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SUMMARY

As an important carrier of information diffusion, social media has experienced a huge in-
crease in the number of users and also has a big effect on the way of how information dif-
fuses. For example, Facebook and Youtube have attracted more than 1.6 and 1.3 billion users
until 2020, respectively. The use of internet and online social network have largely reduced
the cost of information propagation and sharing. Besides users and content-based features,
social network properties are critical factors that may affect information diffusion. In this the-
sis, we focus on the influence of temporal network properties on information spreading. As
researchers have proved that similar users tend to spread similar content of information, we
further propose how to design network representation learning algorithms to better capture
node similarity in a network.

The first part of the thesis is mainly about how the local properties of nodes and links
would affect information spreading on temporal networks. Chapter 2 studies which links are
likely to appear in an information diffusion trajectory. We simulate the information diffu-
sion process by a susceptible-infected (SI) model on various empirical temporal networks.
An information diffusion backbone is proposed to characterize the probability of a link to
appear in the diffusion trajectory. Due to the high complexity of constructing diffusion back-
bone, we further propose time-scaled weight to identify which links would appear in the
diffusion backbone. Compared to the centrality metrics derived from static networks, time-
scaled weight shows better identification performance. The conclusions in this chapter may
inspire how to maximize information diffusion on temporal networks by deliberately choos-
ing links to transmit information. Chapter 3 investigates which links should be temporally
blocked in order to suppress information diffusion on temporal networks. We rank the links
by different blocking strategies based on the link properties on static and temporal networks,
including the ones derived from information diffusion backbone. We remove the links with
high ranking values based on blocking strategies for a given time period. We show that four
link blocking strategies outperform the others in suppressing information diffusion. The re-
sults show that the effectiveness of the metrics on suppressing information diffusion largely
depends on the network properties. In chapter 4, we study how to identify influential nodes,
i.e., nodes serving as the seed can spread information widely, on temporal networks. The
information diffusion process is simulated by susceptible-infected-recovered (SIR) model on
various empirical temporal networks. We propose a temporal information gathering process
(Tig-process), which can iteratively gather neighboring information though temporal path, to
identify influential nodes. Compared to the benchmark metrics, Tig-process can better iden-
tify influential nodes across different temporal networks with a small cost. The experimental
designs and results in these three chapters further inspire us to study the local surrounding
properties of nodes and links for other spreading processes as well as other types of networks.

In the second part of the thesis, we work on designing network embedding algorithms
to embed nodes to a low-dimensional space, which can make similar nodes be close in the
embedding space. Chapter 5 designs a degree-biased random walk, i.e., DiaRW, to sample
walks from a static network. If the source node of a random walk has higher degree, the
walk length tends to be longer. Also, if a random walker walks to a low-degree node, the
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x SUMMARY

probability of backtracking the former high-degree node is higher. The node pairs generated
from walks are further used as input for a learning model, i.e., Skip-Gram model. We unveil
that DiaRW shows better performance compared to baseline embedding algorithms on tasks,
e.g., link prediction and node classification. Chapter 6 proposes SI-spreading-based network
embedding algorithms. We apply SI model on static and temporal networks to sample tra-
jectories. The node pairs generated from trajectories are also used as input for Skip-Gram
model. We show SI-spreading-based network embedding algorithms perform better than
random-walk-based network embedding algorithms on missing link prediction task. Both of
the two chapters consider node heterogeneity in designing embedding algorithms.

The last chapter proposes insight of the thesis based on the research questions and pro-
vides the possible future directions that is related to our research.
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INTRODUCTION

We should be taught not to
wait for inspiration to start a thing.

Action always generates inspiration.
Inspiration seldom generates action.

Frank Tibolt

Any intelligent fool can make things
bigger, more complex, and more violent.

It takes a touch of genius –
and a lot of courage –

to move in the opposite direction.

EF Schumacher

1
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2 1. INTRODUCTION

1.1. BACKGROUND
The development of information society and Internet technology has largely increased the
use of online social platforms, such as Facebook, Twitter and WeChat, in the population all
over the world. In the past, one could say that two individuals are separated by only six
other people on average, which is known as the six degrees of separation [1]. However, the
introduction of social media has significantly reduced the distance between people. Edunov
et al. [2] show that the average distance between two users on Facebook is 3.57. This en-
ables easy and quick communication and enables information spreading at the pace much
higher than in the past. Additionally, we increasingly rely on online information because of
the quick and easy access to information from social media, which is available in the form
of text, images, video and websites of various types, such as product recommendation, news
and political opinions. Low threshold for posting and spreading information via social media
not only contributes to making us better informed, but unfortunately also gets misused for
spreading fake or misleading information. The diffusion of real information should be en-
couraged as it is a way to share knowledge and contribute to the advancement of the society.
The spread of misinformation may, however, introduce confusion, complicate public’s under-
standing of situations, events and public policies, and contribute to a wrong bias in forming
beliefs and for attitude formation. This could lead to undesired effects, such as societal po-
larization and segregation. It is for this reason that the World Economic Forum (WEF) has
listed massive digital misinformation as one of the main threats to human society [3, 4]. It is
thus crucial to find effective ways to suppress the spreading of misinformation, while acceler-
ating the diffusion of the real (useful) information. In order to achieve this goal, we first need
to understand well the mechanisms underlying information spreading (diffusion) via online
social platforms. Such understanding will not only help us rethink the information spreading,
but also equip us with powerful means to control other spreading processes, like epidemic
spreading or spreading of computer viruses.

Information spreads through interactions between individuals. Such interactions can be
represented as a network, where nodes represent individuals and links represent their inter-
actions. In other words, a link exists if there is an interaction between two nodes. Since
interactions are typically time-dependent, so are the links between the nodes connected to
(and thus valid at) the time stamps at which they occur. In this case, we speak about a tem-
poral network. It is different from a static network, which captures only which node pairs
have (had) interaction(s) in the past and/or how many interactions they have (had). As long
as two nodes have had at least one interaction, a link is formed in the corresponding static
network. This opens the way for aggregating over time the link occurrence and disappearance
processes in a temporal network into an ’integral’ representation using a static network. The
time ordering of the contacts and the correlations between contacts, however, can only be cap-
tured and analyzed by using a temporal network representation, making this representation
most suitable for analyzing information spreading processes.

To understand how information spreads on a temporal network, we need to consider the
following two aspects, i.e., how to model the information diffusion process and how to study
the effect of network topology, a constellation of nodes and links, on that process. Stochastic
models, especially data-driven models, have emerged to describe how information spreads
on online social platforms. In such models, one assumes that nodes have different states.
For example, an individual either knows (thus possesses) the information or does not know
the information. This state of a node may change over time through interactions with other
nodes in a network, for example, by forwarding a message. To characterize these states, it is
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common to rely on the terminology used by classical epidemic models, such as susceptible-
infected (SI), susceptible-infected-susceptible (SIS) and susceptible-infected-recovered (SIR)
models, independent cascade model, threshold model and opinion model [5, 6]. We take SI
and SIR models as examples to illustrate how information diffusion models work. In the SI
model, each node is in one of the two states, i.e., susceptible or infected, at any time. A node
is in the susceptible state if the corresponding individual does not know the information,
but is open to receive it (thus ’susceptible’) through an information sharing interaction. A
node is in the infected state if the corresponding individual is ’infected’ (thus possesses)
by the information. An infected node infects a susceptible neighbor with a given infection
(information transmission) probability when the two nodes have an interaction. In the SIR
model, the extra ’recovered’ state is added. This is the state of the node after ’forgetting’ the
information it was ’infected’ with before. Being in this state, a node can neither be infected
nor infect any other node anymore.

In a temporal network, the network properties, like for example, the time ordering of con-
tacts between nodes, would affect the information diffusion process. The daily and circadian
rhythms of human interactions influencing this ordering may therefore directly impact the in-
formation transmission paths. Furthermore, temporal networks have been shown to manifest
seemingly universal properties, such as burstiness1. One of the key questions in analyzing
information spreading mechanisms is how the properties of the underlying temporal network
affect the information prevalence (diffusion size), i.e., the number of nodes that have ever
possessed the information. For example, Karsai et al. [7] have shown that the burstiness
property of temporal networks can slow down the SI spreading process. In this thesis, we
broaden the analysis of the influence of a temporal network on information spreading by
focusing on more network properties.

1.2. THESIS SCOPE AND CONTRIBUTION
When information spreads on a temporal network, the nodes and links may have different
roles in a spreading process. For instance, not all links would appear in a diffusion trajectory
thus actually spread the information from one node to another. Even the links or nodes that
appear in an information diffusion process may show different importance for that process.
As a consequence, information originating from different nodes may result in different final
diffusion sizes. This is because nodes and links are heterogeneous in topological and temporal
properties, such as node degree, the number of contacts that a node has, and the waiting time
between two contacts [8–11]. The number of contacts that a node has in a temporal network
has been shown to follow a power-law distribution, with most nodes having a few contacts
and a few nodes having a large number of contacts [12]. Nodes that have more frequent
contacts with other nodes tend to have higher probability to transmit information to other
nodes. If a node seldom has contacts with others, it is difficult for information to spread out
from it. Previous work has studied how the statistical properties, such as the distribution of
the number of contacts, influence a spreading process on a temporal network [7, 13]. The
fundamental question that has not been studied before and will be investigated in this thesis
is, how local properties of nodes and links are associated with their roles in facilitating or
suppressing information diffusion?

1The tendency that contacts of a node occur in bursts within a short time duration and such intermittent active periods
are separated by long inactive ones. A power-law distribution of the waiting time between consecutive contacts has
been widely observed [7].
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We study this problem on a temporal network in the following three steps. Firstly, we
investigate which links are more likely to contribute to the actual information diffusion pro-
cess, i.e., appear in a diffusion trajectory. Secondly, we study which links, in view of their
properties, should be removed to suppress information diffusion. Thirdly, we explore which
node, again in view of its properties, to choose as a seed node to start an information diffu-
sion process to make the information spread as widely as possible. These three steps serve as
fundamental investigation of information diffusion and can be applied to maximization and
control of information diffusion.

From another perspective, based on their investigation of information diffusion on Face-
book, Vicario et al. [4] found that nodes with similar properties tend to spread similar sort
of information. In view of this finding, evaluating the similarity of network nodes may help
identify the nodes that spread misinformation and block them to suppress the spreading. To
assess node similarity, traditionally, the network adjacency matrix was used. The elements
of the matrix indicate whether pairs of nodes are adjacent or not in the network. This simple
representation or embedding displays, however, only first-order relationships between nodes,
but not high-order structures. Recently, network representation learning (NRL), which can
capture high-order relationships between nodes, has been proposed to learn low-dimensional
embedding vectors for nodes, while preserving network topology structure, node content and
other side information. The goal is to bring the nodes with similar properties at a close
proximity to each other in the learned representation space. Inspired by this possibility, the
second problem addressed in this thesis is how to design NRL algorithms that better capture
the similarity between nodes in a network.

Among the representation learning algorithms proposed recently, random-walk-based
network embedding algorithms have shown good performance to embed a network [14, 15].
Random-walk-based network embedding algorithms utilize random walk to sample the net-
work structure. The node pairs generated from the random walk trajectory paths are further
used as the input for a Skip-Gram model, a representative language model that embeds nodes
into vectors. Previous random-walk-based network embedding algorithms, such as DeepWalk
and Node2Vec [14, 15], sample equal number of trajectory paths and equal length of the tra-
jectory paths for every node in the network. They have not considered the node heterogeneity
when proposing the sampling strategy, resulting in a lot of repeated node pairs (i.e., redun-
dant information) as the input for Skip-Gram model. Also, these algorithms are difficult to
be applied to large networks with millions of nodes. To propose scalable algorithms, we start
from investigating how to consider node properties in designing random-walk-based network
embedding algorithms. In addition, we explore how to utilize information diffusion process
to replace random walk process to sample the trajectory paths for network embedding. The
embedding vectors learned from the NRL algorithms can be further applied to network ana-
lytic tasks, such as node classification, community detection and link prediction, possibly in
combination with conventional vector-based machine learning algorithms.

1.3. THESIS OBJECTIVES AND OUTLINE
Regarding the two general problems we proposed in the previous section, we now map them
onto a number of research questions and explain how they are addressed in different chapters
of the thesis. This mapping is illustrated in Figure 1.1.

Chapter 2, 3 and 4 concentrate on the first problem of the thesis, namely the investigation
of the influence of the properties of the nodes and links on information diffusion processes on
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How to design NRL 
algorithms to better 
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Chapter 2: Information Diffusion 
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Temporal Networks

Chapter 1: Introduction

Chapter 7: Reflections and 
Recommendations

Figure 1.1: The structure of the thesis.

temporal networks. Specifically, Chapter 2 studies the influence of properties surrounding
a link on information diffusion through that link. The susceptible-infected (SI) spreading
process on empirical temporal networks is considered with the aim to answer the following
research questions:

• If a piece of information diffuses on a temporal network, which links are likely to
appear in the diffusion trajectory?

• How can we identify links that frequently appear in a diffusion trajectory?

The study of which links are likely to contribute to the actual diffusion of information may
contribute to the prediction of information trajectory if a new piece of information spreads
on a temporal network. In this chapter, we propose an information diffusion backbone to
characterize the likelihood of a link to appear in an SI spreading process.

The suppression of misinformation spreading is crucial. This can be realized by removing
or blocking temporal links from a network. A key research question here is

• Which temporal links should be removed to suppress information spreading?

Chapter 3 proposes strategies to find crucial links to remove for this purpose. We focus
on how different local properties would help to determine a link’s role in suppressing SI
diffusion process on a temporal network, including information diffusion backbone proposed
in Chapter 2.

An influential node for information diffusion is defined as a node that, if serving as the
seed node, could spread the information widely. Influential node identification has attracted
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increasing attention lately, as it helps to control the spread of misinformation or epidemic, to
promote the diffusion of real information or news, and to conduct successful advertisements
for viral marketing as well as to stop catastrophic outages in power grids and the Internet [16–
18]. Chapter 4 studies the problem of how to identify or rank influential nodes in a temporal
network via temporal and topological properties of a node. The information diffusion process
is modeled by the SIR model in this chapter. We aim at answering the following research
questions:

• If we aim to maximize the diffusion of a piece of information, which node should we
choose as the seed node?

• Which topological and temporal properties of nodes can be used to identify such influ-
ential seed nodes?

• How to evaluate the effectiveness of the influential node identification methods based
on diverse topological and temporal nodal properties?

Chapters 5 and 6 address the second problem of the thesis and focus on network embed-
ding algorithms by considering node heterogeneity, while designing sampling strategies, e.g.,
random-walk-based and SI-spreading-based sampling strategies. As the first step, we discuss
the limitations of previous proposed random-walk-based network embedding algorithms and
propose an efficient random-walk-based network embedding algorithm. When we design
random walk to sample trajectory paths for each node, we assume that nodes with different
importance have different number of trajectory paths as well as different lengths of the paths.
In Chapter 5, we aim to answer the following research questions:

• Which node centrality metric should we use in designing random-walk-based network
embedding algorithm?

• Does the embedding algorithm we propose perform better than the state-of-the-art al-
gorithms?

• How is the performance of the algorithm dependent on the properties of the network,
i.e., in what kind of network does the embedding algorithm we propose perform better?

Since the previous network embedding algorithms are random-walk-based, we are curious
about using other spreading processes, such as SI model, to sample the network structure.
In Chapter 6, we investigate how to design network embedding algorithms based on SI
spreading processes in both static and temporal networks. The node embedding vectors are
further used for link prediction. Chapter 6 answers the following research questions:

• How to utilize an SI spreading process to embed networks? How is the performance of
SI-spreading-based network embedding in comparison with random-walk-based ones?

• If SI-spreading-based network embedding algorithms outperform the state-of-the-art,
where does this improvement come from?

• Which of our algorithms performs better: static network embedding or temporal net-
work embedding? Can temporal information help to improve the performance?

Chapter 7 highlights the contributions of this thesis and points out possible future direc-
tions.
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1.4. PUBLICATION RELATED TO THIS THESIS
The following papers are completed by the author of this thesis while pursuing the Ph.D.
degree at Delft University of Technology.

1. X.-X. Zhan, A. Hanjalic and H. Wang, Information Diffusion Backbones in Temporal Networks,
Scientific Reports 9(1), 6798 (2019). [Chapter 2]

2. X.-X. Zhan, A. Hanjalic and H. Wang, Suppressing Information Diffusion via Link Blocking in
Temporal Networks, In International Conference on Complex Networks and Their Applications,
Springer, Cham. 448-458 (2019). [Chapter 3]

3. C. Qu, X.-X. Zhan*, G. Wang, J. Wu and Z.-K. Zhang, Temporal Information Gathering Process
for Node Ranking in Time-varying Networks, Chaos: An Interdisciplinary Journal of Nonlinear
Science, 29(3), 033116 (2019). [Chapter 4]

4. Y. Zhang, Z Shi, D Feng and X.-X. Zhan*, Degree-biased Random Walk for Large-scale Net-
work Embedding, Future Generation Computer Systems, 100, 198-209 (2019). [Chapter 5]

5. X.-X. Zhan, Z. Li, N. Masuda, P. Holme and H. Wang, SI-spreading-based Network Embedding
in Static and Temporal Networks, Submitted to EPJ Data Science. [Chapter 6]

We note that Chapter 4 and 5 are based on the publications where the PhD candidate is
not the first author. These publications are, however, included in the thesis because of the
significant contribution of the candidate regarding the main idea, experimental design and
the writing of the paper. As a further note, for Chapter 4, we use a part of the underlying
publication and revise the content to make it fit the thesis.

1.5. HOW TO READ THIS THESIS
Chapter 2, 3, 4 and 6 in this thesis adopt original publications. We give the references of
the corresponding publications in the footnote at the beginning of each chapter. Each chapter
serves as an independent work and can be read without linking to the previous chapters. The
notations and terminologies may differ in different chapters. Because we publish the papers
in different scientific journals or conferences, the length and depth of chapters may vary in
different chapters. Additionally, the chapters that address similar topics may share similar
motivations, arguments and materials.

https://doi.org/10.1038/s41598-019-43029-5
https://doi.org/10.1007/978-3-030-36687-2_37
https://doi.org/10.1007/978-3-030-36687-2_37
https://doi.org/10.1063/1.5086059
https://doi.org/10.1063/1.5086059
https://doi.org/10.1016/j.future.2019.05.033
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In this work, we explore: which node pairs are likely to contribute to the actual diffusion
of information, i.e., appear in a diffusion trajectory? How is this likelihood related to the
local temporal connection features of the node pair? Such deep understanding of the role
of node pairs is crucial to tackle challenging optimization problems such as which kind of
node pairs or temporal contacts should be stimulated in order to maximize the prevalence
of an information spread. We start by using Susceptible-Infected (SI) model, in which an
infected (information possessing) node could spread the information to a susceptible node
with a given infection probability β whenever a contact happens between the two nodes,
as the information diffusion process. We consider a large number of real-world temporal
networks. First, we propose the construction of an information diffusion backbone GB (β) for
a SI spreading process with an infection probability β on a temporal network. The backbone
is a weighted network where the weight of each node pair indicates how likely the node pair
appear in a diffusion trajectory starting from an arbitrary node. Second, we investigate the
relation between the backbones with different infection probabilities on a temporal network.
We find that the backbone topology obtained for low and high infection probabilities approach
the backbone GB (β→ 0) and GB (β = 1), respectively. The backbone GB (β→ 0) equals the
integrated weighted network, where the weight of a node pair counts the total number of
contacts in between. Finally, we explore node pairs with what local connection features tend
to appear in GB (β = 1), thus actually contribute to the global information diffusion. We
discover that a local connection feature among many other features we proposed, could well
identify the (high-weight) links in GB (β = 1). This local feature encodes the time that each
contact occurs, pointing out the importance of temporal features in determining the role of
node pairs in a dynamic process.

2.1. INTRODUCTION
Both online social networks like Facebook, Twitter and LinkedIn and physical contact net-
works facilitate the diffusion of information where a piece of information is transmitted from
one individual to another through their online or physical contacts or interactions. Infor-
mation diffusion processes have been modeled by, e.g., independent cascade models [1],
threshold models [2] and epidemic spreading models [3–6]. Social networks have been first
considered to be static where nodes represent the individuals and links indicate the relation
between nodes such as whether they have ever contacted or not [7]. Information is assumed
to propagate through the static links according to the aforementioned models. Recently, the
temporal nature of contact networks has been taken into account in the spreading processes,
i.e., the contacts between a node pair occur at specific time stamps (the link between nodes
is time dependent) and information could possibly propagate only through contacts (or tem-
poral links) [8–12]. Consider the SI (Susceptible-Infected) spreading process on a temporal
network [3, 5]. Each individual can be in one of the two states: susceptible (S) or infected (I).
A node in the infected (susceptible) state means that it has (does not have) the information.
A susceptible node could get infected with an infection probability β via each contact with
an infected node. An infected individual remains infected forever.

Progress has been made in the exploration of how temporal network features [13–17] and
the choice of the source node [18, 19] influence a diffusion process especially its diffusion
size, i.e., the number of nodes reached. However, we lack foundational understanding of
which kind of node pairs are likely to contribute to an actual information diffusion process,
i.e., appear in an information diffusion trajectory. Such understanding is essential to explain
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and control the prevalence of information spread (e.g., which node pairs should be stimu-
lated to contact at what time in order to maximize the prevalence?). The contact frequency
between nodes, as typically used in static networks, is not the only factor that would affect
the appearance of a node pairs in an information diffusion trajectory, as we need to consider
the time stamps of the contacts as well [20–23]. For instance, the node pairs with a lot of
contacts that only happened before the information starts to diffuse are of no importance for
the diffusion process.

In this chapter, we address the question of which kind of node pairs are likely to contribute
to the diffusion of information, considering the SI diffusion process as a start. Specifically, we
explore how the probability that a node pair appears in a diffusion trajectory is related to local
temporal connection features of the two nodes. First, we propose the construction of an in-
formation diffusion backbone GB (β) for a SI spreading process with an infection probability
β on a given temporal network. The construction is based on a large number of informa-
tion diffusion trajectories. The resultant backbone is a weighted network where the weight
of each node pair indicates how likely the node pair contributes to a diffusion process that
starts from an arbitrary node. We consider a large number of empirical temporal networks.
For each network, we construct diffusion backbones for diverse infection probabilities and
study the relationship between these backbones. We find that backbone topology varies from
GB (β= 0) ,GB (β→ 0) (which equals the integrated weighted network) when the spreading
probability β is small to GB (β = 1) when the infection probability is large. The difference
between the two extreme backbones GB (β = 0) and GB (β = 1), suggests the extent to which
the backbones with diverse infection rates may vary. Finally, we investigate further which lo-
cal connection feature of a node pair may suggest its high weight in the backbone GB (β= 1).
One of the features that we proposed incorporates only the time stamps when contacts occur
between a node pair. It outperforms other classic features of a node pair including those de-
rived from the integrated network, which points out the importance of temporal information
in determining the role of a node pair in a diffusion process. The computational complexity
of GB (β = 1) is high. Our finding of the relation between local temporal features of a node
pair and its global contribution to an information diffusion allows the approximation of the
information backbone by computing a local temporal feature that is of low computational
complexity.

The chapter is organized as follows. In Section 2.2, we first introduce how to represent a
temporal network and then explain the process of constructing the information diffusion back-
bone for a SI diffusion process on a temporal network. Finally, we illustrate a set of empirical
temporal networks that will be used in the following experiments. In Section 2.3, we present
our comparative analysis of the constructed backbones for different infection probabilities
and for different networks. At the end of this section, we evaluate which local connection
features of a node pair, including the measures we proposed, can identify whether the node
pair will be connected in the backbone GB (β= 1) and with a high weight or not. A discussion
concludes the chapter in Section 2.4.

2.2. MATERIALS AND METHODS

2.2.1. REPRESENTATION OF A TEMPORAL NETWORK
A temporal network can be measured by observing the contacts between each node pair at
each time step within a given time window [0,T ] and represented as G = (N ,L ). Here, N

is the node set, with the size N = |N | representing the number of nodes in the network, and
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L = {l ( j ,k, t ), t ∈ [0,T ], j ,k ∈N } is the contact set, where the element l ( j ,k, t ) indicates that
the nodes j and k have a contact at time step t . A temporal network can also be described by
a three-dimensional binary adjacency matrix AN×N×T , where the elements A ( j ,k, t ) = 1 and
A ( j ,k, t ) = 0 represent, respectively, that there is a contact or no contact between the nodes
j and k at time step t .

An integrated weighted network GW = (N ,LW ) can be derived from a temporal network
G by aggregating the contacts between nodes over the entire observation time window T . In
other words, two nodes are connected in GW if there is at least one contact between them
in G . Each link l ( j ,k) in LW is associated with a weight w j k counting the total number of
contacts between node j and k in G . The integrated weighted network GW can therefore be
described by a weighted adjacency matrix AN×N , with its element

A( j ,k) =
T∑

t=1
A ( j ,k, t ) (2.1)

counting the number of contacts between a node pair. An example of a temporal network G

and its integrated weighted network GW are given in Figure 2.1(a) and (b), respectively.

Figure 2.1: (a) A temporal network G with N = 5 nodes and T = 8 time steps. (b) The integrated weighted network
GW , in which a link exists between a node pair in GW as long as there is at least one contact between them in G .
The weight of a link in GW is the number of contacts between the two nodes in G . (c) Diffusion path tree Ti (β),
where node i is the seed and infection rate is β= 1. (d) Diffusion backbone GB (1), where the infection probability
β = 1 in the SI diffusion process. The weight on the node pair represents the number of times it appears in all the
diffusion path trees.

2.2.2. INFORMATION DIFFUSION BACKBONE
We propose to characterize how node pairs are involved in diffusion processes by constructing
information diffusion backbones. We will construct a backbone for the SI diffusion process
with a given infection probability β on a temporal network defined above. We start with the
simplest case when β = 1. At time step t = 0, the seed node i is infected and all the other
nodes are susceptible. The trajectory of the SI diffusion on G can be recorded by a diffusion
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path tree Ti (β). The diffusion path tree Ti (β) records the union of contacts, via which
information diffuses. We define the diffusion backbone GB (β) = (N ,LB (β)) as the union of

all diffusion path trees, i.e.,
N⋃

i=1
Ti (β), that start at each node as the seed node. The node

set of GB (β) is N , and nodes are connected in GB (β) if they are connected in any diffusion
path tree. Each link in LB (β) is associated with a weight wB

j k , which denotes the number of
times node pair ( j ,k) appears in all diffusion path trees. An example of how to construct the

diffusion backbone is given in Figure 2.1(c) and (d) for β = 1. The ratio
wB

j k

N indicates the
probability that the node pair ( j ,k) appears in a diffusion trajectory starting from an arbitrary
seed node.

When 0 < β < 1, the diffusion process is stochastic. In this case, the backbone can be
obtained as the average of a number of realizations of the backbones. Per realization, we
run the SI process starting from each node serving as the seed for information diffusion,
obtain the diffusion path trees and construct one realization of the diffusion backbone. The
weight wB

j k of a link in GB (β) is the average weight of this link over the h realizations. The
computational complexity of constructing GB (β) is O (N 3T h), where T is the length of the
observation time window of the temporal network.

2.2.3. EMPIRICAL NETWORKS
DESCRIPTION AND BASIC FEATURES

For the construction and analysis of diffusion backbones, we consider a large number of
temporal networks that capture two types of contacts, i.e., physical and virtual contacts. We
collect the data sets Reality mining [24, 25], Hypertext 2009 [26, 27], High School 2011 [28],
High School 2012 [28], High School 2013 [29], Primary School [30], Workplace [31], Hag-
gle [32, 33] and Infectious [34] that record the face-to-face physical contacts of individuals at
MIT, ACM Hypertext 2009 conference, a high school, a primary school, a workplace and the
Science Gallery, respectively. We also consider virtual contact datasets recording the mailing
and message behavior, including Manufacturing Email [35, 36], Email Eu [37], DNC Email
[38] and Collegemsg [39]. The list of the datasets used and their detailed statistics are given in
Table 2.1. We consider only the temporal network topologies measured at discrete time steps
in these datasets, whereas the duration of a time step differs among these datasets. We have
removed the time steps without any contact in order to consider the steps that are relevant for
information diffusion and to avoid the periods that have no contact due to technical errors in
measurements.

OBSERVATION TIME WINDOWS

We aim to understand which node pair is likely to be connected in the backbone, thus to con-
tribute to a diffusion process and how such connection in the backbone is related to this node
pair’s temporal connection features. However, real-world temporal networks are measured
for different lengths T of time windows as shown in Table 2.1. If a diffusion process has
a relatively high spreading probability or the temporal network has a relatively long obser-
vation time window, almost all the nodes can be reached within a short time. The temporal
contacts happened afterwards will not contribute to the diffusion process. Hence, we will se-
lect the time windows such that all contacts within each selected time window could possibly
contribute, or equivalently, are relevant to a diffusion process. On the other hand, we will
consider several time windows for each measured temporal network. This will allow us to
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Table 2.1: Basic features of the empirical networks. The number of nodes (N ), the original length of the observation
time window (T in number of steps), the total number of contacts (|C |), the number of links in GW (|LW |) and
contact type are shown.

Network N T |C | |LW | Cont act
T y pe

Reality Mining (RM) 96 33,452 1,086,404 2,539 Physical
Hypertext 2009 (HT2009) 113 5,246 20,818 2,196 Physical

High School 2011 (HS2011) 126 5,609 28,561 1,710 Physical
High School 2012 (HS2012) 180 11,273 45,047 2,220 Physical
High School 2013 (HS2013) 327 7,375 188,508 5,818 Physical

Primary School (PS) 242 3,100 125,773 8,317 Physical
Workplace (WP) 92 7,104 9,827 755 Physical

Manufacturing Email (ME) 167 57,791 82,876 3,250 Virtual
Email Eu (EEU) 986 207,880 332,334 16,064 Virtual

Haggle 274 15,662 28,244 2,124 Physical
Infectious 410 1,392 17,298 2,765 Physical

DNC Email (DNC) 1866 1,8682 37,421 4,384 Virtual
Collegemsg 1899 5,8911 59,835 13,838 Virtual

understand how the time window of a temporal network may influence the relation between
the backbones of different spreading probabilities and relation between a node pair’s local
connection features and its connection in a backbone. We select the observation time win-
dows for each measured temporal network within its original time window [0,T ] as follows.
On each measured temporal network with its original observation time window [0,T ], we
conduct the SI diffusion process with β= 1 by setting each node as the seed of the informa-
tion diffusion process and plot the average prevalence ρ at each time step, as illustrated in
Figure 2.2. The time steps are normalized by the original length of observation window T .
The average prevalence at the end of the observation t/T = 1 is recorded as ρ(t = T ). The
time to reach the steady state varies significantly across the temporal networks. For networks
like RM, HT2009, the diffusion finishes or stops earlier and contacts happened afterwards are
not relevant for the diffusion process. However, the prevalence curves ρ of the last four net-
works (i.e., Haggle, Infectious, DNC and Collegemsg) increase slowly and continuously over
the whole period. Actually, we observe these four networks are more heterogeneous than the
other networks in terms of the degree distribution of the integrated static network, which are
shown in Figure 2.3.

For each real-world temporal network with its original length of observation time win-
dow T , we consider the following lengths of observation time windows: the time Tp% when
the average prevalence reaches p%, where p ∈ {10,20, . . . ,90} and p% < ρ(t = T ). For a
given measured temporal network G = (N ,L ), we consider maximally 9 observation time
windows. For each length Tp%, we construct a sub-temporal network, Gp% = (N ,Lp%),
in which Lp% includes contacts in L that occur earlier than Tp%. The lengths of observa-
tion time window Tp% for the empirical networks are shown in Table S1 in the APPENDIX
A. For a network like RM, we can get 9 sub-networks and for network like Infectious, we
can only obtain 5 sub-networks. In total, 106 sub-networks are obtained. Contacts in all
these sub-networks are relevant for SI diffusion processes with any spreading probability β.
Without loss of generality, we will consider all these sub-networks with diverse lengths of
observation time windows and temporal network features to study the relationship between
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Figure 2.2: Average prevalence ρ of the SI spreading process with β= 1 on each original empirical temporal network
over time. The time steps are normalized by the corresponding observation time window T of each network.

diffusion backbones and temporal connection features.

2.3. RESULTS

2.3.1. RELATIONSHIP BETWEEN DIFFUSION BACKBONES
We explore the relationships among the backbones GB (β) with different spreading proba-
bilities β ∈ [0,1] on the same temporal network. When the infection probability β→ 0, the
backbone GB (β→ 0) approaches the integrated weighted network GW if the network is finite
regarding to its size and number of contacts. This can be understood as follows. When an
arbitrary node i is the seed node, the probability that the information diffuses to any other
node j within a given observation time window of length T is 1−(1−β)wi j = 1−ewi j log(1−β) ∼
1− e−wi jβ ∼ wi jβ, where wi j is the number of contacts between the i and j within the ob-
servation time window. Assume that i and j have contact(s), i.e., wi j > 0, and node k has no
contact with the seed i but has contact(s) with node j . The probability that the information
initiated by the seed i diffuses further from j to k is smaller than wi j w j kβ

2 ¿ wi jβ. In other
words, the probability that the information diffuses via a second hop node pair ( j ,k) relative
to the seed i (from the view of the integrated network) is negligibly small compared to the
first hop node pair (i , j ). Hence, the information diffusion tree approaches a tree whose root
is the seed node and the leaves are the nodes that have contacts with the seed. The informa-
tion diffusion backbone, which is the union of the diffusion trees rooted at each node, has
the same topology as the integrated network. The weight wB

i j of each link in the backbone is
wB

i j ∼ 2wi jβ. When the network is infinite in size or number of contacts, GB (β→ 0) ∼GW is
not necessarily true also because a node pair can be a second hop pair relative to many seed
nodes.
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We denote GB (β = 0) , GB (β → 0) = GW except that the weight of each node pair in
the two networks is scaled. When the infection probability β is small, node pairs with more
contacts are more likely to appear in the backbone. The backbone GB (β) varies from GB (0) =
GW when β→ 0 to GB (1) when β= 1.

OVERLAP IN LINKS BETWEEN BACKBONES

We investigate first how different these backbones with different spreading probabilities β ∈
[0,1] are and whether GB (β) with a small and large β can be well approximated by GW and
GB (1) respectively.

However, note that the observed topology of GB (β) obtained from the simulation which
is composed of a limited number of iterations of the spreading process can be a sub-graph
of the topology of GW . We illustrate how the number of iterations affects the ratio of links
in the observed GB (β) to |LW | in Figure S1(d-f) in the APPENDIX B. It shows that with
the increased number h of iterations, |LB (β)| is getting close to |LW | for networks with a
large observation time window. For networks a with small observation time window like
RM−T10%, |LB (β)| tends to approach |LW | at a small number h of iterations. For GB (1),
we have |LB (1)| <= |LW |, which is reflected in Figure 2.5 (a) where the number of links in
GB (0) and GB (1) are compared.

The similarity between two backbones or two weighted networks in general can be mea-
sured by their overlap in links or node pairs with a high weight. For each backbone GB (β),
links in LB (β) are ordered according to their weights in the backbone in a descending order
. Thus the links in the relatively top positions are more likely to be used in the diffusion
process. Therefore, for any backbone with β ∈ [0,1], we consider the top |LB (1)| links from
LB (β), which are denoted as L ∗

B (β). The similarity or overlap between two backbones like
GB (β) and GB (β= 0) can be measured by the overlap between L ∗

B (β) and L ∗
B (0), defined as

r (β,0) = r (L ∗
B (β),L ∗

B (0)) = |L ∗
B (β)∩L ∗

B (0)|
|L ∗

B (β)| , (2.2)

For each temporal network, we construct each backbone GB (β), where β = 0.25,0.5,0.75,1,
as the average of h = 100 iterations of the SI spreading processes starting from each node as
the seed, based on the method illustrated in Section 2.2 (The validation that 100 iterations
are enough to get a stable backbone is given in Figure S1 in the APPENDIX B). The back-
bone GB (β = 0) equals GW . The overlap between backbones for dataset RM are shown in
Figure 2.4 as an example. More examples are given in Figure S2 in the APPENDIX C). The
overlap r (β,0) tends to decrease with the increase of β and GB (β= 0) well approximates the
backbones with a small β. Similarly, GB (1) well approximates the backbones with a large
β. When the observation time window of a temporal network is small, the backbones with
different β are relatively similar in topology. In this case, a diffusion path tree tends to have a
smaller average depth (The average depth of a tree is the average number of links in the short-
est path from the root to another random node in the tree) and a node pair with a large number
of contacts is likely to appear or connect in the backbone, which explains why GW approxi-
mates all the backbones including GB (1). These observations motivate us to explore the two
extreme backbones GB (0) and GB (1) regarding to how much they differ from or related to
each other.
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Figure 2.3: Degree distribution of GW and GB (1) for empirical networks with longest observation window.

DEGREE OF A NODE IN DIFFERENT BACKBONES

From now on, we focus on the two extreme backbones GB (0) = GW and GB (1). A node pair
that has contact(s) may not necessarily contribute to a diffusion process. Hence, the degree
of a node in GB (0) is larger or equal to its degree in GB (1). The comparison of the number
of links in GB (0) and GB (1) in Figure 2.5 shows that GB (1) indeed has less links than GB (0),
especially when the observation time window is large. As explained earlier, GB (1) and GB (0)
are similar to each other in topology when the observation time window is small.

Furthermore, we explore the degree of a node in GW =GB (0) and GB (1) respectively. In-
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Figure 2.4: (a) Overlap r (β,0) between GB (β) and GB (0) as a function of β in (sub)networks derived from dataset
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Diffusion backbones (0 <β< 1) are obtained over 100 iterations.
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Figure 2.5: The relationship between the number of links in GW and GB (1) for (a) all the networks with observation
windows given in Table S1 in APPENDIX A; (b) the networks with the longest observation windows in each dataset.

terestingly, a universal finding is that the degree of a node in these two backbones tends to be
linearly and positively correlated in all the empirical networks. Table S2 in the APPENDIX
E provides the Pearson correlation coefficient between the degree of a node in GW and in
GB (1), which is above 0.7 for all the networks. Since the topology of GB (1) is a sub-graph of
GW , the degrees of a node in these two networks tend to be linearly correlated if these two
networks have a similar number of links. This explains the high degree correlation when the
temporal networks have a short observation window. Figure 2.6 shows the scatter plot of the
degree of each node in GW and GB (1) respectively for the network with the longest observa-
tion window when their backbones GW and GB (1) differ much in the number of links derived
from two datasets respectively. The strong degree correlation in all these cases suggests that a
node with a high degree in GW tends to have a high degree in GB (1). A node that has contacts
with many others tends to be able to propagate the information directly to many others.

Is this because the degree distribution in GW is highly heterogeneous that overrules the
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Figure 2.6: Degree correlation between GW and GB (1) for networks PS and Infectious with the longest observation
window respectively.

temporal orders of the contacts in determining how many other nodes a node is able to reach
directly? Figure 2.3 shows the degree distributions in GW and GB (1) respectively for each
temporal network dataset with its longest observation window as given in Table S1 in AP-
PENDIX A when these two backbones differ the most. We find that the degree distributions
in these two backbones respectively indeed share a similar shape, which again support the
strong linear correlation between the degrees of a node in these two backbones. However,
not all networks GW have a power-law degree distribution. The strong degree correlation be-
tween GW and GB (1) exists even when GW has a relatively homogeneous degree distribution.
This observation motivates us to explore whether a node pair with a high degree product in
GW thus also in GB (1) tends to be connected in GB (1) in Section 2.3.1.

The degree of a node j in GB (1) tells maximally how many nodes it could propagate
the information directly to given that each node is possibly the source of the information,
but not necessarily how frequently this node contributes or engages in an information diffu-
sion process when β = 1. The latter is reflected from the node strength of a node in GB (1):∑N

k=1 wB
j k (β= 1).
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Figure 2.7: The relationship between the coefficient of variation cv of the weight distribution in GW and GB (1) for
(a) all the networks with observation windows given in Table S1 in APPENDIX A; (b) all the networks with longest
observation windows.
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LINK WEIGHT VARIANCE IN DIFFERENT BACKBONES

The standard deviation of link weights in a backbone indicates how much the links differ
in their probability of appearing in a diffusion process. We compare the standard deviation

of a link weight normalized by its mean cv =
p

Var[W B ]
E[W B ]

(which is called the coefficient of
variation) in GB (1)and GB (0). Figure 2.7 shows that the link weights in GB (0) or equivalently
GW are more heterogeneous than those in GB (1) for almost all the networks we considered.
The relatively homogeneous link weights in GB (1) implies that predicting which node pairs
tend to have a high weight in GB (1) can be challenging.

2.3.2. IDENTIFYING THE DIFFUSION BACKBONE GB (1)
In this section, we investigate how to identify the (high weight) links in the backbone GB (1)
based on local and temporal connection features of each node pair. The key objective to
understand how a node pair’s local and temporal connection features are related to its role in
the global diffusion backbone GB (1). Our investigation may also allow us to approximate the
backbone, whose computational complexity is high (O (N 3T )) base on local temporal features
whose computational complexity is low.

We propose to consider systematically a set of local temporal features for node pairs and
examine whether node pairs having a higher value of each feature/metric tend to be connected
in the backbone GB (1). Some of these features are derived from the integrated network GW

whereas the feature Time-Scaled Weight that we will propose encodes also the time stamps of
the contacts between a node pair. These node pair features or metrics include:

• Time-Scaled Weight of a node pair ( j ,k) is defined as

φ j k (α) =
n∑

m=1
(

1

t (m)
j k

)α (2.3)

where n is the total number of contacts between j and k over the given observation window
and t (i )

j k is the time stamp when the i − th contact occurs and α is the scaling parameter to
control the contribution of temporal information. For the node pairs that have no contact, we
assume their temporal weights to be zero. This metric is motivated by the intuition that when
each node is set as the seed of the diffusion process at time t = 0, the contacts that happen
earlier have a higher probability to be used for the actual information diffusion, thus appear
in GB (1). When α= 0, φ j k (0) = wB

j k (β= 0) degenerates to the weight of the node pair in GW .
Larger α implies the node pairs with early contacts have a higher time-scaled weight.

• Degree Product of a node pair ( j ,k) refers to d j (β = 0)dk (β = 0), the product of the
degrees of j and k in the integrated network GW . If two nodes are not connected in GW ,
their degree product is zero. The motivation for this measure is as follows. Given the degree
of each node in GB (1) and if the links are randomly placed, the probability that a node pair
(i , j ) is connected in GB (1) is proportional to d j (β = 1) ·dk (β = 1). We have observed in
Section 2.3.1 that the degree of a node in GW and GB (1) are strongly and positively correlated.
Moreover, only node pairs connected in GW are possible to appear or be connected in GB (1).
If the connections in GB (1) are as random as in the configuration model [40], node pairs with
a high degree product d j (β= 0) ·dk (β= 0) tend to appear in GB (1).

• Strength Product of a node pair ( j ,k) refers to s j (β = 0) · sk (β = 0), the product of the
node strengths of j and k in the integrated network GW , where the node strength s j (β= 0) =∑

i∈N A( j , i ) of a node in GW equals the total weight of all the links incident to this node
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[41, 42]. If two nodes are not connected in GW , their strength product is zero. This measure
is an extension of the degree product to weighted networks.

• Betweenness of a link in GW counts the number of shortest paths between all node pairs
that traverse the link. The distance of each link, based on which the shortest path is computed,
is considered to be 1

wB
j k (β=0)

. In other words, inversely proportional to its link weight in GW ,

since a node pair with more contacts tend to propagate information faster [43, 44]. Node pairs
that are not connected in GW have a betweenness 0. Betweenness is not local, but considered
here as a benchmark feature that has been widely studied.
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Figure 2.8: The quality of identifying links in GB (1) by using the time-scaled weight φ j k (α) as a function of α in
temporal networks derived from datasets (a) RM, (b) HT2009, (c) HS2011 and (d)HS2012.

We explore further whether these node pair features could well identify the connection of
node pairs in GB (1). According to the definition of the aforementioned centrality metrics, a
higher value of a metric may suggest the connection of the corresponding node pair in GB (1).
According to each metric, we rank the node pairs and the |LB (1)| node pairs with the highest
values are identified as the links in GB (1). The identification quality of a metric, e.g., the
time-scaled weight φ j k (α), is quantified as the overlap r (φ j k (α),1) between the identified
link set and the link set LB (1) in GB (1), as defined by Eq. (2).

Before we compare all the metrics in their identification powers, we examine first how
the scaling parameter α in the time-scaled weight φ j k (α) influences its identification quality.
Figure 2.8 and Figure S3 in the APPENDIX D show that the quality differs mostly when
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0 ≤ α≤ 2 and remains relatively stable when α≥ 2 in all the temporal networks. Hence, we
will confine ourselves to the range 0 ≤α≤ 2.

The quality r by using each metric versus the ratio |LB (1)|
|LW | of the number of links in GB (1)

to that in GW are plotted in Figure 2.9 for all the empirical temporal networks, with different
lengths of the observation time windows. The diagonal curve r = |LB (1)|

|LW | corresponds to the
quality of the random identification, where |LB (1)| links are randomly selected from the
links in GW as the identification for the links in GB (1). Degree product, strength product
and betweenness perform, in general, worse than or similarly to the random identification.
Even if the connections in GB (1) were random given the degree of each node in GB (1), the
quality r of identifying links in GB (1) by using the degree product is close to that of the
random identification, if the distribution of the degree product is relatively homogeneous or
if the |LB (1)|

|LW | is large. The degree distribution in GB (1) is indeed relatively homogeneous and
|LB (1)|
|LW | is large in most empirical networks. This explains why the degree product performs

similarly to the random identification.
The link weight in GW , equivalently, φ j k (α= 0), outperforms the random identification,

whereas the time-scaled weight φ j k (α) with a larger α performs better. Node pairs with many
contacts that occur early in time tend to contribute to the actual information propagation, i.e.,
be connected in GB (1). This observation suggests that the temporal information is essential
in determining the role of nodes in a spreading process.
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Figure 2.9: The quality of identifying links in GB (1) by using each metric for (a) all the networks with observation
windows given in Table S1 in APPENDIX A; (b) all the networks with longest observation windows. The time-
scaled weight with different α values are considered.

We investigate also whether these metrics can identify the links with the highest weights
in GB (1). The quality r , as defined earlier, of identifying the top f fraction of links with the
highest weight in GB (1) is plotted in Figure 2.10. We choose the top f |LB (1)| node pairs
according to each metric as the identification of the top f |LB (1)| links in GB (1) with the
highest weights. We consider the networks with the longest observation window from each
dataset. The diagonal curve r = f |LB (1)|

|LW | corresponds to the quality of the random identifica-
tion. Similar to the identification of all the links in GB (1), the time-scaled weight φ j k (α) with
a large α performs the best in identifying highly weighted links in GB (1), emphasizing again
the important role of the temporal information of contacts.
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2.4. CONCLUSION
Much effort has been devoted to understand how temporal network features influence the
prevalence of a diffusion process. In this work, we addressed the further question: node
pairs with what kind of local and temporal connection features tend to appear in a diffu-
sion trajectory or path, thus contribute to the actual information diffusion? We consider the
Susceptible-Infected spreading process with an infection probability β per contact on a tem-
poral network as the starting point. We illustrate how to construct the information diffusion
backbone GB (β) where the weight of each link tells the probability that a node pair appears
in a diffusion process starting from a random node. We unravel how these backbones corre-
sponding to different infection probabilities relate to each other with respect to their topology
(overlap in links), the heterogeneity of the link weight, and the correlation in node degree.
These relations point out the importance of two extreme backbones: GB (1) and the integrated
network GB (0) =GW , between which GB (β) varies. We find that the temporal node pair fea-
ture that we proposed could better identify the links in GB (1) as well as the high weight links
than the features derived from the integrated network. This universal finding across all the
empirical networks highlights that temporal information are crucial in determining a node
pair’s role in a diffusion process. A node pair with many early contacts tends to appear in a
diffusion process. We have also used rank correlation like Kendall and Spearman to evaluate
the quality of time-scaled weight in identifying the precise weight ranking of all the links
in GB (1). However, we found that the time-scaled weight when α = 0 performs the best,
which means the temporal node pair feature is not ideal to identify the exact importance of
the links in the backbone GB (1). Therefore, how to predict the ranking of the link weights in
the backbone remains as an interesting future question.

This work reminds us the studies a decade ago about the information transportation via
the shortest path on a static network [44]. How frequently a link appears in a shortest path
thus contributes to the transportation of information is reflected by the weight of the link
in the backbone or overlay, the union of shortest paths between all node pairs [45]. This
weight equals the betweenness, which has a high computational complexity, thus motivated
the exploration how a node pair’s local connection features are related to its betweenness.

The study of information diffusion paths on a temporal network is more complex due
to the extra dimension of time. Our finding that early contacts with a quadratic decay in
weight over time indicates the appearance of a node pair in a diffusion path, suggests the
possibility to identify the appearance of a node pair in a diffusion path in a long period based
on its early contacts within a short period, an interesting follow-up question. This work
opens new challenging questions like which nodes tend to be reached early and more likely
by the information, how such heterogeneous features at node or link level are related to local
temporal connection features. In addition, other spreading models like social contagions
and coevolution spreading models can be further considered beyond the SI spreading model
studied here [1, 2, 46–49]. Our findings may inspire the exploration of optimization problems
such as which node pairs or contacts should be stimulated (e.g. added) in order to maximize
the prevalence of an information diffusion process. Stimulating early contacts seems essential
but adding them between which node pairs and when is non-trivial.
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2.5. APPENDIX
A: DATA DESCRIPTION

Table 2.2: The lengths of the observation time window that we choose based on the average prevalence ρ when
β= 1. For instance, T90% represents the time when the prevalence reaches ρ = 90%.

Net wor k T90% T80% T70% T60% T50% T40% T30% T20% T10%
RM 3325 1482 1278 987 257 133 111 34 5

HT2009 2394 2131 1575 1154 790 568 439 377 332
HS2011 1903 1177 1152 1001 805 447 425 396 47
HS2012 3915 2680 1907 1481 1109 1043 925 675 403
HS2013 1253 583 406 395 369 236 195 113 50

PS 997 510 378 359 347 323 287 276 136
WP 3328 2186 1538 1133 832 708 400 320 218
ME 27189 5096 1885 1735 1387 731 461 285 168
EEU 160710 134342 67883 27531 15792 8100 4047 2348 1490

Haggle / / 15640 14229 12668 12440 9523 8416 3293
Infectious / / / / 1062 955 751 553 410

DNC / / / 18680 17712 14918 11420 7817 3860
Collegemsg / / 54493 46419 41663 33889 26018 17367 9747

B: NUMBER OF ITERATIONS TO COMPUTE THE BACKBONE
We explore whether h = 100 iterations is sufficient to get a representative backbone when
0 < β < 1. Given the temporal network and β, we first construct the diffusion backbones
by choosing the number of iterations as 50,100,200,300,400,500, and then we compute the
overlap r between the backbone obtained as the average of 100 iterations with the backbones
obtained as the average of 50,200,300,400,500 iterations, respectively. The overlap r is
defined the same as Eq. (2). As the complexity of computing backbones is high, we consider a
large number of networks but not all. Figure 2.11(d-f) shows the ratio of links in the observed
GB (β) to |LW | slightly increases with the increase of h. The overlap r is in general high,
above 0.95 (Figure 2.11(a-c)). These observations support that we could obtain a relatively
representative backbone as the average of 100 realizations of the backbone constructions.
In addition, the slightly increase of link ratio also supports that the observed topology of
GB (β)(0 <β< 1) is approaching GW when the iteration times h is large enough.
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Figure 2.11: (a-c) Overlap r between backbone obtained from 100 iterations with the backbones obtained from
h = 50,200,300,400,500 iterations on different temporal networks. (d-f) The ratio of links in the observed GB (β) to
|LW | in the backbones as a function of the number of iterations.
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C: RELATIONSHIP BETWEEN BACKBONES

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1
0.6

0.7

0.8

0.9

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1
0.2

0.4

0.6

0.8

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1

0.7

0.8

0.9

1.0

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1

0.2

0.4

0.6

0.8

1.0r(
, 

)

HS2013

 T10% I  T20% I  T30% I  T40% I  T50% I   T60% I 
 T70% I  T80% I  T90% I

 

 

(a) (b)

 

 

MEWP

PS

(c)

 

 

(d)

 

 

-0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0.6

0.7

0.8

0.9

-0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0.2

0.4

0.6

0.8

-0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

0.7

0.8

0.9

1.0

-0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

0.2

0.4

0.6

0.8

1.0

(e) PSHS2013

 

 

(f)

 

 

(g) MEWP

r(
, 

)

 

 

(h)

 

 

Figure 2.12: (a-d) Overlap r (β,0) between GB (β) and GB (0) as a function of β in (sub)networks derived from dataset
HS2013, PS, WP and ME; (e-h) Overlap r (β,1) between GB (β) and GB (1) as a function of β in (sub)networks derived
from dataset HS2013, PS, WP and ME. Diffusion backbones (0 <β< 1) are obtained from 100 iterations.
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D: IDENTIFICATION OF LINKS IN GB (1)
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Figure 2.13: The quality of identifying links in GB (1) by using the time-scaled weight φ j k (α) as a function of α in
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E: DEGREE CORRELATION BETWEEN GW AND GB (1)

Table 2.3: Pearson correlation coefficient P (GW ,GB (1)) between node degree in GW and GB (1) in all the networks.

Network T90% T80% T70% T60% T50% T40% T30% T20% T10%
RM 0.85 0.87 0.84 0.85 0.98 0.99 0.99 1.0 1.0

HT2009 0.97 0.97 0.98 0.98 0.99 0.99 1.0 0.99 0.98
HS2011 0.94 0.93 0.93 0.97 0.96 0.95 0.97 0.97 0.97
HS2012 0.97 0.98 0.98 0.99 0.99 0.99 0.98 0.99 0.99
HS2013 0.94 0.96 0.97 0.97 0.97 0.98 0.98 0.99 0.99

PS 0.70 0.76 0.78 0.80 0.82 0.82 0.80 0.78 0.91
WP 0.94 0.99 0.99 0.99 0.99 0.99 1.0 0.99 1.0
ME 0.76 0.94 0.99 0.93 0.99 1.0 1.0 1.0 1.0
EEU 0.99 0.99 0.99 0.99 0.99 1.0 1.0 1.0 1.0

Haggle / / 0.99 0.99 0.98 0.98 0.98 0.98 0.97
Infectious / / / / 0.94 0.94 0.93 0.93 0.93

DNC / / / 1.0 1.0 1.0 0.99 0.99 0.99
Collegemsg / / 1.0 1.0 1.0 1.0 1.0 1.0 1.0
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NETWORKS

In this chapter, we explore how to effectively suppress the diffusion of (mis)information via
blocking/removing the temporal contacts between selected node pairs. Information diffusion
can be modelled as, e.g., an SI (Susceptible-Infected) spreading process, on a temporal social
network: an infected (information possessing) node spreads the information to a susceptible
node whenever a contact happens between the two nodes. Specifically, the link (node pair)
blocking intervention is introduced for a given period and for a given number of links, limited
by the intervention cost. We address the question: which links should be blocked in order to
minimize the average prevalence over time? We propose a class of link properties (centrality
metrics) based on the information diffusion backbone [1], which characterizes the contacts
that actually appear in diffusion trajectories. Centrality metrics of the integrated static net-
work have also been considered. For each centrality metric, links with the highest values are
blocked for the given period. Empirical results on eight temporal network datasets show that
the diffusion backbone based centrality methods outperform the other metrics whereas the
betweenness of the static network, performs reasonably well especially when the prevalence
grows slowly over time.

3.1. INTRODUCTION
The development of sensor technology and electronic communication service provide us ac-
cess to rich human interaction data, including proximity data like human face-to-face con-
tacting, electronic communication data like email exchange, message exchange, phone calls
[2–4]. The recorded human interactions can be represented as temporal networks, in which
each interaction is represented as a contact at a given time step between two nodes. The
availability of such social temporal networks inspires us to explore further how to suppress
the diffusion of (mis)information that unfolds on them? One possible intervention is to block
the links (i.e., remove contacts between node pairs), but only for a given period and given
node pairs limited by intervention cost. In this work, we address the question: which links
should we block for a given period in order to minimize the prevalence averaged over time,
i.e., to prevent or delay the diffusion on temporal networks?

Researchers have worked on problems on temporal networks, e.g., nodes with what tem-
poral topological properties (temporal centrality metrics) should be selected as the seed node
that starts the information diffusion in order to maximize the final prevalence [5–10], links
with what temporal topological properties appear more frequently in a diffusion trajectory [1].
These works explored in general the relation between node’s or link’s topological properties
and its role in a dynamic process on a temporal network. Our question which links should be
blocked to suppress information diffusion will actually reveal the role of a link within a given
period in a diffusion process in relation to the link’s temporal topological properties.

As a starting point, we consider the Susceptible-Infected (SI) model as the information
diffusion process. A seed node possesses the information (is infected) at time t = 0 whereas
all the other nodes are susceptible. An infected node spreads the information to a susceptible
node whenever a contact happens between the two nodes. Given a temporal network within
the observation time window [0,T ] , we would like to choose a given number of links within
a period [ts , te ] to block in order to suppress the diffusion. We propose a comprehensive
set of link centrality metrics that characterize diverse temporal topological properties. Each
centrality metric is used to rank the links and we remove the links with the highest centrality
values for the period [ts , te ]. One group of centrality metrics is based on the information dif-
fusion backbone [1], which characterizes how the contacts appear in an information diffusion
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trajectory thus contribute to the diffusion process. Centrality metrics of the integrated static
network, where two nodes are connected if they have at least one contact, are also consid-
ered. We propose as well the temporal link gravity, generalized from the static node gravity
model [11]. We conduct the SI spreading on the original temporal network as well as the
temporal network after link blocking. Their difference in prevalence accumulated over time
is used to evaluate the performance of the link blocking strategies/metrics. Our experiments
on eight real-world temporal networks show that the diffusion backbone based metrics and
the betweenness of the static integrated networks evidently outperform the rest. The back-
bone based metrics (betweenness of static network) perform(s) better when the prevalence
increases fast (slowly) over time. This observation remains universal for diverse choices of
the blocking period [ts , te ] and number of links to block. Our finding points out that both
temporal and static centrality metrics, with different computational complexities, are crucial
in identifying links’ role in a dynamic process.

The rest of the chapter is organized as follows. We propose the methodology in Sec-
tion 3.2. In Section 3.2.1, the representation of a temporal network is introduced. In Sec-
tion 3.2.2, the construction of diffusion backbone is illustrated. Afterwards, we propose the
link centrality metrics in Section 3.2.3. In Section 3.2.4, the link blocking procedure and the
performance evaluation method are given. We further describe temporal empirical networks
that will be used in Section 3.3. The results of the link blocking strategies on the temporal
empirical networks are analyzed in Section 3.4. We conclude our chapter in Section 7.

3.2. METHODS

3.2.1. REPRESENTATION OF TEMPORAL NETWORKS

A temporal network within a given time window [0,T ] is represented as G = (N ,L ), where
N denotes the node set and the number of nodes is N = |N |. The contact set L = {l ( j ,k, t ), t ∈
[0,T ], j ,k ∈N } contains the element l ( j ,k, t ) representing that a contact between node j and
k occurs at time step t . The integrated weighted network of G is denoted by GW = (N ,LW ).
The weight w j k of link l ( j ,k) counts the number of contacts between node j and node k.

3.2.2. INFORMATION DIFFUSION BACKBONE

The information diffusion backbone was proposed to characterize how node pairs appear in
a diffusion trajectory thus contribute to the actual diffusion process [1]. To illustrate our
method, we construct the backbone for the SI model with infection probability β= 1, which
means that an infected node infects a susceptible node with probability β = 1 whenever the
two nodes have a contact. The backbone can be also constructed for the SI model with any
infection probability β ∈ [0,1].

We first record the spreading tree Ti of each node i by setting i as the seed of the SI
spreading process starting at t = 0. The spreading tree Ti is the union of the contacts through
which the information propagates. The diffusion backbone GB is defined as the union of all

the spreading trees, i.e., GB = (N ,LB ) =
N⋃

i=1
Ti . We use N , LB to represent the node set and

the link set respectively. Each link l ( j ,k) in LB is associated with a weight wB
j k , counting

the number of contacts between j and k, that appear in diffusion trees/trajectories initiated
from every node. An example of how we construct the diffusion backbone GB is given in
Figure 3.1(a-c).
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Figure 3.1: (a) A temporal network G with N = 5 nodes and T = 8 time steps. (b) Spreading trees rooted at every
seed node. The time step on each link denotes the time of the contact through which information diffuses. (c) The
diffusion backbone GB . (d) Diffusion backbone GB∗ confined within ts = 2, te = 5. When we consider the links that
only appear in a time window [ts , te ] = [2,5], the value on the link shows the link weight in GB∗ .

3.2.3. LINK CENTRALITY METRICS
We first propose three backbone based link centrality metrics:

• Backbone Weight. The backbone weight wB
j k of a link l ( j ,k) counts how many times

the link or its contacts appear in spreading trees (trajectories) initialized from every node.
• Time-confined Backbone Weight [ts , te ]. Furthermore, we define the time-confined in-

formation diffusion backbone GB∗ , which generalizes our previous backbone definition. The
backbone GB∗ confined within a time window [ts , te ] is the union of all the spreading trees
but only of the contacts that occur within [ts , te ]. Hence, two nodes in GB∗ are connected if at
least one contact between them within [ts , te ] appears in a diffusion tree rooted at any node.
The weight wB∗

j k of link l ( j ,k) in GB∗ equals to the number of times that contact(s) between
j and k within [ts , te ] that appear in the spreading trees rooted at every node. The link weight
in GB∗ characterizes the frequency that a link, within [ts , te ], contributes to the information
diffusion. An example of the time-confined backbone construction is given in Figure 3.1(d),
where ts = 2, te = 5. Take link l (2,4) as an example. It appears in the spreading trees twice,
both at time step t1, which is beyond range [ts = 2, te = 5]. Therefore, wB∗

24 = 0. Link l (2,3)
appears at time step t8, t3, t3, t3, t3 in all the spreading trees, only the time step t8 is out of
range [2, 5]. Hence, wB∗

23 = 4.
• Backbone Betweenness. The backbone betweenness is defined to measure the link in-

fluence in disseminating global information. Given a spreading tree Ti , the number of de-
scendant nodes of link l ( j ,k) is denoted as B i

j k . We define the backbone betweenness B j k

of link l ( j ,k) as the average number of descendant nodes over all the spreading trees, i.e.,
B j k = 1

N

∑
i∈N B i

j k .
We consider as well the following centrality metrics derived from the integrated weighted

network. Only the links in the integrated network deserves blocking. All the following
metrics are zero for a node pair that they are not connected in the integrated network.

• Degree Product of a link l ( j ,k) is the product of the degrees of its two end nodes in
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GW , i.e., d j ·dk .

• Strength Product. The node strength of a node j in GW is defined as s j = ∑
k∈Γ j

w j k ,
where Γ j is the neighbor set of node j . Hence, the strength of a node equals to the total
weight of all the links incident to this node. We define strength product of a link l ( j ,k) as
s j · sk .

• Static Betweenness. The static betweenness centrality for a link is the number of shortest
paths between all node pairs that pass through the link. To compute the shortest path, we
define the distance of each link in the integrated network GW inversely proportional to its
link weight in GW . This choice follows the assumption that links with a higher weight in GW

can spread information faster [12].

• Link Weight. The link weight w j k of a link l ( j ,k) in GW tells the total number of
contacts between node j and k in the temporal network G within the observation window
[0,T ].

• Time-Confined Link Weight [ts , te ] refers to the number of contacts between two ending
nodes that occur in [ts , te ].

• Temporal Link Gravity. The link gravity between node j and k has been defined by
regarding the node degree as the mass, the distance H j k of the shortest path on static network
GW between j and k as the distance. The static gravity of node j can be further defined as∑

k 6= j
d j dk

H 2
j k

. The static node gravity has been used to select the seed node of an information

diffusion process in order to maximize the prevalence [11], motivated by the fact that it
contains both the neighborhood and the path information of a node. We generalize the gravity
definition to temporal networks. The temporal link gravity of l ( j ,k) is defined as 1

2 (
d j dk

Q2
j k

+
d j dk

Q2
k j

), where Q j k is the number of links of the shortest path from j to k in all the directed

spreading trees (see Figure 3.1(b)). Specifically, the shortest directed path from j to k is
computed in each spreading tree rooted at one seed node. We consider the shortest among
these N shortest directed paths and its length (number of links) is Q j k .

3.2.4. LINK BLOCKING AND EVALUATION

We illustrate the link blocking procedure and the evaluation method to measure the effec-
tiveness of link blocking strategies. Given a temporal network, we specify the time window
to block links as [ts , te ]. For each time window [ts , te ], we count the number of node pairs
|L ∗

W (ts , te )| that have at least one contact within [ts , te ] and block 5%,10%,20%,40%,60%,80%
and 100% of |L ∗

W (ts , te )| links respectively using each centrality metric. The number of links
to be blocked is further expressed as the fraction f of the number of links in the integrated
network. For each centrality metric, we block the given fraction f of links that have the high-
est values for the given period [ts , te ], i.e., remove all the contacts within [ts , te ] associated
with the selected links.

We perform the SI spreading model by setting each node as the seed node on the origi-
nal temporal network as well as the temporal network after the link blocking. The average
prevalence is the average over each possible seed node. The average prevalence of the SI
diffusion at any time t when the selected fraction f of links are blocked within [ts , te ] and
when no links are blocked is denoted as ρ f (t ) and ρo(t ) respectively, where t ∈ [0,1, ...,T ].
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The effectiveness of each centrality metric is evaluated by

ρD ( f ) =
∑T

t=1(ρ0(t )−ρ f (t ))∑T
t=1ρ0(t )

(3.1)

which corresponds to the area below the original prevalence ρo(t ) and above the prevalence
curve ρ f (t ) with link blocking normalized by the area under ρo(t ) (shown in Figure 3.2(b)).
A larger ρD ( f ) implies a more effective link block strategy in suppressing the SI spreading.

3.3. DATA DESCRIPTION
In this chapter, we use eight temporal network datasets to investigate the link blocking prob-
lem in temporal networks. The dataset can be classified into two categories according to the
contact type, i.e., proximity (Haggle [13], HighSchool2012 (HS2012) [14], HighSchool2013
(HS2013) [15], Reality Mining (RM) [16], Hypertext 2009 (HT2009) [17], Primary School
(PS) [18] and Infectious [17]) and electronic communication
(Manufacturing Email(ME) [19]). The detailed topological features of these datasets are
shown in Table 3.1, including the number of nodes, time steps, contacts, the number of links,
link density, average degree and average link weight in GW .

On each temporal network, we perform the SI spreading process starting at every node as
the seed. The average prevalence ρ over time for each dataset is shown in Fig. 3.2(a), where
the time step is normalized by the time span T of the observation time window. The spreading
speed, i.e., how fast the prevalence grows over time, is quite different across networks. Two
networks (Haggle and Infectious) show slow and relative linear increase in prevalence over
times, due to the low link density in these two networks (Table 3.1). However, the prevalence
in the other networks, increases dramatically at the early stage of the spreading process and
converges to about 100%.

Table 3.1: Basic properties of the empirical networks. The number of nodes (N ), the original length of the obser-
vation time window (T in number of steps), the total number of contacts (|L |) and the number of links (|LW |), link
density, average node degree (〈d〉) and average link weight 〈w〉 in GW are shown.

Network N T |L | |LW | link density 〈d〉 〈w〉
Haggle 274 15,662 28,244 2,124 0.0568 15.50 13.30
HS2012 180 11,273 45,047 2,220 0.1378 24.67 20.29
HS2013 327 7,375 188,508 5,818 0.1092 35.58 32.40
HT2009 113 5,246 20,818 2,196 0.3470 38.87 9.48

Infectious 410 1,392 17,298 2,765 0.0330 13.49 6.26
ME 167 57,791 82,876 3,250 0.2345 38.92 25.50
PS 242 3,100 125,773 8,317 0.2852 68.74 15.12
RM 96 33,452 1,086,404 2,539 0.5568 52.90 427.89

3.4. EMPIRICAL RESULTS
In this section, we evaluate the effectiveness of using aforementioned centrality metrics to
select the links to be blocked within [ts , te ]. We consider diverse time windows [ts , te ] as
listed in Table 3.2. Intervention is possibly introduced at different diffusion phases. Hence,
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Figure 3.2: (a) Evolution of the average prevalence ρ of the SI model (β = 1) for the eight empirical datasets. (b)
An example of the area difference between the original spreading curve (ρo ) and the curve (ρ f ) after blocking f
fraction of links.

ts ∈ {T10%I ,T20%I ,T30%I ,T40%I ,T50%I }, where T10%I is the time when the average prevalence
without blocking reaches ρ = 10% (see Fig. 3.2(a)). The duration of each time window is set
as the duration for the average prevalence to increase 10% just before ts . If ts = T20%I , the
duration of the time window is te − ts = T20%I −T10%I . If ts = T10%I , the duration of the time
window is te − ts = T10%I −T0%I = T10%I . The number of links to block has also been chosen
systematically. We take [ts = T10%I , te = 2T10%I ] as an example to illustrate our findings.

Table 3.2: The time window [ts , te ] we choose for link blocking based on the average prevalence ρ when β= 1. For
instance, T10%I represents the time when the prevalence reaches ρ = 0.1.

Net wor k [T10%I ,2T10%I ] [T20%I ,2T20%I −T10%I ] [T30%I ,2T30%I −T20%I ]
Haggle [3293, 6586] [8416, 13539] [9523, 10630]
HS2012 [403, 806] [675, 947] [925, 1175]
HS2013 [50, 100] [113, 176] [195, 277]
HT2009 [332, 664] [377, 422] [439, 501]

infectious [410, 820] [553, 696] [751, 949]
ME [168, 336] [285, 402] [461, 637]
PS [136, 272] [276, 416] [287, 298]
RM [5, 10] [34, 63] [111, 188]

Net wor k [T40%I ,2T40%I −T30%I ] [T50%I ,2T50%I −T40%I ]
Haggle [12440, 15357] [12668, 12896]
HS2012 [1043, 1161] [1109, 1175]
HS2013 [236, 277] [369, 502]
HT2009 [568, 697] [790, 1012]

infectious [955, 1159] [1062, 1169]
ME [731, 1001] [1387, 2043]
PS [323, 359] [347, 371]
RM [133, 155] [257, 381]

Figure 3.3 shows the effectiveness of each centrality metric as a function of f , which is the
number of links blocked normalized by the number of links in the integrated network. The
random selection of links from those that have at least one contact within [ts , te ] is used as a
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baseline, in which each point is the averaged over 100 realizations.
We find that four link centrality metrics always outperform the random selection: static

betweenness, backbone weight, time-confined backbone weight [ts , te ] and backbone be-
tweenness. In Haggle and infectious, the best performance comes from static betweenness,
whereas the time-confined backbone weight [ts , te ] outperforms the other metrics in the other
six networks. Figure 3.2 shows that the prevalence grows slowly over time in Haggle and
infectious. Hence, the static betweenness seems a suitable link blocking strategy for net-
works with a slow spreading speed. However, for networks where information propagates
fast, the time-confined backbone weight [ts , te ] is a good indicator to select the links to block.
Furthermore, we find that time-confined link weight [ts , te ] outperforms link weight and time-
confined backbone weight [ts , te ] outperforms the backbone weight. This implies that con-
sidering the link temporal topological features within the blocking time window is crucial for
the link selection.

For a given time window [ts , te ], we define the average performance of a centrality metric
as the area under ρD ( f ) over the whole range f . The average performance is further nor-
malized by the maximal average performance among all the centrality metrics for the given
[ts , te ]. This average performance over diverse numbers of links to be blocked allows us to
evaluate whether the performance of these centrality metrics is stable when the time window
varies. Figure 3.4 verifies that our findings within [ts = T10%I , te = 2T10%I ] from Figure 3.3
can be generalized to the other time windows.
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Figure 3.3: The effectiveness ρD ( f ) of each centrality metric in selecting the links to block within time window
[T10%I ,2T10%I ]. Each point on the curve corresponds to block 5%,10%,20%,40%,60%,80% and 100% of |L ∗

W (ts =
T10%I ,2T10%I )| links, respectively. The x-axis f is obtained by the number of links blocked normalized by the
number of links in the integrated network.
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Figure 3.4: Average link blocking performance for each centrality metric over different number of blocked links,
within different time windows and in different networks. The x axis shows the time windows. We only show the
starting time ts of each time window for simplicity and the ending time of each window can be found in Table 3.2.

3.5. CONCLUSION
In this chapter, we investigate how different link blocking strategies could suppress the infor-
mation diffusion process on temporal networks. The spreading process is modeled by the SI
model with infection probability β= 1. We propose diverse classes of link centrality metrics
to capture different link temporal topological properties, including the information diffusion
backbone based metrics and the static link centrality metrics. According to each metric, we
select a given number of links that have the highest centrality value and block them for the
given period [ts , te ]. The corresponding effect of such link blocking is evaluated via the extent
that the prevalence is suppressed over time.

The empirical results from eight temporal network datasets show that four metrics out-
perform the random link selection, that is, backbone weight, backbone weight [ts , te ], back-
bone betweenness and static betweenness. An interesting finding is that the backbone based
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metrics, especially time-confined backbone weight [ts , te ], perform well in networks where
information gets prevalent fast. However, the static betweenness outperforms in networks
where information propagates slowly. These observations hold for different choices of time
window and the number of links to be blocked. Our findings point out the importance of both
temporal and static centrality metrics in determining links’ role in a diffusion process. More-
over, the time-confined metrics that explicitly explore the property/role of the contacts that
occur within the time window in the global diffusion process seems promising in identifying
the links to block.

In this work, we select links based on the centrality metrics that are derived from the
temporal network information over the whole observation window [0,T ]. Our study unravels
actually the relation between links’ or contacts’ temporal topological properties and their role
in a diffusion process. A more challenging question is how to identify the links to block based
on the temporal network information observed so far within [0, ts ].



REFERENCES

3

45

REFERENCES
[1] X.-X. Zhan, A. Hanjalic, and H. Wang, Information diffusion backbones in temporal

networks, Scientific reports 9, 6798 (2019).

[2] P. Holme, Modern temporal network theory: a colloquium, The European Physical Jour-
nal B 88, 234 (2015).

[3] T. Takaguchi, N. Sato, K. Yano, and N. Masuda, Importance of individual events in
temporal networks, New Journal of Physics 14, 093003 (2012).

[4] L. J. Peters, J.-J. Cai, and H. Wang, Characterizing temporal bipartite networks-
sequential-versus cross-tasking, in International Conference on Complex Networks and
their Applications (Springer, 2018) pp. 28–39.

[5] L. E. Rocha and N. Masuda, Random walk centrality for temporal networks, New Jour-
nal of Physics 16, 063023 (2014).

[6] P. Grindrod, M. C. Parsons, D. J. Higham, and E. Estrada, Communicability across
evolving networks, Physical Review E 83, 046120 (2011).

[7] E. Estrada, Communicability in temporal networks, Physical Review E 88, 042811
(2013).

[8] C. Qu, X. Zhan, G. Wang, J. Wu, and Z.-k. Zhang, Temporal information gathering
process for node ranking in time-varying networks, Chaos: An Interdisciplinary Journal
of Nonlinear Science 29, 033116 (2019).

[9] C. Li, Q. Li, P. Van Mieghem, H. E. Stanley, and H. Wang, Correlation between central-
ity metrics and their application to the opinion model, The European Physical Journal
B 88, 65 (2015).

[10] R. Pastor-Satorras, C. Castellano, P. Van Mieghem, and A. Vespignani, Epidemic pro-
cesses in complex networks, Reviews of modern physics 87, 925 (2015).

[11] Z. Li, T. Ren, X. Ma, S. Liu, Y. Zhang, and T. Zhou, Identifying influential spreaders
by gravity model, Scientific reports 9, 8387 (2019).

[12] M. E. Newman, Scientific collaboration networks. ii. shortest paths, weighted networks,
and centrality, Physical review E 64, 016132 (2001).

[13] A. Chaintreau, P. Hui, J. Crowcroft, C. Diot, R. Gass, and J. Scott, Impact of human
mobility on opportunistic forwarding algorithms, IEEE Transactions on Mobile Com-
puting , 606 (2007).

[14] J. Fournet and A. Barrat, Contact patterns among high school students, PloS One 9,
e107878 (2014).

[15] R. Mastrandrea, J. Fournet, and A. Barrat, Contact patterns in a high school: a com-
parison between data collected using wearable sensors, contact diaries and friendship
surveys, PloS One 10, e0136497 (2015).

[16] N. Eagle and A. S. Pentland, Reality mining: sensing complex social systems, Personal
and ubiquitous computing 10, 255 (2006).



3

46 REFERENCES

[17] L. Isella, J. Stehlé, A. Barrat, C. Cattuto, J.-F. Pinton, and W. Van den Broeck, What’s
in a crowd? analysis of face-to-face behavioral networks, Journal of theoretical biology
271, 166 (2011).

[18] J. Stehlé, N. Voirin, A. Barrat, C. Cattuto, L. Isella, J.-F. Pinton, M. Quaggiotto,
W. Van den Broeck, C. Régis, B. Lina, et al., High-resolution measurements of face-
to-face contact patterns in a primary school, PloS One 6, e23176 (2011).

[19] R. Michalski, S. Palus, and P. Kazienko, Matching organizational structure and social
network extracted from email communication, in International Conference on Business
Information Systems (Springer, 2011) pp. 197–206.



4
INFORMATION GATHERING

PROCESS FOR INFLUENTIAL
NODES IDENTIFICATION IN

TEMPORAL NETWORKS

This chapter is based on the publication: C. Qu, X.-X. Zhan, G. Wang, J. Wu and Z.-K. Zhang, Temporal Infor-
mation Gathering Process for Node Ranking in Time-varying Networks, Chaos: An Interdisciplinary Journal of
Nonlinear Science, 29(3), 033116 (2019). The PhD candidate provided the initial idea, initial implementation and
had significant contribution to write the paper.

47



4

48
4. INFORMATION GATHERING PROCESS FOR INFLUENTIAL NODES IDENTIFICATION

IN TEMPORAL NETWORKS

In this chapter, we explore how to identify influential nodes for an information diffusion pro-
cess on a temporal network. We model the information diffusion process by a susceptible-
infected-recovered (SIR) model. How influential a node is is quantified by the final spreading
size when the spreading process originates at the node. We propose a temporal information
gathering process (TIG-process) to identify influential nodes based on the temporal network
structure. The TIG-process iteratively gathers the information from the neighbors of a node
as a nodal property, which is called the influence score. The neighbors of a node contains not
only the direct neighbors but also nearby-nodes that are within a given distance along a path.
Two types of temporal paths are introduced to identify the neighbors of a node in a temporal
network, i.e., fastest arrival path and temporal shortest path. For every node, we compute the
spreading size when the node is the seed node to start the spreading process which is modeled
by the SIR model and also its influence score from the TIG-process. We compute the Kendall
correlation coefficient between the spreading size and influence score. A higher Kendall cor-
relation coefficient indicates a better performance of using TIG-process to identify influential
nodes. We compare the identification performance of TIG-process with the benchmark met-
rics. Experimental results from eight temporal empirical networks show that the TIG-process
using the fastest arrival path to identify neighbors outperforms the benchmark metrics. The
best performance of identifying influential nodes based on the TIG-process can be achieved
with a small value of n, which indicates the maximal distance we need to consider when
defining a node’s neighborhood, across empirical data sets. Our work sheds light on how
to choose a seed for information diffusion on a temporal network to maximize the spreading
size.

4.1. INTRODUCTION
A node is called influential if it can spread information widely when serving as the seed
to start the spreading of a piece of information [1]. Finding influential nodes helps to pro-
mote products in viral marketing [2], to control the spread of rumors [3] and to facilitate
the diffusion of useful information. Centrality metrics that describing nodal network prop-
erties, such as neighborhood-based centrality metrics and path-based centrality metrics, have
been proposed to identify influential nodes in static networks [4–6]. One of the most rep-
resentative neighborhood-based centrality metrics is the degree centrality. The definition of
degree centrality is that nodes that have more directed neighbors are more influential. De-
gree centrality is a local metric with low computational complexity but has low identification
power [7]. Path-based centrality metrics, such as Katz centrality [8], consider global topo-
logical structure of the network and usually show high identification performance . However,
the computational complexity of these metrics is also high, and thus they are difficult to be
applied to large-scale networks [1].

Despite the progress of using nodal centrality metrics to identify node’s role in a dynamic
process in a static network, identifying influential nodes in a temporal network is still chal-
lenging and far from well understood. [9–14]. In a temporal network, a node may play dif-
ferent roles at different time in a spreading process. For example, a node that only has many
contacts before the information starts to spread but never has contacts during the information
spreading process has no influence on the process. There are some pioneering researches
concentrated on ranking influential nodes in temporal networks [15–17]. For example, some
researchers first cut the temporal networks into a series of static snapshots and then estimate
a node’s influence using the average value of its centrality over all static snapshots [15, 16].
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The nodal centrality metrics obtained in this way are the generalization of the corresponding
static ones. For instance, the temporal degree, temporal closeness and temporal betweenness
[15] belong to this class of methods. Even though these methods may gain some improve-
ment in finding influential nodes compared to static metrics in temporal networks, cutting the
temporal networks into static snapshots and taking the average value over all the snapshots
may loss temporal information, e.g., the time order of contacts is ignored.

We aim to identify influential nodes in a temporal network. We model the information
diffusion process by a discrete susceptible-infected-recovered (SIR) model. In the SIR model,
an infected node transmits the information to a susceptible node with a give infection prob-
ability when they have a contact. An infected node has a probability at each time step to
forget the information thus entering the recovered state, whereas the node can neither be in-
fected or infect any other anymore. In a temporal network, a node may have contacts with
the other nodes at different time steps. If we set the node as the seed node and randomly
choose a time from the time steps when the node has contact(s) as the starting time of the
information spreading, we can get a final spreading size for one run of the spreading process.
We define the mean spreading size for a given seed node as the average over multiple final
spreading sizes derived from different runs of the spreading process. The mean spreading size
of a node quantifies its spreading capacity in a temporal network. A node that has a larger
mean spreading size is more influential. Information diffuses along the temporal paths on a
temporal network. A node with more temporal paths may better connect to the rest of the
network, thus may contribute more to a spreading process. Therefore, in this chapter, we ex-
plore how temporal paths could help in identifying influential nodes. We propose a temporal
information gathering process (TIG-process) to identify influential nodes for the information
diffusion process. We define neighbors of a node as the nodes within a certain distance to the
node along a temporal path. The TIG-process, gathers the properties not only of the given
node but also of the properties of its neighbors and returns the TIG-score as a nodal property,
which is further used to estimate the nodal influence in the spreading process. TIG-process is
controlled by four parameters, i.e., (n, f ,DT ,c), where n is the temporal gathering depth, the
distance within which nodes along a temporal path are defined as neighbors, f is the weight-
ing function, DT is the temporal distance matrix that determines the neighbors of a node, c
describes the initial TIG-score of every node. For each node, we initialize a score and then
iteratively gather neighborhood information to obtain a TIG-score. For the initial score, we
use classical centrality metrics, such as static degree, static closeness, node strength, static
betweenness, eigenvector centrality [15, 17]. We use two kinds of temporal distance, i.e.,
fastest arrival distance and temporal shortest distance, to construct the distance matrix. We
perform experiments of using the TIG-process to identify influential nodes on eight temporal
networks. We find that the fastest arrival distance based TIG-process performs better in iden-
tifying influential nodes compared to the benchmark metrics and the TIG-process based on
temporal shortest distance. TIG-process performs the best with small value of n.

The rest of the chapter is organized as follows. In Section 4.2, we first show the basic
representation of a temporal network as well as notations that will be used. Then we give
a detailed description of the spreading capacity of a node. Node with a higher spreading
capacity is more influential for the spreading process on a temporal network. Finally, we show
the TIG-process and benchmark metrics for influential node identification. The empirical
datasets are given in Section 4.3 and the results are shown in Section 4.4. We discuss and
conclude in Section 4.5.
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4.2. METHOD
In this section, we first illustrate the notations that will be used in this chapter. Then, we step
into how to define a node spreading capacity based on an SIR spreading model. Node with a
higher spreading capacity is more influential. Finally, we propose the temporal information
gathering process as well as benchmark metrics to quantify diverse nodal properties that will
be used to identify influence nodes.

4.2.1. BASIC NOTATIONS AND DEFINITIONS

Let GT = (V ,E T ) be a temporal network, where V is the node set, E T is the contact set
and [1,T ] is the observation time window. A contact eT ∈ E T is given by (vi , v j , t ), where
vi , v j ∈ V , t represents the time when the contact happens. At each time t ∈ [1,T ], the
adjacency matrix is denoted as At , where At (i , j ) = 1 if there is a contact between node vi

and v j at time t , otherwise, At (i , j ) = 0. The unweighted aggregated static network of GT is
given by G = (V ,E), where E is the link set. A link exists in E if the two end nodes at least
have one contact in GT . The adjacency matrix of G is A, in which A(i , j ) = 1 represents nodes
vi and v j are connected, otherwise A(i , j ) = 0. In static network, the distance between two
nodes is given by length of the shortest path between them. We use the distance matrix D to
denote the distance between all possible node pairs in G . An entry D(i , j ) of D represents the
distance between the two corresponding nodes vi and v j .
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Figure 4.1: (A) A schematic representation of a temporal network with nodes {v1, v2, . . . , v6} and contacts
{e1,e2, . . . ,e6}. There are two paths between node v1 and v4, as shown in B and C. (B) The fastest arrival path
between node v1 and v4. (C) The shortest temporal path between node v1 and v4.

In a temporal network GT , we have several ways to define the distance between nodes by
considering both the topological distance along the path and the duration time of the path. We
introduce two different ways of defining temporal distance between two nodes, i.e., fastest
arrival distance and temporal shortest distance [18], as follows.
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• Temporal path: A temporal path in GT is a node sequence P = 〈v1, v2, · · · , vk , vk+1〉,
where (vi , vi+1, ti ) ∈ E T is the i -th contact on P for 1 ≤ i ≤ k, and ti ≤ ti+1, 1 ≤ i < k.
The start time of P is tst ar t (P ) = t1 and the end time of P is tend (P ) = tk . We define
the temporal path length l (P ) of P as the number of links on path P . Given a time
period [tα, tω], let P(vi , v j , [tα, tω]) = {P : P is a temporal path from vi to v j such that
tst ar t (P ) ≥ tα and tend (P ) ≤ tω}.

• Fastest arrival path: The fastest arrival path between node vi and node v j is the
path that goes from vi to v j taking the shortest time counted from the starting time
of a temporal network, i.e., t = 1. In other words, the fastest arrival path is the first
arrival path from the source node vi to the target node v j . P ∈ P(vi , v j , [1,T ]) is the
fastest arrival path if tend (P ) = min{tend (P ′) : P ′ ∈ P(vi , v j , [1,T ])}. The fastest arrival
distance between node vi and node v j is measured by the length of the fastest arrival
path between them. In Figure 4.1(A), we show a temporal network with six nodes
(i.e., v1, v2, v3, v4, v5, v6) and 6 contacts (i.e., e1,e2,e3,e4,e5,e6) between nodes. For
nodes v1 and v4, there are two temporal paths between them, i.e., P1 = 〈v1, v2, v3, v4〉
and P2 = 〈v1, v2, v4〉. We show P1 and P2 in Figure 4.1(B) and (C), respectively. The
fastest arrival path between v1 and v4 is P1, with l (P1) = 3.

• Temporal shortest path: The temporal shortest path from vi to v j is a path for which
the overall traversal time needed is the shortest. Therefore, P ∈ P(vi , v j , [tα, tω]) is
a temporal shortest path if l (P ) = min{l (P ′) : P ′ ∈ P(vi , v j , [tα, tω])}. The temporal
shortest distance between node vi and node v j is the length of the temporal shortest
path between them. Figure 4.1(C) shows the temporal shortest path P2 between v1 and
v4, i.e., l (P2) = 2.

• Temporal distance matrix: Based on the distance between nodes in a temporal net-
work, we define the temporal distance matrix DT , where each element DT (i , j ) rep-
resents the temporal distance between node vi and v j . The temporal distance can be
either fastest arrival distance or temporal shortest distance.

• Distance index matrix: For every distance value s from DT , we define a distance
index matrix DT

s as a 0-1 matrix, where

DT
s (i , j ) =

{
1 DT (i , j ) = s

0 otherwise.
(4.1)

Therefore, we have DT =
+∞∑
s=0

(s ·DT
s ). Because each temporal path from a temporal

network follows the time order, the distance matrix DT and the index matrix DT
s are

both asymmetric.

4.2.2. SPREADING CAPACITY
We use discrete susceptible-infected-recovered (SIR) model to mimic information diffusion
process on a temporal network. There are three states in an SIR model, i.e., susceptible (S),
infected (I) and recovered (R). An infected node may infect each of its susceptible neighbors
with infection probability β through the contact between them. Also, an infected node may
recover to recovered state with a probability µ. Given a temporal network GT = (V ,E T ), SIR
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spreading process follows the time order of the contacts. For every node vi as the seed, we
illustrate how to perform the SIR spreading process to obtain its spreading capacity.

Suppose the time when node vi has contacts with other nodes is given by set Tvi =
{t 1

vi
, t 2

vi
, · · · , t m

vi
}. For node vi as the seed, we randomly select time t j

vi
∈ Tvi (1 ≤ j ≤ m)

as the starting time of the spreading process. Thus, node vi is initially infected at time t j
vi

, all
the other nodes are in susceptible state. We perform the SIR spreading process from t j

vi
until

time T . The final spreading size started from node vi at time t j
vi

can be denoted as R j
vi

. At
time step T , a node can be in one of the three states, i.e., susceptible, infected and recovered.
Therefore, we define the final spreading size R j

vi
at time T as the number of infected nodes

and recovered nodes.
For node vi , we run the SIR spreading process starting from it for 1000 realizations. In

each realization, we randomly choose time t j
vi

from Tvi as the starting time of the diffusion
process. Therefore, the final spreading size set from 1000 realizations can be recorded as
R(vi ) = {R1

vi
,R2

vi
, · · · ,R1000

vi
}. The mean spreading size Rmean(i ), given by the average over

set R(vi ), is defined to quantify a node’s spreading capacity. A node with larger value of
Rmean(i ) has larger spreading capacity.

4.2.3. TEMPORAL INFORMATION GATHERING PROCESS
In this section, we propose the temporal information gathering process, i.e., TIG-process, to
measure nodal influence in the spreading process in a temporal network. Given a node vi ,
we use TIG-score gi to represent its influence score obtained from TIG-process. The process
is given as follows. For each node vi , we first assign an initial score ci , which is viewed
as the 0-order TIG-score g 0

i . Therefore, we use g (0) = (g (0)
1 , g (0)

2 , . . . , g (0)
|V |) = (c1,c2, . . . ,c|V |) to

represent the initial scores for all the nodes in a network. The TIG-process is iterated based
on these initial scores. The 1st-order TIG-process for each node is calculated by gathering
the information from its direct neighbors, i.e., g (1) = DT

1 g (0). Similarly, the nth-order TIG-
process for node vi is gathering the information of its neighborhood with a distance equal to
or less than n from vi , i.e., N≤n(i ). Thus, the nth-order TIG-process is given by

g (n) =
n∑

s=0
f (s) ·DT

s · g (0), (4.2)

where f is a function of s, which weights the influence of sth-order neighbors and DT
s is the

distance index matrix. The nth-order TIG-score is denoted by g (n). We use g (n)
i to indicate

the influence score of node vi . A larger value of g (n)
i implies node vi is more influential in a

spreading process in the network.
From Eq. 4.2, we know that TIG-process is determined by a quadruple (n, f ,DT ,c) and

the four variables are independent to each other. The variable n controls the information
gathering depth, which varies from 1 to T . The weighting function f is a function of s, which
weights the distance effect on the node influence. It can take different formations, such as
fs = 1/s and fs = 1. In this chapter, we use fs = 1, which means for each node vi , we treat
all the nodes in N≤n(i ) equally. We use the fastest arrival distance and temporal shortest
distance as the temporal distance in matrix DT , respectively. When we use fastest arrival
distance, we call the TIG-process as FAD-based TIG-process (FAD-TIG for simplification).
Similarly, if we use temporal shortest distance as the distance, the process is named as STD-
based TIG-process (STD-TIG for simplification). The initial score c of every node is given
by the benchmark metrics illustrated in next sub-section.
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4.2.4. BENCHMARK METRICS
To compare with TIG-process in identifying influential nodes in a temporal network, we
introduce state-of-the-art metrics that were used to measure influential nodes before. The
metrics can be classified into two categories, i.e., metrics based on the corresponding aggre-
gated static network G and metrics based on the temporal network GT . These benchmark
metrics are also used as the initial score of T IG-process.

• Static betweenness (SB) [19] is defined based on the aggregated static network G . The
static betweenness SB(i ) of a node vi is the number of shortest paths that pass through
node vi . The formula is given by

SB(i ) = ∑
h 6=i 6= j

σh j (i )

σh j
, (4.3)

where σh j is the total number of shortest paths from vh to v j , and σh j (i ) is the number
of shortest paths from vh to v j passing through vi in a static network.

• Static closeness (SC) [20] of node vi is defined on aggregated static network G and is
given by the reciprocal of the sum of its distances from all the other nodes, namely

SC (i ) = |V |−1∑
v j ∈V \vi

D(i , j )
, (4.4)

where D(i , j ) is the distance between nodes vi and v j in G and V \vi indicates the node
set except vi .

• Static degree centrality (SD) of node vi is defined as the degree in the unweighted
aggregated static network G , i.e.,

SD(i ) =∑
j

A(i , j ). (4.5)

• Node strength centrality (NS) of node vi counts the number of times node vi has con-
tacts with other nodes in a temporal network GT .

N S(i ) =
T∑

t=1

∑
j

At (i , j ). (4.6)

• Static eigenvector centrality (SEC) [21]. Given the adjacency matrix A of unweighted
aggregated static network G , SEC (vi ) is equal to the vi -th component of the eigenvec-
tor corresponding to the largest eigenvalue.

4.3. DATASETS
We show the temporal network datasets that are used in this chapter, including five physical
contact networks and three virtual contact networks. Some basic properties of the datasets
are listed in Table 4.1. Besides, the coefficient of variation 1 of the fastest arrival distance
(C f ad ) and the temporal shortest distance (Cstd ) from each node to the others is also given in
the table.
1The coefficient of variation is used to measure the extent of variability in relation to the mean value of a dataset,
which is also known as relative standard deviation. The coefficient of variation is defined as the ratio of the standard
deviation to the mean: C = st and ar d devi ati on

mean value .
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Table 4.1: Basic properties of the temporal networks. We show the number of nodes (|V |), the length of the observa-
tion time window (T ), the total number of contacts (|ET |). In addition, C f ad denotes the coefficient of variation of
the fastest arrival distance from each node to the others. Cstd indicates the coefficient of variation of the temporal
shortest distance from each node to the others.

Network |||V ||| T |||E T ||| C f ad Cst d

HS2011 126 42 28,561 0.5798 0.3405
HS2012 180 87 45,047 0.6196 0.3664
PS 242 20 125,773 0.5288 0.1188
WP 92 108 9,827 0.6191 0.4102
HC 75 90 32,424 0.8411 0.7956
EEC 771 68 38,328 1.2913 0.6522
ME 167 268 82,927 0.9081 0.6629
Collegemsg 1898 188 61,726 2.4579 1.0645

Figure 4.2: Distribution of the fastest arrival distance (FAD) between nodes in each dataset.

• High School 2011 (2012) (HS2011, HS2012) [22]. The datasets record the contacts
between individuals in a high school in Marseilles, France.

• Primary School (PS) [23]. The dataset records the contacts between individuals in a
primary school.

• Workplace (WP) [24]. The dataset contains contacts between individuals in an office
building.

• Hospital ward contact (HC) [25]. The dataset records contacts between individuals in
a hospital ward in Lyon, France.

• Email-Eu-Core (EEC) [26]. The dataset records email contacts between individuals
from a large European research institution.
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Figure 4.3: Distribution of the temporal shortest distance (STD) between nodes in each datasets.

• Manufacturing emails (ME) [27]. The dataset records email contacts between employ-
ees of a mid-size manufacturing company.

• CollegeMsg (Collegemsg) [28]. This network records contacts between individuals at
the University of California, Irvine.

The fastest arrival distance (FAD) and temporal shortest distance (STD) are the two types
of distance we use in the TIG-process. We give the distribution of the fastest arrival distance
(FAD) and temporal shortest distance (STD) in Figure 4.2 and Figure 4.3, respectively. For
a given network, the distribution of STD is heterogeneous, indicating that most of the nodes
tend to have short temporal shortest distance. However, the distribution of the fastest arrival
distance is more homogeneous. This implies if we use the fastest arrival paths to define a
node’s neighbor, the node tends to have high-order neighbors.
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4.4. RESULTS
We evaluate the performance of TIG-process as well as the benchmark metrics in identifying
influential nodes for a spreading process. The real spreading capacity of a node vi is given
by the mean spreading size Rmean(i ) conducted by the SIR spreading process. Taking TIG-
process as an example, we illustrate how to evaluate its performance. We first get a TIG-score
list by computing each node’s TIG-score. Then we conduct the SIR model on the network
to obtain each node’s mean spreading size. Therefore, we compute the Kendall ranking
correlation coefficient 2 τ between the TIG-score list and mean spreading size list. The
higher value of τ indicates the better a node ranking metric in identifying influential nodes.

We use static betweenness (SB), static closeness (SC), static degree (SD), Node strength
(NS) and static eigenvector centrality (SEC), respectively, as the initial score of the TIG-
process. Recall that FAD-TIG and STD-TIG are two kinds of TIG-process based on the
temporal distance, i.e., fastest arrival distance and temporal shortest distance, respectively.
We set the infection probability β= 0.1 and recovery probability µ= 0.01 for the SIR model
to guarantee the spreading process can spread out from the seed node.
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Figure 4.4: The evolution of Kendall correlation coefficient between FAD-TIG-score and Rmean with the increasing
of information gathering depth n for eight temporal network datasets. Different colors indicate using different
benchmark metrics as the initial score for the TIG-process. When n = 0, the Kendall correlation is between the
influential score derived from the benchmark metrics and the mean spreading size.

The results are shown in Figure 4.4 and Figure 4.5 for FAD-TIG and STD-TIG, respec-
tively. The Kendall ranking correlation coefficient between FAD-TIG score (STD-TIG score)
and Rmean is denoted as τ. We show how the gathering depth n and the initial score of the

2The Kendall correlation coefficient τ is defined as follows. Let (x1, y1), (x2, y2), . . . , (xn , yn ) be the observations of
two joint random variables X and Y . Then Kendall rank correlation coefficient τ ∈ [−1,1] is defined as

τ= 1

n(n −1)

∑
i 6= j

sgn(xi −x j )sgn(yi − y j ). (4.7)

If τ takes the value of +1, then the agreement of the two rankings is perfect. If τ is −1, then one list is the reverse
of the other. If τ is close to zero, then the two rankings are independent.
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Figure 4.5: The evolution of Kendall correlation coefficient between STD-TIG-score and Rmean with the increasing
of gathering depth n for eight temporal network datasets. Different colors indicate using different benchmark metrics
as the initial score for the TIG-process. When n = 0, the Kendall correlation is between the influential score derived
from the benchmark metrics and the mean spreading size..

TIG-process affect the performance of identifying influential nodes. When we use the fastest
arrival distance as the temporal distance matrix (Figure 4.4), the Kendall ranking correla-
tion between the FAD-TIG-score and Rmean increases with the information gathering depth
n when n is small. Actually, the information gathering depth n = 0 corresponds to use each
of the benchmark metrics directly as the influence score. The increase of τ with n indicates
that FAD-TIG performs better than the benchmark metrics in identifying influential nodes.
Also, the information gathering from the high-order neighbors generated by the fastest arrival
path can help to improve the identification performance. We find that, in different networks,
the best performance varies with the use of initial score. For example, TIG-process with
SEC performs the best in networks HS2011, WP and Collegemsg. But TIG-process with NS
performs the best in networks EEC and ME. The highest Kendall correlation value τ can be
achieved with small n almost in all the networks with different settings of initial score. In
Figure 4.5, we show the results of using temporal shortest distance as the temporal distance
matrix. In seven networks, τ decreases with the increase of n, which implies the STD-TIG
performs worse than the benchmark metrics. In Collegemsg, STD-TIG performs better than
the benchmark metrics. Taking Figure 4.4 and Figure 4.5 together, FAD-TIG shows better
performance than STD-TIG as well as the benchmark metrics. Thus, using the fastest arrival
distance as the temporal distance matrix in the TIG-process can better identify influential
nodes for the spreading process in a temporal network.

The assumption of the information gathering process is based on the fact that the influ-
ence of the nodes is related to their neighbors in a temporal network, not only immediate
neighbors but also higher-order neighbors. Therefore, when n is small, we are gathering in-
formation from neighboring nodes that are close to the current node both in time and in the
number of hop count. When n is large, neighboring nodes that are far away are also included.
Therefore, the decrease of the performance when n is large implies that the neighbors that
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are far away from the current node have a small influence on its influence ranking. Based on
the distribution of FAD and STD given in Section 4.3, we find that if we use the fastest arrival
distance, a node tends to have more high-order neighbors compared to that of using temporal
shortest distance. Therefore, the TIG-process based on the fastest arrival distance can gather
more high-order neighbor information for a node. This may explain the better performance
of TIG-process based on the fastest arrival distance.

4.5. CONCLUSION
The evolution of temporal network over time makes the static nodal properties fail to identify
influential nodes in a temporal network.

We proposed a temporal information gathering (TIG) process to identify influential nodes
in temporal networks. The assumption is that the spreading capacity of a node relies on its
neighbors. We observe that the fastest arrival distance based TIG process performs much
better than the one based on temporal shortest distance as well as all the bench mark nodal
centrality metrics. In addition, there is an optimal gathering depth n which makes FAD based
TIG-process perform the best. Our work sheds light on how to characterize properties of a
node by considering the time order of the contacts. We consider using the temporal distance
between nodes as the distance matrix in TIG process. In the future work, it’s interesting to use
other matrix,such as Laplacian matrix, to explore whether we can gain more improvement in
identifying nodes that are influential in the spreading process.
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Network embedding aims at learning node representation by preserving the network topology.
Previous random-walk-based network embedding algorithms utilize random walk to sample
walks and generate node pairs from the walks. The node pair set is further used as the input
for a Skip-Gram model, which embeds nodes into vectors. However, these algorithms do not
scale for large real-world networks which usually contain millions of nodes. They generally
sample equal number of walks from every source node and set the length of every walk to be
the same. This kind of setting results in a large amount of redundant node pairs as the input
for the Skip-Gram model. In this chapter, we propose DiaRW, a scalable network embedding
method based on a degree-biased random walk. In the degree-biased random walk, we allow
a walker to visit more around the local structure of high degree nodes. Also, walks that
start from high degree source nodes have longer length. DiaRW greatly reduces the size of
node pair set, which is efficient for large-scale network embedding. Empirical experiments
on node classification and link prediction show that DiaRW outperforms baseline embedding
algorithms on a variety of real-world networks. Furthermore, our algorithm is able to learn
the network embedding on networks with millions of nodes and edges in hours on a single
machine, which is tenfold faster than previous algorithms.

5.1. INTRODUCTION
Networks have been widely used to represent components (nodes) and their interactions
(links) in various areas including social science (social networks) [1], linguistics (seman-
tic web) [2], Internet of Things (sensor network) [3] and biology (Protein-Protein interaction
network) [4]. The scale of complex networks ranges from hundreds to billions of nodes,
leading to a problem of how to analyze large networks in an efficient way. Network em-
bedding, which maps each node to a low-dimensional vector, provides a ubiquitous way to
represent and thus analyze networks [5, 6]. Given a network, it is often desirable to extract
latent information associated with each node by learning algorithms. The latent information
contains a variety of properties of the original network. For example, it may preserve the
local neighborhood structure of every node as well as global community structure of the net-
work. The embeddings are further used as features for network analysis and tasks such as
node classification [7], clustering [8, 9], link prediction [10, 11], and visualization [12, 13].

Despite the enormous potential of network embedding, we argue that there exists two
main challenges:

High non-linearity: As stated in [14], most network data is often sophisticated and the
underlying structure of it is highly non-linear. Therefore, the embedding algorithms, such as
principle component analysis (PCA) and multidimensional scaling (MDS), that embed net-
work into a linear space via linear transformations, cannot well preserve the network struc-
ture.

Scalability: With the arrival of the age of big data, the scale of real-world networks is
exploding. Taking social network as an example, the Twitter network contains 175 million
active users and approximately twenty billion edges in 2012 [15]. Therefore, when it comes
to large-scale networks, the massive learning task may cost months, or even simply fail due
to insufficient memory, which is practically unfeasible for practical applications.

Among the network embedding algorithms that embed network data in a non-linear man-
ner, random-walk-based network embedding algorithms have been recently proposed and
show high efficiency and effectiveness. The general random-walk-based network embed-
ding algorithms usually take two steps: In the first step, a sampling method, such as random
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walk, which explores node proximity is performed to get the walk sequences. We further
extract node pairs from the walks. Then, a language learning model, such as Skip-Gram [16],
is applied to obtain the embedding vector for each node by using the node pair set as in-
put. DeepWalk [5] is the pioneer work in using random walks to learn node representations.
Node2Vec [6] further introduces a biased random walk procedure which combines BFS and
DFS style neighborhood exploration.

Real-world networks are generally scale-free, i.e., most nodes have a low degree while
only a few have high degrees. The heterogeneity of node degree implies that the local struc-
ture surrounding nodes with different degrees can vary a lot. However, the random walk
strategies proposed previously usually sample the same number of walks from every source
node. On the one hand, given a fix number of walks starting from every source node, walks
starting from source nodes that have much larger degree than the number of walks may be
not possible to visit most of the surrounding structure of the source nodes. On the other hand,
walks starts from source nodes have much lower degree than the number of walks may over-
sample the surrounding structure of the source nodes. Additionally, previous random walk
strategies also set the walks to have the same length. This setting may generate many redun-
dant node pairs as input for the subsequent learning model. For example, for a pair of nodes
that are only connected to each other, both of the two end nodes have degree 1. If we set
the length of the walk starting from one of the two end nodes as 80 (the same as DeepWalk
and Node2Vec), we will get a walk only contains these two end nodes, in which each node is
repeated for 40 times.

To further demonstrate the inference above, we use Barabási-Albert (BA) model [17] to
generate a scale-free network with 216 nodes and plot the degree distribution of nodes in
Figure 5.1(a). We find that the original network follows a standard power-law distribution
with a slope −2.67. By contrast, we also plot the degree distribution of nodes in a node pair
set generated by the uniform random walk used in DeepWalk in Figure 5.1(b). We observe
that the degree distribution generated by the uniform random walk differs significantly from
the real degree distribution. The results indicate that the node pairs sampled by using uniform
random walk cannot well preserve the network properties, such as degree distribution. This
may result in the embeddings obtained from DeepWalk cannot well preserve the network
structure.

To better preserve network topology without generating a lot of redundant node pairs, we
propose a high-degree biased variable-length random walk embedding (DiaRW) algorithm,
which considers the heterogeneity of node degree. To be specific, we allow a walk to step
back to nodes with a higher degree more likely in a probabilistic way, which means high-
degree nodes tend to be revisited more. This also allows walks starting from a high-degree
nodes to travel the local surrounding structure of the node more. Moreover, instead of setting
a fixed length for all the walks starting from different source nodes, we set the length of walks
starting from every source node based on the source node’s centrality to avoid generating
redundant node pairs. Taking degree centrality as an example, we set the length of walks that
start from a high-degree source node to be longer. Experimental results on node classification
and link prediction indicate that DiaRW show better performance compared to the baseline
models. Additionally, the reduction of redundant node pairs by the degree-biased random
walk makes DiaRW scalable for large-scale networks.

The rest of the chapter is organized as follows. In Section 5.2, we first give a review of
the related work. Then, we propose the DiaRW algorithm in Section 5.3. In Section 5.4,
we empirically evaluate our method on prediction tasks, i.e., node classification and link
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slope = -2.67 slope = -2.22

Figure 5.1: The degree distributions of (a) the original BA network with 216 nodes and (b) the node pair set generated
by uniform random walk from the original network.

prediction, on large-scale networks and analyze the parameter sensitivity as well as scalability
of our algorithm. The chapter is concluded in the Section 5.5.

5.2. RELATED WORK
Network representation has become an important way to represent and analyze complex net-
work. The algorithms aim to learn embedding vectors for nodes in the network. The em-
beddings are further used for network tasks such as link prediction, classification, etc. The
learning algorithms can be categorized into two types: matrix factorization (MF)-based and
neural network-based [18].

MF-based methods are either linear [19] or nonlinear [20] in learning node embeddings.
The former employs the linear transformations to embed nodes into a low dimensional em-
bedding space, such as singular value decomposition (SVD) and multiple dimensional scal-
ing (MDS) [19]. The latter maps nodes into a low dimensional latent space by utilizing the
nonlinear transformations, e.g., kernel PCA [21], spectral embedding, marginal fisher anal-
ysis (MFA) [22], and manifold-learning approaches including LLE [23] and ISOMAP [20].
Generally speaking, MF-based methods have two main drawbacks: (1) Due to the eigen-
decomposition operations on data matrices, they are usually computationally expensive and
are difficult to be applied on large-scale network data [24, 25]; (2) the performance is rather
sensitive to the predefined proximity measures for calculating the affinity matrix.

Neural network-based methods are the state-of-the-art node representation learning tech-
niques. The pioneer work DeepWalk [5] extended the idea of Word2Vec [16] to embed a
network. Node2Vec algorithm [6] is considered as an extension of DeepWalk, introducing
a biased random walk sampling strategy which combines BFS-style and DFS-style neigh-
borhood exploration. However, both of them adopted a global walk strategy which ignores
individual heterogeneity. Another shortcoming of Node2Vec is that its second-order random
walks take too much time to compute the interconnections between neighbors of every node.
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There are some follow-up works exploiting both 1st-order and 2nd-order proximity between
nodes to embed networks. Specifically, LINE [26] derives a joint optimization function for
preserving the first and the second-order proximity. It performs the optimization by stochastic
gradient descent with edge sampling, aiming at efficiently embedding large-scale networks.
The goal is similar as our chapter, nevertheless, the performance tends to be inferior compared
to ours due to its limitation and inflexibility for low order proximity. HOPE [27] defines some
similarity measures between nodes which are helpful for preserving higher-order proximity
as well and formulates those measures as a product of sparse matrices to efficiently find the
latent representations. However, the algorithm showed poor scalability for large-scale net-
works.

Table 5.1: Table of notations

G = (V ,E) A network G with set V of nodes
and set E of edges

Φ(u) embedding vector of node u
NS (u) Neighbor set of node u generated by a

sampling strategy S
p(u, v) Transit probability from node u to

node v
r (v,u) Probability of backtracking from node v

to node u
S(u, v) Similarity score of node u and node v
d(u) Degree of node u
Lmax Upper bound of walk length, the default is 80.
L(u) the length of a walk starting at source node u
k the number of random walks starting from a node, the default is 10.
d Dimension of embedding vector, the default is 128.
w Window size while generating node pairs from a walk, the default is 10.

5.3. PROPOSED METHOD
In this section, we introduce DiaRW, a network embedding algorithm based on Skip-Gram
model. In fact, the efficiency of the Skip-Gram based algorithms largely depends on the
sampling strategies. In our algorithm, we propose a high-degree biased backtracking random
walk to sample walks from a network. To reduce redundancy in the sampling process, the
length of each walk is determined by the centrality value of the source node.

A network is defined as G = (V ,E), where V is node set and E is the set of edges. The
number of nodes in a network is denoted as N = |V |. Table 5.1 includes notations that will be
used throughout this chapter.

5.3.1. NETWORK EMBEDDING FRAMEWORK
Network embedding aims to learn a mapping function Φ: V → Rd (d ¿ |V |), i.e., to embed
each node in a network to a d-dimensional space. We use Φ(u) to represent the embedding
vector of node u, and d is the dimension of Φ(u). The function Φ preserves network topol-
ogy, such that two nodes which are close in the original network should also be close in the
embedding space.
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Inspired by [5, 6], we formulate network embedding as a maximum likelihood optimiza-
tion problem. For every center node u ∈V , we define the neighbor set of u as NS (u), which
is generated by a sampling strategy S. For example, NS (u) is a set of nodes within a distance
w from u in one walk sequence. Therefore, we give the objective function that need to be
optimized as:

argmax
∑

u∈V
logPr(NS (u)|Φ(u)) (5.1)

Skip-Gram [16] is a learning model that maximizes the co-occurrence probability among
the nodes that appear within a window size w , in a walk sequence. It approximates the con-
ditional probability in Eq. (5.1) by assuming that the likelihood of observing a neighborhood
node is independent of observing any other neighborhood node given the embedding vector
of the source node, which is expressed as follows:

Pr(NS (u)| f (u)) = ∏
ni∈NS (u)

Pr(ni |Φ(u)) (5.2)

The conditional likelihood Pr (ni |Φ(u)) is further modeled by softmax function as fol-
lows:

Pr(ni |Φ(u)) = exp(Φ(ni )Φ(u))∑
v∈V exp(Φ(v)Φ(u))

, (5.3)

As computing
∑

v∈V exp(Φ(v)Φ(u)) is very expensive, we use the negative sampling
method [16] to speed up training. We show how to learn node embeddings by Skip-Gram
model in Algorithm 1 [5]. We map each node u from walk sequences to its current embedding
vector Φ(u). To maximize the probability of observing its neighbors given the embedding
vector of u, we use stochastic gradient descent to iteratively update it (line 3-4).
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Algorithm 1: Skip-Gram (Φ, walks, w)

Input: matrix of node representations Φ
walk sequences walks
window size w

1 for each node u ∈ walks and its index as inxu do
2 for each node ni ∈ walks[inxu −w, inxu +w] do
3 J (Φ) =− logPr(ni |Φ(u))
4 Φ=Φ−α ∂J

∂Φ
5 end for
6 end for

5.3.2. SCALE-FREE NETWORKS
A scale-free network is a network whose degree distribution follows a power law, or at least
asymptotically. Most of real-world networks are reported to be scale-free [17], from web
graphs to social networks, protein networks and semantic networks.
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Figure 5.2: A small example of scale-free network (nodes colored red are hubs).

In Figure 5.2, we give a toy example of scale-free network, where most nodes have a low
degree but some have a very high degree. Nodes with a number of edges that greatly exceeds
the average are called hubs (red color nodes in Figure 5.2). Hubs usually play important
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Figure 5.3: An example of uniform random walk sampling on a scale-free network. It starts from hub node 4 with
the number of walks 5 and walk length 4, generating node sequences(shown in solid line) like “4-29-42-29”(blue),
“4-0-7-24”(black), “4-27-4-37”(green), “4-19-36-39”(grey) and “4-17-43-17”(yellow).
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roles in the network. For example, hub nodes promote information diffusion [28, 29], and
we can control the epidemic spreading by isolating infected hub nodes from the susceptible
population [30]. In Figure 5.3, we give a toy example of how uniform random walk fails to
extract the local structure surrounding hub nodes. We set the number of walk to be 5 and the
walk length to be 4. Taking the walks starting from hub node 4 as an example, we get walks
such as “4-29-42-29”(blue), “4-0-7-24”(black), “4-27-4-37”(green), “4-19-36-39”(grey) and
“4-17-43-17”(yellow). Within this setting, we find that the walks only visit a few immediate
neighbors of node 4. The setting may make the learning model fails to learn the proximity
of node 4 with most of its immediate neighbors. This problem could be more serious for
real-world networks. Because real-world networks contain nodes with degrees of tens of
thousands whose structure is hard to be well extracted under acceptable sample size. The
local structure surrounding nodes with high and low degree may differ dramatically, thus we
need to treat them differently while performing the sampling strategy.

5.3.3. SAMPLING STRATEGY
In this section, we will introduce a high-degree biased variable-length random walk sampling
strategy to generate walks from a network.

HIGH-DEGREE BIASED BACKTRACKING

According to the previous section, uniform random walk cannot well adapt to the scale-
free characteristic of real world networks due to the under-sampling of hubs. To solve this
problem, we propose a high-degree node biased sampling random walk. We define our high-
degree biased backtracking mechanism in the following way. Given a node u and its direct
neighbor node v in a network, we define p(u, v) as the transition probability from u to v , and
r (v,u) as the return probability from v to u in the random walk. The probabilities p(u, v)
and r (v,u) are given by

p(u, v) = 1

d(u)
, (5.4)

r (v,u) = max

{
0,1− d(v)

d(u)

}
(5.5)

where d(u) represents degree of node u. Suppose a walker now is sitting at node u, the defi-
nition of p(u, v) allows the walker to visit each of node u’s neighbors with equal probability
p(u, v). If a walker is sitting at node v currently, the definition of r (v,u) allows a walker to
tend to revisit upstream node u if d(u) > d(v). To be specific, the probability of backtracking
to node u is r (v,u). The walker has probability of 1−r (v,u) to stay at node v . From a macro
perspective, this strategy simulates a BFS-like explorations by restricting search from high-
degree nodes to local structure and a DFS-like explorations by moving further away from
low-degree nodes, thus better capturing the local and global network structure.

VARIABLE-LENGTH WALK

Random-walk-based network embedding algorithms, such as Node2Vec and DeepWalk, pro-
posed a fixed walk length for the walks starting from every node. On the one hand, walks
with long length may sample a lot of repeated nodes, such as back and forth walks between
low-degree nodes. Node pairs generated by such walks may increase the risk of over-fitting.
In addition, a fixed length for every walk may directly increase the sampling time as well
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as storage and computation cost for learning node embeddings, and thus restrict the algo-
rithm’s scalability to large-scale networks. On the other hand, short-length walks lack ability
to sufficiently capture the network topology such as community structure.

Considering the limitation of a fixed length for every walk, we propose a variable-length
walk strategy based on the centrality of nodes. There are many ways to define node centrality
in a network, such as degree [31], closeness [32], betweenness [33], PageRank and HITS.
Betweenness centrality and closeness centrality involve calculating the shortest paths between
all pairs of nodes on a network, which is unfeasible for large-scale networks with millions of
nodes. Therefore, we simply ignore them and use the other three centrality metrics as in our
variable-length strategy respectively. We use the hub value as the centrality value for every
node in HITS algorithm.

We use degree centrality as an example to illustrate how we consider node centrality while
setting the length of each walk. We propose walk starting from a high-degree source node to
have a long length. In other words, for every source node u as the start of a walk, the length
of the walk is give by

L(u) = min{d(u),Lmax}+1 (5.6)

where L(u) is the length of a walk started from node u, Lmax is the upper bound of walk
length. Algorithm 2 describes the complete high-degree biased variable-length random walk
sampling strategy.

We use degree, PageRank and HITS as three centrality metrics while determining the
walk length in the random walk sampling process. We perform these three different DiaRWs
on BA networks with network sizes ranging from 103 to 105 to get embeddings for every
node. The time of centrality computation and the AUC of link prediction task based on the
corresponding node embeddings are shown in Table 5.2. The results show that that these three
centrality measures achieve almost equal performances on link prediction task. However,
PageRank and HITS require much more computation time compared to degree centrality.
Therefore, we will focus on using degree centrality to determine walk length in the following
analysis.

We compare the sampling storage size and time for high-degree biased random walk
sampling strategy of DiaRW and uniform random walk sampling strategy of DeepWalk in
Figure 5.4 on BA networks with network sizes ranging from 102 to 106. We set all the
parameters to be the same except that in DeepWalk, the walk length of every walk is fixed as
80 whereas in our work, we set Lmax = 80. We find that the storage size of walks generated
by high-degree biased random walk is lower than that from uniform random walk. High-
degree biased random walk is able to finish sampling the BA network with millions of nodes
in dozens of minutes while it takes several hours for uniform random walk with the same
network size. We further show the degree distribution of node pair sets from walks generated
by high-degree biased random walk on the BA network with size 216 in Figure 5.5. The slope
of the distribution is 2.66, which is much closer to the degree distribution of the original
network (2.67 in Figure 5.1(a)). This indicates that high-degree biased random walk sampling
strategy can better preserve network properties, such as degree distribution.

5.3.4. THE DiaRW ALGORITHM
The pseudo-code of our entire algorithm DiaRW is given in Algorithm 3. The algorithm
consists of two main components: (1) a sampling generator and (2) a learning procedure.
Algorithm 2 serves as the sampling generator, and we use algorithm 1 shown in 5.3.1 to train
and learn the node representations.
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Table 5.2: Evaluation of different centrality based DiaRW (link prediction AUC/computational time)

N Degree PageRank HITS
1000 0.61/5.4×10−4 0.60/0.24 0.60/0.81
10000 0.64/6.0×10−3 0.64/2.24 0.64/13.42
100000 0.64/6.0×10−2 0.64/21.65 0.64/280.48

Algorithm 2: DiaRW walk(G , u, Lmax)

Input: Network G(V ,E), max walk length Lmax

Output: Node sequence walks
1 Inititalize walks to [u]
2 l = min

{
Deg(u),Lmax

}+1
3 for i = 0 to l do
4 curr = walk[−1]
5 Select a node v uniformly from neighbors of curr
6 Append v to walks
7 Generate a random value p ∈ [0,1]
7 if p < (1− d(v)

d(u) ) then
9 Append curr to walks
10 end for
11 return walks

Algorithm 3: DiaRW(G , Lmax, k, w , d)

Input: Network G(V ,E)
max walk length Lmax

walks per node k
window size w
embedding dimension d

Output: matrix of node representations Φ ∈ R |V |×d

1 Initialize walks to empty
2 for iter = 1 to k do
3 for all nodes u ∈V do
4 walks = DiaRW walk(G , u, Lmax)
5 Append walks to walks
6 SkipGram(Φ, walks, w)
7 end for
8 end for
9 return Φ

5.4. EXPERIMENTAL EVALUATION
We compare our DiaRW network embedding algorithm with four other baseline algorithms,
i.e., DeepWalk [5], Node2Vec [6], LINE [26] and HOPE [27], on the tasks of multi-label node
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Figure 5.4: The Space and Time cost of sampling walks for random walk strategy proposed by DiaRW and Deep-
Walk. The X-axis is the number of nodes N in a network, Y-axes are the storage size of the sampled walks and time
cost of the sampling process in the left and right panel of the figure, respectively. We show the size of BA network
ranges from 100 to 1,000,000.

Figure 5.5: The node degree distribution of the node pair set generated by DiaRW random walk for BA graph with
size 216.
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classification and link prediction. Our experiment environment is listed in Table 5.3.

Table 5.3: Experiment environment.

OS CentOS 4.8.5-16 Linux 4.4.114
MEMORY 128GB

DISK 300GB
CPU Xeon(R) CPU E5-2620 v4 @ 2.10GHz

5.4.1. NETWORK DATASETS

Table 5.4: Network Datasets. Properties of the network datasets. The network size (N ), the number of links (|E |),
the average degree (Avg deg), link density (Density) and the average clustering coefficient (Avg cc) are shown. The
first three network datasets are used for node classification task, we also show the number of labels in these three
networks.

Network N |E | Avg deg Density Avg cc Labels
YouTube 1,134,890 2,987,624 5.27 4.6×10−6 0.40 47

PPI 56,944 818,716 28.75 5.0×10−4 0.18 121
Flickr 80,513 5,899,882 146.55 1.8×10−2 0.16 194

Email-EU-core 1,005 25,571 33.24 3.0×10−2 0.39
Wiki-Vote 7,115 103,689 28.32 3.0×10−3 0.14

p2p-Gnutella 8,114 26,013 6.41 7.9×10−4 7.2×10−3

Astroph 18,722 198,110 21.10 1.1×10−3 0.63
Cit-HepPh 34,546 421,578 24.36 7.0×10−4 0.28
Epinions 75,877 508,837 10.69 1.4×10−4 0.13
Twitter 11,316,811 85,331,846 11.23 9.9×10−7 0.14

Table 5.4 shows some properties of network datasets that will be used in our experiments.
To show the efficiency and effectiveness of our algorithm, we choose the datasets of different
sizes, ranging from thousands to millions of nodes. The detailed description of the network
datasets for the multi-label classification task is given as follows:

• YouTube [34]: A social network between users on Youtube. It contains 1,157,827
nodes, 4,945,382 edges and 47 labels. The labels represent groups of users who enjoy com-
mon video genres.

• Protein-Protein Interaction (PPI) [35]: A network represents the interaction between
proteins. It contains 56,944 nodes, 818,716 edges and 121 labels. Each of the labels corre-
sponds to a biological function of the proteins.

• Flickr [34]: A network represents the contact between users in a photo sharing website.
It contains 80,513 nodes, 5,899,882 unweighted edges and 194 labels. The labels represent
the interest groups of the users, such as ’black and white photos’.

The network datasets that will be used for link prediction task are described as follows:
• Email-EU-core [36]: This is a network represent the email contact between users in

a large European research institution. The emails only represent communication between
institution members (the core), and the dataset does not contain incoming messages from or
outgoing messages to the rest of the world. It contains 1,005 nodes and 25,571 edges.
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• Wikipedia vote network (Wiki-Vote) [37]: The network extracted all administrator
election and voting history data from Wikipedia community, where node represents the users
who had participated in the election or been elected and edge indicates a voting process. The
network contains 7,115 nodes and 103,689 edges.

• Gnutella peer-to-peer network (p2p-Gnutella) [36]: A sequence of snapshots of the
Gnutella peer-to-peer file sharing network from August, 2002. Nodes represent hosts in the
Gnutella network and edges represent connections between the them. The network contains
8,114 nodes and 26,013 edges.

• High-energy physics citation network (Cit-HepPh) [38]: This is a citation network
generated from papers submitted to the e-print arXiv, where nodes represent papers. If a
paper cites another paper, the network contains an edge between them. It has 34,546 nodes
and 421,578 edges.

• Astrophy collaboration [36]: This is a collaboration network generated from papers
submitted to the e-print arXiv, where nodes represent scientists, and an edge is formed be-
tween two scientists if they have collaborated on one paper. The network has 18,722 nodes
and 198,110 edges.

• Epinions [39]: The network represents who-trust-whom relationships between users of
the epinions.com product review website. It has 75,877 nodes and 508,837 edges.

• YouTube [34]: The same dataset used in the node-classification task.

• Twitter [40]: The nodes represent users and friends are represented using edges in
Twitter. It contains 11,316,811 nodes and 85,331,846 edges.

5.4.2. BASELINE METHODS

We use the following four algorithms as the baselines:

• DeepWalk [5]: DeepWalk adopts uniform random walk to sample walks from a network
and Skip-Gram model to generate network embeddings for each node.

• Node2Vec [6]: Node2Vec emploits a biased random walk to sample walks from a
network. The biased random walk gives a trade-off between breadth-first-like sampling
and depth-first-like sampling of the neighborhood. It contains the in-out and return hyper-
parameters p and q . The learning model is Skip-Gram as well. We perform a grid search
over p, q ∈ {0.25,0.5,1,2,4} and 10-fold cross-validation to obtain the optimal embeddings,
as suggested by [6].

• LINE [26]: LINE first learns the embedding vectors of nodes which preserve the first-
and second-order proximities, respectively, and then concatenates them as the final embed-
dings.. We use the LINE (1st and 2nd) method which has shown the best performance in their
paper. The original version of LINE is implemented in C++, for comparison fairness, we use
an implementation of LINE in Python with TensorFlow.

• HOPE [27]: This method defines similarity measures between nodes which are useful
for preserving higher-order proximity and formulates these measures as a product of sparse
matrices to efficiently find the latent representations. The authors experimented with differ-
ent similarity measures, including Katz Index, Rooted PageRank, Common Neighbors, and
Adamic-Adar score. The Katz index with decay parameter β = 0.1 is selected for HOPE’s
high-order proximity measurement, since this setting gives the best performance in the origi-
nal paper.
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Figure 5.6: Performance evaluation on various datasets for multi-label classification.

Table 5.5: Time cost on embedding for multilabel classification (in seconds).

DiaRW Node2Vec DeepWalk LINE
YouTube 3,391 581,726 31,668 272,833

PPI 290 1,573 572 2,538
Flickr 2,166 179,917 2,487 11,001

5.4.3. EXPERIMENTS ON MULTI-LABEL CLASSIFICATION
Predicting node labels using network topology is widely applied in modern applications rang-
ing from document classification [41] to interest prediction [42]. Among these applications,
multi-label node classification is significantly challenging, especially for networks with a
large number of labels. To perform this task, we use the learned node vector and an one-vs-
rest logistic regression classifier (using the LIBLINEAR library with L2 regularization) [43].
When training the classifier, we randomly sample a portion of the labeled nodes as the train-
ing set and the rest as the test set. For PPI, we randomly sample 10% to 90% of the nodes
as the training samples and use the remaining ones to test the performance. For Flicker and
YouTube, we randomly sample 1% to 10% of the nodes as the training samples and use the
left nodes to test the performance, which corresponds to the fact that these two datasets have
only a small part of labeled nodes for entire networks. We repeat the experiment for 5 times
and report the averaged Micro-F1 and Macro-F1.

The results are shown in Figure 5.6 and Table 5.5. Since HOPE fails to learn the em-
beddings in our current experimental environment for all the datasets on multi-label classi-
fication, we only show the results of the remaining three algorithms and compare them with
DiaRW. The time cost for learning embeddings is given in Table 5.5. From Figure 5.6 and
Table 5.5, we have the following observations and analysis:

• In Figure 5.6, we observe that random walk based algorithms, i.e., DeepWalk, Node2Vec
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and DiaRW, outperform LINE in the multi-label classification task. The main reason can be
inferred from the fact that LINE simply aims to capture low-order proximities for nodes,
i.e., only nodes which are at most two hops away from a center node are considered as its
neighbors. This is not enough for node classification as high-order proximity neighbors can
also be classified by the same labels. In contrast, by generating random walks in the network,
the neighborhoods are not restricted to just one-hop or two-hop neighbors.

• In Figure 5.6, Node2Vec performs relatively good in the multi-label classification task.
Node2Vec performs better than or or at least similar to DeepWalk in all datasets, indicating
biased random walks have better adaptability and accuracy for capturing network structures
than uniform random walks. Despite the gain for accuracy over DeepWalk, Node2Vec is far
less efficient than DeepWalk (Table 5.5). It takes at least three times longer than DeepWalk
to learn the embeddings for the same dataset, which is even more for large-scale networks.
This is because, Node2Vec requires a preprocess procedure to compute and store the inter-
connections between the neighbors of every node for second-order random walks, which is
pretty expensive on both time and space for large-scale networks, therefore greatly affects the
efficiency and scalability of embedding.

• DiaRW shows a competitive performance to Node2Vec, but with much higher efficiency.
Specifically, regarding to the Macro-F1 and Micro-F1 score, DiaRW shows comparable re-
sults as Node2vec and DeepWalk in YouTube network. In PPI network, DiaRW improves
Macro-F1 score by 9.8% and Micro-F1 score by 1.5% over DeepWalk. In Flicker network,
DiaRW outperforms all the baselines, gaining 12.5% improvement on Macro-F1 score com-
pared to Node2vec. Taking time cost showing in Table 5.5 together, we can conclude that
DiaRW can finish embedding multiple times faster than DeepWalk and dozens of times faster
than Node2Vec while maintaining the accuracy for multi-label classification. The huge gains
in time are mainly due to the variable-length walk strategy we adopt, which has drastically
reduced the size of walks, and accelerated walking and training as well.

• The experimental results imply that there is a lot of redundant node pairs generated from
walks sampled by uniform random walk with fixed walk length, which not only is useless for
improving accuracy but also greatly slow down the algorithm. For networks with many types
of labels but short of labeled data such as Flicker [34], DiaRW gets even better performance
than state-of-the-art algorithms due to better representation of network structure.

5.4.4. EXPERIMENTS ON LINK PREDICTION
Networks are constructed from the observed links between nodes, which may be incomplete
or inaccurate. The challenge often lies in identifying spurious interactions and predicting
missing links. Link prediction refers to the task of predicting either missing links in a static
network or links that may appear in the future in temporal networks [11, 44]. When we
represent network nodes as embedding vectors, the dot product of two embedding vectors of
nodes u and v is treated as the similarity score S(u, v) between the two nodes. Nodes with
higher similarity score are considered to be more likely to connect.

To perform link prediction in a network, we first randomly remove half of its edges. The
node representations are then learned from the remaining part of the network, i.e., training
data. To create negative labels for the prediction task, we randomly select pairs of nodes that
are not connected in the original network. The number of such pairs is equal to the number
of removed edges. The “negative” pairs and the pairs from edges that have been removed, are
used together to form the labeled data as the test set. Given embedding vectors Φ(u) and Φ(v)
of two nodes u and v , we define the similarity score S(u, v) as dot productΦ(u)·Φ(v). We use
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Table 5.6: Area Under Curve (AUC) scores for link prediction.

DiaRW Node2Vec DeepWalk HOPE LINE
Email-EU-core 0.8572 0.8222 0.8270 0.8618 0.7870

Wiki-Vote 0.9356 0.7957 0.7946 0.9283 0.8101
p2p-Gnutella 0.7641 0.7025 0.6947 0.6254 0.6878
Cit-HepPh 0.9517 0.9576 0.9472 0.5125 0.6878
Astrophy 0.9159 0.9217 0.9088 0.5320 0.8896
Epinions 0.8972 0.8512 0.8463 ∗ 0.8417
YouTube 0.7985 0.7726 0.7681 ∗ 0.6463
Twitter 0.9010 ∗ ∗ ∗ ∗

Table 5.7: Time cost for link prediction task (seconds).

DiaRW Node2Vec DeepWalk HOPE LINE
Email-EU-core 3 25 8 1 10

Wiki-Vote 10 113 28 180 29
p2p-Gnutella 7 111 59 25 87
Cit-HepPh 53 405 167 725 230
Astrophy 46 438 175 157 953
Epinions 109 3,466 1,069 ∗ 4,066
YouTube 1,448 581,726 31,668 ∗ 272,833
Twitter 37,167 ∗ ∗ ∗ ∗
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Figure 5.7: Degree distribution of synthetic networks with different cutoff κ.

Area Under Curve (AUC) to evaluate the performance of the network embedding algorithms
on link prediction task. We repeated the splitting of the network data into training and test
set for 10 times. Then we run the network embedding algorithm and link prediction task on
each of the 10 splits to get 10 AUC scores. The AUC scores show in the following studies
are all averaged over 10 times. The results are given in Table 5.6. We show the time cost
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Table 5.8: The impact of degree heterogeneity on the performance of link prediction task.

Cutoff κ |V | |E | CV Hm AUC of DiaRW AUC of DeepWalk
16 10,000 10,252 1.26 0.06 0.5059 0.4724
32 10,000 11,329 1.53 0.07 0.5692 0.4865
64 10,000 12,714 1.78 0.07 0.6279 0.4956
128 10,000 14,007 2.10 0.08 0.6616 0.5136

of each embedding algorithm performed on every network dataset in Table 5.7, where “*”
means the algorithm fails under the limitation of computation resources (Table 5.3) and time
requirement (one week). From the results, we have the following observations and analysis:

• DiaRW outperforms almost all the other algorithms on link prediction task. More
precisely, it achieves 8.8% improvement on AUC for p2p-Gnutella, 5.4% for Epinions and
3.95% for Youtube, compared to the best AUC from baseline algorithms. For the two smaller
datasets, i.e., Email-EU-core and Wiki-Vote, DiaRW shows competitive performance to HOPE
on Email-EU-core, and it performs as good as Node2Vec for Cit-HepPh and Astrophy net-
works. In a word, experimental results sufficiently show the advantage of DiaRW on link
prediction task, which can well adapt to networks of various sizes and types.

• LINE shows comparable performance to random-walk-based algorithms on several
datasets. This suggests that low-order proximity is useful for predicting missing links. How-
ever, real-world networks tend to be so sparse that it’s hard to sample enough low-order
proximities for representation learning. In view of this, random-walk-based methods is more
flexible and effective as they use a random walk to enrich the neighbors of nodes, which is
able to introduce higher-order proximities. The performance of HOPE is highly dependent
on the dataset, which implies its poor adaptability to different networks.

• Results from Table 5.7 imply once again that our method is scalable and efficient for
large-scale networks. Taking Twitter as an example, all the algorithms except DiaRW fail to
obtain the node representations. In contrast, it takes only ten hours for DiaRW to learn the
embeddings for Twitter, with a superior performance on link prediction task.

We further explore the impact of degree heterogeneity on the performance of embedding.
We use the model proposed in [45] to generate synthetic networks with different degree
heterogeneity by multiplying the parameter exponential cutoff κ from 32 to 128 with α =
2. All the synthetic network has the same network size. The degree distributions of these
synthetic networks are shown in Figure 5.7. The degree heterogeneity of the networks are
evaluated by coefficient of variation(CV ), defined as the ratio of the standard deviation to the
mean of the degree sequence, and a degree heterogeneity measure(Hm) proposed in [46].
Higher values of both CV and Hm indicate the network is more heterogeneous regarding to
node degree. We also compute the AUC on link prediction task to evaluate the embeddings
learned by DiaRW and DeepWalk, respectively. The results are given in Table 5.8. We find
that, with the increase of degree heterogeneity, DiaRW achieves significant improvement on
AUC. Additionally, DiaRW shows great advantages over DeepWalk, providing evidence that
DiaRW can better adapt to degree heterogeneity property of real-world networks than uniform
random walks.

5.4.5. SEPARATE EFFECT OF BACKTRACKING AND VARIABLE-LENGTH
Our walk strategy DiaRW walk can be divided into two sub-strategies, i.e., high-degree bi-
ased backtracking and variable-length walk. In order to explore their effects separately, we
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design two variants of DiaRW based on these two sub-strategies, named as DiaRW BT and
DiaRW VarL, respectively. Taking several networks from Section 5.4.1 as examples, we use
link prediction task to evaluate DiaRW BT and DiaRW VarL, along with DiaRW and Deep-
Walk as comparisons. As shown in Table 5.9, DiaRW VarL performs similar as DeepWalk,
because it aims to improve the efficiency of network embedding. While DiaRW BT indeed
increase the accuracy on link prediction task. Also, this improvement can be further improved
when combining with variable-length walk, verifying the illustration from Section 5.3.3 that
high-degree nodes need larger walk length to cover the loss of frequent backtracking. In
summary, we conclude that both of the two sub-strategies contribute to the network embed-
ding, in which the high-degree biased backtracking directly improve the accuracy of node
representations, and variable-length walk gains huge improvement on efficiency.

Table 5.9: Evaluations of DiaRW BT and DiaRW VarL on link prediction task. We use AUC to quantify the
performance.

DeepWalk DiaRW BT DiaRW VarL DiaRW
Email-EU-core 0.8270 0.8475 0.8229 0.8572

Wiki-Vote 0.7946 0.8477 0.7922 0.9356
Cit-HepPh 0.9472 0.9543 0.9336 0.9517
Astrophy 0.9088 0.9151 0.8885 0.9159
Epinions 0.8463 0.8673 0.8188 0.8852

5.4.6. PARAMETER SENSITIVITY
We explore how the different values of parameters affect the performance of DiaRW. Fig-
ure 5.8 shows the AUC gained by DiaRW on link prediction task for p2p-Gnutella network.
Except for the parameter being tested, all the other parameters in the experiment are set to
their default value. We find that the parameters related to the random walk process, i.e., the
number of walks starting from per node k, maximum walk length Lmax, have impact on the
performance of embedding. The increase of Lmax can increase the AUC score for link predic-
tion until Lmax = 90. Also, we get the optimal AUC when k = 10. Similarly, we observe that
increasing the context size w for Skip-Gram model will also improve the AUC since larger w
could discovery higher order relationships in the network which is helpful for preserving net-
work proximity. However, once this parameter is set too large, it will in turn introduce noise,
attenuating the impact of closer neighborhoods, which accounts for the slight degradation of
performance. We further test how the dimension d of a embedding vector would affect the
AUC score.We infer that vectors with too small dimensions lack expressive ability, embed-
ding in this representation space may not be able to preserve the structure information of the
networks, whereas continuously increasing the number of vector dimensions by adding more
nodes on the hidden layer of neural network will increase the risk of over-fitting problem,
which could also negatively affect the performance.

5.4.7. SCALABILITY
To test scalability of our algorithm, we embed BA networks with increasing node size from
210 to 220 nodes . Figure 5.9 depicts the time cost required for sampling walks and the total
time cost for both sampling walks and learning process. DiaRW is able to learn embeddings
for networks with millions of nodes in dozens of hours. The time difference between the
sampling and learning process indicates that the main time cost comes from the sampling
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Figure 5.8: Parameter sensitivity of DiaRW in p2p-Gnutella for link prediction task. We show how the AUC changes
with the max length of the walk (Lmax), the number of walks per node (k), the context size (w) and the dimension
of the embedding vector (d). For the dimension value, we show log2d in the x-axis.

process. This further emphasize the importance of designing a efficient sampling strategy for
network embedding algorithm.

5.5. CONCLUSION
In this work, we proposed DiaRW, an efficient method for network embedding, which can
easily scale to networks with millions of nodes and billions of edges. The core of DiaRW is
the sampling strategy based on biased backtracking mechanism and variable-length mecha-
nism. DiaRW can well adapt the degree heterogeneity of real-world networks and and greatly
reduce the redundant node pairs as input for Skip-Gram when compared with fixed-length
random walks. Compared to the state-of-the-art baseline algorithms, it shows higher perfor-
mance and efficiency. As future work, we plan to extend our algorithm to networks with
special properties such as heterogeneous information networks, networks with explicit do-
main features for nodes and edges, and signed networks.
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Figure 5.9: Scalability of DiaRW on BA networks. We show the network size ranges from 100 to 1,000,000. The
x-axis is the network size, the y-axis is the time cost of the embedding algorithm DiaRW.
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Link prediction can be used to extract missing information, identify spurious interactions as
well as forecast network evolution. Network embedding is a methodology to assign coordi-
nates to nodes in a low-dimensional vector space. By embedding nodes into vectors, the link
prediction problem can be converted into a similarity comparison task. Nodes with similar
embedding vectors are more likely to be connected.

Classic network embedding algorithms are random-walk-based. They sample trajectory
paths via random walks and generate node pairs from the trajectory paths. The node pair
set is further used as the input for a Skip-Gram model, a representative language model that
embeds nodes (which are regarded as words) into vectors. In the present study, we propose to
replace random walk processes by a spreading process, namely the susceptible-infected (SI)
model, to sample paths. Specifically, we propose two SI-spreading-based algorithms, SINE
and TSINE, to embed static and temporal networks, respectively. The performance of our
algorithms is evaluated by the missing link prediction task in comparison with state-of-the-
art static and temporal network embedding algorithms. Results show that SINE and TSINE
outperform the baselines across all six empirical datasets. We further find that the perfor-
mance of SINE is mostly better than TSINE, suggesting that temporal information does not
necessarily improve the embedding for missing link prediction. Moreover, we study the effect
of the sampling size, quantified as the total length of the trajectory paths, on the performance
of the embedding algorithms. The better performance of SINE and TSINE requires a smaller
sampling size in comparison with the baseline algorithms. Hence, SI-spreading-based em-
bedding tends to be more applicable to large-scale networks.

6.1. INTRODUCTION
Real-world systems can be represented as networks, with nodes representing the components
and links representing the connections between them [1, 2]. The study of complex networks
pervades in different fields [3]. For example, with biological or chemical networks, scientists
study interactions between proteins or chemicals to discover new drugs [4, 5]. With social
networks, researchers tend to classify or cluster users into groups or communities, which is
useful for many tasks, such as advertising, search and recommendation [6, 7]. With com-
munication networks, learning the network structure can help understand how information
spreads over the networks [2]. These are only a few examples of the important role of analyz-
ing networks. For all these examples, the data may be incomplete. If so, it could be important
to be able to predict the link most likely to be missing. If the network is evolving, it could
be crucial to forecast the next link to be added. For both of these applications one needs link
prediction [8–12].

In link prediction, one estimates the likelihood that two nodes are adjacent to each other
based on the observed network structure [13]. Methods using similarity-based metrics, max-
imum likelihood algorithms and probabilistic models are major families of link prediction
methods [14]. Recently, network embedding, which embeds nodes into a low-dimensional
vector space, has attracted much attention in solving the link prediction problem [14, 15].
The similarity between the embedding vectors of two nodes is used to evaluate whether they
would be connected or not. Different algorithms have been proposed to obtain network em-
bedding vectors. A simplest embedding method is to take the row or column vector in the
adjacency matrix, which is called an adjacency vector of the corresponding node, as the em-
bedding vector. Then, the representation space is N -dimensional, where N is the number of
nodes. As real-world networks are mostly large and sparse, the adjacency vector of a node
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is sparse and high-dimensional. In addition, the adjacency matrix only contains the first-
order neighborhood information, and therefore the adjacency vector neglects the high-order
structure of the network such as paths longer than an edge. These factors limit the preci-
sion of network embedding based on the adjacency vector in link prediction tasks. Work
in the early 2000s attempted to embed nodes into a low dimension space using dimension
reduction techniques [16–18]. Isomap [16], locally linear embedding (LLE) [17] and Lapla-
cian eigenmap [18] are algorithms based on the k-nearest graph, where nodes i and j are
connected by a link in the k-nearest graph if the length of the shortest path between i and
j is within the k-th shortest among the length of all the shortest paths from i to any other
nodes. Matrix factorization algorithms decompose the adjacency matrix into the product of
two low-dimensional rectangular matrices. The columns of the rectangular matrices are the
embedding vectors for nodes. Singular value decomposition (SVD) [19] is one commonly
used and simple matrix factorization. However, the computation complexity of most of the
aforementioned algorithms is at least quadratic in terms of N , limiting their applicability to
large networks with millions of nodes.

Random-walk-based network embedding is a promising family of computationally effi-
cient algorithms. These algorithms exploit truncated random walks to capture the proximity
between nodes [20–22] generally via the following three steps [23–25]: (1) Sample the net-
work by running random walks to generate trajectory paths. (2) Generate a node pair set
from the trajectory paths: each node on the trajectory path is viewed as a center node, the
nearby nodes within a given distance are considered as the neighboring nodes. A node pair
in the node pair set is formed by a center node and each of its neighboring nodes. (3) Apply
a word embedding model such as Skip-Gram to learn the embedding vector for each node
by using the node pair set as input. Skip-Gram assumes nodes that are similar in topology
or content tend to have similar representations [22]. Algorithms have been designed using
different random walks to capture high-order structure on networks. For example, Deep-
Walk [20] and Node2Vec [23] adopted uniform and biased random walks, respectively, to
sample the network structure. In addition, random-walk-based embedding methods have also
been developed for temporal networks, signed networks and multilayer networks [26–29].

In contrast to random-walk-based embedding, here we propose SI-spreading-based net-
work embedding algorithms for static and temporal networks. We deploy the susceptible-
infected (SI) spreading process on the given network, either static or temporal, and use the
corresponding spreading trajectories to generate the node pair set, which is fed to the Skip-
Gram to derive the embedding vectors. The trajectories of an SI spreading process capture the
tree-like sub-network centered at the seed node, whereas random walk explores long walks
that possibly revisit the same node. We evaluate our static network embedding algorithm,
which refer to as SINE, and temporal network embedding, TSINE, via a missing link predic-
tion task in six real-world social networks. We compare our algorithms with state-of-the-art
static and temporal network embedding methods. We show that both SINE and TSINE outper-
form other static and temporal network embedding algorithms, respectively. In most cases,
the static network embedding, SINE, performs better than TSINE, which additionally uses
temporal network information. In addition, we evaluate the efficiency of SI-spreading-based
network embedding via exploring the sampling size for the Skip-Gram, quantified as the sum
of the length of the trajectory paths, in relation to its performance on the link prediction
task. We show that high performance of SI-spreading-based network embedding algorithms
requires a significantly smaller sampling size compared to random-walk-based embeddings.
We further explore what kind of links can be better predicted to further explain why our
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proposed algorithms show better performance than the baselines.
The rest of the chapter is organized as follows. We propose our method in Section 6.2.

In Section 6.2.1, we propose our SI-spreading-based sampling method for static networks
and the generation of the node pair set from the trajectory paths. Skip-Gram model is intro-
duced in Section 6.2.2. We introduce an SI-spreading-based sampling method for temporal
networks in Section 6.2.3. In Section 6.3, our embedding algorithms are evaluated on a miss-
ing link prediction task on real-world static and temporal social networks. The chapter is
concluded in Section 6.4.

6.2. SI-SPREADING-BASED EMBEDDING
This section introduces SI-spreading-based network embedding methods. Firstly, we illus-
trate our SI-spreading-based network embedding method for static networks in Sections 6.2.1
and 6.2.2. Section 6.2.3 generalizes the method to temporal network embedding.

Because we propose the network embedding methods for both static and temporal net-
works, we start with the notations for temporal networks, of which the static networks are
special cases. A temporal network is represented as G = (N ,L ), where N is the node
set and L = {l (i , j , t ), t ∈ [0,T ], i , j ∈ N } is the set of time-stamped contacts. The element
l (i , j , t ) in L represents a bidirectional contact between nodes i and j at time t . We con-
sider discrete time and assume that all contacts have a duration of one discrete time step. We
use [0,T ] to represent the observation time window, N = |N | is the number of nodes. The
aggregated static network G = (N ,E) is derived from a temporal network G . Two nodes are
connected in G if there is at least one contact between them in G . E is the edge set of G . The
network embedding problem is formulated as follows:

Given a network G = (N ,E), static network embedding aims to learn a low-dimensional
representation for each node i ∈N . The node embedding matrix for all the nodes is given by
U ∈ Rd×N , where d is the dimension of the embedding vector (d < N ). The i -th column of
U, i.e., −→ui ∈ Rd×1, represents the embedding vector of node i .

6.2.1. SI-SPREADING-BASED STATIC NETWORK SAMPLING
The SI spreading process on a static network is defined as follows: each node is in one of
the two states at any time step, i.e., susceptible (S) or infected (I); initially, one seed node
is infected; an infected node independently infects each of its susceptible neighbors with an
infection probability β at each time step; the process stops when no node can be infected
further. To derive the node pair set as the input for Skip-Gram, we carry out the following
steps:

CONSTRUCTION OF SPREADING TRAJECTORY PATHS.
In each run of the SI spreading process, a node i is selected uniformly at random as the seed.
The SI spreading process starting from i is performed. The spreading trajectory Ti (β) is the
union of all the nodes that finally get infected supplied with all the links that have transmitted
infection between node pairs.

From each of the spreading trajectory Ti (β), we construct mi trajectory paths, each of
which is the path between the root node i and a randomly selected leaf node in Ti (β). The
number mi of trajectory paths to be extracted from Ti (β) is assumed to be given by

mi = max

{
1,

K (i )∑
j∈N K ( j )

mmax

}
,
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Algorithm 1 Generation of trajectory paths from SI spreading

Input: G = (N ,E), B , Lmax, β, mi

Output: node trajectory path set D

1: Initialize number of context windows C = 0
2: Initialize node trajectory path set D =∅
3: while B −C > 0 do
4: Randomly choose node i as the seed to start the SI spreading
5: Generate spreading trajectory tree Ti (β)
6: Randomly choose mi trajectory paths Dgi (gi = 1, . . . ,mi ) from Ti (β)
7: for gi = 1, . . . ,mi do
8: if |Dgi | > Lmax then
9: Choose the first Lmax nodes from Dgi to form D∗

gi

10: Add the trajectory D∗
gi

to D
11: C =C +|D∗

gi
|

12: else
13: Add the trajectory Dgi to D
14: C =C +|Dgi |
15: end if
16: end for
17: end while
18: return D

where mmax is a control parameter and K (i ) is the degree of the root node i in the static
network (or aggregated network).

The trajectory paths may have different lengths (i.e., number of nodes in the path). For
a trajectory path whose length is larger than Lmax = 20, we only take the first Lmax nodes
on the path. For a randomly chosen seed node i , we can generate mi trajectory paths from
Ti (β). We stop running the SI spreading process until the sum of the length of the trajec-
tory paths reaches the sampling size B = N X , where X is a control parameter. We consider
X ∈ {1,2,5,10,25,50,100,150,200,250,300,350}. We compare different algorithms using the
same B for fair comparison [26] to understand the influence of the sampling size. We show
how to sample the trajectory paths in Algorithm 1.

NODE PAIR SET GENERATION.
We illustrate how to generate the node pairs, the input of the Skip-Gram, from a trajectory
path in Figure 6.1. Consider a trajectory path, 1,3,6,8,9,10,7,5, starting from node 1 and
ending at node 5. We set each node, e.g., node 3, as the center node, and the neighboring
nodes of the center node are defined as nodes within ω = 2 hops. The neighboring nodes of
node 3 are, 1, 6 and 8. We thus obtain ordered node pairs (3,1), (3,6), and (3,8). Thus, we
use the union of node pairs centered at each node in each of trajectory path as the input to the
Skip-Gram model.

6.2.2. SKIP-GRAM MODEL
We illustrate how the Skip-Gram derives the embedding vector for each node based on the
input node pair set. We denote by NSI (i ) the neighboring set for a node i derived from the
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Figure 6.1: Generating node pairs from a trajectory path 1,3,6,8,9,10,7,5. The window size ω= 2 and only the first
four nodes 1, 3, 6 and 8 as the center node are illustrated as examples.

SI spreading process. A neighboring node j of i may appear multiple times in NSI (i ) if (i , j )
appears multiple times in the node pair set.

Let p( j |i ) be the probability of observing neighboring node j given node i . We model
the conditional probability p( j |i ) as the softmax unit parametrized by the product of the
embedding vectors, i.e., −→ui and −→u j , as follows:

p( j |i ) = log
exp(−→ui ·−→u j

T )∑
k∈N exp(−→ui ·−→uk

T )
(6.1)

Skip-Gram is to derive the set of the N embedding vectors that maximizes the log probability
of observing every neighboring node from NSI (i ) for each i . Therefore, one maximizes

max O = ∑
i∈N

∑
j∈NSI (i )

log p( j |i ). (6.2)

Equation (6.2) can be further simplified to

max O = ∑
i∈N

(
− log Zi +

∑
j∈NSI (i )

−→ui ·−→uk
T

)
, (6.3)

where
Zi =

∑
k∈N

exp(−→ui ·−→uk
T ). (6.4)

To compute Zi for a given i , we need to traverse the entire node set N , which is computa-
tionally costly. To solve this problem, we introduce negative sampling [22], which randomly
selects a certain number of nodes k from N to approximate Zi . To get the embedding vectors
for each node, we use the stochastic gradient ascent to optimize Eq. (6.3).

The static network embedding algorithm proposed above from the SI-spreading-based
static network sampling and Skip-Gram model is named as SINE.
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6.2.3. SI-SPREADING-BASED TEMPORAL NETWORK SAMPLING
We generalize SINE to the SI-spreading-based temporal network embedding by deploying SI
spreading processes on the given temporal network, namely, TSINE. For a temporal network
G = (N ,L ), SI spreading follows the time step of the contacts in G . Initially, node i is
chosen as the seed of the spreading process. At every time step t ∈ [0,T ], an infected node
infects each of its susceptible neighbor in the snapshot through the contact between them with
probability β. The process stops at time T . We construct the spreading trajectory starting
from node i as Ti (β), which records the union of nodes that get infected together with the
contacts through which these nodes get infected. We propose two protocols to select the seed
node of the SI spreading. In the first protocol, we start by selecting uniformly at random a
node i as the seed. Then, we select uniformly at random a time step from all the times of
contacts made by node i as the starting point of the spreading process, i.e., the time when i
gets initially infected. We refer to this protocol as TSINE1. In the second protocol, we choose
a node i uniformly at random as the seed and start the spreading at the time when node i has
the first contact. We refer to this protocol as TSINE2.

Both TSINE1 and TSINE2 generate the node pair set from the spreading trajectory Ti (β)
in the same way as described in Section 6.2.1. The node pairs from the node pair set is the
input of of Skip-Gram for calculating the embedding vector for each node. The SI-spreading-
based temporal network embedding uses the information on the time stamps of contacts in
addition to the information used by the static network embedding.

6.3. RESULTS
For the link prediction task in a static network, we remove a certain fraction of links from the
given network and predict these missing links based on the remaining links. We apply our
static network embedding algorithm to the remaining static network to derive the embedding
vectors for the nodes, which are used for link prediction. For a temporal network, we select a
fraction of node pairs that have at least one contact. We remove all the contacts between the
selected node pairs from the given temporal network. Then, we attempt to predict whether the
selected node pairs have at least one contact or not based on the remaining temporal network.
We use the area under the curve (AUC) score to evaluate the performance of the algorithms
on the link prediction task. The AUC quantifies the probability of ranking a random node pair
that is connected or has at least a contact higher than a random node pair that is not connected
or has no contact.

6.3.1. EMPIRICAL NETWORKS
We consider temporal networks, each of which records the contacts and their corresponding
time stamps between every node pair. For each temporal network G , one can obtain the
corresponding static network G by aggregating the contacts between each node pair over time.
In other words, two nodes are connected in static network G if there is at least one contact
between them in G . The static network G derived from G is unweighted by definition. We
consider the following temporal social network data sets.

• HT2009 [30] is a network of face-to-face contacts between the attendees of the ACM
Hypertext 2009 conference.

• Manufacturing Email (ME) [31] is an email contact network between employees in a
mid-sized manufacturing company.
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• Haggle [32] records the physical contacts between individuals via wireless devices.

• Fb-forum [33] captures the contacts between students at University of Califonia, Irvine,
in a Facebook-like online forum.

• DNC [34] is an email contact network in the 2016 Democratic National Committee
email leak.

• CollegeMsg [35] records messages between the users of an online community of stu-
dents from the University of California, Irvine.

Table 6.1 provides some properties of the empirical temporal networks. In the first three
columns we show the properties of the temporal networks, i.e., the number of nodes (N ),
timestamps (T ) and contacts (|L |). In the remaining columns, we show the properties of the
corresponding aggregate static networks, including the number of links (|E |), link density, av-
erage degree, and clustering coefficient. The temporal networks are considerably different in
size, which ranges from hundreds to thousands of nodes, as well as in the network density and
clustering coefficient. Choosing networks with different properties allows us to investigate
whether the performance of our algorithms can be consistent across networks.

Table 6.1: Properties of the empirical temporal networks. The number of nodes (N ), timestamps (T ), and contacts
(|L |) are shown. In addition, the number of links (|E |), link density, average degree, and clustering coefficient of the
corresponding static network are shown.

Dataset N T |L | |E | Link Density Average Degree Clustering Coefficient
HT2009 113 5,246 20,818 2,196 0.35 38.87 0.53

ME 167 57,842 82,927 3,251 0.23 38.93 0.59
Haggle 274 15,662 28,244 2,124 0.57 15.5 0.63

Fb-forum 899 33,515 33,720 7,046 0.02 15.68 0.06
DNC 1,891 19,383 39,264 4,465 0.002 4.72 0.21

CollegeMsg 1,899 58,911 59,835 13,838 0.008 14.57 0.11

6.3.2. BASELINE ALGORITHMS
We consider three state-of-the-art network embedding algorithms based on Skip-Gram. These
baseline algorithms and the algorithms that we proposed differ only in the method to sample
trajectory paths, from which the node pair set, i.e., the input to the Skip-Gram, is derived.
DeepWalk [20] and Node2Vec [23] are static network embedding algorithms based on random
walks. CTDNE [26] is a temporal network embedding algorithm based on random walks.

• DeepWalk [20] deploys classic random walks on a given static network.

• Node2vec [23] deploys biased random walks on a given static network. The biased
random walk gives a trade-off between breadth-first-like sampling and depth-first-like
sampling of the neighborhood, which is controlled via two hyper-parameters p and
q . We use a grid search over p, q ∈ {0.01,0.25,0.5,1,2,4} to obtain embeddings that
achieve the largest AUC value for link prediction.

• CTDNE [26]: CTDNE is a temporal network embedding algorithm based on temporal
random walks. The main idea is that the timestamp of the next temporal contact on
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the walk should be larger than the timestamps of previously traversed contacts. Given
a temporal network G = (N ,L ), the starting contact for the temporal random walk
is selected uniformly at random. Thus, every contact has probability 1/|L | to be se-
lected as the starting contact. Assume that a random walker visits node i at time step
t . We define Γt (i ) as the set of nodes that have contacted node i after time t allow-
ing duplicated elements. A node may appear multiple times in Γt (i ) because it may
have multiple contacts with node i over the course of time. The next node to walk to
is uniformly selected from Γt (i ), i.e., every node in Γt (i ) is chosen with probability
1/|Γt (i )|. Nguyen et al. [26] generalized the starting contact and the successor node of
a temporal walk to other distributions beyond the uniform distribution illustrated here.
When we compare the performance of the algorithms on link prediction, we explore the
embeddings that give the largest AUC value for link prediction of CTDNE by taking
into account all possible generalizations proposed by Nguyen et al.

In our SI-spreading-based algorithms for both static and temporal networks, we set β ∈
{0.001,0.01,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0}. We use ω = 10 and embedding dimen-
sion d = 128 for our algorithms and the baseline algorithms.

6.3.3. PERFORMANCE EVALUATION
TRAINING AND TEST SETS
In this section, we illustrate how to generate the training and test sets in the link prediction
task in temporal and static networks. We run the network embedding algorithms on the
corresponding training set and obtain embedding vector for each node, and use the AUC to
evaluate the link prediction performance in the test set.

Given a temporal network G , we select uniformly at random 75% node pairs among the
node pairs that have at least one contact between them in G as the training set for temporal
embedding algorithms, including all the contacts and their timestamps. The training set for
static network embedding algorithms is the aggregation of the training set for temporal em-
bedding algorithms. In other words, for every node pair, there is a link between the two nodes
in the training set for static network embedding if and only if they have at least one contact
in the training set for temporal embedding algorithms.

We use the remaining 25% node pairs among the node pairs that have at least one contact
of G as the positive links in the test set. We label these node pairs 1. Then, we uniformly
randomly sample an equal number of node pairs in G which have no contact between them.
These node pairs are used as negative links in the test set, which we label 0. The same test
set is used for the link prediction task in both temporal and static networks.

For each temporal network data set, we randomly split the network to obtain the training
and test set according to the procedures given above five times. Both random walks and
SI spreading processes are stochastic. For each split data, we run each algorithm on the
training set and perform the link prediction on the test set for ten realizations. Therefore, we
obtain ten AUC scores for each splitting of the data into the training and test sets, evening
the randomness stemming from stochasticity of the random walk or SI spreading processes.
We obtain the AUC score for each algorithm with a given parameter set as an average over
50 realizations in total.

EVALUATION RESULTS
We summarize the overall performance of the algorithms on missing link prediction in Ta-
ble 6.2. For each algorithm, we tune the parameters and show the optimal average AUC score.
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Table 6.2: AUC scores for link prediction. All the results shown are the average over 50 realizations. Bold indicates
the optimal AUC among the embedding algorithms, ∗ indicates the optimal AUC among all the algorithms. L2, L3,
L4 are the short for link prediction metrics which counts the number of l = 2,3,4 paths, respectively.

Dataset DeepWalk Node2Vec CTDNE TSINE1 TSINE2 SINE L2 L3 L4
HT2009 0.5209 0.5572 0.6038 0.6740 0.6819 0.6726 0.7069∗ 0.7066 0.7055

ME 0.6439 0.6619 0.6575 0.7329 0.7462 0.7744 0.7855 0.7878∗ 0.7790
Haggle 0.3823 0.7807 0.7796 0.8051 0.8151 0.8267∗ 0.8167 0.8255 0.8226

Fb-forum 0.5392 0.6882 0.6942 0.7104 0.7195 0.7302∗ 0.5606 0.7179 0.7203
DNC 0.5822 0.5933 0.7274 0.7539 0.7529 0.7642 0.7704∗ 0.7627 0.7193

CollegeMsg 0.5356 0.5454 0.7872 0.8257 0.8321 0.8368 0.7176 0.8609∗ 0.8203

Among the static network embedding algorithms, SINE significantly outperforms DeepWalk
and Node2Vec. The improvement in the AUC score is up to 30% on the CollegeMsg dataset.
Embedding algorithms CTDNE, TSINE1 and TSINE2 are for temporal networks. The SI-
spreading-based algorithms (i.e., TSINE1 and TSINE2) also show better performance than
random-walk-based one (CTDNE). Additionally, TSINE2 is slightly better than TSINE1 on
all data sets. Therefore, we will focus on TSINE2 in the following analysis. In fact, SINE
shows better performance than temporal network embedding methods including TSINE2 on
all data sets except for HT2009. It has been shown that temporal information is important for
learning embeddings [26, 36, 37]. However, up to our numerical efforts, SINE outperforms
the temporal network algorithms although SINE deliberately neglects temporal information.

To get insights into the different performance among the embedding algorithms, we fur-
ther investigate the distribution of the dot product of node embedding vectors. Given a link
(i , j ) in the test set, we compute the dot product of the two end nodes’ embedding vectors,
i.e., −→ui · −→u j

T . We show the dot product distribution for the positive links and negative links
in the test set separately. For each embedding algorithm, we consider only the parameter set
that maximizes the AUC, i.e., the parameter values with which the results are shown in Ta-
ble 6.2. We show the distribution of the dot product for Haggle in Figure 6.2 and for the other
data sets in Figure S1–S5 in the Appendix. Compared to the random-walk-based algorithms,
TSINE2 and SINE yield more distinguishable distributions between the positive (grey) and
the negative links (pink). This result supports the better performance of SI-spreading-based
embeddings than random-walk-based ones.

The embedding algorithms differ only in the sampling method to generate the node pair
set. These algorithms use the same Skip-Gram architecture, which takes the node pair set as
input, to deduce the embedding vector for each node. We explore further how the algorithms
differ in the node pair sets that they sampled. The objective is to discover the relation between
the properties of the sampled node pairs and the performance of an embedding method. We
represent the node pair set generated by an embedding method as a network GS = (N ,ES ),
so called the sampled network. Two nodes are connected in GS if they form a node pair in
the node pair set. It should be noted that GS is an unweighted network. For each algorithm,
with the parameter set that maximizes the AUC, we show the cumulative degree distribution
of its sampled network GS in Figure 6.3. The cumulative degree distribution of the training
set for static network is also given. Compared to the cumulative degree distribution of the
training set, the sampled networks tend to have a higher node degree. Zhang et al. and Gao
et al. [25, 38] have shown that when the degree distribution of GS is closer to that of the
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Figure 6.2: The dot product distribution of the two end nodes’ embedding vectors of the positive and negative links
in the test set. We show the result of the Haggle data set. For each algorithm, we use the same parameter settings
as that of Table 6.2 to obtain the embeddings. Dot products of positive links are shown in grey. Negative links are
shown in pink. The results are shown for algorithms (a) DeepWalk; (b) Node2Vec; (c) CTDNE; (d) TSINE2 and (e)
SINE.

training set, the prediction performance of a random-walk-based algorithm tends to be better.
Even though SI-spreading based algorithms perform the best across the data sets, we have not
found a direct relation between the performance of the embedding algorithm and similarity
between the degree distribution of the sampled network and that of the training set.

Similarity-based methods such as the number of l = 2,3,4 paths have been used for link
prediction problem [9]. A l path between two nodes refers to a path that contains l links.
We show examples of l = 2,3,4 path between a node pair i and j in Figure 6.4. Kovács
et al. [39] have shown that l paths (l = 3,4) outperform existing link prediction methods in
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Figure 6.3: Cumulative degree distribution of the static network derived from the training set and that of the sam-
pled networks GS from different algorithms. We show the results for (a)HT2009; (b)ME; (c)Haggle; (d)Fb-forum;
(e)DNC; (f)CollegeMsg.
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Figure 6.4: Illustration of l paths between a pair of nodes i and j . Here we show l = 2,3,4.
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predicting protein interaction. Cao et al. [40] found that network embedding algorithms based
on random walks sometimes perform worse in link prediction than the number of l = 2 paths
or equivalently the number of common neighbors. This result suggests a limit of random-
walk-based embedding in identifying the links between node pairs that have many common
neighbors. Therefore, we explore further whether our SI-spreading-based algorithms can
overcome this limitation, thus possibly explain their outperformance.

We investigate what kind of network structure surrounding links makes them more easily
be predicted. For every positive link in the test set, we study its two end nodes’ topological
properties (i.e., the number of l = 2, l = 3 and l = 4 paths) and the dot product of the em-
bedding vectors of its two end nodes. Given a network, the parameters of each embedding
algorithm are tuned to maximize the AUC, as given in Table 2. We take the data set Haggle
as an example. Figure 6.5 show the relation between the dot product of the embedding vec-
tors and the number of l = 2,3,4 paths of the two end nodes of a positive link in the test set
for all the embedding methods. The Pearson correlation coefficient (PCC) between the two
variables for all the networks and algorithms is given in Table S1 in the Appendix. Figure 6.5
and Table S1 together show that the dot product of the embedding vectors constructed from
TSINE2 and SINE is more strongly correlated with the number of l paths, where l = 2, 3 or 4,
than the random-walk-based embeddings. This result suggests that SI-spreading-based algo-
rithms may better predict the links whose two end nodes have many l -paths, thus overcoming
the limit of random-walk-based embedding algorithms.

The number of l = 2,3 paths has been used to predict links in [9, 39, 40]. The observation
and the limit of random-walk-based embedding algorithms motivate us to use the number
of l = 2,3,4 paths between a node pair to predict the missing links. Take l = 2 paths as an
example. For every link in the test set, the number of l = 2 paths between the two end nodes in
the training set is used to estimate the likelihood of connection between them. In the networks
we considered, two end nodes of a link tend to be connected by l = 2, l = 3 and l = 4 paths
(see Figures 6.5). Table 6.2 (L2,L3,L4 shown in the table correspond to the method of using
the number of l = 2,3,4 path for link prediction) shows that in such networks, the similarity-
based methods do not evidently outperform the SI-spreading-based embedding. Actually, the
SI-spreading-based embedding performs better in two out of six networks.

Next, we study the effect of the sampling size, B , on the performance of each algorithm.
The sampling size is quantified as the the total length of the trajectory paths as defined in
Section 6.2.1. Given a network, we set B = N X , where N is the size of the network and X ∈
{1,2,5,10,25,50,100,150}. We evaluate our SI-spreading-based embedding algorithms SINE
and TSINE2, and one random-walk-based embedding algorithm CTDNE, because CTDNE
performs mostly the best among all random-walk-based algorithms. The result is shown
in Figure 6.6. For each X , we tune the other parameters to show the optimal AUC in the
figure. Both SINE and TSINE2 perform better than CTDNE and are relatively insensitive to
the sampling size. This means that they achieve a good performance even when the sampling
size is small, even with X = 1. The random-walk-based algorithm, CTDNE, however, requires
a relatively large sampling size to achieve a comparable performance with SINE and TSINE2.

Finally, the AUC as a function of the infection probability, β, is shown in Figure 6.7.
For each β, we tune the other parameters to show the optimal AUC. The SI-spreading-based
algorithms achieve high performance with a small infection probability (0.001 ≤ β≤ 0.1) for
all the data sets. The high performance of SI-spreading-based embedding algorithms with the
small value of X and β across different networks motivates the further study whether one can
optimize the performance by searching a smaller range of the parameter values.
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Figure 6.5: Relation between the dot product of the two end nodes’ embedding vectors and the number of l = 2,3,4
paths between the two end nodes of the positive links in the test set for Haggle data set. (a1–a5), (b1–b5) and (c1–c5)
are the results for the number of l = 2,3,4 paths, respectively.

6.4. CONCLUSIONS
In this chapter, we proposed network embedding algorithms based on SI spreading processes
in contrast to the previously proposed embedding algorithms based on random walks [41, 42].
We further evaluated the embedding algorithms on the missing link prediction task. The key
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Figure 6.6: Influence of the sampling size B = N X on the link prediction performance, i.e., AUC score. The error
bar shows the standard deviation of the AUC score calculated on the basis of 50 realizations. We show the results
for (a)HT2009; (b)ME; (c)Haggle; (d)Fb-forum; (e)DNC; (f)CollegeMsg.

point of an embedding algorithm is how to design a strategy to sample trajectories to obtain
embedding vectors for nodes. We used the SI model to this end. The algorithms that we
proposed are SINE and TSINE, which use static and temporal networks, respectively.

On six empirical data sets, the SI-spreading-based network embedding algorithm on
the static network, i.e., SINE, gains much more improvement than state-of-the-art random-
walk-based network embedding algorithms across all the data sets. The SI-spreading-based
network embedding algorithms on the temporal network, TSINE1 and TSINE2, also show
better performance than the temporal random-walk-based algorithm. Temporal informa-
tion provides additional information that may be useful for constructing embedding vec-
tors [26, 36, 37]. However, we find that SINE outperforms TSINE, which uses timestamps
of the contacts. This result suggests that temporal information does not necessarily improve
the embedding for missing link prediction. Moreover, when the sampling size of the Skip-
Gram is small, the performance of the SI-spreading-based embedding algorithms is still high.
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Figure 6.7: AUC as a function of β. We show the results for (a)HT2009; (b)ME; (c)Haggle; (d)Fb-forum; (e)DNC;
(f)CollegeMsg.



6.4. CONCLUSIONS

6

103

Sampling trajectory paths takes time especially for large-scale networks. Therefore, our ob-
servation that the SI-spreading-based algorithms require less samples than other algorithms
promises the applicability of the SI-spreading-based algorithms to larger networks than the
random-walk-based algorithms. Finally, we show insights of why SI-spreading-based em-
bedding algorithms performs the best by investigating what kind of links are likely to be
predicted.

We deem that the following future work as important. We have already applied susceptible-
infected-susceptible (SIS) model and evaluated the SIS-spreading-based embedding. How-
ever, this generalization has not improved the performance in the link prediction task. There-
fore, one may explore whether or not sampling the network information via the other spread-
ing processes, such as susceptible-infected-recovered (SIR) model, further improves the em-
bedding. It is also interesting to explore further the performance of the SI-spreading-based
algorithms in other tasks such as classification and visualization. Moreover, the SI-spreading-
based sampling strategies can also be generalized to other types of networks, e.g., directed
networks, signed networks, and multilayer networks.
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6.5. APPENDIX

Figure 6.8: The dot product distribution of the end nodes’ embedding vectors of the positive and negative links in
the test set. We show the result of the HT2009 dataset. For each algorithm, we use the same parameter settings as
that of Table 2 in the main manuscript to get the embeddings. Dot products of positive links are in grey. Negative
links are in pink.
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Figure 6.9: Distribution of the dot product of the end nodes’ embedding vectors of the positive and negative links in
the test set. We show the result of the ME data set. For each embedding algorithm, we use the same parameter values
as those used for Table 2 in the main manuscript. The distribution for the positive and negative links are shown in
grey and pink, respectively.
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Figure 6.10: Distribution of the dot product of the end nodes’ embedding vectors of the positive and negative links in
the test set. We show the result of the Fb-forum data set. For each embedding algorithm, we use the same parameter
values as those used for Table 2 in the main manuscript. The distribution for the positive and negative links are
shown in grey and pink, respectively.
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Figure 6.11: Distribution of the dot product of the end nodes’ embedding vectors of the positive and negative links
in the test set. We show the result of the DNC data set. For each embedding algorithm, we use the same parameter
values as those used for Table 2 in the main manuscript. The distribution for the positive and negative links are
shown in grey and pink, respectively.
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Figure 6.12: Distribution of the dot product of the end nodes’ embedding vectors of the positive and negative links
in the test set. We show the result of the CollegeMsg data set. For each embedding algorithm, we use the same
parameter values as those used for Table 2 in the main manuscript. The distribution for the positive and negative
links are shown in grey and pink, respectively.
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Table 6.3: Pearson correlation coefficient between the number of l = 2,3,4 paths and the dot product of node pairs’
embedding vector, compared across the different algorithms. The node pairs are the positive links from the test
set. We count the number of l = 2,3,4 paths of each positive link from the training set. To produce the embedding
vectors, we used the same parameter values as those used for Table 2 in the main manuscript.

Metric Dataset DeepWalk Node2vec CTDNE TSINE2 SINE
HT2009 −0.1476±0.0462 0.1466±0.0552 0.3531±0.0484 0.7440±0.0439 0.7824±0.0326

ME 0.0627±0.0347 0.1465±0.0889 0.4593±0.0556 0.6120±0.0410 0.6324±0.0327
the number of l = 2 paths Haggle −0.3476±0.0443 0.6863±0.0416 0.8098±0.0122 0.8656±0.0139 0.8564±0.0112

Fb-forum 0.2099±0.0663 0.1534±0.0272 0.2152±0.0329 0.3322±0.0561 0.4538±0.0586
DNC −0.0125±0.0223 0.0263±0.0196 0.5011±0.0836 0.6537±0.0718 0.7220±0.0754

CollegeMsg 0.0334±0.0159 0.0521±0.0171 0.3674±0.0191 0.5648±0.0133 0.6328±0.0219

HT2009 −0.2323±0.0401 0.0112±0.0383 0.3746±0.0493 0.7736±0.0495 0.8231±0.0314
ME −0.1809±0.0371 0.1430±0.0880 0.4494±0.0600 0.6502±0.0470 0.7051±0.0325

the number of l = 3 paths Haggle −0.3973±0.0419 0.7165±0.0420 0.8372±0.0125 0.8593±0.0146 0.8635±0.0109
Fb-forum −0.0664±0.0541 0.3049±0.0194 0.4452±0.0177 0.6465±0.0383 0.8081±0.0146

DNC −0.1351±0.0197 −0.1246±0.0162 0.6010±0.0420 0.7762±0.0249 0.8732±0.0158
CollegeMsg −0.2611±0.0073 −0.2292±0.0080 0.5338±0.0161 0.7731±0.0090 0.8546±0.0123

HT2009 −0.2401±0.0413 0.0027±0.0382 0.3810±0.0495 0.7740±0.0502 0.8255±0.0313
ME −0.1894±0.0393 0.1479±0.0907 0.4607±0.0598 0.6529±0.0467 0.6989±0.0316

the number of l = 4 paths Haggle −0.3977±0.0417 0.7163±0.0418 0.8373±0.0122 0.8629±0.0141 0.8660±0.0109
Fb-forum −0.1459±0.0678 0.3131±0.0192 0.4525±0.0207 0.6498±0.0414 0.8557±0.0115

DNC −0.1368±0.0178 −0.1288±0.0134 0.5821±0.0432 0.7733±0.0226 0.8690±0.0407
CollegeMsg −0.2317±0.0115 −0.2017±0.0124 0.5115±0.0140 0.7608±0.0083 0.8542±0.0168
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In this thesis, we focus on the impact of temporal network structure on information dif-
fusion process via the study of local and global surrounding properties of nodes and links.
Additionally, we propose network representation learning algorithms to study the similarity
between network nodes. We present our methodologies, findings and empirical results in
five technical chapters. To close the loop back to the introduction, we answer the research
questions and reflect on the limitations and practical implications of our thesis in Section 7.1.
Based on the obtained insight and observed limitations of the research reported in the thesis,
we point out possible directions for future work in Section 7.2.

7.1. MAIN CONTRIBUTION AND REFLECTIONS
In Chapter 2, we investigate the SI diffusion process on a temporal network, where we pro-
pose information diffusion backbone to characterize the probability of a link to appear in a
diffusion trajectory. Our objective is to explore which kind of links tend to have a non-zero
probability to appear a diffusion trajectory, i.e., appear in the backbone. This is unraveled by
the exploration of using a wide range of link properties in identifying the links in the back-
bone. We propose a time-scaled link weight that describes which links will appear in the
diffusion backbone besides considering link centrality metrics from static networks. Com-
pared to the metrics from the aggregated static networks, the time-scaled link weight shows
evidently better identification power across different empirical network datasets. This implies
the importance of considering the temporal information of a link in predicting its appearance
in a diffusion trajectory. Despite that the time-scaled weight shows better identification per-
formance than the static metrics, we only identify the link appearance in the backbone. Iden-
tifying the ranking of links in their probability to appear in a diffusion trajectory is beyond
the scope of the research reported in this chapter.

To emphasize the importance of link ranking in the diffusion process, we further study in
Chapter 3 how removing the links with high ranking could help suppress information diffu-
sion. We propose a comprehensive set of link blocking strategies, which capture diverse link
properties, including static ones and temporal ones. The temporal ones are mainly based on
the information diffusion backbone, which are proposed in Chapter 2. The static ones mainly
contain the static properties of a link, such as degree product, node strength product and static
betweenness. In great contrast to the previous work, the links with high ranking values are
removed in a certain given time period. This mimics a real-world case, in which societal mea-
sures for preventing spreading, such as social distancing, are expected to be temporal rather
than permanent. We find that four metrics outperform the random blocking, i.e., static be-
tweenness and three other ones based on information diffusion backbone. However, we find
that the effectiveness of the blocking strategies depends on the time scale of the networks.
The metrics based on the information diffusion backbone tend to perform well in networks
that have fast information propagation speed. Static betweenness is a suitable link blocking
strategy for networks with a slow spreading speed. We obtain universal performance of these
four link blocking strategies for various empirical network datasets, blocking periods and
fractions of links. Our findings suggest that as the time scale of temporal network changes,
the way how to design link blocking strategy may also need to be updated.

A node is influential in an information diffusion process if the information that starts
spreading from it can be widely spread. We model the information diffusion process on
temporal networks by an SIR model in Chapter 4. The spreading capacity of a node is defined
as the final spreading size of the spreading process started from the node. In a temporal
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network, the spreading process follows the temporal paths. Based on this assumption, we
propose a temporal information gathering process (TIG-process) to identify influential nodes
in an SIR spreading process. In the TIG-process, we iteratively gather information from
different orders of neighbors through the temporal paths. We propose two different temporal
paths, i.e., fast arrival path and temporal shortest path. Compared to the benchmark metrics,
TIG-process outperforms the rest across different temporal network datasets. We only need
a small number of iterations to achieve the best identification performance across different
empirical networks. Our work illustrates the potential to more precisely identify influential
nodes via encoding the high order neighborhood and temporal information.

The studies in Chapter 2, 3 and 4 unravel the importance of temporal information in de-
termining link (node) importance in information diffusion processes on a temporal network.
The success of the methods we propose for identifying important links (nodes) relies on the
fact that we systematically consider different properties of the links (nodes). Particularly, we
take into account the order of the temporal links as well as the nodes that appear in a temporal
network. This may inspire the way to tackle optimization problems, such as which node pairs
should be stimulated to link and at what time in order to maximize the prevalence of informa-
tion or epidemic propagation. In addition to the spreading models, i.e., SI and SIR model, that
are used in these three chapters, spreading processes of information or epidemic, can be also
modeled by a susceptible-infected-susceptible (SIS) model, independent cascade model [1],
the threshold model [2] or opinion model [3]. Due to the different governing mechanisms of
different spreading models, the role of a link (node) in these spreading processes may differ
significantly.

The methodologies that we have proposed on how to identify links that probably appear in
an SI spreading trajectory, how to develop link blocking strategies to suppress the spreading
of (mis)information and how to identify the influence of a node as a seed node may shed light
on how to design the study of link’s (node’s) role in other spreading processes.

Furthermore, while we limit ourselves to the study of link’s (node’s) role in a spreading
process on temporal networks, the technique studies are also applicable to a range of different
disciplines as well as networks.

The deep study of information diffusion processes on temporal networks navigates us
to investigate how to use the spreading processes in the network embedding algorithms in
Chapter 5 and 6. In Chapter 5, we design a degree-biased-random-walk network embedding
algorithm, i.e., DiaRW, in a static network. We use degree centrality to represent node im-
portance and design a random walk that tends to visit the surrounding structure of a high
degree node more. In addition, we make the length of a walk positively correlated with the
degree of the source node. In other words, if the source node has a higher degree, a walk that
starts from it has a longer walk length. We obtain each node’s embedding vector by applying
the degree-biased random walk and Skip-Gram learning architecture. We further evaluate
the performance of our embedding algorithm on the node classification and missing link
prediction tasks on various real-world datasets. Compared to state-of-the-art network embed-
ding algorithms, DiaRW shows better performance and especially shows high efficiency in
large-scale networks with millions of nodes. We apply our algorithm on link prediction task
for synthetic networks that have different degree heterogeneity. DiaRW performs well with
network that has high degree heterogeneity. Chapter 5 provides guidelines for researchers
on how to improve the accuracy and efficiency of random-walk-based network embedding
algorithms via applying node importance in the random walk process.

Chapter 6 applies the SI spreading model to sample the trajectory paths from a network,



7

116 7. REFLECTIONS AND RECOMMENDATIONS

which is further used as the input of the Skip-Gram to derive the embedding of nodes. We
apply the SI spreading model to both static networks (SINE) and temporal networks (TSINE),
respectively. The SI-spreading-based algorithm is different from the random-walk-based one,
as it captures the tree-like sub-network centered at the seed node. We use the link prediction
task to evaluate the algorithms. SINE outperforms the static state-of-the-art random-walk-
based network embedding algorithms. TSINE also performs better than temporal random-
walk-based algorithms on temporal networks. Surprisingly, we find that SINE performs bet-
ter than TSINE in most of the networks, which indicates that temporal information may not
necessarily improve the embedding for missing link prediction. We study the influence of the
sampling size, which is quantified by the sum of the length of all the trajectory paths, on the
performance of the embedding algorithms. The SI-spreading-based algorithms are less sensi-
tive to the change of the sampling size compared to the random-walk-based ones. Even with
a small sampling size, we can obtain a high prediction quality for the SI-spreading-based
embedding algorithms. We explain why the SI-spreading-based algorithm can outperform
the others by investigating which properties of the local structure make links more likely to
be predicted. Even though our SI-spreading-based network algorithms show higher perfor-
mance than the state-of-the-art embedding algorithms on missing link prediction, link pre-
diction based on simple similarity metrics, such as the number of common neighbors may
perform the best in some network datasets. The findings point out the necessity of studying
the applicability of different link prediction methods in the different networks.

Both chapters 5 and 6 aim at filling the gap between network science and machine learn-
ing algorithms by exploiting the network science theory to design the missing-link prediction
algorithms and explain the performance of these algorithms. Considering the node hetero-
geneity in designing the network embedding algorithms has proven to be both efficient and
effective. As a start, we only consider the degree heterogeneity of nodes. The other centrality
metrics including the ones that we propose in Chapter 2,3 and 4 can also be applied to this
scenario. In addition to the missing link prediction problem and node classification, network
embedding algorithms have been applied to other tasks such as future link prediction, cluster-
ing and visualization [4–6]. The algorithms we proposed can also be applied to these tasks.
For example, we have shown that the temporal information may not necessarily improve the
missing prediction performance under SI-spreading-based network embedding. However, the
future link prediction task requires to consider the historical evolution of a link to predict its
existence in the future. The trajectory paths sampled from the SI-spreading-based network
embedding algorithms actually follow the time order of the contacts in temporal networks. In
other words, the temporal paths contain the historical evolution of the links and thus may be
useful for future link prediction.

7.2. FUTURE WORK
The study of link (node) importance identification in an information diffusion process has
successfully followed the following recipe: select the static metrics, define the temporal
metrics and evaluate the performance on real-world datasets. The recipe from the network
embedding algorithms basically starts from the designing of the embedding algorithms, the
selection of state-of-the-art benchmarks, to the explanation of the performance of different
algorithms using complex network theory. The two recipes widen our study to other possible
directions. Therefore, based on the results and the limitation of this thesis, we raise some
promising future directions related to the information diffusion processes.
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The role of links (nodes) in other spreading processes. In this thesis, we mainly focus
on the spreading models, such as SI and SIR model. The spreading models are proposed to
capture different spreading processes. For example, SIS model is used to model how the flu
spreads in a population, SEIR model is frequently used to model the spread of the Coronavirus
(COVID-19) and the independent cascade model is used to capture the information diffusion
process on a social network. Models differ not only in their underlying mechanisms but also
in the phenomena they generate. Therefore, it is not trivial to study links (nodes) with what
kind of local structure may appear in different spreading processes on a temporal network.
Furthermore, different spreading processes simulated on a temporal network may result in
different spreading trajectories, such as the random walk and SI model we used in chapters
5 and 6. The study of how to apply other spreading processes to network representation
learning is also a promising direction.

Future link prediction in a temporal network. We applied the spreading processes to
network representation learning and to solve the missing link prediction problem. Predicting
missing links is performed by first hiding some links in a network and then trying to predict
them by using the remaining network structure. The future link prediction is different in the
sense that we need to consider the historical evolution of a link and even its local structure
to predict whether it will appear in the future or not. The difficulty lies in that we need to
study the governing process that determine a link’s appearance. The temporal network data
frequently used nowadays are mainly based on the physical contacts or electronic commu-
nications between people. The contacts between people are used for information exchange.
Therefore, we believe that spreading processes may play a role in modeling the governing
process of the contact formation and thus could be used to predict future links in a temporal
network.

Spreading processes for network representation learning on other types of networks.
Networks are used to represent different complex systems. For example, bipartite networks
are used to represent the user-item interactions in e-commerce systems. The election process
can be modeled by opinion model on a signed network. Therefore, the question of how to
use the spreading processes for network representation learning on those networks is also a
promising topic for future studies.
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Propositions

accompanying the dissertation

INFORMATION DIFFUSION ON TEMPORAL NETWORKS

by

Xiuxiu ZHAN

1. The actual time when a link occurs in a temporal network is more
important in determining its probability of transmitting information
than the number of link occurrences.
This proposition pertains to this dissertation.

2. When proposing new machine learning algorithms for link predic-
tion, one should always consider the benchmark methods relying on
the local network structure.
This proposition pertains to this dissertation.

3. Increasing the accuracy of predictive methods is less important than
understanding their performance.
This proposition pertains to this dissertation.

4. The more you engineer your life, the more freedom you gain.

5. Imposing a deadline works against the quality of scientific research.

6. The way English is taught in China is not sufficiently supportive for
developing the scientific English writing skills.

7. Open public character of social media does not make it an unbiased
information channel.

8. Fighting discrimination requires fighting simplistic thinking.

9. Stimulating multidisciplinary scientific approach is the key to inno-
vation in computer science.

10. Online education endangers academic forming at universities.

These propositions are regarded as opposable and defendable, and have
been approved as such by the promotor prof. dr. A. Hanjalic.
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