
Managing
Uncertainties in
Mobility Policy
Integrating Exploratory Modelling and
Analysis for Informed Decision-Making
in Dutch Passenger Rail Policy 

Rhys Evans, MSc Engineering and Policy Analysis



Managing Uncertainties in Mobility Policy:
Integrating Exploratory Modelling and Analysis

for Informed Decision-Making in Dutch Passenger
Rail Policy

Master thesis submitted to the Faculty of
Technology, Policy, and Management at Delft

University of Technology in partial fulfilment of the
requirements for the degree of

MASTER OF SCIENCE
in Engineering and Policy Analysis

by
Rhys W Evans

Student Number: 5633273

Graduation committee
1st Supervisor, Chair : Dr. Jan Anne Annema, Transport & Logistics
2nd Supervisor : Prof.dr.ir. Jan Kwakkel, Policy Analysis

To be defended in public on 19 August 2025

This research highlights how adaptive mobility policy can contribute to SDGs 9, 11, and 13 (UN, 2015).

https://www.linkedin.com/in/rhyswe/
https://www.linkedin.com/in/jan-anne-annema-1a165556/
https://www.linkedin.com/in/jan-kwakkel-8a1622b/


Contents

Executive Summary iii

1 Introduction 1
1.1 Case Study: Dutch Passenger Rail . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Research Question . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Disclaimer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Thesis Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Literature Review 4
2.1 Understanding Deep Uncertainty in Mobility Policy . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Robust Decision Making (RDM). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 Dynamic Adaptive Policy Pathways (DAPP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.4 Exploratory Modeling and Analysis (EMA) with Multi-Objective Robust Optimization (MORO). . 5
2.5 Implementation in the EMA Workbench . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.6 Mobility Modelling in The Netherlands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.7 Integrating Uncertainty Methods with Traditional Transport Models . . . . . . . . . . . . . . . 7
2.8 Navigating Political Considerations in EMA Integration. . . . . . . . . . . . . . . . . . . . . . 8

3 Model Setup 9
3.1 Model Input. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.1.1 Elasticity Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.1.2 Uncertainties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.1.3 Policy Levers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.1.4 Data Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.2 Model Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2.1 Model Outcomes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.3 Model Logic. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.3.1 Demand and Capacity Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.3.2 Environmental Impact Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.3.3 Unlimited Travel Ticket Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.3.4 Time-Series Trend Extrapolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.3.5 Causal Loop Representation of the Model . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.3.6 Model Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4 Experimental Setup 18
4.1 Experimental Design and Problem Formulations . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.2 Multi-Objective Robust Optimization Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.2.1 Uncertainty Scenarios and Policy Evaluation . . . . . . . . . . . . . . . . . . . . . . . 19
4.2.2 Calibration of ε Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.2.3 Convergence Monitoring. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.2.4 Robustness Scoring Using Wald’s Criterion. . . . . . . . . . . . . . . . . . . . . . . . . 19

4.3 Pathways Calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.3.1 Selecting Robust and Diverse Policies . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.3.2 Constructing Adaptive Pathways . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.3.3 Example Visualization and Interpretation . . . . . . . . . . . . . . . . . . . . . . . . . 20

5 MORO Results (2030) 22
5.1 Balanced Formulation 2030 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.2 Unrestrained Balanced Filter 2030 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
5.3 Max Revenue Filter 2030 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
5.4 Max Demand Filter 2030 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

i



Contents R.W. Evans

6 Balanced Policy Pathways (2024–2070) 27
6.1 Ticket Price Adjustment (2024-2070) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
6.2 Rush-Hour Surcharge (2024–2070) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
6.3 Free Transit Incentives (2024–2070) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

7 Discussion 31
7.1 Model Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
7.2 Simulation Outcomes over 2024–2070 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
7.3 Policy Implications for Long-Term Fare Strategies . . . . . . . . . . . . . . . . . . . . . . . . 32
7.4 Reflections on Problem Formulation and Pathway Construction . . . . . . . . . . . . . . . . . 33
7.5 Analysis Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

8 Conclusions 35
8.1 Research Questions and Key Findings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
8.2 Policy Implementation Insights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
8.3 Policy Analyst Insights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
8.4 Future Research Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

Works Cited 41

Appendix 42

A Model Overview 42
A.1 Fare Price Calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
A.2 Demand Calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
A.3 Environmental Impact and Emissions Calculation . . . . . . . . . . . . . . . . . . . . . . . . 44
A.4 Fare Price with Elasticity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
A.5 Free Travel Ticket Impact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
A.6 Extended Demand Calculation with Elasticity . . . . . . . . . . . . . . . . . . . . . . . . . . 45
A.7 Main Rail Model Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
A.8 Capacity Calculations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

B Model Convergence 49
B.1 Optimization Setup and Convergence Detection . . . . . . . . . . . . . . . . . . . . . . . . . 49
B.2 Epsilon Progress and Convergence Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
B.3 Convergence Visualization and Interpretation . . . . . . . . . . . . . . . . . . . . . . . . . . 50

C Scenario Discovery 56

D Sensitivity Analysis and Feature Importance 69

E Exploratory Data Analysis 85
E.1 Variables Related to Elasticities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
E.2 Data from Germany and North Rhine-Westphalia. . . . . . . . . . . . . . . . . . . . . . . . . 87

F MORO Results by Year 88

G Model Validation and Baseline Results 96

H Model Input Data 130
H.1 Data Sources and Compilation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
H.2 Data Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
H.3 Raw Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

ii



Executive Summary

Policy-makers working on Dutch passenger rail confront a world that is increasingly unpredictable.
Population growth, urbanisation and climate change mean that conventional forecasting tools like the
Landelijk Model Systeem (LMS) cannot easily characterise the range of futures planners must consider. The
LMS is computationally intensive so it risks leaving decision-makers blind to “deep uncertainty,” where the
shape of the system and the relative plausibility of future scenarios are unknown. Decisions made without
fully appreciating uncertainty can lock rail systems into costly or inflexible trajectories. To fill this gap,
this research investigates whether Exploratory Modelling and Analysis (EMA) and Multi-Objective Robust
Optimization (MORO) can broaden the policy community’s understanding of future mobility and lead to
more resilient strategies. EMA was selected to complement traditional modeling because it can generate
thousands of simulations rapidly, providing a richer picture of uncertainty than traditional modeling alone.

The research focuses on Dutch passenger rail because the must satisfy sometimes conflicting objectives,
such as supporting ridership growth, securing revenue, reducing CO2 emissions and promoting equity.
Each objective is shaped by uncertain forces such as technological change and travellers’ preferences. The
study therefore aims to support policy analysts responsible for designing fare policies by demonstrating how
EMA and MORO can illuminate trade-offs and highlight robust strategies. Such an approach is not just a
technical fix as it aligns with broader goals of building resilient infrastructure, promoting sustainable cities,
and advancing climate action as reflected in the United Nations Sustainable Development Goals (SDG 9, 11,
and 13). This research is motivated by the need for a new decision-making paradigm that can handle deep
uncertainty in long-term rail policy and support national objectives for sustainable, resilient mobility.

Research Questions
The research poses ome overarching question: How can Multi-Objective Robust Optimization be applied

to enhance long-term passenger rail demand forecasting under deep uncertainty, particularly in evaluating
fare policy levers? Two sub-questions are also asked: (1) What are the potential impacts of implementing
extreme fare interventions on rail ridership, revenue, and CO2 emissions across a wide range of uncertain
future scenarios? and (2) How can fare policies be structured or adapted over the 2024–2070 horizon to remain
effective in achieving transportation objectives despite deep uncertainty in future mobility trends?

To answer these questions, a simplified elasticity-based model of Dutch passenger rail was built. The
model uses behavioural elasticities from the Netherlands Institute for Transport Policy Analysis (KiM, 2021)
to simulate how ridership responds to changes in economic, demographic and policy variables. Time-series
forecasting techniques (Prophet) provide long-term trend inputs, and machine-learning methods identify
patterns in the results.

Methodology
Traditional transport models, such as the Dutch Landelijk Model Systeem (LMS), evaluate only a few

deterministic scenarios and struggle to capture deep uncertainty. This study integrates Exploratory Modeling
and Analysis (EMA) and Multi-Objective Robust Optimization (MORO) to explore thousands of plausible
futures and identify robust fare policies. MORO employs a multi-objective evolutionary algorithm to search
the policy space, evaluating each candidate fare policy across many uncertainty scenarios before assessing
performance. This transforms forecasting from a point-prediction exercise into a robust planning exercise,
yielding a Pareto-optimal set of policies that balance multiple objectives and remain effective across a
spectrum of futures. Practically, MORO identifies fare strategies that trade off objectives (e.g., ridership vs.
revenue) efficiently while maintaining performance under uncertainty. The open-source EMA Workbench
was used to implement MORO (via an ε-NSGA-II algorithm), forming the methodological core of the study.
This approach represents a methodological contribution to transport policy analysis, demonstrating that
robust, multi-objective optimization can inform fare policy design under deep uncertainty.

Given that directly applying EMA to the full LMS is computationally infeasible, a simplified
elasticity-based simulation model of Dutch rail demand was developed. This model integrates baseline
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R.W. Evans

demand projections with fare elasticity response functions, enabling rapid computation of ridership,
revenue, and emissions outcomes. Flexibility was prioritized, intentionally trading some detail for the
capacity to run thousands of uncertainty–policy combinations.

One main problem formulation and one main filter frame the analysis: the “Balanced” problem
formulation, where capacity constraints are active and overcrowding may occur, and the “Unrestrained
Balanced” filter, where capacity is assumed unconstrained to isolate fare policy effects without supply limits.
Both are analyzed over a short-term horizon (2030) and the Balanced problem formulation is analyzed
over a long-term horizon (2024–2070). Despite simplifications, the model captures how fare changes
influence demand via elasticities, demand interacts with capacity and emissions, and uncertainties push
these outcomes in varied directions over time.

Key Findings
The 2030 results reveal a fundamental policy trade-off. At one extreme, aggressive fare cuts or elimination

significantly increase ridership and achieve CO2 reductions via modal shift, but sharply reduce revenue. At
the other extreme, high-fare strategies maximize revenue but suppress demand and limit environmental
benefits. Neither extreme proves robustly optimal. Instead, hybrid pricing strategies are necessary.

Cluster analyses on the MORO outcomes showed that top-performing policies fell into hybrid archetypes,
combining reduced fares with mild rush-hour surcharges and an unlimited travel ticket similar to the €49
“Deutschlandticket”. Effective combinations included affordable unlimited travel passes (e.g., €49/month)
alongside base fares and mild surcharges to safeguard revenue and manage demand. These findings
are illustrated in Figures ES.1 and ES.2, which show the clustered structure of policy levers and the
top-performing policy configurations.
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Figure ES.1: The 2030 results for the Balanced Formulation based on outcomes.
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Long-Term Policy Pathways
Policy pathway analysis for 2024–2070 confirmed that no static fare policy remains optimal over decades.

Figure ES.3 presents adaptive policy trajectories for base fares and peak surcharges. The diversity of robust
pathways illustrates that multiple adaptive strategies can succeed under different conditions. Some pathways
maintain low fares for extended periods, gradually increasing later; others introduce fare adjustments earlier
or apply staged surcharges as demand evolves.

The overarching insight is clear: adaptability outperforms rigidity. Rather than locking in a fixed fare plan,
it is recommended to implement a Dynamic Adaptive Policy Pathways approach. This involves deploying
an optimized near-term policy (e.g., the identified 2030 strategy), regularly monitoring key indicators, and
adjusting fares or surcharges when trigger points or thresholds are reached. Periodic reviews can help
maintain alignment with evolving objectives.
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(a) Policy pathways for ticket price change in the Balanced Formulation.
This figure illustrates how much ticket prices are adjusted per distance

travelled over the years.
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(b) Policy pathways for rush hour surcharge in the Balanced Formulation.
This figure illustrates how much of a surcharge is imposed per distance

travelled during peak hours.

Figure ES.3: Potential future policy pathways for fare price and a rush-hour surcharge from 2024-2070.

This research demonstrates that integrating an EMA framework substantially enhances long-term
transport policy planning under deep uncertainty. As seen in Figure ES.3a, all 100 policy pathways begin
with significant fare reductions, with most simulations implementing a drop of between 8 and 10 cents per
travel unit by 2030. These reductions remain largely consistent across the following decades. While some
fluctuations occur, especially between 2050 and 2070, the majority of strategies hover in a relatively narrow
band, typically between −8 and −10 cents, indicating long-term fare reductions are a stable and recurring
feature of robust policies.

The lack of strong upward trends suggests that increasing base fares is rarely chosen, even as demographic
or fiscal conditions change. Notably, no pathway returns to neutral or positive fare levels by 2070, reinforcing
the interpretation that maintaining affordability is central to long-term success under capacity constraints.

As shown in Figure ES.3b, all 100 balanced policy pathways implement a rush-hour surcharge by 2024.
The initial values cluster between 12 and 16 cents per travel unit, indicating a general consensus around
modest peak-period pricing from the outset. This early adoption may reflect a shared recognition of the
potential to manage congestion and raise revenue without politically sensitive increases to base fares.

From 2040 onward, a consistent upward trend emerges across most pathways. By 2060, nearly all
strategies impose surcharges above 18 cents, with several exceeding 22 cents. This suggests a gradual but
persistent escalation in peak pricing, likely driven by growing demand pressures and fiscal needs.

This work offers a proof of concept that advanced tools can support more resilient, exploratory, and
adaptive policymaking, moving beyond static, scenario-limited approaches.

Policy Insights
Based on the exploratory modeling and MORO analysis presented in this research, several strategic

insights emerge that may inform fare policy deliberations in the Dutch passenger rail context. These insights
are not intended as fixed prescriptions but rather as evidence-based considerations to support robust,
adaptive policymaking:

1. Implement Low-Cost Unlimited Travel Ticket
The model suggests that introducing affordable flat-fare transit passes (in the spirit of Germany’s €49

"Deutschlandticket") could stimulate ridership and support a shift from car to train travel. A possible
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approach would be to pilot such a scheme on a limited-time basis, similar to the German trial, and evaluate its
impacts on ridership, revenue, and crowding. If the benefits prove robust and costs remain within acceptable
bounds, policymakers could consider expanding or institutionalizing the program over time.

2. Introduce a Moderate Peak-Hour Surcharge as Part of Demand Management
To address capacity constraints and provide funding for improvements, policymakers could explore

pricing structures that differentiate between peak and off-peak travel. Simulation results indicate that
implementing a modest rush-hour surcharge may help mitigate peak capacity pressures while improving
financial sustainability (e.g., +50% on base fares for trips starting or ending during weekday peaks). This
measure should be accompanied by clear public communication emphasizing its purpose and revenue
generated from peak pricing should be transparently earmarked for capacity investments, such as additional
trains, staff, or infrastructure upgrades. Many simulations suggest reducing off-peak ticket pricing at the
same time as implementing a rush-hour surcharge. Doing so would lessen the economic burden of the
surcharge and likely increase public acceptability.

Policy Analyst Insights
While this research provides empirical insights into fare policy design, a key contribution lies in

demonstrating how the MORO framework can support the work of policy analysts operating under deep
uncertainty. MORO does not prescribe singular solutions; rather, it enables analysts to structure uncertainty,
reveal trade-offs, and communicate robust yet flexible strategies that remain valid across a range of plausible
futures.

By generating policy sets that perform well under diverse scenarios, MORO helps analysts shift the
conversation from prediction to preparation. Instead of asking “What will happen?” the focus becomes “What
actions could perform well, regardless of what happens?” This shift aligns well with the analyst’s role as a
translator between technical findings and decision-making under uncertainty.

The MORO framework also highlights trade-offs that might otherwise remain hidden. In this study, it
became evident that policies promoting ridership and emissions reduction, such as ultra-low fares, can
undermine revenue and overburden capacity unless balanced with complementary measures like peak-hour
surcharges. Exposing such tensions is a valuable step toward more transparent and inclusive policymaking,
allowing decision-makers to weigh competing goals explicitly rather than pursuing single-objective
optimization.

In addition, MORO supports the development of adaptive strategies rather than static policy
recommendations. The results suggest that a fare policy effective in 2030 may not remain so by 2040. MORO
enables analysts to identify robust starting points while also providing insight into when and how these
strategies might need adjustment. This supports the use of adaptive policy pathways, where policies evolve
in response to observed developments rather than being fixed in advance.

The use of MORO enhances the legitimacy of policy advice by making the assumptions, uncertainties,
and trade-offs embedded in modeling more visible. Analysts can demonstrate not just what is optimal under
one future, but what performs reasonably well across many. This transparency supports more credible and
democratic decision-making, especially in contested domains like public transport pricing.

In sum, the value of MORO lies not only in identifying robust strategies but in supporting the deliberative
processes that underpin good policy. It strengthens the analyst’s capacity to inform rather than dictate—to
guide decision-making by revealing what is possible, plausible, and prudent given the uncertainties ahead.
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1
Introduction

In a rapidly changing world marked by uncertainties, policymakers confront the grand challenge of
planning for an unpredictable future. This complexity is particularly notable in the domain of mobility policy,
where decision-makers must consider variables like population growth, urbanization, and the climate crisis,
factors that contribute to a state of "deep uncertainty." Deep uncertainty exists when stakeholders do not
know or cannot agree on the system models that describe interactions between variables, or the probabilities
of various future scenarios1. In such a landscape, the stakes are high, as incorrect or short-sighted decisions
can lead to long-term inefficiencies, increased costs, and reduced adaptability in transportation systems.

The Netherlands traditionally relies on the Landelijk Model Systeem (LMS) for its mobility planning,
which is a comprehensive computational tool designed to evaluate the potential outcomes of different
transportation policies in the short term. However, when it comes to capturing the broader range of
possibilities inherent in deeply uncertain systems, LMS may be less effective. Its computational intensity
limits its application to just 2 or 3 scenarios, typically requiring an entire night for each run. This constraint
might leave policymakers ill-equipped to fully account for a spectrum of potential future developments,
such as rapid technological innovations, demographic fluctuations, and changes in public attitudes toward
transportation.

To address this gap, this research investigates the potential of applying Exploratory Modelling and
Analysis (EMA) to mobility policy—a domain where EMA has not yet been widely applied. Unlike the LMS,
EMA is designed to quickly analyze thousands of scenarios, offering a broader understanding of uncertain
systems. Since the application of EMA directly to the LMS is computationally infeasible, this research adopts
an alternative approach by developing a simplified, integrated model of the Dutch passenger rail network
that is compatible with EMA.

The central aim of this research is to assess whether EMA can be a catalyst for more robust, adaptive,
and insightful policy decisions in the Dutch mobility landscape. In other words, this study serves as a
proof-of-concept, striving to demonstrate that when navigated with the agility of EMA, the uncertain terrains
of mobility policy can become more manageable and strategically negotiable. Such an approach is not
just a technical improvement, but also aligns with broader objectives like fostering resilient infrastructure,
promoting sustainable urban development, and combating climate change, as articulated in the United
Nations Sustainable Development Goal (SDG) 9, SDG 11, and SDG 13 (UN, 2015).

Accordingly, this research contributes both to the academic discourse on uncertainty in policy modelling
and to the practical evolution of Dutch transportation policy. By enabling more comprehensive scenario
analysis, it provides a methodological foundation for designing sustainable and resilient mobility strategies
under deep uncertainty.

1.1. Case Study: Dutch Passenger Rail
This research focusses on the integration of EMA into the Dutch mobility policy-making process. As a

case study, this research looks specifically at the passenger rail network in The Netherlands. This scope
was chosen due to the number of uncertainties in rail policy, the political timeliness of more sustainable

1Deep Uncertainty is defined by Kwakkel et al., 2010b as a Level 3 Uncertainty where a policy-maker is able to enumerate multiple
scenarios, but they are not able to rank the scenarios in terms of how likely or plausible they are (Kwakkel et al., 2010b)
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mobility options, and the availability of data. EMA is a methodological approach that allows exploration of
a wide range of plausible futures and the identification of robust strategies that perform well under different
conditions (Kwakkel et al., 2015; Walker et al., 2013). By integrating EMA into the policy-making process,
this research aims to improve the ability of decision makers to navigate deep uncertainties and make more
informed, resilient, and sustainable policy decisions (Walker et al., 2013).

This research is important for several reasons. First, it addresses a critical gap in the current policy making
process, which often struggles to adequately consider and manage deep uncertainties (Cook et al., 2013).
Second, it contributes to the theoretical understanding of EMA and its application in policy contexts (Walker
et al., 2013). Third, it provides practical insights and recommendations for policymakers, stakeholders, and
researchers in the field of mobility policy (Font Vivanco et al., 2016). By exploring these issues, this research
aims to contribute to the development of more resilient, sustainable, and inclusive mobility policies in the
Netherlands and around the world.

EMA’s value is especially apparent when considering the dynamic nature of passenger mobility, which
is influenced by factors such as population growth, urbanisation, technological advances, and changing
societal attitudes towards different modes of transport. Traditional modelling methods may struggle to
adequately capture these dynamics and the resulting uncertainty (Moallemi & Köhler, 2021). EMA, on the
other hand, is designed to handle these complexities, making it a valuable tool for Dutch mobility policy.

1.2. Research Question
Given these considerations, an interesting question arises:

Research Question

How can Multi-Objective Robust Optimization be applied to enhance
long-term passenger rail demand forecasting under deep uncertainty,
particularly in evaluating fare policy levers?

To address this question, this study will perform an analysis of the potential EMA applications in Dutch
passenger rail, while drawing on case studies and model outputs. The aim is to provide information on how
EMA can enhance the robustness, adaptability, and legitimacy of transportation policies in the face of deep
uncertainty.

Sub-Questions
1. What are the potential impacts of implementing extreme fare interventions on rail ridership, revenue,

and CO2 emissions across a wide range of uncertain future scenarios?

2. How can fare policies be structured or adapted over the 2024–2070 horizon to remain effective in
achieving transportation objectives despite deep uncertainty in future mobility trends?

Research Approach Overview
To achieve the research objectives, the following approach was undertaken:

1. Baseline Model Development and EMA Proof-of-Concept: A simplified elasticity-based demand
model of the rail system was constructed as a baseline. This model was run with EMA to demonstrate
feasibility and to provide initial insights.

2. Model Enhancement with Trend and Pattern Analysis: The model was extended by incorporating
time-series forecasting for long-term trend inputs (using tools like Prophet) and by integrating
machine-learning-based analysis techniques. After running large ensembles of simulations, scenario
discovery methods (PRIM and CART) and clustering were applied to identify patterns in the results.

3. Evaluation of EMA Value and Policy Insights: The outcomes from the exploratory analysis were
evaluated to assess the added value of EMA relative to traditional approaches. In absence of a direct
LMS comparison (due to computational constraints), a qualitative contrast was made to illustrate
how EMA unveils insights (such as robust policy strategies and trade-offs) that might remain hidden
in a limited-scenario analysis. This stage also distilled the findings into policy-relevant insights and
potential pathways for implementation.
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1.3. Disclaimer
This research was carried out in collaboration with the Kennisinstituut voor Mobiliteitsbeleid (KiM), a

research branch of the Dutch government that provides knowledge input for the preparation of the mobility
policy of the Ministry of Infrastructure and Water Management (IenW). KiM aims to ensure that policy is
developed with a solid knowledge base through the analysis and explanation of developments, exploratory
studies, the development of scenarios, and the analysis of the effects of policy instruments (KiM, 2023b). The
views expressed in this research may not reflect the views of KiM, IenW, or TU Delft. KiM did not review the
final version of this document.

Additionally, during the period in which this thesis was written, the author also completed an unrelated
internship at the United Nations Human Settlements Programme (UN-Habitat) in Lao PDR. This internship
did not influence the scope, methodology, or findings of the present research.

1.4. Thesis Overview
This thesis is structured to provide a comprehensive understanding of managing uncertainties in Dutch

mobility policy, focusing on passenger rail transportation. It explores the integration of Exploratory Modeling
and Analysis (EMA) as a tool for informed decision-making under deep uncertainty.

• Chapter 1: Introduction
This opening chapter introduces the case study of Dutch passenger rail, lays out the research questions
guiding the thesis, and discusses relevant disclaimers. It sets the stage for the following detailed
analysis.

• Chapter 2: Literature Review
The second chapter delves into the concept of deep uncertainty in mobility policy, reviewing key
methods such as Robust Decision Making (RDM), Dynamic Adaptive Policy Pathways (DAPP), and
EMA combined with Multi-Objective Robust Optimization (MORO). It also examines the current state
of mobility modelling in the Netherlands and discusses how deep uncertainty methods integrate with
traditional transport models, alongside political considerations.

• Chapter 3: Model Setup
This chapter details the development of the Dutch passenger rail system model, describing the input
parameters—including elasticity, uncertainties, policy levers, and data requirements—along with the
model’s outputs, internal logic, and limitations.

• Chapter 4: Experimental Setup
Here, the research methodology is outlined, including the design of policy scenarios and the setup of
the MORO framework within the EMA Workbench. The chapter explains calibration of epsilon values,
convergence monitoring, and approaches for post-optimization analysis such as multi-dimensional
visualization, clustering, and pathways calculation.

• Chapter 5: MORO Results (2030)
This chapter presents the results of applying MORO to the 2030 Balanced Scenario and the
Unrestrained Balanced, Max Revenue, and Max Demand filters. It provides insights into policy
performance across these futures.

• Chapter 6: Policy Pathways (2024–2070)
Chapter six analyzes dynamic policy pathways over the full 2024 to 2070 horizon, focusing on Balanced
pathways and specific measures such as Rush-Hour Surcharge and Free Transit Incentives.

• Chapter 7: Discussion
This chapter evaluates the model’s performance, synthesizes simulation outcomes across the study
period, discusses policy implications for long-term fare strategies, and reflects on limitations of the
analysis.

• Chapter 8: Conclusions
The final chapter summarizes the research questions and key findings, provides policy
recommendations based on the results, and outlines directions for future research.
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2
Literature Review

An important aspect of the MSc Engineering and Policy Analysis programme at TU Delft is the exploration
of wicked problems—international grand challenges that, by their very nature, are fraught with deep
uncertainty (Alexander et al., 2022; van der Voort, 2022). According to Rittel and Webber, these problems lack
fixed sets of solutions and are characterized by inherent complexity and the difficulty of finding definitive
answers (Rittel & Webber, 1973). This research aims to specifically address the wicked problem of deep
uncertainty within the realm of transportation policy. Such uncertainty arises when stakeholders either do
not know or cannot agree on the models that describe interactions between variables, or the probabilities of
different future outcomes. To navigate these complexities, EMA has emerged as a robust framework, offering
a structured approach for understanding various uncertainties and making more resilient policy decisions.
This chapter introduces the concept of deep uncertainty, its implications for transportation policy, and the
tools and frameworks that can support adaptive and robust decision-making.

2.1. Understanding Deep Uncertainty in Mobility Policy
Deep uncertainty arises when decision-makers cannot agree on, or lack sufficient information to define,

the relationships between key variables, the probability of future events, or the values that should guide policy
(Bankes, 2002; Lempert et al., 2003). This is especially relevant in mobility systems, where policy outcomes
are shaped by volatile factors such as technological change, demographic shifts, evolving travel behaviour,
and environmental disruptions.

In Dutch passenger rail policy, such uncertainty manifests in challenges like anticipating demand for new
services, adapting to emerging modes of transport, or forecasting the impacts of climate policy. Traditional
modelling techniques often fall short in such environments, as they typically focus on predicting a single
“most likely” future.

EMA offers a structured framework for exploring large sets of plausible futures, identifying policies that
are robust across them, and highlighting conditions under which policies may succeed or fail. Its strengths
lie in helping policymakers move beyond prediction toward preparedness and adaptability. By engaging with
a wide range of possibilities and stakeholder perspectives, EMA supports the design of strategies that can
remain effective even as real-world conditions shift (Bankes, 1993).

This perspective is further exemplified by a recent case study by Führer et al.(2024), which explores the
complexities faced by the City of The Hague in pursuing a climate-neutral transport system. Their work
highlights how deep uncertainty emerges not only from unpredictable technological and behavioral trends
but also from institutional entanglements, conflicting stakeholder priorities, and cross-sector dependencies,
such as interactions between transport, housing, and energy systems. By explicitly accounting for these
interdependencies, the study provides empirical support for the argument that deep uncertainty in mobility
policy extends well beyond model uncertainty alone.

Over the past two decades, several methodological frameworks have been developed to address deep
uncertainty in policy-making. These include Robust Decision Making (RDM), Dynamic Adaptive Policy
Pathways (DAPP), and EMA. Each offers different strengths in coping with uncertainty, with EMA being the
primary method used in this research.
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2.2. Robust Decision Making (RDM)
Robust Decision Making (RDM) is an iterative decision support methodology designed to help

policymakers make decisions in situations characterized by deep uncertainty (Lempert et al., 2006). Instead
of focusing on the most likely scenario, RDM emphasizes the identification of policies that are robust across
a wide range of plausible futures. The process begins with scenario discovery, where a diverse set of scenarios
that challenge the proposed policies are identified. These scenarios are then used to stress-test potential
policies, evaluating their performance across these challenging scenarios. The aim is not to find the optimal
policy for a given scenario but to identify strategies that perform satisfactorily across a vast range of scenarios.
As the future unfolds, RDM promotes adaptive planning, where strategies can be adjusted in response to new
information or changing conditions. This iterative approach ensures that decisions remain both robust and
flexible, allowing for adjustments as the landscape of knowledge and circumstances evolves (Lempert et al.,
2006).

2.3. Dynamic Adaptive Policy Pathways (DAPP)
Dynamic Adaptive Policy Pathways (DAPP) is another approach that acknowledges the dynamic nature

of decision-making in the face of deep uncertainty (Haasnoot et al., 2013). Central to DAPP is the concept
of "pathway maps", which are visual representations illustrating how decisions might evolve over time in
response to changing conditions or new information. These maps guide decision-makers, showing potential
routes and decisions that might be taken as situations change. Another crucial component of DAPP is the
identification of "Adaptation Tipping Points (ATPs)". ATPs are specific points in time when the current policy
or strategy no longer meets its objectives, indicating that a change in direction is necessary. By recognizing
these tipping points, DAPP ensures that strategies remain relevant and effective even as conditions change.
Furthermore, DAPP emphasizes the importance of "signposts", which are indicators or triggers that inform
decision-makers when it might be necessary to switch from one pathway to another. By sequencing decisions
and understanding when and how to adapt, DAPP provides a framework for designing strategies that are both
resilient and adaptive, ensuring that policies can respond effectively to a changing environment (Haasnoot
et al., 2013).

2.4. Exploratory Modeling and Analysis (EMA) with Multi-Objective
Robust Optimization (MORO)

Both RDM and DAPP rely on exploratory simulation of many scenarios. Exploratory Modeling and
Analysis (EMA) is the broader methodological paradigm enabling such simulation-based exploration of
uncertainties (Bankes, 1993). EMA, as defined by (Bankes, 1993), advocates constructing many plausible
model instances (varying uncertain assumptions) and investigating “what-if” consequences of policies
across these instances, rather than making a single best-estimate prediction. In practice, EMA involves
running computational models thousands of times over wide-ranging combinations of uncertain factors
(e.g., travel demand growth, fuel prices, behavioral trends in a transport model) and policy levers (e.g., pricing
strategies, infrastructure investments). The results are used to map the outcome space to inform robust
decision-making (Kwakkel, 2017; Kwakkel et al., 2010b).

Tools for EMA often include design of experiments, global sensitivity analysis, and visualization, as well
as techniques like scenario discovery to pinpoint scenarios that illuminate policy vulnerabilities (Lempert
et al., 2003). In the context of transport policy, EMA allows analysts to integrate complex models into a deep
uncertainty analysis. This way, instead of using the model for point forecasts, it is used as a generator of many
plausible futures and policy outcomes, supporting the search for strategies that work across these futures.

A powerful approach within EMA, and the central method in this research, is Multi-Objective Robust
Optimization (MORO). MORO is an advanced decision-analytic technique that integrates multi-objective
optimization with robustness analysis (Hamarat et al., 2014). Whereas traditional optimization finds a single
“optimal” solution for a given scenario or set of assumptions, MORO searches for a set of Pareto-optimal
policies that balance multiple objectives and remain effective under a spectrum of future scenarios (Kwakkel,
2017; Kwakkel & Haasnoot, 2016). In other words, MORO yields policy options that represent efficient
trade-offs among competing goals while also achieving robust performance across uncertainties. The result
of a MORO analysis is typically a robust Pareto front: a frontier of non-dominated solutions, none of which
can improve one objective without sacrificing another. Decision-makers can then examine this Pareto front
to understand the trade-offs and select a policy that best fits their preferences and risk tolerance. Hamarat
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et al. (2014) demonstrated that incorporating robustness directly into the search, rather than only evaluating
robustness after optimizing, can yield strategies that are more immune to uncertain disturbances. MORO
has also since been employed in combination with DAPP. In these applications, MORO extends the idea
from Many-Objective Robust Decision Making (MORDM) by bringing the robustness considerations into the
search itself (Hamarat et al., 2014; Kwakkel, 2017). In practical terms, this means the optimization algorithm
(often a genetic algorithm like NSGA-II) evaluates each candidate policy on multiple objectives across a
sample of scenarios, rather than a single scenario (Kwakkel, 2017; Kwakkel & Haasnoot, 2016). Candidate
solutions are rewarded for performing well under many futures, not just one, thereby directly evolving robust
policies.

The benefits of MORO in the EMA framework are applicable to transport policy design under uncertainty.
Transport planners often face multiple conflicting objectives, such as efficiency, equity, environmental
impact, and cost and deep uncertainties, such as economic growth and demographic shifts. MORO allows
exploration of policy trade-offs in a rigorous way: for instance, it can reveal strategies that slightly sacrifice
optimal travel time reductions in exchange for significantly improved robustness to uncertain demand
growth. It highlights policies that offer a good balance. By quantifying these trade-offs, MORO supports
more transparent decision-making as policymakers can see the extent of performance compromise required
to achieve greater robustness. This is crucial for deep uncertainty contexts, where stakeholders may be willing
to accept a lower performance ceiling if it means avoiding catastrophic failure in certain futures.

2.5. Implementation in the EMA Workbench
To apply MORO in this research, the open-source EMA Workbench for Python developed by Jan

Kwakkel is used (Kwakkel, 2017). The EMA Workbench provides tools for conducting exploratory modeling,
scenario discovery, and robust optimization. In particular, it offers an optimization function that enables
multi-objective search under uncertainty.

The MultiprocessingEvaluator(model).optimize() routine is employed to perform MORO on
the transport model. This routine runs a multi-objective evolutionary algorithm in parallel, evaluating
each potential policy across an ensemble of scenarios before assigning it fitness. By leveraging the EMA
Workbench’s parallel computation capabilities, it becomes possible to efficiently explore a large policy space
and uncertainty space simultaneously. EMA with MORO forms the methodological core of this study as it
provides a systematic way to discover robust transport policies.

One of the tools built on the EMA Workbench is the TMIP-EMAT (Travel Model Improvement Programme
- Exploratory Modelling and Analysis Tool). TMIP-EMAT is specifically designed for transportation models
and supports the entire EMA process, from model experimentation to uncertainty quantification, to
visualisation of results (Milkovits et al., 2019). TMIP-EMAT is designed to apply EMA to existing travel
demannd models, such as the LMS. However, as previously discussed, the LMS is too complex of a model
to be computationally compatible with EMA.

The MATISSE (Modelling and Assessments for Transitions: Integrated and Sustainable Solutions for
Energy) model is another application of EMA, focussing on the transition to sustainable mobility systems
(Moallemi & Köhler, 2021). Similarly to TMIP-EMAT, the MATISSE model uses exploratory modelling
to navigate uncertainties in the future of mobility. However, the two models differ in their scope and
modelling approach, with the MATISSE model focussing specifically on sustainable mobility transitions,
while TMIP-EMAT is designed for a broader range of transportation modelling applications.

2.6. Mobility Modelling in The Netherlands
Mobility refers to the movement of people or goods from one place to another, encompassing various

modes of transportation such as public transportation, private vehicles, walking, and cycling. Mobility policy,
in turn, refers to the set of strategies, regulations, and initiatives implemented by governments and relevant
stakeholders to shape and manage transportation systems, promote sustainable mobility, and address
societal needs and challenges in transportation infrastructure, accessibility, and environmental impact.

The Netherlands has a long history of advanced mobility modelling. This reflects its dense population,
extensive transportation infrastructure, and commitment to sustainable mobility. The most significant
examples of this modelling are the Dutch National Model System (LMS) and the Nederlands Regionaal Model
(NRM) (Rijkswaterstaat, 2023).
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The Dutch National Model System (LMS) & the Nederlands Regionaal Model (NRM)
The LMS and NRM are integrated transportation model systems that allow for comprehensive simulation

of passenger and freight transportation activities in all modes of transport (Rijkswaterstaat, 2023). The model
systems integrate various submodels to represent diverse aspects of the transportation system, from land
use patterns and transport demand to the operation of transportation networks. These models are used to
provide insight into the consequences of spatial-economic developments for mobility, the effects of policy
measures on mobility, and to provide input for environmental studies and cost-benefit analyses.

The LMS and NRM are comprehensive tools that have been instrumental in shaping transport policies
in the Netherlands. They allow the analysis of a broad range of transportation policies and plans,
including investments in infrastructure, fare policies, and environmental regulations. They have also been
used to evaluate the potential impacts of new technologies and innovations in the transportation sector
(Rijkswaterstaat, 2023).

The LMS and NRM comprise several interconnected models that simulate distinct aspects of the
transportation system. These include a base year matrix, which provides the basis for the model
calculations; a spatial distribution model, which distributes the growth in mobility over the various origins
and destinations; a modal split model, which divides the total number of trips between different modes
of transport; and an assignment model, which assigns the trips to the network. These components work
together to simulate the effects of various factors on mobility, providing a comprehensive understanding of
the transportation system (Rijkswaterstaat, 2023).

In recent years, transportation modelling has been evolving to cope with increasingly complex and
uncertain transportation futures. Factors such as the advent of autonomous vehicles, shared mobility
services, and other technological innovations pose new challenges and opportunities for transportation
planning and policy (Rijkswaterstaat, 2023).

The LMS and NRM have undergone several updates and enhancements to address these challenges.
These include the development of a new model for the prediction of car ownership, the introduction of a
new model for the prediction of bicycle use, the improvement of the freight model, the enhancement of the
public transport model, the refinement of the model for the prediction of car use, and the improvement of
the data and methods used for the calibration and validation of the models (Rijkswaterstaat, 2023).

Furthermore, the imperative of sustainability, as underscored by the UN Sustainable Development
Goals, has forced a fundamental rethinking of transportation systems and their impacts on society and the
environment. This rethinking is not only about reducing emissions or improving efficiency, but also about
aligning transportation policies with broader societal goals such as social equity and the Rights of Nature. It
calls for a change to a life-centred paradigm, where the health and well-being of all forms of life are considered
in decision making processes (Phillips & Reichart, 2000).

This shift in perspective has led to a growing emphasis on models that can capture the interdependencies
between transportation, land use, economy, and environment and that can facilitate the exploration of
alternative futures and the evaluation of robust, adaptive strategies. These models are not just tools for
prediction, but also instruments for envisioning and shaping a more sustainable, equitable, and life-affirming
future (Rijkswaterstaat, 2023).

2.7. Integrating Uncertainty Methods with Traditional Transport Models
It is important to emphasize that frameworks such as RDM, DAPP, and EMA/MORO are not in competition

with traditional transport modeling approaches, but rather complement them. Traditional transport
forecasting models remain invaluable for detailed analysis of travel demand and network performance
under assumed conditions (Rijkswaterstaat, 2023). Such models typically operate within a predict-then-act
paradigm, which is well-suited for predictable or moderately uncertain futures. However, when facing deep
uncertainty, reliance on one or a few forecast scenarios can create a false sense of security or lead to plans
that are ill-prepared for surprises (Lempert et al., 2003).

Deep uncertainty methods such as EMA, RDM, and DAPP can augment and extend the insights provided
by traditional models like LMS. Rather than replacing the LMS or similar tools, these methods integrate
them into a broader exploratory analysis. Kwakkel et al. (2010b) illustrate this kind of approach in an
adaptive strategic planning study for airport infrastructure, where a transport model was used in an iterative
framework to evaluate options under numerous scenarios.

Crucially, each approach contributes unique value to the decision process. RDM provides a clear analytic
process for stress-testing policies and identifying their failure conditions, informing the selection or design
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of adaptive pathways. DAPP (and related adaptive planning methods) supplies a framework for sequencing
actions over time, ensuring that plans remain flexible and adjustable as the world evolves. EMA offers the
computational experimentation platform to systematically evaluate many what-if scenarios, while MORO
adds an automated search capability to identify promising policy candidates that might not be apparent
through manual exploration. Meanwhile, detailed sector models like LMS contribute domain-specific
realism and credibility to ensure that any strategy deemed “robust” is grounded in a realistic representation
of traveler behavior and network dynamics.

2.8. Navigating Political Considerations in EMA Integration
Integrating EMA into the policy-making process requires careful attention to political considerations.

Policymakers must navigate power dynamics, competing interests, and policy agendas to ensure the effective
incorporation of EMA and the consideration of its results in policy decisions (Kwakkel et al., 2010a).

Transparency and inclusiveness are key principles for managing political considerations. Policymakers
should strive to be transparent in their decision-making processes, providing access to information, and
meaningfully involving stakeholders. Inclusiveness ensures that a wide range of perspectives are taken into
account, avoiding undue influence from specific interest groups and fostering more legitimate policy choices
(Lempert et al., 2003).

Building political support for EMA requires effectively communicating its benefits and value in addressing
deep uncertainty. Policymakers should actively communicate the advantages of EMA to colleagues,
superiors, and the public. Capacity-building activities, such as training workshops and knowledge-sharing
initiatives, could be used to enhance policymakers’ understanding of EMA and its application in policy
contexts. By demonstrating the positive impact of EMA on policy outcomes, policy makers can foster a culture
of evidence-based decision making and encourage its widespread adoption.

Navigating political considerations also involves addressing potential challenges, including resistance to
change, conflicting interests, and limited resources. Strong leadership, effective communication, and the
ability to build coalitions and consensus are essential to overcome these challenges. Policymakers should
assess the political feasibility of the policy options identified through EMA, considering broader policy
contexts, public opinion, and institutional constraints. By aligning EMA with political realities, policymakers
can increase the likelihood of successfully integrating it into the policy making process.

8



3
Model Setup

This chapter outlines the research methodology, focusing on the development and application of a
simplified model of the Dutch passenger rail system. The model integrates an elasticity-based demand logic
with time-series trend forecasting, and employs machine-learning-assisted analysis of results. This unified
modelling approach serves as a proof-of-concept for the potential benefits of EMA in this domain. The
chapter details the steps involved in the model development and analysis, including scenario design, data
requirements, and model evaluation metrics.

3.1. Model Input
Data sources, data limitations, and the raw data itself can be found in Appendix H.

3.1.1. Elasticity Parameters
Elasticity parameters form the behavioral core of the model. They quantify how rail travel demand

responds to changes in various explanatory variables and are essential for simulating realistic demand shifts
under different policy and scenario conditions.

All elasticity values used in this study originate from the Netherlands Institute for Transport Policy
Analysis (KiM). These values were pre-processed from raw CSV files into a structured format compatible with
the EMA Workbench. Within the model, they are applied endogenously: when scenario inputs change—such
as an increase in fuel prices or road congestion—elasticity values determine the proportional effect on train
demand. For instance, positive elasticities for fuel cost and congestion imply that, in scenarios where both
increase, rail demand would correspondingly rise.

The elasticity framework covers a wide range of socioeconomic and infrastructural variables. Each
elasticity captures the marginal effect of a 1% change in one input variable on train demand. These factors
are enumerated in Section 3.1.2.

Elasticities are held static over the simulation horizon due to the absence of robust empirical evidence
on their long-term evolution. While behavioral responses may change over time as societal preferences shift,
keeping elasticities fixed allows the analysis to focus on structural uncertainties and policy impacts.

Table 3.1 below presents the elasticity values used in this study, along with the explanatory factors over
the period 2020–2026.
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Train 2020-2026 Parameter Development Elasticities Effect on Traveled Distance
Explanatory Variables Reference (BR) Project (PS) LMS Reference (BR) Project (PS)
Students 10.5% 10.5% 0.23 2.5% 2.5%
Residents 3.8% 3.8% 1.38 5.3% 5.3%
Jobs 3.1% 3.1% 0.29 0.9% 0.9%
Income 4.3% 2.3% 0.65 2.7% 1.5%
Car Ownership 6.8% 6.8% -0.02 -0.2% -0.2%
Schiphol Passengers 4.6% 4.6% 0.05 0.2% 0.2%
Congestion 31.2% 26.8% 0.03 0.9% 0.8%
Fuel Costs 1.3% 1.3% 0.11 0.1% 0.1%
Train Fare 0.0% 0.0% -0.63 0.0% 0.0%
Train Quality 10.9% 0.0% 0.35 3.8% 0.0%
Total Elasticities N.a. N.a. N.a. 17.4% 11.6%
Total incl. Behavioral Adjustment N.a. N.a. N.a. 6.7% 1.3%

Table 3.1: Elasticities and the development of explanatory factors for train usage (in passenger kilometers) for the years 2020-2026. BV
stands for Basisraming or Basic Forecast and PS stands for Pessimistisch or Pessimistic Scenario (KiM, 2021)

Dutch Names English Translation Python Variable LMS Elasticity Description

Studenten Students students 0.23
Number of students in the
Netherlands

Inwoners Residents pop 1.38
Total population in the
Netherlands

Banen Jobs banen 0.29
Number of jobs in the
Netherlands

Inkomen Income inkomen 0.65
Average disposable
income of residents

Autobezit Car Ownership autobezit -0.02
Number of households
owning a car

Schipholpassagiers Schiphol Passengers schiphol 0.05
Number of passengers
traveling to/from Schiphol
Airport

Brandstofkosten Fuel Costs brandstof 0.11
Average fuel costs for car
travel

Treintarief Train Fare price_per_km -0.63 Train ticket cost per km

Table 3.2: Mapping of elasticity names from Dutch to English and Python variables, including LMS Elasticities and descriptions.

3.1.2. Uncertainties
Uncertainties in this study represent factors that are outside the direct control of decision-makers

and are characterized by deep, structural unpredictability. Within the EMA Workbench framework, these
uncertainties are systematically varied to generate large ensembles of plausible future scenarios. By
simulating across this uncertainty space, the model can evaluate how sensitive outcomes are to different
external developments and assess the robustness of policy interventions under a wide range of future
conditions.

The model uses 2019 as the base year for all simulations. This year was selected as the last full pre-COVID
period, representing a “normal” baseline before the disruptions caused by the pandemic. To support the
Prophet forecasting and to validate model behavior, a long-term dataset of Dutch rail usage was compiled.
This includes annual ridership figures, ticket revenue, and other performance metrics of the Dutch Railways
(NS) spanning 1985 through 2021. The historical NS data was used to train Prophet and to ensure the
elasticity-based components produce realistic changes (for example, the elasticity for income can be checked
against how ridership grew with GDP over decades).

The combination of all these uncertainties defines a very large space of possible future conditions. The
EMA approach allows us to sample this space and see how policies fare across many combinations of these
uncertain factors.
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Uncertainties

• Train Trips: Average number of train trips taken per person per year.

• Train Distance: Total distance (km) traveled by train per year.

• Weekday Train Usage and Weekend Train Usage: Train usage rate (%) for Dutch students with
weekday and weekend studentenreisproduct.

• Non-student Train Usage: Train usage rate (%) for people without a studentenreisproduct
(international students and non-students).

• Population: Total population of the Netherlands. Linked to LMS elasticity Inwoners.

• Students: Total number of university students in the Netherlands. Linked to LMS elasticity
Studenten.

• International Students: Total number of international university students in the Netherlands.

• Traffic Participation: Percentage of population without a studentenreisproduct participating
in traffic every day.

• Car Trips Per Day: Average number of car trips taken per person per day.

• Distance Per Car Trip: Average distance (km) per car trip.

• Car CO2 Emissions: Yearly CO2 emissions from cars.

• Jobs: Total number of jobs in the Netherlands. Linked to LMS elasticity Banen.

• Income: Average income in the Netherlands. Linked to LMS elasticity Inkomen.

• Car Ownership: Car ownership rates in the Netherlands. Linked to LMS elasticity Autobezit.

• Schiphol Passengers: Number of passengers traveling through Schiphol Airport. Linked to LMS
elasticity Schipholpassagiers.

• Fuel Costs: Average fuel costs. Linked to LMS elasticity Brandstofkosten.

• Average Distance Per Train Trip: Average distance (km) per train trip.

• €9 Ticket Modifier: Modifier for ticket prices due to a hypothetical €9 monthly subscription.

• €49 Ticket Modifier: Modifier for ticket prices due to a hypothetical €49 monthly subscription.

• Train Capacity: Total train capacity in passenger-kilometers.

• Train Fare: Price charged per kilometer of train travel. Linked to LMS elasticity Treintarief.

• Peak AM Demand Modifier: Percentage of total daily demand that occurs during the AM rush
hour.

• Peak PM Demand Modifier: Percentage of total daily demand that occurs during the PM rush
hour.

• Car Substitution Rate: Percentage of new train trips that were originally car trips.

The uncertainty ranges in this study are defined by applying a uniform variation of ±5% around the yearly
input values projected by Prophet. Prophet forecasts provide the time-evolving baseline for parameters to
ensure that the uncertainty ranges reflect plausible long-term trends. This design allows the model to explore
how small-to-moderate deviations propagate through the system and influence policy outcomes.

For the €9 and €49 ticket modifiers, however, the uncertainty ranges are set specifically to reflect
differences in observed demand effects. The lower bound is based on Germany-wide estimates, while the
upper bound draws from demand increases observed in North Rhine-Westphalia, as detailed in Section 3.3.3.
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This differentiation acknowledges that the impact of such flat-fare subscription policies can vary substantially
by region.

3.1.3. Policy Levers
Levers in the EMA workbench context are akin to policy or strategy choices. These represent decisions or

interventions that decision-makers can adjust. By manipulating these levers, the EMA workbench evaluates
the performance of different policies or strategies across a multitude of scenarios.

The following levers were defined:

1. Free Transit for Students: A binary lever indicating whether all students are given free public transport
(0 = No, maintain free travel for Dutch students and regular fares for international students; 1 = Yes,
implement free travel for all students). This policy, if “on,” removes fare revenue from student travelers
but is expected to boost international student ridership to match Dutch student ridership.

2. General Tariff Adjustment: A continuous lever representing a uniform change in base ticket prices for
everyone. This is expressed as a Euro increase or decrease in fares per fare unit. This lever directly
affects revenue per trip and inversely affects demand through the fare elasticity.

3. Rush Hour Surcharge: An additional charge applied only during peak hours. This lever can be thought
of as either off (no surcharge) or on (a surcharge of a certain Euro amount on top of the base fare for
peak-hour trips). In implementation, a binary or discrete setting was used (e.g., 0 = no surcharge, 0.01
= apply a 1-cent surcharge per fare unit on peak trips). This policy is intended to manage peak demand
and raise extra revenue from rush-hour travelers, potentially shifting some travel to off-peak times.

4. Unlimited Travel Pass Price: The price point of a monthly “free travel” ticket that allows unlimited
train travel. This lever is discrete between €9 and €49 per month for an unlimited off-peak travel card.
A lower price for this pass could greatly encourage people to use trains more (increasing demand) but
yields less revenue per user, while a higher price does the opposite.

Levers

• Free Transit for Students: Indicator for whether free transit is available to all students (0 = no, 1
= yes).

• Train Fare Change: Euro change in the train fare, ranging from -0.25 to 0.25 per fare unit.

• Rush Hour Surcharge: Euro surcharge applied during rush hours, ranging from 0 to 0.25 per
fare unit.

• Unlimited Free Travel Ticket: Indicator for whether a free travel ticket is available (0 = no, 1 =
yes).

• Unlimited Free Travel Ticket Price: Price of the free travel ticket (ranging between €9 and €49).

3.1.4. Data Requirements
The reliability and utility of the modeling in this study are closely tied to the quality, accuracy, and

coverage of the input data. Data was required for both model development and output interpretation. The
primary data categories used in this research are outlined below. Further details can be found in Appendix H.

• Elasticity Parameters: Sourced from the Netherlands Institute for Transport Policy Analysis (KiM),
these values quantify the responsiveness of train travel demand to changes in various explanatory
factors. Accurate and up-to-date elasticity estimates are essential to capture how demand shifts in
response to both policy interventions and external developments. The model incorporates elasticities
related to: student population, residential population, employment, income levels, car ownership, air
passenger flows via Schiphol, road congestion, fuel prices, train fares, and service quality (KiM, 2019,
2021, 2022, 2023a).

• Demographic and socioeconomic Data: To apply the elasticity framework meaningfully, detailed
demographic and socioeconomic data aligned with the variables described above are required. These
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datasets enable the model to project how long-term socioeconomic trends affect baseline travel
demand over time (Centraal Bureau voor de Statistiek, 2021, 2023a, 2023b, 2023c, 2023d, 2023e).

• Historical NS Ridership and Revenue Data: Longitudinal data from Nederlandse Spoorwegen (NS)
covering the period 1985–2021 provide critical context for evaluating historical patterns in train usage.
These data are particularly important for validating the model’s ability to replicate known demand
responses to past fare policies and service adjustments, thereby strengthening the credibility of its
future projections (Nederlandse Spoorwegen, 2023a, 2023b, 2023c).

Given the model’s sensitivity to both structural inputs and behavioral responses, it is crucial that all data
sources are comprehensive, consistent, and as current as possible. Incomplete or misaligned data could
introduce biases or distortions in simulation outcomes, ultimately weakening the robustness of the resulting
policy insights.

3.2. Model Outputs
Model outputs are the key performance indicators optimized in the MORO process. The following section

describes these outputs as model outcomes.

3.2.1. Model Outcomes
Outcomes are the measurable results produced by the model for each combination of uncertainties and

policy levers. They represent the metrics of interest and provide insights into policy performance, trade-offs,
and potential impacts.

1. Annual Train Demand: Measured in passenger-kilometers. This reflects the ridership and is a proxy
for accessibility and mode share. Higher demand is generally desirable for mobility and sustainability
goals (more people using public transport).

2. Revenue: Total ticket revenue per year (in euros), calculated from the demand and fare structure (taking
into account any free travel policies, discounts, or surcharges). This outcome addresses the financial
viability of the policy for the rail operator and the government.

3. CO2 Emissions Reduction: An estimate of the reduction in carbon emissions due to mode shift
from car to train. The logic behind this is explained in Section 3.3.2. A higher value means the
policy contributed more to climate change mitigation. This outcome aligns with climate-action goals,
including Sustainable Development Goal 13.

4. Seat Shortage (Unmet Demand): A count of how many passenger-kilometers (or passenger-trips)
cannot be accommodated due to capacity limits. The logic behind this is explained in Section 3.3.1. A
large seat shortage indicates that the policy would run into infrastructure constraints (crowding, denied
boardings), highlighting a need for capacity expansion or demand management.
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Outcomes

• Total Train Demand: Total demand for train travel.

• Total Revenue: Total revenue generated from train trips.

• Seat Shortage: Shortage in seat capacity to meet demand.

• Additional Trains Required: Number of additional trains required to meet demand.

• CO2 Reduction: Reduction in CO2 emissions due to train travel (compared to car travel).

• Net CO2 Emissions: Net CO2 emissions after accounting for reductions.

• Cost of Free Transit for Dutch Students: Total cost of providing free transit to Dutch students.

• Cost of Free Transit for International Students: Total cost of providing free transit to
international students.

• Cost of Free Travel Ticket: Total cost of providing an unlimited free travel ticket.

3.3. Model Logic
The integrated model represents the Dutch passenger rail system at an aggregate level, capturing essential

dynamics of demand and supply while remaining computationally light for EMA. Rather than building
separate models, the unified model incorporates the core concepts of each approach: elasticity-driven
demand calculations, time-series trend extrapolation, and data-driven analysis. Figure 3.2 provides a
schematic of the model logic. The model is discrete in time, evaluating scenarios for 2024 and specific future
years: 2030, 2040, 2050, 2060, and 2070. Within each simulated year, the model differentiates between daily
rush-hour and off-peak periods to account for peaking characteristics and capacity constraints. This allows
policy measures targeting peak times (such as a rush-hour surcharge) to be represented.

3.3.1. Demand and Capacity Logic
The model calculates annual passenger demand (in passenger-kilometers and trips) based on baseline

travel metrics adjusted by elasticity factors. Starting from the 2019 base values, demand is scaled according to
changes in exogenous factors (population, economic activity, etc.) and policy levers (fares, service offerings).
Elasticity parameters determine the percentage change in rail demand for a 1% change in each factor. These
elasticity-based adjustments are applied for all relevant drivers in each scenario year. The combined effect
produces a projected unconstrained demand for that year under the given conditions. To incorporate daily
peaks, the model divides the annual demand into a notional daily profile. A certain fraction of trips is
allocated to rush-hour periods (reflecting typical Dutch rail usage patterns) (DutchNews.nl, 2023a). If a
rush-hour surcharge policy is in effect, the model applies an additional cost to peak-period trips. This
influences demand: peak trips become more expensive, tempering demand during those hours via the fare
elasticity. Importantly, the model also checks against capacity constraints. Based on 2019 service levels,
a fixed capacity (in terms of available seats per day during rush-hour) is assumed. When the calculated
peak demand exceeds this capacity, the excess is recorded as unserved demand, leading to a seat shortage
outcome. In other words, the model does not assume capacity expansion unless explicitly specified. Instead,
it flags when a policy’s induced demand would outstrip current infrastructure. This demand–supply logic
ensures that each scenario yields not only ridership and revenue outcomes, but also any shortfall due to
capacity limits.

3.3.2. Environmental Impact Logic
The model estimates changes in CO2 emissions based on changes in passenger rail ridership, assuming

partial substitution between rail and car travel. A continuous parameter, called the car substitution rate, was
introduced to reflect uncertainty in how many train trips replace car trips. This parameter varies between
0.1 and 0.5, based on estimates from the Victoria Transport Policy Institute (Litman, 2024). The lower bound
reflects cases where most train trips would otherwise be made using non-car modes or not made at all, while
the upper bound reflects stronger rail-to-car substitution.
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CO2 emissions from car travel are calculated using national averages for emissions per
passenger-kilometer. Rail travel emissions are assumed to be near zero due to the high electrification
of the Dutch rail network and the use of renewable electricity. This allows the model to treat increases in rail
ridership as a net environ- mental benefit, and declines as an increase in emissions.

The model does not consider broader systemic effects such as induced demand or changes in car
ownership. However, uncertainty ranges are also applied to other key assumptions, including the average
number of car trips per person per day, mean trip distance, and car emissions per kilometer, to reflect
variation in travel behavior and vehicle efficiency.

3.3.3. Unlimited Travel Ticket Logic
To estimate the impact of unlimited travel ticket policies within the model, data from the German Federal

Statistical Office was used. Specifically, the model uses ridership data from the 2022 implementation of
the €9 unlimited travel ticket in Germany and its subsequent replacement with the €49 Deutschlandticket.
Both programs offered unrestricted access to regional and local public transportation networks, leading to
significant increases in ridership during their respective periods.

Due to the absence of equivalent programs in the Netherlands at the time of modeling, the German
subscription was used as a proxy to infer potential behavioral responses. However, since the Netherlands
may not be directly comparable to Germany as a whole, two separate cases were used. One case used
aggregate data for Germany as a whole, capturing the average national effect, while the other used regional
data from North Rhine-Westphalia (NRW), which exhibits socioeconomic and spatial characteristics more
closely aligned with those of the Netherlands. The increase in rail ridership observed during the €9 and €49
ticket periods in these regions was translated into input uncertainty ranges for the relevant policy levers in
the model. The observed demand increase under these policy shifts can be seen in Figure 3.1.
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Figure 3.1: Demand response following unlimited travel programs, interpolated from €9 to €49. (Loder et al., 2022a, 2022b; Verband
Deutscher Verkehrsunternehmen, 2022)

3.3.4. Time-Series Trend Extrapolation
Elasticity-based adjustments in the model capture demand responses to known, immediate factors such

as fare changes or policy levers. However, longer-term baseline trends—driven primarily by demographic
shifts and broader socioeconomic changes—also significantly influence travel demand over decades. To
incorporate these macro-scale trends, the model employs a trend extrapolation approach using Facebook’s
open-source forecasting tool, Prophet (Facebook, 2017).

Unlike traditional time-series forecasting applications that rely on richly sampled historical data with
seasonal and cyclical variations, the input data in this case consisted mainly of annual demographic and
socioeconomic estimates. These data generally exhibited smooth, monotonic increases or decreases over
time rather than complex fluctuations. Consequently, Prophet was used primarily as a smoothing and
extrapolation tool to generate plausible projections of key baseline variables at future target years (2030,
2040, 2050, 2060, 2070). This allowed the model to extend the demographic-driven growth trajectories into
the future in a consistent and data-informed manner (Taylor & Letham, 2018).

These smoothed trend projections serve as the evolving baseline inputs within the unified demand model.
Once established, elasticity-based calculations adjust these baselines to incorporate the effects of policy
levers, external uncertainties, and shocks. For example, Prophet provides the macro-level baseline trip
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generation numbers for a given future year, and the elasticity framework then models how demand would
respond to fare changes or other interventions relative to this baseline. This two-tiered approach (trend
forecast + EMA Workbench) enhances the model’s realism by embedding steady long-term demographic
momentum while retaining sensitivity to immediate policy impacts.

3.3.5. Causal Loop Representation of the Model
To visualize the internal logic of the model, Figure 3.2 presents a causal loop diagram (CLD). This diagram

maps the interactions between policy levers, uncertainties, intermediate variables, and system outcomes. It
captures key feedback mechanisms and dependencies embedded in the simulation logic.
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Figure 3.2: Adapted causal loop diagram of the model. This diagram shows the relations between the levers, uncertainties, elasticities,
outcomes, and intermediary variables in the model.

3.3.6. Model Limitations
The model relies on several simplifying assumptions and contains notable limitations:

• Capacity Constraints Not Dynamically Modeled: In the “Balanced” scenario, capacity shortages are
minimized, while in the “Unrestrained” scenario, they are ignored. However, dynamic congestion
effects, like disuse due to overcrowding, are not modeled.
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• No Explicit Budget Constraint: Policy combinations are not limited by a budget or subsidy ceiling. The
fiscal feasibility of each scenario is assessed via outcome variables.

• Simplified Modal Substitution: The environmental impact logic assumes that between 10% and 50%
of new train trips would’ve previously been private car trips (Litman, 2024). Other modes are excluded,
potentially overestimating the net CO2 impact.

• No Behavioral Adaptation Over Time: The elasticity values are static and do not reflect changing
traveler preferences or habits across decades.
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4
Experimental Setup

With the model structure defined and input data prepared, an experimental design was implemented
to explore a wide variety of futures and evaluate passenger rail policy performance under deep uncertainty.
The EMA Workbench was used to systematically vary uncertainties and policy levers, combining exploratory
scenario analysis with multi-objective optimization. This chapter describes the experimental setup in detail,
including the configuration of uncertainties, the multi-objective robust optimization (MORO) approach, the
definition of problem formulations, and the post-processing and validation steps.

4.1. Experimental Design and Problem Formulations
For each prediction year (2024, 2030, 2040, 2050, 2060, 2070), the simulation model was initialized with

year-specific baseline inputs. These were generated using Prophet time-series forecasting trained on Dutch
historical data (1985–2021), providing projected baselines for variables such as population, income, fuel
costs, and transport demand. Uncertainties were defined as ±5% ranges around these projections to capture
plausible near-term variability. For the 9 and 49 ticket modifiers, ranges were set based on empirically
observed demand effects, with the lower bound reflecting Germany-wide impacts and the upper bound
reflecting North Rhine-Westphalia estimates, as explained in Section 3.3.3.

The experimental design included one optimization formulation and three filters, each defined by
different policy priorities. These are summarized in Table 5.1, which shows which outcomes were set to
maximize or minimize in each formulation. The “Balanced” formulation aimed to maximize demand,
revenue, and CO2 reduction while minimizing capacity shortages. The “Unrestrained Balanced” filter
excluded capacity constraints from the Balanced Formulation, focusing purely on maximizing the three
primary outcomes. The “Max Ridership” and “Max Profit” filters targeted only demand or revenue,
respectively, to explore single-objective extremes. These setups allowed the analysis to examine both
integrated policy trade-offs and objective-specific frontier cases.

Problem Formulation Demand Revenue CO2 Reduction Capacity Shortage
Balanced MAX MAX MAX MIN

Unrestrained Balanced MAX MAX MAX -
Max Ridership MAX - - -

Max Profit - MAX - -

Table 4.1: Problem Formulation Setup

4.2. Multi-Objective Robust Optimization Setup
The core of the experimental setup is a Multi-Objective Robust Optimization (MORO) process, designed

to search for policy lever combinations that achieve Pareto-optimal trade-offs among the chosen objectives
while accounting for uncertainty. In MORO, each candidate policy is evaluated across a spread of future
scenarios (sampling from the uncertainty ranges) to assess its robustness, and a multi-objective evolutionary
algorithm (MOEA) is used to evolve a set of non-dominated (Pareto-efficient) solutions. This approach
yields a robust Pareto front of policies: a frontier of options where improving any one objective would
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worsen at least one other, and all are vetted for performance under multiple scenarios rather than a single
future. Decision-makers can use this Pareto front to understand trade-offs and identify policies that balance
priorities while remaining resilient to uncertainty. Given the deeply uncertain context of long-term rail
planning, MORO provides a systematic method to discover robust policy strategies not easily identifiable
through manual scenario analysis.

The MORO search was implemented using the ε-NSGA-II algorithm available in the open-source EMA
Workbench for Python. ε-NSGA-II, a variant of the well-known NSGA-II multi-objective evolutionary
algorithm, incorporates ε-dominance archiving (i.e., maintaining an archive of non-dominated solutions
with a minimum resolution ε for each objective to ensure diversity along the Pareto front).

Each optimization run corresponded to a single year and policy formulation configuration (e.g., a separate
optimization for the year 2030 under the Balanced Formulation, another for 2030 under the Max Ridership
Filter, and so on for each year from 2024–2070). In each run, the MOEA evolved a population of candidate
policy solutions over many generations, with a budget of n f e = 100,000 model evaluations per run. This
budget allowed the algorithm to evaluate the objective performance of 100,000 candidate solutions (each
representing a specific combination of policy lever settings) over the course of the evolutionary search.

4.2.1. Uncertainty Scenarios and Policy Evaluation
To assess policy robustness under deep uncertainty, each candidate policy was evaluated over a diverse

ensemble of 217,464 scenarios, equal to the permutation of policy lever possibilities. Scenario sampling was
conducted using Latin Hypercube Sampling to ensure stratified coverage across the uncertainty space.

To mitigate stochastic effects from initial population seeding and evolutionary dynamics, each run was
independently repeated three times with distinct random seeds. The resulting Pareto-optimal archives were
merged and deduplicated based on lever configurations to form a consolidated master archive for robustness
scoring and post-processing.

4.2.2. Calibration of ε Values
During the search, the MOEA maintained an archive of non-dominated solutions under ε-dominance.

The choice of ε values (one per objective) was critical, as these determined the resolution of the Pareto
front approximation. Instead of static ε values, adaptive, outcome-specific values were used, tuned to
each objective’s scale and distribution. Prior to each optimization run, preliminary exploratory sampling
was performed to calibrate ε settings. A broad ensemble of random simulations (∼100 random policies
evaluated under 100 random scenarios, yielding ∼10,000 experiments) was used to estimate the outcome
spread. The 1st and 99th percentile values for each objective were recorded, treating the 98% interval as the
effective outcome range, excluding extreme outliers. Each ε was then set as a fraction of this range, ensuring
approximately 100–200 potential ε-interval “steps” would span the interval. For example, if projected
demand ranged from 50 to 150 billion passenger-km, an ε on the order of 1 billion passenger-km was
applied. Logarithmic scaling was applied in cases of highly skewed distributions to avoid overly coarse or
fine resolution across ranges.

4.2.3. Convergence Monitoring
The algorithm’s progress was tracked using the ε-progress metric, measuring improvements in the Pareto

front over time in terms of ε resolution. At each generation, if no solution extended the Pareto front beyond
the current archive by at least one ε on any objective, ε-progress was recorded as zero. As optimization
proceeded, ε-progress typically declined; when it dropped below a small threshold over a sustained number
of generations, the search was considered converged. A criterion was set such that if the Pareto front did
not expand by more than ∼1ε in any objective for 50 consecutive generations, convergence was assumed.
In some cases of slow convergence, additional evaluations or follow-up runs with higher evaluation budgets
were considered.

Full details on ε values and convergence diagnostics are provided in Appendix B, which includes tables
listing the actual ε values used for each objective in each year’s run, as well as plots of ε-progress and other
relevant metrics.

4.2.4. Robustness Scoring Using Wald’s Criterion
To interpret the robustness of each Pareto-optimal policy within the archive, Wald’s maximin criterion was

applied. In this context, robustness is defined as the ability of a policy to maintain acceptable performance
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across all objectives, even under the most adverse conditions. Rather than optimizing for the best-case or
average performance, Wald’s criterion focuses on minimizing vulnerability to poor outcomes.

Formally, for each policy in the Pareto archive, the outcomes across all objectives were normalized to
the [0, 1] range using the minimum and maximum values observed in the archive for each objective. This
normalization ensured comparability across objectives with different scales. The Wald score Wi for policy i
was then calculated as:

Wi = min
j

(
fi j − f min

j

f max
j − f min

j

)
(4.1)

where fi j is the performance of policy i on objective j , and f min
j and f max

j are the minimum and

maximum observed values for objective j across all policies in the archive. This score represents the policy’s
worst normalized performance across all objectives (Wald, 1950).

The rationale for using Wald’s criterion is that it provides a conservative and risk-averse robustness metric,
prioritizing solutions that avoid catastrophic underperformance in any objective. Policies with high Wald
scores are those that perform consistently well across all criteria, making them attractive options in contexts
of deep uncertainty where trade-offs are inevitable but failure in any one area is unacceptable.

This robustness metric was used to rank and interpret the Pareto-optimal solutions, providing
decision-makers with a clear and intuitive indicator of worst-case resilience across objectives.

4.3. Pathways Calculation
To complement the year-specific robust optimization, a policy pathways analysis was conducted to

explore how adaptive strategies could evolve over the full 2024–2070 horizon. The objective was to generate
plausible, incrementally implementable sequences of policy decisions that perform well across multiple
criteria.

4.3.1. Selecting Robust and Diverse Policies
The analysis began by identifying Pareto-optimal policy sets for each simulation year, based on key

outcome metrics. To further narrow the set, Wald’s maximin robustness criterion was applied.1 The top
10% of policies per year were retained.

To ensure diversity among the retained policies, hypervolume contribution was calculated using a
random sample of 30 policies per year. This metric quantifies how much each policy adds to the overall
volume of objective space covered by the set. The 20 policies with the highest contributions were selected to
form the nodes of the transition graph, representing the most diverse and robust trade-offs available.

4.3.2. Constructing Adaptive Pathways
The retained policy sets were linked across years using a directed graph, where nodes represent specific

policies and edges represent transitions to future-year policies. Transition costs were calculated using
a custom function that penalized large jumps in continuous levers (e.g., fare or surcharge levels) and
reversals in categorical choices (e.g., withdrawing free student transit). This cost structure encoded feasibility
constraints and discouraged unrealistic shifts in policy.

Using this graph, 100 adaptive policy pathways were generated via Monte Carlo sampling. Each pathway
started from a 2024 policy and proceeded year by year by probabilistically selecting transitions with a
preference for lower-cost edges. This approach captured the uncertainty and flexibility needed for long-term
policy design, without assuming perfect foresight or fixed sequences.

4.3.3. Example Visualization and Interpretation
Figure 4.1 presents a stylized example of the transition graph and adaptive pathways. For visual clarity,

this figure includes only the top 1.5% of policy sets and one Monte Carlo pathway per 2024 starting point. In
contrast, the full analysis used the top 10% of policies and 100 pathways to assess robustness across the full
horizon.

Notably, the number of policy sets in 2070 is smaller than in 2024. This is because fewer 2070 policies were
retained in the top 1.5% due to lower Wald scores. This reflects an important dynamic: as uncertainty grows

1Wald’s criterion evaluates each policy by its worst-case performance across normalized outcomes. The policy’s robustness score is the
best among these worst-case performances.
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over time, fewer policies remain robust across all objectives, leading to a thinner Pareto front and reduced
diversity. This temporal asymmetry is a natural consequence of deep uncertainty and is handled explicitly in
the pathway analysis.

Edges in the figure reflect feasible transitions between years, colored lines show sampled pathways, and
node positions are determined sequentially. This visual summary highlights the branching nature of robust
long-term strategies under uncertainty.
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Figure 4.1: An illustrative transition graph showing policy trajectories over time. Nodes represent selected policy sets; gray edges
indicate feasible transitions (weighted by transition cost), and colored lines indicate sampled Monte Carlo pathways. For clarity, only

the top 1.5% of policy sets and one path per 2024 policy are shown.
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5
MORO Results (2030)

Using the unified model, a large ensemble of simulations was run for 2024, 2030, 2040, 2050, 2060, and
2070, combining diverse uncertainty realizations with a wide range of policy lever settings. Using EMA
Workbench’s optimization functionality, the problem was treated as a multi-objective robust optimization
(MORO) for a given year. The policy results are clustered to highlight distinct strategies and to note the
top-performing policies. The results for 2030 are discussed in this chapter, while the results for other years
can be found in Appendix F.

To guide the analysis, a set of representative problem formulations was defined. Each formulation
prioritizes different policy objectives, such as maximizing demand, revenue, or emissions reductions, and
serves as a benchmark for evaluating trade-offs. Table 5.1 summarizes the design of these formulations and
filters based on their optimization targets.

Problem Formulation Demand Revenue CO2 Reduction Capacity Shortage
Balanced MAX MAX MAX MIN

Unrestrained Balanced MAX MAX MAX -
Max Ridership MAX - - -

Max Profit - MAX - -

Table 5.1: Problem Formulation Setup

For each of the problem formulations for each year, a set of Pareto-optimal policy configurations was
found. In essence, this search attempts to find policies that are non-dominated – meaning no other policy
is strictly better in all objectives. The result is an approximation of the Pareto front of trade-offs, which is
useful for understanding the extremes and compromises. For example, one extreme solution on the Pareto
front might be the “maximize ridership at all costs” policy (very high demand, low revenue), while another
is the “maximize revenue” policy (high revenue, low demand), and points in between represent different
balances. The algorithm was run with a high number of iterations (tens of thousands of model evaluations)
and converged when improvements became marginal. Appendix B provides convergence specifics.

The results for 2030 are discussed below. Results for other years can be found in Appendix F.

5.1. Balanced Formulation 2030
Figure 5.1 presents two views of the 2030 Balanced Formulation, in which policies were designed to

optimize ridership, revenue, and emissions outcomes while minimizing capacity shortages. Rather than
examining outcomes directly, these visualizations highlight how different policies are configured in terms
of their underlying lever settings—shedding light on what types of interventions tend to dominate among
high-performing strategies.
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5.1. Balanced Formulation 2030 R.W. Evans
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(a) Clustered policies based on lever settings for the 2030 Balanced
Formulation.
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(b) Top 10% performing policies based on lever settings in 2030 for the
Balanced Formulation.

Figure 5.1: The 2030 results for the Balanced Formulation based on lever settings.

The left panel (Figure 5.1a) shows a clustering of all simulated policies based on their lever configurations.
Each line represents a unique policy, and color denotes cluster membership. From this, several distinct policy
archetypes emerge. For instance, one cluster is characterized by high levels of fare subsidy (e.g., free student
transit or free travel tickets), while others emphasize pricing levers such as tariff increases or rush-hour
surcharges. These groupings reveal that policies naturally fall into a limited number of strategic categories,
each employing different combinations of interventions to address the shared objectives.

The right panel (Figure 5.1b) displays the top 10% of 2030 policy sets by Wald robustness score
(highlighted in red). These high-performing policies exhibit consistent lever-setting patterns. None of the
top policies offer free transit for students, and all apply a moderate base fare reduction of approximately
€0.10 per travel unit. A rush-hour surcharge is applied in every case, typically set around €0.15 per travel unit,
indicating a widespread use of temporal price differentiation to manage peak demand.

In addition, all of the top-performing policies activate the free travel ticket lever, offering a flat-rate
monthly ticket. The price of this ticket consistently clusters around €30, suggesting that robust policies tend
to make multi-ride or subscription options available but still require partial cost recovery.

These lever-setting patterns indicate a strategic blend of moderate fare incentives and targeted pricing
mechanisms. Rather than adopting extreme or populist options—like entirely free public transit—robust
strategies favor subtle reductions in marginal trip costs, supplemented by optional flat-rate products and
congestion pricing. This balanced approach supports ridership growth while maintaining financial and
operational viability under capacity constraints and long-term uncertainty.
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(b) Outcomes associated with the top 10% performing policies in 2030 for
the Balanced Formulation.

Figure 5.2: The 2030 results for the Balanced Formulation based on outcomes.

Figure 5.2 shows the outcomes associated with the levers. The right panel isolates the top 10% of policies
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5.2. Unrestrained Balanced Filter 2030 R.W. Evans

based on their Wald’s maximin criterion. These robust policies demonstrate markedly consistent outcomes:
they cluster tightly in the mid-to-high range of demand, revenue, and CO2 reduction while minimizing
shortage. These results show a balancing act between fiscal sustainability and transit accessibility. Notably,
none of these top-performing policies accept severe trade-offs on any single dimension, which highlights the
conservative nature of the robustness metric.

5.2. Unrestrained Balanced Filter 2030
Figure 5.3 presents two visualizations of policy lever settings for the Unrestrained Balanced Filter in

2030. Unlike the previous “Balanced” case, this filter removes capacity constraints, allowing demand to grow
without triggering seat shortages. Figure 5.3 does not show model outcomes directly, but instead focuses on
the underlying lever configurations to reveal which emerged as most effective.
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(a) Clustered policies for the 2030 Unrestrained Balanced Filter.
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(b) Top 10% performing policies based on lever settings in 2030 for the
Unrestrained Balanced Filter.

Figure 5.3: The 2030 results for the Unrestrained Balanced Filter.

In Figure 5.3a, the full set of simulated policies under the Unrestrained Balanced Filter is clustered
by lever similarity. Surprisingly, the resulting clusters are nearly identical in structure to those of the
capacity-constrained (balanced) formulation. The same basic lever-setting archetypes reappear, including
policies with modest fare changes, consistent activation of the monthly free travel ticket, and moderate use
of peak-period surcharges.

Figure 5.3b highlights the top 10% of policies based on their combined ridership and revenue scores, again
using Wald’s maximin robustness criterion. Their lever settings closely mirror those seen in the Balanced
Formulation: free transit for students is avoided, base fares are reduced slightly, rush-hour surcharges are
applied consistently, and monthly free travel tickets are priced around €30. These patterns underscore a key
finding: relaxing the capacity constraint by removing the shortage penalty did not significantly change which
policies were most robust in this model.

Together, these results suggest that the model’s sensitivity to capacity constraints was relatively limited
in this experiment. While one might expect the absence of capacity penalties to encourage more aggressive
demand stimulation, the most robust policies remained cautious and balanced. This implies that, at least in
the 2030 horizon explored here, infrastructure expansion alone may not dramatically alter the structure of
optimal transport policies. Instead, targeted, hybrid strategies continue to perform best, even when physical
limits are relaxed.

5.3. Max Revenue Filter 2030
Figure 5.4 presents the policy lever configurations for the Max Revenue Filter in 2030. Unlike previous

problem formulations that balanced multiple objectives, this case is focused solely on maximizing fare
revenue.
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5.4. Max Demand Filter 2030 R.W. Evans
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Figure 5.4: Outcome for the 2030 Max Revenue Filter. This figure shows that the Max Revenue Filter has one optimal solution, which is
to slightly increase ticket prices by 0.05 EUR per travel unit and implement an aggressive rush hour surcharge of 0.25 EUR per travel
unit. Since the Max Revenue Filter has only one optimal solution, the range of optimal outcomes, as indicated by the numbers at the

top and bottom of the y-axes, is the same.

Figure 5.4 shows the result of solely maximizing fare revenue. Unlike previous problem formulations that
yielded diverse policy clusters, here all simulations converge on the same lever configuration where ticket
prices are slightly increased and an aggressive rush hour surcharge is implemented. This means the Max
Revenue Filter suggests:

1. Not offering free travel for all (non-Dutch) students.

2. Increasing ticket cost by 5 cents per travel unit, which is approximately a 20% increase in ticket prices
for the average distance travelled.

3. Implementing a steep rush hour surcharge of 25 cents per travel unit. This is effectively a 100% increase
in ticket price during the rush hour.

4. Not offering an unlimited travel ticket. Since the travel ticket is not offered, the price of the travel ticket
on the far right axis is irrelevant.

5.4. Max Demand Filter 2030
The Max Demand Filter focuses exclusively on maximizing passenger volume, without consideration

for fare revenue. In practice, the model identifies a single optimal strategy: the complete elimination of
fares across all user groups. By removing all price barriers, the model achieves the highest possible level
of ridership within its defined constraints.

Figure 5.5 shows the result of this policy experiment. Unlike the Balanced Formulations that yielded
diverse policy clusters, here all simulations converge on the same lever configuration. Every top-performing
policy sets fares to zero (or the lowest allowed values), offers full travel ticket subsidies, and eliminates
rush-hour surcharges. This reflects the logical outcome of a ridership-maximization objective: when revenue
is not a constraint, the most effective way to boost ridership is to make travel free for everyone.

All top policies share the same settings, confirming that under this objective, there is little room for
variation: any reintroduction of fares would reduce ridership and thus be suboptimal.
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5.4. Max Demand Filter 2030 R.W. Evans

Figure 5.5: Clustered policies for the 2030 Max Demand Filter. This figure shows that the Max Demand Filter has one optimal solution,
which is to make all public transit free for everyone. Since the Max Demand Filter has only one optimal solution, the range of optimal

outcomes, as indicated by the numbers at the top and bottom of the y-axes, is the same.

This filter highlights an important trade-off. While extremely high ridership can be achieved through
fare elimination, this strategy generates no fare revenue and would require significant external subsidy to be
financially viable. The Max Demand Filter therefore illustrates the upper bound of what is possible in terms
of mode shift, but also underscores the fiscal limitations of such an approach in the absence of alternative
funding streams.

Additionally, this scenario would almost certainly result in severe overcrowding on existing infrastructure,
particularly during peak hours. In the real world, such crowding would likely reduce demand due to
discomfort, delays, or unmet service expectations. However, a limitation of the current model is that it does
not capture this type of feedback: demand remains unaffected by seat shortages or congestion. As such,
the demand estimates presented here should be interpreted as an idealized upper bound, rather than a fully
realistic forecast under capacity-constrained conditions.
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6
Balanced Policy Pathways (2024–2070)

Thus far, the analysis has treated the year 2030 as a static end-point for evaluating policy impacts.
However, mobility policies have consequences that unfold over decades, and the uncertainties themselves
evolve over time. This section extends the exploration to the 2024–2070 period to examine how robust policy
strategies can be designed as dynamic pathways rather than one-off decisions. Instead of implementing a
fixed policy in 2030 and holding it constant, consideration is given to how policies might adapt or shift over
time in response to changing conditions, and what implications this has for long-term performance.

The investigation begins with how an optimal or balanced policy mix might shift as the timeline
progresses. Using multi-objective analyses at future time slices, it is found that while the general shape
of the ridership-revenue trade-off persists in each period, the composition of Pareto-efficient policies can
change over time. In the near term (around 2030), policies that aggressively boost ridership stand out
as Pareto-efficient because they capitalize on latent demand early. Over the longer term, however, if
such policies are maintained indefinitely, they will likely be unsustainable without adequate infrastructural
investment to match the growing population.

These shifts do not suggest that every strategy should follow the same path. Instead, they highlight
the value of staying flexible and adjusting fare policy as conditions change. The idea aligns with Dynamic
Adaptive Policy Pathways, which help planners prepare for different possible futures by identifying signs that
a policy may need to change.

This chapter examines the evolution of balanced policy strategies over the long term (2024–2070), under
capacity-constrained conditions (the “With Shortage” case). The goal is to understand how successful
policies adapt over time to maintain a viable balance between ridership and revenue in response to shifting
external conditions—such as demographic growth, fiscal pressures, and evolving user behavior. Since the
results of the Unrestrained Balanced Filter were so similar to the original problem formulation, pathways are
only calculated for the Balanced Formulation.

6.1. Ticket Price Adjustment (2024-2070)
To visualize these dynamics, Figure 6.1 shows the evolution of ticket price adjustments (tariff change)

over time for the 100 sampled policy pathways in the Balanced Formulation. Each line represents one Monte
Carlo-generated trajectory, showing how fare levels are adapted across decades under a different sequence of
lever changes.
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6.2. Rush-Hour Surcharge (2024–2070) R.W. Evans
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Figure 6.1: Policy pathways for ticket price change in the Balanced Formulation. This figure illustrates how much ticket prices are
adjusted per distance travelled over the years.

As seen in Figure 6.1, all 100 policy pathways begin with significant fare reductions, with most simulations
implementing a drop of between 8 and 10 cents per travel unit by 2030. These reductions remain largely
consistent across the following decades. While some fluctuations occur, especially between 2050 and 2070,
the majority of strategies hover in a relatively narrow band, typically between −8 and −10 cents, indicating
long-term fare reductions are a stable and recurring feature of robust policies.

The lack of strong upward trends suggests that increasing base fares is rarely chosen, even as demographic
or fiscal conditions change. Notably, no pathway returns to neutral or positive fare levels by 2070, reinforcing
the interpretation that maintaining affordability is central to long-term success under capacity constraints.

Nevertheless, while base fares remain low, this does not mean pricing is static. As explored in the next
section, many strategies introduce peak pricing through rush-hour surcharges as a complementary measure.
This allows for differentiated pricing without reversing the broader commitment to affordable baseline travel.

6.2. Rush-Hour Surcharge (2024–2070)
Figure 6.2 illustrates the evolution of rush-hour surcharge policies across balanced pathways from 2024

to 2070. Each line represents a distinct policy trajectory, showing how surcharges during peak periods are
introduced, adjusted, or sustained over time.
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Figure 6.2: Policy pathways for rush hour surcharge in the Balanced Formulation. This figure illustrates how much of a surcharge is
imposed per distance travelled during peak hours.

As shown in Figure 6.2, all 100 balanced policy pathways implement a rush-hour surcharge by 2024. The
initial values cluster between 12 and 16 cents per travel unit, indicating a general consensus around modest
peak-period pricing from the outset. This early adoption may reflect a shared recognition of the potential to
manage congestion and raise revenue without politically sensitive increases to base fares.
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6.3. Free Transit Incentives (2024–2070) R.W. Evans

From 2040 onward, a consistent upward trend emerges across most pathways. By 2060, nearly all
strategies impose surcharges above 18 cents, with several exceeding 22 cents. This suggests a gradual but
persistent escalation in peak pricing, likely driven by growing demand pressures and fiscal needs.

The uniform direction of surcharge adjustment implies that, in contrast to more volatile or reversible
levers, rush-hour surcharges function as a ratcheting policy mechanism. Once introduced, they tend to be
intensified rather than reversed. This result highlights rush-hour pricing as a central, adaptable component
of robust fare design. It complements stable base fares by targeting periods of peak demand, providing a
mechanism to balance affordability, revenue generation, and capacity management over time.

6.3. Free Transit Incentives (2024–2070)
Figure 6.3 depicts how free travel ticket policies evolve over time within the balanced strategy set. These

tickets typically represent incentives aimed at boosting ridership through the provision of unlimited monthly
travel at a fixed price.
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(a) Policy pathways for free transit tickets in the Balanced Formulation.
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(b) Policy pathways for free transit ticket price in the Balanced
Formulation.

Figure 6.3: The Unlimited Transit Ticket policy lever vs price in the Balanced Formulation.

In Figure 6.3a, the graph remains at 1.00 across the policy horizon. This means that the unlimited transit
ticket is activated in all 100 policy pathways by 2024 and remains consistently enabled through 2070. This
unbroken activation suggests a strong consensus across balanced strategies regarding the long-term value
of offering an unlimited-use monthly travel pass. Unlike more reactive levers that are toggled in response to
external conditions, this incentive appears to be treated as a foundational component of fare policy design.

However, Figure 6.3b reveals that while the policy is universally active, the monthly price charged for the
ticket varies substantially across pathways. Initial prices in 2024 cluster around €32–€42, but diverge over
time. Some strategies gradually raise the price by 2070, but the range of prices remains relatively consistent
until 2070, which would keep the incentive affordable and attractive for frequent travelers.

The stability in policy activation, combined with flexibility in pricing, points to a deliberate strategy:
rather than removing or suspending the policy in response to changing conditions, planners can instead
fine-tune its generosity by adjusting its cost. This approach allows the unlimited ticket to serve as a persistent
and adaptable ridership tool to balance accessibility and revenue sustainability without undermining the
predictability of the fare structure.

Figure 6.4 shows how policies granting free public transit to students evolve over time in the Balanced
Formulation. Unlike Dutch nationals, who already receive full travel subsidies through the national student
travel scheme, this policy lever likely reflects the extension of similar benefits to EU and international
students, who are currently excluded from the existing arrangement.
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Figure 6.4: Policy pathways for providing free transit to students in the Balanced Formulation.

As Figure 6.4 illustrates, free transit for students is implemented in a minority of balanced policy
pathways. While most strategies refrain from activating this lever altogether, a small subset introduces the
subsidy intermittently, typically for one or two decades at most, before discontinuing it. Only a handful of
trajectories sustain the policy for the full simulation period from 2030 onward.

This sparse and temporary activation pattern contrasts sharply with the consistent adoption seen in
policies such as the unlimited transit ticket. It suggests that student fare exemptions are not regarded as
a core component of long-term fare design under capacity-constrained conditions. The episodic nature
of the student subsidy may reflect tensions between equity objectives and cost-effectiveness. While the
policy aligns with goals of inclusion and long-term ridership development, the budgetary implications of
expanding subsidization from Dutch students to all students may be deemed less justifiable when alternative,
revenue-generating strategies are available.

In short, the student transit policy is not central to the majority of balanced strategies. When used, it
serves as a temporary measure rather than a permanent fixture, highlighting its secondary role in the broader
fare policy mix.
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7
Discussion

This thesis applied a Multi-Objective Robust Optimization (MORO) framework to the problem of
long-term passenger rail forecasting under deep uncertainty. The approach was implemented using a
simplified elasticity-based model of Dutch passenger rail demand, calibrated to current conditions and
historical trends.

7.1. Model Evaluation
The structural simplicity of the model was a deliberate design choice, made to enable rapid evaluation

of thousands of scenarios, which may be infeasible with a more complex model like the full-scale Landelijk
Model Systeem (LMS). This simplification sacrifices granular realism in exchange for feasibility within an
exploratory modelling context. However, this approach had limitations on the outcomes as described in
Section 7.5.

MORO was used to explore and optimize policy levers within this model. A multi-objective evolutionary
algorithm (via the EMA Workbench) searched the policy space. Each candidate policy was evaluated across
an ensemble of future scenarios in each generation. Instead of optimizing for a single forecast, policies
were assessed on their performance over a broad range of plausible futures simultaneously. Over successive
iterations, the evolutionary search identified a set of non-dominated solutions, yielding an approximate
robust Pareto front of policy options. The output of the MORO analysis thus consists of fare policy strategies
where no single strategy is strictly superior on all objectives, highlighting the inherent trade-offs.

This outcome provides a basis for evaluations with a menu of robust policies balancing objectives
differently. This enables decision-makers to apply preferences or risk tolerance when selecting from the
Pareto-optimal set. Critically, the use of MORO allows robustness to be integrated directly into the forecasting
and policy design process. Traditional forecasting modeling alone often calibrate to a single best-estimate
scenario or a small set of what-if cases. In contrast, this model’s evaluation spans thousands of futures,
helping to avoid the pitfall of designing policies that perform optimally in one scenario but poorly in others.

From a model evaluation perspective, this methodology is appropriate for the thesis objectives.
The MORO framework is well-suited to exploratory policy problems requiring balance across multiple
performance criteria under uncertainty. It enabled a proof-of-concept demonstration that even a simplified
model, when applied in an exploratory fashion, can reveal insights that a traditional single-scenario forecast
might miss. The model’s structure, based on elasticities and scenario inputs, captured first-order effects of
policy levers without the overhead of a full demand model. While this meant some nuances were omitted,
calibration and validation against historical data provided confidence that the model’s responses remained
within a reasonable range.

7.2. Simulation Outcomes over 2024–2070
Using the MORO from the EMA Workbench, passenger rail outcomes were simulated under thousands

of scenarios from 2024 to 2070, optimizing fare policy levers for robustness. The key patterns emerging
from these simulations highlight both the potential and the challenges of long-term rail policy under deep
uncertainty. One key insight is that no single static policy dominates across the entire simulation horizon.
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Instead, effective strategies adapt to evolving conditions, balancing multiple objectives such as ridership,
revenue, and emissions.

The simulations consistently revealed a core trade-off between maximizing ridership and preserving
revenue. This tension was particularly visible in the extreme filters. For instance, in the 2030 Max Demand
filter, policies that maximized ridership typically involved aggressive fare reductions or free unlimited travel
passes. These approaches drove sharp increases in passenger volumes and led to considerable reductions
in projected CO2 emissions by facilitating mode shift from car travel—assuming rail’s lower emissions per
passenger-kilometre. However, these same strategies produced steep declines in fare revenue, occasionally
approaching zero under full-subsidy conditions. At the other end of the Pareto front, revenue-maximizing
strategies introduced higher base fares and peak-period surcharges. In 2030, for example, the Max Revenue
filter recommended a 20% increase in base fares and a peak surcharge of approximately 100%. While these
strategies improved financial returns, they tended to suppress demand and eroded associated environmental
benefits.

Neither extreme strategy appeared desirable on its own. This reinforces the analytical value of the
Balanced Formulation, which explicitly targeted high ridership, high revenue, and low emissions while
also avoiding capacity shortages. Within this formulation, the most robust policies repeatedly combined
moderate fare reductions with selective incentives. A recurring feature was the use of unlimited travel tickets
priced around €32–€42 per month, which is likely high enough to retain meaningful revenue, yet low enough
to encourage uptake and stimulate ridership. These were often coupled with modest reductions in base fares
and the addition of peak-hour surcharges to smooth demand. Rather than relying on a single lever, the most
effective strategies consistently employed a hybrid configuration of incentives and controls.

The presence of moderate peak surcharges in robust solutions suggests the importance of managing peak
demand. Without such measures, extremely cheap fares led to capacity shortages during peak periods, with
demand exceeding available seats in many futures. Introducing even a small additional fee for peak-hour
travel tempered excessive rush-hour demand, reducing overcrowding, while generating extra revenue for
reinvestment.

Policy robustness was not limited to the Balanced Formulation. A key finding is that similar combinations
of levers appeared among the top solutions in both the Balanced and Unrestrained formulations. This
suggests that hybrid strategies are not simply artifacts of capacity constraints, but reflect generally
high-performing fare designs under uncertainty. Notably, policies built around full fare elimination were
not robust, even when infrastructure limitations were removed. This outcome underscores the limitations of
blunt instruments and points to the broader advantages of mixed, flexible fare structures.

Simulation outcomes also indicated how optimal policies evolved over time in response to growing
demand. In the near term (2020s–2030s), most robust strategies emphasized ridership growth through fare
reductions and travel passes, taking advantage of initial spare capacity. However, over longer timelines,
cumulative high ridership began to strain the system in many scenarios. By the 2040s and 2050s, if demand
growth continued, previously slack capacity became fully utilized. This is likely due to the fact that capacity
was constant in the model. As discussed in Section 7.5, this meant that the increased population in future
years struggled when using 2019 baseline capacity numbers. To address rising pressure, many robust policies
gradually increased the rush-hour surcharge—holding steady through 2040, then rising to €0.20–€0.25 per
travel unit by 2070 in most pathways (Figure 6.2).

7.3. Policy Implications for Long-Term Fare Strategies
The results of this MORO-based analysis carry several important implications for long-term

transportation policy, particularly regarding fare instruments (such as low-cost travel passes) and the
management of peak demand. Firstly, the analysis provides evidence that fare policy can be a powerful
tool to influence ridership and environmental outcomes. Large-scale fare reductions or subsidies—such
as hypothetical €9 or €49 monthly unlimited travel tickets—have the potential to substantially increase rail
ridership and contribute to climate goals by shifting travelers from cars to trains. Policymakers aiming to
reduce transport sector CO2 emissions or boost public transit use can interpret these findings, reinforced by
real-world examples like Germany’s €9 ticket trial, as proof-of-concept that pricing interventions can induce
major behavioral change.

One clear insight is that fare reductions can be used to increase ridership and reduce emissions,
particularly in the near term. Policies involving monthly unlimited travel passes priced between €32 and
€42 emerged repeatedly in the top-performing policies for the Balanced Formulation in 2030. These passes
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appeared to enable significant ridership gains while avoiding the extreme revenue losses associated with
completely free travel. The results suggest that it is possible to increase demand substantially without fully
eliminating fares, thereby maintaining a stable revenue base.

However, such interventions are not silver bullets; they come with trade-offs and temporal considerations.
Over the long term, sustaining extreme discounts could strain public budgets or rail operator finances unless
accompanied by economic growth or cost reductions elsewhere. Additionally, system capacity would need
to keep pace with increased demand to fully realize environmental benefits. Otherwise, overcrowding could
erode service quality and deter the very ridership that such policies aim to encourage.

One concrete implication is the value of targeted fare policies rather than blunt, across-the-board
measures. For Dutch rail planners, this implies that future fare strategies might involve a menu of products:
a moderately priced “Deutschlandticket”-style pass valid on off-peak services, combined with normal fares
(or a rush hour surcharge) during peak times, for example, could incentivize travel when and where capacity
exists and disincentivize it when the system is strained.

The prominence of the rush-hour surcharge lever in the analysis carries its own policy message: managing
peak demand through pricing should be seriously considered as part of long-term strategy. The findings
support this, as the rush hour surcharge was shown to be effective at mitigating capacity strain during peak
hours, as some travelers shift their trips or forgo marginal peak journeys. Nevertheless, these findings must be
interpreted in light of real-world implementation constraints. The model does not represent differentiated
user groups or institutional arrangements such as employer-funded travel cards. As noted in Section 7.5,
Dutch business commuters with NS Business Cards may be less sensitive to peak pricing, which could weaken
the effectiveness of the rush hour surcharge. There are also distributional concerns. If not accompanied by
compensatory measures, peak surcharges may place disproportionate burdens on low-income travelers who
lack flexibility in travel times. To address these challenges, policymakers may need to design exemptions, to
earmark revenue for reinvestment, or to frame fare changes as part of broader service improvements.

7.4. Reflections on Problem Formulation and Pathway Construction
Although MORO was rerun for each of the four problem formulations, the process effectively boiled

down to a single underlying optimization: the Balanced Formulation. The results for the other formulations
could have been obtained by applying post hoc filters to the Balanced Pareto set, such as selecting solutions
that maximized ridership, revenue, or assumed unrestrained capacity. While rerunning MORO under
different objective combinations added formal structure, from a methodological standpoint, these alternate
formulations functioned as filtered views of the same core results, and filtering the Balanced Pareto set
would’ve yielded the same result with much less computational time.

The construction of adaptive policy pathways remains a more fundamental methodological challenge.
In this study, policy pathways were built heuristically: after selecting the top-performing policies for each
year based on a set of robustness metrics, a penalty-based transition graph was constructed to capture the
difficulty of moving between policy settings over time. Monte Carlo sampling was then used to generate
plausible sequences of policies by traversing this graph with probabilistic transitions that favored smoother
changes. While this approach reflects current practice in adaptive pathway literature, it remains an ad hoc
process that lacks a formal optimization of pathway-level robustness. That is, although individual policies
may be Pareto-efficient in isolation, the resulting sequences are not guaranteed to be globally optimal or
robust across the full time horizon.

This reflects a broader gap in the literature: the identification of robust, adaptive policy pathways
over time is still an open research problem. There is no consensus on how to define or operationalize
pathway-level optimality when multiple objectives, deep uncertainty, and policy inertia must all be taken
into account. Many studies, including this one, rely on rule-based or stochastic sampling approaches to
approximate plausible adaptation sequences, but these methods do not optimize transitions jointly with
policy outcomes.

7.5. Analysis Limitations
While the findings offer valuable insights, several limitations must be acknowledged, stemming from

both model assumptions and the scope of the study. Firstly, the model structure is a simplification
of reality. Demand responses to fare changes were modeled using constant elasticities and aggregate
relationships. In practice, traveler behavior is more complex, with different market segments (commuters,
occasional travelers, tourists) exhibiting varying sensitivities, and extreme fare changes potentially inducing
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qualitatively different behaviors. The assumption of static elasticity across the exploration range may over-
or under-estimate responses to large policy shifts. For example, offering a €9 monthly ticket might generate
effects that an elasticity-based model cannot capture.

A second limitation lies in the treatment of modal competition and emissions. The model assumes that
increased rail ridership results in a proportional reduction in car travel, thereby decreasing CO2 emissions.
This substitution effect is governed by the car substitution rate uncertainty, which varies between 0.1 and
0.5 based on estimates from the Victoria Transport Policy Institute (Litman, 2024). While this provides a
flexible parameter to capture potential mode shift, it remains a stylized simplification. In practice, mode
choice depends on complex behavioral factors such as trip purpose, convenience, travel time, and access
to alternative modes. Moreover, the model assumes fixed emissions factors for avoided car trips, ignoring
possible changes in vehicle technology or energy systems, such as increased adoption of electric vehicles,
which could alter the climate impact of mode shift in later decades. Consequently, the CO2 outcomes in the
model should be interpreted as indicative rather than precise.

Limitations also apply to the policy levers modeled. The focus was on fare price instruments (monthly
flat fares and peak/off-peak price differences), holding other system attributes constant. In reality, service
frequency, network expansion, capacity improvements, and operational changes co-evolve with fare policy.
While a scenario variant with unrestrained capacity was examined, the model did not determine capacity
expansions as an internal outcome of the system. Therefore, capacity was either fixed to 2019 values or
assumed infinite. This means that in later time horizons, especially in the Balanced Formulation, the
optimization effectively attempts to minimize shortage using outdated capacity assumptions, artificially
constraining the system. In reality, sustained demand growth would likely trigger infrastructure investment,
operational adjustments, or behavioral responses, creating an endogenous feedback loop between demand
and capacity. The model’s inability to simulate this feedback loop limits the realism of long-term results and
forces reliance on the Unrestrained Balanced Filter variant, which artificially removes capacity constraints
to explore potential outcomes without shortage penalties. Due to the absence of a dynamic feedback
loop between capacity and demand, the “maximum demand” filter yields only one unrealistic endpoint:
offering 100% free travel. In practice, demand growth would likely lead to congestion effects and declining
service quality which would have a negative feedback on demand. Additionally, the model’s treatment of
the rush-hour surcharge relies on simplified elasticities that do not account for institutional and behavioral
realities. A substantial portion of Dutch rush-hour travelers are business commuters whose tickets are
covered by employers via NS Business Cards, limiting their price sensitivity. Consequently, the model likely
overestimates the ability of peak pricing alone to shift demand.

Equity considerations were also not explicitly modeled. While targeted policies were discussed
qualitatively, the model lacked differentiated passenger classes to assess distributional impacts (e.g., effects
on low-income versus high-income travelers). This omission is noteworthy, as peak surcharges could
negatively affect commuters with no schedule flexibility, while ultra-low fares might disproportionately
benefit frequent travelers. A more comprehensive analysis would include equity as an explicit objective or
at least disaggregate outcomes by group.

In summary, the results should be viewed as insight-generating rather than decision-finalizing. While
this thesis demonstrates the promise of MORO for informing robust rail policies under uncertainty, it also
highlights the need for further modeling and research to address aspects beyond its current scope.

34



8
Conclusions

8.1. Research Questions and Key Findings
At the outset of this research, the following research questions were posed to guide the inquiry into

improving passenger rail forecasting under deep uncertainty using the MORO framework:

1. How can Multi-Objective Robust Optimization be applied to enhance long-term passenger rail demand
forecasting under deep uncertainty, particularly in evaluating fare policy levers?

2. What are the potential impacts of implementing extreme fare interventions on rail ridership, revenue,
and CO2 emissions across a wide range of uncertain future scenarios?

3. How can fare policies be structured or adapted over the 2024–2070 horizon to remain effective in
achieving transportation objectives despite deep uncertainty in future mobility trends?

These questions were addressed through an exploratory modeling and MORO approach, and the findings
of the thesis can be summarized as follows:

(1) MORO’s Role in Improving Forecasting Under Deep Uncertainty
The study demonstrated that a MORO framework can enhance long-term rail demand forecasting and

policy analysis by shifting the focus from point prediction to robust decision exploration. Rather than
producing a single forecast of passenger volumes, the MORO approach generated a rich ensemble of possible
futures and identified fare policy strategies performing well across this ensemble. By incorporating multiple
objectives (ridership, revenue, emissions, etc.) directly into the optimization, the framework provided a more
nuanced picture of potential futures and how various policies might perform under divergent conditions.

MORO enhanced forecasting not by improving precision or predictive accuracy but by broadening
the scope and resilience of planning. It identified which policies were likely to succeed across multiple
plausible futures. This represents a fundamentally different and valuable contribution to planning under
deep uncertainty. Rather than relying on a single scenario, planners can prepare for many. The analysis
revealed, for example, that moderate fare reductions combined with peak management tend to provide
robust strategies across scenarios, whereas policies optimized for a single future can lead to major shortfalls
if reality diverges.

The answer to Research Question 1 is that applying MORO transforms the forecasting exercise into
a robust planning exercise. This can yield insights that improve the ability of decision-makers to craft
policies resilient to a range of uncertainties. This approach complements traditional models like the LMS
by covering a much larger scenario space and highlighting trade-offs, thereby enhancing the adaptability and
defensibility of forecasts used in policy development.

(2) Impacts of Ultra-Low Fares and Peak-Hour Surcharges Under Uncertainty
The analysis found that ultra-low-cost travel passes (such as a €9 or €49 monthly ticket) and peak-hour

surcharges exert profound but contrasting impacts on the rail system, with their effectiveness strongly
dependent on scenario context, though some general patterns were observed.
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A nationwide ultra-low fare ticket can substantially increase ridership, often leading to record-high
passenger-kilometers and significant CO2 emissions reductions by drawing travelers from cars to trains. This
effect appeared robust across almost all futures, with cheaper fares consistently boosting rail usage relative
to baseline. For climate and mobility objectives, this finding is encouraging as a dramatic fare cut increases
rail use.

However, the financial impact of such a policy is substantial as fare revenue drops significantly across
most simulations. Although in some futures, the lost revenue may be partially offset by increased ridership
volumes and a rush hour surcharge. Furthermore, capacity constraints become a limiting factor; under
high-demand scenarios, the model showed that unmet demand would arise without parallel investments
in service expansion. Thus, the ultra-low fare strategy achieves ridership and emissions goals but challenges
revenue stability and capacity management.

By contrast, a rush-hour surcharge policy primarily flattens demand peaks and increases revenue per
trip during peak periods. Simulations indicated that a surcharge reduced peak-period ridership growth (with
some travelers shifting to off-peak or foregoing trips) while modestly increasing daily revenue. By tempering
peak loads, such a surcharge prevents extreme overcrowding scenarios, thereby enhancing system reliability.
The trade-off is that overall ridership is slightly lower than in no-surcharge cases, and the climate benefit from
mode shift is modestly reduced. However, the revenue gain can support service improvements or expansions,
potentially offsetting long-term ridership losses. Additionally, in many simulations, a rush hour surcharge
was supplemented with an equal tariff reduction during off peak hours. This lessens the economic burden of
the rush hour surcharge by further incentivizing people to travel off-peak.

In summary, the answer to Research Question 2 is that a €9/€49-type low fare scheme robustly maximizes
rail usage and environmental benefits across scenarios but undermines financial sustainability, whereas
a peak-hour surcharge bolsters financial and operational sustainability but modestly constrains ridership
growth. Optimal policies may combine elements of both: the analysis suggests coupling a generally low
fare price with a targeted peak charge delivers strong performance. This combined strategy was observed
to maintain high ridership, sustain healthier revenues, and significantly reduce capacity failures, providing a
more balanced outcome under uncertainty.

(3) Designing Adaptive Fare Policies for Effectiveness Over 2024–2070
The thesis findings underscore that fare policies must be adaptive over time to remain effective amid

changing conditions. In response to Research Question 3, the research shows that one-time policy changes
are likely to overshoot or undershoot objectives as external conditions evolve.

Instead, the recommendation is to structure fare policy as a sequence of interventions or as an adaptable
instrument. For instance, the MORO analysis identified that an effective approach for the 2020s might involve
introducing a low-cost travel pass alongside mild peak pricing. Approaching 2030 and beyond, policies can be
re-optimized using emerging data on ridership responses and external trends. By 2060, high demand might
warrant increased rush-hour surcharges to manage crowding and fund expansions. The thesis advocates for a
Dynamic Adaptive Policy Pathways approach, beginning with an initial robust policy and establishing regular
checkpoints for policy review and adjustment.

The MORO results across different decades (2030, 2050, 2070) provide guidance on potential adaptations
under varied scenarios. In practical terms, the answer to Research Question 3 is that fare policies can remain
effective by being flexible and responsive. This approach ensures that as objectives or external circumstances
shift, fare policies can adjust accordingly. Robustness is therefore not a one-time achievement but an ongoing
process. By designing adaptive policies with political and institutional support, Dutch rail planners can
maintain a sustained balance of ridership growth, revenue adequacy, and emissions reduction throughout
2024–2070, even as uncertainties manifest in unexpected ways.

In summary, the thesis answers Research Question 3 by highlighting that a static fare policy is poorly
suited for a 50-year horizon. Instead, an adaptive, feedback-informed strategy is required, and MORO serves
as a valuable tool for guiding those adaptations at each stage.

8.2. Policy Implementation Insights
Based on the exploratory modeling and MORO analysis presented in this thesis, several strategic insights

emerge that may inform fare policy deliberations in the Dutch passenger rail context. These insights are
not intended as fixed prescriptions but rather as evidence-based considerations to support robust, adaptive
policymaking:
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Implement Low-Cost Unlimited Travel Ticket
The model suggests that introducing affordable flat-fare transit passes (in the spirit of Germany’s €49

"Deutschlandticket") could stimulate ridership and support a shift from car to train travel. A possible
approach would be to pilot such a scheme on a limited-time basis, similar to the German trial, and evaluate its
impacts on ridership, revenue, and crowding. If the benefits prove robust and costs remain within acceptable
bounds, policymakers could consider expanding or institutionalizing the program over time.

Introduce a Moderate Peak-Hour Surcharge as Part of Demand Management
To address capacity constraints and provide funding for improvements, policymakers could explore

pricing structures that differentiate between peak and off-peak travel. Simulation results indicate that
implementing a modest rush-hour surcharge may help mitigate peak capacity pressures while improving
financial sustainability (e.g., +50% on base fares for trips starting or ending during weekday peaks). This
measure should be accompanied by clear public communication emphasizing its purpose and revenue
generated from peak pricing should be transparently earmarked for capacity investments, such as additional
trains, staff, or infrastructure upgrades. Many simulations suggest reducing off-peak ticket pricing at the
same time as implementing a rush-hour surcharge. Doing so would lessen the economic burden of the
surcharge and likely increase public acceptability.

Ensure Equity and Accessibility Measures Accompany Fare Changes
Any major fare policy should be evaluated for equity impacts and accompanied by measures protecting

vulnerable groups. Although this research did not explicitly model equity, precedent suggests the necessity
of targeted mitigation. Examples such as Vienna’s discounted annual passes for residents or the UK’s
railcards for youth, seniors, and disabled travelers provide instructive cases. Proactively integrating equity
measures would reduce political backlash and ensure broad-based ridership gains, making fare policies more
sustainable by maintaining public support.

Coordinate Fare Policy with Broader Transport and Climate Policy
Finally, fare policy could be more explicitly linked to overarching transport and climate strategies. If

model results showing CO2 reductions from increased rail ridership hold in practice, it may be appropriate
for climate finance mechanisms to subsidize fare policy reforms. Policymakers could therefore explore
synergies between public transport pricing, modal shift goals, and national or EU-level decarbonization
funding instruments.

8.3. Policy Analyst Insights
While this thesis provides empirical insights into fare policy design, a key contribution lies in

demonstrating how the MORO framework can support the work of policy analysts operating under deep
uncertainty. MORO does not prescribe singular solutions; rather, it enables analysts to structure uncertainty,
reveal trade-offs, and communicate robust yet flexible strategies that remain valid across a range of plausible
futures.

By generating policy sets that perform well under diverse scenarios, MORO helps analysts shift the
conversation from prediction to preparation. Instead of asking “What will happen?” the focus becomes “What
actions could perform well, regardless of what happens?” This shift aligns well with the analyst’s role as a
translator between technical findings and decision-making under uncertainty.

The MORO framework also highlights trade-offs that might otherwise remain hidden. In this study, it
became evident that policies promoting ridership and emissions reduction—such as ultra-low fares—can
undermine revenue and overburden capacity unless balanced with complementary measures like peak-hour
surcharges. Exposing such tensions is a valuable step toward more transparent and inclusive policymaking,
allowing decision-makers to weigh competing goals explicitly rather than pursuing single-objective
optimization.

In addition, MORO supports the development of adaptive strategies rather than static policy
recommendations. The results suggest that a fare policy effective in 2030 may not remain so by 2040. MORO
enables analysts to identify robust starting points—such as low fares with mild peak pricing—while also
providing insight into when and how these strategies might need adjustment. This supports the use of
adaptive policy pathways, where policies evolve in response to observed developments rather than being
fixed in advance.
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The use of MORO enhances the legitimacy of policy advice by making the assumptions, uncertainties,
and trade-offs embedded in modeling more visible. Analysts can demonstrate not just what is optimal under
one future, but what performs reasonably well across many. This transparency supports more credible and
democratic decision-making, especially in contested domains like public transport pricing.

In sum, the value of MORO lies not only in identifying robust strategies but in supporting the deliberative
processes that underpin good policy. It strengthens the analyst’s capacity to inform rather than dictate—to
guide decision-making by revealing what is possible, plausible, and prudent given the uncertainties ahead.

8.4. Future Research Directions
Building on the limitations identified in this study, several future research directions are recommended

to improve the robustness, realism, and policy relevance of exploratory rail policy modeling under deep
uncertainty.

First, future models should incorporate more sophisticated representations of traveler behavior,
particularly regarding heterogeneous demand elasticities. Rather than assuming static, aggregate elasticities
across all passenger segments, models should differentiate between key user groups such as commuters,
tourists, and occasional travelers, capturing their distinct price sensitivities and travel purposes. Special
attention should be paid to how extreme fare changes might induce behavioral responses that depart from
historical trends.

Second, future work should improve the treatment of modal competition and environmental impacts.
Rather than relying on fixed assumptions about mode shift and CO2 reduction, future studies could explicitly
simulate competition between rail, car, and emerging mobility options, accounting for differences in service
attributes such as door-to-door time, cost, convenience, and reliability. Incorporating dynamic assumptions
about technological change (such as the usage of electric vehicles) would also improve the credibility of
long-term emissions assessments.

Third, a key priority for future research should be the integration of dynamic capacity modeling. This
study fixed capacity either to 2019 levels or to an idealized, unbounded state, ignoring the feedback between
demand, overcrowding, and necessary infrastructure investment. Future research should allow capacity to
adjust endogenously over time. This would enable more realistic exploration of how fare policies interact
with system growth, and it would avoid unrealistic endpoint scenarios like those seen in the maximum
demand case, where 100% free travel drives demand indefinitely without triggering any capacity limitations
or congestion effects. Explicitly modeling how congestion degrades service quality and dampens demand
would provide a more credible depiction of long-term dynamics.

Fourth, institutional and behavioral realism should be strengthened, particularly concerning rush-hour
pricing strategies. Current assumptions about price sensitivity do not account for the fact that a large share of
Dutch peak-hour travelers use NS Business Cards provided by employers, making them relatively insensitive
to direct fare changes. Future studies should incorporate differentiated demand responses for business and
non-business travelers, potentially modeling the interactions between corporate travel policies, employee
preferences, and public fare structures. Without this, the effectiveness of peak pricing measures may be
systematically overestimated.

Fifth, equity considerations should be elevated from qualitative discussion to quantitative analysis.
Future work should incorporate explicit disaggregation by income group, geographic area, or travel purpose
to examine the distributional impacts of fare policies. Doing so would allow equity to be treated as an
additional optimization objective alongside ridership, revenue, and emissions to support more socially
balanced policy recommendations.

Finally, improvements in uncertainty treatment are warranted. While this study explored deep
uncertainty using large scenario ensembles, the selection of uncertainty ranges and distributions could
be improved. Future work could combine historical data analysis and structured stakeholder engagement
to define more robust uncertainty spaces. Additionally, extensions to the modeling framework could
incorporate low-probability, high-impact disruptions to stress-test fare policy resilience.
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A
Model Overview

This document provides detailed documentation of the Python model code developed for the Dutch
passenger rail network. The model integrates with the EMA Workbench and is organized within a single class
TrainModel. It processes multiple data sources, computes fare prices and demand estimates, calculates
emissions, and determines capacity requirements. The following sections document each component of the
code.

The model is implemented in Python and leverages the following functionalities:

• Fare Calculation: Computes fare prices based on distance and elasticities.

• Demand Estimation: Estimates train demand for different population segments.

• Emission Calculations: Assesses the CO2 emissions reduction associated with modal shifts.

• Capacity Analysis: Evaluates capacity constraints and the need for additional trains.

• Policy Impact: Computes the effects of free travel ticket policies.

A.1. Fare Price Calculation
Purpose: Calculates the fare price based on the average distance per trip. The method:

• Computes the average distance per trip.

• Rounds up the distance to determine the number of fare units.

• Uses a predefined fare structure to return the corresponding fare price.

One of the primary drivers of demand is the fare price. The model computes the fare based on the average
distance traveled during a trip. The fare structure is predefined, allowing the model to determine the price
based on this average distance. As the distance increases, the fare might adjust, reflecting longer journeys.

avg_distance_per_trip = km

trips
(A.1)

fare_units_per_trip = ⌈avg_distance_per_trip⌉ (A.2)

fare_price = fare_structure[fare_units_per_trip] (A.3)

Fare Price Calculation

1 def calculate_fare_price(self, trips, km, pop):
2 avg_distance_per_trip = km / (trips * pop) / 260
3 fare_units_per_trip = math.ceil(avg_distance_per_trip) % 1 km ~ 1 fare unit
4 fare_structure = {i: 2.6 if i <= 8 else 2.6 + (0.20 * (i - 8)) if i <= 75 else 2.6 + (0.14 * (i - 8)) for

i in range(1, 201)},→
5 return fare_structure.get(fare_units_per_trip, max(fare_structure.values()))
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A.2. Demand Calculation R.W. Evans

A.2. Demand Calculation
Purpose: Estimates the daily train demand and its breakdown among Dutch and international students.

The method:

• Separates the student population.

• Computes demand using provided usage percentages.

• Aggregates the demands over the year (converted to a daily estimate).

The demand for train travel is derived from various segments of the population: Dutch students,
international students, and non-students. Each group has distinct travel patterns influenced by factors such
as the use of OV (public transport) cards during the week and weekends.

Calculating OV Usage
Demand calculation begins with determining the real OV usage percentages during weekdays and

weekends for Dutch students:

week_ov_real = week_ov
5
7

(A.4)

weekend_ov_real = weekend_ov
2
7

(A.5)

avg_dutch_students_usage = week_ov_real+weekend_ov_real

2
(A.6)

avg_international_students_usage = non_ov

100
(A.7)

avg_non_students_usage = non_ov

100
(A.8)

Demand Calculation
The demand for each segment is then calculated. The Dutch students have a relatively straightforward

demand:

demand_dutch_students = dutch_students×avg_dutch_students_usage (A.9)

For international students, their demand is influenced both by the average international student usage
and the free transit policy levers:

demand_international_students = international_students×(
avg_international_students_usage× (1− free_transit_students)

+avg_dutch_students_usage× free_transit_students
) (A.10)

Non-students’ demand is influenced by their usage and the free transit policy levers, which is influenced
by their participation in traffic:

demand_non_students = non_students×(
avg_non_students_usage× (1− free_transit)

+avg_dutch_students_usage× free_transit× traffic_participation
) (A.11)

The total daily demand is the sum of the demands for all segments:

total_daily_demand = demand_dutch_students

+demand_international_students

+demand_non_students

(A.12)
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A.3. Environmental Impact and Emissions Calculation R.W. Evans

Demand Calculation

1 def calculate_demand(self, trips, km, week_ov, weekend_ov, non_ov, free_transit, free_transit_students, pop,
students, international_students, traffic_participation):,→

2 dutch_students = students - international_students
3 non_students = pop - students
4

5 week_ov_real = week_ov
6 weekend_ov_real = weekend_ov
7 avg_international_students_usage = traffic_participation
8 avg_non_students_usage = traffic_participation
9

10 international_students_usage = (avg_international_students_usage * (1 - free_transit_students)) +
(week_ov_real * free_transit_students),→

11 non_students_usage = avg_non_students_usage
12

13 demand_dutch_students = ((dutch_students * (week_ov_real * (52 * 5))) + (dutch_students *
(weekend_ov_real * (52 * 2)))) / 365,→

14 demand_international_students = (international_students * international_students_usage) / 365
15 demand_non_students = (non_students * non_students_usage) / 365
16

17 daily_demand = (demand_dutch_students + demand_international_students + demand_non_students) * 2
18 return daily_demand, demand_dutch_students, demand_international_students

A.3. Environmental Impact and Emissions Calculation
Purpose: Calculates the reduction in CO2 emissions due to reduced car usage and computes the net CO2

emissions after modal shift.
A significant benefit of promoting train travel is the reduction in CO2 emissions. Estimating the number

of car trips replaced by train trips allows computation of the potential reduction in CO2 emissions:

avg_car_trips_per_day = car_trips_per_person_per_day×pop (A.13)

total_car_distance = avg_car_trips_per_day×distance_per_car_trip (A.14)

CO2_reduction = car_substitution_rate×demand×km×avg_CO2_emissions_per_km (A.15)

net_CO2_emissions = car_C02_emissions (A.16)

−demand×distance_per_car_trip×avg_CO2_emissions_per_km (A.17)

Emissions Calculation

1 def calculate_emissions(self, pop, demand, km, car_trips_per_person_per_day, distance_per_car_trip,
car_C02_emissions, AverageKMperTrainTrip, car_substitution_rate):,→

2 avg_car_trips_per_day = car_trips_per_person_per_day * pop
3 total_car_distance = avg_car_trips_per_day * distance_per_car_trip
4 avg_CO2_emissions_per_km = car_C02_emissions / total_car_distance
5 CO2_reduction = (car_substitution_rate * demand * 365 * (AverageKMperTrainTrip *

avg_CO2_emissions_per_km)) - (km * avg_CO2_emissions_per_km),→
6 net_CO2_emissions = car_C02_emissions - CO2_reduction
7 return CO2_reduction, net_CO2_emissions

A.4. Fare Price with Elasticity
Purpose: Calculates the fare price while considering demand elasticity effects. It:

• Computes the fare price based on the average trip distance.

• Retrieves tariff data and determines the price per kilometer.
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A.5. Free Travel Ticket Impact R.W. Evans

Fare Price with Elasticity

1 def calculate_fare_price_with_elasticity(self, pop, trips, km, AverageKMperTrainTrip):
2 trips_per_year = pop * trips * 260
3 km_per_year = AverageKMperTrainTrip * trips_per_year
4 avg_distance_per_trip = AverageKMperTrainTrip
5 fare_units_per_trip = math.ceil(avg_distance_per_trip)
6 try:
7 tariff_df = pd.read_excel("/TariffList.xlsx")
8 tariff_dict = dict(zip(tariff_df['Distance'], tariff_df['Price']))
9 except Exception as e:

10 tariff_dict = str(e)
11 try:
12 fare_price = tariff_dict.get(min(fare_units_per_trip, 200))
13 except Exception as e:
14 fare_price = 10.8
15 price_per_km = fare_price / fare_units_per_trip
16 return fare_price, price_per_km

A.5. Free Travel Ticket Impact
Purpose: Evaluates the impact of a free travel ticket policy on both demand and revenue by:

• Adjusting demand using a subscription ticket modifier.

• Calculating revenue loss due to the policy.

Free Travel Ticket Impact

1 def calculate_free_travel_ticket_impact(self, daily_demand, revenue, km, free_travel_ticket_price,
fare_price, pop, nine_euro_modifier, forty_nine_euro_modifier):,→

2 subscription_ticket_df = pd.DataFrame({'Price': np.arange(0, 50)})
3 subscription_ticket_df['Modifier'] = np.nan
4 subscription_ticket_df.loc[subscription_ticket_df['Price'] == 9, 'Modifier'] = nine_euro_modifier
5 subscription_ticket_df.loc[subscription_ticket_df['Price'] == 49, 'Modifier'] = forty_nine_euro_modifier
6 subscription_ticket_df['Modifier'] = subscription_ticket_df['Modifier'].interpolate()
7 subscription_ticket_df.set_index('Price', inplace=True)
8

9 percent_travelled_regardless = 0.44
10 adjusted_total_daily_demand = daily_demand * subscription_ticket_df['Modifier'][free_travel_ticket_price]
11 demand_for_free_travel_ticket = (adjusted_total_daily_demand - daily_demand) +

(percent_travelled_regardless * daily_demand),→
12 free_travel_ticket_price /= (365 / 12)
13 if fare_price > 0:
14 free_travel_ticket_revenue = demand_for_free_travel_ticket * free_travel_ticket_price
15 else:
16 free_travel_ticket_revenue = 0
17 revenue_loss = (demand_for_free_travel_ticket * fare_price) - free_travel_ticket_revenue
18 adjusted_revenue = max(revenue - revenue_loss, 0)
19 return adjusted_total_daily_demand, adjusted_revenue, revenue_loss

A.6. Extended Demand Calculation with Elasticity
Purpose: Extends the basic demand calculation by incorporating multiple elasticity factors (price,

student population, resident population, jobs, income, etc.) and policy impacts. It:

• Adjusts fare price based on tariff changes.

• Applies several elasticity parameters to modify the baseline demand.

• Optionally adjusts demand and revenue if a free travel ticket policy is applied.
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A.7. Main Rail Model Function R.W. Evans

Extended Demand Calculation with Elasticity

1 def calculate_demand_with_elasticity_extended(self, trips, km, week_ov, weekend_ov, non_ov,
free_transit_students,,→

2 pop, students, international_students, traffic_participation,
3 banen, inkomen, autobezit, schiphol, brandstof,
4 tariff_change, free_travel_ticket, free_travel_ticket_price,
5 AverageKMperTrainTrip,
6 nine_euro_modifier, forty_nine_euro_modifier):
7 fare_price, price_per_km = self.calculate_fare_price_with_elasticity(pop, trips, km,

AverageKMperTrainTrip),→
8 baseline_price_per_km = price_per_km
9 price_per_km = max(baseline_price_per_km + tariff_change, 0)

10 if price_per_km < 0.01:
11 free_transit = 1
12 fare_price = 0
13 else:
14 free_transit = 0
15 fare_price = (fare_price / baseline_price_per_km) * price_per_km
16 price_change_percentage = (price_per_km - baseline_price_per_km) / baseline_price_per_km
17 demand_change_percentage_price = self.treintarief_elasticity * price_change_percentage
18 student_change_percentage = (students - self.baseline_students) / self.baseline_students
19 resident_change_percentage = (pop - self.baseline_residents) / self.baseline_residents
20 demand_change_percentage_student = self.studenten_elasticity * student_change_percentage
21 demand_change_percentage_resident = self.inwoners_elasticity * resident_change_percentage
22 total_demand, demand_dutch_students, demand_international_students = self.calculate_demand(
23 trips, km, week_ov, weekend_ov, non_ov, free_transit, free_transit_students, pop, students,

international_students, traffic_participation),→
24 adjusted_demand = total_demand * (1 + demand_change_percentage_price)
25 adjusted_demand *= (1 + demand_change_percentage_student)
26 adjusted_demand *= (1 + demand_change_percentage_resident)
27 demand_change_percentage_banen = self.banen_elasticity * ((banen - self.baseline_banen) /

self.baseline_banen),→
28 demand_change_percentage_inkomen = self.inkomen_elasticity * ((inkomen - self.baseline_inkomen) /

self.baseline_inkomen),→
29 demand_change_percentage_autobezit = self.autobezit_elasticity * ((autobezit - self.baseline_autobezit) /

self.baseline_autobezit),→
30 demand_change_percentage_schiphol = self.schiphol_elasticity * ((schiphol - self.baseline_schiphol) /

self.baseline_schiphol),→
31 demand_change_percentage_brandstof = self.brandstof_elasticity * ((brandstof - self.baseline_brandstof) /

self.baseline_brandstof),→
32 adjusted_demand *= (1 + demand_change_percentage_banen)
33 adjusted_demand *= (1 + demand_change_percentage_inkomen)
34 adjusted_demand *= (1 + demand_change_percentage_autobezit)
35 adjusted_demand *= (1 + demand_change_percentage_schiphol)
36 adjusted_demand *= (1 + demand_change_percentage_brandstof)
37 daily_km_per_person = AverageKMperTrainTrip
38 revenue = adjusted_demand * fare_price
39 adjusted_demand = max(adjusted_demand, 0)
40 adjusted_revenue = max(revenue, 0)
41 if free_travel_ticket == 1:
42 adjusted_demand, adjusted_revenue, cost_free_travel_ticket =

self.calculate_free_travel_ticket_impact(,→
43 adjusted_demand, revenue, daily_km_per_person, free_travel_ticket_price, fare_price, pop,
44 nine_euro_modifier, forty_nine_euro_modifier)
45 else:
46 cost_free_travel_ticket = 0
47 if free_transit_students == 1:
48 cost_free_international_students = math.ceil(demand_international_students * fare_price)
49 else:
50 cost_free_international_students = 0
51 cost_free_dutch_students = math.ceil(demand_dutch_students * fare_price)
52 if free_transit == 1:
53 cost_free_travel_ticket = adjusted_demand * fare_price
54 adjusted_revenue *= 365
55 cost_free_travel_ticket *= 365
56 cost_free_dutch_students *= 365
57 cost_free_international_students *= 365
58 adjusted_revenue = math.ceil(adjusted_revenue)
59 adjusted_demand = math.ceil(adjusted_demand)
60 cost_free_travel_ticket = math.ceil(cost_free_travel_ticket)
61 cost_free_dutch_students = math.ceil(cost_free_dutch_students)
62 cost_free_international_students = math.ceil(cost_free_international_students)
63 return adjusted_demand, adjusted_revenue, cost_free_travel_ticket, cost_free_dutch_students,

cost_free_international_students, price_per_km, free_transit, fare_price,→

A.7. Main Rail Model Function
Purpose: Serves as the central function that integrates the demand, revenue, capacity, and emissions

calculations. The method:
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• Adjusts tariff change values.

• Computes demand and revenue using the extended elasticity function.

• Evaluates capacity constraints (using a time series approach).

• Calculates CO2 emissions impact.

Main Rail Model Function

1 def rail_model_with_elasticity_extended(self, trips, km, week_ov, weekend_ov, non_ov, free_transit_students,
2 pop, students, international_students, traffic_participation,
3 capacity, car_trips_per_person_per_day, distance_per_car_trip,

car_C02_emissions,,→
4 banen, inkomen, autobezit, schiphol, brandstof, tariff_change,
5 free_travel_ticket, free_travel_ticket_price,
6 capacity_2022, trains_2022, AverageKMperTrainTrip,

nine_euro_modifier, forty_nine_euro_modifier,
rush_hour_surcharge, peak_pm_demand_modifier,
peak_am_demand_modifier, car_substitution_rate):

,→
,→
,→

7 tariff_change = tariff_change / 100
8 daily_demand, revenue, cost_free_travel_ticket, cost_free_dutch_students,

cost_free_international_students, price_per_km, free_transit, fare_price =
self.calculate_demand_with_elasticity_extended(

,→
,→

9 trips, km, week_ov, weekend_ov, non_ov,
10 free_transit_students, pop, students, international_students,
11 traffic_participation, banen, inkomen,
12 autobezit, schiphol, brandstof, tariff_change, free_travel_ticket,
13 free_travel_ticket_price, AverageKMperTrainTrip,
14 nine_euro_modifier, forty_nine_euro_modifier)
15 price_per_km = round(price_per_km, 2)
16 total_capacity, off_peak_demand, peak_demand, shortage, average_seats_per_train, additional_trains =

self.timeSeriesCapacity(price_per_km, daily_demand, capacity, capacity_2022, trains_2022,
rush_hour_surcharge, peak_pm_demand_modifier, peak_am_demand_modifier, AverageKMperTrainTrip,
fare_price)

,→
,→
,→

17 CO2_reduction, net_CO2_emissions = self.calculate_emissions(pop, daily_demand, km,
car_trips_per_person_per_day,,→

18 distance_per_car_trip, car_C02_emissions,
AverageKMperTrainTrip,
car_substitution_rate)

,→
,→

19 return {'demand': np.int64(daily_demand), 'revenue': np.int64(revenue), 'shortage': np.int64(shortage),
'additional_trains': np.int64(additional_trains),,→

20 'CO2_reduction': np.int64(CO2_reduction), 'net_CO2_emissions': np.int64(net_CO2_emissions),
'free_transit': np.int64(free_transit),,→

21 'cost_free_dutch_students': np.int64(cost_free_dutch_students),
22 'cost_free_international_students': np.int64(cost_free_international_students),
23 'cost_free_travel_ticket': np.int64(cost_free_travel_ticket), 'price_per_km':

np.int64(price_per_km), 'fare_price': np.int64(fare_price)},→

A.8. Capacity Calculations
Purpose: Evaluates capacity requirements over different time periods (peak and off-peak). It:

• Splits the daily demand into off-peak, peak AM, and peak PM.

• Adjusts demand based on a rush hour surcharge.

• Determines the overall shortage and additional trains needed.
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Time Series Capacity Calculation

1 def timeSeriesCapacity(self, price_per_km, daily_demand, capacity, capacity_2022, trains_2022,
rush_hour_surcharge, peak_pm_demand_modifier, peak_am_demand_modifier, AverageKMperTrainTrip,
fare_price):

,→
,→

2 if fare_price <= 0:
3 return capacity, 0, 0, 0, 0, 0
4 if price_per_km <= 0:
5 return capacity, 0, 0, 0, 0, 0
6

7 rounds_per_day = 2 # at least there and back
8 total_capacity = capacity * rounds_per_day
9 capacity = total_capacity

10

11 off_peak_demand = (1 - peak_pm_demand_modifier - peak_am_demand_modifier) * daily_demand
12 peak_pm_demand = peak_pm_demand_modifier * daily_demand
13 peak_am_demand = peak_am_demand_modifier * daily_demand
14

15 rush_hour_price_per_km = max(price_per_km + rush_hour_surcharge, 0)
16 price_change_percentage = (rush_hour_price_per_km - price_per_km) / price_per_km if price_per_km > 0

else rush_hour_surcharge,→
17 demand_change_percentage_price = (self.treintarief_elasticity / 2) * price_change_percentage
18

19 if rush_hour_surcharge == 0:
20 demand_change_percentage_price = 0
21

22 peak_pm_demand_modified = peak_pm_demand * max((1 + demand_change_percentage_price), 0)
23 peak_am_demand_modified = peak_am_demand * max((1 + demand_change_percentage_price), 0)
24 off_peak_demand_modified = off_peak_demand + ((peak_pm_demand - peak_pm_demand_modified) / 2) +

((peak_am_demand - peak_am_demand_modified) / 2),→
25

26 peak_am_demand = peak_am_demand_modified
27 peak_pm_demand = peak_pm_demand_modified
28 off_peak_demand = off_peak_demand_modified
29

30 peak_demand = max(peak_am_demand, peak_pm_demand)
31 shortage = max(peak_am_demand - capacity, 0) + max(peak_pm_demand - capacity, 0) if peak_demand >

capacity else 0,→
32

33 average_seats_per_train = math.ceil(capacity_2022 / trains_2022)
34 additional_trains = math.ceil(shortage / (average_seats_per_train * rounds_per_day))
35

36 surcharge_revenue = max((AverageKMperTrainTrip * rush_hour_surcharge) * (peak_pm_demand +
peak_am_demand) * 365, 0),→

37 demand_change = max((daily_demand - peak_am_demand - peak_pm_demand - off_peak_demand) * -1,
daily_demand * -1),→

38 revenue_change = min(fare_price * demand_change * 365, 0)
39

40 return total_capacity, shortage, additional_trains, surcharge_revenue, demand_change, revenue_change
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B
Model Convergence

To ensure robust optimization and reliable simulation outcomes, a systematic experimental setup was
employed to determine the appropriate number of function evaluations (NFE), evaluate convergence, and
calculate epsilon progress. This section details the procedures followed to establish convergence criteria,
identify stopping points, and assess solution stability across different prediction years.

B.1. Optimization Setup and Convergence Detection
The optimization process was executed using the EMA Workbench framework, with the objective of

identifying Pareto-efficient policies under deep uncertainty. For each prediction year (e.g., 2030, 2040, 2050,
2060, 2070), independent optimization runs were conducted. The key steps included:

1. Function Evaluations: Conduct multiple runs with an initial NFE of 100,000 per year, allowing the
algorithm sufficient exploration space to identify promising solutions.

2. Convergence Tracking: Monitor the epsilon progress throughout the optimization, representing the
improvement of Pareto solutions with increasing NFE.

3. Archiving Results: Store the results of each run, including the convergence metrics and Pareto-efficient
solutions, in year-specific archive files.

B.2. Epsilon Progress and Convergence Criteria
To determine when the optimization had effectively converged, epsilon progress was analyzed by tracking

changes in the objective space. The following approach was applied:

• Epsilon Progress Calculation: Epsilon progress was calculated as the cumulative improvement in
Pareto efficiency across generations.

• Threshold for Convergence: Convergence was defined as the point where the absolute difference
between consecutive epsilon progress values fell below a threshold of 0.01 for at least five consecutive
evaluations.

• Approximate Convergence Point: The NFE corresponding to the first instance of the epsilon difference
falling below the threshold was identified as the approximate convergence point.
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B.3. Convergence Visualization and Interpretation R.W. Evans

Table B.1: Epsilon Values by Year for Each Outcome - Balanced Formulation

Year demand revenue shortage CO2_reduction net_CO2_emissions cost_free_travel_ticket
2024 1.325983 1.696662 1.186243 1.324434 1.324439 1.716443
2030 1.332262 1.704278 1.216093 1.326225 1.326216 1.729970
2040 1.348794 1.716169 1.269668 1.337543 1.337537 1.741817
2050 1.359177 1.727180 1.282916 1.343287 1.343288 1.752456
2060 1.367632 1.738835 1.298871 1.347379 1.347378 1.759514
2070 1.376251 1.748284 1.302992 1.350707 1.350704 1.767991

Table B.2: Epsilon Values by Year for Each Outcome - Unrestrained Balanced Filter

Year demand revenue CO2_reduction net_CO2_emissions cost_free_travel_ticket
2024 1.329364 1.695990 1.327382 1.327372 1.721138
2030 1.334049 1.704806 1.328487 1.328494 1.724923
2040 1.345308 1.715687 1.334960 1.334950 1.739897
2050 1.354702 1.726309 1.338556 1.338550 1.752331
2060 1.367363 1.738973 1.346777 1.346780 1.757656
2070 1.376773 1.748506 1.352216 1.352209 1.771621

Table B.3: Epsilon Values by Year for Each Outcome - Max Revenue Scenario

Year revenue shortage cost_free_international_students
2024 1.696368 1.199781 1.265859
2030 1.704591 1.222506 1.276671
2040 1.715890 1.246973 1.288115
2050 1.727935 1.280161 1.299376
2060 1.738009 1.305423 1.307754
2070 1.748241 1.302933 1.314948

Table B.4: Epsilon Values by Year for Each Outcome - Max Demand Scenario

Year demand shortage
2024 1.324639 1.205107
2030 1.332876 1.209795
2040 1.345288 1.236076
2050 1.355113 1.267001
2060 1.363828 1.288961
2070 1.376868 1.301529

B.3. Convergence Visualization and Interpretation
For each prediction year, convergence plots were generated to visualize the relationship between NFE and

epsilon progress. The plots included:

• Epsilon Progress vs. NFE: This plot displayed the overall convergence trajectory, with a red vertical line
indicating the approximate convergence point and a green horizontal line showing the corresponding
epsilon value.

• Epsilon Difference vs. NFE: This plot highlighted the change in epsilon progress between consecutive
evaluations, with a dashed red line representing the convergence threshold.

These visualizations allowed for a clear assessment of whether the optimization had plateaued,
suggesting that further evaluations were unlikely to yield significant improvement.
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Figure B.1: 2024 convergence across scenarios

Epsilon Difference

0 20000 40000 60000 80000 100000
Number of Function Evaluations (NFE)

0

100

200

300

400

D
iff

er
en

ce
 in

 E
ps

ilo
n 

Pr
og

re
ss

2024 Convergence of Optimization (Epsilon Difference vs. NFE)

Threshold = 10.0

(a) 2024 Balanced Formulation

0 20000 40000 60000 80000 100000
Number of Function Evaluations (NFE)

0

100

200

300

400

500

D
iff

er
en

ce
 in

 E
ps

ilo
n 

Pr
og

re
ss

2024 Convergence of Optimization (Epsilon Difference vs. NFE)

Threshold = 3.0

(b) 2024 Unrestrained Balanced Filter

Figure B.2: 2024 epsilon difference across scenarios

2030 Convergence and Epsilon Difference
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B.3. Convergence Visualization and Interpretation R.W. Evans
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(a) 2030 Balanced Formulation
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Figure B.3: 2030 convergence across scenarios
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Figure B.4: 2030 epsilon difference across scenarios
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Figure B.5: 2040 convergence across scenarios
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Figure B.6: 2040 epsilon difference across scenarios
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(a) 2050 Balanced Formulation
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Figure B.7: 2050 convergence across scenarios

Epsilon Difference

0 20000 40000 60000 80000 100000
Number of Function Evaluations (NFE)

0

200

400

600

800

D
iff

er
en

ce
 in

 E
ps

ilo
n 

Pr
og

re
ss

2050 Convergence of Optimization (Epsilon Difference vs. NFE)

Threshold = 37.0

(a) 2050 Balanced Formulation

0 20000 40000 60000 80000 100000
Number of Function Evaluations (NFE)

0

100

200

300

400

D
iff

er
en

ce
 in

 E
ps

ilo
n 

Pr
og

re
ss

2050 Convergence of Optimization (Epsilon Difference vs. NFE)

Threshold = 6.0

(b) 2050 Unrestrained Balanced Filter

Figure B.8: 2050 epsilon difference across scenarios
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2060 Convergence and Epsilon Difference
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(a) 2060 Balanced Formulation
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Figure B.9: 2060 convergence across scenarios
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Figure B.10: 2060 epsilon difference across scenarios

2070 Convergence and Epsilon Difference
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(a) 2070 Balanced Formulation
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Figure B.11: 2070 convergence across scenarios
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Figure B.12: 2070 epsilon difference across scenarios

Dynamic NFE Adjustment
Based on the convergence analysis, the following dynamic approach was adopted for adjusting NFEs:

• Early Convergence: For earlier years, convergence was achieved before the maximum NFE (e.g., 2030
and 2040).

• Extended Runs: For higher prediction years (e.g., 2060 and 2070), convergence was slower and
additional evaluations were considered, extending the NFE if the epsilon difference remained above
the threshold.

This adaptive strategy ensured computational efficiency while maintaining solution robustness.
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C
Scenario Discovery

This chapter explores the conditions under which rail policy strategies succeed or fail by applying formal
scenario discovery techniques to the model ensemble. While previous sections evaluated outcomes across
the entire policy space, the focus here is narrower: identifying the specific combinations of levers and external
uncertainties that reliably lead to successful outcomes—defined as achieving both high ridership and high
revenue.

Two complementary methods are used:

• Patient Rule Induction Method (PRIM) — A clustering algorithm that identifies bounded regions in
the input space with a high density of successful cases. This method is used to highlight “boxes” of
plausible futures in which certain policies consistently perform well.

• Classification and Regression Trees (CART) — A decision-tree approach that derives interpretable
rules to classify scenarios as successes or failures based on input thresholds. This method helps surface
critical tipping points in both policy and contextual conditions.

The results from these tools are reported separately for the Balanced and Unrestrained Balanced Filters,
across each major planning horizon (2024, 2030, 2040, 2050, 2060, and 2070). Each section includes
visualizations of the PRIM coverage-density trade-off, the conditions defining successful regions, and the
CART classification tree for that year and scenario.

Together, these analyses provide insight into the deeper structure of the outcome space. Rather
than evaluating policies in isolation, scenario discovery allows us to map success to specific
environments—identifying when, and under what external conditions, certain strategies can be expected
to thrive.

56



R.W. Evans

2024 Balanced Formulation

Figure C.1: 2024 PRIM trade-off: coverage vs. density -
Balanced Formulation

Figure C.2: 2024 Conditions defining a high-performance
region (PRIM box) - Balanced Formulation

Figure C.3: Results of PRIM scenario discovery for 2024 high-demand, high-revenue outcomes. (a) Coverage-density trade-off curve: as
the PRIM box grows to cover more successful scenarios, its purity (fraction of successes) declines. (b) One example of a PRIM-derived

scenario “box” (range of uncertain factors and lever settings) that yields predominantly high-demand, high-revenue outcomes.

Figure C.4: Decision tree (CART) for classifying 2024 scenarios as high-demand/high-revenue successes or not. Each branch split is
based on a threshold of a key input (policy or uncertainty). The terminal leaves indicate whether the condition combination leads to
success (both objectives met) or failure. The top splits in the tree highlight the most influential factors (e.g., the implementation of a

major fare policy, and the level of exogenous demand growth).
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2024 Unrestrained Balanced Filter

Figure C.5: 2024 PRIM trade-off: coverage vs. density -
Unrestrained Balanced Filter

Figure C.6: 2024 Conditions defining a high-performance
region (PRIM box) - Unrestrained Balanced Filter

Figure C.7: Results of PRIM scenario discovery for 2024 high-demand, high-revenue outcomes. (a) Coverage-density trade-off curve: as
the PRIM box grows to cover more successful scenarios, its purity (fraction of successes) declines. (b) One example of a PRIM-derived

scenario “box” (range of uncertain factors and lever settings) that yields predominantly high-demand, high-revenue outcomes.

Figure C.8: Decision tree (CART) for classifying 2024 scenarios as high-demand/high-revenue successes or not. Each branch split is
based on a threshold of a key input (policy or uncertainty). The terminal leaves indicate whether the condition combination leads to
success (both objectives met) or failure. The top splits in the tree highlight the most influential factors (e.g., the implementation of a

major fare policy, and the level of exogenous demand growth).
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2030 Balanced Formulation

Figure C.9: 2030 PRIM trade-off: coverage vs. density -
Balanced Formulation

Figure C.10: 2030 Conditions defining a high-performance
region (PRIM box) - Balanced Formulation

Figure C.11: PRIM results for 2030: trade-off between box coverage and purity, and example box defining a high-performance region for
demand and revenue.

Figure C.12: CART tree for 2030 showing decision rules and key variables for high-demand and high-revenue outcomes in the Balanced
Formulation.
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2030 Unrestrained Balanced Filter

Figure C.13: 2030 PRIM trade-off: coverage vs. density -
Unrestrained Balanced Filter

Figure C.14: 2030 Conditions defining a high-performance
region (PRIM box) - Unrestrained Balanced Filter

Figure C.15: PRIM analysis for 2030 in the No Shortage scenario: coverage-density trade-off and scenario conditions leading to strong
performance.

Figure C.16: CART output for 2030 under the Unrestrained Balanced Filter. The tree illustrates key threshold splits leading to successful
outcomes.
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2040 Balanced Formulation

Figure C.17: 2040 PRIM trade-off: coverage vs. density -
Balanced Formulation

Figure C.18: 2040 Conditions defining a high-performance
region (PRIM box) - Balanced Formulation

Figure C.19: PRIM results for 2040: trade-off between box coverage and density, and a PRIM box representing successful outcome
conditions.

Figure C.20: CART decision tree for classifying high-performance outcomes in 2040 under the Balanced Formulation.
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2040 Unrestrained Balanced Filter

Figure C.21: 2040 PRIM trade-off: coverage vs. density -
Unrestrained Balanced Filter

Figure C.22: 2040 Conditions defining a high-performance
region (PRIM box) - Unrestrained Balanced Filter

Figure C.23: PRIM scenario discovery results for 2040 under No Shortage.

Figure C.24: CART classification tree for successful scenarios in 2040 under the Unrestrained Balanced Filter.
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2050 Balanced Formulation

Figure C.25: 2050 PRIM trade-off: coverage vs. density -
Balanced Formulation

Figure C.26: 2050 Conditions defining a high-performance
region (PRIM box) - Balanced Formulation

Figure C.27: PRIM results for 2050 under capacity-constrained conditions.

Figure C.28: CART tree showing classification paths for high-performing policies in the 2050 Balanced Formulation.
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2050 Unrestrained Balanced Filter

Figure C.29: 2050 PRIM trade-off: coverage vs. density -
Unrestrained Balanced Filter

Figure C.30: 2050 Conditions defining a high-performance
region (PRIM box) - Unrestrained Balanced Filter

Figure C.31: PRIM trade-offs and high-performance regions identified in the 2050 No Shortage scenario.

Figure C.32: CART model for outcome classification under the Unrestrained 2050 scenario.
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2060 Balanced Formulation

Figure C.33: 2060 PRIM trade-off: coverage vs. density -
Balanced Formulation

Figure C.34: 2060 Conditions defining a high-performance
region (PRIM box) - Balanced Formulation

Figure C.35: PRIM analysis for identifying robust scenario configurations in 2060.

Figure C.36: CART output for 2060 showing key splits and outcome success conditions.
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2060 Unrestrained Balanced Filter

Figure C.37: 2060 PRIM trade-off: coverage vs. density -
Unrestrained Balanced Filter

Figure C.38: 2060 Conditions defining a high-performance
region (PRIM box) - Unrestrained Balanced Filter

Figure C.39: PRIM results for 2060 without capacity constraints.

Figure C.40: CART classifier for 2060 No Shortage scenario outcomes.
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2070 Balanced Formulation

Figure C.41: 2070 PRIM trade-off: coverage vs. density -
Balanced Formulation

Figure C.42: 2070 Conditions defining a high-performance
region (PRIM box) - Balanced Formulation

Figure C.43: PRIM trade-offs and success configurations identified in the 2070 Balanced Formulation.

Figure C.44: CART classification structure for 2070 Balanced Formulation outcomes.
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2070 Unrestrained Balanced Filter

Figure C.45: 2070 PRIM trade-off: coverage vs. density -
Unrestrained Balanced Filter

Figure C.46: 2070 Conditions defining a high-performance
region (PRIM box) - Unrestrained Balanced Filter

Figure C.47: PRIM results for 2070 high-performing scenarios without capacity constraints.

Figure C.48: CART analysis of success drivers in 2070 under the Unrestrained Balanced Filter.
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D
Sensitivity Analysis and Feature

Importance

This appendix presents a detailed examination of how individual policy levers and contextual
uncertainties influence model outcomes across multiple time horizons. While the main chapters focused
on trade-offs and scenario typologies, this section complements those insights by dissecting the marginal
and global influence of each model input.

Three types of diagnostic analyses are provided for both the Balanced Scenario and Unrestrained
Balanced Filter across the years 2024, 2030, 2040, 2050, 2060, and 2070:

• One-at-a-time Sensitivity Analysis — Measures the change in demand when each policy lever is set
to its extreme value, holding other inputs constant. This reveals which levers individually have the
strongest effect on ridership.

• Lever Impact Across All Policies — Assesses each lever’s overall influence across the entire simulation
ensemble, reflecting both direct and interaction effects.

• Feature Importance Rankings — Uses a machine learning classifier to quantify which variables are
most predictive of policy success, defined here as achieving both high rail demand and high revenue.

By triangulating across these methods, the analysis identifies levers that are consistently influential, as
well as those that matter only under certain conditions. This can help decision-makers prioritize which levers
warrant attention in strategic planning and where to expect diminishing returns.

The figures that follow are grouped by year and scenario for ease of comparison.
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Input Influence Analysis – 2024 Balanced Scenario
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Figure D.1: One-at-a-time sensitivity of levers in 2024 Balanced Scenario.

(a) Lever impact across all policies. (b) Feature importance for scenario success.

Figure D.2: Lever-level influence and key predictors for high-demand/high-revenue outcomes in 2024 Balanced Scenario.
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Input Influence Analysis – 2024 Unrestrained Balanced Filter
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Figure D.3: Sensitivity of levers in the 2024 Unrestrained Balanced Filter.

(a) Lever impact across all policies. (b) Feature importance for scenario success.

Figure D.4: Influence and predictiveness of inputs in 2024 Unrestrained Scenario.
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Input Influence Analysis – 2024 Max Revenue Scenario
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Figure D.5: One-at-a-time sensitivity of levers in 2024 Max Revenue Scenario.

Input Influence Analysis – 2030 Balanced Scenario
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Figure D.6: One-at-a-time lever sensitivity in 2030 for the Balanced Scenario.
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(a) Lever impact across all policies. (b) Feature importance for scenario success.

Figure D.7: Lever influence and key predictors in the 2030 Balanced Scenario.

Input Influence Analysis – 2030 Unrestrained Balanced Filter
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Figure D.8: Sensitivity of levers in the 2030 Unrestrained Balanced Filter.
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(a) Lever impact across all policies. (b) Feature importance for scenario success.

Figure D.9: Influence and prediction results for 2030 in the Unrestrained Balanced Filter.

Input Influence Analysis – 2030 Max Revenue Scenario
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Figure D.10: One-at-a-time sensitivity of levers in 2030 Max Revenue Scenario.
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Input Influence Analysis – 2040 Balanced Scenario
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Figure D.11: One-at-a-time sensitivity of levers in 2040 Balanced Scenario.

(a) Lever impact across all policies. (b) Feature importance for scenario success.

Figure D.12: Lever-level influence and key predictors for high-demand/high-revenue outcomes in 2040 Balanced Scenario.
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Input Influence Analysis – 2040 Unrestrained Balanced Filter
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Figure D.13: Sensitivity of levers in the 2040 Unrestrained Balanced Filter.

(a) Lever impact across all policies. (b) Feature importance for scenario success.

Figure D.14: Influence and predictiveness of inputs in 2040 Unrestrained Scenario.
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Input Influence Analysis – 2040 Max Revenue Scenario
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Figure D.15: One-at-a-time sensitivity of levers in 2040 Max Revenue Scenario.

Input Influence Analysis – 2050 Balanced Scenario
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Figure D.16: One-at-a-time sensitivity of levers in 2050 Balanced Scenario.
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(a) Lever impact across all policies. (b) Feature importance for scenario success.

Figure D.17: Lever-level influence and key predictors for high-demand/high-revenue outcomes in 2050 Balanced Scenario.
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Figure D.18: Sensitivity of levers in the 2050 Unrestrained Balanced Filter.
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(a) Lever impact across all policies. (b) Feature importance for scenario success.

Figure D.19: Influence and predictiveness of inputs in 2050 Unrestrained Scenario.

Input Influence Analysis – 2050 Max Revenue Scenario
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Figure D.20: One-at-a-time sensitivity of levers in 2050 Max Revenue Scenario.
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Input Influence Analysis – 2060 Balanced Scenario
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Figure D.21: One-at-a-time sensitivity of levers in 2060 Balanced Scenario.

(a) Lever impact across all policies. (b) Feature importance for scenario success.

Figure D.22: Lever-level influence and key predictors for high-demand/high-revenue outcomes in 2060 Balanced Scenario.
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Input Influence Analysis – 2060 Unrestrained Balanced Filter
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Figure D.23: Sensitivity of levers in the 2060 Unrestrained Balanced Filter.

(a) Lever impact across all policies. (b) Feature importance for scenario success.

Figure D.24: Influence and predictiveness of inputs in 2060 Unrestrained Scenario.
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Input Influence Analysis – 2060 Max Revenue Scenario
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Figure D.25: One-at-a-time sensitivity of levers in 2060 Max Revenue Scenario.

Input Influence Analysis – 2070 Balanced Scenario
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Figure D.26: One-at-a-time sensitivity of levers in 2070 Balanced Scenario.
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(a) Lever impact across all policies. (b) Feature importance for scenario success.

Figure D.27: Lever-level influence and key predictors for high-demand/high-revenue outcomes in 2070 Balanced Scenario.
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Figure D.28: Sensitivity of levers in the 2070 Unrestrained Balanced Filter.
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(a) Lever impact across all policies. (b) Feature importance for scenario success.

Figure D.29: Influence and predictiveness of inputs in 2070 Unrestrained Scenario.

Input Influence Analysis – 2070 Max Revenue Scenario

chapters/figures/2070/MaxRevenueNew/270_Lever_Sensitivity_Analysis.pdf

Figure D.30: One-at-a-time sensitivity of levers in 2070 Max Revenue Scenario.
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E
Exploratory Data Analysis

This appendix presents exploratory plots of key input variables used in the modeling framework. These
figures help contextualize the assumptions behind passenger behavior, vehicle usage, economic activity, and
energy costs. They also provide a basis for understanding the uncertainty ranges applied to model inputs.

E.1. Variables Related to Elasticities
Figure E.1a and Figure E.1b show trends in average trip distance by car and train, respectively. These

values inform the estimation of emissions, travel time, and stitution potential between modes.

(a) Average distance per car trip over time, reflecting personal travel
behavior and its evolution.

(b) Average train trip length, indicative of long-distance and intercity
travel preferences.

Figure E.1: Average distance per car and train trip in the Netherlands.

(a) Daily trip frequency by car in the Netherlands. (b) Daily trip frequency by train in the Netherlands.

Figure E.2: Average number of trips by car and train per person in the Netherlands.
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E.1. Variables Related to Elasticities R.W. Evans

Figures E.3a to E.2b relate to environmental and behavioral baselines for private car use. These are
especially relevant for modeling the emissions impact of modal shifts toward or away from rail.

(a) Estimated CO2 emissions from car usage, showing long-term trends
and impacts from external shocks such as COVID-19.

(b) Trends in car ownership, which influence baseline demand for rail
alternatives.

Figure E.3: Comparison of car ownership and car CO2 emissions in the Netherlands.

The following figures relate to observed demand changes and cost structures. Figure ?? captures a
generalized demand increase under policy shifts. Figures E.4a to E.5a provide insight into cost sensitivity
and socioeconomic conditions affecting mode choice.

(a) Fluctuations in fuel prices, which may influence decisions to use
private vehicles versus public transport.

(b) Income trends, which affect fare affordability and elasticities in
transport demand.

Figure E.4: Comparison of fuel costs and average disposable income in the Netherlands.

(a) Workforce dynamics, which contribute to commuting patterns and
transport system demand.

(b) Annual passenger volume at Schiphol Airport, representing tourism
and potential for long-distance rail.

Figure E.5: Comparison of jobs in the Netherlands and passengers traveling through Schiphol Airport.
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E.2. Data from Germany and North Rhine-Westphalia R.W. Evans

E.2. Data from Germany and North Rhine-Westphalia
The following figures show rail usage trends in Germany and North Rhine-Westphalia between 2016 and

2024. These data were used to estimate the potential effects of unlimited travel ticket policies on ridership in
the Dutch context.

Figures E.6a and E.6b display the total annual train distance traveled in Germany and NRW, respectively.
Both regions show a sharp decline in 2020 due to the COVID-19 pandemic, followed by strong recovery
post-2022, especially during the €9 and €49 unlimited ticket periods.

(a) Germany: Total annual train distance traveled (2016–2024). (b) North Rhine-Westphalia: Total train kilometers traveled per year.

Figure E.6: Annual train distance traveled in Germany and NRW. The trends reflect COVID-19 impacts and recovery following fare
reform policies.

Figures E.7a and E.7b show train trips per person per day. These figures are particularly relevant for
estimating demand elasticity and were used to set the upper and lower bounds of the unlimited travel ticket
policy levers in the model.

(a) Germany: Train trips per person per day (2016–2024). (b) North Rhine-Westphalia: Train trips per person per day.

Figure E.7: Train trips per person per day in Germany and NRW. NRW shows a steeper increase post-2022, possibly due to greater urban
density and local policy responsiveness.
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F
MORO Results by Year

This appendix presents the full set of simulation results for each evaluation year in the model: 2024, 2040,
2050, 2060, and 2070. For each year, figures are grouped by scenario and include the top-performing policies
and the policy clusters derived from lever settings.
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2024 Clustered Policies Based on Lever Settings

(a) Clustered policies in 2024 (With Shortage)
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(b) Top 10% policies in 2024 (With Shortage)

Figure F.1: Clustered policies and top-performing strategies in 2024 under the Balanced Formulation.
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(a) Clustered outcomes for the 2024 Balanced Formulation.
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(b) Outcomes associated with the top 10% performing policies in 2024 for
the Balanced Formulation.

Figure F.2: The 2024 results for the Balanced Formulation based on outcomes.
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(a) Clustered policies in 2024 (No Shortage)

fre
e_

tra
ns

it_
stu

de
nts

1.00

0.00

tar
iff_

ch
an

ge

5.00

-25.00

rus
h_

ho
ur_

su
rch

arg
e

25.00

0.00

fre
e_

tra
ve

l_t
ick

et

fre
e_

tra
ve

l_t
ick

et_
pri

ce

1.00

0.00

49.00

9.00

2024 Top 10% Policies Highlighted by Lever Settings (Maximin Robustness)

(b) Top 10% policies in 2024 (No Shortage)

Figure F.3: Clustered policies and top-performing strategies in 2024 under the Unrestrained Balanced Filter.
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(a) Clustered outcomes for the 2024 Unrestrained Balanced Filter.
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(b) Outcomes associated with the top 10% performing policies in 2024 for
the Unrestrained Balanced Filter.

Figure F.4: The 2024 results for the Unrestrained Balanced Filter based on outcomes.

89



R.W. Evans

2040 Results Balanced Formulation
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2040 Clustered Policies Based on Lever Settings

(a) Clustered policies in 2040 (With Shortage)
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(b) Top 10% policies in 2040 (With Shortage)

Figure F.5: Clustered policies and top-performing strategies in 2040 under the Balanced Formulation.

de
man

d

3780391.00

1282740.00

rev
en

ue

7754865939.00

0.00

sh
ort

ag
e

CO2_
red

uc
tio

n

531092.00

0.00

-145686.00

-744179.00

2040 Clustered Policies (All Policies)

(a) Clustered outcomes for the 2040 Balanced Formulation.
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(b) Outcomes associated with the top 10% performing policies in 2040 for
the Balanced Formulation.

Figure F.6: The 2040 results for the Balanced Formulation based on outcomes.
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(a) Clustered policies in 2040 (No Shortage)
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(b) Top 10% policies in 2040 (No Shortage)

Figure F.7: Clustered policies and top-performing strategies in 2040 under the Unrestrained Balanced Filter.
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(a) Clustered outcomes for the 2040 Unrestrained Balanced Filter.
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(b) Outcomes associated with the top 10% performing policies in 2040 for
the Unrestrained Balanced Filter.

Figure F.8: The 2040 results for the Unrestrained Balanced Filter based on outcomes.
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2050 Clustered Policies Based on Lever Settings

(a) Clustered policies in 2050 (With Shortage)
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(b) Top 10% policies in 2050 (With Shortage)

Figure F.9: Clustered policies and top-performing strategies in 2050 under the Balanced Formulation.
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(a) Clustered outcomes for the 2050 Balanced Formulation.
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(b) Outcomes associated with the top 10% performing policies in 2050 for
the Balanced Formulation.

Figure F.10: The 2050 results for the Balanced Formulation based on outcomes.
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2050 Results Unrestrained Balanced Filter
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2050 Clustered Policies Based on Lever Settings

(a) Clustered policies in 2050 (No Shortage)

fre
e_

tra
ns

it_
stu

de
nts

1.00

0.00

tar
iff_

ch
an

ge

5.00

-25.00

rus
h_

ho
ur_

su
rch

arg
e

25.00

0.00

fre
e_

tra
ve

l_t
ick

et

fre
e_

tra
ve

l_t
ick

et_
pri

ce

1.00

0.00

49.00

9.00
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(b) Top 10% policies in 2050 (No Shortage)

Figure F.11: Clustered policies and top-performing strategies in 2050 under the Unrestrained Balanced Filter.
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(a) Clustered outcomes for the 2050 Unrestrained Balanced Filter.

de
man

d

4745632.00

1610260.00

rev
en

ue

CO2_
red

uc
tio

n

9723635921.00

0.00

-40049.00

-717165.00

2050 Top 10% Policies Highlighted (Maximin Robustness)

(b) Outcomes associated with the top 10% performing policies in 2050 for
the Unrestrained Balanced Filter.

Figure F.12: The 2050 results for the Unrestrained Balanced Filter based on outcomes.
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2060 Clustered Policies Based on Lever Settings

(a) Clustered policies in 2060 (With Shortage)
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(b) Top 10% policies in 2060 (With Shortage)

Figure F.13: Clustered policies and top-performing strategies in 2060 under the Balanced Formulation.
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(a) Clustered outcomes for the 2060 Balanced Formulation.
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(b) Outcomes associated with the top 10% performing policies in 2060 for
the Balanced Formulation.

Figure F.14: The 2060 results for the Balanced Formulation based on outcomes.
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(a) Clustered policies in 2060 (No Shortage)
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(b) Top 10% policies in 2060 (No Shortage)

Figure F.15: Clustered policies and top-performing strategies in 2060 under the Unrestrained Balanced Filter.
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(a) Clustered outcomes for the 2060 Unrestrained Balanced Filter.

de
man

d

5928888.00

2012629.00

rev
en

ue

CO2_
red

uc
tio

n

11948158978.00

0.00

92334.00

-685931.00

2060 Top 10% Policies Highlighted (Maximin Robustness)

(b) Outcomes associated with the top 10% performing policies in 2060 for
the Unrestrained Balanced Filter.

Figure F.16: The 2060 results for the Unrestrained Balanced Filter based on outcomes.
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2070 Results Balanced Formulation
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2070 Clustered Policies Based on Lever Settings

(a) Clustered policies in 2070 (With Shortage)
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(b) Top 10% policies in 2070 (With Shortage)

Figure F.17: Clustered policies and top-performing strategies in 2070 under the Balanced Formulation.
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(a) Clustered outcomes for the 2070 Balanced Formulation.
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(b) Outcomes associated with the top 10% performing policies in 2070 for
the Balanced Formulation.

Figure F.18: The 2070 results for the Balanced Formulation based on outcomes.
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2070 Clustered Policies Based on Lever Settings

(a) Clustered policies in 2070 (No Shortage)
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(b) Top 10% policies in 2070 (No Shortage)

Figure F.19: Clustered policies and top-performing strategies in 2070 under the Unrestrained Balanced Filter.
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(a) Clustered outcomes for the 2070 Unrestrained Balanced Filter.
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(b) Outcomes associated with the top 10% performing policies in 2070 for
the Unrestrained Balanced Filter.

Figure F.20: The 2070 results for the Unrestrained Balanced Filter based on outcomes.
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G
Model Validation and Baseline Results

To assess the plausibility of the simulation outputs, the model was first validated against real-world data
from the year 2019. Observed figures for passenger demand and revenue were used as benchmarks to ensure
that the baseline model could reasonably replicate system behavior under no-policy-change conditions.
This validation step provided confidence that the model structure and parameterization were aligned with
empirical realities. In addition, a sensitivity analysis was conducted to examine how variations in key model
parameters and assumptions influenced the main outcomes in Appendix D.

Baseline 2019 Results

Figure G.1: 2019 revenue change vs rush hour surcharge Figure G.2: 2019 surcharge revenue vs rush hour surcharge

Figure G.3: 2019 violin CO2 reduction distribution across tariff
change

Figure G.4: 2019 violin demand distribution across tariff change
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Figure G.5: 2019 violin revenue distribution across tariff change Figure G.6: 2019 violin
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Figure G.7: 2019 additional trains vs tariff change
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Figure G.8: 2019 additional trains vs tariff change (free travel
ticket = 1)
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Figure G.9: 2019 CO2 reduction vs tariff change (free travel ticket
= 1)
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Figure G.10: 2019 CO2 reduction vs tariff change
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Figure G.11: 2019 cost for free travel ticket vs tariff change (free
travel ticket = 1)

Figure G.12: 2019 cost for free travel ticket vs tariff change
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Figure G.13: 2019 daily demand vs price per km for tariff change
= x
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Figure G.14: 2019 daily demand vs price per km
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Figure G.15: 2019 daily demand vs tariff change (free travel ticket
= 1)
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Figure G.16: 2019 daily demand vs tariff change (rush hour
surcharge)
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Figure G.17: 2019 daily demand vs tariff change
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Figure G.18: 2019 demand change vs rush hour surcharge

Figure G.19: 2019 net CO2 emissions vs tariff change Figure G.20: 2019 net CO2 emissions vs tariff change (free travel
ticket = 1)
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Figure G.21: 2019 revenue change vs rush hour surcharge
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Figure G.22: 2019 revenue vs rush hour surcharge
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Figure G.23: 2019 revenue vs tariff change
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Figure G.24: 2019 revenue vs tariff change (free travel ticket = 1)
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Figure G.25: 2019 revenue vs tariff change (rush hour surcharge)
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Figure G.26: 2019 shortage vs rush hour surcharge
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Figure G.27: 2019 shortage vs tariff change
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Figure G.28: 2019 surcharge revenue vs rush hour surcharge
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Figure G.29: 2019 shortage vs tariff change (free travel ticket = 1)

Baseline 2024 Results

Figure G.30: 2024 revenue change vs rush hour surcharge Figure G.31: 2024 surcharge revenue vs rush hour surcharge

Figure G.32: 2024 violin CO2 reduction distribution across tariff
change

Figure G.33: 2024 violin demand distribution across tariff change

Figure G.34: 2024 violin revenue distribution across tariff change Figure G.35: 2024 violin
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Figure G.36: 2024 additional trains vs tariff change Figure G.37: 2024 additional trains vs tariff change (free travel
ticket = 1)

Figure G.38: 2024 CO2 reduction vs tariff change (free travel
ticket = 1)

Figure G.39: 2024 CO2 reduction vs tariff change

Figure G.40: 2024 cost for free travel ticket vs tariff change (free
travel ticket = 1)

Figure G.41: 2024 cost for free travel ticket vs tariff change
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Figure G.42: 2024 daily demand vs price per km for tariff change
= x

Figure G.43: 2024 daily demand vs price per km

Figure G.44: 2024 daily demand vs tariff change (free travel ticket
= 1)

Figure G.45: 2024 daily demand vs tariff change (rush hour
surcharge)

Figure G.46: 2024 daily demand vs tariff change
Figure G.47: 2024 demand change vs rush hour surcharge
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Figure G.48: 2024 net CO2 emissions vs tariff change Figure G.49: 2024 net CO2 emissions vs tariff change (free travel
ticket = 1)

Figure G.50: 2024 revenue change vs rush hour surcharge Figure G.51: 2024 revenue vs rush hour surcharge

Figure G.52: 2024 revenue vs tariff change Figure G.53: 2024 revenue vs tariff change (free travel ticket = 1)
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Figure G.54: 2024 revenue vs tariff change (rush hour surcharge)
Figure G.55: 2024 shortage vs rush hour surcharge

Figure G.56: 2024 shortage vs tariff change Figure G.57: 2024 surcharge revenue vs rush hour surcharge

Figure G.58: 2024 shortage vs tariff change (free travel ticket = 1)

105



R.W. Evans

Baseline 2030 Results

Figure G.59: 2030 revenue change vs rush hour surcharge Figure G.60: 2030 surcharge revenue vs rush hour surcharge

Figure G.61: 2030 violin CO2 reduction distribution across tariff
change

Figure G.62: 2030 violin demand distribution across tariff change

Figure G.63: 2030 violin revenue distribution across tariff change Figure G.64: 2030 violin

Figure G.65: 2030 additional trains vs tariff change Figure G.66: 2030 additional trains vs tariff change (free travel
ticket = 1)
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Figure G.67: 2030 CO2 reduction vs tariff change (free travel
ticket = 1)

Figure G.68: 2030 CO2 reduction vs tariff change

Figure G.69: 2030 cost for free travel ticket vs tariff change (free
travel ticket = 1)

Figure G.70: 2030 cost for free travel ticket vs tariff change

Figure G.71: 2030 daily demand vs price per km for tariff change
= x

Figure G.72: 2030 daily demand vs price per km

107



R.W. Evans

Figure G.73: 2030 daily demand vs tariff change (free travel ticket
= 1)

Figure G.74: 2030 daily demand vs tariff change (rush hour
surcharge)

Figure G.75: 2030 daily demand vs tariff change
Figure G.76: 2030 demand change vs rush hour surcharge

Figure G.77: 2030 net CO2 emissions vs tariff change Figure G.78: 2030 net CO2 emissions vs tariff change (free travel
ticket = 1)
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Figure G.79: 2030 revenue change vs rush hour surcharge Figure G.80: 2030 revenue vs rush hour surcharge

Figure G.81: 2030 revenue vs tariff change Figure G.82: 2030 revenue vs tariff change (free travel ticket = 1)

Figure G.83: 2030 revenue vs tariff change (rush hour surcharge)
Figure G.84: 2030 shortage vs rush hour surcharge
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Figure G.85: 2030 shortage vs tariff change Figure G.86: 2030 surcharge revenue vs rush hour surcharge

Figure G.87: 2030 shortage vs tariff change (free travel ticket = 1)

Baseline 2040 Results

Figure G.88: 2040 revenue change vs rush hour surcharge Figure G.89: 2040 surcharge revenue vs rush hour surcharge
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Figure G.90: 2040 violin CO2 reduction distribution across tariff
change

Figure G.91: 2040 violin demand distribution across tariff change

Figure G.92: 2040 violin revenue distribution across tariff change Figure G.93: 2040 violin

Figure G.94: 2040 additional trains vs tariff change Figure G.95: 2040 additional trains vs tariff change (free travel
ticket = 1)

Figure G.96: 2040 CO2 reduction vs tariff change (free travel
ticket = 1)

Figure G.97: 2040 CO2 reduction vs tariff change
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Figure G.98: 2040 cost for free travel ticket vs tariff change (free
travel ticket = 1)

Figure G.99: 2040 cost for free travel ticket vs tariff change

Figure G.100: 2040 daily demand vs price per km for tariff change
= x

Figure G.101: 2040 daily demand vs price per km

Figure G.102: 2040 daily demand vs tariff change (free travel
ticket = 1)

Figure G.103: 2040 daily demand vs tariff change (rush hour
surcharge)
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Figure G.104: 2040 daily demand vs tariff change
Figure G.105: 2040 demand change vs rush hour surcharge

Figure G.106: 2040 net CO2 emissions vs tariff change Figure G.107: 2040 net CO2 emissions vs tariff change (free travel
ticket = 1)

Figure G.108: 2040 revenue change vs rush hour surcharge Figure G.109: 2040 revenue vs rush hour surcharge
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Figure G.110: 2040 revenue vs tariff change Figure G.111: 2040 revenue vs tariff change (free travel ticket = 1)

Figure G.112: 2040 revenue vs tariff change (rush hour surcharge)
Figure G.113: 2040 shortage vs rush hour surcharge

Figure G.114: 2040 shortage vs tariff change Figure G.115: 2040 surcharge revenue vs rush hour surcharge
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Figure G.116: 2040 shortage vs tariff change (free travel ticket = 1)

Baseline 2050 Results

Figure G.117: 2050 revenue change vs rush hour surcharge Figure G.118: 2050 surcharge revenue vs rush hour surcharge

Figure G.119: 2050 violin CO2 reduction distribution across tariff
change

Figure G.120: 2050 violin demand distribution across tariff
change

Figure G.121: 2050 violin revenue distribution across tariff
change

Figure G.122: 2050 violin
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Figure G.123: 2050 additional trains vs tariff change Figure G.124: 2050 additional trains vs tariff change (free travel
ticket = 1)

Figure G.125: 2050 CO2 reduction vs tariff change (free travel
ticket = 1)

Figure G.126: 2050 CO2 reduction vs tariff change

Figure G.127: 2050 cost for free travel ticket vs tariff change (free
travel ticket = 1)

Figure G.128: 2050 cost for free travel ticket vs tariff change
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Figure G.129: 2050 daily demand vs price per km for tariff change
= x

Figure G.130: 2050 daily demand vs price per km

Figure G.131: 2050 daily demand vs tariff change (free travel
ticket = 1)

Figure G.132: 2050 daily demand vs tariff change (rush hour
surcharge)

Figure G.133: 2050 daily demand vs tariff change
Figure G.134: 2050 demand change vs rush hour surcharge
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Figure G.135: 2050 net CO2 emissions vs tariff change Figure G.136: 2050 net CO2 emissions vs tariff change (free travel
ticket = 1)

Figure G.137: 2050 revenue change vs rush hour surcharge Figure G.138: 2050 revenue vs rush hour surcharge

Figure G.139: 2050 revenue vs tariff change Figure G.140: 2050 revenue vs tariff change (free travel ticket = 1)
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Figure G.141: 2050 revenue vs tariff change (rush hour surcharge)
Figure G.142: 2050 shortage vs rush hour surcharge

Figure G.143: 2050 shortage vs tariff change Figure G.144: 2050 surcharge revenue vs rush hour surcharge

Figure G.145: 2050 shortage vs tariff change (free travel ticket = 1)

119



R.W. Evans

Baseline 2060 Results

Figure G.146: 2060 revenue change vs rush hour surcharge Figure G.147: 2060 surcharge revenue vs rush hour surcharge

Figure G.148: 2060 violin CO2 reduction distribution across tariff
change

Figure G.149: 2060 violin demand distribution across tariff
change

Figure G.150: 2060 violin revenue distribution across tariff
change

Figure G.151: 2060 violin
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Figure G.152: 2060 additional trains vs tariff change Figure G.153: 2060 additional trains vs tariff change (free travel
ticket = 1)

Figure G.154: 2060 CO2 reduction vs tariff change (free travel
ticket = 1)

Figure G.155: 2060 CO2 reduction vs tariff change

Figure G.156: 2060 cost for free travel ticket vs tariff change (free
travel ticket = 1)

Figure G.157: 2060 cost for free travel ticket vs tariff change
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Figure G.158: 2060 daily demand vs price per km for tariff change
= x

Figure G.159: 2060 daily demand vs price per km

Figure G.160: 2060 daily demand vs tariff change (free travel
ticket = 1)

Figure G.161: 2060 daily demand vs tariff change (rush hour
surcharge)

Figure G.162: 2060 daily demand vs tariff change
Figure G.163: 2060 demand change vs rush hour surcharge
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Figure G.164: 2060 net CO2 emissions vs tariff change Figure G.165: 2060 net CO2 emissions vs tariff change (free travel
ticket = 1)

Figure G.166: 2060 revenue change vs rush hour surcharge Figure G.167: 2060 revenue vs rush hour surcharge

Figure G.168: 2060 revenue vs tariff change Figure G.169: 2060 revenue vs tariff change (free travel ticket = 1)
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Figure G.170: 2060 revenue vs tariff change (rush hour surcharge)
Figure G.171: 2060 shortage vs rush hour surcharge

Figure G.172: 2060 shortage vs tariff change Figure G.173: 2060 surcharge revenue vs rush hour surcharge

Figure G.174: 2060 shortage vs tariff change (free travel ticket = 1)
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Baseline 2070 Results

Figure G.175: 2070 revenue change vs rush hour surcharge Figure G.176: 2070 surcharge revenue vs rush hour surcharge

Figure G.177: 2070 violin CO2 reduction distribution across tariff
change

Figure G.178: 2070 violin demand distribution across tariff
change

Figure G.179: 2070 violin revenue distribution across tariff
change

Figure G.180: 2070 violin
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Figure G.181: 2070 additional trains vs tariff change Figure G.182: 2070 additional trains vs tariff change (free travel
ticket = 1)

Figure G.183: 2070 CO2 reduction vs tariff change (free travel
ticket = 1)

Figure G.184: 2070 CO2 reduction vs tariff change

Figure G.185: 2070 cost for free travel ticket vs tariff change (free
travel ticket = 1)

Figure G.186: 2070 cost for free travel ticket vs tariff change
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Figure G.187: 2070 daily demand vs price per km for tariff change
= x

Figure G.188: 2070 daily demand vs price per km

Figure G.189: 2070 daily demand vs tariff change (free travel
ticket = 1)

Figure G.190: 2070 daily demand vs tariff change (rush hour
surcharge)

Figure G.191: 2070 daily demand vs tariff change
Figure G.192: 2070 demand change vs rush hour surcharge
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Figure G.193: 2070 net CO2 emissions vs tariff change Figure G.194: 2070 net CO2 emissions vs tariff change (free travel
ticket = 1)

Figure G.195: 2070 revenue change vs rush hour surcharge Figure G.196: 2070 revenue vs rush hour surcharge

Figure G.197: 2070 revenue vs tariff change Figure G.198: 2070 revenue vs tariff change (free travel ticket = 1)
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Figure G.199: 2070 revenue vs tariff change (rush hour surcharge)
Figure G.200: 2070 shortage vs rush hour surcharge

Figure G.201: 2070 shortage vs tariff change Figure G.202: 2070 surcharge revenue vs rush hour surcharge

Figure G.203: 2070 shortage vs tariff change (free travel ticket = 1)
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H
Model Input Data

The following sidewaystable presents the core dataset used in this research. It comprises a consolidated,
multi-year panel of Dutch national-level variables relevant to rail transport demand, pricing, emissions, and
demographic-economic indicators. The data spans from 2005 to 2022 and for 2024 and each decade from
2030 to 2070.

H.1. Data Sources and Compilation
Variables were compiled from a combination of open government statistics, institutional reports,

academic publications, and transport industry datasets. Key sources include:

• CBS StatLine and CBS publications for population, education level, employment, income, car
ownership, fuel prices, and international student mobility (Centraal Bureau voor de Statistiek, 2021,
2023a, 2023b, 2023c, 2023d, 2023e).

• NS datasets for revenue streams, fare pricing schemes, and national train usage patterns (Nederlandse
Spoorwegen, 2023a, 2023b, 2023c).

• KiM (Kennisinstituut voor Mobiliteitsbeleid) annual mobility overviews for modal split data,
behavioral metrics, and synthetic indicators for both pre- and post-COVID contexts (KiM, 2019, 2021,
2022, 2023a).

• International datasets and literature to inform pricing elasticities, international student flows, and
macroeconomic contexts such as inflation and transport affordability (American Public Transportation
Association, 2003; DutchNews.nl, 2023a, 2023b; Loder et al., 2022a, 2022b; Macrotrends LLC, 2024;
Statista Research Department, 2023; Verband Deutscher Verkehrsunternehmen, 2022; World Bank,
2022).

H.2. Data Limitations
While care was taken to maintain internal consistency, sources vary in their methodology and reporting

frequency. Notably, post-COVID travel behavior, pricing elasticity, and shifts in modal preference may
introduce additional uncertainty(KiM, 2022; Loder et al., 2022a).

H.3. Raw Data
To improve readability, the data table has been split into two vertically stacked segments. Both tables are

aligned by the shared ds (year) variable to enable direct comparison across indicators. Missing values were
addressed using linear interpolation and future years were forecast using Prophet.
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H.3. Raw Data R.W. Evans
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