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Summary 
 
Green’s functions in an unknown elastic layered medium can be retrieved from single-sided reflection 

data by solving a Marchenko equation. This methodology requires a priori knowledge of all forward-

scattered (non-converted and converted) waveforms. Moreover, the medium should satisfy stringent 

monotonicity conditions, which are often not met in realistic scenarios. In this contribution, we show 

that the situation is significantly less cumbersome if two-sided reflection and transmission data are 

recorded (for instance in laboratory settings). A novel methodology is presented to retrieve 

elastodynamic Green’s functions from such data. Apart from the two-sided reflection and transmission 

responses, our methodology requires knowledge of the direct non-converted PP- and SS-transmissions 

(a priori knowledge of forward-scattered converted waveforms is not needed). We demonstrate the 

success of our methodology by conducting a numerical experiment in an elastic layered medium that 

violates the monotonicity conditions of the Marchenko equation for single-sided reflection data. The 

limitations of the methodology and the sensitivity to errors in our initial estimates require further 

investigation. 
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Elastodynamic Marchenko Green's function retrieval from two-sided reflection and 

transmission data 
 

Introduction 

It is well-known that Green's functions between an acquisition surface 𝑆 and a specific location 𝒙 in an 

unknown acoustic layered medium can be retrieved by solving a Marchenko equation (Slob et al., 2014). 

The Marchenko methodology requires a broadband single-sided reflection response and knowledge of 

the direct wavefield as it would propagate between 𝑆 and 𝒙 . Equivalent representations have been 

derived for elastodynamic wave propagation (Wapenaar and Slob, 2014; da Costa Filho et al., 2014). 

However, the utilization of these representations for Green's function retrieval requires knowledge of 

all forward-scattered arrivals between 𝑆 and 𝒙, which is infeasible in practice. Moreover, successful 

implementation requires the elastic medium to satisfy stringent monotonicity conditions, which are 

often violated in realistic scenarios (Reinicke et al., 2020). In this contribution, we show that the 

requirements for elastodynamic Green's function retrieval with the Marchenko equation can be 

weakened significantly when two-sided reflection and transmission data are recorded. 

 

Modified system of Marchenko equations 

We consider a layered elastic medium that is bound from above by an upper acquisition surface 𝑆𝑈 and 

from below by a lower acquisition surface 𝑆𝐿. The medium properties are constant above 𝑆𝑈 and below 

𝑆𝐿. Our goal is to retrieve the upgoing Green's functions 𝑮𝑈
−+ and 𝑮𝑈

−− at 𝑆𝑈, due to a source at a specific 

depth 𝑧  in the medium. Here, 𝑮𝑈
−+ contains all downward-radiating components, while 𝑮𝑈

−− contains 

all upward-radiating components. In our notation, each bold quantity represents a 2x2 matrix, containing 

the (
𝑃𝑃 𝑃𝑆
𝑆𝑃 SS

)-components in the (𝜏, 𝑝)-domain (where 𝜏 is the intercept time and  𝑝 is the ray 

parameter). Let 𝓡𝑈 = (
ℛ𝑈
𝑃𝑃 ℛ𝑈

𝑃𝑆

ℛ𝑈
𝑆𝑃 ℛ𝑈

𝑆𝑆)  be an operator that convolves an arbirary wavefield with the 

reflection response at 𝑆𝑈, while 𝓩 is an operator for reversing the time and rayparameter. Moreover, we 

introduce the down- and upgoing focusing functions 𝑭𝑈
+ and 𝑭𝑈

−, respectively, which obey a specific 

focusing condition at depth 𝑧; see Wapenaar and Slob (2014) for details. Let 𝑮𝑈𝑑
−− = (𝐺𝑈𝑑

𝑃𝑃 0
0 0

) be the 

first event of 𝑮𝑈
−−, being the direct non-converted PP-transmission, while 𝑮𝑈𝑚

−− = 𝑮𝑈
−− − 𝑮𝑈𝑑

−−  is 

referred to as the Green's function coda (note that our definition of  𝑮𝑈𝑚
−−  includes all other direct and 

forward-scattered waves, i.e. the non-converted SS-transmission 𝐺𝑈𝑑
𝑆𝑆  and all converted waveforms). Let 

𝑭𝑈𝑑
+ = (

0 0
0 𝐹𝑈𝑑

𝑆𝑆) be the first event of 𝑭𝑈
+, being the direct non-converted SS-transmission, while 𝑭𝑈𝑚

+ =

𝑭𝑈
+ − 𝑭𝑈𝑑

+   is referred to as the focusing function coda (note that our definition of 𝑭𝑈𝑚
+  includes all other 

direct and forward-scattered waves, i.e. the non-converted PP-transmission 𝐹𝑈𝑑
𝑃𝑃 and all converted 

waveforms). These definitions allow us to cast the convolution- and correlation-based representations 

of Wapenaar and Slob (2014) as the upper two rows of the following system of equations: 

 

(

 
 

𝓡𝑈𝑭𝑈𝑑
+

−𝑮𝑈𝑑
−− − 𝓩𝑭𝑈𝑑

+

𝓡𝐿𝑭𝐿𝑑
−

−𝑮𝐿𝑑
++ −𝓩𝑭𝐿𝑑

−
)

 
 
−

(

 
 
𝑮𝑈
−+

𝑮𝑈𝑚
−−

𝑮𝐿
+−

𝑮𝐿𝑚
++
)

 
 
= (

𝑰 −𝓡𝑈 𝟎 𝟎
−𝓡𝑈𝓩 𝓩 𝟎 𝟎
𝟎 𝟎 𝑰 −𝓡𝐿
𝟎 𝟎 −𝓡𝐿𝓩 𝓩

)

(

 

𝑭𝑈
−

𝑭𝑈𝑚
+

𝑭𝐿
+

𝑭𝐿𝑚
− )

 .   (1) 

 

In this system, the lower two rows are similar equations for wavefields at the lower boundary 𝑆𝐿.  Let 

𝜣𝑈 be a time-symmetric window function that preserves all data in the interval [−𝑡𝑈𝑑
𝑃𝑃 − 𝑡𝜀 , 𝑡𝑈𝑑

𝑃𝑃 + 𝑡𝜀], 

while it mutes all data outside this interval. Here, 𝑡𝑈𝑑
𝑃𝑃 is the traveltime of the direct non-converted PP-

transmission and 𝑡𝜀 is a small time shift that accounts for the finite frequency content of the data (Slob 

et al., 2014). A similar window 𝜣𝐿 is constructed for the wavefields at the lower boundary. We 

emphasize that these time windows are based on the non-converted PP-traveltime only, unlike in 

previous publications, where the windows are typically based on the first onsets of the PP-, SP-, PS- 

and SS-transmissions. Applying diag(𝜣𝑈, 𝜣𝑈, 𝜣𝐿, 𝜣𝐿) to both sides of equation (1) yields 
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(

 

𝜣𝑈𝓡𝑈𝑭𝑈𝑑
+

−𝑮𝑈𝑑
−−

𝜣𝐿𝓡𝐿𝑭𝐿𝑑
−

−𝑮𝐿𝑑
++ )

 = (

𝜣𝑼 −𝜣𝑈𝓡𝑼 𝟎 𝟎
−𝜣𝑈𝓡𝑈𝓩 𝜣𝑈𝓩 𝟎 𝟎

𝟎 𝟎 𝜣𝐿 𝜣𝐿𝓡𝐿
𝟎 𝟎 −𝜣𝐿𝓡𝐿𝓩 𝜣𝐿𝓩

)

(

 

𝑭𝑈
−

𝑭𝑈𝑚
+

𝑭𝐿
+

𝑭𝐿𝑚
− )

 .  (2) 

 

Let's assume that the four spikes 𝐹𝑈𝑑
𝑆𝑆 , 𝐺𝑈𝑑

𝑃𝑃, 𝐹𝐿𝑑
𝑆𝑆 and 𝐺𝐿𝑑

𝑃𝑃 that are required to construct the left-hand side 

of this equation are known a priori. Now, we may try to resolve the unknown quantity 

(𝑭𝑈
−, 𝑭𝑈𝑚

+ , 𝑭𝐿
+, 𝑭𝐿𝑚

− )𝑇 in the right-hand-side by inversion. Unfortunately, all components of the unkown 

that reside outside the intervals [−𝑡𝑈𝑑
𝑃𝑃 − 𝑡𝜀 , 𝑡𝑈𝑑

𝑃𝑃 + 𝑡𝜀] and [−𝑡𝐿𝑑
𝑃𝑃 − 𝑡𝜀 , 𝑡𝐿𝑑

𝑃𝑃 + 𝑡𝜀] (i.e. the forward-

scattered waveforms and events that violate the monotonicity conditions of Reinicke et al. (2020)) can 

generally not be recovered by this procedure. To overcome this limitation, we couple the wavefields at 

the upper and lower boundary (which are not coupled in equation (2)) by incorporating auxiliary 

transmission data in the next section. 

 

System of auxiliary equations 

Let  𝓣𝑈𝐿 and 𝓣𝐿𝑈 be transmission operators (from 𝑆𝐿 to 𝑆𝑈 and from 𝑆𝑈 to 𝑆𝐿, respectively), both having 

a similar structure as 𝓡𝑈 and 𝓡𝐿. Now, four more representations can be derived, which we can cast 

into the following system: 
 

(

𝟎
𝑮𝑈𝑑
−− +𝓣𝑈𝐿𝑭𝐿𝑑

−

𝟎
𝑮𝐿𝑑
++ +𝓣𝐿𝑈𝑭𝑈𝑑

+

)+

(

 
 
𝑮𝑈
−+

𝑮𝑈𝑚
−−

𝑮𝐿
+−

𝑮𝐿𝑚
++
)

 
 
= (

𝟎 𝟎 −𝓣𝑈𝐿𝓩 𝟎
𝟎 𝟎 𝟎 −𝓣𝑈𝐿

−𝓣𝐿𝑈𝓩 𝟎 𝟎 𝟎
𝟎 −𝓣𝐿𝑈 𝟎 𝟎

)

(

 

𝑭𝑈
−

𝑭𝑈𝑚
+

𝑭𝐿
+

𝑭𝐿𝑚
− )

 .  (3) 

 

When we apply diag(𝜣𝑈, 𝜣𝑈, 𝜣𝐿 , 𝜣𝐿) to this result, we obtain a system of auxiliary equations: 

 

(

𝟎
𝑮𝑈𝑑
−− +𝜣𝑈𝓣𝑈𝐿𝑭𝐿𝑑

−

𝟎
𝑮𝐿𝑑
++ +𝜣𝐿𝓣𝐿𝑈𝑭𝑈𝑑

+

) = (

𝟎 𝟎 −𝜣𝑈𝓣𝑈𝐿𝓩 𝟎
𝟎 𝟎 𝟎 −𝜣𝑈𝓣𝑈𝐿

−𝜣𝐿𝓣𝐿𝑈𝓩 𝟎 𝟎 𝟎
𝟎 −𝜣𝐿𝓣𝐿𝑈 𝟎 𝟎

)

(

 

𝑭𝑈
−

𝑭𝑈𝑚
+

𝑭𝐿
+

𝑭𝐿𝑚
− )

 .  (4) 

 

We may try to invert equations (2) and (4) jointly for the unknown (𝑭𝑈
−, 𝑭𝑈𝑚

+ , 𝑭𝐿
+, 𝑭𝐿𝑚

− )𝑇. However, this 

procedure still suffers from the actions of window operators 𝜣𝑈 and 𝜣𝐿, which effectively reduce the 

rank of the system's overall matrix. We aim to overcome this limitation by deriving yet another system 

of equations in the following section. 

 

System of coupled equations 

Note that the Green's functions in the left-hand sides of equations (1) and (3) can be eliminated by 

adding these equations together. This leads to the following system of coupled equations: 

 

(

 
 

𝓡𝑈𝑭𝑈𝑑
+

𝓣𝑈𝐿𝑭𝐿𝑑
− − 𝓩𝑭𝑈𝑑

+

𝓡𝐿𝑭𝐿𝑑
−

𝓣𝐿𝑈𝑭𝑈𝑑
+ − 𝓩𝑭𝐿𝑑

−
)

 
 
= (

𝑰 −𝓡𝑈 −𝓣𝑈𝐿𝓩 𝟎
−𝓡𝑈𝓩 𝓩 𝟎 −𝓣𝑈𝐿
−𝓣𝐿𝑈𝓩 𝟎 𝑰 −𝓡𝐿
𝟎 −𝓣𝐿𝑈 −𝓡𝐿𝓩 𝓩

)

(

 

𝑭𝑈
−

𝑭𝑈𝑚
+

𝑭𝐿
+

𝑭𝐿𝑚
− )

    (5) 

 

One approach would be to invert equation (5) directly, without intervention of the window operators. 

However, this procedure does not use the information in equations (1) and (3) in an optimal sense, as 

we may have accidently reduced the system's row space by adding the equations together. Instead, we 

propose to invert equations (2), (4) and (5) together for (𝑭𝑈
−, 𝑭𝑈𝑚

+ , 𝑭𝐿
+, 𝑭𝐿𝑚

− )𝑇, which we enforce to be 

zero outside the intervals (−𝑡𝑈𝑑
𝑆𝑆 + 𝑡𝜀 , 𝑡𝑈𝑑

𝑆𝑆 − 𝑡𝜀) and (−𝑡𝐿𝑑
𝑆𝑆 + 𝑡𝜀 , 𝑡𝐿𝑑

𝑆𝑆 − 𝑡𝜀) during inversion. Here, 𝑡𝑈𝑑
𝑆𝑆  

and  𝑡𝐿𝑑
𝑆𝑆  are the traveltimes of the direct non-converted SS-transmissions from the focal depth 𝑧 to the 

upper and lower boundary, respectively. 
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Numerical example 
To illustrate the effectiveness of the proposed methodology, we conduct a numerical experiment. 

Synthetic data are computed in an elastic medium, which is shown in Figure 1(a). In this medium, both 

monotonicity conditions of Reinicke et al. (2020) are violated. Our goal is to retrieve Green's functions 

as if there were a source at the focal depth 𝑧 = 1𝑚 with rayparameter 𝑝 = 0.2𝑚𝑠/𝑚. As input data, we 

compute two-sided reflection and transmission data with this rayparameter, using a zero-phase wavelet 

with a central frequency of 50kHz (based on this wavelet, we set 𝑡𝜀 = 18𝜇𝑠). Apart from these data, our 

scheme requires four band-limited pulses 𝐺𝑈𝑑
𝑃𝑃,  𝐹𝑈𝑑

𝑆𝑆 , 𝐺𝐿𝑑
𝑃𝑃 and 𝐹𝐿𝑑

𝑆𝑆, which are also precomputed. Two 

of these pulses are shown in figures 1(b) and 1(c). The cyan lines in these (and subsequent) figures 

denote the traveltimes −𝑡𝑈𝑑
𝑃𝑃 − 𝑡𝜀 and  𝑡𝑈𝑑

𝑃𝑃 + 𝑡𝜀,  which are used to construct the window operator 𝜣𝑈. 

The magenta lines denote −𝑡𝑈𝑑
𝑆𝑆 + 𝑡𝜀 and 𝑡𝑈𝑑

𝑆𝑆 − 𝑡𝜀, marking the interval (−𝑡𝑈𝑑
𝑆𝑆 + 𝑡𝜀 , 𝑡𝑈𝑑

𝑆𝑆 − 𝑡𝜀) where 

the unknown components of the focusing functions are allowed to be non-zero. The latter is enforced 

during the inversion by incorporating a restriction operator 𝜩 in our formulation, muting all data outside 

the prescribed interval. Another operator 𝑸  is introduced for convolution with the source wavelet. We 

use these operators to rewrite (𝑭𝑈
−, 𝑭𝑈𝑚

+ , 𝑭𝐿
+, 𝑭𝐿𝑚

− )𝑇 as 𝑸𝜩(�̂�𝑈
−, �̂�𝑈𝑚

+ , �̂�𝐿
+, �̂�𝐿𝑚

− )
𝑇

, where the hat denotes 

a wavelet-free representation, which is assumed to be relatively sparse in the time domain. We exploit 

this sparsity (Haindl et al., 2021) by solving the three systems of equations (2), (4) and (5) jointly for 

(�̂�𝑈
−, �̂�𝑈𝑚

+ , �̂�𝐿
+, �̂�𝐿𝑚

− )
𝑇

, using the solver SPGL1 (van den Berg and Friedlander, 2008). We run 100 

iterations with this solver, where we set the initial sparsity parameter equal to the 𝐿1-norm of a solution 

in an equivalent homogeneous medium (since we know that the solution in a heterogeneous medium 

should exceed this level). After inversion, we convolve the recovered sparse waveforms with the source 

wavelet. In figures 2 and 3, we compare 𝑭𝑈
+ = 𝑭𝑈𝑑

+ + 𝑭𝑈𝑚
+  and 𝑭𝑈

−  as retrieved by this procedure (in 

dashed red) with equivalent focusing functions that have been computed by direct modeling (in black). 

We observe that all forward-scattered and reflected waveforms have been recovered, although some 

weaker arrivals have been underestimated. In figures 4 and 5, we show the Green's functions 𝑮𝑈
−− =

𝑮𝑈𝑑
−− + 𝑮𝑈𝑚

−−   and  𝑮𝑈
−+, which we have constructed from the retrieved focusing functions by rearranging 

equation (3). Most waveforms have been recovered, where we note that some amplitudes have been 

underestimated. Note that there is a significant overlap of the Green's functions and time-reversed 

focusing functions on the interval (𝑡𝑈𝑑
𝑃𝑃 , 𝑡𝑈𝑑

𝑆𝑆 ). This overlap hampers applications with the single-sided 

Marchenko equation (Reinicke et al., 2020), which we overcame by incorporating transmission data.  

 
Discussion 

We have presented a methodology to retrieve Green's functions in a layered elastic medium from two-

sided reflection and transmission data. Our method does not depend on a priori knowledge of forward-

scattered converted waveforms. We have demonstrated the method successfully on a particular model 

that violates the monotonicity conditions of Reincike et al. (2020). Its performance and limitations on 

arbitrary elastic models remains to be investigated, as is the sensitivity of our method for the phases and 

amplitudes of the initial spikes 𝐹𝑈𝑑
𝑆𝑆 , 𝐺𝑈𝑑

𝑃𝑃, 𝐹𝐿𝑑
𝑆𝑆 and 𝐺𝐿𝑑

𝑃𝑃. In its current form, the method requires 

sufficient bandwidth with respect to the layer thicknesses in the medium. This limitation might be 

overcome by incorporating insights of the augmented focusing function of Dukalski et al. (2019). 

Moreover, the methodology could be extended to viscoelastic media, using insights from Slob (2016). 

Figure 1 (a) 𝑐𝑃 (in blue) and  𝑐𝑆 (in red). 

Density is constant 𝜌 = 2000𝑘𝑔 𝑚−3. The 

green line denotes the focal depth 𝑧 = 1𝑚. 

(b) Direct non-converted PP-transmission at 

the upper boundary 𝐺𝑈𝑑
𝑃𝑃, which is used as 

input. (c) Inverse direct non-converted SS-

transmission at the upper boundary 𝐹𝑈𝑑
𝑆𝑆 , 

which is used as input. The cyan lines mark 

the traveltimes ±𝑡𝑈𝑑
𝑃𝑃 ± 𝑡𝜀, while the magenta 

lines mark ±𝑡𝑈𝑑
𝑆𝑆 ∓ 𝑡𝜀. 
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Figure 2 Retrieved components of 𝑭𝑈

+ (in dashed 

red), versus reference (in solid black).    

Figure 3 Retrieved components of 𝑭𝑈
− (in dashed 

red), versus reference (in solid black).

       
Figure 4 Retrieved components of 𝑮𝑈

−− (in dashed 

red), versus reference (in solid black). 

Figure 5 Retrieved components of 𝑮𝑈
+− (in dashed 

red), versus reference (in solid black).
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