in Fig.12. Note that the system is still stable even
without the capacitor-current feedback (Kad = 0). This is due
to the quite large internal resistance of the LCL filter and
inherent damping caused by the inefficient semiconductors in
the Triphase system (high switching and conduction losses).
The resonance (at ωr = 1300 Hz) in the grid-side current at
Kad = 0 shows that the system is close to the marginally stable
condition. At Kad = 7, only low-order harmonics exist in the
grid-side current. After Kad reaches 13, the system becomes
marginally stable and the resonance (at ωx = 2800 Hz) quickly
arises. The maximum Kad is smaller than the theoretical one
and this can be explained by the fact that the delay and the
damping characteristics in the system are different from the
simulated system. In the final paper the parameters will be
tuned accordingly so both simulation and experimental results
are better matched. Fig.14 presents the grid-side current with
and without the harmonics control under Kad = 7. After the
implementation of the proposed resonator, the THD of the
grid-side current decreased from 32% to 7.5%, which is still
quite large. This might be because that the insufficient phase
compensation limits the further increase of krh and ωc.

VI. CONCLUSION AND FUTURE WORK

This paper derives the boundaries of the capacitor-current
feedback gain to realize effective active damping. Besides, a
harmonics resonator cascaded with lead filter is proposed to
compensate the selective harmonics components in the grid-
side current due to the distorted grid voltage. Both simulation
and experimental results show the performance of the proposed
control scheme. However, the practical results deviates from
the theoretical and simulation results due to the unidentified
damping and delay in the practical system. The effectiveness
of the resonator is so far limited by the current achieved phase
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Fig. 13. Preliminary experimental results: Grid-side current under different
Kad.
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Fig. 14. Preliminary experimental results: Grid-side current with harmonics
control under distorted grid voltage.

margin. However, in the final paper additional improved exper-
imental results will be included addressing those differences.
Therefore, future work will focus on more effective phase
compensation methods and other harmonics control techniques
i.e, multiple-axis control and full grid voltage feed-forward
strategy.
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