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Abstract 

Local geometrical perturbations in alluvial channels can generate a pattern of alternate bars. Each 

bar is accompanied by a pool at the other side of the channel. This pool can decrease the strength of 

the bank, which can result in bank failure. The bars also cause hindrance to navigation and can block 

a water intake, if a bar is deposited in front of an irrigation canal. Furthermore, non-migrating 

alternate bars are considered to be a possible cause of meandering. Previous linear analyses and 

laboratory experiments showed that these bars arise downstream of perturbations in the relatively 

narrow and deep channels corresponding to sub-resonant conditions, but both upstream and 

downstream of perturbations in the relatively wide and shallow channels corresponding to super-

resonant conditions. Previous numerical computations reproduced alternate bars under sub-

resonant conditions, but failed to do so under super-resonant conditions until the recent 2D depth-

averaged computations by Van der Meer et al. (2011) using Delft3D.  

 

This study is an advance on the modelling work of van der Meer et al. and has the objective to assess 

to what extent the numerical results agree with linear theory and experimental observations and to 

investigate the development of bars upstream of a bend under super-resonant conditions.  

Few experiments of bar development under super-resonant conditions are available in the 

literature. Zolezzi et al. (2005) conducted three super-resonant experiments in a U-curved flume. 

Downstream of the bend, the numerical model and experimental observations clearly matched. The 

numerical model, however, was not able to reproduce the development of non-migrating alternate 

bars upstream of the bend at the experimental conditions. It appeared that the point of resonance 

was over-predicted by the numerical model, so the (in reality) super-resonant experiment was still 

sub-resonant in the numerical model. For larger width-to-depth ratios the numerical model showed 

that it was able to develop bars upstream of the bend. Also the observed wave lengths and bed-

topography spectra complied with the literature. The numerical model matched prediction of linear 

theory only for small-amplitude alternate bars.   

 

The numerical simulations were unstable for realistic values of the horizontal eddy viscosity  

(O(10-5 m2/s) for small-scale models). The latter was therefore increased to stabilize the simulations. 

This increase was the cause of overpredicting the point of resonance by the numerical model. It 

appeared that the resonance half-width-to-depth ratio was about 50% larger for the high viscosity 

than in the case of a low horizontal eddy viscosity. For the bedload transport procedure Delft3D 

offers two options, the ‘upwind’ procedure and the ‘central’ procedure. The former introduces 

numerical diffusion, whereas the latter is less stable. The shortening of bars for large width-to-depth 

ratios, as observed by Van der Meer et al. (2011), is probably the result of numerical diffusion. The 

‘upwind’ procedure causes sediment deposits and scour to be concentrated near the banks, because 

the higher modes (for example the central mode) within the alternate-bar spectrum were damped. 

Therefore ‘upwind’ bar peaks are higher and can become inactive, because these bars run dry 

before they are fully developed and consequently have a smaller wave length.  

 

The alternate-bar pattern upstream of the bend under super-resonant conditions was found to 

develop from downstream to upstream, in accordance with linear theory, only if no perturbation 



 

Numerical nonlinear analysis of alternate-bar formation under super-resonant conditions 

vi 

  Wilbert Verbruggen 

was applied at the upstream boundary. A development from upstream to downstream dominated in 

case of a perturbed upstream boundary. The computed alternate bars migrated invariably 

downstream, under both super-resonant and sub-resonant conditions. I ascribe this to nonlinear 

effects, since the bars did migrate upstream under super-resonant conditions, in accordance with 

linear theory, as long as their amplitudes were very small. The analytical model complies with the 

behaviour of small-amplitude bars in the numerical model, but fails to predict the behaviour of 

large-amplitude bars in the numerical model due to non-linear effects.  

 

This study has shown that alternate-bar formation cannot be solely understood from linear 

equations. It seems therefore recommendable to investigate the contribution of non-linear effects 

in a more quantitative way, for example through outputting the contribution of each non-linear 

term in the equation for flow and sediment transport in Delft3D. The strength of gravitational pull 

on transverse slopes has large consequences on the direction of sediment transport and therefore 

also on alternate-bar properties. Mismatches in bar amplitude and the bed topography in bends are 

probably caused by errors in the prediction of transverse slope effects. For these reasons it is 

recommendable to improve the prediction of transverse bed-slope effects. This can be established 

by applying the particle-approach of (Nabi, 2012). 

 

 

  



 

vii 

 

Preface 

This document constitutes the final thesis report to accomplish the Master of Science degree in 

Hydraulic Engineering at Delft University of Technology, Faculty of Civil Engineering and 

Geosciences. It is the result of a study I carried out from September 2011 till May 2012. The subject 

of the study was to investigate the numerical modelling of alternate bars. The study was carried out 

under the supervision of Erik Mosselman and Kees Sloff at Deltares.  

 

First of all, I would like to thank Erik Mosselman and Kees Sloff for their support and willingness to 

enhance my research. I want to thank Erik mainly for the overall support and discussions we had 

about my findings and Kees for his support to help me with applying Delft3D (the numerical model I 

used). I also want to thank Guido Zolezzi for his support during the skype-meetings we had and for 

the experimental details he supplied. I furthermore would like to thank Huib de Vriend, my 

graduation professor, for his ideas and enthusiasm during the meetings we had and Robert-Jan 

Labeur for the constructive comments.  

 

Secondly, I would like to thank Deltares for supplying me a workspace, so that experts were within a 

short distance. Besides my supervisors I want to thank Dirk-Jan Walstra and Bert Jagers for their help 

on specific problems. I would also like to thank my fellow graduates at Deltares. During my stay at 

Deltares I met a lot of graduates from different countries. During the lunch and coffee breaks we 

helped and motivated each other. Besides the advantages for my research I also want to thank them 

for the pleasant time it created.  

 

Thirdly, I would like to thank my family and friends for their interest and encouragements. Special 

thanks go out to my parents, who made my Master of Science degree financially possible. Lastly, I 

would like to thank my fiancé for her support and for checking my report on the use of English.   

 

I hope you will enjoy reading it! 

 

Wilbert Verbruggen 

Delft, May 2012 

 

 



 

Numerical nonlinear analysis of alternate-bar formation under super-resonant conditions 

viii 

  Wilbert Verbruggen 

Table of contents 

ABSTRACT ................................................................................................................................................ V 

PREFACE ................................................................................................................................................. VII 

TABLE OF CONTENTS .............................................................................................................................. VIII 

LIST OF TABLES ........................................................................................................................................ XI 

LIST OF SYMBOLS .................................................................................................................................... XII 

1 INTRODUCTION ................................................................................................................................ 1 

1.1 CONTEXT ................................................................................................................................................. 1 

1.2 PROBLEM DESCRIPTION ............................................................................................................................... 3 

1.3 OBJECTIVES .............................................................................................................................................. 3 

1.4 RESEARCH OUTLINE .................................................................................................................................... 4 

2 BACKGROUND THEORY ..................................................................................................................... 5 

2.1 BAR CLASSIFICATION ................................................................................................................................... 5 

2.2 PHYSICS OF BAR BEHAVIOUR......................................................................................................................... 6 

2.3 ANALYTICAL MODELS .................................................................................................................................. 9 

2.3.1 Blondeaux and Seminara (1985) .................................................................................................... 10 

2.3.2 Colombini et al. (1987) ................................................................................................................... 11 

3 ANALYTICAL MODEL ........................................................................................................................13 

3.1 OBJECTIVE .............................................................................................................................................. 13 

3.2 METHODOLOGY ...................................................................................................................................... 13 

3.3 RESULTS................................................................................................................................................. 13 

4 NUMERICAL MODEL SET-UP AND VALIDATION ..................................................................................17 

4.1 OBJECTIVES ............................................................................................................................................ 17 

4.2 METHODOLOGY ...................................................................................................................................... 17 

4.2.1 Model set-up .................................................................................................................................. 17 

4.2.2 Validation of numerical model ....................................................................................................... 21 
4.3 VALIDATION RESULTS ................................................................................................................................ 26 

4.3.1 Reproducing experiments of Zolezzi et al. (2005) ........................................................................... 26 

4.3.2 Simulation with β=24.3 (qualitative validation) ............................................................................. 28 

4.3.3 Small-amplitude bars ..................................................................................................................... 30 

4.3.4 Observed wave length - vs- linear theory ....................................................................................... 31 

4.3.5 Conclusion ...................................................................................................................................... 32 

5 ANALYSIS OF NUMERICS ..................................................................................................................33 

5.1 OBJECTIVE .............................................................................................................................................. 33 

5.2 METHODOLOGY ...................................................................................................................................... 33 

5.2.1 Influence on small-amplitude bar behaviour .................................................................................. 33 
5.2.2 Influence on the wave length ......................................................................................................... 35 

5.2.3 Influence on the point of resonance ............................................................................................... 35 



 

ix 

 

5.3 RESULTS ................................................................................................................................................ 37 

5.3.1 Influence on small-amplitude bar behaviour.................................................................................. 37 

5.3.2 Influence on the wave length ......................................................................................................... 40 

5.3.3 Influence on the point of resonance ............................................................................................... 42 

6 ANALYSIS OF UPSTREAM BAR DEVELOPMENT .................................................................................. 45 

6.1 OBJECTIVE .............................................................................................................................................. 45 

6.2 METHODOLOGY ...................................................................................................................................... 45 

6.2.1 Influence of the bend ...................................................................................................................... 45 

6.2.2 Direction of migration .................................................................................................................... 46 

6.2.3 Bed instability ................................................................................................................................. 47 

6.3 RESULTS ................................................................................................................................................ 49 

6.3.1 Influence of the bend ...................................................................................................................... 49 

6.3.2 Direction of migration .................................................................................................................... 54 

6.3.3 Bed instability ................................................................................................................................. 58 

7 CONCLUSIONS AND RECOMMENDATIONS ........................................................................................ 61 

7.1 CONCLUSIONS ......................................................................................................................................... 61 

7.2 RELEVANCE ............................................................................................................................................ 63 

7.3 RECOMMENDATIONS ................................................................................................................................ 63 

REFERENCES ............................................................................................................................................ 65 

APPENDICES ............................................................................................................................................ 68 

 

APPENDIX A BACKGROUND THEORY 

APPENDIX B ANALYTICAL MODEL 

APPENDIX C NUMERICAL MODEL SET-UP 

APPENDIX D VISUAL OBSERVATIONS OF SIMULATIONS 

APPENDIX E FOURIER TRANSFORMS 

APPENDIX F DETERMINING THE POINT OF RESONANCE 

APPENDIX G NUMERICAL ANALYSIS 

APPENDIX H DEVELOPMENT OF BED TOPOGRAPHY SPECTRUM 

APPENDIX I DEVELOPMENT OF WAVE LENGTH 

 

  



 

Numerical nonlinear analysis of alternate-bar formation under super-resonant conditions 

x 

  Wilbert Verbruggen 

List of Figures 

 

Figure 1-1: Alternate bars in the Tokachi River, Japan ....................................................................... 1 

Figure 1-2: Bed topography (sedimentation and erosion plots) under sub-resonant (left) and super-

resonant conditions (Van der Meer et al., 2011), edited ................................................................... 2 

Figure 2-1: Typical planforms of first and second  bar modes ............................................................ 5 

Figure 2-2: The phase lags δ1 and δ2 are plotted versus the dimensionless wavenumber (πB/LL) for β 

= 10 <βres and β=20 > βres (plane bed, θ = 0.1, ds = 0.01 and βres = 16.5) (Zolezzi and Seminara, 2001a)

 ......................................................................................................................................................... 8 

Figure 2-3: The growth rate and propagation frequency of bar perturbations is plotted versus the bar 

wavenumber (Blondeaux and Seminara, 1985) ............................................................................... 11 

Figure 3-1: Free-bar diagram: comparison between original (Colombini et al., 1987) and adjusted 

model ............................................................................................................................................. 15 

Figure 4-1: Overview of computational grids ................................................................................... 18 

Figure 4-2: Theoretical values for the Nikuradse roughness height versus the discharge, for Froude = 

0.75 ................................................................................................................................................ 20 

Figure 4-3: Amplification rate versus the initial bar height .............................................................. 24 

Figure 4-4: Forced-bar development by applying a groyne .............................................................. 25 

Figure 4-5: Influence of Ash on pool depth and bar height for U3_D3D, t = 2 h ................................. 26 

Figure 4-6: Non-migrating bed topographies, U3 (left), D1 (right). (Zolezzi et al., 2005). Note that 

notations are changed. ................................................................................................................... 27 

Figure 4-7: Averaged sedimentation and erosion U3_D3D (left), D1_D3D (right). ............................ 27 

Figure 4-8: Equilibrium bed level R1 ................................................................................................ 28 

Figure 4-9: Non-dimensional relation between wave length and wave height development, R1 ...... 29 

Figure 4-10: Power spectrum of equilibrium bed topography R1; .................................................... 29 

Figure 4-11: Initial amplification rate of small-amplitude first and second-mode bars, β =24.3 ........ 30 

Figure 4-12: Initial migration rate of small-amplitude bars, β =24.3 ................................................. 30 

Figure 4-13: Observed wave length of forced and free bars, ‘central’ scheme for the morphological 

updating procedure ........................................................................................................................ 31 

Figure 5-1: Effect of upwinding ....................................................................................................... 34 

Figure 5-2: Initial amplification rate of small-amplitude bars, ‘upwind’ and ‘central’ method .......... 37 

Figure 5-3: Migration rate of small-amplitude bars, ‘upwind’ and ‘central’ approach ...................... 38 

Figure 5-4: Phase lag between bed-load transport and bed topography versus LL............................ 38 

Figure 5-5: Dependency of the amplification rate on νH, ‘upwind’ method ...................................... 39 

Figure 5-6: Velocity distribution over an alternate bar for different values of νH .............................. 40 

Figure 5-7: Initial amplification rate for grids with a different lateral resolution .............................. 40 

Figure 5-8: Longitudinal wave length of free migrating bars (left) and forced bars (right) versus β, for 

the ‘upwind’ and ‘central’ method .................................................................................................. 41 

Figure 5-9: Relative “power” spectrum of a typical alternate bar; influence of ‘upwinding’ ............. 42 

Figure 5-10: Analytical and observed numerical values for βres ........................................................ 43 

Figure 5-11: Prediction of resonance point according to fourth order polynomial Struiksma et al. 

(1985) ............................................................................................................................................. 44 

Figure 6-1: Locations of sections of upstream river reach ................................................................ 47 



 

xi 

 

Figure 6-2: Development of alternate bar at bend entrance ............................................................ 49 

Figure 6-3: Cumulative sedimentation/erosion R3a ......................................................................... 50 

Figure 6-4: Comparison between simulation with and without bend ............................................... 51 

Figure 6-5: Equilibrium bed pattern after 32 hours for R1, R2 and R3 .............................................. 52 

Figure 6-6: Input and output of sediment, simulation R3a and R3b ................................................. 52 

Figure 6-7: Diagrams of alternate-bar peak migration ..................................................................... 54 

Figure 6-8: Migration direction for different initial amplitudes ........................................................ 55 

Figure 6-9: Development of amplitude of transverse mode 1, 2.9 m  <L L < 14.4 m (R3a) ................. 56 

Figure 6-10: Development of amplitude of first-mode transverse harmonic initially (left), and in a 

later stage (right) for R1 .................................................................................................................. 56 

Figure 6-11: Left: maximum amplification rate of different modes, versus β. Right: Observed 

amplification rate for β=24.3, ‘upwind’ method, see section 5.3.1.. ................................................ 58 

Figure 6-12: Initial bar development on a randomly perturbed bed. Bed level change plots (left). 

Fourier analysis (right). ................................................................................................................... 59 

Figure 6-13: Initial second-mode bars at the upstream boundary .................................................... 59 

List of Tables 

Table 2-1: Bar behaviour dependency on δ1 ...................................................................................... 8 

Table 4-1: Characteristics of experiments by Zolezzi et al. (2005) .................................................... 22 

Table 4-2: Characteristics of simulation R1 ...................................................................................... 23 

Table 4-3: Characteristics simulation S1-S6 ..................................................................................... 24 

Table 4-4: Characteristics of simulation S7-S28 ............................................................................... 24 

Table 4-5: Characteristics of simulations R5 – R14 ........................................................................... 25 

Table 4-6: Results of hydrodynamic calibration ............................................................................... 26 

Table 4-7: Results of morphological calibration ............................................................................... 27 

Table 4-8: Characteristics of the three main peaks in R1, at t=144 h ................................................ 29 

Table 5-1: Characteristics of simulation S7-S105 ............................................................................. 34 

Table 5-2: Characteristics of simulations R5-R24 ............................................................................. 35 

Table 5-3: Characteristics of simulations S106 – S172 ...................................................................... 36 

Table 6-1: Characteristics of simulation R1, R2, R3a, R3b................................................................. 46 

Table 6-2: Settings of simulations S173 – S174 ................................................................................ 47 

Table 6-3: Characteristics of simulation with boundary disturbance (R4) ......................................... 48 

Table 6-4: Comparison between equilibrium topography of R1, R2 and R3b .................................... 52 

 



 

Numerical nonlinear analysis of alternate-bar formation under super-resonant conditions 

xii 

  Wilbert Verbruggen 

List of symbols 

A  Spiral flow coefficient [-] 

shA  Calibration coefficient for the Koch and Flokstra formula [-] 

( , )m nA  Area of computational cell at location (m,n) [m2] 

B Channel width [m1] 

b Degree of non-linearity in dependence of sediment transport 

capacity on flow velocity 

[-] 

1b  Non-linear bar coefficient [-] 

2b  Non-Linear bar coefficient [-] 

C Chézy coefficient [m1/2s-1] 

ɶC  Dimensionless Chézy coefficient [-] 

DC  Degree of non-linearity in dependence of roughness on water 

depth 

[-] 

TC  Degree of non-linearity in dependence of roughness on Shields 

parameter 

[-] 

f
c  Roughness coefficient [-] 

,0f
c  Zero-order dimensionless roughness coefficient [-] 

D  Water depth [m1] 

D PS  Procedure in Delft3D to specify the bottom depth in the cell centre  [-] 

DPU  Procedure in Delft3D to specify the bottom depth in the cell face [-] 

Dɶ  Dimensionless water depth (D/D0) [-] 

0D  Zero-order water depth [m1] 

50D  Median grain size [m1] 

sd  Relative roughness (D50/D) [-] 

sE  Calibration coefficient for spiral flow in Delft3D [-] 

F  Froude number [-] 

0F  Zero-order Froude number [-] 

( )F u  Fourier Transform at frequency variable u [-] 

( )f θ  Shape factor of grains [-] 

Morfac
f  Morphological acceleration factor [-] 

sf  Sample frequency [-] 

g Gravitational acceleration [m1s-2] 

BH  Bar height (difference between maxima in cross-section with 

lowest point) 

[m1] 



 

xiii 

 

BMH  Bar height (difference between maxima in the entire bar unit) [m1] 

h Bar amplitude [m1] 

eq
h  Equilibrium bar amplitude [m1] 

0h  Initially imposed bar amplitude [m1] 

i  Longitudinal slope [-] 

k  Dimensional wavenumber in the longitudinal direction   [m-1] 

rk  Dimensional real wavenumber (2π/LL) [m-1] 

sk  Nikuradse roughness height [m1] 

ɶ
s

k  Dimensionless Nikuradse roughness height (ks/D) [-] 

wk  Dimensional transverse wavenumber [m-1] 

DL  Damping length [m1] 

LL  Longitudinal bar wave length [m1] 

TL  Transverse bar wave length [m1] 

eq
L  Equilibrium longitudinal bar wave length [m1] 

m  Harmonic mode [-] 

N  Number of samples [-] 

Q  Discharge [m3s-1] 

p
Q  Perturbed discharge [m3s-1] 

,p cell
Q  Perturbed discharge per cell [m3s-1] 

Re Reynolds number [-] 

s  Bed-load transport per unit width [m3s-1m-1] 
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1 Introduction 

1.1 Context 

Alluvial river beds display different kinds of bed forms. One of these possible bed forms is called 

‘alternate bars’. Alternate bars have adopted their name from the fact that the bar and pool occur 

alternately at the left and the right bank, see Figure 1-1. 

In an alternate-bar pattern, a bar is always accompanied with a pool on the other side of the 

channel. The pool depth can become large and reduces the strength of the bank against shear 

failure, which can lead to bank failure as often observed (Ikeda, 1982, Fujita and Muramoto, 1985). 

As shown in Figure 1-1, during certain discharges the alternate bar can become dry, or just 

submerged. This can be a hindrance for navigation. A non-migrating bar can also be an obstacle for 

water intake if the bar is located in front of an irrigation canal. Non-migrating bars are also a 

possible explanation for the start of meandering (Olesen, 1983, Blondeaux and Seminara, 1985, 

Rhoads and Welford, 1991). For these reasons, it is important to gather knowledge about alternate 

bars and how they can be modelled.   

 

 
Figure 1-1: Alternate bars in the Tokachi River, Japan 

 

In the past decades, several scientists have tried to explain the processes that are responsible for 

the formation of non-migrating alternate bars. In the 1960s, it was suspected that the occurrence of 

alternate bars can be explained by a stability analysis of the mathematical equations for flow and 

sediment transport. In 1985, two important linear theories were published, which are the base for 

the present theories. One of these theories, Blondeaux and Seminara (1985), assumes that migrating 

alternate bars in a straight channel, without geometrical perturbations, become non-migrating 

under resonant conditions. Resonance in this respect is related to the condition (characterised by 

the half-width-to-depth ratio, β) in which the damping in space is zero. In that condition, the bars 

are non-amplifying and non-migrating. They associated the occurrence of non-migrating alternate 



 

Numerical nonlinear analysis of alternate-bar formation under super-resonant conditions 

2 

  Wilbert Verbruggen 

bars with the occurrence of maximal bend amplification. The other classical linear theory was 

presented by Struiksma et al. (1985). That paper assumes that non-migrating alternate bars are 

generated by a geometrical perturbation, for instance a groyne, change in channel curvature, etc. 

Subsequent theoretical research of Zolezzi and Seminara (2001a) points out that, in deep or narrow 

rivers, non-migrating alternate bars are found downstream of the geometrical perturbation. They 

introduced the term sub-resonant for this condition, because β in that case is lower than βres. For 

shallow or wide rivers (β >  βres, thus in super-resonance conditions ), the expectation was that only 

upstream of the bend non-migrating alternate bars would occur.  

Laboratory experiments by Zolezzi et al. (2005) show that, indeed, only downstream of the bend 

non-migrating alternate bars occur under sub-resonant conditions, but under super-resonant 

conditions the non-migrating alternate bars appear both upstream and downstream.  

 

Van der Meer et al. (2011) 

Previous numerical computations reproduced alternate bars under sub-resonant conditions, but 

failed to do so under super-resonant conditions until the recent 2D depth-averaged computations by 

Van der Meer et al. (2011) using Delft3D. The domain of the model of van der Meer et al. (2011) was 

made on laboratory scale. The width of the modelled flume was 0.6 m and the length of the flume 

32 m. The domain consists of a bend and two straight parts, 12 m upstream and 12 m downstream 

of the bend. The equilibrium bed topography of a sub- and super-resonant simulation can be seen in 

Figure 1-2. 

 

 
Figure 1-2: Bed topography (sedimentation and erosion plots) under sub-resonant (left) and super-resonant 

conditions (Van der Meer et al., 2011), edited 
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Van der Meer et al. (2011) observed that the point of resonance in the numerical model (βres ≈ 15) is 

larger than predicted by linear theory βres ≈ 10. Another mismatch between the numerical and 

analytical model was the wave length of alternate bars for β > 13. The numerical model predicted 

them to be much shorter than linear theory did.  

 

1.2 Problem description 

Despite all the scientific work in the past decades, a lot of questions arise in relation to alternate 

bars. Those questions can mainly be separated into two groups: 

 

- Uncertainty in relation to the differences between the solutions of the numerical model and 

the analytical solution:  

As explained in section 1.1, the model of van der Meer et al. (2011) predicted βres to be 

significantly larger than linear theory. The wave length in the numerical model was 

significantly shorter than predicted by linear theory for β > 13. Van der Meer et al. 

suggested that numerical diffusion could have contributed to the mismatch. Research on the 

influence of numerical diffusion and other numerical parameters on alternate-bar properties 

had not been carried out.  

 

- Uncertainty in relation to the development of upstream (upstream of the bend) alternate 

bars: 

Zolezzi and Seminara (2001a) pointed out that upstream development of alternate bars is 

possible under super-resonant conditions. This was explained by the fact that only in these 

conditions it is possible for sufficiently-long small-amplitude free bars to travel in the 

upstream direction. Although the numerical simulations of Van der Meer et al. (2011) show 

alternate bars upstream of the bend, it is unclear how these bars are build up and how the 

bend influences the development of bars.  

 

1.3 Objectives 

The main objectives of this research are: 

- Improving and validating the numerical model of van der Meer et al. (2011) (chapter 4). 

- Studying the effects of some typical numerical factors (typical schemes for the 

morphological updating procedure, horizontal eddy viscosity, grid resolution) on alternate-

bar characteristics (chapter 5). 

- Acquiring a better understanding of the development process of alternate bars, upstream of 

a bend under super-resonant conditions (chapter 6).  
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1.4 Research outline 

For those who are not fully into the subject of alternate bars, a brief overview of the necessary 

theory is given in chapter 2. Below I will provide a brief overview of chapters 3 to 6 of this report. 

Each chapter has the same structure, first the objective of the chapter is given, secondly the 

methodology to fulfil the objective is presented, and finally the results are given and discussed.  

 

To be able to validate the numerical model, the analytical model, provided by the literature, is 

adjusted such that it uses the same roughness definition, transport formula, etc. (see chapter 3).  

The numerical model is based on 2D equations and uses Delft3D, see chapter 4. The validation of the 

numerical model is based on experimental data of Zolezzi et al. (2005), comparison with linear 

theory and general observations in the literature. The validation shows that the model is able to 

reproduce alternate-bar patterns, but quantitatively some mismatches with experiments and theory 

are observed, especially for the prediction of the point of resonance, like observed by Van der Meer 

et al. (2011).   

Some numerical parameters had been supposed to have a large influence on the quantitative 

prediction of the model. This numerical analysis can be found in chapter 5. It appears that especially 

the horizontal eddy viscosity has a large influence on the point of resonance and that numerical 

diffusion causes bars to be shorter for large width-to-depth ratios.  

In chapter 6, the development of bars upstream of a bend is discussed. Analysis shows that alternate 

bars, located upstream of the bend, are build up from downstream to upstream, in accordance with 

linear theory. If a perturbed discharge is used at the inflow boundary, the pattern is build up from 

upstream to downstream. The disturbance-driven pattern development is therefore supposed to be 

dominant over the bend-driven pattern development. Another observation is that all individual bars 

invariably migrate in the downstream direction, contrary to the prediction of linear theory. I show 

that this can be explained by non-linear effects.  
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2 Background theory 

This chapter gives a brief overview of the background theory for this research. First, the generally 

used classification of bars is discussed. Then a brief summary is provided of some available models 

to predict alternate-bar properties. A more complete elaboration can be found in Appendix A. 

2.1 Bar classification 

In this section I discuss the bar classifications that are used in this research.  

 

Bar modes 

In this research I have schematized bars as sinusoidal bed topographies. In the lateral direction 

(perpendicular to the flow) the bar can be represented with the following expression: 

Zb is the bed level, h is the bar amplitude, kw the lateral wavenumber, y the lateral direction, m the 

harmonic mode and B the width of the channel. A ‘mode one bar’, or ‘first-mode bar’, has a lateral 

wave length which is twice the channel width. Figure 2-1 shows the bed level variations of a first and 

second-mode bar. In linear theory an alternate bar is schematized as a first-mode bar, because the 

bar and pool of the alternate-bar pattern alternate between the river banks. In nature, an alternate 

bar is a superposition of different modes and does not solely consist of first-mode bars, see section 

4.3.2.   

Another definition that is used in this research is for example a 1-1 bar mode. The first number 

represents the longitudinal bar mode and the second number the transverse bar mode. The wave 

length related to the first mode in the longitudinal direction is defined as the wave length of the 

alternate-bar pattern. The second longitudinal mode has a wave length that is half the alternate-bar 

wave length, etc.   

 

 
Figure 2-1: Typical planforms of first and second  bar modes 

 

Free or forced 

This classification is related to the origin of the bar. ‘Free’ bars spontaneously develop because of an 

instability of the flow-bed system (Seminara and Tubino, 1989). Bars are called ‘forced’ when they 

are caused by a physical disturbance or constraint that may be introduced by obstacles (for example 

= ⋅cos( )b wz h k y  (2-1) 

π⋅=
w

m
k

B
 (2-2) 
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bridge piers, groynes) or a distributed forcing effect (gradual change in channel curvature). Because 

the origin of forcing is static, the forced bars will also become static.  

 

Migration 

In the literature, the term ‘steady bar’ is sometimes used to describe a bar that does not migrate. 

This term, however, is ambiguous, because it can also refer to a bar which does not amplify. 

Therefore I use the term ‘non-migrating’ instead of ‘steady’.  

Non-migrating bars are generally longer than migrating bars. Dimensionless wavenumbers (π*B/LL, 

in which B is the channel width and LL is the length of the bar) of non-migrating bars under common 

conditions are in the order of 0.15, whereas the wavenumber of the most-unstable mode (with the 

largest growth rate) of migrating bars ranges from about 0.40 to 0.50. This means that the 

wavelength of non-migrating bars is generally about three times as large as the wave length of 

migrating bars. 

Migrating and non-migrating bars might interact. The wave length of the resulting bar pattern might 

be influenced by the presence of migrating bars. Vanzo et al. (2011) made an effort to investigate 

this interaction, and discovered that for larger width-to-depth ratios (β), the wave length of the final 

bar pattern tends towards the wave length of the most-unstable free-bar mode. On the contrary, 

when the β ratio decreases (narrower, deeper channels), the wavelength of the resulting bar pattern 

tends to that of the non-migrating bars according to linear theory.   

For a long time it was common thought that non-migrating bars were the result of forced 

circumstances. Crosato et al. (2010) discovered that non-migrating bars can also be the result of 

morphodynamic instability, like free bars. They mention that these non-migrating bars in unforced 

experiments were possibly not observed up till now because the growth rates of steady bars are 

much smaller than those of migrating bars.  

 

Amplification and instability 

If the bar amplitude is constant over time, the bar is said to be ‘non-amplifying’. In this report I 

sometimes refer to ‘unstable bars’, these are bars which are amplifying. The initial flat bed is in that 

case unstable for these wave lengths. The ‘most-unstable’ bar refers to the bar with the largest 

amplification rate. This bar is thought to prevail over other bar modes, because it has a dominant 

growth rate. 

 

2.2 Physics of bar behaviour 

The behaviour of bars can be understood by considering the interaction between the bed 

topography and the bed-load transport. The bed topography of an ideal harmonic bed topography 

can be represented with the following expression: 

In which zb,0 is the bed level at t=0, Ω is the amplification rate [1/s], k is the longitudinal wavenumber 

(2π/LL), ω the angular frequency [rad/s] and m the harmonic mode. The exponential term represents 

the exponential growth of the bar amplitude, the first cosine factor represents the longitudinal 

,0 cos( ) cos( )t

b b

m
z z e kx t y

B

πωΩ ⋅= ⋅ ⋅ − ⋅  (2-3) 
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structure and migration of the bar pattern and the second cosine factor represents the lateral 

structure of the bar pattern.  

The migration rate and amplification rate of the bed topography depends on the phase lag between 

the bed-load transport and the bed topography. Therefore I need to derive the expression for the 

bed-load transport. Let us, for simplicity, first only consider the bed-load transport in the 

longitudinal direction. The longitudinal bed-load transport per unit width is defined as: 

 

 

In which sx is the sediment transport in the longitudinal direction per unit width, sx0 the average 

longitudinal sediment transport per unit width and sx1 the space and time dependent longitudinal 

sediment transport variation per unit width.  

 

In analogy to the expression for zb, the varying longitudinal sediment transport can be expressed as: 

 

In which sx,0 is the sediment transport perturbations at t=0 in the longitudinal direction per unit 

width and δ1 is the phase lag between the bed-load transport and the bed topography in the 

longitudinal direction. 

 

Continuity (1D) states that the time derivative of the bed topography is dependent on the spatial 

derivative of the longitudinal transport: 

 

Now I will only focus on the behaviour of a bar top, by considering a moving coordinate system that 

moves with the celerity of the bar (y = 0, c = x/t = ω/k). The time derivative of the bed level reduces 

to: 

 

 

Whether the top of the bar is growing or decaying is determined by the phase lag δ1. Migration is 

controlled by the location of the peak of dzb/dt. If the dzb/dt peak is within half a wavelength 

downstream of the bar peak, the bar will migrate in the downstream direction, whereas it will 

migrate in the upstream direction in the opposite case. Table 2-1 shows the values of δ1 for which 

the bar is growing, decaying, migrating in the downstream direction and in the upstream direction.  

 

0 1( , , )x x xs s s x y t= +  (2-4) 

1 ,0 1cos( ) cost

x x

m
s s e kx t y

B

πω δΩ ⋅ = ⋅ ⋅ − − ⋅  
 

 (2-5) 

=0    b bx x
z zs s

t x t x

δ δδ δ
δ δ δ δ

+ → = −  (2-6) 

,0 1  sin( ) cos   tb
x

z m
k s e kx t y

t B

δ πω δ
δ

Ω ⋅ → = ⋅ ⋅ ⋅ − − ⋅  
 

 (2-7) 
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x
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t
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δ
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Table 2-1: Bar behaviour dependency on δ1  

Growing bar π  <δ1 < 2π 

Decaying bar 0  <δ1 < π 

Downstream migration 0  <δ1 < 0.5π or 1.5 π <δ1 < 2π 

Upstream migration  0.5π  <δ1 < 1.5π 

 

 

The phase lag δ1 is dependent on the length of the bar, width-to-depth ratio and numerous other 

characteristics, see Figure 2-2 from Zolezzi and Seminara (2001a). The figure shows the theoretical 

dependence of δ1 on the dimensionless wavenumber (πB/LL) and on β.  It shows that δ1 leads to 

migration in the upstream direction for long bars and to migration in the downstream direction for 

short bars. The phase lag δ1 leads, theoretically, to unstable bars for all possible wave lengths, but 

observations in chapter 5 show that for very short bars δ1 can be larger than 2π, which leads to the 

decaying of very short bars.  

 

 
Figure 2-2: The phase lags δ1 and δ2 are plotted versus the dimensionless wavenumber (πB/LL) for β = 10 <βres 

and β=20 > βres (plane bed, θ = 0.1, ds = 0.01 and βres = 16.5) (Zolezzi and Seminara, 2001a) 

 

Figure 2-2 also shows the relation between δ2 and λ. The variable δ2 is defined as the phase lag in 

longitudinal direction between the bed topography and the bed-load transport in lateral direction, 

which can be found in the following expression:  

,0 2cos( ) sint

y y

m
s s e kx t y

B

πω δΩ ⋅ = ⋅ ⋅ − − ⋅  
 

 (2-9) 
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In which sy is the bed-load transport in lateral direction per unit width and sy,0 the sediment 

transport perturbations at t=0 in the lateral direction per unit width. Zolezzi and Seminara (2001a) 

derived the following relation between the migration rate and the phase lags δ1 and δ2: 

 

 

In which s is the total bed-load transport per unit width. Figure 2-2 shows that δ2 is between 0.5π 

and π for all possible wave lengths. The second term of equation (2-10) is therefore always positive, 

which yields that δ2 always has a contribution to migration in the downstream direction. For small 

values of β the second term prevails over the first term, which means that all possible bars will 

migrate in downstream direction. For sufficiently large β values, the first term prevails over the 

second term, which leads to migration in the upstream direction for sufficiently-long bars. The β 

value which is on the transition between these two ‘regimes’ is the resonant half-width-to-depth 

ratio.  

 

Upstream influence 

As described in chapter 1, the experiments of Zolezzi et al. (2005) discovered that under super-

resonant conditions both upstream and downstream of the bend non-migrating bars develop. The 

bend was said to have an influence in downstream and upstream direction. The presence of 

downstream influence could be easily explained with an analysis of characteristics. Upstream 

influence, however, was less straightforward to explain. Zolezzi and Seminara (2001a) explained 

upstream influence under super-resonant conditions by the fact that only in these conditions it is 

possible for sufficiently-long small-amplitude bars to travel in the upstream direction. In chapter 6 I 

investigate the way the bend has an upstream influence under super-resonant conditions. The 

results in that chapter support the theoretical prediction of Zolezzi and Seminara (2001a), because 

an alternate pattern, starting at the upstream bend entrance, is observed to propagate in the 

upstream direction. 

2.3 Analytical models 

In the 1960s it was proposed that alternate bars can be explained by a stability analysis of the 

mathematical equations for flow and sediment transport. In 1985, two important linear theories 

were published, which are the base for the present theories. One of these theories, Blondeaux and 

Seminara (1985), assumes that migrating bars in a straight channel, without geometrical 

perturbations, become non-migrating under resonant conditions. The other classical linear theory 

was published by Struiksma et al. (1985). In this theory, it is assumed that non-migrating alternate 

bars are generated by a geometrical perturbation, for instance a groyne, change in channel 

curvature, etc.  

 

In this research, I mainly apply the analytical model of Colombini et al. (1987). This analytical model 

is based on the work of Blondeaux and Seminara (1985). Only for the discussion in section 5.3.3 the 

( ) ( ),0,0

1 2

,0 ,0

cos sin
2
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model of Struiksma et al. (1985) is used. In this section, I only discuss the theory of Blondeaux and 

Seminara (1985) briefly, for it is the base of the model I have used. The formulas of Colombini et al. 

(1987) will not be given in this report, I refer to their paper for those details.  

 

2.3.1 Blondeaux and Seminara (1985) 

In the paper of Blondeaux and Seminara (1985) a bend theory is presented. This theory not only 

investigates the stability of bars, but also the stability of a bend separately. In the paper, it is 

assumed that under certain conditions the meander amplification rate is maximal. These conditions 

are called the resonance conditions. In order to investigate the range of resonance conditions for 

various river characteristics, the walls of this model are erodible. Like many other linear bar theories, 

this model is based on the equations for flow (momentum and continuity) and sediment transport. 

The water depth, velocity, sediment transport, etc. are assumed to consist of a zero-order (average) 

value and a small harmonic perturbation. For the velocity in the longitudinal direction this approach 

is shown in equation (2-11). 

 

 

In which u is the longitudinal velocity, u0 the zero-order velocity in longitudinal direction, ε a small 

perturbation, u’ the perturbation of the longitudinal velocity, k is wavenumber of the developing bar 

in longitudinal direction and –iΩ is a complex number, the real part represents the amplification rate 

of the developing bar and the imaginary part defines its angular velocity 

 

The most-unstable meander wave length was associated with non-migrating alternate, non-

amplifying bars, see Figure 2-3.  

 

Therefore, it is thought that meander development is associated with non-migrating and non-

amplifying alternate bars. In straight channels, without any sinuosity, the selected alternate-bar 

wavenumber will be the one which has the maximum amplification rate. However, as sinuosity 

develops, the alternate flow pattern, induced by the sinuosity, will reinforce the alternate bars with 

wavenumbers near the resonant wavenumber. When these non-migrating alternate bars are 

growing, the forces on the banks will also increase, so the meander will be reinforced, and so on. 

The problem with this theory is that it is not clear how non-migrating bars are formed in rivers 

above or below resonance conditions.  

 

' ( )

0

1 ei kx tu
u

u
ε −Ω= + ⋅  (2-11) 
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Figure 2-3: The growth rate and propagation frequency of bar perturbations is plotted versus the bar 

wavenumber (Blondeaux and Seminara, 1985)  

 

2.3.2 Colombini et al. (1987) 

The model of Colombini et al. (1987), which continued from the model of Blondeaux and Seminara, 

can be used to calculate the following bar characteristics: 

- The wave length of forced bars 

- The wave length of the most-unstable free bar 

- The migration rate and amplification rate of free bars  

- The half-width-to-depth ratio associated with resonance, βres. For larger β values the 

conditions are called super-resonant, whereas lower β values correspond to sub-resonant 

conditions.  

 

The disadvantage of linear theories is that they are based on small-amplitude perturbations, and are 

therefore only valid for small-amplitude bars (see section 4.2.2.3). Linear theory assumes the 

amplification rate and migration rate of the bars not to be dependent on the bar height. It is shown 

that bar height does influence the amplification rate (Figure 4-3) and migration rate and direction 

(Figure 6-8). The influence of the bar height is called a non-linear effect. Despite these 

disadvantages, linear theory still provides a reasonable prediction of the wave length of the bars and 

a reasonable prediction of the half-width-to-depth ratio associated with resonance. This can be 

concluded by reading the work of Zolezzi et al. (2005), in which they compare experimentally 

observed bar properties in both sub- and super-resonant conditions with the predictions of linear 

theory.  
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3 Analytical model 

3.1 Objective 

This research applies the analytical model for forced and free bars, based on research by Colombini 

et al. (1987). This analytical model is used to compare the numerical results with theory. The 

objective of this chapter is: 

 

“Deriving the analytical model for the specific settings of the present research” 

 

3.2 Methodology 

A Fortran model was provided by Dr. G. Zolezzi, in which the analytical model of Colombini et al. 

(1987) was implemented. I converted this Fortran model into a MATLAB R2011b [version 7.13.0564, 

MathWorks] model, in order for it to be more user friendly.  

 

In the paper of Colombini et al., the Einstein (1950) formula is used to predict the roughness and the 

Engelund and Hansen (1967) formula to predict bed-load transport. In the Delft3D model of the 

present study, the roughness is based on the White-Colebrook relation and the bed-load transport is 

computed with the formula of Meyer-Peter and Müller (1948). To be able to make a comparison 

between the numerical model and the analytical one, the latter is adjusted. The parameters which 

need to be derived to adjust the model are:  

 

In which: 

In these formula’s cf denotes the friction coefficient, D the water depth, θ the Shields parameter and 

Φ the transport parameter. Dimensionless variables are denoted with a ‘~’ and the subscript ‘0’ 

stands for the value in the initial uniform situation. The four variables in equation (3-1) take the 

dependence of the roughness and the transport parameter on the water depth and the Shields 

stress into account. The derivation of the parameters can be found in Appendix B. 

The other expressions for the analytical model can be found in Colombini et al. (1987) and are not 

repeated in this report.  

3.3 Results 

The analytical model is based on Colombini et al. (1987), and is adjusted as described in section 3.2.  
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In Figure 3-1 one can see the free-bar diagram, based on F0 (zero-order Froude number) = 0.75, D50 

(median grain size) = 1 mm and i0 (initial longitudinal slope) = 0.011, which are the characteristics of 

all the numerical simulations in this research. The dotted lines represent the free-bar diagram of the 

original analytical model (Colombini et al., 1987), in which the Einstein formula was used to predict 

the roughness. The other line represents the free-bar diagram, calculated with the adjusted 

analytical model, with the White Colebrook relation as roughness predictor. On the horizontal axis 

the dimensionless wavenumber (πB/LL) is given and on the vertical axis the half-width-to-depth 

ratio. The red lines are called the marginal curve, which represents free bars that are non-

amplifying. The black lines represent non-migrating bars. Bars, located on the left of the black curve, 

migrate from downstream to upstream, whereas bars, located on the right of the black curve, 

migrate from upstream to downstream. The blue lines correspond to the most-unstable bars (with 

the largest amplification rate, for a certain β value).  

 

The use of the diagram is shown with an example (this example is based on the adjusted model). 

Suppose the simulation to have a β value of 20: according to linear theory, bars with a dimensionless 

wavenumber between 0.17 and 1.49 will grow, whereas longer or shorter bars will decay when they 

are imposed. The fastest growing, and therefore dominant, bar will have a dimensionless 

wavenumber of 0.88. Linear theory predicts this most-unstable bar to appear first. Bars with a 

dimensionless wavenumber smaller than 0.47 will migrate in the upstream direction, whereas 

shorter bars will migrate in the downstream direction.  

 

The difference between both diagrams is large. This shows that the solution of the analytical model 

is strongly influenced by the type of roughness prediction. The curve for non-migrating alternate 

bars and for the most-unstable alternate bars is, in the adjusted model, more shifted towards 

shorter bars. The difference does not show that one of the two predictions is flawed, but that it is of 

importance to use the same roughness prediction in the analytical as in the numerical model, if one 

wants to compare them.  

 

In chapter 4 the analytical free-bar model will be used to compare the behaviour of small-amplitude 

bars with the theoretical behaviour. That chapter shows that the adjusted analytical model and the 

Delft3D model match quite well for small-amplitude bars.  
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Figure 3-1: Free-bar diagram: comparison between original (Colombini et al., 1987) and adjusted model 
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4 Numerical model set-up and validation 

In this chapter the model set-up is briefly discussed, like the domains, boundary conditions, 

parameters, etc. The details can be found in Appendix C. Also the settings of all the simulations can 

be found in Appendix C. Subsequently the model is validated.  

 

Important: I have tried to maximize the use of the same settings through the entire research. 

However, some parts of this research were carried out before some new insights were found. I did 

not repeat the simulations if I assessed that the new insight had no significant implication on the 

former results. One should therefore notice that for example simulation R1, which is used in the 

validation, is based on the ‘upwind’ scheme for the morphological updating procedure (see 

Appendix G), whereas the ‘central’ scheme was later observed to represent linear theory more 

properly.  

4.1 Objectives 

The model of Van der Meer et al. (2011) gives some insight in when upstream and downstream bars 

develop, see chapter 1. However, it is not clear how these bars develop. Also some differences are 

observed between the model results and the prediction by several analytical theories. This research 

goes further with the model of van der Meer et al. (2011). For this continuation, the numerical 

model of van der Meer is improved and is therefore discussed here.  

 

In short, the objective of this chapter is: 

 

 “Improving and validating the numerical model of Van der Meer et al. (2011).” 

 

4.2 Methodology 

In this section the numerical model set-up is described, see section 4.2.1. Subsequently, the method 

of validation is discussed in section 4.2.2. The results of the validation can be found in section 4.3.  

4.2.1 Model set-up 

4.2.1.1 Program functionality 

The numerical modelling is carried out using the Delft3D-FLOW suite [version 4.00.03.565, May 

2011, Deltares]. All simulations in this research are based on solving the 2D depth-averaged 

equations. The output is processed using Delft3D-Quickplot [version 2.16.00450, Deltares] and 

MATLAB R2011b.  
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4.2.1.2 Domains 

The numerical model of Van der Meer et al. (2011

(2005). Zolezzi et al. carried out

length of 32 m. The laboratory f

consequently a length of 8 m. The original domain of van der Meer et al. (2011) is named ‘Domain 

1’. For this research the original domain of van der Meer et al. is extended in 

(Domain 2, see Figure 4-1). This is mainly done for two reasons:

- Taking a possible boundary disturbance further away from the bend

- To be able to analyse the development of upstream bars

 

Figure 4-1: Overview of computational grids

 

Another domain is constructed to be able to investigate 

absent and to investigate the behaviour of small

referred to as ‘Domain 3’.  

 

Three types of grid resolutions are used:

- Coarse: longitudinal grid size = 0.2 m, transverse grid size = 0.06 m (except the outer cells, 

which have a transverse grid size of 0.0

- Normal: Longitudinal grid size = 0.1 m, transvers

which have a transverse grid size of 0.0

- Laterally fine: Longitudinal grid size = 0.1 m, transverse grid size = 0.015 m (except the outer 

cells, which have a transverse grid size of 0.0

 

The normal variant of Domain 2 is denoted as Domain 2n, the coarse variant as Domain 2c and the 

lateral fine variant as Domain 2l. The same procedure of referring is applied for the other 
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Van der Meer et al. (2011) is based on a laboratory test of 

carried out experiments in a laboratory flume with a width of 0.6 m and a 

length of 32 m. The laboratory flume contained a 180˚ bend, with a radius of 2.5 m, and 

consequently a length of 8 m. The original domain of van der Meer et al. (2011) is named ‘Domain 

1’. For this research the original domain of van der Meer et al. is extended in the 

). This is mainly done for two reasons: 

possible boundary disturbance further away from the bend 

To be able to analyse the development of upstream bars 

 
: Overview of computational grids 

constructed to be able to investigate alternate-bar generation if the bend is 

the behaviour of small-amplitude bars. In the following 

types of grid resolutions are used: 

Coarse: longitudinal grid size = 0.2 m, transverse grid size = 0.06 m (except the outer cells, 

which have a transverse grid size of 0.03 m).  

Normal: Longitudinal grid size = 0.1 m, transverse grid size = 0.03 m (except the outer cells, 

which have a transverse grid size of 0.015 m). 

fine: Longitudinal grid size = 0.1 m, transverse grid size = 0.015 m (except the outer 

cells, which have a transverse grid size of 0.0075 m). 

variant of Domain 2 is denoted as Domain 2n, the coarse variant as Domain 2c and the 

lateral fine variant as Domain 2l. The same procedure of referring is applied for the other 

resonant conditions 

Wilbert Verbruggen 

a laboratory test of Zolezzi et al. 

experiments in a laboratory flume with a width of 0.6 m and a 

˚ bend, with a radius of 2.5 m, and 

consequently a length of 8 m. The original domain of van der Meer et al. (2011) is named ‘Domain 

the upstream direction 

 

generation if the bend is 

amplitude bars. In the following part, this domain is 

Coarse: longitudinal grid size = 0.2 m, transverse grid size = 0.06 m (except the outer cells, 

e grid size = 0.03 m (except the outer cells, 

fine: Longitudinal grid size = 0.1 m, transverse grid size = 0.015 m (except the outer 

variant of Domain 2 is denoted as Domain 2n, the coarse variant as Domain 2c and the 

lateral fine variant as Domain 2l. The same procedure of referring is applied for the other domains.  
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The main focus of this research is on alternate bars. The transverse wave length of alternate bars is 

twice the channel width, 1.2 m. The coarse grid has therefore 20 grid cells per wave length in the 

transverse direction, the normal grid about 40 and the laterally fine grid about 80. In general, it is 

thought that a wave has to be represented by 20-30 grid cells to reproduce it accurately. So still the 

coarse grid should be able to reproduce the alternate bar. In the longitudinal direction the coarse 

grid should be able to represent bars with a longitudinal wave length of at least 4 m. The normal and 

laterally fine grid should be able to represent bars longer than about 2 m.  

 

The grids in Figure 4-1 are displayed in a x-y coordinate system. For the output in some cases also m 

and n coordinates are used, in which m is the longitudinal coordinate (starting at the upstream 

boundary) and n is the transverse coordinate (starting at the left bank).  

4.2.1.3 Boundary conditions 

Open boundaries 

At the upstream boundary four different types of boundary conditions are used for the simulations: 

- Q: total discharge, uniform in space and time 

- QP: total discharge, uniform in space, varying in time. The discharge is randomly perturbed 

with a maximum amplitude of +/- 1% of the uniform discharge 

- QP,cell: Discharge per cell, varying in space and varying in time. The discharge is specified per 

cell and is perturbed with a maximum amplitude of +/- 1% of the uniform discharge 

- WL: water level, uniform in space and time. The total discharge boundary always produced a 

small perturbation (probably due to a different numerical scheme at the boundary), 

therefore a water level boundary had to be specified to get rid of any boundary disturbance. 

 

At the downstream boundary one type of condition is used: 

- WL: water level, uniform in space and time.  

 

Closed boundaries 

Wall roughness locally has an influence on the hydrodynamics and morhpodynamics. But because 

the simulations have a large width-to-depth ratio, wall roughness seems to have an insignificant 

influence on the bar pattern. Therefore a free-slip (no tangential stress along the closed boundary) 

condition is used along the closed boundaries. Another reason for applying a free-slip condition is 

that a partial-slip condition destabilizes the simulation, because the Reynolds stresses at the wall are 

integrated explicitly.  

4.2.1.4 Roughness 

Van der Meer used a constant Chézy roughness of 22.5 m1/2s-1. For large-scale rivers, a constant 

Chézy value is reliable, but for a simulation on laboratory scale the roughness should be related to 

the actual water depth (Lesser et al., 2004). Otherwise the roughness height of the bottom becomes 

a function of the water depth, which is not realistic. Lesser et al. also observed that a constant Chézy 

roughness value leads to strong damping effects in the model, so less alternate bars would become 

visible. Therefore the White-Colebrook relation is used, which yields: 
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where ks is the Nikuradse roughness height [m]

predicts the alternate-bar behaviour

 

Delft3D has problems with flows that

prevent the flow from becoming

roughness height is defined such that the Froude number in all simulations was initially 0.75. In 

Figure 4-2 the theoretical values for k

 

Figure 4-2: Theoretical values for the Nikuradse roughness height versus the discharge, for Froude = 0.75

4.2.1.5 Viscosity 

According to an HLES simulation 

the model should be O(10-5) m2/s

such low eddy viscosity values. In order to

set at 0.01 m2/s, the same value as used by 

horizontal eddy viscosity on several 

 

4.2.1.6 Morphology 

Like in the model of Van der Meer et al. (2011

compute the bed-load transport.:

 

 

in which s is the sediment transport per unit width, D

θcr the critical Shields number (0.047) and μ the ripple factor. The ripple factor is set at 0.7.
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is the Nikuradse roughness height [m] and D the water depth. The linear model also 

bar behaviour to be different for both roughness definition

flows that are near the transition of sub- and super

from becoming super-critical, the bed had to be rough. The specified 

ch that the Froude number in all simulations was initially 0.75. In 

the theoretical values for ks are plotted against the discharge.   

 
etical values for the Nikuradse roughness height versus the discharge, for Froude = 0.75

 (Horizontal Large Eddy Simulation), the horizontal eddy viscosity in 

/s, see Appendix C. The simulations have shown to be

In order to get stable results the eddy viscosity in the simulations is 

/s, the same value as used by Van der Meer et al. (2011). The influence of the 

horizontal eddy viscosity on several alternate-bar parameters is discussed in chapte

Van der Meer et al. (2011), the Meyer-Peter and Müller (1948

load transport.: 

n which s is the sediment transport per unit width, D50 the median grain size, θ the 

number (0.047) and μ the ripple factor. The ripple factor is set at 0.7.

(4-1

3

2 (4-2
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. The linear model also 

s definitions, see Appendix B.  

and super-critical flow. To 

critical, the bed had to be rough. The specified Nikuradse 

ch that the Froude number in all simulations was initially 0.75. In 

etical values for the Nikuradse roughness height versus the discharge, for Froude = 0.75 

(Horizontal Large Eddy Simulation), the horizontal eddy viscosity in 

n to be unstable for 

get stable results the eddy viscosity in the simulations is 

. The influence of the 

chapter 5.  

Peter and Müller (1948) is used to 

median grain size, θ the Shields number, 

number (0.047) and μ the ripple factor. The ripple factor is set at 0.7. 

1) 

2) 
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Suspended transport is not taken into account. In the model of van der Meer et al., α was set at 1/8, 

whereas it should be in the order of one. This correction, which is applied for the model in this 

research, has mainly an effect on the time scale of bar development.  

I have used a constant sediment size of 1 mm for all the simulations. This sediment size was also 

used by Zolezzi et al. (2005), whose experiments are used in the validation of the numerical model.  

4.2.1.7 Simulation ID 

In this research, simulations that started with a flat or randomly perturbed bed are labelled with ‘R’, 

followed by the number of the simulation. Simulations during which small-amplitude bars were 

imposed on the initial bed are labelled with ‘S’. The two simulations that reproduce the experiments 

of Zolezzi et al. (2005) are called ‘U3_D3D’ and ‘D1_D3D’, for they are the Delft3D simulation of 

experiments U3 and D1 respectively.   

4.2.2 Validation of numerical model 

 

The method of validation is described in this section. First, an attempt is made to reproduce 

laboratory experiments. Very few experiments for upstream influence are available in the literature, 

so for the validation only two experiments of Zolezzi et al. (2005) were reproduced. One will observe 

in section 4.3.1 that reproducing these experiments encountered some difficulties, so the model is 

also tested for other width-to-depth ratios. These simulations, however, could not be compared to 

experiments directly. But it is still possible to compare the observations more generally with field 

and laboratory experiments. Then the behaviour of small-amplitude bars is tested, for it should 

match the prediction of linear theory. Finally the numerical prediction of the wave length of forced 

and free bars, for different width-to-depth ratios, is compared with linear theory. 

4.2.2.1 Reproducing the experiments of Zolezzi et al. (2005) 

Zolezzi et al. (2005) carried out five experiments in a U-curved flume. Three of them were in super-

resonant conditions and two in sub-resonant conditions. The characteristics of the simulations can 

be found in Table 4-1. The uniform flow depth, D0, the discharge, Q0, and the bed-load transport, Sx, 

are the only quantities which were measured in the flume. The calculation of the other quantities is 

based on these measured parameters. The resonant width-to-depth ratio, βres, is based on the 

analytical model of Colombini et al. (1987), with the Parker (1990) formula for bed-load transport.  

 

Experiments U1 and U2 have a Froude number of 1.04. Delft3D has problems with flows that 

fluctuate between sub- and super-critical flow. These fluctuations cause instability. Therefore, the 

experiments U1 and U2 could not be reproduced. In D2, no significant non-migrating perturbations 

were observed. Because this report focuses on non-migrating alternate bars also D2 is not 

reproduced with the numerical model. ‘U3’ and ‘D1’ are therefore the only experiments which are 

tried to be reproduced. ‘U3’ will be simulated with simulation ‘U3_D3D’, and ‘D1’ will be simulated 

with ‘D1_D3D’. 
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Table 4-1: Characteristics of experiments by Zolezzi et al. (2005) 

Run U1 U2 U3 D1 D2 

β [-] 21.4 20 15 12 8.6 

βres [-] 11 11.7 14.6 17.3 22.1 

ds [-] 0.071 0.067 0.050 0.040 0.028 

F0 [-] 1.04 1.04 0.75 0.74 0.85 

Θ [-] 0.093 0.1 0.133 0.167 0.233 

D0 [m] 0.014 0.015 0.020 0.025 0.035 

Q [m
3
s

-1
] x 10

-3 3.25 3.6 4.0 5.5 10.5 

Sx [m
3
s

-1
] x 10

-6 5.72 6.55 7.01 1.07 19.82 

 

 

First, the hydrodynamic and morphodynamic calibration method is discussed and then the 

validation method of the model for these simulations.  

Hydrodynamic calibration method for ‘U3’ and ‘D1’ 

The discharge from Table 4-1 is used as input at the upstream boundary. Subsequently the water 

depth is calibrated by varying the Nikuradse roughness height. In both simulations the DPS (depth at 

grid cell centre) and the DPU (depth at velocity point) are set at ‘MEAN’. Otherwise the waterdepth 

is over- or underpredicted by the model.  

Morphodynamic calibration method for ‘U3’ and ‘D1’ 

The bed-load transport at the downstream end of the flume was, during the experiments of Zolezzi 

et al., measured by a volumetric sampling technique. They compared their measured transport rates 

with the 2D predictors for bed-load transport of Meyer-Peter and Müller (1948) and Parker (1990). 

They discovered that the Parker predictor was more accurate in this case. In Delft3D, however, the 

Parker formula has not been implemented and cannot be implemented by the option ‘general 

transport formula’. Therefore, the Meyer-Peter and Müller formula is used to reproduce the 

experiments.  

 

The numerical simulations are calibrated such that the bed-load transport in the model matches the 

experimentally measured bed-load transport. This is done by varying the calibration coefficient of 

the Meyer-Peter and Müller (1948) formula, α. The formula is presented here: 

 

 

In which s is the sediment transport per unit width, D50 the median grain size, θ the Shields number, 

θcr the critical Shields number (0.047) and μ the ripple factor. The ripple factor is set at 0.7.  

 

Subsequently, the transverse slope effect on the bed-load transport is calibrated. For bed-slope 

effects the formulation of Koch and Flokstra (1980), extended by Talmon et al. (1995), is used. The 

( )
3

2
50 508 crs D gDα µθ θ= ∆ −  (4-3) 
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effect of transverse slopes on the direction of the bed-load transport is given by the following 

equations: 

 

In which 
s

ϕ is the direction of sediment transport, 
T

ϕ the direction of bed shear stress, f the shape 

factor for grains and zb the bed level. The coefficient Ash is varied such that the pool depth and bar 

height in the simulations are in the same order of magnitude as in the experiments.  

Validation for ‘U3’ and ‘D1’  

This research focuses on non-migrating alternate bars. The validation of the numerical model is 

therefore focused on the non-migrating bed topography of the simulations. The non-migrating bed 

topography is calculated by averaging the bed level over an integral amount of wave periods. By 

doing so, the presence of upstream non-migrating bars can be investigated. Also the wave length of 

the non-migrating bars is compared to the experimental data.   

4.2.2.2 Simulation with β=24.3 

Although non-migrating upstream alternate bars are not observed for U3_D3D, as one will observe  

in section 4.3.1, it can be observed for larger β values. This will be shown for a simulation with a β 

value of 24.3. The characteristics of the simulation can be found in Table 4-2.  

 

Table 4-2: Characteristics of simulation R1 

Domain β 

 

Boundary 

conditions 

ks 

[m] 

νH 

[m
2
/s] 

Ash 

[-] 

Morphological 

updating scheme 

Initial bed 

2n 24.3 QP-WL 0.008 0.01 1.9 ‘upwind’ flat 

 

The Ash has a lower value than in the simulation U3_D3D and D1_D3D. The reason for this is that this 

simulation was done before the reproduction of the experiments of Zolezzi et al. (2005). So the Ash 

could not be calibrated at that time. I asses that this difference does not have significant 

consequences for the validation, because the validation in this case is only qualitative and not 

quantitative.  

 

Because no experiment has been done with these conditions, the results cannot be directly 

compared to experiments. The validation will therefore be based on qualitative assessments of the 

observations and quantitative comparison with analytical theories. 

( )
( ) ( )
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4.2.2.3 Small-amplitude bars 

Because of a lack of experimental data, the model is also validated for small-amplitude bars. Linear 

theory is based on small-perturbations and should therefore match the numerical model for small-

amplitude bars. A bar is subjected to linear growth if the amplification rate is not dependent on the 

bar height. By imposing small-amplitude bars with different amplitudes, I found that the 

amplification rate is not dependent on the bar height if the bar amplitude is smaller than 2% of the 

water depth, see Figure 4-3. The characteristics of these simulations can be found in Table 4-3.  

 

Table 4-3: Characteristics simulation S1-S6, see Table  C-4 in Appendix C for more information 

Constant Variable 

Domain Β 

[-] 

 

νH  

[m
2
/s] 

Ash 

[-] 

Morphological 

updating scheme 

LL 

[m] 

Mode 

[-] 

h0 

[m] 

3n 24.3 0.01 1.9 ‘upwind’ 7.5 1 0.00001 - 

0.002 

 

 

 
Figure 4-3: Amplification rate versus the initial bar height 

 

By imposing alternate bars with an amplitude of 0.1 mm (about 0.8% of the initial water depth) and 

varying wave lengths, the amplification rate and migration rate of small amplitude bars is 

investigated. The numerically observed behaviour is compared to the prediction of the analytical 

model. The amplification rate of the small-amplitude bars is calculated by carrying out a Fourier 

analysis of the bar pattern with a one-minute interval. As long as the amplification rate is constant 

over time, the growth process is linear. 

 

Table 4-4: Characteristics of simulation S7-S28, see Table  C-4 in Appendix C for more information 

Constant Variable 

Domain Β 

[-] 

 

νH  

[m
2
/s] 

Ash 

[-] 

Morphological 

updating scheme 

h0 

[m] 

LL 

[m] 

Mode 

[-] 

3n 24.3 0.01 1.9 ‘central’ 0.0001 1 - 30 1-2 
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4.2.2.4 Observed wave length – vs – linear theory 

The wave length of free and forced bars is investigated for simulations with the following half-width-

to-depth ratios: 

- β = 9.06, 12.05, 15.71, 18.75, 21.28 

 

Free bars are generated by applying an undisturbed discharge over a disturbed bed level. Forced 

bars are generated by applying a groyne, which blocks half the channel, as shown in Figure 5-1. The 

characteristics of the simulations are presented in Table 4-5. 

 

Table 4-5: Characteristics of simulations R5 – R14, see Table  C-3 in Appendix C for more information 

Constant Variable 

Domain Boundary 

conditions 

νH 

[m
2
/s] 

Ash 

[-] 

Morphological 

updating scheme 

Initial bed β 

 

ks 

[m] 

3n Q-WL 0.01 1.9 ‘central’ Randomly 

perturbed 

+/- 0.1 mm 

9.1 - 

21.2 

0.009 -

0.022 

 

 

 
Figure 4-4: Forced-bar development by applying a groyne  
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4.3 Validation results 

The methodology applied for the validation of the numerical model is described in section 

this chapter the results of the calibration and validation 

reproduce the experiments of Zolezzi et al. 

with a large β value (very super-

compared with linear theory. Finally

the literature and linear theory.  

4.3.1 Reproducing experiments of 

4.3.1.1 Hydrodynamic calibration for ‘U3’ and ‘D1’

The calibrated values for the Nikuradse roughness height can be found 

 

Table 4-6: Results of hydrodynamic calibration

Calibration parameter 

Ks [m] 

4.3.1.2 Morphodynamic calibration for ‘U3’ and ‘D1’

The pool depth during the experiments was in the order of 2D

about 0.7D0 above the mean bed level. For U3_D3D the influence of A

height is shown for t = 2 h. Because D

and the top of the bar should be at about 0.014. One can see that a

geometry the best.   

Figure 4-5: Influence of Ash on pool depth and bar 

 

The values for α and Ash can be found in 
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for the validation of the numerical model is described in section 

s chapter the results of the calibration and validation are presented. First, I discuss the attempt to 

reproduce the experiments of Zolezzi et al. (2005), then the validation is continued with a simulation 

-resonant). Subsequently, the behaviour of small

compared with linear theory. Finally, the observed free and forced wave lengths are compared to

 

Reproducing experiments of Zolezzi et al. (2005) 

Hydrodynamic calibration for ‘U3’ and ‘D1’ 

The calibrated values for the Nikuradse roughness height can be found in Table 4-

: Results of hydrodynamic calibration 

U3_D3D D1_D3D 

0.0123 0.0162 

Morphodynamic calibration for ‘U3’ and ‘D1’ 

he pool depth during the experiments was in the order of 2D0, whereas the top of the bars was 

above the mean bed level. For U3_D3D the influence of Ash on the pool depth and bar 

height is shown for t = 2 h. Because D0 is 0.020 m, the pool depth should be in the order of 

and the top of the bar should be at about 0.014. One can see that an Ash of 4 

 
on pool depth and bar height for U3_D3D, t = 2 h 

can be found in Table 4-7. 

resonant conditions 
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for the validation of the numerical model is described in section 4.2.2. In 

discuss the attempt to 

continued with a simulation 

the behaviour of small-amplitude bars is 

the observed free and forced wave lengths are compared to 

-6.  

, whereas the top of the bars was 

on the pool depth and bar 

h should be in the order of -0.04 m 

of 4 represents this bar 



   

4. Numerical model set-up and validation (results) 

27 

 

Table 4-7: Results of morphological calibration 

Calibration parameter U3_D3D D1_D3D 

α 1.025 0.865 

Ash 4 4 

 

4.3.1.3 Validation for ‘U3’ and ‘D1’  

During the physical experiments, a combination was observed of migrating and non-migrating 

alternate bars. The non-migrating bars were found after averaging the bed over one or more wave 

periods. In Figure 4-6, one can see the non-migrating bed patterns of U3 and D1, measured by 

Zolezzi et al. (2005). It is clear that in U3 non-migrating bars occurred both upstream and 

downstream of the bend, whereas in run D1 only in the bend and downstream of it alternate bars 

appeared. In Figure 4-7 one can see the averaged bed levels of the numerical simulations.  

 

 
Figure 4-6: Non-migrating bed topographies, U3 (left), D1 (right). (Zolezzi et al., 2005). Note that notations are 

changed.  

 
Figure 4-7: Averaged sedimentation and erosion U3_D3D (left), D1_D3D (right). 

 

 

Pool A 

Pool A 
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Comparison between U3 and U3_D3D 

Agreement: 

- The wave length is comparable for the experiment (LL =9.0 m) and the numerical 

simulation (LL = 8.5 m) 

- The location of the downstream bars is quite similar, only a small shift (of about 2 m) in 

the downstream direction can be observed for the numerical model (compare the 

location of ‘Pool A’ in both figures). 

Disagreement: 

- No upstream non-migrating bars in the numerical model can be found, whereas they 

were observed experimentally. The numerical simulation is still sub-resonant, whereas 

the experiment is in a super-resonant regime.  

 

Comparison between D1 and D1_D3D 

Agreement: 

- The wave length is comparable for the experiment (LL =7.9 m) and the numerical 

simulation (LL = 8.4 m).  

- The pattern matches both upstream and downstream of the bend. 

4.3.2 Simulation with β=24.3 (qualitative validation) 

Upstream alternate bars 

In Figure 4-8, one can see the equilibrium bed level of R1. Contrary to U3_D3D, this time also 

upstream of the bend non-migrating alternate bars occur. This pattern corresponds qualitatively 

with the experimental results of Zolezzi et al. (2005) under super-resonant conditions.   

 

 
Figure 4-8: Equilibrium bed level R1  

 

Wave length and bar amplitude development 

Various authors (Fujita and Muramoto, 1985, Lanzoni, 2000) observed during experiments that the 

bar pattern first ‘selects’ the wave length of the bars and then the wave height. This has also been 

observed in the numerical simulation, see Figure 4-9. In this figure, the wave length, relative to the 

equilibrium wave length, is plotted versus the bar amplitude, relative to the equilibrium bar 

amplitude, for different time steps. For more information about the interaction between the wave 

length and the bar amplitude one is referred to Appendix I.  



 

 

Figure 4-9: Non-dimensional relation between wave length and wave height development, R1

 

Spectral composition of bar patt

Many authors have analyse

alternate-bar patterns have roughly the same 

harmonic mode, which means 

transverse direction. See section 

and Tubino (1992) found 

“energy” of the bed. Apart from the fundamental harmonic also 

present in most alternate-bar

(2005), Colombini and Tubino (1990

Seminara and Tubino (1992

axial and the radial direction (2

by the fundamental harmonic. 

 

Figure 4-10: Power spectrum of equilibrium bed topography R1; 

Table 4-8: Characteristics of the three main peaks in R1, at t=144 h

* LT means the lateral wave length
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dimensional relation between wave length and wave height development, R1

Spectral composition of bar pattern 

analysed the bed topography of alternate-bar patterns and 

patterns have roughly the same spectrum. The fundamental harmonic is called the 1

harmonic mode, which means first mode in the longitudinal direction and 

See section 2.1 for more information about this bar classification. 

 that the fundamental harmonic represents about 15

of the bed. Apart from the fundamental harmonic also second

bar patterns. This second-mode harmonic was observed by 

Colombini and Tubino (1990), Seminara and Tubino (1992), and various other authors. 

Seminara and Tubino (1992) observed that the total “energy” of the second

dial direction (2-2, 0-2, 2-0) is in the order of one third of the 

by the fundamental harmonic.  

 
: Power spectrum of equilibrium bed topography R1;  

: Characteristics of the three main peaks in R1, at t=144 h 

means the lateral wave length 

Harmonic LT* 

[m] 

1-1 1.2 

0-2 0.6 

1-3 0.4 
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dimensional relation between wave length and wave height development, R1 

patterns and discovered that all 

. The fundamental harmonic is called the 1-1 

direction and first mode in the 

for more information about this bar classification. Seminara 

that the fundamental harmonic represents about 15-30% of the total 

second-mode harmonics were 

harmonic was observed by Zolezzi et al. 

and various other authors. 

second-mode harmonics in the 

0) is in the order of one third of the “energy” represented 

 

 

LL 

[m] 

h 

[mm] 

Rel. 

“power” 

[%] 

 7.0 19.9 35 

 8 9.8 14 

 7.0 8.8 5 
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In Figure 4-10 one can see the spectral composition of the non-migrating bars in simulation R1. It is 

clear that the 1-1 peak has the largest contribution, as proposed in the literature. Furthermore I can 

observe a 0-2 harmonic, which represents a ‘central’ deposit. The relative “power” of the main 

harmonics  can be found in Table 4-8. The contributions of the 1-1 and 0-2 harmonic are a bit higher 

than in the literature, but still comparable. More about the development of the bed topography 

spectrum in simulation R1 can be found in Appendix H. 

4.3.3 Small-amplitude bars 

In Figure 4-11 (left), the initial amplification rate of small-amplitude (h0 = 0.1 mm ≈ 0.008D0) 

alternate bars is presented. The output of the numerical model complies with linear theory. This 

match was only achieved by applying the ‘central’ scheme for the morphological updating 

procedure. More about the influence of the morphological updating procedure can be found in 

section 5.3.1. The amplification rate of second-mode bars is not well represented by the model, see 

Figure 4-11 (right). Possible reasons for this discrepancy are discussed in section 5.3.1. 

 

 
Figure 4-11: Initial amplification rate of small-amplitude first and second-mode bars, β =24.3 

 

In Figure 4-12, the observed migration rate of small-amplitude bars is plotted with the linear theory 

prediction. For moderate wave lengths the numerically observed migration rate complies with the 

analytical migration rate. For very long and very short alternate bars, the migration rate in the 

model is less than predicted by analytical theory.   

 

 
Figure 4-12: Initial migration rate of small-amplitude bars, β =24.3 
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4.3.4 Observed wave length - vs- linear theory 

In Figure 4-13, one can see the observed wave length of forced and free bars, plotted together with 

the linear free-bar diagram.  

 

 
Figure 4-13: Observed wave length of forced and free bars, ‘central’ scheme for the morphological updating 

procedure 

 

Free bars 

The observed free-bar wave lengths are generally larger than the wave length corresponding with 

the most-unstable bar for small-amplitude bars and less dependent on β. In the first stage of free-

bar development, the alternate-bar pattern has the wave length of the most-unstable bar, according 

to the test of small-amplitude bars. However, when the bar grows, also the wave length of the bar 

grows. This means that non-linear effects cause the most-unstable bar to be longer for larger 

amplitudes. It therefore seems that linear theory fails to predict the wave length of free bars 

properly. The numerical model seems to be more complete, for it includes non-linear effects. 

However, no assessment can be made on the accuracy of the numerically predicted free-bar wave 

lengths.   

 

 

Forced bars 

In section 4.3.1.3, it has been shown that the wave length of the downstream non-migrating bars in 

the numerical model agrees with the observed wave length in the experiments of Zolezzi et al. 

(2005).  

In Figure 4-13, one can see that the wave length of forced bars (for the central method) is not really 

dependent on β. This complies with linear theory, which predicts the forced-bar wave length to be 

equal to the wave length under resonance conditions. In the figure, one can see that the observed 

forced-bar wave lengths are close to the analytical LL during βres.  



 

Numerical nonlinear analysis of alternate-bar formation under super-resonant conditions 

32 

  Wilbert Verbruggen 

Although the wave length of forced bars in the numerical model seems to be comparable to 

experimental and theoretical values, it does not coincide with the numerical observations of Vanzo 

et al. (2011). In that paper, they proposed that the wave length of forced bars tends towards the 

wave length of the most-unstable bar (becomes shorter) for larger β. Figure 4-13 shows that in case 

of the ‘upwind’ scheme for the numerical updating procedure, the observed wave length agrees 

with Vanzo et al. (2011). But because the ‘central’ scheme is thought to be more accurate, I propose 

those results to be less accurate. This is discussed in section 5.3.2. 

The observed ‘central’ forced bars also do not comply with the observations of Van der Meer et al. 

(2011), who stated that the wave length of the non-migrating bars was much shorter than predicted 

by theory for β>13. In fact, they observed the same behaviour as Vanzo et al. (2011). So I also 

ascribe the wave-length mismatch between the numerical model and linear theory, as proposed by 

Van der Meer et al. (2011), to ‘upwinding’, see section 5.3.2. 

4.3.5 Conclusion 

The model is capable of simulating alternate-bar development in both super- and sub-resonant 

regimes. In super-resonant regimes both downstream and upstream of the bend non-migrating 

alternate bars occur. In sub-resonant conditions only downstream of the bend non-migrating 

alternate bars appear. These observations are in agreement with observations by Zolezzi et al. 

(2005). The wave length of forced bars is well predicted if the ‘central’ method is used. Also the 

behaviour of small-amplitude alternate bars matches linear theory. For second-mode bars, a 

discrepancy is found between the numerical model and the analytical theory.  

 

However, the model is not capable of reproducing the super-resonant experiments of Zolezzi et al. 

(2005) directly. The reason for this is that two of the three super-resonant experiments (U1 and U2) 

have a Froude number of 1.04. Delft3D has problems with simulating flow near the transition 

between sub- and super-critical flow. The other experiment (U3) is near the transition between sub- 

and super-resonant conditions. The numerical model appears to overpredict the point of resonance 

and therefore has problems with reproducing super-resonant regimes near the point of resonance. 

This was also observed by Van der Meer et al. (2011). The sub-resonant experiment (D1), however, 

is reproduced accurately by Delft3D.  
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5 Analysis of numerics 

5.1 Objective 

During the validation of the present numerical model and the one in the paper of Van der Meer et 

al. (2011), discrepancies are found between some alternate-bar characteristics in the numerical 

model and the analytical model. The main discrepancies are found for: 

- The resonance half-width-to-depth ratio βres 

- The wave length of alternate bars 

 

The objective of this chapter is: 

 

“Studying the effects of some typical numerical factors (typical schemes for the morphological 

updating procedure, horizontal eddy viscosity and grid resolution) on alternate-bar characteristics” 

 

5.2 Methodology 

The influence of numerical diffusion, horizontal eddy viscosity and in some cases the lateral grid 

resolution are investigated. In this section the methodology of this investigation is described. First, 

the influence of these numerical characteristics on the behaviour of small-amplitude bars is 

investigated, for it provides insight in the way larger-amplitude bars behave. Then the influence on 

the wave length is investigated and finally the influence on the point of resonance. 

5.2.1 Influence on small-amplitude bar behaviour 

The behaviour of small-amplitude bars can easily be tested with the numerical model. The same 

procedure of imposing those bars is used as described in section 4.2.2.3. The behaviour of small-

amplitude bars is tested for: 

- The influence of numerical diffusion 

- The influence of the horizontal eddy viscosity 

- The influence of lateral grid resolution (on higher-mode bars) 

 

Numerical diffusion can be introduced by the ‘upwind’ scheme for the morphological updating 

procedure (Deltares, 2011), see Appendix G. This scheme is used to set the bed-load transport at the 

velocity points equal to the bed-load transport at the centre of the ‘upwind’ cell. The advantage of 

this approach is that the bed remains stable. Numerical diffusion can be avoided by using the 

‘central’ scheme. This scheme sets the bed-load transport at the velocity points equal to the average 

of the bed-load transport at the centres of the cells on both sides. The difference in bed-load 

transport prediction by both schemes can be seen in Figure 5-1. The figure shows a longitudinal 

cross-section of a hand-made alternate-bar pattern (green), along with the magnitude of the bed-

load transport (blue). The ‘upwind’ scheme (dotted line) shifts the bed-load curve in the 
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downstream direction. The shift is equal to half the longitudinal grid size (dx/2). More about this 

procedure can be found in Appendix G. 

 
Figure 5-1: Effect of upwinding 

 

The horizontal eddy viscosity is a measure for processes which cannot be taken into account directly 

by the grid. Examples are subgrid-scale turbulence and dispersion for depth-averaged simulations. 

Generally, one can state that the eddy viscosity has a damping effect on the simulation. During a 

Horizontal Large Eddy Simulation (HLES) it appeared that the horizontal eddy viscosity should be in 

the order of 10-5 m2/s, which is a small value, but common for simulations on laboratory scale. For 

reasons of stability, however, the eddy viscosity had to be increased to 0.01 m2/s. For more 

information about the horizontal eddy viscosity one is referred to Appendix C. 

 

Method of analysis 

The simulations for small-amplitude bars are done with the same settings as the simulations in 

section 4.3.3, see Table 5-1. Only the scheme for the morphological updating procedure, the value 

of the horizontal eddy viscosity and the lateral grid resolution are varied. The discharge and 

therefore also the half-width-to-depth ratio is equal in all simulations.  

 

Table 5-1: Characteristics of simulation S7-S105, see Table  C-4 in Appendix C for more information 

Constant  Variable 

β 

[-] 

 

Ash 

[-] 

h0 

[m] 

Domain νH 

[m
2
/s] 

Morphological 

updating scheme 

LL 

[m] 

Mode 

[-] 

24.3 1.9 0.0001 3n / 3l 3*10-5 – 0.01 ‘upwind’ / ‘central’ 0.7 - 30 1-3 
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5.2.2 Influence on the wave length 

Possible reasons for discrepancy 

Van der Meer et al. (2011) observed that the wave length of alternate bars for β>13, was much 

shorter than predicted by linear theory. They proposed that again numerical diffusion (Appendix G) 

could be the reason for the shortening of bars. The influence of the horizontal eddy viscosity is not 

investigated, because the results of section 5.3.1 show that the wave length of the most-unstable 

bar does not differ for different values of νH. 

 

Finding the wave length 

The influence of different contributors to the wave length is investigated for free and forced bars. It 

is common thought that the wave length of free bars is related to the most-unstable bar. To trigger 

free-bar formation, the initial bed was randomly perturbed. To trigger forced bars, a groyne, which 

blocked half the channel, was used to generate a non-migrating alternate-bar pattern, see Figure 

4-4. 

 

Method of analysis 

The influence of numerical diffusion is investigated by varying the scheme for the morphological 

updating procedure (‘upwind’ vs ‘central’). This investigation is done for different discharges, and 

subsequently different β values. The settings of the simulations for this analysis can be found in 

Table 5-2. The simulations are continued until an equilibrium bed topography has been reached.  

 

Table 5-2: Characteristics of simulations R5-R24, see Table  C-3 in Appendix C for more information 

Constant Variable 

Domain Boundary 

conditions 

νH 

[m
2
/s] 

Ash 

[-] 

Initial bed β 

 

ks 

[m] 

Morphological 

updating scheme 

3n Q-WL 0.01 1.9 Randomly 

perturbed 

+/- 0.1 mm 

9.1 – 

21.2 

0.009 -

0.022 

‘upwind’ / ‘central’ 

 

5.2.3 Influence on the point of resonance 

Possible reasons for discrepancy 

The resonance half-width-to-depth ratio was both in this research and in the research of Van der 

Meer et al. (2011) higher than predicted by linear theory. Van der Meer et al. suggested that 

numerical diffusion, entered via morphological updating procedure, could have caused βres to be 

higher than the theoretical value. I also added horizontal eddy viscosity as a possible contributor to 

the difference between the analytical and numerical model.  

 

Finding the point of resonance 

According to linear theory, under resonant conditions a certain alternate-bar mode is either non-

migrating and non-amplifying (Vanzo et al., 2011). By imposing small-amplitude bars, this resonance 

point can be found. 
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Method of analysis 

The settings for the simulations to analyse the influence of βres can be found in Table 5-3.  

 

Table 5-3: Characteristics of simulations S106 – S172, see Table  C-4 in Appendix C for more information 

Constant Variable 

Domain Ash 

[-] 

h0 

[m] 

Mode 

[-] 

β 

 [-] 

 

νH  

[m
2
/s] 

Morphological updating 

scheme 

LL 

[m] 

3n 1.9 0.0001 1 10-

19.5 

6*10-5 

– 0.01 

‘upwind’ / ‘central’ 8.5-10 

 

The influence of the horizontal eddy viscosity is discovered by finding the point of resonance for 

different values of the horizontal eddy viscosity. Here it was possible to use horizontal eddy viscosity 

values up to 6x10-5 m2/s, notwithstanding the statements in section 4.2.1.5 that a viscosity of 0.01 

m2/s is needed to ensure stability. Numerical instability only occurred when the water depth was 

relatively small. Because this specific research is on small-amplitude bars, the water depth is 

everywhere still relatively large, so no instability occurs for low viscosity.   
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5.3 Results 

The methodology applied to analyse the influence of numerical properties of the model, is described 

in section 5.2. In this chapter, the results of the analysis of numerics can be found. First, I discuss the 

influence of numerics on the behaviour of small-amplitude bars, then on the wave length of the 

alternate bar and finally on the point of resonance. 

5.3.1 Influence on small-amplitude bar behaviour 

5.3.1.1 Influence of numerical diffusion 

Amplification rate 

The observed amplification rates for the ‘central’ and ‘upwind’ routine can be found in Figure 5-2. As 

already shown in section 4.3.3, the observation for first-mode bars complies with linear theory, in 

case of the ‘central’ routine. The curves for the ‘upwind’ and ‘central’ method start to deviate for 

bars shorter than 2.5 m (dimensionless wavenumber > 0.8). The consequence of ‘upwinding’ is that 

the top of the amplification curve (the wavenumber of the most-unstable bar) is shifted to the left, 

towards longer bars. One might therefore expect bars to be longer in case of ‘upwinding’, which 

matches the observations in section 5.3.2. The higher the mode, the shorter the most-unstable bar. 

Therefore, numerical diffusion has a larger effect on higher-mode bars.  

 

 
Figure 5-2: Initial amplification rate of small-amplitude bars, ‘upwind’ and ‘central’ method 

 

Migration rate 

In Figure 5-3, one can see the migration rate of first-mode bars during the simulation with the 

‘central’ and ‘upwind’ methods, together with the analytical prediction. It becomes clear that the 
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migration rate is not really influenced by the choice for the bed-load procedure. Numerical diffusion, 

apparently, does not have a significant influence on the migration rate of small-amplitude bars.  

 

 
Figure 5-3: Migration rate of small-amplitude bars, ‘upwind’ and ‘central’ approach 

 

Physical explanation 

The behaviour of bars can be explained by the phase lag between the bed topography and the bed-

load transport, as explained in section 2.2.  

 

The phase lag depends on the longitudinal wave length of the alternate bar, as can be seen in Figure 

5-4. This figure is based on the output of the simulations, which are used in this section. The figure 

also shows the difference in phase lag between the ‘central’ and ‘upwind’ method. This can be 

explained by the fact that the bed-load transport, predicted with the ‘upwind’ routine, is shifted in 

the downstream direction, see Figure 5-1. This shift can be seen as an added positive phase lag, later 

referred to as δupw. The shift of the bed-load curve, predicted with the ‘upwind’ routine, is always 

equal to dx/2. The phase lag due to the ‘upwind’ scheme is therefore proportional with 1/LL. The 

shorter the bar, the larger the effect of upwinding. The shift of the bed-load curves between the 

‘upwind’ and ‘central’ method can be reduced by reducing the longitudinal grid size. 

 

 
Figure 5-4: Phase lag between bed-load transport and bed topography versus LL 
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5.3.1.2 Influence of horizontal eddy viscosity 

In Figure 5-5, one can see the observed amplification rate of small-amplitude bars for different 

values of νH. It appears that the amplification rate of alternate bars is inversely proportional to νH. 

 

 
Figure 5-5: Dependency of the amplification rate on νH, ‘upwind’ method 

 

Although the horizontal eddy viscosity has a quantitative effect on the amplification rate of small-

amplitude bars, the shape of the curve is preserved. Also the wavelength, corresponding with the 

most-unstable bar, is equal for all values of νH. The eddy viscosity has therefore mainly an effect on 

the time scale of alternate-bar formation and not so much on the spatial properties of the small-

amplitude alternate-bar pattern.  

 

Physical explanation 

An extensive explanation can be found in Appendix G.  

 

The horizontal eddy viscosity has a damping effect on hydrodynamic perturbations. In Figure 5-6, 

one can see the effect on the velocity perturbation. For νH = 0.01 m2/s, the velocity has a smaller 

variation of magnitude as for νH = 3*10-5 m2/s. Because the bed-load transport is proportional to the 

velocity to a certain “power”, the bed-load transport variation is larger for a lower νH. As explained 

in section 2.2, the bed level change rate is dependent on the spatial derivative of the bed-load 

transport. A larger variation will lead to a larger ds/dx, and therefore to a larger amplification rate.  
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Figure 5-6: Velocity distribution over an alternate bar for different values of νH 

5.3.1.3 Influence of lateral grid resolution 

In section 5.3.1.1 one can observe that the growth rate of small-amplitude first-mode bars is well 

predicted by linear theory. The behaviour of second- and third-mode bars in the numerical model, 

on the contrary, does not match linear theory. One would expect this difference to be caused by the 

lateral resolution, for the higher the bar mode, the less grid cells per wave length in the lateral 

direction. In order to investigate the influence of lateral resolution, Domain 3n was refined with a 

factor 2, only in the lateral direction, which resulted in Domain 3l. In Figure 5-7, one can see that the 

larger transverse resolution gives almost the same result as the simulations with the normal grid. 

Only for the third-mode bars a small difference can be seen for the very short bars (LL < 0.9 m), but 

still the curve does not fit linear theory. The difference between linear theory and the numerical 

model for the amplification rate of higher-mode bars can therefore not be explained by a lack of 

lateral resolution.  

 

 
Figure 5-7: Initial amplification rate for grids with a different lateral resolution 

5.3.2 Influence on the wave length 

In section 5.3.1, I have already found that horizontal eddy viscosity has no effect on the wave length 

of the most-unstable bar. Therefore, the influence of the horizontal eddy viscosity is not 

investigated in this chapter. Here only the influence of numerical diffusion is tested.  
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Developed free bars 

In Figure 5-8 (left), one can see the wave length of free bars for both the ‘upwind’ and ‘central’ 

scheme for the morphological updating procedure. The figure shows the observed wave length and 

the uncertainty, due to the grid resolution. It appears that the wave length of free bars is about 4% 

larger for the ‘upwind’ routine for bed-load transport, than for the ‘central’ scheme. This complies 

with the influence on small-amplitude bars, as discussed in section 5.3.1.  

 

 
Figure 5-8: Longitudinal wave length of free migrating bars (left) and forced bars (right) versus β, for the 

‘upwind’ and ‘central’ method 

 

Forced bars 

Figure 5-8 (right) shows the observed forced-bar length for both the ‘upwind’ and ‘central’ method. 

In this picture, the uncertainty due to the grid resolution is not shown, because it is very small 

relative to the scale of the vertical axis. The wave length of forced bars is quite constant for different 

β values for the ‘central’ method. The ‘upwind’ scheme predicts the bars to be about 3% longer for 

small values of β (β < 16). For larger width-to-depth ratios, the wave length of the ‘upwind’ forced 

bar shows a significant decrease. This forced-bar ‘behaviour’ was also observed by Vanzo et al. 

(2011) and Van der Meer et al. (2011).  

 

The reason for this sudden shortening of bars is that the bar tops became inactive, due to a very 

small waterdepth, before it was fully developed. The result of this sudden drying was that the bar 

top became inactive and the bar non-migrating, whereas its wave length was still relatively short. In 

the simulations with the ‘central’ method this drying does not occur for these β values. I stress that I 

do not know whether the results of Vanzo et al. (2011) were also affected by ‘upwinding’. 

It appears that the bars in the ‘upwind’ simulations have a different spectral composition than in the 

‘central’ simulations. The bars in the ‘upwind’ simulation consist of a relatively large first mode and 

relatively small higher modes. For example, Figure 5-9 shows the relative “power” spectrum of the 

free-bar pattern of simulation R17 (the other simulations show the same trend). Relative “power” 

means the absolute “power” (bed level divergence squared) of a specific mode divided by the total 

“power” of the bar pattern. The figure clearly shows that the contribution of the first mode is larger 

for the ‘upwind’ alternate bars and that the contribution of the higher modes is less. It is important 

to note that the total “power” was equal for the alternate bars compared.  The second mode mainly 

represents a ‘central’ longitudinally uniform deposit. In the ‘upwind’ simulations the sediment is 
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therefore more deposited near the banks. This explains why bars in case of the ‘upwind’ method can 

be emerged from the waterlevel, whereas the bar top is still submerged in case of the ‘central’ 

method. 

 

 
Figure 5-9: Relative “power” spectrum of a typical alternate bar; influence of ‘upwinding’ 

5.3.3 Influence on the point of resonance 

5.3.3.1 Influence of numerical diffusion  

The method to find the point of resonance is described in section 5.2.3. In Appendix F this procedure 

of finding the point of resonance is visualised for the ‘upwind’ and ‘central’ method separately. In 

Figure 5-10, one can see the observed points of resonance for different values of the horizontal eddy 

viscosity. The point of resonance for the ‘upwind’ method is in all cases slightly lower than the one 

for the ‘central’ method. So contrary to the hypothesis of Van der Meer et al. (2011), the point of 

resonance is not significantly sensitive to numerical diffusion. Expected was that the βres should be 

higher for the ‘upwind’ method than for the ‘central’ method, the opposite is even shown.  

 

Physical explanation 

Because the point of resonance is associated with long alternate bars (≈ 9 m), the δupw (extra phase 

lag between the bed topography and the bed-load transport, due to upwinding) is relatively small. 

The difference between the resonance points of the ‘upwind’ and ‘central’ scheme is smaller if the 

grid is refined in the longitudinal direction, for the shift is proportional to the longitudinal grid size.  
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Figure 5-10: Analytical and observed numerical values for βres 

 

5.3.3.2 Influence of horizontal eddy viscosity 

In Figure 5-10, one can observe the relation between the point of resonance and the horizontal eddy 

viscosity. It shows that the resonance point is significantly dependent on the horizontal eddy 

viscosity. According to the HLES simulation, see chapter C.2, the viscosity should be in the order of 

10-5 m2/s. For stability reasons, the viscosity applied, in the simulations to investigate the 

development of upstream alternate bars, is 0.01 m2/s. This choice has a significant implication for 

the transition between sub- and super-resonance conditions. As expected by Van der Meer et al. 

(2011) and after validating the model, βres is overpredicted by the model for horizontal eddy 

viscosity values of about 0.01 m2/s. 

 

Discussion 

It is not clear how to explain the observed relation between the horizontal eddy viscosity and the 

point of resonance. On one hand, one can argue that viscosity exercises a (positive) damping on the 

system, as shown in 5.3.1.2. According to Mosselman et al. (2006), one can argue that super-

resonant conditions correspond to negative damping coefficients and sub-resonant conditions with 

positive ones. Considering this reasoning, one can argue that a higher value of the viscosity leads to 

a more positive damped system, so to a higher βres value.  

 

On the other hand one can argue that the adaptation length for flow is inversely proportional to the 

horizontal eddy viscosity ( λw ~ 1/νH), the higher the viscosity, the shorter the adaptation length. 

Resonance occurs, according to Struiksma et al. (1985), at a certain interaction parameter λs/λw, see 

Figure 5-11. If this ‘resonant’ interaction parameter is supposed to be not dependent on νH, and the 

interaction parameter is proportional to νH, one would suggest that a large νH leads to a system that 

tends to super-resonant conditions. And thus to a smaller βres value. 

 

The first way of reasoning complies with the observations, whereas the second one contradicts the 

observations. At the moment of completing this report I have not been able to determine which 

reasoning is correct.  
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Figure 5-11: Prediction of resonance point according to fourth order polynomial Struiksma et al. (1985) 



 

45 

 

6 Analysis of upstream bar development 

6.1 Objective 

Previous linear analyses and laboratory experiments have shown that under super-resonant 

conditions both downstream and upstream of a geometrical perturbation bars will arise. However, 

they did not investigate in detail how these upstream alternate bars develop.  

 

The objective of this chapter is: 

 

 “Acquiring a better understanding of the development process of alternate bars, upstream of a bend 

under super-resonant conditions” 

 

6.2 Methodology 

Interesting issues regarding the development of bars in super-resonant conditions are: 

- Influence of the bend      

- Direction of migration      

- Instability of the bed        

 

This section discusses the method of investigation.  

6.2.1 Influence of the bend 

Hypothesis 

Zolezzi & Seminara (2001a) predicted via linear theory that in super-resonant conditions the bend 

will influence the bed upstream of the bend (upstream influence). Therefore, the hypothesis is that 

the bend will have an influence on the formation process of alternate bars upstream of the bend 

under super-resonant conditions (β>βres). In that case, long bars will be generated at the bend and 

will migrate in the upstream direction.  

 

Method of analysis 

In the literature, in most numerical simulations alternate-bar formation is triggered by a perturbed 

inflow discharge, or a perturbed bed (Crosato et al., 2011, Mosselman et al., 2006). To observe the 

development solely caused by the presence of the bend, first a simulation without any perturbation 

is carried out: simulation R3.  

 

Then a simulation is carried out, in which the upstream inflow discharge is randomly perturbed, with 

a maximum of 1% of the discharge, simulation R1. It is analysed whether the same development 

occurs with and without inflow perturbation.  
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Finally a comparison is made between the development of alternate bars in a straight flume and a 

perturbed inflow discharge, simulation R2. Through doing this comparison I find that in case of a 

boundary disturbance, the bend does not show an influence.  

 

The main characteristics of the simulation, described above, are summarized in Table 6-1. 

 

Table 6-1: Characteristics of simulation R1, R2, R3a, R3b, see Table  C-3 in Appendix C for more information 

RunID Domain β 

 

Boundary 

condition

s 

ks 

[m] 

νH 

[m
2
/s] 

Ash 

[-] 

Morphological 

updating scheme 

Initial 

bed 

R1 2n 24.3 QP-WL 0.008 0.01 1.9 ‘upwind’ Flat 

R2 3n 24.3 QP-WL 0.008 0.01 1.9 ‘upwind’ Flat 

R3a 2n 24.3 WL-WL 0.008 0.01 1.9 ‘upwind’ Flat 

R3b 2n 24.3 Q-WL 0.008 0.01 1.9 ‘upwind’ End 

R3a * 

*Simulation R3b started with the developed bed topography of R3a, from the moment that the 

backwater curve reached the inflow boundary 

6.2.2 Direction of migration  

Definition of migration and propagation 

In this section, two types of migration are discussed: the migration of individual bars and the 

propagation of a bar pattern. It is for example possible that an individual bar is migrating in the 

downstream direction, whereas the pattern is propagating in the upstream direction. The word 

‘migration’ in this report will only refer to individual bars, whereas ‘propagation’ will always refer to 

a bar pattern. 

 

Hypothesis 

The expectation is that during super-resonant conditions immediately upstream of the bend 

curvature discontinuity an alternate bar will develop. Subsequently more upstream of this alternate 

bar a new alternate bar will be generated. The migration of (sufficiently-long) alternate bars under 

super-resonant condition is supposed to be in the upstream direction. Higher mode bars can be still 

in sub-resonant conditions, whereas the first-mode bar is in super-resonant conditions. The higher-

mode bars are therefore supposed to be migrating in the downstream direction as long as they are 

in the sub-resonant regime.  

 

Method of analysis 

As for the analysis of the bend influence, a distinction is made between disturbance-driven and 

bend-driven alternate-bar development. The migration of individual bars and propagation of the bar 

pattern is therefore investigated in the case that no perturbation is applied (R3) and in the case that 

the discharge at the inflow is perturbed (R1). For the main characteristics of the simulations one can 

see Table 6-1. The migration direction will be shown with a migration diagram. The propagation 

direction of the bar pattern is analysed with Fourier transforms, see Appendix E. This is done by 

dividing the upstream straight reach in sections of 4 m length, see Figure 6-1. For every section the 
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development of the “power” and amplitude of the different bar modes is analysed with Fourier 

transforms.  

 
Figure 6-1: Locations of sections of upstream river reach 

 

Non-linear effects influence the migration rate and migration direction of alternate bars. This is 

shown by imposing alternate bars with a wave length of 7.5 m, but different initial amplitudes, on an 

initially flat bed. These simulations have the following settings: 

 

Table 6-2: Settings of simulations S173 – S174, , see Table  C-4 in Appendix C for more information 

RunID Domain β 

 [-] 

 

νH  

[m
2
/s] 

Ash 

[-] 

Morphological 

updating scheme 

LL 

[m] 

h0 

[m] 

Mode 

[-] 

S106 3n 24.3 0.01 1.9 ‘central’ 7.5 0.0001  1 

S107 3n 24.3 0.01 1.9 ‘central’ 7.5 0.008  1 

6.2.3 Bed instability 

The focus regarding bed instability will be on the start of bar development. Which bar appears first 

when the bed is unstable and can this initial bar pattern be predicted with linear theory? 

 

Instability in a numerical model needs to be triggered. This can be done by either applying a 

disturbed bed level, or by applying a disturbance at the upstream boundary. For this research both 

approaches are used.  

 

Hypothesis 

According to Blondeaux and Seminara (1985), Zolezzi and Seminara (2001b), Vanzo et al. (2011) and 

many others, every specific bar has its own amplification rate. The bar with the highest amplification 

rate is called the most-unstable bar. It is expected that if a flat bed is unstable, the most-unstable 

bar will become apparent first. In numerical modelling, instability of the bed should be triggered by 

a boundary disturbance or a bed disturbance. The hypothesis is that in case of instability of the bed, 

the most-unstable mode will emerge first 

 

Method of analysis 

Bed instability for this specific issue is triggered in two ways, by perturbing the discharge at the 

inflow boundary (R1) and by perturbing the initial bed level with a random perturbation of about 1% 
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of the water depth (R4). The initial bar pattern is analysed with Fourier transforms and compared to 

the most-unstable bar according to the analysis of small-amplitude bars, see Figure 5-2. The main 

characteristics of R1 can be found in Table 6-1, the characteristics of R4 can be found in Table 6-3. 

 

Table 6-3: Characteristics of simulation with boundary disturbance (R4) , see Table  C-3 in Appendix C for more 

information 

RunID Domain β 

 

Boundary 

condition

s 

ks 

[m] 

νH 

[m
2
/s] 

Ash 

[-] 

Morpholog

ical 

updating 

scheme 

Initial bed 

R4 2n 24.3 QP-WL 0.008 0.01 1.9 ‘upwind’ Random pert. 

+/- 0.1 mm 
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6.3 Results 

6.3.1 Influence of the bend 

The goals and hypothesis for this specific section can be found in section 6.2.1. Also the way the 

results in this chapter were gathered and the characteristics of the simulations, can be found in that 

section.  A description of simulations R1 and R3a can be found in Appendix D. 

 

In this section, a distinction is made between bend-driven development and disturbance-driven 

development.  

6.3.1.1 Bend-driven development 

The influence of the bend is clearly observed if no disturbance is applied at the upstream boundary. 

Simulation R3a is carried out to show this influence. Immediately from the start of the simulation a 

scour hole develops at the inner part of the bend entrance. The bend causes the flow to be 

concentrated at the inner part of the bend entrance. Subsequently the flow at the outer part of the 

bend entrance decreased. This leads to erosion at the inner part and sedimentation in the outer 

part. This erosion and sedimentation pattern moves in the upstream direction. The bend clearly 

shows an influence on the bed upstream of the bend (upstream influence). The upstream migration 

of this pattern can be explained by the fact that sufficiently-long small-amplitude bars migrate in the 

upstream direction under super-resonant conditions. The observation complies with the explanation 

of upstream influence by Zolezzi and Seminara (2001a).  

 
Figure 6-2: Development of alternate bar at bend entrance 
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In Figure 6-3, one can see the bed level change in the upstream straight reach for t =550 min to t = 

950 min. During the first 600 min hardly any ripple or bar can be seen (besides the long scour hole 

immediately upstream of the bend). After about 600 minutes higher-mode bars start to develop at 

the edge of the scour hole, see Figure  D-7 in Appendix D. These second-mode bars travel in the 

downstream direction and merge into first-mode, alternate, bars.   

 
Figure 6-3: Cumulative sedimentation/erosion R3a 

6.3.1.2 Disturbance-driven development 

Simulation R1 has, apart from the disturbance at the upstream boundary, the same settings as 

simulation R3a. This simulation is analysed below and compared to simulation R2 (same settings as 

R1, but the bend is absent in the domain).  

 

Initially at the bend entrance 

Due to the discharge perturbation at the inflow boundary a second-mode pattern develops at the 

inflow boundary that migrates in the downstream direction, to the bend entrance. This disturbance-

driven bar pattern reaches the bend entrance after 240 min of simulation. Before that happens, the 

same development at the bend entrance can be seen, as visualised in Figure 6-2.  
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After the disturbance-driven bar pattern reached the bend 

When the second-mode bars reach the bend, alternate bars form upstream of the already formed 

scour hole. To judge the influence of the bend, the simulation with bend is compared to a simulation 

in which the bend is absent (R2). In Figure 6-4, one sees the development of bars between X = -4 m 

and X = 14 m. The similarity, visualized with the black ellipses, between the two different runs, show 

that disturbance-driven alternate bars also develop without the presence of a bend. Alternate bars 

between X=-4 m and X=2 m develop even earlier for the run without a bend. But apart from the time 

lag, the same way of development occurs in the straight model as in the model with bend. The blue 

ellipses show that the strongest alternate-bar development takes place in the same section.  

 
Figure 6-4: Comparison between simulation with and without bend 

6.3.1.3 Comparison between equilibrium bed topographies 

The equilibrium bed topographies of the three simulations are compared in this section.  

Figure 6-5 shows a visual comparison. The bed topographies are also analysed with Fourier 

Transforms, see Appendix E. The main characteristics of the Fourier analysis can be found in Table 

6-4. It can be concluded that the equilibrium topographies of R1 and R2 are very similar. Therefore 

one can state that in case of disturbance-driven bar formation, the bend has no significant influence.  
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Figure 6-5: Equilibrium bed pattern after 32 hours for R1, R2 and R3  

 

A larger difference can be observed between R1 and R3, but still the main alternate bar 

characteristics (wave length, amplitude of the 1-1 mode) are very similar. The largest difference 

between the equilibrium bed topography of both simulations is the difference in amplitude of the 0-

0 mode. The 0-0 mode is a uniform displacement of the bed. The bed in R3 is uniformly lowered, the 

reason for this is that, during R3a, the incoming bed-load transport was less than the bed-load 

transport at the downstream boundary, so a net export of sediment occurred (Figure 6-6).  

 
Figure 6-6: Input and output of sediment, simulation R3a and R3b 

 

Table 6-4: Comparison between equilibrium topography of R1, R2 and R3b 

 R1 R2 Difference 

R1 – R2 

[%] 

R3 Difference 

R1 – R3 

[%] 

Wave length of first-mode bar 

[m] 

7.1 7.1 0 7.3 +3.5 

Total “power”  0.223 0.228 +2.0 0.224 +0.4 

Amplitude 1-1 mode [mm] 19.9 20.0 +0.8 18.3 -7.6 

Amplitude 0-2 mode [mm] 9.8 10.3 +5.5 8.6 -12.2 

Amplitude 1-3 mode [mm] 8.8 8.6 -1.4 6.4 -27.3 

Amplitude 0-0 mode [mm] 1.3 1.3 +0.5 5.1 +304.2 
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6.3.1.4 Conclusions 

The following conclusions can be drawn regarding to the influence of the bend: 

- Disturbance-driven alternate-bar formation is dominant over bend-driven alternate-bar 

formation, because bend-driven alternate-bar formation takes place on a much longer 

timescale than boundary-driven alternate-bar formation.  

- If no disturbance is applied, the bend will influence the bed upstream of the bend under 

super-resonant conditions. The resulting equilibrium alternate-bar pattern does not 

significantly differ from the equilibrium alternate-bar pattern, generated by a boundary 

disturbance.  
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6.3.2 Direction of migration  

The goals and hypothesis for this specific section can be found in section 6.2.2. Also the way the 

results in this chapter were gathered and the characteristics of the simulations can be found in that 

section.   

6.3.2.1 Migration of individual bars 

Observations 

In Figure 6-7, one can see the migration diagrams of the alternate-bar peaks of simulation R1 and 

R3a. The figure shows that the bar peaks migrated invariably in positive X-direction, which is in the 

downstream direction. So contrary to the hypothesis, no bars were observed to migrate in the 

upstream direction under super-resonant conditions. The left picture shows the development of 

alternate bars till the bars emerged from the water level, the right picture only shows the migration 

of bars in the initial stage of the simulation. Some strange discontinuities can be seen in the right 

figure (marked with red ellipses). The migration of bar tops in that simulation sometimes suddenly 

ceased and after some time resumed. This has to do with the fact that the flow fluctuated between 

sub- and super-critical in those periods. More about this can be found in Appendix D. 

 

 
Figure 6-7: Diagrams of alternate-bar peak migration 

 

Explanation (non-linear effects) 

In Figure 6-8, one can see the migration direction of imposed alternate bars, with an initial 

amplitude of 0.0001 m (left), and 0.008 m (right). In linear theory, the migration rate and direction is 

not dependent on the bar amplitude. However, the figure shows that the migration rate and 

direction is dependent on the bar height. The right picture shows clear non-linear effects. This might 

explain the absence of bars migrating in the upstream direction in simulations R1 and R3.  
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Figure 6-8: Migration direction for different initial amplitudes 

 

6.3.2.2 Propagation of bar patterns 

The direction of propagation is analysed with Fourier transforms as described in section 6.2.2. In 

section 6.2.1, one can see that the influence of the bend is only visible if no disturbance at the 

upstream boundary is applied. Otherwise the disturbance-driven development will be dominant. It 

also appears that the propagation direction of bar patterns is dependent on the presence of a 

boundary disturbance. Therefore, the propagation will be discussed for the situation that no 

disturbance is applied and for the situation with a boundary disturbance. 

 

Bend-driven development  

In Figure 6-9, one can see the amplitude development of the first mode in lateral direction with a 

longitudinal wave length between 2.9 and 14.4 m. During the first 700 minutes the growth of the 

alternate bar in section 1 has a quite constant growth of 0.44 mm/h. After about 700 minutes in 

section 2 and in section 3 alternate bars start to grow. It is clearly shown that the alternate-bar-

pattern propagation initially is from section 1 to section 6, thus in the upstream direction. When the 

alternate bars have grown to about 0.004 m, the development propagation becomes less clear. The 

wiggles in the figure can be explained by the fact that the bars are migrating, whereas the section 

boundaries are fixed, see Appendix E. 
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Figure 6-9: Development of amplitude of transverse mode 1, 2.9 m  <L L < 14.4 m (R3a) 

 

Disturbance-driven development 

In Figure 6-10 (left), one can see the amplitude development of the first mode in different sections. 

Like in the case of no disturbance, the first alternate-bar growth starts at section 1. This can be 

explained by the fact that the disturbance bars reach the bend after about 250 minutes, so initially 

one sees the bend-driven development. Due to the disturbance, alternate bars also begin to develop 

in the other section. The development starts in section 4 and propagates to section 3 and 2, and 

then a new development starts in section 7, which propagates to section 6 and 5.  The disturbance 

triggers alternate-bar formation in section 4 after about 280 minutes. This alternate-bar pattern 

subsequently propagates towards section 3 and 2, thus in the downstream direction. Later also in 

section 7 alternate-bar development is triggered by the disturbance. Also this pattern propagates in 

the downstream direction.  

 

 
Figure 6-10: Development of amplitude of first-mode transverse harmonic initially (left), and in a later stage 

(right) for R1 

 

The downstream pattern propagation is not only observed in the initial stage, but also in a later 

stage, see Figure 6-10 (right). The figure shows the development of the alternate-bar amplitude of 

section 1 (purple) and section 5 (red). The developments between points ‘A’ and ‘D’ are unique for 

section 1 and section 5, apart from the time lag. The time lag suggests that the pattern propagates 

with a constant celerity of about 1.6 m/h from section 5 to section 1, thus in the downstream 
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direction. Remarkable is that the propagation speed of the pattern is almost equal to the migration 

rate of an individual bar.  

 

6.3.2.3 Conclusions  

The following conclusions can be drawn according to the direction of migration of individual bars: 

- In agreement to linear theory, small-amplitude long bars have been observed to migrate 

in the upstream direction.  

- Contrary to linear theory, bars with higher amplitude, independent of their longitudinal 

wave length, are migrating in the downstream direction, This can be explained by non-

linear effects. 

 

The following conclusions can be drawn according to the direction of migration of bar patterns: 

- Bar pattern development caused by boundary disturbance is dominant over bar-pattern 

development caused by the bend. 

- Boundary-disturbance-driven bar-pattern development is in the downstream direction. 

- Bend-driven bar-pattern development is in the upstream direction, in case of super-

resonant conditions. 
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6.3.3 Bed instability 

The goals and hypothesis for this specific section can be found in section 6.2.3. Also the way the 

results in this chapter were gathered and the characteristics of the simulations, can be found in that 

section.   

6.3.3.1 Linear theory 

In the left part of Figure 6-11, one can observe the amplification rate of the most-unstable mode 

versus the half-width-to-depth ratio. Linear theory predicts that for β < 18.1, the first mode is the 

most-unstable mode. For β > 18.1 and β < 23.7, the second mode is the most-unstable mode. For 

higher beta values, the third mode is the most unstable. The simulations in this section have a beta 

value of 24.3, so one would expect the third mode to appear first. In the right part of Figure 6-11, 

one sees the observed amplification rate for β = 24.3, as investigated in section 5.3.1. The figure 

shows that for the ‘upwind’ method, the second mode is the most unstable, whereas the first and 

third mode are slightly less unstable, which does not comply very well with linear theory. Section 

5.3.1 already explained that the ‘central’ method represents the left picture more properly. The 

simulations in this section, however, are carried out with the ‘upwind’ scheme. For analysing 

whether the most-unstable bar, according to the behaviour of small-amplitude bars, becomes 

apparent first, it is not of importance whether the right part of Figure 6-11 agrees with linear theory. 

 

 
Figure 6-11: Left: maximum amplification rate of different modes, versus β. Right: Observed amplification rate 

for β=24.3, ‘upwind’ method, see section 5.3.1..  

6.3.3.2 Instability due to bed perturbations 

Simulation R4 is carried out to observe the initial development of bars with an initially perturbed 

bed. The random amplitude of the perturbation is between +/- 1% of the total water depth. The 

initial development of bars can be seen in Figure 6-12 (left). The bed is analysed with Fourier 

transforms (right figure). Although one would expect the second-mode bar to be the most unstable 

immediately from the start of the simulation, the third mode (with an LL of 0.95 – 1.1 m) appears 

initially to be the most unstable. After 90 minutes, the second mode (with LL = 1.4 m) becomes the 

most unstable. The longitudinal wave lengths, of the most-unstable third and second-mode bars in 

Figure 6-12, do comply with Figure 6-11 (right).  
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Figure 6-12: Initial bar development on a randomly perturbed bed. Bed level change plots (left). Fourier 

analysis (right). 

6.3.3.3 Instability due to fluctuating discharge  

Also the appearing of bars is tested for an inflowing discharge disturbance, which is uniform in 

space, but varying in time. Due to this perturbation, a second-mode bar was immediately created at 

the upstream boundary, see Figure 6-13. The longitudinal wave length of the second-mode bars was 

1.4 m. It is remarkable that this matches the observed behaviour of small-amplitude bars, but not 

with the initial stage of simulation R4, see section 6.3.3.2.  

A possible explanation for the difference between simulations R4 an R1 is that the asymmetrical 

third-mode bar in the simulation with boundary disturbance (R1) might be suppressed by the fact 

that the discharge perturbation is symmetric.  

 

 
Figure 6-13: Initial second-mode bars at the upstream boundary 

6.3.3.4 Conclusions 

The following conclusions can be drawn according to the instability of the bed: 

- In agreement with linear theory, the most-unstable bar mode (the bar mode with the 

largest growth rate) becomes apparent if the bed is unstable. However, it has been shown 

that a higher-mode pattern may initially arise.  

- A symmetrical perturbation can suppress the growth of asymmetric bar modes.   

- Above a certain critical width-to-depth ratio second-mode bars are the most-unstable 

modes, whereas below this parameter first-mode bars are the most unstable. 
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7 Conclusions and recommendations 

7.1 Conclusions 

In chapter 1, three objectives are formulated for this study. In this section, I will conclude my 

findings per objective. 

 

Improving and validating the numerical model of van der Meer et al. (2011), chapter 4.    

1.1 The numerical model is capable of simulating alternate-bar development under both super- 

and sub-resonant regimes. Under super-resonant regimes both downstream and upstream 

of the bend non-migrating alternate bars occur. Under sub-resonant conditions only 

downstream of the bend non-migrating alternate bars appear. These observations are 

qualitatively in agreement with observations by Zolezzi et al. (2005). 

1.2 The wave length of forced bars is well predicted if the ‘central’ method is used.  

1.3 The behaviour of small-amplitude alternate bars (bar amplitudes smaller than 2%) complies 

with linear theory for the ‘central’ method. For the second-mode bars a discrepancy is found 

between the numerical model and the analytical theory. This study does not have an answer 

on the reason for the mismatch. 

1.4 The numerical model is not capable of reproducing the super-resonant experiments of 

Zolezzi (2005). The numerical model appears to overpredict the point of resonance and 

therefore has problems with reproducing super-resonant regimes near the point of 

resonance. This was also observed by Van der Meer et al. (2011).  

 

Studying the effects of some typical numerical factors (typical schemes for the morphological 

updating procedure, horizontal eddy viscosity and grid resolution) on alternate-bar characteristics, 

chapter 5. 

Influence of numerical diffusion (introduced via the morphological updating procedure): 

2.1 Numerical diffusion, caused by the ‘upwind’ procedure, is introduced by the shift of the 

bed-load transport curve in the downstream direction. This shift is equal to half of the 

longitudinal grid size. The effect of numerical diffusion can therefore be decreased by 

increasing the grid resolution.   

2.2 Numerical diffusion causes the shorter small-amplitude bars to be damped, so the ‘upwind’ 

free-bar diagram is shifted towards longer bars. This causes the wave length of free bars to 

be longer for the ‘upwind’ method than for the ‘central’ method.  

2.3 Numerical diffusion influences the bed topography spectrum. The higher harmonics within 

the bar pattern are damped by the numerical diffusion, so the relative contribution of the 

first-mode harmonic is enlarged. The consequence is that for the ‘upwind’ method the 

deposition of sediment is more concentrated near the banks (and not so much on the 

channel axis, as is the case with the ‘central’ method), which results in higher bar peaks.  

2.4 At shallow flows (large width-to-depth ratios) an ‘upwind’ bar peak can become inactive, 

whereas it is still active during a ‘central’ simulation, see conclusion 2.3. This causes 
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‘upwind’ alternate bars (in forced conditions) to be much shorter for large width-to-depth 

ratios. This explains why Van der Meer et al. (2011) observed the alternate bars for β>13 to 

be much shorter than predicted by linear theory, for they used the ‘upwind’ method.   

2.5 The effect of numerical diffusion on the point of resonance is insignificant, because the 

point of resonance is related to long bars, which are hardly influenced by the ‘upwind’ shift 

of the bed-load transport curve, see conclusion 2.2. 

 

Horizontal eddy viscosity 

2.6 The amplification rate of small-amplitude bars is inversely proportional with the horizontal 

eddy viscosity. But because it influences the amplification rate of all small-amplitude bars, 

the effect is mainly on the time scale of bar formation, and does not have a significant effect 

on the wave length of bars. 

2.7 The point of resonance is observed to be dependent on the horizontal eddy viscosity, a 

larger νH results in a lower βres.  

 

Lateral grid resolution 

2.8 The mismatch between the observed behaviour of higher-mode bars and the prediction of 

linear theory cannot be explained by a lack of lateral grid resolution.  

 

Acquiring a better understanding of the development process of alternate bars, upstream of a 

bend under super-resonant conditions, chapter 6.  

 

3.1 Disturbance-driven (by applying a disturbed discharge at the inflow boundary) alternate-bar 

formation is dominant over bend-driven alternate-bar formation, because bend-driven 

alternate-bar formation takes place on a much longer timescale. 

 

Influence of the bend 

3.2 If no disturbance is used, the bend will influence the bed upstream of the bend. The 

resulting equilibrium alternate-bar pattern does not significantly differ from the equilibrium 

alternate-bar pattern, generated by a boundary disturbance. So for the equilibrium bed 

topography the applying of an inflow disturbance is not of importance. 

 

Individual bar migration  

3.3 In agreement to linear theory, small-amplitude long bars have been observed to migrate in 

the upstream direction only under super-resonant conditions. 

3.4 Contrary to linear theory, bars with higher amplitude, irrespective of their longitudinal wave 

length, are observed to migrate in the downstream direction. This can be explained by non-

linear effects. 

 

Bar pattern propagation 

3.5 Disturbance-driven bar-pattern development is in the downstream direction. 

3.6 Bend-driven bar-pattern development is in the upstream direction. 
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Bed instability 

3.7 In agreement with linear theory, the most-unstable bar mode (the bar mode with the largest 

growth rate) becomes immediately apparent if the bed is unstable.  

3.8 A symmetrical perturbation can suppress the growth of asymmetric bar modes.  

7.2 Relevance  

This study contributes to both literature and modelling practice. First of all, this study shows the 

influence of non-linear effects. For alternate bars with an amplitude smaller than 2% of the water 

depth the growth process was observed to be linear, for larger bars the amplification rate and 

migration rate were observed to be dependent on the bar amplitude. Long bars, for example, with a 

developed height migrate in the downstream direction, whereas in the literature it is proposed that 

they should migrate in the upstream direction.  

Furthermore, this study provides an idea on how the bend influences the bed upstream of it under 

super-resonant conditions. It seems that immediately upstream of the bend a scour hole develops at 

the inner bend, whereas accretion occurs at the outer bend. This scour-accretion pattern propagates 

in the upstream direction. This observation seems to confirm the hypothesis of Zolezzi and Seminara 

(2001a), in which they stated that upstream influence can be explained by the fact that sufficiently-

long small-amplitude bars migrate in the upstream direction, only under super-resonant conditions.  

 

This research is relevant for modellers, first, for it shows that Delft3D is able to represent the 

location and length of the alternate bars if the ‘central’ scheme is used for the morphological 

updating procedure. The ‘upwind’ procedure can affect the wave length of alternate bars. In deep or 

narrow rivers the wave length of bars is overpredicted, because shorter bars are damped by the 

‘upwind’ scheme. In shallow or wide rivers the wave length of bars is under-predicted, because 

‘upwind’ bars have higher peaks and can become inactive due to drying (the higher transverse 

modes within the bar spectrum are damped). One should therefore use the ‘central’ scheme if 

possible. The disadvantage is that this scheme can lead to bed instability, so one might be obliged to 

use the ‘upwind’ scheme. If that is the case, one should increase the grid resolution, to decrease the 

diffusive effect of the ‘upwind’ scheme and take the consequences of the ‘upwind’ scheme in mind.  

Secondly, this study provides evidence that Delft3D is able to simulate small-scale (laboratory scale) 

models, even up to a water depth of about 1 cm. To stabilize these simulations, the horizontal eddy 

viscosity had to be increased. So far, few simulations were carried out with Delft3D on such a small 

scale.  

Thirdly, the study shows that it is hard to simulate the occurrence of alternate bars if the conditions 

in the river are near resonance. This was caused by the horizontal eddy viscosity, which was too 

high, for stability reasons. Probably this problem will not occur for large-scale simulations, because 

in those simulations the horizontal eddy viscosity does not need to be enlarged for stability reasons.    

7.3 Recommendations 

I would recommend to continue the research with some different, and possibly more accurate, 

settings, but they will probably only change the results of this study quantitatively, and not so much 
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qualitatively. Because the conclusions in section 7.1 are rather qualitative, I propose them to be 

useful and accurate for further studying the behaviour of alternate bars. 

 

Transverse slope effects 

Numerous studies have been carried out to analyse the influence of transverse bed slope effects on 

sediment transport, but still it is a field with a large uncertainty. As described in chapter 4, the 

strength of gravitational pull on transverse slopes has large consequences for the bar amplitude. 

Although this study did not focus on the bend, I observed that the morphology in the bend did not 

match the experiments of Zolezzi et al. (2005). This mismatch is probably caused by errors in the 

prediction of transverse slope effects. For these reasons it is recommendable to improve the 

prediction of the transverse bed slope effect. This could be established by applying the particle-

oriented approach of Nabi (2012). The present model in this research, models sediment transport on 

an empirical way, whereas Nabi simulated the movement of particles on a physics-based way.   

 

Non-linear effects 

In this study, non-linear effects have shown to be important for the rate and direction of bar 

migration, the selected wave length of free bars, etc. To get a better idea of non-linear effects, it 

seems recommendable to investigate the contribution of the non-linear terms in the equations for 

flow and sediment transport in Delft3D.  Another way of investigating the non-linear effects is by 

modelling the linear equations numerically, and subsequently comparing the output of the linear 

numerical model with the non-linear Delft3D model.  

 

Experimental focus on upstream influence 

The experiments by Zolezzi et al. (2005) are one of the few available super-resonant experiments. 

Unfortunately, I was not able to reproduce the experiments, as explained in section 4.2.2.1. It might 

therefore be recommendable to carry out some super-resonant experiments that have a Froude 

number well below one. It might also be interesting to monitor during these experiments how the 

bend has an influence on the upstream straight reach. This study has shown that the influence of 

the bend can be observed more clearly if no disturbance is added at the inflow boundary.  

 

Upscaling the model 

In section 7.2, I already stated that the problem with the overdimensioned horizontal eddy viscosity 

might be absent for large-scale problems. It might therefore be recommendable to upscale the 

present model, to see whether the upscaled model is able to reproduce the experiments of Zolezzi 

et al. (2005) more properly.  

 

Analysis of characteristics 

In Mosselman et al. (2006) a simplified analysis of characteristics was carried out to show that under 

super-resonant conditions the bend has an influence in the downstream direction. It might be 

recommendable to extend the more complete analysis of characteristics by De Vriend (1987) for 

super-resonant conditions. This extended analysis of characteristics might explain more thoroughly 

why the direction of influence is both downstream and upstream under super-resonant conditions. 
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Appendix A Background theory 

 

This Appendix gives a brief overview of some empirical and analytical model to predict (alternate) 

bar properties.  

A.1. Empirical models 

Ikeda (1982) made an extensive analysis on alternate-bar length and height data. The data analysis 

in his research was based on both experimental and field data. The data covered a wide range of the 

following variables: 

- 0.13 < F < 1.98   Froude number 

- 1510 < Re < 3.13*106  Reynolds number 

- 3.5 < B/D < 60    

- 3.76 < B/D50 < 422    

 

Wavelength 

Ikeda found that the wavelength is not dependent on F for F<0.8. In these conditions, the formula of 

Parker and Anderson (1975) appeared to be quite accurate: 

 

 

For Froude numbers higher than 0.8, the wavelength is observed to be dependent on B/D and ds. 

The formula for the wave length in these conditions was based on a dimensionless analysis: 

 

 

Bar height 

The bar height, HB, was found to be dependent on the width-to-depth ratio. HB is defined as the 

distance between the lowest and highest point of the bed in the cross-section at the lowest 

depression of a bar unit.  

 
Figure  A-1: Definition of HB (Ikeda, 1982) 

The empirical formula yields: 
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The possible prediction error for all formulas was estimated by Ikeda in the range of +80% up to - 

40%. So the formulas have the tendency to overpredict the wave length and bar height. 

A.2. Analytical models 

A.2.1. Linear models 

In the 1960s, it was proposed that alternate bars can be explained by a stability analysis of the 

mathematical equations for flow and sediment transport. In 1985, two important linear theories 

were published, which are the base for the present theories. One of these theories, (Blondeaux and 

Seminara, 1985), assumes that migrating bars in a straight channel, without geometrical 

perturbations, become non-migrating under resonant conditions. The other classical linear theory 

was presented by Struiksma et al. (1985). In this theory, it is assumed that alternate bars are 

generated by a geometrical perturbation, for instance a groyne, change in channel curvature, etc.  

 

In this section, the basics of both linear theories and subsequent researches will briefly be described.  

 

Struiksma et al. (1985) 

The basis of the theory developed by Struiksma et al. (1985) are the equations for flow (momentum 

and continuity) and sediment transport. Subsequently, the simplified equations were linearized  by 

imposing small perturbations, like: zb = zb,0 + zb’, u = u0 + u’, etc. The values for h0, u0, v0, etc. are the 

zero-order (mean) values for the water depth, streamwise velocity and cross-stream velocity 

respectively. These can be calculated with Chézy’s law. 

 

The solution of the system of linear equations can be derived by considering a harmonic 

perturbation: 

 

 

In which k is a complex wavenumber in the longitudinal direction and kw is the real wavenumber in 

the lateral direction. The real part of k represents the real wave length, whereas the imaginary part 

represents the damping length.  

 

Subsequently, Struiksma et al. presented a fourth order polynomial for non-migrating, non-

amplifying alternate bars: 
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In 

which: 

 

The parameter A denotes a coefficient to take the spiral flow into account, f is the shape factor of 

grains, b is the degree of non-linearity of the transport formula, the parameter λ w represents a 

characteristic length scale for flow adaptations, and λ s can be seen as a characteristic length scale 

for bed adaptations. This is clearly explained by Mosselman et al. (2006). A given perturbation is 

reduced with a factor e (which is about 2.72) after a length of λw. Equation ( A-5) shows that the 

longitudinal wave length depends mainly on these two characteristic length scales. The ratio of λ s to 

λ w is called the ‘interaction parameter’ (Struiksma, 1983). 

 

In the paper of Struiksma et al. (1985), the fourth order polynomial is compared to a more simplified 

second order polynomial. This second order model was derived by Struiksma (1983), and included 

(on top of the fourth order polynomial) the following assumptions: 

- Secondary flow is neglected 

- Streamline curvature is neglected 

 

The second order polynomial reads: 

 

Comparison of models 

The two models are compared for the specific conditions in the simulations for this research, see 

Figure  A-2. The real wavenumber is defined as: 

In which Lp is defined as the real wave length of the alternate bar. One can see that the prediction of 

the real wavenumber is quite correlated between the two polynomials for λs/λw between 0.5-2.2. 

For higher and lower value than the given interval there is no correlation between the two models. 

The second order model does not predict a real wavenumber for  λs/λw < 0.24 and λs/λw > 2.52. The 

figure shows that the wave length becomes shorter for larger values of the interaction parameter. 

Because the interaction parameter is proportional to β2 (Mosselman et al., 2006), the bars are 

predicted to be shorter for more shallow or wide rivers.   
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Figure  A-2: The real wave and imaginary wavenumber of alternate bars (Struiksma et al., 1985) 

 

The imaginary wavenumber is a measure for the damping length and is defined as: 

In which LD denotes the damping length. In Figure  A-2, one can see the prediction of the second and 

fourth order polynomial of Struiksma et al. In the figure one can see that the imaginary wavenumber 

is decreasing, or even getting negative for increasing interaction parameter values. Positive damping 

can be seen as a spatial decrease of bar amplitude. No damping means no spatial decrease nor 

increase of the bar amplitude. This condition is called ‘resonant’ by Blondeaux and Seminara (1985). 

Negative damping can be seen as a spatial increase of bar amplitude. The two graphs are correlated 

much better for the imaginary wavenumber than for the real wavenumber. Also the prediction of 

the point of resonance (kI = 0, LD =0) is matching. The point of resonance corresponds with λs/λw = 

1.25 according to the fourth order model and 1.33 according to the second order model.  

 

The second order polynomial was used by Van der Meer et al. (2011) to analyse the results from the 

numerical model. These figures show that the prediction of the point of resonance was not really 

influenced by the choice for the second order polynomial. The wave length prediction of alternate 

bars, however, was only reliable for interaction parameter values between 0.5 and 2.2. For lower 

and higher interaction parameters, the fourth order polynomial should have been used.  

 

Blondeaux and Seminara (1985) 

This linear theory is discussed in section 2.3.1 and is used as the base of the analytical model for this 

research.  
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A.2.2. (Weakly) non-linear models 

No estimation of the final amplitude can be made with linear theories, because these theories 

assume a linear growth and migration rate. The amplification rate is therefore exponential and the 

resulting bar height infinite. Non-linear effects cause the amplification rate to be decreased to zero, 

when the bar has developed itself. Colombini et al. (1987) made a weakly non-linear theory in which 

they tried to find solutions for alternate-bar patterns near the critical width-to-depth ratio, below 

which no alternate bars should be formed. The assumed conditions by Colombini et al are: 

 

 

In which βc denotes the critical with to depth ratio (usually not equal to βres), ε is the ‘perturbation’, 

which is assumed to be much smaller than 1, λ is the wavenumber of the alternate-bar pattern 

(π*B/L), λc is the wavenumber corresponding with βc and λ1 is the perturbation of the wavenumber. 

It was shown in their paper that also for ε = O(1), the weakly non-linear theory gave quite 

convergent results.  

 

Colombini et al. (1987) proposed a formula to calculate the alternate-bar height, defined as the 

difference between the maximum and minimum bed elevation within one bar unit. The calculated 

alternate-bar height is scaled with the initial water depth. The formula reads: 

 

 

The values of b1 and b2 are presented in the paper of Colombini et al. (1987), heq is the equilibrium 

bar amplitude. 

 

This definition of the bar height differs from the one Ikeda (1982) used, see section A.1.  According 

to Ikeda the following relation can be assumed: HMB = 1.5HB 
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Appendix B Analytical model 

The analytical model of this research is based on the model of Colombini et al. (1987), see section 

2.3.2. The model, as proposed in their papers, had to be adjusted to be able to compare its 

predictions with the observations in the numerical model. The expressions that had to be adjusted 

are found in this appendix (see section B.1).  

 

In the second part of this appendix (section B.2), the difference in prediction of the analytical model 

is discussed between a constant Chézy approach and a White-Colebrook approach.  

B.1. Derivation  

B.1.1. Roughness 

In the paper, the roughness prediction is based on the formula of Einstein (1950). In the numerical 

model, the White-Colebrook relation is used to predict the roughness: 

 

Important parameters in the analytical formula are: 

 

Dimensionless variables are denoted with a ‘~’. In these formulas cf denotes the friction coefficient 

and θ the Shields parameter. The friction coefficient is defined as: 

 

Now CD and CT  can be derived: 
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B.1.2. Sediment transport 

In the numerical model, the Meyer-Peter Müller formula is used. For the analytical model the 

dimensionless variant of this formula is needed: 

 

 

In which Φ denotes the transport parameter, s the sediment transport per m width, μ the ripple 

factor and θcr the critical Shields parameter (=0.047). The following parameters are important for the 

analytical model regarding sediment transport: 

 

B.2. Comparison between constant vs depth dependent Chézy value 

In the paper of Van der Meer et al. (2011), a constant Chézy roughness value was used. As stated in 

paragraph 4.2.1.4, it is thought to be more realistic if the roughness is dependent on the water 

depth. In this research, therefore, the White-Colebrook is used as the relation between roughness 

height and the Chézy roughness value. In section B.1, the adjustments on the analytical model have 

been discussed for the implementation of the White-Colebrook relation. The model is also adjusted 

for the case that constant Chézy values are used, in that case CD and CT are 0. In Figure  B-1, one can 

observe the predicted free-bar diagrams for both approaches, according to analytical theory.  
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Figure  B-1: Influence of roughness definition on analytical model 

 

The diagram shows that: 

- βres is larger if a white-Colebrook relation is used, instead of a constant Chézy value. 

- The entire diagram is shifted towards shorter bars in the case of a constant Chézy value. 

This means that non-migrating alternate bars are expected to be shorter in case of a 

constant Chézy value.  
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Appendix C Numerical model set-up 

This appendix is an addition to chapter 4. The issues regarding wall roughness and viscosity is 

described in section C.1 and C.2. Section C.3 lists the differences with the numerical model of van 

der Meer et al. (2011). Section C.4 gives an overview of the characteristics of all the simulations.  

C.1. Wall roughness 

 

 The walls of the laboratory flume, used by Zolezzi et al. (2005), are made of Plexiglas. In Delft3D, 

one has the option to adjust the slip condition along closed boundaries and dry grid cells. The three 

available options are: 

- Free slip at the wall: the tangential shear stress is zero 

- Partial slip at the wall: the roughness length of the wall has to be specified 

- No slip: The tangential (and of course also the normal) velocity is set to zero 

The roughness length of Plexiglas is assumed to be in the order of 0.002 mm. The Reynolds stresses 

near the wall are integrated explicitly, which leads to the following time step restriction: 

 

 

If υH (horizontal eddy viscosity) is about 3x10-5 m2/s the time step should be smaller than 13 s. So 

this is not the restrictive time step limitation. However, as explained in paragraph C.2, in the most 

simulations the horizontal eddy viscosity is 0.01 m2/s. In that case, the time step should be very 

small (Δt < 0.04 s). The applying of wall roughness also leads to more instability in the model.   

 

One of the objectives of this research was to compare the numerical results with laboratory flume 

experiments. Because the model was based on a laboratory flume, one might expect that wall 

roughness has a significant effect on the pattern development. The simulations, however, have a 

large width-to-depth ratio, so the wall effect is thought only to be present locally. Taking into mind 

the very small time step and the destabilizing effect of a ‘partial slip’ condition, no wall roughness is 

taken into account in the simulation for this research.   

C.2. Viscosity 

The Reynolds stresses in the momentum equations for flow are modelled, using the eddy viscosity 

concept. The horizontal eddy viscosity is a superposition of three parts (Deltares, 2011): 

- Viscosity due to sub grid scale turbulence: νSGS 

- Viscosity due to 3D turbulence: ν3D 

- Viscosity due to dispersion for depth averaged simulations: νdisp 
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In 2D depth averaged simulations, one can choose to calculate the sub grid scale turbulence with a 

methodology, called Horizontal Large Eddy Simulation (HLES). The contribution of the 3D turbulence 

has to be added by the user. The contribution due to dispersion has to be added by the user or can 

be calculated with HLES if the Elders term estimation is enabled.  

 

Hydrodynamic simulation 

In this research, the HLES approach is applied together with the Elders term estimation for the 

dispersion to estimate the horizontal eddy viscosity and horizontal eddy diffusivity. The horizontal 

eddy viscosity is normally much larger than the vertical eddy viscosity. Because the user defined 

horizontal eddy viscosity only accounts for the 3D turbulence effect, the specified value should be 

less than the horizontal eddy viscosity, calculated by the HLES model. 

 In Table  C-1, one can see the values for νSGS and νdisp, calculated with HLES, for a simulation without 

morphology. The user defined background horizontal eddy viscosity is therefore set at 1x10-6 m2/s. 

  

Q 

[l/s] 

ks 

[m] 

∆x 

[m] 

∆y 

[m] 

νSGS 

[m
2
/s] 

 

x10
-6 

νdisp 

 [m
2
/s] 

 

x10
-6

 

1.75 0.008 0.20 0.06 1.2 30.8 

Table  C-1: Viscosity calculated with HLES 

 

 
Figure  C-1: Cumulative distribution of viscosity during run with HLES, R25 

 

Hydrodynamic simulation (including morphology)  

The simulation with HLES is done on a coarse grid, with morphology. During the stage where 

alternate bars had developed, the distribution of viscosity was as shown in Figure  C-1.  

 

The problem is that the simulations turned out to be unstable for this low viscosity-value. Only if the 

water depth on top of the bars was large enough, the simulation was stable. So for the investigation 

of small-amplitude bars, the viscosity could be 3*10-5 m2/s (median value of Figure  C-1). For other 

simulations the viscosity is set at 0.01, like in the research of Van der Meer et al. (2011).  
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C.3. Differences with van der Meer et al (2011) 

This research is a continuation of the research of Van der Meer et al. (2011). The model in this 

research is therefore quite similar to the model, used by van der Meer et al. However, some 

improvements and corrections have been made. They are listed in this paragraph.  

 

Roughness 

Van der Meer used a constant Chézy roughness of 22.5. For large-scale rivers, a constant Chézy 

value is reliable, but for simulation on laboratory scale the roughness should be related to the actual 

water depth. Therefore a constant Nikuradse roughness height is imposed instead of a constant 

Chézy value.  

 

Coefficient in transport formula  

The simulations of van der Meer were run with a wrong calibration coefficient in the Meyer Peter 

Muller formula (MPM). The formula in a general form yields: 

 

 

Were s denotes the sediment transport (m3s-1m-1), Δ the relative density, μ the ripple factor or 

efficiency factor, θ the Shields parameter, θcr the critical Shields parameter (0.047), α a calibration 

coefficient. The parameter a is 0 for MPM and b is 3/2. The calibration coefficient α should be in the 

order of 8. In the simulations of van der Meer this coefficient was 1. The effect of a higher 

calibration coefficient is that the bed development will be accelerated with a factor 8. This 

adjustment does not influence the final bed topography. 

 

Grid 

The upstream straight reach of the original model of van der Meer is extended by 24m. The 

upstream reach in the original model had a length of 12m. This has been done to bring the upstream 

boundary further away from the bend and to be able to observe the development of bars upstream 

of the bend.  

 

Viscosity 

Van der Meer et al. used a constant horizontal eddy viscosity of 0.01 m2/s. To investigate the 

influence of the horizontal eddy viscosity it was varied in this research during the investigation of 

small-amplitude bar behaviour, see section 5.3.1. 

 

Bed-load submodel scheme 

Van der Meer et al. used the ‘upwind’ scheme to set the bed-load transport at the grid cell faces, see 

Appendix G. In this research both the ‘upwind’ and ‘central’ scheme is used to investigate the 

influence of this parameter, see chapter 5.  
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Threshold depth 

Van der Meer et al. used a threshold depth of 0.001 m. Below half this threshold depth, the grid cell 

is set dry. Because the water depth in the model is small, in the order of 0.01 m, the threshold depth 

in the simulations of this research is set at 1x10-5 m. The alternate bars are expected to be dried 

later, than during the simulations of van der Meer et al. 
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C.4. Simulation characteristics 

 

In Table  C-3, one can find the characteristics of the simulations, that were carried out to obtain equilibrium bed topographies (D1_D3D, U3_D3D 

and R-). In Table  C-4, one can find the characteristics of the small-amplitude simulations. 

 

Table  C-2:Constant settings for all the simulations in this research 

 Variable Setting  

Processes Secondary flow on  

Physical parameters Gravity 9.81 m/s2  

 Water density, ρW 1000 kg/m3  

 Spiral motion parameter (beta_c) 0.5  

 Roughness formula White-Colebrook  

 Calibration coefficient for spiral flow (Espir in Delft3D, Es) 0.5  

 Slip condition Free  

Numerical parameters Depth specified at: corners  

 Threshold depth  1x10-5 m  

 Advection scheme for momentum Cyclic  

Morphology D50  0.001 m  

 Transport formula Meyer-Peter Müller  

 μ 0.7  

 Formula for bed-slope effect Koch and Flokstra  

 Streamwise bed gradient factor for bed-load transport (αbs) 1  

 Specific density (ρs)  2650 kg/m3  

 Dry bed density  1650 kg/m3  

 ρW [kg/m3] 1000  

 

  



 

Numerical nonlinear analysis of alternate-bar formation under super-resonant conditions 

C-6 

  Wilbert Verbruggen 

 

Table  C-3: Characteristics of simulations to obtain equilibrium bed topographies 

RunID Domain β 

 

ks 

[m] 

νH * 

[m
2
/s] 

Ash 

[-] 

α 

 [-] 

Δt 

[s] 

Boundary 

conditions 

fMorfac Morphologic

al updating 

scheme 

DPS 

** 

DPU 

*** 

Initial 

bed 

**** 

Groyne 

D1_D3D 2n 12 0.0162 0.01 4 0.865 0.12 QP,cell-WL 1 ‘central’ Mean Mean Pert. No 

R1 2n 24.3 0.008 0.01 1.9 1 0.6 QP-WL 1 ‘upwind’ Max Min Flat No 

R2 3n 24.3 0.008 0.01 1.9 1 0.6 QP-WL 1 ‘upwind’ Max Min Flat No 

R3a 2n 24.3 0.008 0.01 1.9 1 0.15 WL-WL 1 ‘upwind’ Max  Min Flat No 

R3b 2n 24.3 0.008 0.01 1.9 1 0.15 Q-WL 5 ‘upwind’ Max Min Flat No 

R4 2n 24.3 0.008 0.01 1.9 1 0.6 Q-WL 1 ‘upwind’ Max Min Pert. No 

R5-R9 3n 9.1-21.2 0.009 -0.022 0.01 1.9 1 0.12 Q-WL 1 ‘central’ Max Min Pert. No 

R10-R14 3n 9.1-21.2 0.009 -0.022 0.01 1.9 1 0.12 Q-WL 1 ‘central’ Max Min Pert. Yes 

R15-R19 3n 9.1-21.2 0.009 -0.022 0.01 1.9 1 0.12 Q-WL 1 ‘upwind’ Max Min Pert. No 

R20-R24 3n 9.1-21.2 0.009 -0.022 0.01 1.9 1 0.12 Q-WL 1 ‘upwind’ Max Min Pert. Yes 

R25 2n 24.3 0.008 HLES 1.9 1 0.6 Q-WL 1 ‘upwind’ Max Min Pert. No 

U3_D3D 2n 15 0.0123 0.01 4 1.025 0.12 QP,cell-WL 1 ‘central’ Mean Mean Pert. No 

* HLES means that the viscosity is estimated with a Horizontal Large Eddy Simulation 

** DPS is the procedure that sets the depth at the grid cell centre 

*** DPU is the procedure that sets the depth at the grid cell face  

**** ‘Flat’ means a uniformly sloping river, with a transversally flat bottom, ‘Pert.’ means a randomly perturbed bed, with a maximum 

           perturbation amplitude of +/- 0.1 mm 
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Table  C-4: Characteristics of small-amplitude simulations  

RunID Domain β 

 [-] 

 

ks 

[m] 

νH  

[m
2
/s] 

Ash 

[-] 

α 

 [-] 

Δt 

[s] 

Morphological 

updating scheme 

DPS 

** 

DPU 

*** 

LL 

[m] 

h0 

[m] 

Mode 

[-] 

S1 3n 24.3 0.008 0.01 1.9 1 0.12 ‘upwind’ Max Min 7.5 0.00001   1 

S2 3n 24.3 0.008 0.01 1.9 1 0.12 ‘upwind’ Max Min 7.5 0.0001  1 

S3 3n 24.3 0.008 0.01 1.9 1 0.12 ‘upwind’ Max Min 7.5 0.0002  1 

S4 3n 24.3 0.008 0.01 1.9 1 0.12 ‘upwind’ Max Min 7.5 0.0005  1 

S5 3n 24.3 0.008 0.01 1.9 1 0.12 ‘upwind’ Max Min 7.5 0.001  1 

S6 3n 24.3 0.008 0.01 1.9 1 0.12 ‘upwind’ Max Min 7.5 0.002  1 

S7 3n 24.3 0.008 0.01 1.9 1 0.12 ‘central’ Max Min 30 0.0001 1 

S8 3n 24.3 0.008 0.01 1.9 1 0.12 ‘central’ Max Min 20 0.0001 1 

S9 3n 24.3 0.008 0.01 1.9 1 0.12 ‘central’ Max Min 12 0.0001 1 

S10 3n 24.3 0.008 0.01 1.9 1 0.12 ‘central’ Max Min 7.5 0.0001 1 

S11 3n 24.3 0.008 0.01 1.9 1 0.12 ‘central’ Max Min 4 0.0001 1 

S12 3n 24.3 0.008 0.01 1.9 1 0.12 ‘central’ Max Min 2.8 0.0001 1 

S13 3n 24.3 0.008 0.01 1.9 1 0.12 ‘central’ Max Min 2.3 0.0001 1 

S14 3n 24.3 0.008 0.01 1.9 1 0.12 ‘central’ Max Min 1.8 0.0001 1 

S15 3n 24.3 0.008 0.01 1.9 1 0.12 ‘central’ Max Min 1.5 0.0001 1 

S16 3n 24.3 0.008 0.01 1.9 1 0.12 ‘central’ Max Min 1.3 0.0001 1 

S17 3n 24.3 0.008 0.01 1.9 1 0.12 ‘central’ Max Min 1 0.0001 1 

S18 3n 24.3 0.008 0.01 1.9 1 0.12 ‘central’ Max Min 1 0.0001 2 

S19 3n 24.3 0.008 0.01 1.9 1 0.12 ‘central’ Max Min 1.1 0.0001 2 

S20 3n 24.3 0.008 0.01 1.9 1 0.12 ‘central’ Max Min 1.2 0.0001 2 

S21 3n 24.3 0.008 0.01 1.9 1 0.12 ‘central’ Max Min 1.3 0.0001 2 

S22 3n 24.3 0.008 0.01 1.9 1 0.12 ‘central’ Max Min 1.4 0.0001 2 

S23 3n 24.3 0.008 0.01 1.9 1 0.12 ‘central’ Max Min 1.5 0.0001 2 

S24 3n 24.3 0.008 0.01 1.9 1 0.12 ‘central’ Max Min 1.6 0.0001 2 

S25 3n 24.3 0.008 0.01 1.9 1 0.12 ‘central’ Max Min 1.9 0.0001 2 

S26 3n 24.3 0.008 0.01 1.9 1 0.12 ‘central’ Max Min 2.3 0.0001 2 

S27 3n 24.3 0.008 0.01 1.9 1 0.12 ‘central’ Max Min 2.9 0.0001 2 

S28 3n 24.3 0.008 0.01 1.9 1 0.12 ‘central’ Max Min 3.6 0.0001 2 

S29 3n 24.3 0.008 0.01 1.9 1 0.12 ‘upwind’ Max Min 30 0.0001 1 

S30 3n 24.3 0.008 0.01 1.9 1 0.12 ‘upwind’ Max Min 20 0.0001 1 

S31 3n 24.3 0.008 0.01 1.9 1 0.12 ‘upwind’ Max Min 12 0.0001 1 

S32 3n 24.3 0.008 0.01 1.9 1 0.12 ‘upwind’ Max Min 7.5 0.0001 1 
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S33 3n 24.3 0.008 0.01 1.9 1 0.12 ‘upwind’ Max Min 4 0.0001 1 

S34 3n 24.3 0.008 0.01 1.9 1 0.12 ‘upwind’ Max Min 2.8 0.0001 1 

S35 3n 24.3 0.008 0.01 1.9 1 0.12 ‘upwind’ Max Min 2.3 0.0001 1 

S36 3n 24.3 0.008 0.01 1.9 1 0.12 ‘upwind’ Max Min 1.8 0.0001 1 

S37 3n 24.3 0.008 0.01 1.9 1 0.12 ‘upwind’ Max Min 1.5 0.0001 1 

S38 3n 24.3 0.008 0.01 1.9 1 0.12 ‘upwind’ Max Min 1.3 0.0001 1 

S39 3n 24.3 0.008 0.01 1.9 1 0.12 ‘upwind’ Max Min 1 0.0001 1 

S40 3n 24.3 0.008 0.01 1.9 1 0.12 ‘upwind’ Max Min 1 0.0001 2 

S41 3n 24.3 0.008 0.01 1.9 1 0.12 ‘upwind’ Max Min 1.1 0.0001 2 

S42 3n 24.3 0.008 0.01 1.9 1 0.12 ‘upwind’ Max Min 1.2 0.0001 2 

S43 3n 24.3 0.008 0.01 1.9 1 0.12 ‘upwind’ Max Min 1.3 0.0001 2 

S44 3n 24.3 0.008 0.01 1.9 1 0.12 ‘upwind’ Max Min 1.4 0.0001 2 

S45 3n 24.3 0.008 0.01 1.9 1 0.12 ‘upwind’ Max Min 1.5 0.0001 2 

S46 3n 24.3 0.008 0.01 1.9 1 0.12 ‘upwind’ Max Min 1.6 0.0001 2 

S47 3n 24.3 0.008 0.01 1.9 1 0.12 ‘upwind’ Max Min 1.9 0.0001 2 

S48 3n 24.3 0.008 0.01 1.9 1 0.12 ‘upwind’ Max Min 2.3 0.0001 2 

S49 3n 24.3 0.008 0.01 1.9 1 0.12 ‘upwind’ Max Min 2.9 0.0001 2 

S50 3n 24.3 0.008 0.01 1.9 1 0.12 ‘upwind’ Max Min 3.6 0.0001 2 

S51 3n 24.3 0.008 0.01 1.9 1 0.12 ‘central’ Max Min 0.7 0.0001 3 

S52 3n 24.3 0.008 0.01 1.9 1 0.12 ‘central’ Max Min 0.8 0.0001 3 

S53 3n 24.3 0.008 0.01 1.9 1 0.12 ‘central’ Max Min 0.9 0.0001 3 

S54 3n 24.3 0.008 0.01 1.9 1 0.12 ‘central’ Max Min 1 0.0001 3 

S55 3n 24.3 0.008 0.01 1.9 1 0.12 ‘central’ Max Min 1.1 0.0001 3 

S56 3n 24.3 0.008 0.01 1.9 1 0.12 ‘central’ Max Min 1.2 0.0001 3 

S57 3n 24.3 0.008 0.01 1.9 1 0.12 ‘central’ Max Min 1.3 0.0001 3 

S58 3n 24.3 0.008 0.01 1.9 1 0.12 ‘central’ Max Min 1.9 0.0001 3 

S59 3n 24.3 0.008 0.01 1.9 1 0.12 ‘central’ Max Min 3.8 0.0001 3 

S60 3n 24.3 0.008 0.01 1.9 1 0.12 ‘central’ Max Min 7.5 0.0001 3 

S61 3n 24.3 0.008 0.01 1.9 1 0.12 ‘upwind’ Max Min 0.7 0.0001 3 

S62 3n 24.3 0.008 0.01 1.9 1 0.12 ‘upwind’ Max Min 0.8 0.0001 3 

S63 3n 24.3 0.008 0.01 1.9 1 0.12 ‘upwind’ Max Min 0.9 0.0001 3 

S64 3n 24.3 0.008 0.01 1.9 1 0.12 ‘upwind’ Max Min 1 0.0001 3 

S65 3n 24.3 0.008 0.01 1.9 1 0.12 ‘upwind’ Max Min 1.1 0.0001 3 

S66 3n 24.3 0.008 0.01 1.9 1 0.12 ‘upwind’ Max Min 1.2 0.0001 3 

S67 3n 24.3 0.008 0.01 1.9 1 0.12 ‘upwind’ Max Min 1.3 0.0001 3 

S68 3n 24.3 0.008 0.01 1.9 1 0.12 ‘upwind’ Max Min 1.9 0.0001 3 

S69 3n 24.3 0.008 0.01 1.9 1 0.12 ‘upwind’ Max Min 3.8 0.0001 3 
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S70 3n 24.3 0.008 0.01 1.9 1 0.12 ‘upwind’ Max Min 7.5 0.0001 3 

S71 3n 24.3 0.008 0.001 1.9 1 0.12 ‘upwind’ Max Min 7.5 0.0001 1 

S72 3n 24.3 0.008 0.001 1.9 1 0.12 ‘upwind’ Max Min 4 0.0001 1 

S73 3n 24.3 0.008 0.001 1.9 1 0.12 ‘upwind’ Max Min 2.8 0.0001 1 

S74 3n 24.3 0.008 0.001 1.9 1 0.12 ‘upwind’ Max Min 2.3 0.0001 1 

S75 3n 24.3 0.008 0.001 1.9 1 0.12 ‘upwind’ Max Min 2 0.0001 1 

S76 3n 24.3 0.008 0.001 1.9 1 0.12 ‘upwind’ Max Min 1.8 0.0001 1 

S77 3n 24.3 0.008 0.001 1.9 1 0.12 ‘upwind’ Max Min 1.5 0.0001 1 

S78 3n 24.3 0.008 0.001 1.9 1 0.12 ‘upwind’ Max Min 1.3 0.0001 1 

S79 3n 24.3 0.008 0.001 1.9 1 0.12 ‘upwind’ Max Min 1 0.0001 1 

S80 3n 24.3 0.008 3x10
-5

 1.9 1 0.12 ‘upwind’ Max Min 30 0.0001 1 

S81 3n 24.3 0.008 3x10
-5

 1.9 1 0.12 ‘upwind’ Max Min 20 0.0001 1 

S82 3n 24.3 0.008 3x10
-5

 1.9 1 0.12 ‘upwind’ Max Min 12 0.0001 1 

S83 3n 24.3 0.008 3x10
-5

 1.9 1 0.12 ‘upwind’ Max Min 7.5 0.0001 1 

S84 3n 24.3 0.008 3x10
-5

 1.9 1 0.12 ‘upwind’ Max Min 4 0.0001 1 

S85 3n 24.3 0.008 3x10
-5

 1.9 1 0.12 ‘upwind’ Max Min 2.8 0.0001 1 

S86 3n 24.3 0.008 3x10
-5

 1.9 1 0.12 ‘upwind’ Max Min 2.3 0.0001 1 

S87 3n 24.3 0.008 3x10
-5

 1.9 1 0.12 ‘upwind’ Max Min 1.8 0.0001 1 

S88 3n 24.3 0.008 3x10
-5

 1.9 1 0.12 ‘upwind’ Max Min 1.5 0.0001 1 

S89 3n 24.3 0.008 3x10
-5

 1.9 1 0.12 ‘upwind’ Max Min 1.3 0.0001 1 

S90 3n 24.3 0.008 3x10
-5

 1.9 1 0.12 ‘upwind’ Max Min 1 0.0001 1 

S91 3l 24.3 0.008 0.01 1.9 1 0.12 ‘central’ Max Min 1 0.0001 2 

S92 3l 24.3 0.008 0.01 1.9 1 0.12 ‘central’ Max Min 1.1 0.0001 2 

S93 3l 24.3 0.008 0.01 1.9 1 0.12 ‘central’ Max Min 1.2 0.0001 2 

S94 3l 24.3 0.008 0.01 1.9 1 0.12 ‘central’ Max Min 1.3 0.0001 2 

S95 3l 24.3 0.008 0.01 1.9 1 0.12 ‘central’ Max Min 1.4 0.0001 2 

S96 3l 24.3 0.008 0.01 1.9 1 0.12 ‘central’ Max Min 1.5 0.0001 2 

S97 3l 24.3 0.008 0.01 1.9 1 0.12 ‘central’ Max Min 1.6 0.0001 2 

S98 3l 24.3 0.008 0.01 1.9 1 0.12 ‘central’ Max Min 1.8 0.0001 2 

S99 3l 24.3 0.008 0.01 1.9 1 0.12 ‘central’ Max Min 0.7 0.0001 3 

S100 3l 24.3 0.008 0.01 1.9 1 0.12 ‘central’ Max Min 0.8 0.0001 3 

S101 3l 24.3 0.008 0.01 1.9 1 0.12 ‘central’ Max Min 0.9 0.0001 3 

S102 3l 24.3 0.008 0.01 1.9 1 0.12 ‘central’ Max Min 1 0.0001 3 

S103 3l 24.3 0.008 0.01 1.9 1 0.12 ‘central’ Max Min 1.1 0.0001 3 

S104 3l 24.3 0.008 0.01 1.9 1 0.12 ‘central’ Max Min 1.2 0.0001 3 

S105 3l 24.3 0.008 0.01 1.9 1 0.12 ‘central’ Max Min 1.3 0.0001 3 

S106-S126 3n 10-19.5 0.011 - 0.01 1.9 1 0.12 ‘central’ Max Min 8.5-10 0.0001 1 
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0.02  

S127-S142 3n 14-17 0.012 -

0.014 

0.01 1.9 1 0.12 ‘upwind’ Max Min 8.5-10 0.0001 1 

S143-S157 3n 12-17 0.012 -

0.017 

0.005 1.9 1 0.12 ‘central’ Max Min 8.5-10 0.0001 1 

S143-S157 3n 10-17 0.012 - 

0.02 

0.001 1.9 1 0.12 ‘central’ Max Min 8.5-10 0.0001 1 

S143-S157 3n 10-14 0.012 - 

0.014 

6x10
-5

 1.9 1 0.12 ‘central’ Max Min 8.5-10 0.0001 1 

S173 3n 24.3 0.008 0.01 1.9 1 0.12 ‘central’ Max Min 7.5 0.0001 1 

S174 3n 24.3 0.008 0.01 1.9 1 0.12 ‘central’ Max Min 7.5 0.008 1 

* HLES means that the viscosity is estimated with a Horizontal Large Eddy Simulation 

** DPS is the procedure that sets the depth at the grid cell centre 

*** DPU is the procedure that sets the depth at the grid cell face  
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Appendix D Visual observations of simulations 

The following two simulations are described in this section: 

- R1 

- R3a 

The characteristics of these simulations can be found in  

 

RunID Domain β 

 

Boundary 

condition

s 

ks 

[m] 

νH 

[m
2
/s] 

Ash 

[-] 

Morphological 

updating scheme 

Initial 

bed 

R1 2n 24.3 QP-WL 0.008 0.01 1.9 ‘upwind’ Flat 

R3a 2n 24.3 WL-WL 0.008 0.01 1.9 ‘upwind’ Flat 

Table  D-1: Characteristics of simulation R1 and R3a, see Table  C-3 in Appendix C for more information 

D.1. Visual observation R1 

The development of bars in R1 can be separated in three stages:  

1. 0 h <t< 4 h: Bars (mainly first-mode bars) start to develop at the curvature discontinuities 

(entrance and exit of the bend), see Figure  D-1. The scour hole upstream of the bend 

propagates slowly in the upstream direction, with a visually estimated propagation speed of 

0.6 m/h. At the upstream boundary some higher-mode bars are developing and 

propagating in the downstream direction, see Figure  D-2. The propagation speed of the bar 

front is about 9 m/h, whereas the migration speed of an individual bar is about 1.5 m/h. The 

bars in the front of the pattern are the most recently generated and therefore less 

developed, which results in a lower height. 
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Figure  D-1: Development of alternate bar at bend entrance in stage 1 

 
Figure  D-2: Development of bar at upstream boundary 

  

2. 4 h <t< 12.5 h: The higher-mode bars, caused by the upstream boundary, are reaching the 

entrance of the bend. The harmonic mode of the bars, upstream of the bend, start to 

decrease. At the end of the stage, over the entire straight reach alternate bars are present.  
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Figure  D-3: Development of first-mode bars at entrance of the bend at stage 2 

 

3. 12.5 h <t< 28.5 h: Both upstream and downstream alternate bars are present. At t=12.5 the 

most upstream alternate bar becomes dry. The top of the bar, therefore, has no interaction 

anymore with the flow and becomes non-migrating. Afterwards also the alternate bars 

downstream of this dried bar are dried, see Figure  D-4. 

 

 
Figure  D-4: Drying of alternate-bar peaks during stage 3 
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4. t>28.5 h: After about 28.5 hours of simulation the bed is in equilibrium. Still some small 

changes can be observed, but the bed is relatively steady.  

 
Figure  D-5: Equilibrium alternate-bar pattern 

D.2. Visual observations R3a 

Also the development of bars in R3a can be separated in two stages (between brackets the period of 

the stage is stated): 

1. 0 h <t< 12 h: In Figure  D-6, one can see the development of the bed at the end of stage 1 

and the beginning of stage 2. Like in Figure  D-1, the area of influence propagates during 

stage 1 in the upstream direction (see the plots of t=550 min and t=650 min).  

 
Figure  D-6: Cum. sedimentation/erosion R3a stage 1 

 

2. 12 h  <t< 24 h: In Figure  D-7, one can see that after 500 minutes of simulation (blue line) 

hardly any harmonics are present. At t= 600 min one can see the start of higher-mode 

bar development around X=13 m. The figure also shows that the higher-mode bars are 

not created by the upstream boundary (between X=2 m and X=6 m, no wiggle can be 
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seen). At t=700 min the higher-mode bars are also created more downstream of X=13 

m.  

      
Figure  D-7: Cum. sedimentation/erosion R3a at river axis (t = 500, 600 and 700 min) 

 

Figure  D-7 shows the development of alternate bars over time. At t = 700 min second-mode 

bars are present at the edge of the area of bend influence. After 1440 minutes of simulation, 

over the entire upstream reach, alternate bars have build up. The bars are still moving and 

increasing their amplitude and wave length. In Figure  D-8, one can see that some bars are 

almost dried. At the moment that the water depth upon the bar is very low, the migration 

rate decreases. After a while the top of the bar is lowered again. This mechanism results in a 

strange and quite random alternate-bar pattern, in paragraph D.3 this mechanism is in detail 

investigated.   

 

 
Figure  D-8: Cum. Sedimentation/erosion at right and left bank at different time steps 

D.3. Explanation of strange peaks R3a 
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The development of an alternate-bar peak is shown in detail in Figure  D-9. It is shown that after 

1111 min the alternate bar looks natural, see the upper subplot for the sedimentation/erosion plot. 

The maximum Froude number is 0.9 at that moment. About 20 minutes later (purple line), the 

Froude number has increased to 1. The bed-load transport decreased, so sedimentation took place. 

The top of the alternate bar is lifted in a short time. At t=1171 min the flow is unstable and the 

Froude number has increased to 1.2. The water depth under super-critical flow is below the critical 

depth, which can be seen in the fourth subplot of Figure  D-9. Because of continuity, the velocity has 

increased and therefore also the bed-load transport. The increase of bed-load transport led to 

erosion at the alternate-bar top, which can be seen in the upper subplot. The red curve is only 1 

minute after the blue one. In a short time, the sharp top is eroded again and the alternate bar has 

again a natural shape.  
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Figure  D-9: Peak development in detail 
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Appendix E  Fourier Transforms 

In this appendix, the equations behind the Fourier transforms are briefly discussed. Also attention is 

paid to the accuracy of the Fourier analysis. Section E.2 explains the occurrence of wiggles in some 

plots of the “power” spectrum versus time.  

E.1. Theory 

The basic idea behind Fourier transforms is that any function can be represented by a summation of 

sine and cosine functions, with different resolution. This way of transforming is therefore very 

interesting for this research, because with this tool the harmonics, present in the bed level, can be 

found. Because the data to be analysed consists of a finite number of data points, the discrete 

variant of the Fourier transforms will be used in this research. First the transform in one dimension 

will be explained. Suppose that the data consists of a vector of N samples. The values at the data 

points are f(x). The transform is given by the following formula: 

 

Or 

 

In which uf denotes the resolution variable. F(uf) usually contains complex numbers. The resolution, 

corresponding with a certain resolution variable, can be calculated as follows: 

 

Where fs is the sample resolution. If for example every meter 5 data points are measured, then the 

sample resolution is 0.2. Capital U denotes the length of the vector uf. In order to analyse F(uf), the 

following characteristics are relevant: 

- Power spectrum: The “power” of the spectrum can be obtained by multiplying F(uf) with its 

conjugation. The “power” of a spectrum is a measure of the “energy” per harmonic 

component.   

- Amplitude spectrum: The amplitude can be obtained by taking the absolute value of F(uf). 

This spectrum shows the amplitude of the harmonics which are present in the original 

signal. 

- Phase spectrum: Because F(uf) consists of real and imaginary numbers, the phase of a 

certain component can be calculated as follows: 
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F(uf), the “power” spectrum and the amplitude spectrum are always symmetric around the Nyquist 

resolution. This is the largest resolution, which can be found with the Fourier Transform. The 

Nyquist resolution is related to the sample frequency: fs/2. The lowest resolution which can be 

represented by Fourier analysis is equal to 1/(sample length). For this research special attention is 

paid to the first mode, which has a transverse wave length of two times the channel width. To be 

able to analyse this mode the bed level data is mirrored around the bank. To test how many times 

the transverse data has to be multiplied, the harmonic sin(2π/50*x) is analysed on a grid of 25*10 (x 

and y, respectively). If the data is not mirrored, the error with respect to the frequency output of the 

Fourier transform is in the order of 30%, see Figure  E-1. If the transverse data is mirrored on such a 

way that the transverse length of the data is 8 times the original, the error is reduced to 0%. To get 

reliable results the bed level data for this research is mirrored on such a way that the analysed data 

has a length in the transverse direction which is 8 times the length of the original output of Delft3D.  

 

 
Figure  E-1: Resolution error of first mode vs multiplication factor for transverse data 

 

In two dimensions, which is needed for this research, the transform yields (given that the f(x,y) 

consists of M by N samples): 

 

In order to reduce computation time, the Fast Fourier Transform (FFT) algorithm is used. This 

algorithm uses a special kind of decomposition to reduce the calculations. The output of the FFT is 

the same as for other Fourier Transform logarithms.  

E.2. Explanation of wiggles 

 

In many plots of the “power” of a certain harmonic versus time, one can see that the curve includes 

some wiggles, see for example Figure 6-9 and Figure 6-10. The wiggles can be explained by the fact 

that the alternate bars are moving, whereas the sections are fixed. This will be shown for one 

example. Taken is the wiggle of the total “power” at section 1 during simulation R1 for 1400 min  <t< 

1550 min, see Figure 6-10.  

 

2 21 1

0 0

( , ) ( , )
f fi v y i u xM N

N N

y x

F u v f x y e e

π π− −− −

= =

= ⋅ ⋅∑∑  ( E-5) 



  

Appendix E – Fourier transforms 

E-3 

 

In Figure  E-2 the wiggles is shown in detail. At t = 1440 min the “power” has a local maximum. After 

that time, the “power” decreases, till it reaches a local minimum at t=1510 min.  

 

 
Figure  E-2: Total “power” of bed in section 1, R1 1400 min < t < 1550 min 

 

In Figure  E-3, one can see the “power” of the bed, summed up in the transverse direction, for 

section 1 (boundaries are given by the black dotted lines). One can see that the “power” is not 

uniform in the longitudinal direction. Because the bars are migrating in this period, the “power” in 

section 1 is fluctuating. The total “power” of section 1 increases if the inflowing “power”, at X = 8 m, 

is larger than the out flowing “power”, at X=12 m. In Figure  E-3, one can see that for t=1440 min, Pin 

and Pout are equal, which means, no increase or decrease of “power”, as long as the internal 

production of “power” is zero. At t = 1475, 35 min later, Pout is larger than Pin, so the total “power” 

should decrease, if production is absent, etc.  

 

 
Figure  E-3: Power of the bed (summed up in the transverse direction), R1 

 

 The import of “power” through the boundaries (Pin – Pout) is shown in Figure  E-4. It can be clearly 

observed that the local maximum and minimum of Figure  E-2 is corresponding with the time at 
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which the import of “power” switches sign. This reveals that the wiggle is mainly caused by 

differences in import of “power”, and not by internal production of “power”. So the wiggle is not the 

result of an amplification of the alternate-bar amplitude, but is a result of the fact that the bars are 

migrating. If the section length would be equal to the wave length of the alternate bars, or a 

multiple of it, no wiggles would occur.  

 

 
Figure  E-4: Import of “power” through boundaries, R1, section 1 
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Appendix F Determining the point of resonance 

The procedure to find the resonance point is illustrated in Figure  F-1. Each data point (triangle, or 

square) represents a simulation with a specific discharge and initial alternate-bar wave length. The 

triangles show the observed direction of migration, the squares represent the simulations in which 

no migration was observed. The colour red means decay, whereas green means growth of the 

alternate bar. The lines in the figure are estimated, based on all the simulations. Subsequently the 

βres can be found. In the case of a horizontal eddy viscosity of 0.01 m2/s and the ‘central’ method for 

bed-load transport, the βres is found to be 15.4.  

 

 
Figure  F-1: Finding βres with Delft3D, eddy viscosity = 0.01 m

2
/s , ‘central’ method 

 

The same procedure is used to find the resonance point in case of the ‘upwind’ method for bed-load 

transport, see Figure  F-2. The βres in this case is slightly lower (βres  = 15.1) than was the case with 

the ‘central’ method.  
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Figure  F-2: Finding βres with Delft3D, eddy viscosity = 0.01 m2/s, ‘upwind’ method 
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Appendix G Numerical analysis 

This appendix is an addition on chapter 5. First, the way numerical diffusion is introduced in the 

simulation will be explained (section G.1). Then the influence of the horizontal eddy viscosity on the 

amplification rate of small-amplitude bars, as observed in section 5.3.1, is explained.  

G.1. Numerical diffusion 

To calculate the hydrodynamic and morphodynamic variables, like water depth, flow velocity, bed-

load transport, Delft3D uses a staggered grid, see Figure  G-1. The model is divided in continuity 

cells. The water depth is defined in the centre of the continuity cells, the velocity is calculated at the 

call faces, and the depth is defined at the grid vertices. To explain the bed level updating procedure 

a flow in positive x-direction and y-direction is assumed.  

 
Figure  G-1: Bed-load transport on staggered grid, red arrows at the cell face, blue arrows at the cell centre 

 

At the end of each computational time step, the bed needs to be updated. This is done by 

computing the in- and output of sediment at the grid cell faces.  

 

To calculate the input of sediment at a grid cell face, the bed-load transport needs to be known at 

the grid cell face. In Delft3D, the bed-load transport is calculated at the grid cell centre, so an 

interpolation technique is needed. Two options are available: ‘upwind’ and ‘central’. If the ‘upwind’ 
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procedure is used, the bed-load transport at the grid cell face is equal to the bed-load transport at 

the grid cell centre, immediately ‘upwind’ of the cell face: 

 

 

 If the ‘central’ procedure is used, the bed-load transport at the cell face is taken as the average of 

the bed-load transports at the ‘upwind’ and downwind cell centre: 

 

 

The ‘upwind’ scheme introduces numerical diffusion. The numerical diffusion is necessary to be able 

to use an explicit time integration of the bed level updating procedure. The ‘central’ scheme is more 

accurate, but introduces oscillations, which can lead to instability.  

 

The general effect of upwinding can be shown by looking at the bed-load transport distribution over 

a hand-made alternate-bar pattern, see Figure  G-2. In the figure, one sees the bed level (right axis) 

and the bed-load transport for the simulation with the ‘upwind’ scheme (dotted line) and the 

‘central’ scheme (solid line). The bed-load curve for the ‘upwind’ scheme is in front of the one for 

the ‘central’ scheme, the shift is in this case 0.05 m. This shift is dependent on the longitudinal grid 

size, and amounts dx/2.  

 

 
Figure  G-2: Effect of upwinding 
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G.2. Influence of eddy viscosity on small-amplitude bars 

The influence of the horizontal eddy viscosity on the behaviour of small-amplitude bars, as observed 

in section 5.3.1, can be considering the continuity equation for sediment. 

 

Sediment transport can be seen as a function of the depth averaged velocity: 

In which m is a constant, and b is the degree of non-linearity. In this case (C = 21.75 m1/2/s, u ≈ 

0.2475 m/s, μ =0.7), b ≈ 7.5. So the sediment transport and therefore also ds/dx are strongly 

dependent on the depth averaged velocity. 

 

 
Figure  G-3: Velocity (left) and bed-load transport derivative (right) distribution over an alternate bar for 

different values of νH 

 If νH is large, a certain perturbation will be smeared out over a larger area, as will be the case with a 

smaller value for νH. So simulations with a lower νH will have larger velocity perturbations, as can be 

seen in Figure  G-3 (left). In the right part of the figure, one can see the distribution of ds/dx over the 

alternate bar. Sedimentation will occur if ds/dx is negative. One can see that for the simulation with 

νH = 3e-5 m2/s, ds/dx is more negative at the bar top as for νH = 0.01 m2/s, which results in a larger 

sedimentation/amplification rate for νH = 3e-5 m2/s.  
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Appendix H Development of bed topography spectrum 

This appendix discusses the development of the bed level spectrum in the case of no boundary 

disturbance and in the case that the inflowing discharge is randomly perturbed.  

 

The spectrum of a bed topography can be analysed with Fourier Transforms, see Appendix E. The 

development of the bed topography is analysed for two simulations: The first simulation (R1) has a 

perturbed upstream discharge input, the second simulation (R3a) has no upstream perturbation. For 

a visual description of both simulations one is referred to Appendix D.  

H.1. Hypothesis 

Linear theory represents the alternate-bar pattern solely with a first transverse mode. But in reality 

the alternate-bar mode does not have an exact first-mode shape, see Figure  H-1. 

 

 
Figure  H-1: First mode bar shape (top), versus a natural alternate-bar shape (down) 

 

Many authors have analysed the equilibrium bed topography of alternate-bar patterns and 

discovered that all alternate-bar patterns roughly have the same composition. The fundamental 

harmonic is called the 1-1 harmonic mode, which means first mode in the longitudinal direction and 

first mode in the transverse direction. The wavelength, corresponding with the first mode in the 

longitudinal direction, is based on the peak in spectral analysis. Seminara and Tubino (1992) 

discovered that the fundamental harmonic represents about 15-30% of the total “energy” of the 

bed.  

 

Apart from the fundamental harmonic, second-mode harmonics were also present in most 

alternate-bar patterns. This second-mode harmonic was observed by Zolezzi et al. (2005), Colombini 

and Tubino (1990), Seminara and Tubino (1992), and various other authors. Seminara and Tubino 

(1992) observed that the total “energy” of the second-mode harmonics in axial and the radial 

direction (2-2, 0-2, 2-0) is in the order of one third of the “energy” represented by the fundamental 

harmonic.  

 

It is expected that the non-migrating bed topography matches the observations of the mentioned 

authors. The development of the composition is not investigated in detail before. 
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H.2. Composition in case of boundary disturbance 

The main characteristics of the simulation, analysed in this section, can be found in Table  H-1. 

 

RunID Domain β 

 

Boundary 

conditions 

ks 

[m] 

νH 

[m
2
/s] 

Ash 

[-] 

Morphological 

updating scheme 

Initial 

bed 

R1 2n 24.3 QP-WL 0.008 0.01 1.9 ‘upwind’ Flat 

 Table  H-1: Characteristics of simulation with boundary disturbance (R1) , see Table  C-3 in Appendix C for 

more information 

 

The development of the alternate-bar pattern in divided in four stages, a thorough description can 

be found in Appendix D. Here only a short description will be given: 

- Stage 1: During this period no disturbance has reached the bend. 

- Stage 2: This stage begins when the first disturbance reaches the bend.  

- Stage 3: This stage begins when the first bar is dried and becomes non-migrating.  

- Stage 4: This stage begins when at the entire upstream reach non-migrating alternate bars 

are present. 

H.2.1. Development  

In Figure  H-2, one can see the development of “power” (“energy”) of the harmonics in the bed in 

section 1.  

 

Stage 1 

During stage 1, no higher-mode disturbance reached the bend, so only a first and zero mode 

harmonic were present, see also Figure  H-3. The zero mode harmonic can be explained by the fact 

that during stage 1 the bed upstream of the bend was in total lowered by the scour. The presence of 

the first-mode bar can be explained by the fact that at the outer part of the channel some accretion 

occurred, while at the right part of the channel the velocity was higher and therefore the bed was 

lowered by erosion. 

 

Stage 2 

The total “power” of the bed is quite constant during stage 2. It can be thought that before any bar 

top was dried, an equilibrium bed topography existed. Also the relative “power” of the harmonics 

was quite constant at the end of stage 2, see Figure  H-3. The wiggles in the figures can be explained 

by the fact that the bars are still migrating, whereas the sections are spatially fixed. This is more 

explained in detail in Appendix E. 

 

Stage 3 

The increase of total “power” during stage 3 is probably related to the drying of bars, which are 

located more upstream. Later also bars downstream of the first dried bar became dry. Stage 3 also 

ends when the bar in section 1 is dried. Although the absolute “power” of the bed is increasing 

during stage 3, the relative “power” of the harmonic remains quite constant. The composition of the 
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alternate-bar pattern is in equilibrium, whereas the “power” of the alternate-bar pattern is not in 

equilibrium yet.  

 

Stage 4 

From that moment on that all alternate bars became dry, the bars became non-migrating, because 

there is no interaction between the bar top and the flow. This can be seen in both figures, the 

composition of the bed was also in equilibrium.  

 

 
Figure  H-2: Absolute “power” of harmonics in bed at section 1 

 
Figure  H-3: Relative “power” of harmonics in bed at section 1 
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Explanation for second-mode harmonic 

The second-mode harmonic, which has the second largest contribution in the “power” spectrum 

during stage 3 and 4, can be seen as a ‘central’ deposit. Bed material is transported from the side 

walls to the middle of the flume. This can be seen by longitudinally averaging the bed. This is done at 

t=2150 min for -4 m <X< 10.5 m, see Figure  H-4. This section included exactly two alternate-bar 

wave lengths, so a valid averaging could be done. The calculated amplitude of the 0-2 harmonic 

(zero mode in longitudinal and second mode in the transverse direction), at t=2150, has a magnitude 

of 0.0095 m, which represents the curve in Figure  H-4 very well. The difference between the top of 

the ‘bell shape’ and the lowest points near the walls is about 0.019 m, which is twice the computed 

amplitude of the 0-2 harmonic.  

 

 
Figure  H-4: Longitudinally averaged cross-section between -4 m <X< 12 m, R1 
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H.2.2. Equilibrium state 

The sedimentation erosion data at t=35 hours is analysed with Fast Fourier Transforms. The 

maximum resolution in y direction, which can be analysed with Fourier analysis, is 5 m-1. In x 

direction the maximum resolution is 16.6 m-1. The largest part of the “energy” of the bed is related 

to low frequency harmonics. The “power” spectrum of the sedimentation erosion data is shown in 

Figure  H-5. In this figure, only 1% of the entire frequency domain is taken into account, but it 

represents 75% of the entire “energy” in the sedimentation/erosion data. The figure shows that 

mainly three harmonics (represented by the peaks) are present in the bed. The characteristics of the 

main harmonic modes can be seen in Table  H-2. 

 

 
 

Figure  H-5: Power spectrum of bed level of Run 70, for t=35h;  

Table  H-2: Characteristics of the three main peaks in R1, at t=144h 

 

The peak of the 1-1 harmonic mode represents 35% of the total “power”. This corresponds roughly 

with the observation of Seminara and Tubino (1992) in which they observed that usually 15-30% of 

the total “energy” corresponds with the ‘ fundamental‘ harmonic.  

 

Contrary to Colombini and Tubino (1990), the 2-2 harmonic in R1 contained little “energy”. The total 

“energy” of the 2-2, 0-2 and 2-0 harmonics is about 14%, which is about one-third of the 

fundamental harmonic “energy”.  

  

Harmonic LT * 

[m] 

LL 

[m] 

h 

[mm] 

 

Rel. 

“power” 

[%] 

1-1 1.2 7.0 19.9 35 

0-2 0.6 ∞ 9.8 14 

1-3 0.4 7.0 8.8 5 
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H.3. Composition without boundary disturbance 

The main characteristics of the simulations, analysed in this section, can be found in Table  H-3.To be 

able to make a simulation without boundary disturbance both an upstream and downstream water 

level boundary had to be used. If a Q-WL boundary would have been used, a perturbation would 

always be present at the inflow boundary. Later I discovered that this perturbation is caused by the 

fact that the DPS (depth at grid cell centre) was set at ‘MAX’ and the DPU (depth at grid cell face) at 

‘MEAN’. The consequence of this is that the first grid cell (just outside the computational domain) 

has the same bed level as the second grid cell (just inside the computational domain), so a uniform 

situation cannot be created. The simulation is continued till the moment that the backwater curve 

reached the upstream boundary (at t = 24 h). Then the upstream water level boundary was replaced 

by a discharge boundary (R3b), to find the equilibrium bed topography. 

 

RunID Domain β 

 

Boundary 

conditions 

ks 

[m] 

νH 

[m
2
/s] 

Ash 

[-] 

Morphological 

updating scheme 

Initial 

bed 

R3a 2n 24.3 WL-WL 0.008 0.01 1.9 ‘upwind’ Flat 

R3b 2n 24.3 Q-WL 0.008 0.01 1.9 ‘upwind’ End 

R3a * 

Table  H-3: Characteristics of simulations without boundary disturbance (R3a continued with R3b) , see Table  

C-3 in Appendix C for more information 

 

The development of the alternate-bar pattern in R3a is divided in two stages, a thorough description 

can be found in 0. Here only a short description will be given: 

- Stage 1: During this period a scour hole developed upstream of the bend. This hole 

propagates in the upstream direction.  

- Stage 2: This stage starts when higher-mode bars were created at the upstream edge of the 

scour hole.  

H.3.1. Development (R3a) 

In Figure  H-6, one can see the development of the principle harmonics in the bed level for section 1.  

 

Stage 1 

During stage 1 (t < 700 min) the “power” spectrum consists equally of zero and first-mode 

harmonics. This can be understood by the fact that a part of section 1 was still quite uniform in the 

transverse direction, whereas the part near the bend already had a distinct alternate-bar shape. The 

absolute “power” development and relative “power” development during this stage is comparable 

to stage 1 of the simulation with disturbance, see H.2.1. 

 

Stage 2 

At the beginning of stage 2, the second mode starts to grow significantly. Also higher-mode 

harmonics appear in the bed. After t = 1100 minutes, the relative “power” of all harmonics remains 

quite constant. The absolute “power” is still increasing in that period. So at the end of simulation 

R3a, the bed is not steady, but the composition is in equilibrium. The first and second-mode 
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harmonic both take 35% of the total “energy” into account, the third harmonic 15%, the fourth 

harmonic 5%, the zero mode harmonic 1%  and the rest (9%) is related to higher harmonics. 

 

 
Figure  H-6: Development of all harmonics in section 1 

 

 
Figure  H-7: Development of relative “power” harmonics 

H.3.2. Equilibrium state 

As explained in before, R3a is continued with an upstream discharge boundary after 24 hours of 

simulation (just before the backwater curve reached the upstream boundary). The equilibrium state 

of this simulation is briefly analysed. 
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The largest part of the “energy” of the bed is related to low resolution harmonics. The “power” 

spectrum of the sedimentation erosion data is shown in Figure  H-8. In this figure, only 1% of the 

entire resolution domain is taken into account, but it represents 76% of the entire “energy” in the 

sedimentation/erosion data. The figure shows that mainly three harmonics (represented by the 

peaks) are present in the bed. The characteristics of these peaks can be seen in Table  H-4. 

 

 
 

Figure  H-8: Power spectrum of bed level of R3b, for t=180 h, -14 m  < X < 12 m  

Table  H-4: Characteristics of the three main peaks in R3b at t=180h 

 

The “power” within the 1-1 section in Figure  H-8 corresponds with this alternate-bar mode. 

Remarkable is the presence of a peak in the 0-0 area. This peak corresponds with a uniform deposit 

in both transverse and the longitudinal direction. From this peak it can be concluded that there has 

been a net nonzero sediment flux. This nonzero sediment flux occurred during simulation R3a, in 

which the incoming bed-load transport was larger than the bed-load transport at the downstream 

boundary, see Figure  H-9.  

 
Figure  H-9:Input and output of sediment, simulation R3a and R3b 

H.4. Conclusions 

The following conclusions can be drawn according to the development of the bed composition: 

- The relative composition of the harmonics of the bed reaches equilibrium before the 

(absolute “power” of the) bed itself is in equilibrium  

- In the simulations a temporary equilibrium was established before any bar was dried 

Harmonic LT * 

[m] 

LL 

[m] 

h 

[mm] 

 

Rel. 

“power” 

[%] 

1-1 1.2 7.0 18.3 26 

0-2 0.6 ∞ 8.6 13 

0-0 ∞ ∞ 5.1 9 
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- The alternate-bar mode mainly consists of a first-mode transverse bar (25 – 35% of the total 

“energy”) and a longitudinally uniform ‘central’ deposit (13-14 % of the total “energy”), like 

observed by Zolezzi et al. (2005), Colombini and Tubino (1990), Seminara and Tubino (1992), 

and various other authors.  
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Appendix I Development of wave length 

This appendix discusses the development of wave length and the interaction between wave length 

and bar amplitude, for the simulation with boundary disturbance (R1). The main characteristics of 

the simulation, analysed in this section, can be found in Table  I-1. 

 

RunID Domain β 

 

Boundary 

conditions 

ks 

[m] 

νH 

[m
2
/s] 

Ash 

[-] 

Morphological 

updating scheme 

Initial 

bed 

R1 2n 24.3 QP-WL 0.008 0.01 1.9 ‘upwind’ Flat 

Table  I-1: Characteristics of simulation with boundary disturbance (R1), see Table  C-3 in Appendix C for more 

information 

 

The development of the alternate-bar pattern in divided in four stages, a thorough description can 

be found in Appendix D. Here only a short description will be given: 

- Stage 1: During this period no disturbance has reached the bend 

- Stage 2: This stage begins when the first disturbance reaches the bend.  

- Stage 3: This stage begins when the first bar is dried and becomes non-migrating.  

- Stage 4: This stage begins when at the entire upstream reach non-migrating alternate bars 

are present. 

I.1. Hypothesis 

Fujita and Muramoto (1985) and Lanzoni (2000) observed during laboratory experiments that 

initially the wave length developed and then the amplitude of the alternate bar. This will be tested 

for the numerical simulation.  

I.2. Development of wavelength 

 

The peak of the “power” spectrum of the first-mode transverse harmonic is moving in time, see 

Figure  I-1. These “power” spectra are made for the section -4 m <X< 12 m. The length of this section 

is 16m. The maximum observed wave length of the alternate-bar pattern is in the order of 7 m. The 

section is therefore more than twice the maximum observed wavelength. The possible error of wave 

length prediction is therefore less than 5%, see Figure  E-1 in Appendix E. One can see that the wave 

length increase between t=500 min and t=700 min (stage 2) is quite low. The same can be seen for 

t=1700 min to t=2100 min (stage 4). For 1100 min < t <  



 

Numerical nonlinear analysis of alternate-bar formation under super-resonant conditions 

I-2 

  Wilbert Verbruggen 

 
Figure  I-1: Power spectra of first-mode harmonic for different times, R1, -4 m <X< 12 m 

 

1700 min the peaks are moving quite a lot, the wave length increase is therefore high. The peaks of 

these spectra are corresponding with the main wave length for the first-mode transverse harmonic. 

The wave length, corresponding with the peaks, is plotted against time in Figure  I-2. Before t=350 

min no clear peak in the “power” spectrum was visible, therefore the data is extrapolated between 

t=0 min and t= 350 min (red dotted line). The wave length is indeed quite constant during stage 2. A 

temporary equilibrium solution is reached just before a bar was dried. This was also shown in 

Appendix H by conducting a spectral analysis of the bed.  

 
Figure  I-2: Development of longitudinal wave length of first transverse mode, R1, -4 m <X< 12 m 

The relative wave length development (L/Leq) is plotted against the relative amplitude development 

(h/heq), see Figure  I-3. In which the subscript ‘eq’ denotes the wave length or wave amplitude under 



 

 

equilibrium conditions. Th

development and wave amplitude development. When 60% of the wave length is already 

developed, only about 25% of the amplitude is developed. In the wave length development range of 

60%-80%, the amplitude increases from 25%

Muramoto (1985) and Lanzoni (2000

length and then the amplitude. 

Figure  I-3: Non-dimensional relation between wave length and wave height development

 

I.3. Conclusions 

The following conclusions can be drawn according to the development of wave length and period:

- An equilibrium wave length is established before any alternate bar is

- In agreement to the observations of 

bed first selects the wave length of the 

alternate-bar pattern. 
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equilibrium conditions. The figure shows an upward concave relation between wave length 

development and wave amplitude development. When 60% of the wave length is already 

developed, only about 25% of the amplitude is developed. In the wave length development range of 

mplitude increases from 25%-90%. This complies with the observations of 

Lanzoni (2000). In short, one can state that the bed first selects the wave 

length and then the amplitude.  

 
dimensional relation between wave length and wave height development

The following conclusions can be drawn according to the development of wave length and period:

An equilibrium wave length is established before any alternate bar is

In agreement to the observations of Fujita and Muramoto (1985)

the wave length of the alternate-bar pattern and then the amplitude of the 

pattern.  
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dimensional relation between wave length and wave height development 

The following conclusions can be drawn according to the development of wave length and period: 

An equilibrium wave length is established before any alternate bar is dried.  
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