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Summary

The cost and turnaround time of the load calculation cycle in the design process
of aircraft can be reduced by developing new numerical simulation technologies
aimed at efficient prediction of steady and unsteady force coefficients in the flight
envelope. In order to capture the most extreme stress levels due to gust and ma-
noeuvres, efficient time-accurate analysis of fluid-structure interaction is desired.
In order to incorporate uncertainties in flight conditions, manoeuvres, shape and
material properties, efficient uncertainty quantification is desired.

This thesis aims at developing efficient multi-fidelity algorithms for fluid-structure
interaction and uncertainty quantification. Space-mapping is a multi-fidelity tech-
nique that can be applied in order to accelerate strongly coupled partitioned fluid-
structure interaction. Gradient-Enhanced Kriging is a response surface technique
that can be used for uncertainty quantification.

Aggressive Space-Mapping is applied to three academic fluid-structure inter-
action problems of increasing complexity. For most test cases considered the esti-
mated and observed speedup with respect to the Quasi-Newton algorithm is larger
than 1. The influence of the timestep size on the speedup is large compared to
other parameters. In case of compressible flows the speedup can rise to 1.5 for
large time-steps. In case of incompressible flows higher speedups can be expected
due to strong coupling of the fluid-structure interaction.

Gradient-Enhanced Kriging (GEK) is applied to two academic uncertainty quan-
tification problems of increasing complexity. The observed speedup of GEK with
respect to Kriging increases with the number of dimensions of the design-space.
When the gradients are computed with the adjoint method the theoretical speedup
is 𝑆 = (1 + 𝑑), where 𝑑 is the number of dimensions. The observed speedup and
theoretical speedup are only close if the derivative noise, variation of the sampling
plan and the variation of the target accuracies are taken into account.
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Samenvatting

De kosten en omlooptijd van het berekenen van belastingen binnen het ontwerp-
proces van vliegtuigen kan verminderd worden door de ontwikkeling van nieuwe
numerieke simulatie technologieën toegespitst op het efficiënt voorspellen van sta-
tionaire en tijdafhankelijke kracht coëfficiënten binnen de uiterste operationele be-
grenzingen. Het ondervangen van de meest extreme spanningswaarden veroor-
zaakt door windvlagen en manoeuvreerbewegingen vraagt om tijdsnauwkeurige
analyse van de interactie tussen vloeistof/gas en structuur. Om onderzekerheden
in vliegomstandigheden, manoeuvreerbewegingen, vorm en materiaaleigenschap-
pen te kunnen ondervangen is efficiënte onzekerheidsanalyse nodig.

Deze dissertatie richt zich op de ontwikkeling van efficiënte algoritmen ten behoeve
van vloeistof/gas - structuur interactie en onzekerheidsanalyse, gebruikmakend van
modellen met een verschillende betrouwbaarheid. Space-mapping is een techniek
die toegepast kan worden om sterk gekoppelde en gepartitioneerde vloeistof/gas
- structuur interactie te versnellen. Gradient-Enhanced Kriging is een responsie-
oppervlak techniek die toegepast kan worden om onzekerheid te kwantificeren.

Aggressive Space-Mapping is toegepast op drie academische vloeistof/gas - struc-
tuur interactie problemen van toenemende complexiteit. De geschatte en waar-
genomen versnelling ten opzichte van de Quasi-Newton techniek zijn groter dan
1 voor de meerderheid van de berekeningen. De invloed van de tijdstap op de
versnelling is groot ten opzichte van de invloed van andere parameters. De ver-
snelling kan toenemen tot 1.5 in het geval van compressibele stroming en grote
tijdstappen. Grotere versnellingen kunnen worden verwacht voor incompressibele
stromingen door de sterkere interactie tussen vloeistof en gas.

Gradient-Enhanced Kriging (GEK) is toegepast op twee academische onzekerheids-
problemen van toenemende complexiteit. De waargenomen versnelling van GEK
ten opzichte van Kriging neemt toe met het aantal dimensies van de ontwerpruimte.
De theoretische versnelling is gelijk aan 𝑆 = (1 + 𝑑) wanneer de gradiënten wor-
den uitgerekend middels het oplossen van de geadjugeerde vergelijkingen, met 𝑑
het aantal dimensies van de ontwerpruimte. De waargenomen en de theoretische
versnelling liggen alleen dicht bij elkaar wanneer rekening wordt gehouden met
de numerieke ruis in de gradiënten, de variatie van het ontwerp-experiment en de
variatie van de doelnauwkeurigheden.
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1
Introduction

In this thesis, multi-fidelity algorithms are developed in order to reduce the compu-
tational cost of fluid-structure interaction simulations and Uncertainty Quantification
(UQ). The research leading to the results in this thesis has received funding from
the European Community’s Seventh Framework Programme. Future Fast Aeroe-
lastic Simulation Technologies (FFAST) is a collaborative research project aimed
at developing, implementing and assessing a range of numerical simulation tech-
nologies to accelerate future aircraft design. A description of the FFAST project is
found in section 1.1. An introduction to multi-fidelity acceleration of high fidelity
fluid-structure simulations is given in section 1.2, followed by an introduction to
meta-model based Uncertainty Quantification in section 1.3.

1.1. Future Fast Aeroelastic Simulation Technolo-
gies

Reducing the cost and turnaround time of the loads process within the design cycle
of future aircraft will lead to significant improvements to product development and
manufacture. Unsteady loads calculations play an important role within the loads
process and have a large impact on the conceptual and detailed design, weight,
aerodynamic performance, control characteristics etc. Especially loads cases due
to gusts and manoeuvres are important since they determine the most extreme
stress levels, fatigue damage and damage tolerance during the design cycle.

The actual flight conditions and manoeuvres during flight are highly uncertain.
For this reason a large number of conditions need to be considered during the
design cycle. Each flight condition/manoeuvre requires expensive numerical simu-
lations in order to estimate the resulting stress levels in the aircraft structure. Each
time the design of the aircraft is updated the process is repeated, resulting in a
very expensive analysis. Nowadays, a loads calculation cycle requires more than 6
weeks.

1
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The cost and turn around time of the load calculation cycle can be reduced by de-
veloping new efficient numerical simulation technologies. Improving the efficiency
of numerical simulation technologies leads to [1, 2]:

• A decrease in wind tunnel testing requirements.

• A decreased risk of design modification later in the design process.

• A reduction of in-flight testing requirements.

• A faster certification process.

• An improvement of safety by enabling the design of systems to improve the
response to extreme situations such as gust loads, wind shear and clear air
turbulence.

The vision is illustrated in Figure 1.1. In this figure the representation fidelity is the
fidelity of the final product represented in a scale from zero to one and the Virtual
Product (VP) is a mathematical/numerical representation of the physical properties
of a product. From Figure 1.1 it becomes clear that the product development is not

Figure 1.1: The vision: Using high fidelity solvers earlier in the design-cycle. Source: Navier-Stokes
solvers in European aircraft design, Progress in Aerospace Sciences 38, (2002) 601-697.

only accelerated by taking high fidelity numerical simulations earlier into account,
it also results in a product with a higher representation fidelity [2]. High fidelity
analysis is furthermore required due to

• More demanding future performance targets, pushing the design towards the
envelope boundaries.

• The lack of engineering experience with novel configurations: In this case ex-
perience cannot be used to identify the important areas in the flight envelope
such that the number of critical loads cases are reduced.
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Three major areas of research to reduce the total analysis costs have been identified
in the FFAST project, [1]:

• Identification of critical loads cases: The number of conditions/manoeuvres
can be reduced by identifying the most important loads cases, see [3–6].
This work focuses on prediction of the worst-case gust loads that a particular
aircraft might encounter during flight.

• Multi-fidelity acceleration of high fidelity models: In this case low fidelity mod-
els are exploited in convergence acceleration methods. This results in so
called hybrid methods, see [7, 8].

• The construction of meta-models from high fidelity models. The meta-models
can then be used to do the high fidelity loads analysis at a lower cost. Tech-
niques used to build meta-models are for example Neural Networks [9], Radial
Basis Functions or Kriging [3, 5], Multivariate Adaptive Regression Splines [5]
and Polynomial Chaos [10, 11].

The main Quantities of Interest (QoI) are the distributed forces around the aircraft
as well as integral quantities such as the lift, drag or moment coefficients, see figure
1.2. Efficient prediction of the steady and unsteady force coefficients in the flight
envelope is the main objective.

Figure 1.2: Distributed loads and integral quantities on an aircraft. Source: Airbus

Uncertainties in flight conditions, manoeuvres, shape and material properties
lead furthermore to the development of methods that quantify these uncertain-
ties. Taking uncertainties into account increases the representation fidelity of the
final product even more. Of interest are statistical moments of the QoI and the
probability of occurrence of undesired phenomena. Uncertainty and reliability anal-
ysis of fluid-structure stability boundaries have been investigated in [12–15]. The
uncertainty propagation methods in these contributions are mainly Monte Carlo,
perturbation and interval analysis. Monte Carlo methods are generic and accurate
but require too many samples to reach acceptable target accuracies. Perturbation
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methods, on the other hand, are cheap but only give acceptable accuracy when
the problem is sufficiently linear. Especially at the envelope boundaries where the
Mach regime is mainly transonic, non-linearities cannot be ignored and should be
taken into account.

Meta-models / response surface methods are designed to capture the most
important non-linearities of the high fidelity model. The use of meta-models in
uncertainty quantification and reliability analysis has therefore become an active
field of research [16–19]. These methods are only successful if the constructed
meta-models are sufficiently accurate in the region of interest. The use of a meta-
model implies a loss in accuracy since the accuracy of the meta-model can never
match the accuracy of the high fidelity model from which it was constructed. Two
approaches exist to cope with the loss of accuracy:

1. Meta-model error estimation: Examples are the delta method [20], cross vali-
dation [21] and bootstrapping [22]. Estimation of the meta-model error allows
to construct meta-models with the desired target accuracy.

2. The use of hybrid methods: The meta-model is used to accelerate the analysis
on the high fidelity model such that there is no loss of accuracy. Examples are
meta-model based importance sampling [23] or meta-model enhanced Monte
Carlo sampling [24].

This dissertation is divided into two parts. The first part concentrates on multi-
fidelity acceleration of high fidelity fluid-structure interaction simulations. An in-
troduction on fluid-structure interaction is given followed by the discussion of sev-
eral coupling techniques. Finally, a new coupling technique is introduced based
on space-mapping which is a mathematical technique originating from the field of
multi-fidelity optimization. The second part contains work on meta-model based
uncertainty quantification. Here, the focus is on the efficient construction of meta-
models. An introduction on meta-model based uncertainty quantification is given
starting with the classical perturbation method followed by the Kriging method and
the crude Monte Carlo method.

1.2. Multi-fidelity acceleration of high fidelity fluid-
structure interaction simulations

Fluid-Structure Interaction (FSI) is the mutual interaction between a fluid and a
deformable structure. When a fluid is in interaction with a structure it exerts forces
on it such that the structure deforms. The deformation of the structure will in turn
affect the fluid flow such that a coupled problem results.

Fluid-Structure Interactions play a central role in aerospace engineering and
many other fields like civil, mechanical and biomedical engineering [25, 26]. Un-
stable interactions like wing flutter and buffeting can cause structural failure and
prediction of their occurrence is of primary importance in the design of aircraft [12].
Asymptotic stability is a necessary but insufficient condition to guarantee structural
integrity. It has been shown that transient growth, induced by sources of external
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excitation such as gust loads, can lead to structural failure despite the fact that
the system is asymptotically stable [13, 27]. Unsteady high fidelity simulations
can overcome the shortcomings of steady analysis but it is computationally much
more expensive. A time-accurate CFD analysis with a dual-time stepping scheme
is roughly a hundred times more expensive as a single steady calculation of the
same accuracy [28]. The ”brute force” analysis of 50 flight points in the flight en-
velope for 100 mass cases, 10 control surface configurations, 50 manoeuvres, and
4 control laws results in 10,000,000 unsteady high fidelity simulations to perform a
single load calculation cycle. The total analysis cost of a ”brute force” load calcula-
tion cycle is therefore estimated to be roughly 1000,000,000 times more expensive
as a single steady CFD analysis. Reducing the computational effort of unsteady
high fidelity simulations - often involving fluid-structure interaction - is therefore of
utmost importance.

1.2.1. Simulation of high fidelity fluid-structure interaction
The replacement of low fidelity simulations with more accurate FSI simulations is
attractive because it reduces the number of design cycles, the development risk, the
number of flight tests, the cost and time to market and the risk of design modifica-
tions in the later design phases [2]. However, the computational effort associated
with high fidelity FSI models currently precludes their direct use in industry. Accel-
eration of time-accurate high fidelity aeroelastic simulation algorithms has therefore
become an active area of research. The black-box approach is especially attractive
due to the minimal intrusiveness and modularity of the resulting algorithms. Us-
ing an implicit time integration scheme the following residual equation needs to be
solved at each time step in the simulation

ℛ(𝐱) ≡ ℋ(𝐱) − 𝐱 = 0,

where ℋ = 𝒮 ∘ ℱ contains the structure and fluid operator, which can be seen as
black-boxes since they only have an input/output structure. Solving the residual
equation implies that the kinematic and dynamic interface conditions on the fluid-
stucture interface are satisfied. Examples of black-box coupling algorithms that
aim to solve the residual equation effciently are multi-level approaches [29–32],
multi-solver approaches [33], Interface-GMRES(R) [34, 35], Aitken’s method and
vector extrapolation [36, 37] and the Quasi-Newton Inverse Least Squares (QN-ILS)
method [33, 38–40].

The QN-ILS method has become a popular method due to its combination of
efficiency and simplicity, see [33, 38, 40] and its thorough theoretical basis, see
[39]. In [40] it was found that the QN-ILS method outperforms Aitken’s method
and the Newton-Krylov method from [34] when applied to a (nonlinear) strongly
coupled FSI problem. In [39] it was found that the QN-LS method is only slightly
slower than GMRes when applied to obtain the solution of several linear systems of
equations and in [41] it is shown that the QN-ILS method can be modified to be-
come analytically equivalent to GMRES. A general comparison of various partitioned
iterative solution methods for FSI is found in [42, 43].
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1.2.2. Aim and motivation
Strong coupling algorithms are designed to efficiently solve the coupled problem
that results from an implicit time integration scheme applied to the semi-discrete
system of equations describing the fluid and solid dynamics, the so called parti-
tioned approach. The partitioned approach allows software modularity and reuse
of existing field solvers and is therefore more promising in an industrial environment
than the monolithic approach, which aims at solving the fluid and solid systems si-
multaneously. In the transonic regime, the flow interacts strongly with the structure
since the flow is highly nonlinear and very sensitive to structural motions [44]. Es-
pecially for large time steps in the transonic regime, strong coupling procedures
are necessary in order to avoid excessive phase-lag errors [45]. Strong coupling
algorithms are more expensive but unavoidable since loosely coupled algorithms
yield unacceptable accuracy in this regime.

• The fact that loosely coupled algorithms are inaccurate due to the dominating
partitioning error for large time steps in the transonic regime motivates the
development of more efficient strong partitioned coupling algorithms.

Furthermore, we focus on problems with the following property:

• The high fidelity fluid solver consumes much more CPU time than the high
fidelity structure solver.

This is typical in aerospace applications [46]. Reducing the number of fluid solves
per time step while maintaining accuracy is therefore the main objective in the
development of new strong coupling algorithms. We investigate the use of low
fidelity models to speed up partitioned coupling simulations applied to high fidelity
models, the so called multi-fidelity approach. Without loss of generality we assume
that two solvers are available: a cheap low fidelity fluid solver and an expensive
high fidelity fluid solver, see Figure 1.3.

fluid solver
(expensive)

Low fidelity
fluid solver
(cheap)

Structure
solver algorithm

Coupling

High fidelity

Figure 1.3: Schematic of a multi-fidelity coupling algorithm.

In principle we could also introduce a cheap low-fidelity structure solver in the
problem. Since we are mainly focused on reducing the number of high fidelity fluid
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solves this option is not considered here. The research objective is to increase the
efficiency of high fidelity fluid-structure interaction simulations by means of multi-
fidelity coupling. In order to achieve this goal algorithms need to be developed that
take into account information from the low fidelity model in the high fidelity model
computation. In addition to the main objective several constraints are identified.
In summary the research objective and additional constraints are:

Main objective: Improve the efficiency of high fidelity fluid-structure interaction
simulations using multi-fidelity coupling.

Constraints:

1. Software modularity: The solution strategy should be able to couple ex-
isting field solvers for both the fluid and the structure. This requirement
ensures that the Computational Fluid Dynamics and Computational Structural
Mechanics communities can develop their own codes using their own exper-
tise. A modular approach treats the field solvers as modules that are coupled
by exchanging information through interfaces. The algorithms are still useful
when better mathematical models and methods are developed.

2. Minimal intrusiveness: Algorithms need to be developed that are able
to couple existing fluid and structure codes in a minimal intrusive way. The
resulting coupling algorithms should have a high numerical efficiency and sta-
bility without having to adapt the existing codes too much.

3. Robustness: In addition to the numerical efficiency and stability require-
ments it is also important to develop a solution procedure that can be used
for a wide variety of physical parameters. Robustness is the sensitivity of
the convergence of a method to variation in problem parameters. This re-
quirement is especially important when different configurations of aerospace
vehicles need to be tested at a wide range of flight conditions.

4. Generality: The solution procedure should be able to couple a wide variety
of low fidelity models to high fidelity fine models. Software modularity is
therefore also required with respect to low fidelity models used to achieve the
acceleration in the solution procedure of the high fidelity model. The resulting
algorithm is generic and can benefit from the efforts invested by other parties
in constructing a suitable low fidelity model. The low fidelity model could be a
coarse mesh discretization of the original problem, a simplified mathematical
model (e.g. a panel method) but also a low fidelity model that originates from
a suitable Reduced Order Model (ROM) technique.

These four constraints are tightly inter-related, e.g. generality implies software
modularity and minimal intrusiveness can only be achieved if the constraints of
software modularity are satisfied. Robustness is inter-related with the main objec-
tive: if the efficiency increases it means that the ratio of accuracy over computa-
tional resources has changed which may affect the robustness of the algorithm.
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It is therefore of crucial importance to find a balance between the main objective
and the constraints that need to be satisfied. This is the art of designing a new
successful algorithm.

1.2.3. Quasi-Newton methods
An important class of coupling methods that satisfy the constraints are the class of
Quasi-Newton (QN) methods. To satisfy kinematic and dynamic interface conditions
on the fluid-structure interaction interface the residual equation needs to be solved.
Newton’s method can be used to obtain

𝐱 = 𝐱 − (𝜕ℛ𝜕𝐱 ) ℛ(𝐱 ).

The Jacobian of the residual in this expression is however unknown due to the black-
box nature of the solvers. Quasi-Newton methods use different approximations to
the Jacobian of the residual. Quasi-Newton updates are then used to solve the
residual equation iteratively. As an alternative to the residual formulation, the fixed-
point formulation can be used.

𝐱 = ℋ(𝐱 ) (1.1)

Fixed-point iterations are equivalent to quasi-Newton iterations if the Jacobian of the
residual is approximated by the negative identity matrix. Quasi-Newton methods
can therefore be seen as fixed-point acceleration schemes. On the other hand,
fixed-point acceleration schemes like Aitken’s adaptive underrelaxation method and
vector extrapolation can be considered quasi-Newton methods. Irrespective of the
name of the method, these methods all have in common that they aim to achieve
super-linear convergence in the iterative process, using input/output information
only.

1.2.4. Multi-level methods
Multi-grid algorithms are often implemented in flow solvers for efficiency purposes.
The multi-grid implementation of the fluid solver can be exploited in order to im-
prove the efficiency of partitioned fluid-structure interaction algorithms without vio-
lating the minimal intrusiveness and generality constraints. The efficiency improve-
ment is made by coupling the structure with the fine flow mesh and with the coarse
flow mesh, similar to figure 1.3. In this case the high fidelity solver is the discretized
system of equations on the fine mesh while the low fidelity solver is constructed
from the high fidelity equations using Galerkin projection with restriction (𝑅 ) and
prolongation (𝑃 ) operators, see Figure 1.4. Defect-correction is used on the fluid-
structure interaction interface to speed up the coupling iterations. These so called
multi-level methods are highly successful, especially in combination with high-order
time integration methods [29, 30].
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Figure 1.4: Schematic of a multi-level coupling algorithm. Source: Multi-Level Accelerated Sub-Iterations
for Fluid-Structure Interaction. Lecture Notes in Computational Science and Engineering Volume 73,
2010, pp 1-25

The idea that multi-level defect-correction can be accelerated with a quasi-
Newton scheme was proposed in [47]. An inner-outer iterative scheme is presented
with the multi-level method as the inner method and the quasi-Newton method
as the outer method. In principle any quasi-Newton method can be selected for
the outer scheme, making the method a special case of a much broader class of
methods. Not surprisingly, given the super-linear convergence of quasi-Newton
methods, a speedup is observed with respect to the multi-level method without
quasi-Newton acceleration. It is also possible to improve the Jacobian of a Quasi-
Newton method in a multi-level way, see [48]. Accelerations can be achieved with
this method when the number of degrees of freedom between the grid levels is
sufficient.

1.2.5. Multi-solver methods

A multi-solver method uses more than one flow solver and/or one structure solver
for a single unsteady fluid-structure interaction simulation. The acceleration is
achieved by running the flow solvers and structure solvers in parallel in a single
time-step. How this can be done in a smart and efficient way is presented in [33].
By collecting data from previous time steps in the simulation and recalculating in-
put/output relations for the current time step in parallel, a remarkable efficiency
gain can be achieved. For the test case under consideration, the number of cou-
pling iterations decreases with 50% when 8 different flow solvers are used in par-
allel. The principle of the multi-solver algorithm is shown in Figure 1.5. Since the
parallelization of the multi-solver algorithm happens solely on the fluid-structure in-
terface, the speedup is independent on parallelization within the flow solvers. The
total computational cost of the additional flow solvers is however large, making it a
wise decision to first parallelize a single flow solver in combination with an efficient
coupling algorithm, before a multi-solver algorithm is implemented.
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Figure 1.5: Multi-solver principle: (a) fluid and structure solver on two cores. With twice as many
cores either (b) the number of cores per solver can be increased or (c) two additional flow solvers can
be started. Source: Multi-solver algorithms for the partitioned simulation of fluid-structure interaction.
Computer Methods and Applied Mechanics Volume 200, 2011, pp 2195-2210

1.2.6. Multi-fidelity methods

In this dissertation multi-fidelity methods are developed to speed up partitioned
fluid-structure interaction simulations. A multi-fidelity algorithm exploits the infor-
mation of a lower fidelity model to speed up the computations of the high-fidelity
model. Using this definition, a multi-level algorithm certainly is a multi-fidelity
method. The difference is that multi-fidelity algorithms are a much broader class
of coupling algorithms since no predefined choice is made for the low- and high
fidelity model. The only requirement is that the low fidelity flow solver is computa-
tionally cheap with respect to the more expensive high fidelity flow solver and that
it approximates the same physics. Space-mapping [49] can be used to connect the
low- and high fidelity solvers, thereby accelerating the iterative process.

space-mapping

The concept of space-mapping was first conceived by J.W. Bandler in 1993. Bandler
started to question the concept of ”model” and the recognition of ”real” objects like
churches and houses and how these objects could be mapped to an element of a
library of preconceived models in one’s brain, see figure 1.6. By scaling , shifting,
rotating, twisting and elimination of detail one can establish a mapping between
the models.
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Figure 1.6: The concept of space-mapping. Source: J.W. Bandler ”Have you ever wondered about the
engineer’s mysterious ’feel’ for a problem” IEEE Canadian Review, no. 70, pp. 50-60, Summer 2013.

Realizing that this process happens unconsciously, Bandler stated in [50]: ”I
was searching not for mathematics but for the engineer’s ’feel’”.

Figure 1.7: The concept of space-mapping. Source: J.W. Bandler ”Have you ever wondered about the
engineer’s mysterious ’feel’ for a problem” IEEE Canadian Review, no. 70, pp. 50-60, Summer 2013.

By constructing a low-fidelity model in the brain, intuition can be perceived as
the mapping between reality and the low-fidelity model. The low-fidelity model
can be corrected iteratively such that a real world objective can be achieved, see
figure 1.7. This basic idea lies at the root of the space-mapping technique. By
establishing a mapping between two models of different complexity, the iterative
process on the high fidelity model can be accelerated. Although space-mapping is
currently mainly applied in the field of optimization, it can also be used to efficiently
solve the coupled problem at each time step of a partitioned FSI simulation since
the underlying principles of space-mapping are quite general. Minimization of the
interface residual

𝐱∗ = argmin
𝐱
||ℛ(𝐱)||,

can be seen as an optimization problem. Depending on how the mapping is used
in the iterative process, different space-mapping algorithms emerge. In the follow-
ing, we introduce Aggressive Space-Mapping, Output Space-Mapping and Manifold-
Mapping.
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Aggressive space-mapping
A mapping between the input space of the low fidelity model and the input space
of the high fidelity model is constructed during the coupling iterations: the space-
mapping function. The space-mapping function keeps track of the differences be-
tween the high and low fidelity models during the coupling iterations. A-priori
knowledge of the exact inverse space-mapping function would allow for the direct
computation of the high fidelity solution by the inverse mapping of the low fidelity
solution to the high fidelity space. However, such a-priori knowledge is not avail-
able. This necessitates the iterative approximation of the inverse space-mapping
function during the partitioned coupling iterations. An equivalent optimization prob-
lem can be formulated

argmin
𝐱
||ℛ(𝐱)|| ⟷ argmin

𝐱
||𝒫(𝐱) − 𝐳∗||,

where 𝒫(𝐱) is the space-mapping function and 𝐳∗ is the solution of the low-fidelity
model. This is called the primal formulation. When the space-mapping function
is expanded in a first order Taylor series and when the Jacobian is iteratively ap-
proximated using a quasi-Newton method the so called Aggressive Space-Mapping
(ASM) algorithm results. The iterative update then becomes

𝐱 = 𝐱 − (𝜕𝒫𝜕𝐱 ) (𝒫(𝐱 ) − 𝐳∗) .

The performance of the ASM method to speed up partitioned FSI simulations is
investigated in this dissertation.

Output Space-Mapping
In addition to a mapping between the input space of the low fidelity model and the
input space of the high fidelity model it is also possible to make a mapping between
the output space of the low fidelity model and the output space of the high fidelity
model. First, we formulate the update as

𝐱 = argmin
𝐱
||ℛ (𝐱)||, (1.2)

where ℛ (𝐱) denotes the surrogate model at iterate 𝑘. This is called the dual for-
mulation. The surrogate model at iterate 𝑘 is constructed from the high fidelity
model using input mappings and output mappings. The reason to introduce an
additional output mapping is two-fold. First, it is expected that the algorithm con-
verges faster than ASM since not only the input space of the models is aligned but
also the output space. Second, ASM may not always converge due to problems
related to model flexibility. By correcting the output of the low fidelity model an
algorithm is designed that converges more often to the high fidelity solution. Out-
put space-mapping is for the first time successfully applied to reduce the number
of coupling iterations of several fluid-structure interaction problems in [51]
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Manifold Mapping
The misalignment between the low-fidelity model and the high-fidelity model can
be corrected iteratively using rotation and translation. This process can be seen as
the mapping between the low-fidelity (coarse) manifold and the high-fidelity (fine)
manifold. Manifold mapping is an improved version of space-mapping that has
provable convergence properties, see [52].

Figure 1.8: The concept of manifold-mapping. Source: Multi-Level Optimization: Space Mapping and
Manifold Mapping, Ph. D. thesis, University of Amsterdam (2007).

The concept of manifold-mapping is illustrated in figure 1.8. In this figure, the
vector 𝐲 denotes the design specification. When manifold mapping is used to accel-
erate fluid-structure interaction simulations, we have 𝐲 = 𝟎 and the manifolds are
the low fidelity interface residual space and the high fidelity interface residual space
respectively. Upon convergence, the low fidelity model is aligned with the high fi-
delity model. Manifold mapping is for the first time successfully applied in order
to reduce the number of coupling iterations in a strong fluid-structure interaction
problem in [53].

1.3. Multi-fidelity analysis for uncertainty quantifi-
cation

Uncertainties can arise from various sources. A frequently used classification of
uncertainty is

• Epistemic uncertainty

• Aleatory uncertainty

• Human error

Epistemic uncertainty results from ignorance: the lack of information or understand-
ing of the physics of the problem. Examples are unmodeled nonlinearity, errors in
the aerodynamics prediction or lack of information about damping. Epistemic un-
certainty can be reduced by collecting more information about the origin of the
uncertainty. On the other hand, aleatory uncertainty is the class of uncertainty
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that is irreducible. Examples of aleatory uncertainty are material imperfections and
fabrication errors that result in e.g. geometrical uncertainty. The most common
approach for modeling aleatory uncertainty is the probabilistic approach. In this ap-
proach uncertainty is modeled using random parameters that follow a predescribed
probability density function.

1.3.1. Uncertainty Quantification
In the field of Uncertainty Quantification (UQ), a collection of methods is used that
propagate uncertainty through systems. In this dissertation we focus on forward
uncertainty propagation: the uncertainty in the system output due to input para-
metric variability. The output is also called the Quantity of Interest (QoI). The goal
of UQ is to obtain statistical moments of the QoI or to obtain the probability that
the QoI will exceed a predefined threshold. The latter is the subject of reliability
analysis. Random field discretizations are used to express the variability in a finite
number of random variables: the random variable space. The number of random
variables necessary to describe the variability accurately can however be quite large.
Many UQ methods have dimensionality issues: The computational cost increases
rapidly with the dimensionality of the problem. This problem is known as the curse
of dimensionality [19, 54]. It is therefore of utmost importance to account for the
scaling of the computational cost with respect to the number of problem dimen-
sions in the development of new UQ methods. A key element in the development
of new UQ methods is the efficient computation of meta-models. Meta-models can
be used to replace the high fidelity model or to accelerate the analysis on the high
fidelity model.

1.3.2. Aim and motivation
Two major problems are observed in the development of computational methods
for Uncertainty Quantification. These are the curse of dimensionality and the lack
of error estimation techniques when meta-model substitution is used. In order to
make a step in the right direction we focus on two aspects of UQ. First, we focus on
construction of efficient high dimensional meta-models. Central to this part of the
work is the use of the adjoint method. Second, we address how the meta-model
can be used to accelerate importance sampling. Central to this part of the work is
the estimation of meta-model errors and importance sampling errors. The aim is to
investigate the performance of these methods and to identify possible bottlenecks.

1.3.3. Perturbation methods
If the QoI and its gradient w.r.t. the random variables are calculated at a single
point in the random variable space, the perturbation method [55] can be used to
estimate the statistical moments of interest. A Taylor series approximation is used to
construct a linear response surface that is locally accurate. Typically, the gradients
are computed using finite differences or the adjoint method.

When the response surface is linear, the mean and variance are estimated using
the QoI evaluated at the point of expansion and the inner product of the gradient
with itself respectively.
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Problems arise when the actual response is highly nonlinear. The linear ap-
proximation of the response surface is no longer sufficient in that case. The local
approximation of the response can be enhanced using a second order Taylor ex-
pansion. However, this requires computation of the diagonal of the Hessian for the
improved estimate of the mean and the full Hessian for the improved estimate of
the variance. This complicates the use of second order perturbation methods in two
ways. First, second order derivatives with respect to parameters are not available
in most commercial codes. Second, the number of second order derivatives that
needs to be computed scales with the number of random variables squared, which
results in a dimensionality problem.

Another complication is the choice of the point of expansion in the Taylor series
approximation. It is not clear a priori which point of expansion gives the best
approximation to the actual response. Common approaches are mean-centered,
median-centered and mode-centered perturbation methods, see [12].

1.3.4. Uncertainty quantification using Kriging
If the QoI and its gradients w.r.t. the random variables are calculated at several
points in the random variable space, a wide number of mathematical techniques can
be used to obtain a response surface approximation. Response surfaces can be build
from observable data using statistical inference techniques. Particularly suitable
are methods that use probability statements conditioned on observed data - the so
called Bayesian approach, see [56]. These probability statements form a so called
stochastic response surface. The stochastic response surfaces can subsequently be
used to calculate the statistical moments of the QoI or to obtain the probability of
failure as a post-processing step.

A powerful Bayesian inference technique, originating from the field of Geology,
is Kriging [57]. The result of Kriging is a stochastic response surface conditioned
on observed values of the QoI. The Kriging predictor is given by

𝔼(𝐱|𝐲) = + 𝐏𝐇 (𝐑 + 𝐇𝐏𝐇 ) (𝐲 − 𝐇),

which updates the new values 𝐱 conditional on the computed values 𝐲, starting
from a prior and prior covariance matrix 𝐏, while 𝐑 contains the observation errors
and 𝐇 is the observation matrix which selects the computed results from the total
set of results. The elements of 𝐏 can be constructed from a Gaussian correlation
function

𝑝 = exp(−∑
ℎ ,

2𝜃
) ,

where the lag ℎ , is the distance - in the random variable space - between the
results 𝑖 and 𝑗 and 𝜃 is the correlation range in each dimension.

A recent extension of Kriging, named Gradient Enhanced Kriging (GEK) [54],
includes the gradients of the QoI to the list of observed values of the QoI, thereby
gaining accuracy over ordinary Kriging. Since the QoI and its gradient are calculated
at several points in the random variable space, GEK can be considered an extension
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of the perturbation method. Instead of using a second order Taylor series expansion
at a single point in the random variable space, the approach is now to calculate the
QoI and its gradient at a grid of points - the so called Design of Experiment (DoE)
- in order to capture the nonlinearity of the response. When the gradients are
calculated efficiently - using the adjoint method - GEK scales favorable with the
number of dimensions.

1.3.5. Crude Monte Carlo methods
The sampling-based crude Monte Carlo method is the most general method to com-
pute the statistical moments of the QoI. No assumptions regarding the distribution
of the QoI are required. Moreover, the required computational effort of the Monte
Carlo method does not scale with the number of random variables. In this method,
realizations of the random variables are sampled and the deterministic analysis is
done for each realization. The mean and standard deviation are subsequently esti-
mated by

�̄� = 1
𝑁 ∑𝑄𝑜𝐼(𝐳 ) and

�̄� = √ 1
𝑁 ∑(𝑄𝑜𝐼(𝐳 ) − �̄�) ,

where the vector 𝐳 are the realizations of the random vector �̃� which contains all
randomness in the problem under consideration. The required accuracy is com-
monly specified by a confidence level C, defined as

Pr [| �̄� − 𝜇𝜇 | ≥ 1 − 𝐶] ≤ 1 − 𝐶,

for the mean. A similar expression can be written for the standard deviation. Us-
ing certain mild assumptions, the number of required samples for the standard
deviation is given by

𝑁 ≥ 1
2 (

Φ ( )
1 − 𝐶 ) ,

where Φ denotes the standard normal cumulative density function. For a 95%
confidence level of the standard deviation a sample size of 768 is required, for a
confidence level of 99% this number increases to 33,174. Clearly, crude Monte
Carlo requires too many samples to be useful in practice.
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1.4. Breakdown of the dissertation
This dissertation is divided into two parts. Each part consists of a number of test
cases in order to assess the performance of the algorithms. The choice for the
test cases is most often based on a trade-off between simplicity and demonstrate-
ability. The transonic airfoil problem is however a predefined FFAST test case. The
breakdown is as follows:

1. Part I:Multi-fidelity acceleration of high fidelity fluid-structure inter-
action simulations

(a) Space-mapping in FSI: theory (Chapter 2): Theoretical develop-
ment and explanation of different space-mapping methods.

(b) Space-mapping in FSI: Numerical experiments (Chapter 3): The
application of space-mapping in order to reduce the computational effort
of FSI simulations. The test cases are:

i. The 1-D piston problem: A compressible inviscid fluid in a closed
section which is in interaction with a piston having a mass en stiff-
ness.

ii. The 2-D supersonic panel problem: A flexible panel with a mass and
stiffness which is in interaction with a fluid at supersonic speed.

iii. The 1-D flexible tube problem: An incompressible fluid flowing
through a flexible tube.

2. Part II: Multi-fidelity analysis for uncertainty quantification

(a) High-dimensional meta-models for UQ (Chapter 4): The applica-
tion of Gradient Enhanced Kriging and the efficient use of the adjoint
method to mitigate the curse of dimensionality. The test cases are:

(b) The panel divergence problem (Chapter 5): The fluid-structure sta-
bility boundary is the quantity of interest in this test case. Parametric
uncertainty enters the problem via the random stiffness of the panel.
The aim is to obtain an accurate meta-model of the divergence Mach
number

(c) The transonic airfoil problem (Chapter 6): The airfoil drag is the
quantity of interest in this test case. Parametric uncertainty enters the
problem via the random shape deformation of the airfoil. The aim is to
obtain the statistical moments of the airfoil drag, based on the meta-
model.

The dissertation ends with conclusions and recommendations in Chapter 7.
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2
Space-mapping in FSI:

Theory

In this dissertation the use of low fidelity models to speed up partitioned coupling
simulations applied to high fidelity models is investigated, the so calledmulti-fidelity
approach 1. Without loss of generality it is assumed that two solvers are available:
a computationally cheap low fidelity fluid solver and a computationally expensive
high fidelity fluid solver. A mapping is defined between the input space of the low
fidelity model and the input space of the high fidelity model during the coupling
iterations: the space-mapping function. A-priori knowledge of the exact inverse
space-mapping function would allow for the direct computation of the high fidelity
solution by the inverse mapping of the low fidelity solution to the high fidelity space.
However, such a-priori knowledge is not available. This necessitates the iterative
approximation of the inverse space-mapping function during the partitioned cou-
pling iterations. The space-mapping function keeps track of the differences between
the high and low fidelity models during the coupling iterations and this information
subsequently used to speedup the computations. When the space-mapping func-
tion is expanded in a first order Taylor series and when the Jacobian is iteratively ap-
proximated using input/output information the so called Aggressive Space-Mapping
(ASM) algorithm results. Although space-mapping [1] is currently mainly applied in
the field of optimization, it can also be used to efficiently solve the coupled problem
at each time step of a partitioned FSI simulation since the underlying principles of
space-mapping are quite general.

1Chapter 2 and Chapter 3 are based on the journal paper: T.P. Scholcz, A.H. van Zuijlen and H.
Bijl, Space-mapping in fluid-structure interaction problems, Computer Methods in Applied Mechanics
and Engineering 281 (2014).

25

http://www.sciencedirect.com/science/article/pii/S0045782514002606
http://www.sciencedirect.com/science/article/pii/S0045782514002606


..

2

26 2. Space-mapping in FSI: Theory

2.1. Problem formulation
A typical FSI model consists of a fluid model defined on a deformable domain Ω –
numerically implemented using the Arbitrary Langrangian Eulerian (ALE) formula-
tion [2] – which is in interaction with a structure model defined on Ω and modeled
using the Lagrangian formulation. The fluid domain and structure domain both have
a fluid-structure interaction interface Γ and Γ which are identical, such that both
domains are coupled [3]. A discretization technique is used to obtain the semi-
discrete systems of equations describing the dynamics of each physical system.
Typically the Finite Volume Method (FVM) is used to obtain the system describing
the fluid dynamics whereas the Finite Element Method (FEM) is used to obtain the
structural system equations. Let the vector 𝐯 denote the discrete state vector of
the fluid in Ω and vector 𝐮 the the discrete state vector of the structure in Ω at
the new time level 𝑡 . Hiding the dependency on the solution of previous time
levels, the coupled problem at time step 𝑡 is formulated as [4]

𝐫 (𝐯; 𝜉 (𝐮)) = 𝟎 𝐯 ∈ ℝ (2.1)

𝐫 (𝐮; 𝜉 (𝐯)) = 𝟎 𝐮 ∈ ℝ . (2.2)

Here, 𝐫 denotes the residual of the discrete fluid equations and 𝐫 the residual of
the discrete structure equations. The function 𝜉 ∶ ℝ → ℝ maps the structural

state vector 𝐮 ∈ ℝ to the interface displacement vector 𝐱 ∈ ℝ , hence 𝐱 = 𝜉 (𝐮).
The function 𝜉 ∶ ℝ → ℝ maps the fluid state vector 𝐯 ∈ ℝ to the interface

pressure 𝐲 ∈ ℝ , hence 𝐲 = 𝜉 (𝐯). Given a certain interface displacement vector
𝐱

𝐲 = 𝜉 (𝐯) for 𝐯 = arg min
𝐯∈ℝ

||𝐫 (𝐯; 𝐱)||, (2.3)

defines the high fidelity fluid operator ℱ ∶ ℝ → ℝ

𝐲 = ℱ(𝐱). (2.4)

Numerical evaluation of the high fidelity fluid operator requires the solution of the
minimization problem in Eq. (2.3) up to a certain tolerance 𝜖 and the evaluation
of the map 𝜉 to find the interface pressure from the fluid state vector. The mini-
mization of 𝐫 is in general performed with a Computational Fluid Dynamics solver.
Likewise, given an interface pressure 𝐲

𝐱 = 𝜉 (𝐮) for 𝐮 = arg min
𝐮∈ℝ

||𝐫 (𝐮; 𝐲)||, (2.5)

defines the structure operator 𝒮 ∶ ℝ → ℝ

𝐱 = 𝒮(𝐲). (2.6)
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Numerical evaluation of the structure operator requires the solution of the mini-
mization problem in Eq. (2.5) up to a certain tolerance 𝜖 and evaluation of the
map 𝜉 to find the interface displacement from the structure variables. The min-
imization of 𝐫 is in general performed with a Computational Structural Dynamics
solver. Due to the large range of important scales present in the fluid dynamics it
holds in general that 𝑁 >> 𝑁 . Evaluation of the fluid operator is computationally
much more expensive than evaluation of the structure operator as a consequence.

Continuity of the interface displacement/velocity and force equilibrium on the
fluid-structure interface is required in order to satisfy kinematic and dynamic inter-
face conditions on the fluid-structure interaction interface at every time step of a
simulation. These conditions are satisfied when [4–6]

ℛ(𝐱) = 𝟎 with ℛ(𝐱) = 𝒮 ∘ ℱ(𝐱) − 𝐱, (2.7)

where ℛ ∶ ℝ → ℝ is the interface residual function. Strong coupling algorithms
aim to minimize the interface residual ℛ to a certain tolerance 𝜖 using a minimum
number of (expensive) fluid operator evaluations:

𝐱∗ = arg min
𝐱∈ℝ

||ℛ(𝐱)||. (2.8)

Note that when 𝜖 = 𝜖 = 𝜖 = 0 it holds that 𝐮 = 𝐮∗ and 𝐯 = 𝐯∗ satisfying Eq.
(2.1) and (2.2) and the unique interface displacement and pressure are found from
𝐱∗ = 𝜉 (𝐮∗) and 𝐲∗ = 𝜉 (𝐯∗) respectively. The most basic strong coupling algorithm
is the fixed point iteration scheme given in algorithm 1.

Algorithm 1 Fixed point iteration scheme
1: 𝑘 = 0
2: 𝐫 = ℛ(𝐱 )
3: while ||𝐫 || > 𝜖 do
4: 𝐱 = 𝐱 + 𝐫
5: 𝑘 = 𝑘 + 1
6: 𝐫 = ℛ(𝐱 )
7: end while

Algorithm 1 may converge slowly and has a poor robustness, see [5, 7]. To
obtain better performance, so called Quasi-Newton algorithms were developed,
[6–12]. Quasi-Newton methods are more robust and may obtain superlinear con-
vergence, see [9, 12].
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2.2. The Quasi-Newton Inverse Least Squares algo-
rithm

The purpose of this section is two-fold. It will introduce the Quasi-Newton In-
verse Least Squares (QN-ILS) method as an accelerator of the fixed point iteration
scheme given in algorithm 1 and provide some results which are necessary for the
development of the Aggressive Space Mapping algorithm in section 2.3.2.

Introducing ℋ = 𝒮 ∘ ℱ, the fixed point iteration update on line 4 of algorithm 1
can be written as

𝐱 = ℋ(𝐱 ). (2.9)

To improve convergence of the fixed point iteration scheme 𝐱 is replaced by a
better candidate 𝐱 such that

𝐱 = ℋ(𝐱 ). (2.10)

It is assumed that the new candidate can be written as a linear combination of the
previous iterates 𝐱 ...𝐱

𝐱 ∈ 𝐱 +∑𝑐 (𝐱 − 𝐱 ). (2.11)

The new candidate is substituted into the expression for the residual

ℛ(𝐱 ) = ℛ(𝐱 +∑𝑐 (𝐱 − 𝐱 )), (2.12)

and subsequently linearized

ℛ(𝐱 ) ≈ ℛ(𝐱 ) + (𝜕ℛ𝜕𝐱 )∑𝑐 (𝐱 − 𝐱 ). (2.13)

Equation (2.13) can be further simplified to

ℛ(𝐱 ) ≈ 𝐫 +∑𝑐 (𝐫 − 𝐫 ), (2.14)

where 𝐫 = ℛ(𝐱 ) for 𝑖 = 0...𝑘 are available from previous iterates. The coefficients
𝑐 are then found from a minimization of the linearized residual ℛ(𝐱 )

𝐜 = arg min
𝐜 ∈ℝ

||𝐫 +∑𝑐 (𝐫 − 𝐫 )||, (2.15)
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such that the better candidate is found from

𝐱 = 𝐱 +∑𝑐 (𝐱 − 𝐱 ). (2.16)

Substituting 𝐱 from Eq. (2.16) in the expression for the update in Eq. (2.10) it
is found that

𝐱 = ℋ(𝐱 +∑𝑐 (𝐱 − 𝐱 )) (2.17)

≈ ℋ(𝐱 ) + (𝜕ℋ𝜕𝐱 )∑𝑐 (𝐱 − 𝐱 ) (2.18)

≈ 𝐱ℋ +∑𝑐 (𝐱ℋ − 𝐱ℋ), (2.19)

where 𝐱ℋ = ℋ(𝐱 ) for 𝑖 = 0...𝑘. If the update is computed as 𝐱 = 𝐱 instead
of 𝐱 = ℋ(𝐱 ) the algorithm brakes down since the new input for ℋ would
be a pure linear combination of previous inputs, see [13]. In [14] the update is
computed as 𝐱 = 𝑓(𝐱 ,ℋ (𝐱 ), 𝛽 ), where 𝛽 are relaxation parameters for
each iterate 𝑘. In this algorithm, the QN-ILS algorithm results as a special case for
𝛽 = 1.

The linearization in Eq. (2.19) avoids a true evaluation of ℋ(𝐱 ) since all the
displacement vectors in Eq. (2.19) are readily available when they are stored in
previous iterations.

Practical implementation details of the QN-ILS method are found in [6]. The
differences in Eq. (2.14) and Eq. (2.19) are calculated as

Δ𝐫 = 𝐫 − 𝐫 (2.20)

Δ𝐱ℋ = 𝐱ℋ − 𝐱ℋ , (2.21)

for 𝑖 = 0...𝑘 − 1. Subsequently the differences are stored in separate matrices 𝐕
and 𝐖

𝐕 = [Δ𝐫 Δ𝐫 ...Δ𝐫 ] (2.22)

𝐖 = [Δ𝐱ℋ Δ𝐱ℋ ...Δ𝐱ℋ]. (2.23)

Since 𝐱ℋ = 𝐱 + 𝐫 the update in Eq. (2.19) can be written

𝐱 = 𝐱 +𝐖 𝐜 + 𝐫 , (2.24)

which is interpreted as a Quasi-Newton method

𝐱 = 𝐱 − (𝜕ℛ𝜕𝐱 ) 𝐫 , (2.25)
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with the inverse of the Jacobian approximated by

(𝜕ℛ𝜕𝐱 ) ≈ 𝐖 𝐑 𝐐 − 𝐈, (2.26)

and 𝐐 and 𝐑 the matrices that result from the economy-size QR-decomposition
of 𝐕 . The QR-decomposition is used to minimize (2.15) in a least squares sense.
The QN-ILS algorithm is summarized in Algorithm 2.

Algorithm 2 QN-ILS
1: 𝑘 = 0
2: 𝐱ℋ = ℋ(𝐱 )
3: 𝐫 = 𝐱ℋ − 𝐱
4: while ||𝐫 || > 𝜖 do
5: if 𝑘 = 0 then
6: 𝐱 = 𝐱 − (∇𝐱ℛ) 𝐫
7: else
8: for 𝑖 = 0 to 𝑘 − 1 do
9: Δ𝐱ℋ = 𝐱ℋ − 𝐱ℋ
10: Δ𝐫 = 𝐫 − 𝐫
11: end for
12: 𝐕 = [Δ𝐫 Δ𝐫 ... Δ𝐫 ]
13: 𝐖 = [Δ𝐱ℋ Δ𝐱ℋ ... Δ𝐱ℋ]
14: Calculate 𝐕 = 𝐐 𝐑
15: Calculate 𝐑 𝐜 = −𝐐 𝐫
16: 𝐱 = 𝐱 +𝐖 𝐜 + 𝐫
17: end if
18: 𝑘 = 𝑘 + 1
19: 𝐱ℋ = 𝑆 ∘ 𝐹(𝐱 )
20: 𝐫 = 𝐱ℋ − 𝐱
21: end while

2.3. Space-mapping methods
In order to enhance the convergence and robustness properties of the QN-ILS algo-
rithm information of simplified fluid operators is included that are much cheaper to
evaluate. Simplified fluid operators were used to approximate the Jacobian in the
Newton-GMRES method, see [9, 11]. This requires two evaluations of the simplified
fluid operator in each Krylov iteration to compute a finite difference approximation
of a Jacobian vector product. The simplified fluid operators should be chosen in
such a way that the relevant physics of the problem is maintained, neglecting for
example certain nonlinearities and/or the deformation of the fluid domain. Once
the simplified fluid operator is available it is used as a black-box, in the same fashion
as the original fluid operator. In this work a simplified fluid operator is used to find
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a preconditioned rootfinding problem, to which an outer Quasi-Newton method is
applied. A straightforward way to obtain a preconditioned root-finding problem is
to apply a transformation of the original rootfinding problem [15]

𝒢(ℛ(𝐱)) = 𝟎, (2.27)

such that
𝜕𝒢
𝜕𝐯
𝜕ℛ
𝜕𝐱 ≈ 𝐈, (2.28)

if 𝒢 is close to ℛ . In that case only a few iterations are required to achieve con-
vergence. When the functions 𝒢 and ℛ are not explicitly known and the Jacobians
𝒢
𝐯 and

ℛ
𝐱 are either unavailable or very expensive to compute space-mapping al-

gorithms [1] can be used to find a preconditioned rootfinding problem indirectly.
Space-mapping algorithms exploit the combination of less sophisticated models with
the accuracy of more complex models, using input/output information only.

Let �̃� (�̃�, 𝐳) denote the residual of the discrete fluid equations describing the
simplified fluid model. The simplified fluid model has the interface displacement
𝐳 ∈ ℝ̃ as an argument. Given an interface displacement 𝐳

�̃� = 𝜉 (�̃�) for �̃� = arg min
�̃�∈ℝ̃

||̃𝐫 (�̃�; 𝐳)|| (2.29)

defines the low fidelity fluid operator �̃� = �̃�(𝐳), such that the low fidelity fluid-
structure interaction problem becomes

ℛ̃(𝐳) = 𝟎 with ℛ̃(𝐳) = 𝒮 ∘ ℱ̃(𝐳) − 𝐳. (2.30)

Note that the state variables of the high fidelity and low fidelity fluid models may
differ and that the low fidelity fluid state vector �̃� is not necessary an element of
the same discrete space as the high fidelity fluid state vector 𝐯: �̃� ≠ 𝑁 . Also, on
the interface it might happen that �̃� ≠ 𝑁 and �̃� ≠ 𝑁 . In that case interface
restriction and prolongation operators can be used in the space-mapping function
in order to make the mappings between the two discrete spaces. The solution of
the low fidelity fluid-structure interaction problem is given by

𝐳∗ = arg min
𝐳∈ℝ̃

||ℛ̃(𝐳)||. (2.31)

The minimization in (2.31) is up to a tolerance �̃� . The ”argmin” notation in (2.31)
is used to point out that a partitioned fluid-structure interaction problem is solved
without specifying which coupling algorithm is used for the solve since this is not
relevant for the understanding of the space mapping method. This notation is used
throughout this chapter and when numerical experiments are discussed the choices
made for the coupling algorithms are mentioned. The space-mapping approach
requires the definition of a space-mapping function. This is the topic of section
2.3.1.
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2.3.1. Space-mapping function
A misalignment function between the high fidelity interface residual and the low
fidelity interface residual on the fluid-structure interface is defined as

𝑟(𝐳, 𝐱) = ||ℛ̃(𝐳) − ℛ(𝐱)||. (2.32)

For a given high fidelity model interface displacement 𝐱 ∈ 𝑋 it is useful to know
which low fidelity model interface displacement 𝐳 ∈ 𝑍 yields the best approximation
to the interface residual ℛ, hence with the smallest misalignment 𝑟. Finding the
best 𝐳 for a given 𝐱 defines the space-mapping function 𝒫 ∶ ℝ → ℝ

𝐩 = 𝒫(𝐱) = arg min
𝐳∈ℝ

𝑟(𝐳, 𝐱). (2.33)

To evaluate the space-mapping function numerically a second “auxiliary” fluid-
structure interaction problem needs to be solved with the low fidelity fluid operator.
This problem can be solved with any coupling algorithm as long as it results in a sta-
ble and convergent iterative process. The choice for this coupling method defines
the inner method. An example of the numerical evaluation of the space-mapping
function is summarized in Algorithm 3 which uses basic fixed-point iterations as an
inner method.

Algorithm 3 Numerical evaluation of 𝐩 = 𝒫(𝐱 )
Require: 𝐱 , 𝐳 , 𝜖
1: 𝑖 = 0
2: 𝐫 = ℛ(𝐱 )
3: �̃� = ℛ̃(𝐳 )
4: while ||�̃� − 𝐫 || > 𝜖 do
5: 𝐳 = 𝒮 ∘ ℱ̃(𝐳 ) − 𝐫
6: 𝑖 = 𝑖 + 1
7: �̃� = 𝒮 ∘ ℱ̃(𝐳 ) − 𝐳
8: end while
9: 𝐩 = 𝐳
10: return 𝐩 , 𝐫

Evaluation of the space-mapping function requires a single expensive evaluation
of the high fidelity fluid operator and several cheap evaluations of the low fidelity
fluid operator to perform the mapping.

2.3.2. The Aggressive Space-Mapping algorithm
The following definition is cited from [1]

Definition 1 A space-mapping function 𝒫 is called a perfect mapping iff 𝐳∗ =
𝒫(𝐱∗).
Substituting 𝐱∗ into the space-mapping function defined by Eq. (2.33) and using
the definition in Eq. (2.32), Eq. (2.8) and Eq. (2.31) it follows that 𝒫 as defined
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in (2.33) is always a perfect mapping. It is now possible to apply a Quasi-Newton
method to the new rootfinding problem

𝒦(𝐱) = 𝟎 with 𝒦(𝐱) = 𝒫(𝐱) − 𝐳∗, (2.34)

with 𝒦 ∶ ℝ → ℝ , which is the outer method. This results in the Aggressive
Space-Mapping (ASM) algorithm as defined in [1, 16]. If ℛ̃ is close to ℛ it holds
that

𝜕𝒦
𝜕𝐱 =

𝜕𝒫
𝜕𝐱 ≈ 𝐈, (2.35)

and it is likely that the Quasi-Newton algorithm converges faster when applied to
the new rootfinding problem in Eq. (2.34). The ASM algorithm consists of two
steps:

1. Solve for the low fidelity fluid-structure interaction solution 𝐳∗.

2. Apply a Quasi-Newton algorithm to the new rootfinding problem in Eq. (2.34)
.

Although the space mapping function in (2.33) is always a perfect mapping, con-
vergence is not guaranteed. To understand why this is case the concept of model
flexibility is used. The definition of model flexibility from [1] states

Definition 2 A model is called more flexible than another if the set of its reachable
aims contains the set of reachable aims of the other. Two models are equally flexible
if their sets of reachable aims coincide.

Hence, a low fidelity model is more flexible than a high fidelity model if ℛ̃(𝑍) ⊃ ℛ(𝑋)
and less flexible if ℛ̃(𝑍) ⊂ ℛ(𝑋). From the lemma’s in [1] it is also found that

1. If the low fidelity model is more flexible than the high fidelity model then
𝒫 ∶ 𝑋 → 𝑍 is injective if ℛ ∶ 𝑋 → 𝑅 is injective.

2. If the low fidelity model and the high fidelity model are equally flexible and if
ℛ ∶ 𝑋 → 𝑅 is injective then 𝒫 is a bijection.

3. If the high fidelity model is more flexible than the low fidelity model then
𝒫 ∶ 𝑋 → 𝑍 is surjective.

Convergence problems may for example occur if the space mapping function is
surjective in the region of the high fidelity model solution 𝐱∗. Perfect mapping is a
property that concerns only a point while model flexibility concerns a region. It can
therefore happen that the mapping is perfect since 𝐱∗ maps perfectly to 𝐳∗ while 𝐱∗
is not the only solution that maps to 𝐳∗ which means that it is non-unique. It can
still be useful to apply the ASM algorithm when this happens if it is combined with
conventional algorithms as will become clear in the numerical examples.

To approximate the space-mapping Jacobian 𝒫
𝐱 in step 2 of the ASM algorithm

mainly Broyden’s method is used in the space-mapping community [1, 16]. Al-
though Broyden’s method has been used in the FSI community as well [7, 17] and
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in the first work on space-mapping accelerated algorithms for FSI [18], the QN-ILS
method from section 2.2 is chosen as the outer iterative method in this work.

Broyden’s method uses information of only two recent iterates to approximate
the Jacobian while the recently developed QN-ILS method uses information from
several previous iterates, therefore belonging to the class of multi-iterate methods
[19]. This is a heuristic explanation of the reported succes of the QN-ILS method
in the FSI community [4, 6, 9] when compared to other Quasi-Newton methods.

To apply the QN-ILS method from section 2.2 to the new rootfinding problem,
substitute 𝐱 from Eq. (2.11) into Eq. (2.34) and linearize

𝒦(𝐱 ) = 𝒫(𝐱 +∑𝑐 (𝐱 − 𝐱 )) − 𝐳∗ (2.36)

≈ 𝒫(𝐱 ) − 𝐳∗ + (𝜕𝒫𝜕𝐱 )∑𝑐 (𝐱 − 𝐱 )

≈ 𝐩 − 𝐳∗ +∑𝑐 (𝐩 − 𝐩 ). (2.37)

The coefficients 𝑐 are subsequently found fromminimization of the linearized resid-
ual 𝒦(𝐱 )

𝐜 = arg min
𝐜 ∈ℝ

||𝐩 − 𝐳∗ +∑𝑐 (𝐩 − 𝐩 )||, (2.38)

such that 𝐱 can be substituted in Eq. (2.10) and subsequently linearized to find
the update

𝐱 ≈ 𝐱ℋ +∑𝑐 (𝐱ℋ − 𝐱ℋ). (2.39)

The ASM-ILS algorithm is summarized in Algorithm 4. The numerical evaluation of
the space-mapping function on line 2 and line 18 in Algorithm 4 is performed using
for example Algorithm 3.
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Algorithm 4 ASM - ILS

Require: 𝐱 , 𝐳∗, 𝜖
1: 𝑘 = 0
2: 𝐩 = 𝒫(𝐱 )
3: while ||𝐫 || > 𝜖 do
4: if 𝑘 = 0 then
5: 𝐱 = 𝐱 + 𝐳∗ − 𝐩
6: else
7: for 𝑖 = 0 to 𝑘 − 1 do
8: Δ𝐱ℋ = 𝐱ℋ − 𝐱ℋ
9: Δ𝐩 = 𝐩 − 𝐩
10: end for
11: 𝐕 = [Δ𝐩 Δ𝐩 ... Δ𝐩 ]
12: 𝐖 = [Δ𝐱ℋ Δ𝐱ℋ ... Δ𝐱ℋ]
13: Calculate 𝐕 = 𝐐 𝐑
14: Calculate 𝐑 𝐜 = 𝐐 (𝐳∗ − 𝐩 )
15: 𝐱 = 𝐱 +𝐖 𝐜 + 𝐫
16: end if
17: 𝑘 = 𝑘 + 1
18: 𝐩 = 𝒫(𝐱 )
19: end while
20: return 𝐱∗ = 𝐱

Other inner methods could be used for the numerical evaluation of the space-
mapping function such as the QN-ILS method itself, Broyden’s method or Aitken’s
method. As will become clear in chapter 3, the choice for the inner iterative method
depends on how expensive the evaluation of the low fidelity fluid operator is. When
the cost of the low fidelity fluid operator is very low when compared to the high
fidelity fluid operator this choice will not affect the total speedup of the ASM-ILS
algorithm significantly as long as the inner method result in a stable algorithm.
When the cost of the low fidelity fluid operator is low but not several orders lower
than the cost of the high fidelity model it is wise to choose an efficient coupling
algorithm for the inner method since it can have a large impact on the total speedup
of the ASM-ILS algorithm in this case.

2.3.3. Output Space-Mapping
Sofar, only the primal formulation has been used in order to derive space mapping
algorithms. A different approach is to define a surrogate model ℛ that needs to
be updated at every iteration 𝑘 during the coupling algorithm. In the dual space-
mapping approach the next iterate is defined as

𝐱 = argmin
𝐱
||ℛ (𝐱)||. (2.40)
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Figure 2.1: Concept of space mapping

For example, substitute 𝐳 = 𝒫 (𝐱) in ℛ̃(𝐳) to obtain ℛ (𝐱) = ℛ̃(𝒫 (𝐱)). With

𝒫 (𝐱) = 𝒫(𝐱 ) + ∇𝐱𝒫 (𝐱 − 𝐱 ) , (2.41)

equation (2.40) yields

𝐱 = 𝒫 (𝐳∗) = 𝐱 + (∇𝐱𝒫) (𝐳∗ − 𝐩 ), (2.42)

which is exactly an Aggressive Space Mapping update. Figure 2.1 shows a schematic
of the Aggressive Space Mapping update. The dual and primal formulation yield the
same update in this case. However, the dual formulation allows for a different point
of view. When the space-mapping function is not perfect or when the minimization
in (2.40) is not performed fully until the desired tolerance is reached there is a
difference between the output of the surrogate and the output of the fine model:
ℛ (𝐱 ) ≠ ℛ(𝐱 ). In this case one can choose not to correct only for the input of
the models via a mapping 𝒫 but also for the output of the models via a mapping
𝒪. In this case, the surrogate becomes

ℛ (𝐱) = 𝒪 (ℛ̃ (𝒫 (𝐱))) , (2.43)

such that
𝒪 (ℛ̃ (𝒫 (𝐱 ))) = ℛ(𝐱 ). (2.44)

The output mapping 𝒪 can be a linear transformation in a similar way as the input
mapping 𝒫. For example

𝒪 (⋅) = 𝐀 (⋅) + 𝐝 . (2.45)

In this way a surrogate is constructed that locally always matches the fine model.
More can be found on output space mapping as a coupling method for partitioned
Fluid-Structure Interaction in [20]. In this contribution it is shown that both input
space mapping and output space mapping are special cases of the generalized
space mapping framework as described in [21].
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3
Space-mapping in FSI:
Numerical experiments

In this Chapter the methods developed in Chapter 2 are applied to two academic test
cases: The 1-D piston problem and the 2-D panel flutter problem. In order to assess
the performance of the space-mapping algorithm we first define a performance
metric in Section 3.1. This metric is then used in the numerical experiments in
Section 3.2.3 and 3.3.4 for both cases. Finally, conclusions are drawn in Section
3.5.

3.1. Speedup
The speedup of the ASM-ILS method with respect to the QN-ILS method is de-
termined by the decrease of computational effort per time step to obtain the high
fidelity model solution 𝐱∗ up to a specified tolerance 𝜖 .

Let𝑤 and𝑤 be a measure of the cost (flops or CPU time) necessary to evaluate
ℛ(𝐱 ) and ℛ̃(𝐳 ) respectively. The average cost per time step of a high fidelity and
low fidelity model residual evaluation is then found from

�̄� = 1
𝑛 ∑ 𝑤 and �̄� = 1

𝑛 ∑ 𝑤 , (3.1)

where 𝑛 and 𝑛 are the total number of high fidelity (fine) and low fidelity (coarse)
iterations respectively (including the iterations necessary to find 𝐳∗) per time step.
The total cost per time step of the ASM-ILS method is subsequently estimated by

𝑊 ≈ �̄� 𝑛 + �̄� 𝑛 , (3.2)

whereas the total cost of the QN-ILS method is estimated by

𝑊 ≈ �̄� 𝑛 . (3.3)
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In Eq. (3.2) and Eq. (3.3), the superscript 𝐴 refers to a quantity associated with
the Aggressive Space Mapping algorithm and the superscript 𝑄 refers to a quantity
associated with a conventional Quasi-Newton algorithm.

The estimates in Eq. (3.2) and Eq. (3.3) are based on the premise that the
largest part of the computational effort is spent in order to evaluate the low fidelity
and high fidelity residuals in the computation, neglecting all other (overhead) costs.
Numerical experiments justify this premise.

The speedup of the ASM-ILS algorithm relative to the QN-ILS algorithm is sub-
sequently found from the ratio of work per time step

𝑆 ≈ 𝑊
𝑊

=
𝑛

𝑛 + ̄
̄
𝑛
, (3.4)

which is valid when �̄� ≈ �̄� . The ASM-ILS method is more efficient than the
QN-ILS method if 𝑆 > 1. The speedup becomes insensitive to the number of low
fidelity residual evaluations 𝑛 if the ratio ̄

̄
is sufficiently small. The choice for

the inner iterative method does not affect the speedup in this case as long as it
results in a stable algorithm for the evaluation of the space mapping function. The
expression of speedup in Eq. (3.4) reflects the principle of space-mapping: If the
low fidelity residual function is cheap to evaluate and sufficiently accurate we have

𝑛 < 𝑛 and ̄
̄
𝑛 << 1 resulting in 𝑆 > 1. To obtain a metric of the total

speedup of a simulation we define

�̂� ≈
∑𝑊
∑𝑊

, (3.5)

where the sum is taken over all the time steps in the numerical simulation. The
total estimated speedup �̂� is used to compare the performance of the coupling
algorithms while the speedup per time step 𝑆 can be printed after completion
of each time-step which gives an indication of the success of the space-mapping
algorithm during the simulation.

3.2. 1D piston problem
The 1-D piston problem is a test case used in [1] and [2]. A compressible inviscid
fluid in a closed section is in interaction with a piston having a certain mass 𝑚 and
stiffness 𝑘, see Figure 3.1.
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Figure 3.1: The piston problem

The density of the fluid at the equilibrium position of the piston is denoted by
𝜌 and the speed of sound by 𝑐 .

In Figure 3.1, 𝑥 refers to the piston displacement computed with the fine fluid
model and 𝑧 refers to the piston displacement computed with the coarse fluid
model. The dynamics of the mass-spring system is described by

𝑚�̈� + 𝑘𝑥 = Δ𝑝 on Γ . (3.6)

The external pressure difference Δ𝑝 over the piston is given by

Δ𝑝 = 𝑝 − 𝑝 on Γ . (3.7)

Rewriting to a twice as large system of equations yields

𝜕 𝐰 + 𝐀 𝐰 = 𝐟ex, (3.8)

with 𝐰 = [𝑥 �̇� ] and the external force vector 𝐟ex = [0 Δ𝑝] . Using the BDF-2
time-discretization scheme, the residual of the discrete structure equations reads

𝐫 (𝐰 ; 𝑝 ) = 𝐰 + Δ𝑡𝛽 (𝐀 𝐰 − 𝐟ex) − 𝐰 , − Δ𝑡𝛽 (
𝐰 , −𝐰 ,

2Δ𝑡 ) , (3.9)

where 𝛽 = . The structure operator 𝑥 = 𝒮(𝑝 ) is subsequently defined by

𝑥 = 𝜉 (𝐰 ) with 𝐰 = arg min
𝐰 ∈ℝ

||𝐫 (𝐰 , 𝑝 )||. (3.10)

Computation of the interface pressure 𝑝 from the fine fluid model is the topic of
Section 3.2.1 and computation of the interface pressure 𝑝 using the coarse fluid
model is discussed in Section 3.2.2.

3.2.1. Fine fluid model
The fluid in the piston is governed by the Euler equations of gas dynamics [3, 4]

{
𝜕 𝐪 + 𝜕 𝐟(𝐪) = 𝟎 in Ω ,
= 0 and 𝑢 = 0 on Γ ,
= 0 and 𝑢 = �̇� on Γ .

(3.11)
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Using the isentropic relation 𝑝 = 𝜌 , the energy equation in Eq. 3.11 becomes
redundant and only the mass and momentum balance are necessary to describe
the physics of the fluid. The state and flux vector are therefore given by

𝐪 = [ 𝜌
𝜌𝑢 ] and 𝐟(𝐪) = [ 𝜌𝑢

𝜌𝑢 + 𝑝 ] (3.12)

where 𝜌 denotes the fluid density and 𝑢 the horizontal fluid velocity.

xxxxxxxxxxxxxxxxxx

Ωf

u = 0

F = ∆p

ΓI
fΓw

f ΓI
s

u = ẋp

∂ρ

∂x
= 0

∂ρ

∂x
= 0

Figure 3.2: The piston problem: boundary conditions

A transpiration boundary condition is used on the fluid-structure interaction in-
terface Γ . We neglect the term 𝜕 𝜌𝑢 in the momentum equation on Γ . The
transpiration boundary condition implies that we fix the location of Γ such that
Γ ≠ Γ and continuity of velocity is satisfied if the piston velocity �̇� equals the
fluid velocity 𝑢 at Γ , see Figure 3.2. The fluid boundary value problem (3.11)
is discretized using the Finite Volume method. A static mesh with volume width
Δ𝑥 = is used, where 𝑁 denotes the number of finite volumes.

Integration over a finite volume Ω ⊂ Ω yields

𝜕 ∫ 𝐪dx− 𝐟 / + 𝐟 / = 𝟎. (3.13)

Using a second order central discretization, Eq. (3.13) is written as

𝜕 𝐪 Δ𝑥 + 1
2 [ −𝐉 𝟎 𝐉 ]⎫⎪⎪⎬⎪⎪⎭

𝐀

[
𝐪
𝐪
𝐪

] = 𝟎, (3.14)

with

𝐉 (𝐪 ) = [
0 1

𝜌 − 𝑢 2𝑢 ] , (3.15)

Matrix assembly in Eq. (3.14) yields a semi-discrete system of equations

𝜕 𝐰 + 𝐀 (𝐰 )𝐰 = 𝐟ex. (3.16)
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Here, 𝐰 = (𝐪 𝐪 ...𝐪 ) is the discrete state vector of the fluid, 𝐟ex = 𝐟ex(𝑥 )
is the external force vector which depends on the state of the structure. Upon
time-discretization of the system of equations in Eq. (3.16), using the BDF-2 time-
integration scheme, the residual of the discrete fluid equations is defined by [5]

𝐫 (𝐰 ; 𝑥 ) = 𝐰 + Δ𝑡𝛽 (𝐀 (𝐰 )𝐰 − 𝐟ex) − 𝐰 , − Δ𝑡𝛽 (
𝐰 , −𝐰 ,

2Δ𝑡 ) (3.17)

The fine fluid-operator 𝑝 = ℱ(𝑥 ) is defined by
𝑝 = 𝜉 (𝐰 ) with 𝐰 = arg min

𝐰 ∈ℝ
||𝐫 (𝐰 ; 𝑥 )||, (3.18)

where the map 𝑝 = 𝜉 (𝐰 ) is given by

𝑝 = 𝑝
𝜌 𝜌 with 𝜌 = (0, ..., 0 1 0) ⋅ 𝐰 . (3.19)

The density 𝜌 is the density of the fluid 𝜌 near the fluid-structure interaction
interface. The minimization in Eq. (3.18) is performed using Picard iterations. With
the definition of the structure operator in Section Eq. (3.10) and the fine fluid
operator in Eq. (3.18) , the fine interface residual function is defined as

ℛ(𝑥 ) = 𝒮 ∘ ℱ(𝑥 ) − 𝑥 , (3.20)

which is used in the evaluation of the space-mapping function in algorithm 3 and
the ASM-Secant algorithm 4.

3.2.2. Coarse fluid model
The coarse fluid model is found from a linearization of the fluid with respect to the
equilibrium state of the piston. If the flux vector 𝐟 in Eq. (3.11) is linearized around
the equilibrium state of the fluid: 𝐪 = (𝜌 0) we obtain

𝜕 𝐪 + 𝜕𝐪𝐟|𝐪 𝐪 𝜕 𝐪 = 𝟎. (3.21)

The Jacobian 𝜕𝐪𝐟 of the nonlinear flux 𝐟 is given by [3, 4]

𝜕𝐪𝐟|𝐪 𝐪 = [ 0 1
𝑐 0 ] , (3.22)

and 𝑐 = √ and 𝐪 a perturbation with respect to the equilibrium state vector
𝐪 .

𝐪 = 𝐪 + 𝐪 . (3.23)

Integrating Eq. (3.21) over a finite volume and using a central discretization this
can be written

�̇� Δ𝑥 + 1
2 [ −𝜕𝐪𝐟 𝟎 𝜕𝐪𝐟 ]⎫⎪⎪⎬⎪⎪⎭

�̃�

[
𝐪
𝐪
𝐪

] = 𝟎, (3.24)



..

3

44 3. Space-mapping in FSI: Numerical experiments

resulting in a linear semi-discrete system of equations after matrix assembly

𝜕 �̃� + �̃� �̃� = �̃�ex. (3.25)

Here, the state vector is denoted �̃� = [𝑧 �̇� ] and �̃�ex = �̃�ex(𝑧 ). The residual
of the discrete fluid equations is defined by

�̃� (̃𝐰 ; 𝑧 ) = (𝐈 + Δ𝑡𝛽 �̃� ) �̃� − Δ𝑡𝛽 �̃�ex −̃ 𝐰
, − Δ𝑡𝛽 (̃

𝐰 , −̃ 𝐰 ,

2Δ𝑡 ) . (3.26)

The coarse fluid-operator 𝑝 = ℱ̃(𝑧 ) is now defined by
𝑝 = �̃� (̃𝐰 ) with �̃� = arg min

�̃� ∈ℝ
||̃𝐫 (̃𝐰 ; 𝑧 )||, (3.27)

where the map 𝑝 = �̃� (̃𝐰 ) is now given by

𝑝 = 𝑝 + 𝑐 𝜌 with 𝜌 = (0, ..., 0 1 0) ⋅ �̃� . (3.28)

The minimization in Eq. (3.27) only requires a linear system solve. The coarse
interface residual function is now defined as

ℛ̃(𝑧 ) = 𝒮 ∘ ℱ̃(𝑧 ) − 𝑧 , (3.29)

which is used to compute 𝑧∗ and to evaluate the space-mapping function in algo-
rithm 3.

3.2.3. Numerical experiments
The fluid-to-structure mass ratio 𝜁 and ratio of characteristic time-scales 𝜆 are de-
fined by

𝜁 = 𝜌 𝐿/𝑚 and 𝜆 = 𝐿𝜔/𝑐 (3.30)

with 𝜔 = √ the natural frequency of the mass-spring system and 𝜆 = 2𝜋𝜏 /𝜏
with 𝜏 = 𝐿/𝑐 the time for a pressure wave to travel from one side of the fluid
domain to the other and 𝜏 = 2𝜋/𝜔 the natural period of the mass spring system.
It is well known that the convergence of fixed-point iterations depends on the mass
ratio 𝜁, the time ratio 𝜆 and the time step used in the sequential integration process,
see [2, 3]. For sufficiently small time steps only two fixed point iterations are
necessary to reach convergence. In order to study the performance of the ASM-
algorithm we use a range of time steps sizes and fluid-structure interaction coupling
strengths. The coupling strength is controlled by fixing the ratio of characteristic
time scales and increasing the fluid-to-structure mass ratio, see table 3.1.

Test case 𝜁 𝜆
FSI-weak 0.50 0.85
FSI-medium 0.67 0.85
FSI-strong 2.00 0.85

Table 3.1: Similarity parameters of the 1-D FSI test cases
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In the following the nondimensional variables

�̄� = 𝑡
𝜏 , �̄� =

𝑥
𝐿 , �̄� =

�̇�
𝑐 �̄� = 𝜌

𝜌 (3.31)

are used and we omit the bars in Eq. (3.31). Time steps in the simulation are
given with respect to the nondimensional coupled period of the coarse fluid model
𝑃 = 𝑇 /𝜏 = 2𝜋/𝜔 , where 𝑇 denotes the dimensional coupled period and 𝜔
satisfies [1, 5]

(1 − 𝜆
𝜔 )𝜔 tan𝜔 = 𝜁. (3.32)

This results in a coupled period of 𝑃 = 6.19, 𝑃 = 5.96 and 𝑃 = 5.04 for the test
cases FSI-weak, FSI-medium and FSI-strong, respectively. The numerical parame-
ters and nondimensional intitial conditions are collected in table 3.2.

For each test case we are interested in the relative time-dependent efficiency 𝜂
and the total relative efficiency �̂� of a simulation as defined in Section 3.1.

Description Symbol Value
Initial piston displacement 𝑥 (𝑡 ) 0.5
Initial piston velocity 𝑣 (𝑡 ) 0
Initial fluid density 𝜌(𝑥, 𝑡 )
Finite volume cells 𝑁 64
Number of time steps 𝑁 10 ∪ 30 ∪ 70

Time step Δ𝑡 𝑃/𝑁
Outer tolerance 𝜖 1 ⋅ 10
Inner tolerance 𝜖 1 ⋅10

Table 3.2: Initial conditions and numerical parameters.

Figure 3.3 shows the piston displacement 𝑥 and velocity 𝑣 calculated with the
fine fluid model for 𝑡 ∈ [0 2𝑃]. The density fields calculated with the fine and coarse
fluid model are given in Figure 3.4 and 3.5 respectively.
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Figure 3.4: Fluid density ( , ) computed with
the fine fluid model, FSI-medium, / .

Figure 3.5: Fluid density ( , ) computed with
the coarse fluid model, FSI-medium, / .
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Figure 3.3: Nondimensional piston displacement ( ) and piston velocity ( ), FSI-
medium, / .

Comparing Figure 3.4 with Figure 3.5 it can be seen that the coarse fluid model
does not capture the pressure wave accurately due to the linearized flux in Eq.
(3.21).

In the following we will compare the estimated speedup from Section 3.1 to
the observed speedup for the FSI test cases defined in table 3.1. The estimated
speedup of the test cases are assembled in table 3.3. The speedup obtained with
the ASM-Secant method is relatively high for weakly coupled problems at large time
steps and for strongly coupled problems. For weakly coupled problems (FSI-weak)
at small time steps (𝑃/70) it becomes difficult to gain efficiency with respect to
the Quasi-Newton method. Both methods show similar convergence to the fixed
point iteration method from algorithm 1 in this case. When large time steps (𝑃/10)
are used the initial guess of the coupled problem becomes worse which results in
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a need for more coupling iterations before converge is achieved. The speedup is
observed to be higher in these cases. For strongly coupled problems (FSI-strong) at
large time steps (𝑃/10) the Secant method becomes unstable while the ASM-Secant
converges. This indicates that the ASM-Secant method has better robustness prop-
erties than the Secant method.

The speedup of the ASM-Secant method with respect to the Secant method is
at most 1.16, which is not a large improvement. This can be explained by the
fact that the 1-D piston problem has only one interface degree of freedom (𝑁 =
1) which means that the Jacobian ℛ is a scalar. In practical applications the

fluid-structure interaction interface is a surface and we have 𝑁 > 1 resulting in a
Jacobian represented by a matrix of size 𝑁 ×𝑁 . Therefore, a more representative
2-D test case is considered in Section 3.3.

Test case 𝑃/10 𝑃/30 𝑃/70
FSI-weak 1.16 1.03 1.02
FSI-medium 1.10 1.11 1.01
FSI-strong 1.04∗ 1.13 1.07

Table 3.3: Estimated total speedup̂ . *) The secant method becomes unstable in the first iteration
while the ASM-Secant method converges. The initial Jacobian in the secant method is therefore changed

to ℛ . in order to be able to compute the estimated speedup.

The observed total speedup – the ratio of total CPU times – is assembled in
table 3.4. The values listed in table 3.4 vary from simulation to simulation and are
therefore not a reliable metric for comparsion. In most cases, however, the values
in table 3.4 do not deviate too much from the values listed in table 3.3.

Test case 𝑃/10 𝑃/30 𝑃/70
FSI-weak 1.19 1.05 1.01
FSI-medium 1.13 1.09 1.01
FSI-strong 1.03∗ 1.28 1.09

Table 3.4: Observed total speedup̂ computed using total CPU times. *) The secant method becomes
unstable in the first iteration while the ASM-Secant method converges. The initial Jacobian in the secant

method is therefore changed to ℛ . in order to be able to compute the estimated speedup.

Figure 3.6 to 3.8 show the number of fine and coarse fluid operator evaluations
for the Gauss-Seidel, Secant and ASM-Secant algorithm applied to the FSI-medium
test case at various time step sizes. It can clearly be seen that the ASM-Secant
method requires the least number of fine fluid operator evaluations followed by the
Secant method and the Gauss-Seidel algorithm for all time step sizes considered.

From Figure 3.6 it is found that both the ASM-Secant and the Secant method
perform much better than the Gauss-Seidel algorithm which has a slow convergence
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Figure 3.6: (a) Number of fine fluid operator evaluations of the Gauss-Seidel algorithm (×), Secant
algorithm (□) and the ASM-Secant algorithm (∗). Testcase FSI-medium, / . (b) Number of
coarse fluid operator evaluations of the ASM-Secant algorithm.
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Figure 3.7: (a) Number of fine fluid operator evaluations of the Gauss-Seidel algorithm (×), Secant
algorithm (□) and the ASM-Secant algorithm (∗). Testcase FSI-medium, / . (b) Number of
coarse fluid operator evaluations of the ASM-Secant algorithm.
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Figure 3.8: (a) Number of fine fluid operator evaluations of the Gauss-Seidel algorithm (×), Secant
algorithm (□) and the ASM-Secant algorithm (∗). Testcase FSI-medium, / . (b) Number of
coarse fluid operator evaluations of the ASM-Secant algorithm.

for large time steps. Reduction of the time step results in a similar amount of fine
fluid-operator evaluations for each method as can be seen in Figure 3.8. The ASM-
Secant method still performs slightly better in this case.

The number of coarse fluid operator evaluations is much higher than the num-
ber of fine fluid operator evaluations for all time step sizes considered. This can be
explained by the fact that coarse fluid operator evaluations are necessary to evalu-
ate the space-mapping function at each iteration of the coupling algorithm and to
solve for the coarse model solution 𝑧∗. The negative effect on the speedup is lim-
ited since coarse fluid operator evaluations require far less computational resources
than fine fluid operator evaluations.

Figure 3.9 to 3.11 show the 𝐿 norm of the interface residual as a function of
the number of coupling iterations at a representative time step of the simulation.
Several time step sizes are studied. The convergence trend of the Secant method is
always inbetween the convergence trend of the Gauss-Seidel method and the ASM-
Secant method, as expected. The slopes of the convergence trends become more
similar to the slope of the Gauss-Seidel method as the time step decreases. This
is typical for compressible fluid-structure interaction problems. The Gauss-Seidel
method is appropriate for time-step sizes that are sufficiently small.
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Figure 3.9: Interface residual convergence of a representative time step of test case FSI-medium,
/ . Gauss-Seidel algorithm ( ), Secant method ( ), ASM-Secant algorithm ( ⋅ ).
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Figure 3.10: Interface residual convergence of a representative time step of test case FSI-medium,
/ . Gauss-Seidel algorithm ( ), Secant method ( ), ASM-Secant algorithm ( ⋅ ).
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Figure 3.11: Interface residual convergence of a representative time step of test case FSI-medium,
/ . Gauss-Seidel algorithm ( ), Secant method ( ), ASM-Secant algorithm ( ⋅ ).
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3.3. 2D panel flutter problem
In this Section the ASM-ILS algorithm is applied to a simple academic test problem
– the supersonic panel flutter problem – in order to assess the speedup as defined
in Section 3.1. To this end, a structure model, high fidelity fluid model and low
fidelity fluid model are defined in Section 3.3.1, 3.3.2 and 3.3.3 respectively. Finally,
numerical experiments are performed in Section 3.3.4 in order to investigate the
influence of physical parameters and time step sizes on the speedup of the ASM-ILS
algorithm.

finite difference grid points

finite element nodes
2h2h

Γw

w(x)

Γf

3h

M∞, u∞, ρ∞, p∞

h

Γw

Ωf

Γp p∞

tp, ρp, E, ν

Figure 3.12: Schematic representation of the panel flutter problem

3.3.1. Structure model
The flexible panel is governed by the Euler-Bernoulli beam equation

{
𝜌 𝑡 + [ ] = −Δ𝑝(𝑥) on Γ ,
𝑤(± ) = (± ) = 0.

(3.33)

In Eq. (3.33), 𝜌 denotes the density of the panel, 𝑡 the thickness of the panel,

𝐸 the Youngs modulus, 𝜈 Poisson’s ratio, 𝐼 = 𝑡 the moment of inertia and 𝑤 the
vertical panel displacement. The forcing term is given by the pressure difference
over the panel

Δ𝑝 = 𝑝 (𝑥) − 𝑝 on Γ , (3.34)

where 𝑝 denotes the pressure of the fluid on the fluid-structure interface Γ and
𝑝 the freestream pressure, see Figure 3.12. The boundary value problem in Eq.
(3.33) is discretized using the finite element method with Hermitian shape functions
such that the nodal unknowns are displacements and rotations.
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3.3.2. High fidelity fluid model
The high fidelity fluid is governed by the two-dimensional unsteady linearized po-
tential equation

⎧
⎪
⎨
⎪
⎩

∇ 𝜙 − ( ) = 0 in Ω ,
𝜙(𝑥, 𝑦) = 0 on Γ ,
𝑣(𝑥, 𝑦) = 0 on Γ ,
𝑣(𝑥, 𝑦) = on Γ ,

(3.35)

where 𝜙 denotes the perturbed fluid potential and 𝑀 and 𝑎 are the freestream
Mach number and freestream fluid speed of sound. The substantial derivative in
Eq. (5.4) is given by

𝐷
𝐷𝑡 =

𝜕
𝜕𝑡 + 𝑀 𝑎 𝜕

𝜕𝑥 . (3.36)

The linearized potential equation is valid for subsonic flow and supersonic flow but
is not applicable in the transonic regime. The horizontal velocity compononent 𝑢
and vertical component 𝑣 of the fluid are recovered from the potential according to

𝑢 = 𝑢 + 𝜕𝜙𝜕𝑥 and 𝑣 = 𝜕𝜙
𝜕𝑦 . (3.37)

The interface pressure on top of the panel is given by Bernoulli’s equation [11]

𝑝 (𝑥) = 𝑝 − 𝜌 𝐷𝜙
𝐷𝑡 on Γ . (3.38)

The fluid boundary value problem in Eq. (5.4) is discretized using the Finite Differ-
ence method. The finite difference grid conforms with the finite element mesh of
the panel.

3.3.3. Low fidelity fluid model
Using the piston analogy model (see [6]), the interface pressure is approximated
by

𝑝 (𝑥) = 𝑝 + 𝜌 𝑀 𝑎 ⎛

⎝

𝑀 − 2

√(𝑀 − 1)

𝜕𝑤
𝜕𝑡 + 𝑀 𝑎 𝜕𝑤

𝜕𝑥
⎞

⎠

, (3.39)

with (𝑥) on Γ . The piston analogy is valid for 𝑀 > 1.6. The pressure in Eq.
(3.39) directly depends on the deflection of the panel. The computational effort is
therefore negligible compared to the use of the high fidelity fluid model.

3.3.4. Numerical experiments
The similarity parameters are the Mach number 𝑀 , the fluid-to-structure mass
ratio 𝜁 and the ratio of characteristic time-scales 𝜆 defined by
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𝜁 = 𝜌 𝐿
𝜌 𝑡 and 𝜆 = 𝐿𝑎

(𝜌 𝑡 ) / 𝐿 (𝐸𝐼) / . (3.40)

The values of these parameters – for each test case under consideration – are
collected in table 3.5. Linear stability analysis is used to obtain the critical Mach
number, i.e. the Mach number which separates the stable from the unstable regime.
The critical Mach number 𝑀cr = 2.27 and circular frequency 𝜔 = 460 𝑟𝑎𝑑/𝑠 of
test case FSI-weak agree with the values reported in [6].

Test case 𝑀cr 𝜁 𝜆
FSI-weak 2.27 5.47𝑒 1.47𝑒
FSI-medium 2.28 7.41𝑒 1.47𝑒
FSI-strong 2.33 3.00𝑒 1.47𝑒

Table 3.5: Similarity parameters of the 2-D FSI test cases

The Newmark-𝛽 time integration scheme is used to integrate the structure and
fluid equations of motion. This scheme is known to be second order accurate and
unconditionally stable for 𝛾 = 1/2 and 𝛽 = 1/4. We use the a-form implementation,
see [7].

The panel is released from an initial displacement equal to the flutter mode
𝑤 = 0.1𝜉, see Figure 3.13. The corresponding steady fluid potential 𝜙 is depicted
in Figure 3.14.

L0 x

Figure 3.13: Initial panel deflection . .

 

 

Figure 3.14: Steady initial fluid field.
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The simulations are performed at the critical Mach numbers 𝑀cr. The observed
frequency 𝜔 in the simulation is then equal to the critical frequency obtained by
linear stability analysis. The nondimensional coupled period 𝑃 = 2𝜋𝑎 /𝜔 𝐿 is
divided into 10, 30 and 70 time steps for each test case to study the influence of the
time step on the speed up. To study the effect of the fluid grid size on the speedup
we do all computations on a small, medium and large fluid grid. The coupled
periods of test case FSI-weak, FSI-medium and FSI-strong are 𝑃 = 8.2, 𝑃 = 7.0
and 𝑃 = 3.5 respectively. The numerical parameters used in the simulations are
assembled in table 3.6. The medium fluid grid size 𝑁 ×𝑁 = 321×193 and number
of finite elements 𝑁 = 64 in Table 3.6 correspond to a test case used in [8].

Description symbol value
Fluid grid size: small 𝑁 × 𝑁 161 × 97
Fluid grid size: medium 𝑁 × 𝑁 321 × 193
Fluid grid size: large 𝑁 × 𝑁 641 × 385
Number of Finite Elements 𝑁 32 ∪ 64 ∪ 128
Number of time steps 𝑁 20 ∪ 60 ∪ 140
Time step Δ𝑡 2𝑃 /𝑁
Outer tolerance 𝜖 1 ⋅ 10
Inner tolerance 𝜖 1 ⋅ 10

Table 3.6: Numerical parameters

An inner product of the panel displacement with the flutter mode is defined by

𝑎 (𝑡) = 1
∫ 𝜉 (𝑥)𝑑𝑥

∫ 𝜉(𝑥)𝑤(𝑥, 𝑡)𝑑𝑥. (3.41)

The inner product is used to plot the time history of the panel after it is released
from its initial deflection. An example is given in Figure 3.15a which shows the
high fidelity and low fidelity model responses. Both responses demonstrate that
the panel oscillates in the flutter mode at the predicted frequency 𝜔 = =
539𝑟𝑎𝑑/𝑠.

Figure 3.15b shows the interface residual convergence of a representative time
step. It can be seen that the ASM-ILS algorithm outperforms the QN-ILS algorithm.
An improvement is already visible after the first iteration and becomes better with
the adaption of the space mapping Jacobian. The number of high fidelity fluid
operator evaluations as a function of time are plotted in figure 3.16a for the Gauss-
Seidel, QN-ILS and the ASM-ILS algorithm. The number of low fidelity fluid operator
evaluations used in the ASM-ILS algorithm are plotted in figure 3.16b. Several inner
iterative algorithms are investigated: the Gauss-Seidel, Broyden’s and the QN-ILS
algorithm. The number of low fidelity fluid operator evaluations does not depend
too much on the type of inner iterative algorithm. This can be explained by the
fact that only two or three low fidelity fluid operator evaluations are required per
evaluation of the space-mapping function. In that case, Broyden’s algorithm and
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Figure 3.15: (a) Panel response for test case FSI-medium on the medium grid with / .
(b) Interface residual convergence during a representative time step of test case FSI-medium on the
medium grid with /
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Figure 3.16: (a) Number of high fidelity fluid operator evaluations for test case FSI-medium on the
medium grid with / . (b) Number of low fidelity fluid operator evaluations in the ASM-ILS
algorithm for test case FSI-medium on the medium grid with / .

the QN-ILS algorithm converge at a similar rate.
The estimated speedup per time step is shown in Figure 3.17a. The speedup is

around 𝑆 ≈ = for most time steps in the simulation since is negligible,

see Figure 3.17b.
Table 3.7 lists the total speedup of the simulations for all considered time step

sizes, grid sizes and FSI cases. The influence of the time step size is large and
demonstrates that no speedup is obtained when the time step size becomes too
small. In this case only three iterations are sufficient to converge and it becomes
difficult to obtain a speedup larger than 1. In contrast to fluid-structure interaction
problems involving incompressible fluids the added mass effect is not causing prob-
lems when small time steps are considered, see [9, 10]. The speedup obtained with
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Figure 3.17: (a) Estimated speedup per time step for test case FSI-medium on the medium grid with
/ . (b) Average work ratio per time step for test case FSI-medium on the medium grid with
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Figure 3.18: (a) Total speedup of the ASM-ILS algorithm versus the inner tolerance for several outer
tolerances using test case FSI-medium on the medium grid with / . (b) Total speedup of the
ASM-ILS algorithm versus the freestream Mach number for test case FSI-medium on the medium grid
with / .
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the ASM-ILS method is therefore limited in this case. The use of a smaller fluid grid
results in a smaller speedup when large time step sizes are used in the simulation.
This can be attributed to a better numerical conditioning of the FSI problem in this
case. There is however almost no difference in speedup between the use of the
medium and the large fluid grid, indicating that it is matter of convergence rather
than numerical conditioning. The influence of physical parameters on the speedup
achieved with the ASM-ILS algorithm is surprisingly small. This requires further
investigations.

Grid FSI Δ𝑡 = 𝑃 /10 Δ𝑡 = 𝑃 /30 Δ𝑡 = 𝑃 /70
weak 1.26 1.30 0.991

small medium 1.27 1.29 0.991
strong 1.26 1.18 0.992
weak 1.56 1.30 0.997

medium medium 1.54 1.31 0.998
strong 1.44 1.30 0.999
weak 1.54 1.30 1.000

large medium 1.51 1.31 1.000
strong 1.46 1.31 1.000

Table 3.7: Estimated total speedup̂ of the simulations .

Table 3.8 shows the observed speedup measured by the total CPU time ratio
for test case FSI-medium on the medium fluid grid. Slightly lower efficiencies are
measured due to the overhead costs which are higher for the ASM-ILS algorithm
than for the QN-ILS algorithm.

Grid FSI Δ𝑡 = 𝑃 /10 Δ𝑡 = 𝑃 /30 Δ𝑡 = 𝑃 /70
weak 1.44 1.23 0.94

medium medium 1.45 1.19 0.95
strong 1.29 1.19 0.97

Table 3.8: Observed speedup computed using total CPU times .

The evaluation of the space-mapping function converges to the desired inner
tolerance 𝜖 = 1 ⋅ 10 in all cases. The low fidelity model is therefore more flexible
or equally flexible when compared to the high fidelity model in the region of interest.
The space-mapping function is therefore either injective or bijective and the ASM
algorithm converges to the high fidelity solution. To study the sensitivity of the
speedup with respect to the inner tolerance we plot the speedup versus the inner
tolerance for a number of outer tolerances, see Figure 3.18a. From the figure it
becomes clear that 𝜖 ≤ 𝜖 is a safe choice for the inner tolerance. Choosing a larger
inner tolerance has a direct negative consequence on the speedup of the simulation.
The speedup is plotted versus the freestream Mach number 𝑀 in Figure 3.18b.
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The speedup increases with the freestream Mach number since the low fidelity fluid
model becomes more accurate for 𝑀 > 1.6 while the computational cost of the
model remains constant. However for 𝑀 > 𝑀cr, the low fidelity and high fidelity
model responses are not similar anymore since the low fidelity model starts to flutter
at a slight different freestream Mach number than the critical speed 𝑀cr of the high
fidelity model. This results in a decrease of the speedup. However, the speedup is
found to be larger than one for all Mach numbers considered, indicating that the
ASM algorithm is robust.

3.4. 1D flexible tube problem
In this section we apply the space-mapping algorithms on the fluid-structure in-
teraction between an incompressible flow in a flexible tube and a massless elastic
tube wall. This test case is described in detail in [11, 12]. Figure 3.19 shows the
conceptual and computational domain of the flexible tube problem.

dvout

dt
=

1

cρ f

dp

dt

L

ii −1 i+1

∆x

i = 1 i = 2 i = Nv

x

rvin

Figure 3.19: The conceptual (top) and computational domain (bottom) of the 1D flexible tube problem.

3.4.1. Structure model
The cross-sectional area 𝑎 = 𝜋𝑟 and the pressure 𝑝 in the tube are related by

𝑎 = 𝑎 (
− 𝑐

− 𝑐
) , (3.42)

where 𝜌 is the fluid density and 𝑝 and 𝑎 are the initial pressure and initial cross-
sectional area respectively. The Moens-Korteweg wave speed is given by

𝑐 = √
𝐸ℎ
2𝜌 𝑟 , (3.43)
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where 𝐸 denotes the Young’s modulus and ℎ and 𝑟 are the wall thickness and
initial radius of the tube.

3.4.2. Fluid model
The fluid is considered an incompressible Newtonian fluid. Conservation of mass
and momentum yield

𝜕𝑎
𝜕𝑡 +

𝜕𝑎𝑣
𝜕𝑥 = 0, (3.44)

𝜕𝑎𝑣
𝜕𝑡 +

𝜕𝑎𝑣
𝜕𝑥 + 1

𝜌 (𝜕𝑎𝑝𝜕𝑥 − 𝑝𝜕𝑎𝜕𝑥) = 0, (3.45)

which are the continuity equation and the Navier-Stokes equation in conservative
form. Here, 𝑥 denotes the coordinate along the axis of the tube. The velocity along
the axis of the tube is denoted by 𝑣 and 𝑝 denotes the fluid pressure in the tube.
A finite volume discretization of Eq. (3.44) and Eq. (3.45) yield

Δ𝑥
Δ𝑡 (𝑎 − 𝑎 ) + 𝑣 / 𝑎 / − 𝑣 / 𝑎 / (3.46)

− 𝛼𝜌 (𝑝 − 2𝑝 + 𝑝 ) = 0,

Δ𝑥
Δ𝑡 (𝑣 𝑎 − 𝑣 𝑎 ) + 𝑣 𝑣 / 𝑎 / − 𝑣 𝑣 / 𝑎 / (3.47)

1
2𝜌 (𝑎 / (𝑝 − 𝑝 ) + 𝑎 / (𝑝 − 𝑝 )) = 0,

with 𝛼 = 𝑎 /(𝑣 + Δ𝑥/Δ𝑡) a pressure stabilization term. The inlet velocity

𝑣 = 𝑣 + 𝑣
10 sin (𝜋𝑛𝜏) with 𝜏 = 𝑣 Δ𝑡

𝐿 , (3.48)

where 𝑛 is the current time level.

3.4.3. Space mapping function
The low fidelity model can be constructed using a coarser space discretization than
the high fidelity model. For the low fidelity model we use 𝑁 = 𝑁 with Δ𝑥 = 𝐻
while for the high fidelity model we use 𝑁 = 𝑁 with a smaller Δ𝑥 = ℎ. We then
have 𝐳 ∈ ℝ and 𝐱 ∈ ℝ with 𝑁 < 𝑁 . The space mapping function can be
chosen as

𝒫(𝐱) = 𝐼 ⋅ argmin
𝐳
||ℛ̃(𝐳) − 𝐼 ⋅ ℛ(𝐱)||, (3.49)

where the prolongation operator is denoted by 𝐼 ∶ ℝ → ℝ and the restriction
operator by 𝐼 ∶ ℝ → ℝ . Although the space mapping function in Eq. (3.49)
is a perfect mapping the function is surjective in the region of interest since high
frequency components in the fine model residual ℛ are filtered out by the restriction
operator 𝐼 such that it happens that 𝒫(�̂�) = 𝐳∗ with �̂� close but not identical
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to the fine model solution 𝐱∗. The high frequency components of the error 𝜖 =
||�̂� − 𝐱∗|| cannot be removed by the ASM algorithm as a consequence. It was
shown in [13] that standard subiteration provides a good smoother for multi-grid
methods. A decision criterium to switch to the smoothing algorithm during the
coupling iterations is proposed in [14] where a similar problem was observed with
the use of multi-level acceleration and Quasi-Newton acceleration for partitioned
strongly coupled fluid-structure interaction. The idea is to split the high fidelity
model residual in a part corresponding to the coarse grid and a part corresponding
to the fine grid

ℛ = ℛ + 𝜹 , (3.50)

with ℛ = 𝐼 ⋅ 𝐼 ⋅ ℛ and 𝜹 the high frequency components of the residual. When
performing space mapping iterations we have ℛ → 𝟎, while ℛ → 𝜹 and 𝐱 → �̂�
with �̂� ≠ 𝐱∗. When this happens we switch to the smoothing algorithm, e.g. Gauss-
Seidel or Quasi-Newton iterations in order to remove high frequency components
of the error. The decision to switch to the smoothing algorithm is then based on

𝐷 = ||ℛ ||
||𝜹 || =

||ℛ ||
||ℛ − ℛ || , (3.51)

which measures the ratio between the coarse and high frequency components of
the fine model residual. When 𝐷 = 1 the coarse residual and high frequency com-
ponents are of the same order. When 𝐷 ≤ 1 it is not useful anymore to continue
the ASM algorithm, making it is necessary to smooth the error with the smoothing
algorithm.

3.4.4. Numerical experiments
The physical parameters of this test case are collected in table 3.9. The high fidelity
model consists of a finite volume discretization with 250 cells and the low fidelity
model discretization uses 80 cells.

Description symbol value
Constant fluid density 𝜌 1
Youngs modulus 𝐸 1

Tube wall thickness ℎ √
Tube length 𝐿 1

Table 3.9: Physical parameters

Other numerical parameters are collected in table 3.10.
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Description symbol value
Initial fluid velocity 𝑣 0
Initial fluid pressure p 0
Switch criterion 𝐷 1

Finite Volumes (course/fine) 𝑁 80 ∪ 250
Number of time steps 𝑁 400

Time step Δ𝑡 𝑃/𝑁
Outer tolerance 𝜖 1 ⋅ 10
Inner tolerance 𝜖 1 ⋅ 10

Table 3.10: Initial conditions and numerical parameters

In order to demonstrate the effectiveness of space mapping when small time
steps are used we choose 400 time steps per period using a simple backward Euler
time-integration scheme. The tube area as a function of time at the locations 𝑥 = 0,
𝑥 = 1/4, 𝑥 = 3/4 and 𝑥 = 1 is given in Figure 3.20a. As can be seen the area of the
tube changes gradually with the inlet velocity of the tube. The maximum theoretical
speedup of the ASM-ILS algorithm - the speedup that would be achieved if the cost
of evaluating the low fidelity model would be zero - is plotted in Figure 3.20b. The
maximum theoretical speedup is larger than 1 for all time steps of the simulation
which means that solving 𝒫(𝐱) − 𝐳∗ indeed results in a root-finding problem which
can be solved faster. The actual coarse model work is however not negligible in this
particular test case since there is no exterior domain and the test case is only 1-D.
In order to demonstrate the sensitivity of the speedup with respect to the coarse to
fine work ratio, Figure 3.21a and Figure 3.21b show the estimated speedup if the
coarse to fine work ratio would have been in the order of a few percent.

Figure 3.22a and Figure 3.22b show the decision value 𝐷 and the residual con-
vergence plot at time step 𝑛 = 3. In this particular time step it can be seen that
it is necessary to switch to the QN-ILS algorithm after 7 iterations. A jump of the
residual norm is present in the ASM-ILS algorithm directly after switching but the
ASM-ILS algorithm still converges faster than the QN-ILS algorithm. Figure 3.23a
and Figure 3.23b show the same plots for time step 𝑛 = 200. It can be seen that
it is not necessary to switch in this case since the ASM-ILS algorithm converges to
the high fidelity solution.
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Figure 3.20: (a) Tube area as a function of time, / . (b) Maximum theoretical speedup.
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Figure 3.21: (a) Estimated speedup per time step. (b) Average work ratio per time step.
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Figure 3.22: (a) D value of the ASM-ILS algorithm at time n = 3. (b) Interface residual convergence at
time n = 3.
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Figure 3.23: (a) D value of the ASM-ILS algorithm at time n = 200. (b) Interface residual convergence
at time n = 200.

3.5. Conclusions
Space-mapping is a general multi-fidelity technique that can be applied to a wide
variety of engineering problems. The purpose of this contribution is:

1. To provide a framework for the application of the space-mapping technique
to partitioned FSI problems in order to speed up high fidelity simulations.

2. To demonstrate the application of the Aggressive Space-Mapping technique
to various academic fluid-structure interaction problems.

Aggressive Space-Mapping has been successfully applied to three academic
fluid-structure interaction problems of increasing complexity in order to speed up
the partitioned algorithm. This is achieved by the definition of a space-mapping
function on the FSI interface together with a proper way of constructing the space-
mapping Jacobian using input/output information. For the test cases under consid-
eration we found that:

1. The estimated and observed speedup of the Aggressive Space-Mapping algo-
rithm with respect to the Quasi-Newton algorithm is larger than 1 for most
test cases considered.

2. The influence of the time step on the achieved speedup is large compared to
other parameters. When compressible flows are studied the speedup is close
to 1 for small time steps while for larger time steps the speedup can rise to
1.5. For incompressible flows the fluid-structure interaction is much stronger
and for this reason higher speedups can be obtained.

The space-mapping framework allows for the design of new coupling algorithms
that – using the information of simplified fluid models – can significantly speed up
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partitioned strongly coupled FSI simulations. Off the shelf solvers can be reused
since the space-mapping technique is solely based on the use of input/output infor-
mation. This makes the framework especially useful in an industrial environment.
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4
High-dimensional

meta-models for uncertainty
quantification

This chapter contains a short note on high-dimensional meta-models and the prob-
lems that occur when a large number of dimensions are considered. A theoretical
speedup can be obtained when gradients are included in the construction of a meta-
model. This is the subject of section 4.1. In Section 4.2 we define a meta-modeling
technique and in Section 4.3 it is shown how gradient information can be used to
improve the meta-modeling performance. A performance metric is then developed
in Section 4.4 including a theoretical result of the improved performance. This met-
ric is then used in Chapter 5 and Chapter 6 to assess whether the theoretical result
is found in practice.

4.1. Theoretical speedup
Building high-dimensional metamodels of expensive computational codes is neces-
sary for efficient optimization and uncertainty quantification [1]. However the com-
putational cost of sampling parameter spaces scales exponentially with the number
of parameters 𝑑—the well-known curse of dimensionality. One possibility to miti-
gate this effect in the case of computational codes is to exploit the availability of
adjoint derivatives [2]. A (complete) adjoint of a code can provide derivatives of a
scalar code output (e.g. aerodynamic drag, 𝐶 ) with respect to an arbitrary num-
ber of input parameters at a fixed cost; usually approximately the same cost as a
single run of the original code. Assuming each derivative is as informative to the
surrogate as the code output itself, we obtain 𝑑+1 scalar data at a cost of ≈ 2 code
runs, and should expect a speed-up compared to sampling without derivatives by
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a factor of [3]:

𝑆 ≈ 1
2(1 + 𝑑). (4.1)

That is, for a given level of metamodel error, the number of required runs would be
reduced with a factor 𝑆 by using adjoint derivatives. As a result the use of gradient
information has been indicated as a promising approach in a recent metamodelling
review for optimization [1], and uncertainty quantification [4, 5].

However the theoretical performance of Eq. (4.1) is seldom achieved in prac-
tice, and instead it is observed that adding derivative information often degrades
metamodel accuracy [2, 6]. In chapter 5 and 6 it is demonstrated on two simple
numerical cases that the expected performance can be achieved, but only if we
properly account for the inherent noise (or error) in the derivative information.

Numerical noise is an issue in any surrogate modeling approach [7, 8], but
adjoint derivatives in CFD are particularly susceptible to errors [2, 9]. In the case
of continuous adjoints, gradients will only approximate the gradient of the discrete
code. In most discrete RANS adjoints, the turbulence is frozen [2], resulting in
unpredictable errors. Even in the rare and ideal case of a fully exact discrete adjoint,
Giles et al. show [9] that the adjoint gradient may be corrupted by very fine-scale
numerical artifacts in the code output, and thereby not represent the overall trend.
Error estimates do not currently exist for any of these errors.

In this work we model the gradient errors as Gaussian noise, that is: unbiased,
uncorrelated, and of constant standard deviation (in the parameter space). This
standard deviation we obtain from a maximum-likelihood estimation (MLE). Our
noise-model for the error is certainly imperfect. Errors resulting from approximate
adjoints will be biased and correlated. Errors due to the effects in [9] although
uncorrelated, are likely to be biased. We consider our error model an acceptable
compromise between a more complete error-model with many hyperparameters,
and not modelling the error at all.

4.2. Kriging
A Kriging metamodel [10–12] is used in order to investigate these issues. The sta-
tistical foundation of Kriging provides a natural treatment of noise in observations.
In a Bayesian framework, the Kriging predictor is given by [13, 14]:

𝐸(𝐱|𝐲) = 𝝁 + 𝑃𝐻 (𝑅 + 𝐻𝑃𝐻 ) (𝐲 − 𝐻𝝁), (4.2)

with quantity of interest 𝐱, observations 𝐲, drift 𝝁, covariance matrix 𝑃, observation
error covariance matrix 𝑅, and observation matrix 𝐻.
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4.3. Gradient Enhanced Kriging
The extension to the use of derivatives, known as Gradient-Enhanced Kriging (GEK),
is straightforward: The gradient information can be introduced as covariables through
𝐲 and 𝐻 , while the gradient noise is expressed in the error covariance matrix [14,
Eq. 12]:

𝑅 = (𝜖 𝐈 0
0 𝜖∇𝐈

) (4.3)

with 𝜖 the standard deviation of the noise in the objective function, and 𝜖∇ the
standard deviation of the noise in the gradient of the objective function. The GEK
predictor is given by a straightforward extension of (4.2):

𝐸(𝐱|𝐲 ) = 𝝁 + 𝑃 𝐻 (𝑅 + 𝐻 𝑃 𝐻 ) (𝐲 − 𝐻 𝝁 ), (4.4)

which requires a special form of the matrices 𝑅 and 𝑃 , as explained in [14].
GEK has been applied to a range of problems, for example: Rumpfkeil et al.

use [15] a Kriging metamodel with gradient and Hessian information, without ac-
counting for noise; Lockwood and Anitescu use [16] Universal Kriging with gradient
information, without accounting for noise; and Dwight and Han use [6] indirect
GEK, also without accounting for noise.

4.4. Observed speedup
The observed speedup is the speedup 𝑆 obtained by using GEK instead of Kriging.
In order to reach a certain accuracy of the Kriging response surface, we need 𝑁
solves. To estimate the number of required GEK solves 𝑁 , one could assume
that the total amount of required data (1+𝑑)𝑁 = 𝑁 depends on the number of
random variables 𝑑 (i.e. that the gradients are as informative as the values), such
that the speedup becomes:

𝑆 = cost
cost

≈ ( 𝑡
𝑡 + 𝑡 ) (1 + 𝑑) , (4.5)

In practice it holds that 𝑡 ≠ 𝑡 such that the observed speedup based on CPU
time differs from the theoretical speedup in Eq. (4.1). Calculating the gradients
with the adjoint method is usually slightly more expensive than calculation of the
objective function, hence 𝑡 /𝑡 > 1, depending on the problem and the platform
used for the calculations. In order to obtain results that are platform independent
define

𝑆 = 𝑁
𝑁 and 𝜂 =

𝑡 + 𝑡
𝑡 . (4.6)

Testing whether the theoretical speedup in Eq. (4.1) holds now breaks down into
two hypothesis tests:
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1. Are gradients as informative as values for the metamodel?

𝑁
𝑁 = (1 + 𝑑) (4.7)

2. Is the cost of an adjoint solve equal to the cost of a primary solve?

𝑡 + 𝑡
𝑡 = 2 (4.8)

The theoretical speedup is attained if and only if both hypotheses are true. In
practice we test whether they are sufficiently satisfied.
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5
Panel divergence problem

In this chapter, Uncertainty Quantification (UQ) is used to propagate structural un-
certainties – which might arise during e.g. manufacturing or operation – through
a fluid-structure interaction (FSI) problem 1. This requires an UQ method, which
generally suffers from the ’curse of dimensionality’: the uncertainty propagation
becomes increasingly computationally expensive when the number of random vari-
ables increases [1, 2].

The objective of this research is to mitigate the curse of dimensionality by in-
cluding not only values but also adjoint-based gradients in the UQ process. This
is possible when we apply Gradient-Enhanced Kriging (GEK) [3–7], which we will
present as an extension of the perturbation method (also known as 1 order mo-
ment method). We compare the results of Kriging and GEK, and consider both the
estimated and observed speedup.

Our scope of coverage is limited to a number of random variables ranging from
1 to 16. As a second limitation, the current FSI problem exhibits a highly linear
response, such that the effect of adding gradient information (apart from the gra-
dient information in the prior, i.e. the gradient information obtained at the first
evaluation) is only seen when we are interested in very high accuracies.

5.1. Primary problem
Following [8] we consider the interaction of a fluid and a flexible panel of length ℎ
suspended between two rigid walls. See Figure 5.1 for a schematic representation
of the problem setup. The deflection 𝑤(𝑥) of the panel is governed by the Euler-

1This chapter is based on the conference paper: J. H. S. de Baar, T. P. Scholcz, C. V. Verhoosel, R.
P. Dwight, A. H. van Zuijlen and H. Bijl, Efficient uncertainty quantification with gradient-enhanced
kriging: applications in FSI, 6th European Congress on Computational Methods in Applied Sciences and
Engineering, ECCOMAS 2012, Vienna (2012).
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Bernoulli beam equation and boundary conditions:

{
[ ̃( ) ] = −Δ𝑝(𝑥) on Γ ,

𝑤(± ) = (± ) = 0,
(5.1)

where 𝐼 and 𝜈 are the moment of intertia and Poisson’s ratio, respectively. The mod-
ulus of elasticity �̃�(𝑥) is a stationary lognormal random field, parametrized by the
mean 𝜇 , standard deviation 𝜎 , and autocorrelation function 𝜌(𝑥 , 𝑥 ). Note that
the tilde indicates a random variable. The log normal random field �̃�(𝑥) is discretized
into standard Gaussian random variables, �̃� = [̃𝑧 , … ,̃ 𝑧 ], by the Karhunen-Loeve
expansion [9]:

�̃�(𝑥) = 𝐸(𝑥, �̃�) = 𝜇

√1 + 𝑉
∏exp(√𝜁 𝑟 (𝑥)�̃� ), (5.2)

where 𝑉 = . The Karhunen-Loeve eigenvalues 𝜁 and eigenfunctions 𝑟 are

determined numerically, see [9] for details. Interaction with the fluid occurs through
the pressure difference Δ𝑝(𝑥) between the top and the bottom of the plate. The
boundary value problem (5.1) is discretized using the finite element method with
Hermitian shape functions, such that the nodal displacements and rotations are
used as coefficients for the approximate deformation of the panel.

Figure 5.1: Schematic representation of the panel divergence problem

The fluid motion is modeled by the steady linearized potential equation, for
which the horizontal and vertical velocity fields are related to the disturbance po-
tential 𝜙(𝑥, 𝑦) through:

𝑢 = 𝑢 + 𝜕𝜙𝜕𝑥 , 𝑣 = 𝜕𝜙
𝜕𝑦 , (5.3)

with 𝑢 the free stream horizontal velocity. In the subsonic case, i.e. when the
free stream Mach number is smaller than 𝑀 = 1, the disturbance potential field is
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governed by the (primary) elliptic boundary value problem:

⎧
⎪

⎨
⎪
⎩

(1 −𝑀 ) + = 0 in Ω ,
𝜙(𝑥, 𝑦) = 0 on Γ ,
𝑣(𝑥, 𝑦) = 0 on Γ ,
𝑣(𝑥, 𝑦) = 𝑢 on Γ ,

(5.4)

where coupling with the panel is established through the kinematic boundary condi-
tion at the panel surface, Γ . The pressure difference between the top and bottom
of the panel, which serves as the right-hand-side in the boundary value problem
for the panel (5.1), is expressed in terms of the disturbance potential field as:

Δ𝑝 = −𝜌 𝑢 𝜕𝜙
𝜕𝑥 , (5.5)

where 𝜌 is the free stream fluid density. The fluid boundary value problem (5.4)
is discretized using the finite difference method. The finite difference grid is chosen
such that it conforms with the finite element mesh of the panel.

In this contribution we consider the monolithically coupled aeroelasticity prob-
lem, which – using the discretizations mentioned above – results in the system:

𝐊(𝑀 , �̃�)𝐚 = [ 𝐊 (�̃�) 𝐊 (𝑀 )
𝐊 (𝑀 ) 𝐊 (𝑀 ) ] [

𝐚
𝐚 ] = 𝟎, (5.6)

where 𝐚 is the composite vector of fluid and structure degrees of freedom. The
boundary for occurence of aeroelastic divergence, a fluid-structure instability which
can occur at subsonic speeds [8], is related to the presence of nontrivial solutions
for 𝐚, which only exist when the stiffness matrix 𝐊 in (5.6) is singular. With the
smallest in magnitude eigenvalue of the matrix 𝐊 denoted as:

|𝜆 | = |𝜆 |(𝑀 , �̃�), (5.7)

the stability boundary 𝑀div, i.e. the Mach number which separates the stable from
the unstable regime, is governed by:

|𝜆 |(𝑀div, �̃�) = 0. (5.8)

The divergence Mach number is computed using a Newton-Rhapson procedure after
the computation of an initial approximation from a plot of the real and imaginary
parts of 𝜆 , see [8] for details.

5.2. Adjoint problem
The objective of the current work is to investigate the increased efficiency of re-
sponse surface based uncertainty quantification, as a result of including gradient
information. Therefore, we would like to compute the gradients of 𝑀div with re-
spect to the random variables �̃� , in such a way that the relative computational cost
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of obtaining these gradients is independent of the number of random variables.
Presently, we compute the gradients with an adjoint approach.

Differentiating equation (5.8) with respect to the random variable �̃� yields [? ]:

𝑑|𝜆 |
𝑑�̃� = 𝜕|𝜆 |

𝜕𝑀div

𝜕𝑀div

𝜕�̃� + 𝜕|𝜆 |𝜕�̃� = 0 for 𝑖 = 1, ..., 𝑚, (5.9)

such that the gradient of the divergence Mach number is given by:

𝜕𝑀div

𝜕�̃� = −( 𝜕|𝜆 |𝜕𝑀div
) 𝜕|𝜆 |

𝜕�̃� for 𝑖 = 1, ..., 𝑚, (5.10)

where the smallest in magnitude eigenvalue 𝜆 is found by solving:

det|𝐊 − 𝜆𝐈| = 0. (5.11)

The right and left eigenvectors 𝐮 and 𝐯 corresponding to 𝜆 satisfy the system:

(𝐊 − 𝜆 𝐈)𝐮 = 𝟎, (5.12)

and the adjoint system:

(𝐊 − 𝜆 𝐈)𝐯 = 𝟎. (5.13)

Taking the derivative of (5.12) with respect to a parameter 𝜃 we find:

𝜕𝜆
𝜕𝜃 𝐮 = 𝜕𝐊

𝜕𝜃 𝐮 + (𝐊 − 𝜆 𝐈)𝜕𝐮𝜕𝜃 , (5.14)

which we multiply with 𝐯 , such that the second term in (5.14) drops. The eigen-
value gradient with respect to a parameter 𝜃 is now given by:

𝜕𝜆
𝜕𝜃 =

𝐯 𝐊𝐮
𝐯 𝐮 , (5.15)

where 𝜃 is either �̃� or 𝑀div. In (5.15) the matrix gradients
𝐊
̃ are given by:

𝜕�̃�
𝜕�̃� = 𝜕𝐊

𝜕�̃�
𝜕�̃�
𝜕�̃� and

𝜕�̃�
𝜕�̃� = √𝜁 𝑟 (𝑥)𝐸(𝑥, �̃�) for 𝑖 = 1, ..., 𝑚. (5.16)

Since we have to solve the system (5.12) repeatedly to obtain (5.8), whereas we
have to solve the adjoint system (5.13) only once, we expect that for this particular
problem the computational cost of obtaining the gradients is significantly lower than
that of obtaining the value 𝑀div.
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Figure 5.2: Grid convergence of at a random location in a -random variable space

5.3. Verification and error estimation
Figure 5.2 illustrates the second order grid convergence for the raw (i.e. single grid,
unextrapolated) results. However, since the results are in the exponential region
for grids with 4 or more elements on the panel, we use a Richardson extrapolation
based on three grids. The Richardson extrapolation is given by [10]:

𝑀 = 𝑀 + 𝑀 −𝑀
𝑟 − 1 , (5.17)

with 𝑟 = 2 the growth factor of the consecutive grids and [10]:

𝑝 = log (𝑀 −𝑀
𝑀 −𝑀 ) / log(𝑟), (5.18)

the observed rate of convergence. This leads to a fourth order grid convergence,
as illustrated in Figure 5.2. The coarse, medium, and fine grid will have 5, 10, and
20 elements on the panel in the following sections. These grids correspond to 8,
18, and 38 structural degrees of freedom and 416, 1581, and 6161 fluid degrees
of freedom.

5.4. Response surfaces
In this section we will discuss several response surface techniques. Since the re-
sponse of the present problem is fairly linear, the 1 order perturbation method is a
very good starting point for approximating the response. We will use this linear re-
sponse as a prior, which we can update progressively with the results of additional
computations using Kriging or Gradient-Enhanced Kriging (GEK), until we reach a
certain desired accuracy of the response surface.
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Figure 5.3: Flow chart of a Monte Carlo simulation (left-hand side, in green) and the present response
surface technique (right-hand side, in blue). The response surface accuracy is given by the Root Mean
Squared Error (RMSE) (middle, in red)

5.4.1. Response Surface Techniques
In order to introduce the response surface approach, first we would like to briefly
discuss Monte Carlo sampling [11], a widely applied method for Uncertainty Quan-
tification (UQ). The Monte Carlo approach is illustrated in Figure 5.3 on the left-hand
side (green), and consists of the following steps: (1) from the random input variable
space we draw a large number of samples (i.e. realizations, in the present case
10, 000), which are distributed according to the input variable probability density
function (pdf); (2) we run the code for each of these samples; and (3) we post pro-
cess the computed results to obtain the desired statistics of our system. In general,
this approach is considered to be very robust (in the sense that 1. it is applicable
to arbitrary pdf’s and 2. the sample size for a given confidence level is independent
of the dimension of the random variable space) as well as rather costly.

The objective of a response surface technique is to obtain the same statistics at a
lower cost, by reducing the number of code runs. The present approach is illustrated
in Figure 5.3 on the right-hand side (blue), and consists of the following steps: (1)
from the random input variable space we draw a small number of samples, which
are distributed according to the input variable pdf; (2) we run the code for each of
these samples; (3) we develop a response surface which acts as a surrogate of the
code response; (4) from the random input parameter space we now draw a large
number of samples, which are distributed according to the input parameter pdf; (5)
we use the response surface to predict the code response at these inputs; and (6)
we post process the predicted results to obtain the desired statistics of our system.
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The challenge is to develop an efficient response surface technique, which gives
accurate predictions of the code output at a relatively low cost. In this section, we
will introduce several response surface techniques. In Section 5.5 will then consider
the accuracy of the response surfaces by evaluating the Root Mean Squared Error
(RMSE) of the predictions, as indicated in the middle (in red) in Figure 5.3.

5.4.2. Perturbation Method
The 1 order perturbation method approximates the response of the code with
a first order polynomial. To arrive at this polynomial, one computes 𝑀 and it’s
gradients in the center of the random variable space. Because the present response
is fairly linear the perturbation method is quite accurate, in the results section we
will see that the RMSE of the response is in the order of 10 . However, the question
remains how to improve on these results by running the code for a larger number
of samples.

5.4.3. Perturbation-based prior (ppb)
For Kriging, we use a very simple prior 𝝁 by setting it equal to the mean of the
computed results, an approach commonly known as simple Kriging.

Since the problem is fairly linear, our next step is to use the 1 order per-
turbation method as a prior. In this approach, we compute prior values 𝝁 from
the perturbation method, after which we update our predictions progressively with
newly computed results through the Kriging predictor (4.2). Note that we do not
obtain the prior from linear regression, but from the perturbation method.

For Gradient Enhanced Kriging, we use a perturbation-based prior 𝝁 , followed
by progressive updating based on values as well as gradients, this approach can be
considered as a full extension of the perturbation method.

5.5. Numerical experiments
In the previous section we have discussed four different response surface tech-
niques: the Perturbation Method, Kriging (no pbp), Kriging (pbp), and Gradient-
Enhanced Kriging (pbp). In the present section we will compare the RMSE accuracy
of these methods for an increasing number of solves. From (4.5) we expect that
when we increase the number of random variables, GEK (pbp) gives an increasing
speedup when compared to Kriging (pbp). We will compare the observed speedup
with the estimated speedup.

The estimated speedup (4.5) contains the CPU ratio, which we will now deter-
mine empirically. We determine the CPU times requires for a solve with gradients
and a solve without gradients on a 3.4 GHz Intel Pentium 4 processor. This ratio
increases only slightly when we increase the number of random variables, as can
be seen in Figure 5.4. This is an important first result, since now we can compute
the estimated speedup (4.5).

For each number of random variables, we increase the number of solves while
we compute the RMSE accuracy of the response surfaces. This is illustrated for the
case of 8 random variables in Figure 5.5. Note that the perturbation method comes
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Figure 5.5: When we increase the number of solves progressively, the accuracy of the response surfaces
increases

at the cost of roughly 1.2 solves (value and gradients), and that it is not possible
to improve it’s accuracy by adding more solves. However, Kriging (pbp) and GEK
(pbp) emerge as extensions of the Perturbation Method, both improve the accuracy
when we add more solves. As expected, even when we consider the increased cost
of computing the gradients, GEK (pbp) shows to be more efficient. Kriging (pbp)
and GEK (pbp) show typical Kriging convergence: an initial bell shape, followed by
a Monte Carlo like tail, where the cut off accuracy of RMSE ≈ 1 × 10 is probably
due to one of the tolerances in the code (which we have not been able to identify
yet). The dotted horizontal line in Figure 5.5 corresponds to a target accuracy of
RMSE = 3 × 10 . Figure 5.6 shows the computational cost of reaching this target
accuracy for the different response surface methods. This clearly illustrates how
the curse of dimensionality is mitigated.

Finally, we consider the speedup we achieve by using GEK (pbp) instead of Krig-
ing (pbp). The estimated and observed speedup are shown in Figure 5.7. Although
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Figure 5.7: The speedup as a result of using gradient information. Estimate from (4.5)

the observed speedup does increase when we increase the number of random vari-
ables, it is slightly lower than the estimated speedup.

5.6. Conclusions
We apply Kriging and Gradient-Enhanced Kriging (GEK) as response surface tech-
niques for Uncertainty Quantification (UQ) for the fluid structure interaction panel
divergence problem, with up to 16 random variables. The quantity of interest is the
critical Mach number, for which divergence occurs. The random variables originate
from a random field discretization of the Young’s modulus of the panel.
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When we consider a certain target accuracy of the response surface, the speedup
of GEK as compared to Kriging increases when we increase the number of random
variables. This is the case for the estimated as well as for the observed speedup.
However, the observed speedup is slightly lower than estimated.

From these results, we are motivated to continue the development of GEK as an
efficient tool for UQ of systems with a large number of random variables, for which
gradient information is available at reasonable cost.
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6
FFAST airfoil problem

In this chapter, steady transonic flow over the FFAST (Future Fast Aeroelastic Sim-
ulation Technologies) airfoil [1, p. 110] subject to stochastic shape deformations is
studied 1. The onflow conditions are Mach number 𝑀 = 0.8 and angle of attack
𝛼 = 1.25 degrees. The flow domain is circular with a radius of 150 chord-lengths,
see Figure 6.1a.

Ω

Γ∞

150c

nΓ∞

nS

S

(a) Schematic of the flow domain.

δSnS(x)

x

y

x

(b) Airfoil and shape deformation.

Figure 6.1: Schematic of the physical problem

The computational flow domain is denoted by Ω with the outward normals 𝐧
and 𝐧 on the airfoil surface 𝑆 and far-field boundary Γ respectively. The airfoil
domain is given in figure 6.1b. A shape deformation 𝛿𝑆 at coordinate 𝐱 on the airfoil
is applied in the direction normal to the surface 𝐧 (𝐱).

1This chapter is based on the journal paper: J.H.S. de Baar, T.P. Scholcz, R.P. Dwight and H. Bijl,
Exploiting Adjoint Derivatives in High-Dimensional Metamodels, AIAA Journal 53, 5 (2015).
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6.1. Shape parameterization

Small variations of the geometry may result in significant changes of the airfoil drag.
The smooth fourier-like shape functions 𝑓 (⋅) for 𝑖 ∈ {1, … , } are defined by

�̄� = 𝑥 − 𝑐
1 − 2𝑐 , 𝑥 ∈ [𝑐 , 1 − 𝑐 ]

𝑓 (𝑥) = sin(𝜋�̄�)sin(𝑖𝜋�̄�)𝑖 , (6.1)

where 𝑐 = 0.15 is chosen to exclude the leading and trailing edges from deforma-
tion. The surface normals are approximated using 𝐧 = [0 1] and 𝐧 = [0 − 1]
on the suction- and pressure-side respectively. A plot of the shape functions 𝑓 (⋅)
for 𝑑 = 32 is given in Figure 6.2. The shape deformations on the suction- and
pressure-side of the airfoil are respectively:

Δ𝑦suction(𝑥) =∑𝜉suction𝑓 (𝑥),

Δ𝑦pressure(𝑥) = −∑𝜉pressure𝑓 (𝑥), (6.2)

with 𝑑 the total number of shape parameters, and 𝜉 are independent identically-
distributed truncated Gaussian random variables with 𝜇 = 0 and 𝜎 = 0.005 trun-
cated to the interval 𝜉 ∈ [−0.0125, 0.0125].
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Figure 6.2: Shape functions for

6.2. Primary problem
This section contains a detailed description of the primary flow problem. To obtain
sensitivities, adjoint equations are formulated from the equations describing the
primary equations in Section 6.3. The solution of the primary problem together the
adjoint problem enables the determination of the gradients which are subsequently
used to obtain the Gradient-Enhanced Kriging meta-model.

6.2.1. Theory
Stanford’s CFD solver SU [2] is used to calculate the aerodynamic drag. The flow
is described by the two-dimensional Euler equations of gas-dynamics with solid
wall boundary conditions on the airfoil surface and appropriate characteristic-based
far-field boundary conditions on the outer edges of the domain:

{
𝐑(𝐔) = ∇ ⋅ 𝐅 = 0 in Ω,
𝐯 ⋅ 𝐧 = 0 on 𝑆,
𝐔 = 𝐔 on Γ ,

(6.3)

where the state variables are assembled in the vector 𝐔 and 𝐯:

𝐔 =
⎡
⎢
⎢
⎣

𝜌
𝜌𝑢
𝜌𝑣
𝜌𝐸

⎤
⎥
⎥
⎦

and 𝐯 = [ 𝑢𝑣 ] . (6.4)
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The flux vector 𝐅 in Eq. (6.3) is given by

𝐅 = [
𝜌𝐯

𝜌𝐯⊗ 𝐯 + 𝐈𝑝
𝜌𝐻𝐯

] , (6.5)

where the stagnation enthalpy is given by 𝐻 = 𝐸 + and the symbol ⊗ denotes
the tensor product. The perfect gas assumption closes the system of equations in
Eq. (6.3) using

𝑝 = (𝛾 − 1)𝜌 [𝐸 − 12(𝐯 ⋅ 𝐯)] . (6.6)

The Euler equations are discretized with an finite volumemethod on an unstructured
grid. SU is an edge-based solver and the JST scheme is selected for stabilization,
see [2]. Artificial dissipation is computed using the differences in the undivided
Laplacians and the conserved variables between the nodes on either end of the
current edge, see [3, 4]. A pressure switch is used for triggering lower-order dissi-
pation in the vicinity of shock waves. The airfoil drag is calculated using the surface
integral

𝐶 = ∫ 𝐝 ⋅ (𝑝𝐧𝐒)𝑑𝑠 with 𝐝 = ( 1
𝜌 𝑉 𝑐

) (cos(𝛼), sin(𝛼)) . (6.7)

For the deformed airfoils, the grid deformation follows a spring analogy [3]. The
baseline geometry of the FFAST airfoil has a drag coefficient of 𝐶 ≈ 0.0263 at
𝛼 = 1.25 degrees and Mach = 0.8, the corresponding pressure field is shown in Fig-
ure 6.3b. The FFAST results are compared to the results obtained using a NACA0012
airfoil geometry. The baseline geometry of the NACA0012 airfoil has a drag coeffi-
cient of 𝐶 ≈ 0.0226 for the same flow conditions, the corresponding pressure field
is shown in Figure 6.3a.

(a) NACA0012 airfoil (b) FFAST airfoil

Figure 6.3: Baseline geometry pressure fields at . degrees and Mach = 0.8.

In transonic airfoil design, the surface thickness of the pressure-side near the
leading edge is often reduced in order to provide lift and positive pitching moment.
This comes at the expense of the presence of a weak shock on the pressure-side,
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as can be seen on the FFAST airfoil in Figure 6.3b. This ”pressure-side shock” is not
present on the symmetric NACA0012 airfoil, as can be seen in Figure 6.3a. Small
variations of the airfoil geometry can have a large influence on the shock strength
and therefore on the airfoil drag. The continuous adjoint method is used to quantify
the sensitivities of the drag with respect to small variations of the geometry. The
continuous adjoint method is chosen since it is available in the SU code.

6.3. Continuous adjoint problem
The gradients of the drag with respect to the shape function parameters can be
computed using the continuous adjoint method. The continuous adjoint method
requires careful derivation of the adjoint equations in continuous form. The sys-
tem is subsequently discretized and solved for the adjoint variables. The gradients
are then obtained from surface integrals of adjoint variables on the airfoil surface.
This section gives the theoretical development in Section 6.3.1 and some points of
attention with the practical use of the method in Section 6.3.2.

6.3.1. Theory
The flow variables are constrained to satisfy the residual equations 𝐑(𝐔) = 0. The
airfoil drag can therefore be written as

𝐶 = ∫ 𝐝 ⋅ (𝑝𝐧𝐒)𝑑𝑠 + ∫ 𝚿 𝐑(𝐔)𝑑Ω, (6.8)

where the adjoint variables are assembled in the vector 𝚿 and 𝝓:

𝚿 =
⎡
⎢
⎢
⎢
⎣

𝜓
𝜓
𝜓
𝜓

⎤
⎥
⎥
⎥
⎦

and 𝝓 = [ 𝜓𝜓 ] . (6.9)

The first variation in airfoil drag 𝛿𝐶 due to a surface deformation 𝛿𝑆 is given by

𝛿𝐶 = ∫(𝐝 ⋅ ∇𝑝)𝛿𝑆𝑑𝑠 + ∫(𝐝 ⋅ 𝐧 )𝛿𝑝𝑑𝑠 + ∫ 𝚿 𝛿𝐑(𝐔)𝑑Ω, (6.10)

which takes the variation in flow equations (𝛿𝐑, 𝛿𝑝) into account, see [3]. With
𝛿𝐑 = ∇ ⋅ 𝛿𝐅 and 𝛿𝐅 = 𝐅

𝐔𝛿𝐔 this becomes

𝛿𝐶 = ∫(𝐝 ⋅ ∇𝑝)𝛿𝑆𝑑𝑠 + ∫(𝐝 ⋅ 𝐧 )𝛿𝑝𝑑𝑠 + ∫ 𝚿 ∇ ⋅ 𝐀𝛿𝐔𝑑Ω, (6.11)

where the Jacobian of the flux vector is defined by 𝐀 = 𝐅
𝐔 . Using the product rule,

Eq. (6.11) is expanded

𝛿𝐶 = ∫(𝐝⋅∇𝑝)𝛿𝑆𝑑𝑠+∫(𝐝⋅𝐧 )𝛿𝑝𝑑𝑠+∫ ∇⋅[𝚿 𝐀𝛿𝐔] 𝑑Ω−∫ ∇𝚿 ⋅𝐀𝛿𝐔𝑑Ω. (6.12)



..

6

90 6. FFAST airfoil problem

Applying the divergence theorem to the third term in Eq. (6.12) to obtain

∫ ∇ ⋅ [𝚿 𝐀𝛿𝐔] 𝑑Ω = ∫ 𝚿 𝐀 ⋅ 𝐧 𝛿𝐔𝑑𝑠 + ∫ 𝚿 𝐀 ⋅ 𝐧 𝛿𝐔𝑑𝑠 (6.13)

= ∫(𝛿𝐯 ⋅ 𝐧 )(𝜌𝜓 + 𝜌𝐯 ⋅ 𝝓 + 𝜌𝐻𝜓 )𝑑𝑠

+ ∫[𝐧 ⋅ 𝝓 + 𝜓 (𝐯 ⋅ 𝐧 )]𝛿𝑝𝑑𝑠, (6.14)

which is only true if the far-field boundary conditions are chosen in such a way that
the second term in Eq. (6.13) vanishes.

𝛿𝐶 = ∫[𝐝⋅𝐧 −𝐧 ⋅𝝓−𝜓 (𝐯⋅𝐧 )]𝛿𝑝𝑑𝑠+∫[𝐝⋅∇𝑝+𝜕 𝐯⋅𝐧 𝜗+∇ ⋅𝐯𝜗]𝛿𝑆𝑑𝑠, (6.15)

where 𝜗 = 𝜌𝜓 + 𝜌𝐯 ⋅ 𝝓 + 𝜌𝐻𝜓 . The adjoint equations are given by

{
𝐀 ⋅ ∇𝚿 = 𝟎 in Ω
𝐧 ⋅ 𝝓 = 𝐝 ⋅ 𝐧 − 𝜓 (𝐯 ⋅ 𝐧 ) on 𝑆
𝐧 ⋅ 𝐀 𝚿 = 𝟎 on Γ .

(6.16)

Note that the partial differential equation in Eq. (6.16) is chosen such that the last
volume integral in Eq. (6.12) is equal to zero. The solid wall and far-field boundary
conditions in Eq. (6.16) are chosen such that the first term in Eq.(6.15) and the
second term in Eq. (6.13) vanishes.

When the adjoint equations are satisfied, the surface sensitivity is given by

𝛿𝐶 = ∫[𝐝 ⋅ ∇𝑝 + 𝜕 𝐯 ⋅ 𝐧 𝜗 + ∇ ⋅ 𝐯𝜗]𝛿𝑆𝑑𝑠 (6.17)

= ∫[𝐝 ⋅ ∇𝑝 + (∇ ⋅ 𝐯)𝜗 + 𝐯 ⋅ ∇𝜗]𝛿𝑆𝑑𝑠. (6.18)

The sensitivities with respect to the random variables 𝜉 are found by substituting
𝛿𝑆 = 𝜉 𝛿𝑓 + 𝛿𝜉 𝑓 with 𝛿𝑓 = 0 and 𝑑𝑠 = 𝑑𝑥 in Eq. (6.18) to obtain

𝜕𝐶
𝜕𝜉 = ∫[𝐝 ⋅ ∇𝑝 + (∇ ⋅ 𝐯)𝜗 + 𝐯 ⋅ ∇𝜗]𝑓 𝑑𝑥 for 𝑖 ∈ [1, ..., 𝑑2 ] , (6.19)

which should be evaluated for the shape functions at the suction and pressure side
of the airfoil. The partial derivative notation is valid in the limit for small variations
𝛿 → 0. From Eq. (6.19) it becomes clear that only a single adjoint solve is required
to obtain all random variable derivatives of interest.
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(a) NACA0012 airfoil (b) FFAST airfoil

Figure 6.4: Adjoint field at . degrees and Mach = 0.8.

(a) NACA0012 airfoil (b) FFAST airfoil

Figure 6.5: Adjoint field at . degrees and Mach = 0.8.

(a) NACA0012 airfoil (b) FFAST airfoil

Figure 6.6: Adjoint field ||𝝓|| at . degrees and Mach = 0.8.

The adjoint fields 𝜓 , 𝜓 and the 𝐿 -norm of 𝝓 of the NACA0012 and FFAST
airfoil are given in Figure 6.4, 6.5 and 6.6 respectively. Assessing the continuous
adjoint solution offers physical insight into the problem. For example, a bump is
present in the adjoint fields 𝜓 , 𝜓 and ||𝝓|| at the location of the shock on the
pressure-side of the FFAST airfoil. This bump contributes to the sensitivity integral
in Eq. (6.19) via the adjoint variable 𝜗 = 𝜌𝜓 + 𝜌𝐯 ⋅ 𝝓 + 𝜌𝐻𝜓 . From a physical
point of view it is known that an increase of the airfoil thickness at this location
results in an increase of the shock strength on the pressure-side. The drag of the
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FFAST airfoil is therefore relatively sensitive to small variations of the pressure-side
geometry near the leading edge.

6.3.2. Points of attention
The adjoint equations may suffer from stability issues due to local instability near
sonic or stagnation points. A modified JST-type scheme is used on the adjoint
variables in order to restore stability. The limiter is constructed by applying the
Venkatakrishnan limiter to the adjoint density variable. In regions of high variability
of the adjoint density variable additional artificial diffusion is added in order to
stabilize the scheme.

The continuous adjoint approach assumes a continuously differentiable design
surface. Sharp corners or edges which are inherently present in realistic geometries
do not belong to this category. The local surface normal is not well defined in the
vicinity of corners and edges leading to wrong estimates of the gradient. The
solution is to exclude sharp corners and edges from the design surface such that
they remain fixed in space. For example, by choosing 𝑐 = 0.15 the leading edge
and sharp trailing edge of the FFAST airfoil are excluded from the design surface.

Two major points of attention of the continuous adjoint method that are often
mentioned in literature (see, [5]) are

1. Differentiation of equations followed by discretization leads to an inconsis-
tency between the computed gradient and the discrete implementation.

2. Boundary conditions for the adjoint variables are sometimes difficult to define
due to the lack of physical interpretation of the adjoint variables.

The first problem should not be a problem when consistent discretizations are used
such that the primary and adjoint solution converge. Verification of the code using
a grid convergence study and finite difference checks of the adjoint gradients are
therefore critical for the success of the continuous adjoint method. The second
problem can be avoided by careful derivation of boundary conditions that naturally
arise from the derivation of the adjoint system. The straightforward mathematical
derivation of adjoint boundary conditions makes a physical interpretation obsolete.

6.4. Verification and error estimation
Both the primary implementation and the adjoint implementation need to be verified
before reliable results are obtained. The primary implementation and adjoint imple-
mentation are verified in Section 6.4.1 and Section 6.4.2 respectively. In addition,
noise that results from varying input parameters is estimated in Section 6.4.3.

6.4.1. Primary problem
In this section, a grid convergence study is presented for the matrix of test cases
(NACA0012 & FFAST airfoil) × (𝛼 = 0 & 𝛼 = 1.25). The only difference between
the NACA0012 and the FFAST test case is the airfoil geometry.

A fine, medium and coarse unstructured grid are generated using the grid gener-
ator Gridgen, see table 6.1. The anisotropic meshing algorithm based on a surface
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Mesh level Name Type Number of vertices (𝑁 = 𝑁 )
0 ”Continuum” unstructured 200.000
1 Fine unstructured 50000
2 Medium unstructured 20000
3 Coarse unstructured 5000

Table 6.1: Overview of the grids used in the mesh refinement study.

deformation technique is used to construct the mesh of the lower- and upper-half
of the flow domain, see [6]. The meshes of the NACA0012 airfoil case are sym-
metric about the horizontal axis. In this way, a non-lifting solution at zero degrees
angle-of-attack is permitted, see Figure 6.7a . Define the effective grid refinement
ratio as

𝑟 = √𝑁𝑣𝑁𝑣 , (6.20)

where 𝑁𝑣 and 𝑁𝑣 are the number of vertices of mesh level 𝑖 and 𝑗 respectively.
The root in Eq. (6.20) is applied because the problem is two-dimensional.

(a) Medium grid, NACA0012 airfoil (b) Medium grid, FFAST airfoil

Let 𝑓 and 𝑓 denote the the Quantity of Interest computed at mesh level 𝑖 and
𝑗 respectively. The difference function is then defined by

𝜖 = 𝑓 − 𝑓 . (6.21)

The order of convergence 𝑝 can then be computed by solving
𝜖

𝑟 − 1 = 𝑟 [ 𝜖
𝑟 − 1] , (6.22)

for 𝑝, see [7]. The Richardson extrapolated solution value is then obtained from

𝑓∗ = 𝑓 − 𝜖
𝑟 − 1. (6.23)

The Grid Convergence Index is given by

GCI = 𝐹 (|
𝜖
𝑓 | /(𝑟 − 1)) × 100, (6.24)
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where the factor of safety is taken as 𝐹 = 3 which is a recommended value in [7].
The safety factor takes into account the uncertainty associated with non-asymptotic
solutions.

𝑀 = 0.8 𝛼 = 0.0 𝛼 = 1.25
NACA0012 FFAST NACA0012 FFAST

Coarse mesh 0.0165472328 0.0245940083 0.0304232966 0.0377445552
Medium mesh 0.0099000007 0.0174315033 0.0241053936 0.0286928993
Fine mesh 0.0086249986 0.0161120602 0.0228078869 0.0259552625

Extrapolated: 𝑓∗ 0.0078172817 0.0153155676 0.0219139186 0.0226737524
Continuum 0.0083415160 0.0155171944 0.0225786653 0.0262502614
Observed: 𝑝 2.07 2.13 1.96 1.32
Medium GCI 63.11 36.42 27.27 62.93
Fine GCI 28.09 14.83 11.76 37.93

Table 6.2: Grid convergence results for (NACA0012 & FFAST airfoil) × ( & . ).

The grid convergence results of the test cases are assembled in table 6.2 .
Asymptotic convergence with order 𝑝 is observed from the results of three mesh
levels with grid size 𝑁 = √𝑁 , see Figure 6.7. It is however still uncertain whether
the solutions are actually in the asymptotic regime. Continuum estimates of the
drag are therefore used in order to assess asymptotic convergence. The continuum
estimates of the NACA0012 airfoil are obtained from [8]. The continuum drag is
calculated by taking the mean of the results obtained from the CFD packages FLO82,
OVERFLOW v2.1t, CFL3Dv6, CFL3Dv6 + Vortex on a grid of 16.000.000 vertices.
The mean continuum drag of the NACA0012 airfoil is 𝐶 = 0.0083415160 for 𝛼 = 0
and 𝐶 = 0.0225786653 for 𝛼 = 1.25. The corresponding standard deviations are
𝜎 = 4.197 ⋅ 10 for 𝛼 = 0 and 𝜎 = 1.186 ⋅ 10 for 𝛼 = 1.25. The continuum drag
of the FFAST airfoil is calculated using the continuum mesh of 200.000 vertices as
defined in table 6.1.
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Figure 6.7: Observed order of convergence for (NACA0012 & FFAST airfoil) × ( & . ).

Asymptotic convergence is not observed with respect to the continuum esti-
mates of the drag in table 6.2. Solving for 𝑝 with too much uncertainty in the data
can lead to wrong order estimates. Another negative effect on the order prediction
is the error in the discrete function evaluations. Small errors in the drag due to the
approximate integration of the pressure along the airfoil surface can significantly
change the observed order of accuracy, see [8]. The Richardson extrapolates in
table 6.2 under-predict the continuum estimates of the drag. This indicates that
the true order of convergence is smaller than the observed order of convergence.
CFD studies in [8] demonstrate that for typical CFD solvers actual asymptotic con-
vergence is achieved starting from a mesh of 1.000.000 vertices. The purpose of
the grid convergence study in this section is verification and error estimation and
not accurate order estimation of CFD solvers. A detailed study to the order of con-
vergence of SU is therefore out of scope. The results of table 6.2 demonstrate
convergence and are consistent with the NACA0012 continuum values reported in
the literature. After successful verification, the FFAST test case with 𝛼 = 1.25 on
the medium mesh is chosen for further computations. This test case is of interest
since for 𝛼 = 1.25 the strong shock on the suction side of the airfoil and the rela-
tively weak shock on the pressure side results in strong nonlinear behavior of the
airfoil drag with respect to the shape parameters. It is exactly this behavior that is
interesting from an uncertainty quantification point of view.
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6.4.2. Adjoint problem

For the baseline geometry, the adjoint derivatives are shown in Figure 6.8, for
the coarse, medium and fine grid. The gradients do not show clear monotone grid
convergence, and therefore application of Richardson extrapolation is inappropriate.
Lack of neat grid-convergence behavior is typical for derivatives, and can sometimes
be traced back to specific causes, e.g. shocks moving in relation to grid-lines [9].
Pragmatically we must accept this situation.

−1

0

1
Top: Suction Side

d 
C

D
 / 

d 
ξ i

0 5 10 15
−1

0

1
Bottom: Pressure Side

d 
C

D
 / 

d 
ξ i

Shape Deformation Mode i

 

 

Coarse
Medium
Fine

Figure 6.8: Grid convergence of the gradients.

The adjoint-based gradients are verified using a finite difference check. The
finite difference gradients are computed with a stepsize ℎ = 10 , resulting in a
truncation error of ≈ 10 . Two random shape parameters are used on a set of 40
random samples. The gradient error is defined as

𝑒 = ∇ − ∇ . (6.25)
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Figure 6.9: Spatial dependence of the covariance of the gradient error, for two random shape parameters.
Observed covariance has been binned for different lags.

In Figure 6.9, we verify that the gradient error is spatially uncorrelated. We have
binned the sample pairs by lag (i.e. sample separation distance), and computed the
covariance. The self-covariance of both 𝑒 and 𝑒 is roughly zero for lag > 0 (the
covariance corresponds to 𝜖∇ for lag = 0), while the cross-covariance is roughly
zero for all lags. Therefore, the assumption that the gradient errors are spatially
uncorrelated is verified for this case.

−0.2 −0.1 0 0.1 0.2
0

0.2

0.4

0.6

0.8

1

∇
Adjoint

  −  ∇
FD

C
um

ul
at

iv
e 

F
re

qu
en

cy

 

 

Observed
Gaussian fit

Figure 6.10: Cumulative histogram of the gradient error.
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In Figure 6.10, we verify that the gradient error is normally distributed, with
a standard deviation of ≈ 0.05. Note that this standard deviation is significantly
larger than the truncation error of the finite difference gradients.
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Figure 6.11: Iterative convergence of the residual, associated with the density.

Figure 6.11 illustrates the iterative convergence of the solver for the baseline
design. The tolerance of the residual associated with the density has been set
to 10 . After an initial bump, both the primary and adjoint solve show clear
exponential convergence up to residual tolerance. Although ideally the primary
and adjoint solve should show the same convergence rate, we consider the rates
sufficiently close for code verification purposes.

Summarizing, we verify that the solver residual converges exponentially, there is
sufficient grid convergence, and the gradient errors are uncorrelated and normally
distributed.

6.4.3. Noise estimation

Figure 6.12 shows CFD results when varying a single shape parameter, for a defor-
mation on the pressure side.
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Figure 6.12: Drag coefficient and gradient for a single random shape parameter: note the high level of
noise in the gradients.

We observe minimum of the drag coefficient 𝐶 close to 𝜉 = 0, which corre-
sponds to the baseline geometry; this is because the airfoil has been optimized for
these conditions. Note that the noise in the derivative 𝜕𝐶 /𝜕𝜉 is larger than in 𝐶 .
The noise in both can be estimated within the Kriging framework assuming a certain
smoothness of the true response and unbiased Gaussian noise. In particular we
maximize the log likelihood [10, Eq. 29]:

ln 𝑝(𝜖, 𝜖∇|𝜇, 𝜎, 𝐲) = −ln|𝐴| − (𝐲 − 𝝁) 𝐴 (𝐲 − 𝝁), (6.26)

with gain matrix 𝐴 = 𝑅+𝐻𝑃𝐻 . This maximum likelihood estimate (MLE), illustrated
in Figure 6.13, results in an estimated standard deviation of 𝜖 ≈ 6 × 10 and
𝜖∇ ≈ 5 × 10 in the noise of the drag and drag-derivative respectively.
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Figure 6.13: Joint likelihood of the standard deviation of the noise in the drag coefficient and adjoint-
based gradients.
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Using a GEK metamodel, estimated noise level in derivatives can be specified via
the matrix 𝑅 in (4.2–4.3). The quality of the metamodel depends on this parameter
corresponding to the true level of derivative noise. Figure 6.14 shows the RMS error
of the metamodel for four random shape parameters and 16 samples, as a function
of the specified derivative noise. For zero and very low values the quality of the
metamodel is clearly degraded as noisy data is overfitted. At the other extreme,
when very large data noise is assumed, the GEK predictor effectively ignores the
derivative information and approaches the basic Kriging metamodel. In between
there is a limited range for which an improved metamodel is obtained, the best
metamodel being close to the maximum likelihood estimate of 𝜖∇ ≈ 5 × 10 .

This last four-dimensional result compares well with the standard deviations
found from the finite difference verification in two dimensions and from the MLE in
1 dimension, which is an indication that this value is consistent and can be used for
higher dimensions, as we will assume in the following.
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Figure 6.14: RMS error of Kriging and GEK metamodels as a function of specified derivative noise for
.

6.5. Numerical experiments
We evaluate the quality of the metamodel, which can be quantified by the root
mean squared prediction error:

RMSE = √
1
𝑁 ∑{E(𝐶 , |𝐂 , ∇𝐂 ) − 𝐶 , , } , (6.27)

which is the Monte Carlo approximation [11] of the prediction error:

√∫ 𝑝(𝜉){E(𝐶 |𝐂 , ∇𝐂 ) − 𝐶 , } d𝜉, (6.28)



6.5. Numerical experiments ..

6

101

where 𝑝(𝜉) is the probability distribution of the random shape parameters, E(𝐶 |𝐂 , ∇𝐂 )
is the metamodel prediction conditional on the discrete solver output [𝐂 , ∇𝐂 ], and
𝐶 , are 𝑁 = 1, 000 reference samples. For most dimensions, 1, 000 reference
samples were sufficient to obtain a reliable RMS error. The number of samples
for the design of experiment is typically much lower than the number of reference
samples. The number of Latin- Hypercube Samples for the design of experiment
was taken to be 𝑁LHS = 200 − 400. An overview of the total numerical experiment
is given in Table 6.3.

sampling number
method of samples gradients

1 MC no
1 LHS yes
2 MC no
2 LHS yes
3 MC no
3 LHS yes
4 MC no
4 LHS yes
6 MC no
6 LHS yes
8 MC no
8 LHS yes
12 MC no
12 LHS yes
16 MC no
16 LHS yes
24 MC no
24 LHS yes
32 MC no
32 LHS yes

Table 6.3: An overview of the numerical experiments for each dimension. Reference samples are ob-
tained with Monte Carlo (MC) and Latin- Hypercube Sampling (LHS) is used for the metamodel design
of experiment.

For these numerical experiments, the following quantities are of interest:

• Number of solves required to reach a specified target accuracy (solves to
target)

• Speedup of the RMSE obtained with GEK with respect to Kriging (speedup)

• Speedup of statistics obtained with GEK with respect to Kriging (speedup for
various statistics)

The results are discussed in section 6.5.1 and 6.5.2.
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6.5.1. Solves to Target
Figure 6.15 shows the number of solves required to reach a given target RMS error
of 0.004 in the metamodel, assuming an appropriate value for the derivative error.
The observed CPU ratio for this test case is

𝜂 =
𝑡 + 𝑡

𝑡 ≈ 2.4,

independent from the number of dimensions and sufficiently close to the ideal value
𝜂 = 2. The speedup is therefore computed from the number of solves to target
in order to test if the gradients are as informative as values for the metamodel.
Latin-hypercube sampling (LHS) is used, and the (random) sampling is repeated 50
times to explore sensitivity to the sampling plan. The symbols show the median,
with vertical bars indicating 20% to 80% quantiles.

The curse of dimensionality is observed: when we increase the number of ran-
dom shape parameters, the number of CFD solves increases exponentially, for both
Kriging and GEK. However as expected for higher dimensions, GEK appears increas-
ingly efficient when compared to Kriging.
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Figure 6.15: Number of solves required for a given target RMS error of the metamodel. Median and
% % quantiles with respect to sampling plan.

Recasting these results in terms of speedup of GEK with respect to Kriging, now
for a range of target accuracies:

[0.0050, 0.0047, 0.0044, 0.0041, 0.0038, 0.0035, 0.0032, 0.0029,
0.0026, 0.0023, 0.0020, 0.0017, 0.0014, 0.0011, 0.0008, 0.0005],

Figure 6.16 illustrates that the theoretical result in Eq. (4.1) (grey line) agrees
with the numerical experiment to a remarkable accuracy—but only if a range of
target accuracies, derivative noise, and sampling plan variability are accounted for.
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This supports the hypothesis that derivatives are as informative as values, and the
expected benefits of using derivatives can be attained.
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Figure 6.16: Factor speedup of GEK over Kriging. Solid line: prediction based on the theoretical result
in Eq. (4.1), circles: numerical experiments based on transonic airfoil, dashed line: linear regression fit.

Figure 6.17 illustrates how the speedup depends on the specified gradient noise,
for a single LHS-design with four random shape parameters. The optimum level of
specified gradient noise depends on the particular LHS-design, and would ideally
be found from an adjoint code that provides estimates of gradient error.
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Figure 6.17: Speedup versus specified gradient noise, observed for an individual LHS-design of four
random shape parameters. Median and % % quantiles with respect to target accuracy and
sampling plan.
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6.5.2. Speedup for Various Statistics
In uncertainty propagation, we are often concerned with one or more statistics of
the quantity of interest. Figure 6.18 shows the median speedups for the mean, vari-
ance, and skewness of the drag coefficient—again for a range of target accuracies.
Also, it shows the median speedup for a probability of failure 𝑝 : the probability
that the drag coefficient exceeds a certain operational limit. The operational limit
is chosen such that 𝑝 ≈ 0.2. The observed accuracies are again computed from
𝑁 = 1, 000 reference samples.

Since the speedups for these statistics depend on the form of the response as
well as on the probability distributions of the random shape parameters, we can not
provide a simple predicted speedup in the form of Eq. (4.1). Numerical experiments
show that all statistics show a linear speedup—although the slopes differ.
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Figure 6.18: Speedups for statistics of the drag coefficient, medians with linear regression fit.

6.6. Conclusions
We observe the predicted reduction in the number of samples required to build a
metamodel when using adjoint derivative information. In particular we observe in
numerical experiments a speedup of GEK over Kriging of a factor of 𝑆 = (1 + 𝑑),
for up to 16 shape parameters for a transonic airfoil. Additionally we observe linear
speedups for the mean, variance, skewness, and probability of failure of the drag
coefficient.

An important requirement for the succesful use of gradient information in gen-
eral (and in GEK in particular) has been shown to be the correct specification of
gradient noise. Even in this simple 2d inviscid case moderate gradient noise is
observed, and failing to account for this causes the added gradient information to
degrade the metamodel. While gradient noise can be estimated with a MLE proce-
dure (at the cost of some information in the samples), and while GEK is somewhat
robust to under- or overspecification of gradient noise, there is clearly a need for



References ..

6

105

adjoint codes to provide estimates of gradient error. Methods to achieve this do
not exist presently.
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7
Conclusions and

Recommendations

7.1. Conclusions
The cost and turnaround time of the load calculation cycle in the design process
of aircraft can be reduced by developing new efficient numerical simulation tech-
niques. This leads to a decrease in wind tunnel testing requirements, in-flight
testing requirements and risk of design modifications, amongst others.

To this end, efficient prediction of steady and unsteady force coefficients in the
flight envelope is of utmost importance. Especially load cases due to gust and
manoeuvres are of interest since they determine the most extreme stress levels,
fatigue damage and damage tolerance during the design cycle. This requires time-
accurate analysis of fluid-structure interaction. Uncertainties in flight conditions,
manoeuvres, shape and material properties require furthermore the use of methods
that quantify this uncertainty. Efficient algorithms for high-fidelity simulation of
fluid-structure interaction and uncertainty quantification are therefore desired in
industry.

Multi-fidelity algorithms can be used in order to reduce the computational cost
of fluid-structure interaction simulations and uncertainty quantification methods.
Two important areas of research are:

• Multi-fidelity acceleration of high-fidelity models.

• Multi-fidelity analysis for uncertainty quantification.

This thesis aimed at developing efficient multi-fidelity algorithms for fluid-structure
interaction and uncertainty quantification.
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7.1.1. Multi-fidelity acceleration of high fidelity fluid-structure
interaction

Space-mapping is a general multi-fidelity technique - originating from the field of
multi-fidelity optimization - that can be applied to a wide variety of engineering
problems. In this dissertation it is demonstrated that space-mapping can be ap-
plied in order to accelerate strongly coupled partitioned fluid-structure interaction.
Aggressive Space-Mapping has been successfully applied to three academic fluid-
structure interaction problems of increasing complexity in order to speed up the
partitioned algorithm. The main findings are

• The estimated and observed speedup of the Aggressive Space-Mapping algo-
rithm with respect to the Quasi-Newton algorithm is larger than 1 for most
test cases considered.

• The influence of the time step on the achieved speedup is large compared to
other parameters. In case of compressible flows the speedup can rise to 1.5
for large time-steps . For incompressible flows the fluid-structure interaction
is much stronger and for this reason higher speedups can be obtained.

The space-mapping framework allows for the design of new coupling algorithms
that - using the information of simplified models - can significantly speedup parti-
tioned strongly coupled FSI simulations. Off the shelf solvers can be reused such
that the method is suited for industry.

7.1.2. Multi-fidelity analysis for uncertainty quantification
Gradient-Enhanced Kriging (GEK) is a response surface technique that can be used
for uncertainty quantification. In this thesis, GEK is applied to two academic test
cases in order to assess the speedup with respect to ordinary Kriging as a function
of the number of design variables 𝑑. When the gradients are obtained with the
adjoint method and when it is assumed that the derivative is as informative as
the quantity of interest, a theoretical speedup 𝑆 can be derived as 𝑆 ≈ (1 + 𝑑).
The theoretical speedup is compared to the actual observed speedup for the panel
divergence problem and the FFAST airfoil problem.

Panel divergence problem
The quantity of interest is the critical Mach number, for which panel divergence
occurs. The observed speedup of GEK as compared to Kriging increases with the
number dimensions in the problem. The observed speedup is however lower than
the theoretical prediction. This can be explained by the fact that the quantity of
interest depends only weakly nonlinear on the random parameters in the problem.
In that case, the assumption that the derivatives are as informative as the quantity
of interest does not hold.

FFAST airfoil problem
The quantity of interest is the airfoil drag for the FFAST airfoil at transonic condi-
tions. The speedup of GEK as compared to Kriging agrees well with the theoretical
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speedup 𝑆 = (1 + 𝑑). However, this is only true if the variation of the sam-
pling plan, the derivative noise and the target accuracies are accounted for. The
speedups for the mean, variance, skewness and the probability of failure of the
drag coefficient are observed to be linear. However, no theoretical results for the
slope of these lines are found. An important requirement for the success of GEK is
the correct specification of gradient noise. Failing to account for gradient noise can
degrade the metamodel instead of improving it.

7.2. Recommendations
The following recommendations for future research are proposed:

7.2.1. Different space-mapping strategies
As was pointed out in the introduction, Aggressive Space Mapping is not the only
space-mapping method that exists. Output Space-Mapping and Manifold Mapping
are both promising multi-fidelity coupling strategies. Some research in this direction
has been performed but it is still not clear which method results in the most efficient
and robust coupling algorithm. The comparison of the performance might depend
on the type of low-fidelity model used in the space-mapping algorithm and it is
well possible that the choice of low-fidelity model dictates the best space-mapping
strategy. This is an interesting topic for further research.

7.2.2. Different low-fidelity models in space-mapping
Since space-mapping is a black-box coupling technique any low-fidelity model can
be used in the coupling algorithm. In this dissertation mainly simplified fluid oper-
ators are used or fluid models discretized on coarser grids. Reduced Order Models
(ROMs) using a projection on a reduced basis are not considered in this work. It
would be interesting to start with a reduced basis fluid-structure interaction ROM
for the fluid in the space-mapping algorithm, thereby accelerating the coupling al-
gorithm. After a number of converged high-fidelity fluid-structure interaction time
steps the new high-fidelity time history could be used to train the Reduced Order
Model, i.e. update the ROM basis for the next time interval. This process could
continue until in the end both the high fidelity time-history and the trained ROM are
available on the time interval of interest and it would be cheaper than first comput-
ing the high-fidelity fluid-structure interaction on the time interval and constructing
the Reduced Order Models afterwards.

7.2.3. Performance of GEK on more complex test cases
For the test cases considered in this dissertation, Gradient Enhanced Kriging shows
a speedup with respect to Kriging. In order for GEK to be successful, gradient noise
should be taken into account. The gradient errors are assumed to be independent
and Gaussian with zero mean and the standard deviation resembling the magnitude
of the error. This is not true if the errors are correlated or if the errors contain
a systematic component. This is likely the case when Navier-Stokes solvers are
used which often adopt a frozen turbulence assumption in the adjoint formulation.
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Demonstrating the speedup of GEK on a more complex test case, i.e. Navier-
Stokes on a three-dimensional wing, would therefore be interesting. Furthermore,
including the systematic error in the hyperparameter estimation could improve the
performance of GEK in this case.
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