

P5 Presentation 02/07/2020

positioning & hypothesis a journey of multiple dimensions

cultural geographical flood risk management approach planning approach

hypothesis - turning point

"It is a paradox of modern time that collecting and storing big data to develop artificial intelligence mounts exponentially, while keeping up the evolutionary database for constant education of immunological intelligence is in danger, as humans are increasingly disconnected from natural environments."

Haahtela, 2019

ex-ante positioning

guiding processes of de-territorialization

Geographical positioningNorth Sea Territory

Coastline

 \sim Main water corridors

Topography land surface
Intensity wind
Predominant wave directions
Tidal amplitudes
Areas prone to floodrisk (5m)
Affected ports and cities

Geographical positioning

Dutch Delta

Territorialization - flood risk management

and the definition of protected areas

Source: Adapted from Hooimeijer (2018)

Uncertainty

River discharge at Lobith

Present, Lobith

--- G

-- G+

--- W

--- W +

Planning challenge

Adopting adaptive approaches

TRADITIONAL APPROACH framework vision strategic actions → REGULATORY PLANNING..... DESIGN Challenges Dependency on man-made solutions -> Ground water control maximized for a given extreme condition predict fixed long term vision (hard infrastructure) that cannot (soil drainage systems) diferentiation of protecting and protectcontrol top-down approach cope with uncertainty → Flood control ed spaces exploitation hard infrastructure (dykes, canalizations) Degradation of ecosystems Erosion & Sedimentation control (canalizations, dredging) Vulnerability to extreme natural events for which the system is not designed 90's Transition: - Uncertainty is unavoidable - CC is unavoidable - Theories on CAS --> SE systems able to adapt **ADAPTIVE APPROACH** present framework vision strategic actions DESIGN Challenges Not including cultural adaptation -> space for water dynamics adaptability adaptive long-term vision maximized for a given extreme condition (?) Based on the definition of vulnerable areas spatial quality space for change in the diferentiation of protecting and protected uncertainty rather than active ones. Lack of definition short-term floodplain habitat restoration spaces (?) of the role of occupation within symbiotic open ended (?) framework with nature

Adaptive approach

Room for the River

Adaptive approach

Room for the River

Hypothesis on enhanced connectivity

turning point

In light of climatic extremes

What if we went beyond the operational and physical separation and instead we enhanced a radical connectivity where the entire urbanized river landscape could perform an active role in flood adaptation and ecosyste restoration?

On how and what approach for transformation

macro-framework
city-region spatial transformation
transformation pathways
local spatial transformation

Towards a macro-framework 1. Recognition of the full extension of the floodplain River corridors River Dikes subsoil Bank deposits (sand, clay) Residual channel deposits (clay, peat) Bed deposits (sand, gravel) Peat age of abandonment of former river corridors: 0-2000 yr 2000-4000 yr 4000-6000 yr 6000-8000 yr occupation Urban areas Arable land Pasture land

2. Recognition of productive inhabitable corridors

■ River corridors

age of abandonment of former river corridors:

0-2000 yr 2000-4000 yr 4000-6000 yr 6000-8000 yr

occupation

☐ Urban areas☐ Arable land

3. Recognition of a typology of occupational-geomorphological patterns within the river landscape

3. Recognition of a typology of occupational-geomorphological patterns within the river landscape

3. Recognition of a typology of occupational-geomorphological patterns within the river landscape

3. Recognition of a typology of occupational-geomorphological patterns within the river landscape

4. Recognition of the degree of potential change of the substratum constrained by the level of staticity of occupation and control layers

Functional layers with a specific role during extreme discharges

Functional layers with a specific role during extreme discharges:

Functional layers with a specific role during extreme discharges:

Functional layers with a role during extreme discharges:

Management frequencies as opportunities for ecosystem-based production

Structuring layers

Spatial transformation

City-Region Arnhem-Nijmegen

urban network

- ···· Railway

- Primary roads
 Secondary roads
 Drainage channels
 Dikes

Spatial transformation

Detailing elements of design

urban network

- ··· Railway
- Primary roads
- Secondary roads
- Drainage channels
- Dikes

water network

- ← Main water channels
- Secondary channels
- ··· Main Flood channels
- Main Buffer areas

Spatial transformation

Detailing elements of design

urban network

- ··· Railway
- Primary roads
- Secondary roads
- Drainage channels
- Dikes

water network

- ← Main water channels
- Secondary channels
- ··· Main Flood channels
- Main Buffer areas

green network

- · Riparian corridors
- Agroforestry gradients
- ₩ N2000

Towards the definition of

transformation pathways Recognition of land management units of the transformation

Towards the definition of transformation pathways

2. Recognition of two axes of transformation: increasing ecological densities + increasing buffer capacity

Towards the definition of transformation pathways

3. Recognition of the Open Space Matrix potential for transformation

degree of possible change

Transformation pathways

per functional layer and land use type

36

Source: Adapted from NEXT-EXTREMES (2018-2020)

Lingezengen Park, De Buiten

De Buiten, aerial view

De Buiten, existing planning

Elements of design

De Buiten, process matrix inistration role N CRECENDO pasture 🖺 Buffer areas 30% wet agriculture 🗏 Buffer areas 80% wet DECRECENDO forest 🖄 Buffer areas 30% wet no-use ... Buffer areas dry MAINTAIN discontinuous 0-10% Buffer areas dry

Operability
Reflecting back to
adaptive planning

existing platforms key changes phases

Standing on the shoulder of giants

key changes

		•
1	Fixed number of strategic projects	Open number of local projects easier to expand and manage
2	Local actors as participants of change	Local actors as agents of change cultural appropriation of the transformation
3	Adaptive long term vision but fixed long term design goals	Adaptable long term vision and goals evolutionary expansion and re-design of the network
4	Flood management confined to the area within the dikes protecting the duality between active and passive areas	Flood management integrated throughout the whole watershed overcoming the vulnerability coming from the dualistic approach

From limitation to starting point

Co-defining statutory flood protection standards into statutory robustness standards

2018

from protection standards, insuring protection from flooding to robustness standards, allowing small floods in order to prevent disastrous floods.

2025

Phase 0 - From limitation to starting point

"psychological research on risk perception shows that people value large consequences as much more important than frequency of occurrence" Klijn at al., (2018)

Figure D6 Flood safety standards

Connectivity exploration

Design of macro-framework

Connectivity Co-Assessment

Incentives Program + Assessment & Monitoring Program (SNIP)

Transformation scheme for current pasture land within Green Coridor areas

Local transformation

Regional Transformation:
Blue Corridor
Second channels

Assigned land patches
Transformed land patches
Productive Wetland
Assigned land patches
Transformed land patches
Green Corridor
Assigned land patches
Transformed land patches
Transformed land patches

Operability Regional Transformation: **Blue Corridor** Regional connectivity GC* Second channels Assigned land patches Transformed land patches **Productive Wetland** Assigned land patches Transformed land patches Green Corridor Assigned land patches 15 Transformed land patches Flood channels Timing Actors Role Instruments Q-T Q-TEAM + Assess and monitor transformation ---- + Assessment & Inform central and regional authorities Monitoring Program Mun Prov WB Water authorities + Design of regional network of flood The regional transformation is a cumulative City Region process revised every ·· + Managing regional transformation Arnhem-Nijmegen 5 years starting point 1 month 1-5 years (RWS) (WB) (Delt) Co-defining statutory Connectivity Connectivity Ellaboration of Assessment and Monitoring Program flood protection exploration Co-assessment Incentives Program + Assessing & standards into statutory Monitoring Program robustness standards TERRITORIAL Rivierenland catchment Design of strategic green / blue network

2018

2020

2025

Phase 1 - PKB Exploration Phase

Phase 0 - From limitation to starting point

2030

Phase 2 - PDR Planning study phase

Territorial connectivity

Scalable objectives

Performance

Reflecting back to flood risk management and climate extremes

trends in time
under extreme events
according to river discharge
according to level of implementation

Trends in time

Hydrographs

River hydrograph under extreme events in deforested and forested watersheds Source: The COMET Program

Critical damage

Critical damage refers to the damage caused by disastrous events RP - Restoring Proximities (proposal)

BAU - business as usual

*The lines are a free representation of the author's reflexion on the subject

Climate uncertainty

*The lines are a free representation of the author's reflexion on the subject

Level of forestation

Performance under extreme events

In crecendo

- $\begin{array}{l} \underline{R1:} \text{ overflowing, when the bank-full capacity is surpassed} \\ \underline{R2:} \text{ embankment fragility, arising from heavy flood loads} \\ \underline{R3:} \text{ seepage, arising from underground water movements} \end{array}$

Performance under extreme events

Disruption (I)

- $\underline{R1}$: overflowing, when the bank-full capacity is surpassed $\underline{R2}$: embankment fragility, arising from heavy flood loads $\underline{R3}$: seepage, arising from underground water movements

Disruption (II)

Performance under extreme events

Recovery

Adaptive performance of the network

According to river discharge

Adaptive performance of the network According to level of implementation

Closure

Back to design, planning, flood risk management, climate extremes and culture praxis

Tangible outcomes
Thesis propositions

Tangible outcomes

Tangible outcomes

Tangible outcomes

"The critical question is why urbanized populations respond with inflammation in contact with natural elements such as pollen, food or animals? They seem to be increasingly allergic to nature, the evolutionary home of Homo sapiens"

Haahtela, 2019

