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A B S T R A C T   

Understanding lake dynamics is crucial to provide scientifically credible information for ecosystem management. 
In this context, three-dimensional hydrodynamic models are a key information source to assess critical but often 
subtle changes in lake dynamics occurring at all spatio-temporal scales. However, those models require time- 
consuming calibrations, often carried out by trial-and-error. Through a new coupling of open source software, 
we present here a flexible and computationally inexpensive automated calibration framework. The method, 
tailored to the calibration data available to the user, aims at (i) reducing the time spent on calibration, and (ii) 
making three-dimensional lake modelling accessible to a broader range of users. It is demonstrated for two 
different lakes (Lake Geneva and Greifensee) with an extensive multi-variable observational dataset. Models 
mean absolute errors are reduced by up to ~50% over the baseline. Guidelines on heat and momentum transfer 
parameters are given with their dependence on the observational setup.   

1. Introduction 

Lakes play an essential role for the economic development and 
wellbeing of our societies. Securing sustainably ecosystem services, 
provided by surface waters at regional to global scale, brings the need 
for monitoring programs to the fore (Hering et al., 2015). Traditionally, 
lake monitoring has been carried out by infrequent in-situ observations, 
which is often not enough to adequately assess critical but often subtle 
changes (Kiefer et al., 2015). Besides the temporal issue, the lateral 
variability is also lacking and new approaches including remote sensing 
observations and numerical simulations are therefore required 
(Vörösmarty et al., 2015). Additionally, few have studied processes with 
horizontal gradients such as upwellings, gyres, or river intrusions, 
whose temporal scales are significantly shorter and their spatial vari
ability often underestimated. This inhomogeneity can influence 
biogeochemical processes through horizontal advection and their asso
ciated net vertical transport (MacIntyre and Melack, 1995), hence 
playing an important role for the spatial structure of lake water quality. 
Key in grasping such variability are 3D hydrodynamic models, the only 

information source capable of solving entirely the spatio-temporal scales 
involved in local to basin-scale lake dynamics. 

To accurately and reliably reproduce natural processes, a first and 
crucial phase in model development is its adequate parameterization. 
Calibration of the unknown model parameters is non-trivial. For 
instance, a number of them cannot be directly observed, are related to 
aggregated processes (Madsen, 2003), or depend on the model grid 
resolution. Hence, they cannot be determined from physical character
istics of the examined basin. This is a complex and time-consuming task 
that discourages non-expert and distracts resources from model-based 
system understanding. Traditionally, calibration is achieved by 
trial-and-error procedures, which in addition to being inefficient and 
complex, is partly subjective and relies on the experience of the mod
ellers (Afshar et al., 2011; Fabio et al., 2010; Madsen, 2000). Those 
difficulties highlight the need to automate this crucial implementation 
step (Solomatine et al., 1999). 

Calibration (parameter optimization) is an inverse problem to 
minimize a cost/objective function that expresses the goodness-of-fit 
between simulated and observed variables in numerical form (Fenicia 
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et al., 2007) to identify parameters not known a priori. In the 
trial-and-error approach, the modeller adjusts repeatedly the model 
parameters, until an acceptable error/mismatch with respect to obser
vations is achieved. The non-linearity and dimensionality of hydrody
namic models renders this task demanding, as changes in some 
parameters are often compensated by others (Bárdossy and Singh, 
2008). Using limited human intervention, automated calibration, how
ever, adjusts model parameters by solving an optimization problem 
(Solomatine et al., 1999). 

Over the last decades, in various fields of environmental sciences, 
such as surface water hydrology (Ahmadi et al., 2014; Bárdossy and 
Singh, 2008; Gallagher and Doherty, 2007; Hendrickson et al., 1988; 
Hughes et al., 2014; Johnston and Pilgrim, 1976; Solomatine et al., 
1999; Vidal et al., 2007; Wang and Brubaker, 2015), and 1D or 2D lake 
hydrodynamics (Afshar et al., 2011; Fabio et al., 2010; Gaudard et al., 
2017), a number of computer-based automated calibration frameworks 
have been developed such as PEST, DREAM, GLUE. However, it has been 
done at a significant computational cost. The computational burden 
associated with 3D hydrodynamic models limited the use of such 
frameworks. In this situation, computational overhead is a major 
concern, and while various solutions have been proposed to tackle 
complex hydrologic models (Li et al., 2011; Rouholahnejad et al., 2012; 
Wu and Liu, 2012; Zhang et al., 2013), only a few developed parameter 
search and optimization techniques adapted to the high dimensionality 
of 3D lake hydrodynamic systems. We argue that this gap prevents the 
widespread of 3D hydrodynamic modelling for lake research. 

In this study, we present a new and simple coupling of the Delft3D- 
FLOW hydrodynamic modelling suite to the open-source data-assimi
lation and calibration platform OpenDA. Delft3D-FLOW is an open- 
source multi-dimensional hydrodynamic simulation software with 
numerous successful applications in coastal, river, estuarine and lake 
domains. OpenDA is an open-source generic calibration and data 
assimilation environment (El Serafy et al., 2007), which can be coupled 
with limited software development to any model without having to 
change the model code. OpenDA has been successfully applied in data 
assimilation of current and salinity profiles (El Serafy et al., 2007), for 
flood forecasting purposes (Weerts et al., 2010), in calibrating the 
regional tidal prediction of the Singapore regional model (Kurniawan 
et al., 2010), and for tidal sensitivity analysis (Kurniawan et al., 2011), 
but to our knowledge, not yet applied to 3D lake hydrodynamic 
modelling. In the scope of this study, an interface for OpenDA has been 
developed to support Delft3D-FLOW through its file-based black-box 
wrapper. 

Parameter estimation in this kind of application became a time- 
consuming expert-user problem. With this study, we propose a solu
tion to break down this task, using open-source tools, towards more 
open and reproducible applications for a wider range of users. To do so, 
we present a systematic methodology to overcome the high computa
tional costs associated with computer-based calibrations of 3D hydro
dynamic models by proposing a flexible and efficient calibration 
framework, tailored to the available calibration data and its uncertainty, 
hence alleviating the time-consuming trial-and-error approach. Our 
approach uses a relatively simple and computationally inexpensive al
gorithm, DUD (Doesn’t Utilize Derivatives, Ralston and Jennrich, 1978), 
for parameter inference. Additionally, we present the limitations 
inherent to such an approach, given by the dependency on the type of 
observational data, its accuracy and its spatio-temporal density. This 
framework and its performance are evaluated through the calibration of 
two different lake systems (both in terms of size and dynamics), using 
temperature and current observations. This study does not only provide 
a tool for modellers to automatize tedious calibration tasks but is also a 
necessary prerequisite for research aiming at hydrodynamic processes 
understanding or even improving model accuracy through data assim
ilation and uncertainty quantification. For instance, a data assimilative 
system updating model states artificially is counterproductive when it is 
not able to reproduce the physics of the observed system resulting from a 

bad parameterization. The approach presented here already benefited 
various studies and systems, ranging from theoretical articles assessing 
the assimilation of satellite and in-situ observations (Baracchini et al., 
2020a), up to 3D online lake operational systems (Baracchini et al., 
2020b, 2019). 

The paper is structured as follows: the methodology is introduced in 
Sections 2 and 3. The former presents the hydrodynamic model, study 
sites, computational domains, observations and their uncertainties. The 
latter details the different steps involved in the estimation process, 
including choice of model base and calibration parameters, software 
coupling and optimization algorithm. For both case studies, results 
(Section 4) show a statistical improvement over the baseline models. 
Section 4 details the results for Lake Geneva (large-scale system), 
whereas the Greifensee results are available in the appendix. Finally, 
Section 5 contains the results analysis and discussion before conclusions 
are summarized in Section 6. 

2. Materials and methods 

2.1. Study sites 

Lake Geneva - Lake Geneva is the largest freshwater lake of Western 
Europe (580 km2 of surface area, 89 km3 of volume, and residence time 
of 11.4 years, Fig. 1). Located between Switzerland and France (46.4◦ N, 
6.5◦ E) at an altitude of 372 m, it is a warm-monomictic lake with its 
deepest seasonal mixing occurring in late winter (late February/early 
March). In addition to the mild climate, its maximum depth reaching 
309 m prevents it from freezing in winter. The lake is thermally stratified 
from spring to late autumn and almost homothermal in late winter, 
although complete deep-mixing usually occurs only once per 5 to 10 
winters on average. Now mesotrophic, light penetration in Lake Geneva 
varies strongly over seasons and Secchi depth typically ranges from 3.6 
to 14 m. Hence, time series of measured Secchi depth are used to force 
the model, in addition to the meteorological data. 

Greifensee - Greifensee is a small (8.5 km2 of surface area, 0.15 km3 

of volume and residence time of 1.1 year, Fig. 1) lake located in the area 
of Zurich (47.2◦ N, 8.4◦ E, Switzerland). The maximal and mean depth 
are 30 and 18 m, respectively. During the second half of the 20th cen
tury, Greifensee experienced strong eutrophication. Although, recovery 
started since strict phosphorus regulations were implemented, the lake 
is still considered eutrophic. This results in shallower light penetration 
compared to Lake Geneva throughout the year. Monthly measured 
Secchi depth, ranging from 1.5 to 8.7 m, are used to drive the model. 

2.2. Delft3D-FLOW model setup 

Delft3D-FLOW is an open-source hydrodynamic simulation software 
for integrating coupled systems of differential equations for water vol
umes (continuity equation), momentum (Reynolds-averaged Navier- 
Stokes (RANS) equations), and tracers (transport equation) driven by 
atmospheric forcing. A detailed description of the model, its equations 
and numerical schemes can be found in the manual by Deltares (2015). 

In this study, the z-layers (e.g. fixed vertical layers) scheme is used, 
since it is capable of reproducing the lake stratification with the given 
steep basin morphologies (for such steepness, σ-layer models are subject 
to strong numerical diffusion). Fifty and hundred layers are used for 
Greifensee and Lake Geneva, respectively. The layers are unevenly 
distributed, with thinner surface layers (down to 20 cm thick right at the 
top) to a few meters in the deep hypolimnion. The horizontal grid sizes 
are 450 m (274′701 cells) for Lake Geneva and 60 m (70′232 cells) for 
Greifensee. Computational grids (horizontal and vertical) are too coarse 
and time steps too long to resolve small-scale turbulence. The length 
scales of the turbulent processes are therefore of “sub-grid” scale and 
closure models, like the κ-ε model, have to be considered. Time-steps of 
1 min for Greifensee and 2 min for Lake Geneva maintain model sta
bility. Simulations are initialized (uniformly horizontally) from an in- 
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situ temperature profile taken at the deepest location in January (2014 
for Greifensee, 2015 for Lake Geneva), when both lakes are partially or 
fully mixed. 

For atmospheric forcing, we use MeteoSwiss COSMO-1 and COSMO- 
2 (MeteoSwiss, 2019a, 2019b) reanalysis products, consisting of seven 
meteorological variables on regular 1.1–2.2 km grid and hourly reso
lutions. The variables include: solar radiation, wind direction and speed, 
relative humidity, cloud cover, pressure, and air temperature from the 
COSMO atmospheric model with data assimilation tailored to the Alpine 
region. A single model iteration (two years for Lake Geneva and one for 
Greifensee) requires ~1 day of computation on three Xeon Broadwell 
cores for Greifensee to ~2 days on four cores for Lake Geneva, indicating 
the paramount importance of the computational efficiency of the cali
bration scheme. 

2.3. Assimilation platform OpenDA 

OpenDA is a generic open-source data assimilation platform result
ing from merging of Costa (van Velzen and Verlaan, 2007) and DATools 
(El Serafy et al., 2007; Weerts et al., 2010). OpenDA is designed to be 
coupled with a wide range of process models, by making use of a set of 
interfaces describing the interaction between models, observations and 
algorithms (Deltares, 2019). Its generic and flexible interfacing protocol 
allows using existing calibration and data assimilation algorithms with 
any model whose OpenDA interface is implemented accordingly. 

There was no existing interface for temperature and current fields 
with the z-layers coordinate system of Delft3D-FLOW. For the purpose of 
this study, an OpenDA interface has been developed using the black-box 
wrapper. The coupling is a file-based approach, implemented by adding 
JAVA classes to allow reading and writing Delft3D-FLOW input-output 
files by OpenDA. While this method is less computationally efficient, 
since it adds an input-output overhead, it is relatively simple and does 
not require modifying the model code. The black-box wrapper approach 
can be used to couple OpenDA with any other model. This interface also 
adds a layer allowing the conversion of some parameters, such as 
treating both horizontal (background viscosity and diffusivity) param
eters and bottom drag coefficients (one for each direction) as one. The 
entire code can be found on GitHub (https://github.com/OpenDA-Ass 
ociation/OpenDA). 

2.4. Monitoring data 

A key aspect in model parameterization is the quality of calibration 
data (Madsen, 2003). In-situ observations are often time demanding and 
costly. Moreover, in the case of 3D models, the spatial variability of the 
lake has to be validated. This requires multi-site (at least two different 
locations) and ideally multi-variable time series of observations. For 
hydrodynamic models, both heat and momentum input from the at
mosphere have to be calibrated. This requires in-situ information on 
temperature and flows. In this study, we consider in-situ data of tem
perature and current measurements from both, short-term field studies 
(single profiles) and permanent monitoring stations at various fre
quencies (6-hourly to monthly). This study here considers long-term 
monitoring data and focuses on seasonal to interannual scales, hence 
basin-scale internal waves are not directly addressed. The ability of the 
model to reproduce the dynamics of these waves is only considered 
through spectral analysis in the discussion section. 

Greifensee – The available data for Greifensee stems from two per
manent field stations (Fig. 1) sampling temperature over the water 
column at different frequencies. The northern station (Eawag) has 321 
profiles during summer 2014, measured at a 6-hourly interval to a 
maximum depth of 17 m, while the central station (Canton) has 12 
monthly profiles over the same year to a maximum depth of 30 m 
(deepest location). The model is initialized from a temperature profile 
sampled at the center of the lake. For initial conditions, horizontally 
temperature fields are set homogeneous and flow velocities are set to 
zero. 

Lake Geneva – The available dataset for Lake Geneva consists of 90 
temperature profiles over the water column at 32 different locations 
(Fig. 1) sampled during 2015 and 2016. While most of the locations have 
been sampled only once (black crosses in Fig. 1), monthly to bi-monthly 
measurements are available at two stations (GE3 and SHL2, black circles 
in Fig. 1). Some results will therefore focus on those two stations. The 
entire dataset has been used for calibration. 

In addition to temperature data, currents are measured at four lo
cations (triangles, Fig. 1) with Acoustic Doppler Current Profilers 
(ADCPs, Cimatoribus et al., 2017). This data consists in continuous (over 
up to six months) ADCP measurements at various depths (mainly in the 
hypolimnion) nearshore and offshore. Since the aim was to calibrate the 

Fig. 1. Study sites, morphology, model grid and in-situ monitoring locations (circles are permanent stations, crosses mark single profiles, and triangles indicate ADCP 
current meter locations). Map curtsey of https://map.geo.admin.ch. 
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model’s mechanical energy content, only the current speed is considered 
and the directional components are discarded. This is also a consequence 
of the uncertainties inherent to wind forcing and monitoring data 
described in the next section, hence a perfect model match with dynamic 
forcing cannot realistically be expected. Finally, this high-frequency 
dataset has been down-sampled to 6-h intervals, while the higher fre
quency variability will be considered in the data uncertainty definition 
to account for unavoidable model phase shifts. The Lake Geneva model 
is initialized from the output of a previously running model, its spin-up 
period is thereby not included in this analysis. 

Data uncertainty - In addition to model uncertainties (e.g. initial 
conditions, physical processes and their parameterizations (Chen et al., 
2019), approximations of the system) and forcing errors, measured data 
is also subject to systematic and random errors (Bárdossy and Singh, 
2008). Hence, uncertainty of the information must be considered in the 
calibration framework. Increasing the amount of data does not neces
sarily result in better parameter estimations (Sorooshian et al., 1993; 
Sun and Bertrand-Krajewski, 2012). Quality of the data (e.g. instrument 
accuracy, measurements close to detection limits, good spatial coverage 
of the observations) is of prime importance. 

In this study, we define the observational uncertainty as the 
maximum value of the two following elements: (1) the instrument pre
cision (CTD or ADCP), and (2) the temporal dynamic variability at the 
measurement location. While the first is a fixed value (here, 0.002 ◦C or 
0.8 cm s− 1), the latter is obtained from either model simulation results 
(in the case of temperature) or measurements (flow velocities) by 
computing the standard deviation of the observed variable over a period 
of ±6 to ±12 h (depending on the lake size and the period of basin-scale 
modes). The latter especially affects temperature observational uncer
tainty at the thermocline level and flow velocities but does not influence 
the seasonal scale hydrodynamics, which this study focus on. The goal of 
this procedure is to avoid affecting the cost function (Eq. (1)) too much 
when a short-term event (e.g. internal wave) is not phased correctly, 
which could result from uncertainties elsewhere (e.g. in forcing vari
ables, which also come from a model). Absolute values of currents are 
also averaged hourly. 

Calibration procedure - Lake hydrodynamics can be understood in 
terms of kinetic and potential (thermal) energy budgets, both require 
calibration. Yet, kinetic and thermal dynamics do not show a first order 
reaction to changes in all parameters. The heat fluxes predominantly 
determine the surface boundary structure, while turbulent diffusion in 
the stratified volume depends mainly on the kinetic energy. By selecting 
the appropriate set of calibration parameters, the two calibrations can be 
decoupled. In the case of Lake Geneva, observed currents are often close 
to their measurement accuracy (especially in the hypolimnion). This 
results in a much lower impact on the cost function compared to tem
perature measurements, whose accuracy is order of magnitudes higher 
than their standard deviation (see cost function Eq. (1)). Therefore, 
calibration of temperature and currents will have to be decoupled to 
assess their influence on parameters and the performance of the cali
bration. While a single calibration is presented for Greifensee, two 
sequential steps are performed in the case of Lake Geneva. Flow cali
bration builds on the results obtained by temperature calibration. To 
avoid having the second calibration deviate too much and destroy the 
optimization for temperature, weak parameter constraints have been 
enabled (detailed in Section 3.1). This sequential approach is valid for 
calibration of lake hydrodynamics at seasonal scales for which the 
density stratification is mainly vertical. At hourly time scales, horizontal 
density gradients also drive local momentum exchanges that are not 
necessarily calibrated with such an iterative approach. This is also likely 
the case in complex multi-basin systems. 

3. Calibration 

When dealing with optimization schemes, global and local methods 
can generally be distinguished (Madsen, 2000). While global methods 

(e.g. particle filters, population-evolution-based search algorithms, ge
netic algorithms) are more robust in finding the global minimum in the 
parameter space of the cost function, they are computationally expen
sive (Fabio et al., 2010), thereby preventing their use for 3D hydrody
namic models and limited computing resources. Local methods on the 
other hand are more efficient, at risk of falling into local minima and 
having their outcome dependent on the initial setup. This study hence 
focuses on the latter approach. 

3.1. Calibration algorithm 

DUD is a derivative-free OpenDA algorithm for parameter estimation 
capable of coping with non-linear models (Ralston and Jennrich, 1978). 
DUD can be compared to a Gauss-Newton method as it transforms the 
non-linear least square problem to minimize into a linear one. However, 
instead of doing so by computing its derivatives (approximating its 
tangent function), it uses an affine function for the linearization (Ralston 
and Jennrich, 1978). This is interesting for objective functions in the 
form of a sum of squares, as Gauss-Newton based algorithms are faster 
(Bard, 1970; Box, 1966). Additionally, Gauss-Newton algorithms are 
widely used and have similarities with robust estimation methods 
(Beaton and Tukey, 1974) as well as with maximum likelihood estima
tion (Bradley, 1973; Charnes et al., 1976; Nelder and Baker, 2006; 
Ralston and Jennrich, 1978). A competitive advantage of DUD is its 
performance with respect to the low number of model iterations it needs, 
which is a requirement for the models used in this study. 

DUD calibration is an iterative process, whose optimum is reached 
when specified convergence criteria (specified in the Appendix) are met. 
The minimized cost function is of the following form: 

J=Σt
(y0(t) − ym(t))2

σ2
0

(1)  

With yO(t) the observation at time t, ym(t) the modelled value at time t, 
and σ0 the observational uncertainty. 

The choice of this algorithm has been motivated by its ability to deal 
with non-linear models while being computationally relatively inex
pensive (usually, less than 10 model runs are required to reach 
convergence) in comparison to other algorithms. Some of its capabilities 
have been demonstrated by Garcia et al. (2015) for similar problems. 
DUD can be used with or without user-defined constraints. In this study, 
constraints are used and detailed in Table A1 (appendix). Finally, for the 
current speed calibration of Lake Geneva, the weak parameter constraint 
is enabled. This setting adds a penalty when the optimization changes a 
parameter away from its initial guess. 

The entire procedure has been first tested through a twin-experiment 
with a small-scale lake (25 vertical z-layers, 339 horizontal grid points). 
The model was quick to converge back to its initial parameters, which 
generated the observations used in the experiment. This computation
ally light twin-experiment has been included in the OpenDA GitHub 
repository to facilitate the understanding of the entire procedure and 
tools. 

3.2. Calibration parameters 

In 3D hydrodynamic models, some parameters cannot be obtained 
with a priori knowledge. Some of them are furthermore grid-dependent 
as for instance the horizontal diffusivity. Those parameters are perfect 
candidates for automatic algorithm calibration limiting tedious and 
subjective parameter hand-tuning. The approach presented in this study 
aims thus at focusing on quantities that are too complex to interpret with 
a priori knowledge. Its goal is to minimize Delft3D-FLOW model 
parameterization uncertainty while maximizing the calibration perfor
mance. Parameters with a direct interpretation, such as the light 
attenuation or Secchi depth, will still have to be user-defined. Our 
strategy is to focus on variables controlling the energy pathway (heat 
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and momentum). Such parameters are described in Table 1, while our 
choice is motivated in the following sub-sections. 

Surface forcing and energy source - The thermal- and fluid- 
dynamics of a lake are mainly driven by the atmosphere (Imberger 
and Hamblin, 1982). The accuracy of the heat and momentum transfer 
at the air-water interface is thereby of paramount importance for the 
performance of the model, especially for surface and mixed layer pro
cesses. The wind drag coefficient, which acts on heat and momentum 
transfer into the water, is a function of wind speed and can be chal
lenging to determine. Its characterization has been the aim of several 
studies in both limnology and oceanography (Wüest and Lorke, 2003) 
and functional parameterization can be found in the literature. Yet, the 
wind is rarely measured directly over the lake but at nearby official 
meteorological stations and therefore only approximately represent the 
wind field over the lake. Consequently, the physical parameterization of 
the wind drag coefficient needs to be adapted for specific inadequacy in 
the wind forcing. This is particularly true at low wind speed when local 
topography affects the wind field. In this paper, the wind drag coeffi
cient at low wind speeds (0–5 m s− 1), most common winds in the 
considered region, is calibrated. 

Viscosities and diffusivities - The summer strong stratification, 
typical for lakes, prevents vertical over horizontal transport, which is 
characterized at small scales by a strong anisotropy between the vertical 
and horizontal viscosity (and diffusivity). Toffolon and Rizzi (2009) 
showed that the ratio between vertical and horizontal viscosity could 
affect the lake response to wind by enhancing horizontal circulation or 
upwelling. In Delft3D-FLOW, as in many other 3D models, background 
values for both vertical and horizontal diffusivities and viscosities can be 
specified by the user. Horizontal parameters depend on the grid size (a 
priori knowledge from the model manual suggests values ranging from 1 
to 10 m2 s− 1 for grids of ~10 m and 10–100 m2 s− 1 for grids of 100 m or 
more). It is also specified (Deltares, 2015) that both coefficients are 
calibration parameters and have to be determined during the calibration 
phase. For 3D simulations, vertical eddy viscosity and eddy diffusivity 
are computed from a turbulence closure model. In the κ-ε model, the 
eddy diffusivity is derived from the eddy viscosity. The applied vertical 
viscosity is the max of the user-defined background value, νback

V , and the 
calculated value from a 3D turbulence model ν3D (Eq. (2)). The same 
applies for the vertical diffusivity. Since those values, derived from the 
turbulence model, are based on system dynamics, we do not consider 
them as candidates for calibration. Horizontal parameters will be 
considered as identical (diffusivity = viscosity, referred to as DVH in 
Table 1 and in the following sections) and be calibrated by the 
algorithm. 

νV = νmol + max
(
ν3D, νbackV

)
(2)  

νH = νSGS + νV + νbackH (3)  

with νmol for the kinematic viscosity of water, ν3D is computed by the 

vertical turbulence closure model, νback
V is the background vertical vis

cosity, and νSGS indicates the viscosity obtained from the sub-grid scale 
(Horizontal Large Eddy Simulation methodology) model. 

Bottom boundary and energy sink - Finally, the main energy sink in 
lakes is by frictional dissipation at the bed. The bottom drag coefficient 
acts on this other boundary dynamics by dampening of near-sediment 
flows and internal waves. The bed roughness height, z0, is used as a 
calibration parameter controlling the boundary layer assuming a loga
rithmic law-of-the-wall. While z0 is a parameter that should be directly 
derived from physical observations such as Acoustic Doppler Current 
Profiler (ADCP), this parameter not only contain physical interpretation 
but also model error at the boundaries, which depend among others on 
the horizontal and vertical grid size. The steep slopes around Lake 
Geneva are challenging to model and lead to staircase effects with 
artificial turbulence, which can be damped by increasing the bottom 
drag coefficient. While the bottom drag coefficient should be evaluated 
at each grid point, we did not have enough observations and assumed 
here a horizontally homogeneous parameter. 

Other parameters and sensitivity analysis - In addition, we recom
mended an analysis to assess the sensitivity of the cost-function of the 
calibration, as it will determine which parameters are estimable (Skahill 
and Doherty, 2006). This is of particular importance to find the right 
trade-off between having enough parameters to lower the cost function 
to the extent it could be lowered with more parameters, while still 
conserving uniqueness in their estimation and maintaining a reasonable 
runtime. More parameters require the DUD algorithm to perform more 
model runs. Within the Delft3D-FLOW modelling environment and 
specific to the two lakes studied, sensitivity analysis highlighted another 
parameter of significant importance for the aforementioned sub
domains. The Dalton number (CDalton) acts directly on the forced evap
orative heat flux (Eq. (5)), which is part of the total heat budget (Eq. (4)): 

Qtot =Qsw + Qalw − Qlw − Qev − Qconv (4)  

Qev,forced =LVρaCDaltonU10⋅(qs − qa) (5)  

With Qsw indicating the incident shortwave radiations, Qalw the incident 
longwave radiations, Qlw the back radiations, Qev the evaporative heat 
flux (composed of the free and forced components), and Qconv the 
convective heat flux. LV is the latent heat of water, ρa the density of air, 
U10 the wind speed at 10 m above water level, qs and qa the specific 
humidity of saturated and ambient air (10 m above water level), 
respectively. The CDalton value will not affect the thermocline depth but 
plays an important role in the modelling of the mixed layer temperature, 
especially during the stratified period. It is worth noting that the Dalton 
number, whose signature is only visible in temperature changes, is kept 
fixed in the second (current speed) calibration. This is especially rele
vant since there are no flow measurements in the mixed layer. 

4. Results 

In this section, quantitative and qualitative results for both lakes are 
presented. Mean Absolute Error (MAE), Root Mean Square Error (RMSE) 
and Taylor Diagrams (Taylor, 2001) are used as indicator of the cali
bration performance. Profiles over the water column and time-series at 
multiple depth are used to illustrate the model calibration for Lake 
Geneva. For the model of Greifensee, the same is available in the 
appendix. 

The Greifensee model has been calibrated with temperature profiles 
at two locations. Improvements in terms of MAE are at 51%, reaching a 
final MAE of 1.4 ◦C. A summary of RMSE and MAE values can be found 
in Table 2. Relative to Greifensee, the Lake Geneva model improvements 
are lower. The main difference comes from a better initial model for 
Lake Geneva. The model reached a MAE of 1.12 ◦C for the temperature 
calibration and 2.5 cm s− 1 for the flow calibration. MAEs, RMSEs and 
their improvements are summarized in Table 2. 

Table 1 
Delft3D-FLOW calibration parameters acting on the energy pathway.  

Parameter Description Influence on Calibrated in 

C10@0.5 [ − ] Wind drag coefficient at 10 
m above water and at speed 
of 0.5 m s− 1 

Temperature/ 
flow velocity 

All setups 

z0 [m] Bottom hydraulic 
roughness 

Flow velocity All setups 

CDalton [ − ] Evaporative heat flux 
coefficient 

Temperature Only for 
temperature 

CStanton [ − ] Convective heat flux 
coefficient 

Temperature Not calibrated 

DVH [m2 ⋅s− 1] Background horizontal 
viscosity and diffusivity 

Temperature/ 
flow velocity 

All setups 

DVV [m2 ⋅s− 1] Background vertical 
viscosity and diffusivity 

Temperature/ 
flow velocity 

Not calibrated  
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Fig. 2, shows the improvements brought by the automated calibra
tion through Taylor diagrams. In the case of Greifensee, the centred Root 
Mean Square Difference (cRMSD) is reduced, while the correlation 
increased. However, no significant changes in the temperature standard 
deviation are achieved. For Lake Geneva, the calibration improvements 
are minimal in terms of cRMSD and correlation. However, changes in 
flow velocity standard deviation are substantial, now significantly closer 
to the observed flow variance. 

Parametric evolution is significant (Table 3). All parameters 
increased except the background horizontal viscosity and diffusivity, 
which approached its lower bound (set at 4.5 x 10− 10 m2 s− 1, see ap
pendix). The largest change observed is in the hydraulic roughness, 
which went from 1 cm to 1.1 m in the case of Lake Geneva while 
remaining small (4.9 cm) in Greifensee. The Dalton number is of greater 
influence during the stratified period, starting around May. It is worth to 
remember that the Dalton number has only been calibrated in the 
temperature calibration experiment. Finally, the wind drag coefficient at 
low wind speeds increased. 

Two stations are selected for a detailed analysis of the temperature 
calibration, GE3 and SHL2 (Fig. 1). These are the only stations to have 
monthly temperature profiles over the entire calibration period of two 
years. Improvements at SHL2 are significant (17% MAE reduction), 
reaching a final MAE of 0.10 ◦C. Due to its shallower depth, GE3 
benefited more from the calibration, MAE is reduced by 42% (final MAE 
of 0.085 ◦C). For flow velocities, reductions in MAE for SHL2, Rhône, 
Morges, Yvoire are 7%, 9%, 15% and 3%, respectively. Selected results 
of three out of four stations are shown hereafter. 

Profiles – Fig. 3 provides a comparison of vertical temperature 
profiles at SHL2 for different times over the two years simulation. Re
finements of the temperature modelling are reached over all seasons. As 
expected, most of the improvements come from better mixed-layer 
modelling and more accurate thermocline depth. 

Fig. 4 displays vertical velocity profiles for the Morges and Yvoire 
stations at the beginning, middle and end of an ADCP measurement 
campaign. Overall, the calibrated model shows higher currents than the 
reference run, mainly in the epilimnion. This is more in accordance with 
the observed flows. In the hypolimnion, low flows (<2 cm s− 1) are 

recorded. While the reference model had a relatively low mismatch in 
this region, the observations are now mostly within the variability (over 
basin-scale wave periods) of the calibrated model. 

Time-series – Fig. 5 provides temperature time-series at GE3 station 
for various depths. Unlike for Greifensee, the model performance is 
better over the entire range of vertical layers. The thermocline, located 
between 20 and 30 m depth, is subject to the highest temporal vari
ability, shown by the shaded red and blue areas (see appendix). At those 
depths, when an observation does not precisely match the modelled 
value, it is still located within the interval representing the variability of 
basin-scale internal waves. Additionally, model match and calibration 
performance are consistent over the two years. 

Fig. 6 shows time-series of flow velocities at two stations over various 
depths and measurement periods they cover. As indicated above, the 
main improvement is the increase in average magnitude and amplitude 
of the currents, which could also be seen in the Taylor diagrams though 
the increase in standard deviation (Fig. 2). Surface layers benefited the 
most from the calibration. Indeed, in those regions, the reference model 
failed to reproduce values high enough to match the data recorded by 
ADCP measurements. The calibrated model still failed at reproducing 
some high velocities, such as the one measured at the Rhône station at 
39.7 m right before December 1st, 2016. The overall event however has 
been captured as shown by the significant increase in modelled velocity 
around that date. 

For a calibration of basin-scale internal waves, continuous mea
surements over the entire calibration period (ideally an entire year) at 
high frequency are needed at several locations. In that regard, power 

Table 2 
Summary of the calibration performance (MAE and RMSE) for Lake Geneva.   

Initial MAE Initial RMSE Final MAE Final RMSE MAE improvement RMSE improvement 

Greifensee 2.9 ◦C 3.6 ◦C 1.4 ◦C 1.9 ◦C 51 % 47 % 
Lake Geneva 1.34 ◦C 

2.7 cm s− 1 
1.95 ◦C 
3.9 cm s− 1 

1.11 ◦C 
2.5 cm s− 1 

1.80 ◦C 
3.6 cm s− 1 

16.9 % 
7.8 % 

7.7 % 
7.5 %  

Fig. 2. Taylor diagrams showing the part of cRMSD attributable to variance or pattern correlation (Taylor, 2001). The radial distance from the origin (bottom-left) 
defines the standard deviation. The radial extent from observations (black dot) to model values (red and blue dots) corresponds to the cRMSD. The azimuthal position 
provides the correlation coefficient. Taylor diagrams for Greifensee (left), Lake Geneva temperature calibration (centre) and Lake Geneva current calibration (right). 
(For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 

Table 3 
Parameters evolution after calibration of Lake Geneva.  

Parameters Initial value Value after temperature calibration Final value 

C10@0.5 [ − ] 9.8 x 10− 3 4.1 x 10− 2 4.2 x 10− 2 

z0,bottom [m] 1.0 x 10− 2 7.2 x 10− 1 1.1 x 10− 0 

CDalton [ − ] 1.3 x 10− 3 2.5 x 10− 3 2.5 x 10− 3 

DVH [m2 ⋅s− 1 ] 1.0 x 10− 5 4.5 x 10− 10 1.6 x 10− 9  
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spectra of currents in the hypolimnion at the central part of the lake 
(SHL2) are provided in Fig. 7. The spectra show a peak near the 12–13 h 
mark (inertial period) in both data and models. Such a period is most 
likely the signature of Poincaré waves and is consistent with the findings 
of (Lemmin, 2020; Lemmin et al., 2005). Fig. 7, therefore, highlights the 
capability of the model for reproducing internal waves dynamics. 

5. Discussion 

The improvements brought by the OpenDA automated calibration 
are substantial for both lakes studied. For the temperature calibration, 
results are consistent in both lakes. Largest gains in modelling accuracy 
are obtained in the mixed layer and at the thermocline depth. Those 
regions are the most sensitive to the initial parameters and where the 
largest discrepancies are observed before calibration. 

The calibration performance of the Lake Geneva model was lower 
relative to Greifensee. This is mainly related to the depth of the lake. 
Deeper lakes are less sensitive to the initial parametric setup and typi
cally have a better initial performance before calibration. Indeed, Lake 
Geneva’s depth of 309 m makes it more sensitive to initial conditions, 
since mixing will not reach the bottom layers at short time scales. 
However, model layers in the hypolimnion are less coupled to the at
mospheric forcing and are therefore less dynamic. 

At thermocline depth, measurements show significant variabilities 
due to basin-scale internal oscillations. Data-model mismatches can be 
observed, yet modelled internal wave oscillations are compatible in 
amplitude with observed ones. However, a phase shift is most likely 
present. The variability of the system is reproduced by the model, which 
can also be seen in the Taylor diagrams showing comparable model-data 
standard deviations. Such behaviour is also consistent with the 

uncertainty attributed to the observation in Section 2.4. Indeed, the goal 
was not to penalize excessively the model for being out of phase with its 
basin-scale internal waves since this could be the result of various other 
influencing factors (such as inaccuracies in the wind forcing phase). 

In terms of heat transfer, the model performance is most sensitive to 
the Dalton number during the stratified period, where it will be able to 
influence the temperature of the mixed layer. This parameter is hence of 
particular importance when calibrating a model using temperature data. 
Sensitivity analysis showed that a similar parameter, the Stanton num
ber, which allows a calibration of the convective heat flux, did not have 
the same impact on model results. 

The bottom boundary roughness length (z0) suggested for Lake 
Geneva by the algorithm after calibration (1.1 m) is significantly higher 
than its baseline value (0.01 m) and what has been assumed in a pre
vious modelling study of Lake Geneva by Umlauf and Lemmin (2005) 
using σ-coordinates. Both the temperature (first step) and currents 
(second step) calibration required an increased z0 value. We argue that 
the discrete stair-steps representing the bottom in the case of Lake 
Geneva lead to excess turbulence that has to be artificially dampened. 
The corresponding bottom roughness value can therefore not directly be 
compared to its physical counterpart but is rather a model-technical 
interpretation. This is especially the case with z-layers, some of them 
reaching a thickness larger than 6 m at the bottom boundary hence not 
fitting the real topography (Chen, 2004). This staircase effect is further 
exacerbated by the horizontal grid size of 450 m. Those factors com
bined prevent solving the bottom roughness length and relating it to the 
physics of the bottom log-profile, these values are therefore not true 
representations of this parameter and the current version of the model 
cannot be used to study bottom boundary layer in Lake Geneva. Yet, we 
stress that the kinetic energy remains well captured with the present 

Fig. 3. Temperature profiles at 10 am at SHL2 station. Shaded areas represent the modelled temperature variability over ±36 h. Numbers in parenthesis correspond 
to the MAE in [◦C]. 
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Fig. 4. Selected velocity profiles at specific times at the Morges and Yvoire stations (Fig. 1). Numbers in parenthesis correspond to the MAE in [m s− 1]. Shaded areas 
represent the modelled velocity variability over ±36 h. 

Fig. 5. Temperature time-series at station GE3 (Fig. 1). Numbers in parenthesis correspond to MAE [◦C]. Shaded areas represent the modelled temperature vari
ability over ±2 vertical layers. 
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model as shown with the periodogram in Fig. 7. The power spectra of 
deep current extracted from the model matches the observed one for 
periods above ~0.5h. An unrealistic damping at the boundaries would 
have led to smaller values in the power spectra for the basin-scale in
ternal waves and the background circulation. 

The wind drag coefficient at low wind speeds (C10@0.5) increased by 
the calibration. The end value differs from what has traditionally been 
found for oceans. It is however consistent with findings from Wüest and 
Lorke (2003) for lakes. The argument is that at low wind speeds lami
narization of the flow leads to an u− 1 behaviour of the drag coefficient. It 

is worth pointing out that for Greifensee, the wind drag after calibration 
is significantly lower than its baseline. Assessing modelled currents of 
the system showed that the value suggested by a unique temperature 
calibration is most likely too low. This parameter is particularly sensitive 
to ADCP data, which emphasizes the need to have both temperature and 
currents for a complete system calibration. 

Background horizontal parameters, capable of adding dampening 
internal motion or adding mixing through additional diffusion, were 
reduced close to their imposed lower bound (cf. Appendix). The Delft3D- 
FLOW model of Lake Geneva hence did not require additional viscosity 
and diffusivity to the horizontal values computed from the state of the 
system. 

Finally, the Dalton and Stanton numbers are parameters acting only 
on the heat transfer, therefore requiring temperature data to be cali
brated. For the same reason they have been removed (considered as 
fixed parameters) for the flow-based calibration. For the lakes studied in 
this paper, prior sensitivity analysis showed that the Dalton number, 
related to the evaporative heat flux, turned out to be of stronger influ
ence than the Stanton number. However, that may not be the case for 
every system, some being more sensitive to convective heat flux. A 
sensitivity analysis tailored to each lake is therefore necessary before 
any calibration. For both lakes, larger values after calibration indicated 
a need for a significantly larger heat loss by evaporation. This is likely a 
consequence of inaccuracies in the model forcing, such as in the short
wave radiations or the wind fields, a quantity known as complex to 
model above lake surfaces (e.g. only few field observations available). 
This parameter, notably sensitive to temperature data from CTD profiles, 
contributed significantly in regulating the mixed layer temperature. 

In terms of hypolimnetic currents, both computed and measured 
values are close to the measurement accuracy of 0.8 cm s− 1 (Teledyne 
RDI Workhorse Sentinel). Compared to temperature observations, their 
impact on the cost function is therefore almost negligible. This is a 
consequence of the temperature measurement error being orders of 
magnitude smaller relative to their values. Such discrepancy hinders the 
use of different kinds of data simultaneously with this methodology and 

Fig. 6. Selected currents time-series at the Morges (upper row) and Rhône stations (lower row; Fig. 1) for various depths and periods. Red lines are the calibrated 
model, blue the reference, and black dots are observations. Shaded areas represent the modelled current variability over ±2 vertical layers. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the Web version of this article.) 

Fig. 7. Periodogram of modelled and observed currents at 252 m depth (over 
the 2 years computed) at SHL2 (centre of the lake, Fig. 1). 
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hence a separated calibration had to be carried out for both types of 
observational data. Such limitation goes along the previous discussion 
item that uneven data density and coverage (spatially and temporally) 
will bias the cost function towards specific space-time locations. The 
same holds true for data uncertainty. It is worth noting that the tem
perature calibration did not degrade significantly after the calibration 
based on currents. This is both a result of keeping the Dalton parameter 
constant and enabling the weak parameters constraint (Section 3.1) of 
the DUD algorithm. 

However, the two-step calibration procedure allows for a compre
hensive understanding of the role of parameters on the energy pathway 
and type of data required for an optimal calibration of seasonal hydro
dynamic models. For instance, in addition to requiring homogeneous 
and continuous data in space and time, ADCP observations in surface 
layers would have been better suited for a calibration since there the 
flows are significantly higher than the measurement accuracy of the 
instrument. 

Overall the procedure has been found to be computationally efficient 
(6–12 model iterations needed for the models considered here) and 
relatively simple to use or expand to other systems and models by non- 
expert users. Significant timesaving is achieved with such automated 
approaches, which allow the end-user to focus on model fine-tuning. The 
entire source code of OpenDA and developments made in this study are 
available on GitHub at https://github.com/OpenDA-Associati 
on/OpenDA. 

6. Conclusion 

Model calibration of computationally expensive three-dimensional 
(3D) hydrodynamic models has been a challenge in physical 
limnology and oceanography. Despite the increase in computing capa
bilities, no simple solution and tools have been proposed for the auto
mated parameterization of 3D hydrodynamic models using local 
computers with limited parallelization. Calibration of such systems has 
remained a task performed by trial-and-error requiring expert knowl
edge. Since lakes provide essential ecosystem services, the monitoring 
capabilities at previously unresolved (by traditional measurements) lo
cations and spatio-temporal scales offered by those models has become 
of prime importance. This study presents an efficient and flexible auto- 
calibration solution by coupling open-source tools, thereby providing 
significant improvements to the parameterization of three-dimensional 
inland-water models without user intervention. 

Using temperature and current measurements at various locations 
and frequencies, two lake systems of different scale and morphology 
have been calibrated successfully. Insights were gained on the data 
required and importance of specific parameters for the dynamics in 
different seasons at various depths. In particular, the evaporative heat 
flux plays a decisive role in mixed layer temperature dynamics during 
the stratified period. The wind drag coefficient became system-specific 
and affected both thermocline depth as well as surface flows. Such in
fluences indicate that calibration of heat and momentum transfer, 
dissipation and background horizontal processes matter. Overall, we 
found that current measurements contain decisive information about 
deep-water dynamics, while temperature observations provide a rather 
good description of processes occurring in surface layers. The combi
nation of both data type is thereby of prime importance for a more 
complete understanding of the system. 

This study, tailored to lakes and models of various scales and mor
phologies, provides better results than previous manual calibrations, 
hence minimizing the need for knowledge of the physical process and 

the modelling tools. In particular, the latter result has been achieved by 
keeping computational cost reasonably low. As lakes are considered 
sentinels for climate and catchment changes (Shimoda et al., 2011; 
Wagner and Adrian, 2009), a better modelling and monitoring of 
dynamical responses to external influences will contribute to a more 
sustainable management and to securing essential ecosystem services of 
lakes. Such a solution aims at facilitating their modelling for a wider 
spread adoption of complex 3D hydrodynamic models. 

Software and data availability 

Software - The source code and documentation of the numerical 
model (Delft3D-FLOW) and data assimilation platform (OpenDA) 
developed in and for this study can be accessed and downloaded on their 
online repositories at https://oss.deltares.nl/web/delft3d/source-code 
and https://github.com/OpenDA-Association/OpenDA. Both software 
are developed by Deltares in the Netherlands (P.O. Box 177, 2600 MH 
Delft, The Netherlands, +31 (0)88 335 8273). Delft3D-FLOW tag 7426 is 
used. It is developed in FORTRAN and is available for both Windows and 
Linux operating systems. OpenDA v2.4.5 is developed in Java and is 
platform-independent. 

Data - The authors are grateful to the following institutions that 
provided the data used in this paper: to Dr. Francesco Pomati and the 
Phytoplankton Ecology Lab in the department of Aquatic Ecology at 
Eawag for the temperature dataset at the Eawag station of Greifensee, to 
Amt für Abfall, Wasser, Energie und Luft (AWEL) for CTD profiles from 
Greifensee at their Cantonal station, the Federal Office of Meteorology 
and Climatology (MeteoSwiss) for spatiotemporal meteorological data, 
and the SECOE Direction Générale de l’Eau du Canton de Genève (CH) 
for in-situ temperature data on Lake Geneva at GE3. All these data can be 
requested by contacting their aforementioned owners, as it is not the 
property of the authors of this study. In-situ data at SHL2 as well as 
Secchi disk measurements in Lake Geneva were provided by the Com
mission International pour la Protection des Eaux du Leman (CIPEL) and the 
Information System of the SOERE OLA, INRA, Thonon-les-Bains. It can 
be downloaded from their online platform: http://si-ola.inra.fr. The 
ADCP data collected by Andrea Cimatoribus used in this study can be 
downloaded from the Zenodo archive: https://zenodo. 
org/record/1109794#.XM1duKQ68UE. Any other temperature profile 
and ADCP measurement has been collected by the Physics of Aquatic 
Systems Laboratory at EPFL and has been openly published on the 
following Zenodo archive: https://zenodo.org/record/3716076. 
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Appendix A. Supplementary data 

Supplementary data to this article can be found online at https://doi.org/10.1016/j.envsoft.2020.104787. 
Appendix

Fig. A1. Flowchart of the calibration procedure. The forcing contains the atmospheric data driving the Delft3D hydrodynamic models. 7 atmospheric variables 
provided on a 1 × 1 km grid at hourly time-step are used. The models are run over 1–2 years to cover the entire range of lake dynamics (stratified and mixed regimes). 
Parameters are the user-defined model parameters adjusted by OpenDA (here the wind drag coefficient, evaporative heat flux coefficient, bottom drag coefficient and 
horizontal background diffusivity/viscosity). Observations consist in temperature and ADCP profiles collected at various locations in the lake. After a model run a 
cost function is computed to assess data-model mismatch, depending on the results, OpenDA will generate a new set of parameter values and recompute the model. 
This iterative process is repeated until an optimized set of parameters is found. In this study, calibrating 4 parameters required 6 to 12 iterations.  

Table A1 
Parameters constraints defined in the calibration algorithm.  

Parameter Description Initial value Lower bound Upper bound 

C10@0.5 [ − ] Wind drag coefficient at 10 m and 0.5 m s− 1 9.8 x 10− 3 6.6 x 10− 5 1.1 x 10− 1 

z0 [m] Bottom hydraulic roughness height 1.0 x 10− 2 1.0 x 10− 3 6.7 x 10− 0 

CDalton [ − ] Evaporative heat flux coefficient 1.3 x 10− 3 0.0 5.0 x 10− 2 

DVH [m2 ⋅s− 1] Background horizontal viscosity and diffusivity 1.0 x 10− 5 4.5 x 10− 10 1.5 x 10+2  

The stopping criteria for the DUD algorithm, specified in the OpenDA algorithm configuration XML file, are set to the following values. The 
outerloop has a maximum number of 10 iterations, and a maximum absolute and relative difference between the costs of two best parameter estimates 
of 0.01. The innerloop/linesearch has a maximum of 5 iterations and a maximum relative step size of 10. If the linesearch produces estimates with a 
larger cost, 3 iterations are allowed before searching in opposite direction, with a backtracking with a step size shortening factor of 5. 

A. Results Greifensee 

Most parameters evolved significantly. While the wind drag coefficient at low wind speeds has been reduced, all other three parameters increased 
(Table A2).  

Table A2 
Parameters evolution for Greifensee calibration  

Parameters Initial value Final value 

C10@0.5 [ − ] 9.8 x 10− 3 5.5 x 10− 5 

z0,bottom [m] 1.0 x 10− 2 4.9 x 10− 2 

CDalton [ − ] 1.3 x 10− 3 3.3 x 10− 3 

DVH [m2 ⋅s− 1] 0.0 x 10− 0 2.8 x 10− 0  

The low wind drag value is contrary to what has been suggested by Wüest and Lorke (2003) for small-scale hydrodynamics in lakes. The bottom 
hydraulic roughness z0 increased from 1 cm to ~5 cm, which corresponds to observed values from literature. The latter contributes to increase the 
dissipation of kinetic energy. The same is true for the horizontal viscosity and diffusivity. 

Finally, mixed layer temperature has been greatly improved by an increase in the Dalton number, enhancing the evaporative heat flux. 
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Table A3 
Parameters evolution over the iterations for the temperature calibration of Lake Geneva.  

Iteration DVH [m2 ⋅s− 1] z0 [m] CDalton [ − ] C10@0.5 [ − ]

1 1.0 x 10− 5 1.0 x 10− 2 1.3 x 10− 3 9.8 x 10− 3 

2 1.2 x 10+1 1.0 x 10− 2 1.3 x 10− 3 9.8 x 10− 3 

3 1.0 x 10− 5 2.4 x 10− 0 1.3 x 10− 3 9.8 x 10− 3 

4 1.0 x 10− 5 1.0 x 10− 2 4.3 x 10− 3 9.8 x 10− 3 

5 1.0 x 10− 5 1.0 x 10− 2 1.3 x 10− 3 4.4 x 10− 2 

6 4.5 x 10− 10 7.2 x 10− 1 2.5 x 10− 3 4.2 x 10− 2   

Table A4 
Parameters evolution over the iterations for the flow velocity calibration of Lake Geneva.  

Iteration DVH [m2 ⋅s− 1] z0 [m] CDalton [ − ] C10@0.5 [ − ]

1 4.5 x 10− 10 7.2 x 10− 1 – 4.2 x 10− 2 

2 5.5 x 10− 4 7.2 x 10− 1 – 4.2 x 10− 2 

3 4.5 x 10− 10 1.7 x 10− 2 – 4.2 x 10− 2 

4 4.5 x 10− 10 7.2 x 10− 1 – 1.9 x 10− 1 

5 2.5 x 10− 9 2.1 x 10− 0 – 6.7 x 10− 2 

6 1.1 x 10− 9 1.2 x 10− 0 – 5.3 x 10− 2 

7 7.0 x 10− 10 9.4 x 10− 1 – 4.7 x 10− 2 

8 5.6 x 10− 10 8.2 x 10− 1 – 4.5 x 10− 2 

9 5.1 x 10− 10 7.7 x 10− 1 – 4.3 x 10− 2 

10 4.3 x 10− 10 6.9 x 10− 1 – 4.1 x 10− 2 

11 1.6 x 10− 9 1.1 x 10− 0 – 4.2 x 10− 2   

Table A5 
Parameters evolution over the iterations for the temperature calibration of Greifensee.  

Iteration DVH [m2 ⋅s− 1] z0 [m] CDalton [ − ] C10@0.5 [ − ]

1 0.0 x 10− 0 1.0 x 10− 2 1.3 x 10− 3 9.8 x 10− 3 

2 1.0 x 10− 0 2.5 x 10− 0 1.3 x 10− 3 9.8 x 10− 3 

3 0.0 x 10− 0 1.0 x 10− 2 4.0 x 10− 3 9.8 x 10− 3 

4 0.0 x 10− 0 1.0 x 10− 2 1.3 x 10− 3 3.0 x 10− 4 

5 0.0 x 10− 0 4.9 x 10− 2 3.3 x 10− 3 5.5 x 10− 5 

6 2.8 x 10− 0 4.9 x 10− 2 3.3 x 10− 3 5.5 x 10− 5  

B. Greifensee profiles

Fig. B1. Temperature profiles at specific times at the high-frequency northern station (Eawag) with MAEs in parenthesis. Shaded areas represent the modelled 
temperature variability over ±12 h. 
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Fig. B2. Temperature profiles at specific times at the central station (Canton) with MAEs in parenthesis. Shaded areas represent the modelled temperature variability 
over ±12 h. 

Figs. B1 and B2 show the improvements through profiles at different times for the two locations in Greifensee. Substantial improvements are made 
in the mixed layer as well as for the thermocline depth over the entire year. However, the calibration has not been successful in the deep water. In 
terms of stations, better results were obtained for the northern (Eawag) location (Fig. B1). The latter, in combination with the poorer deep-water 
performance, are both related to a limitation of the method discussed in the next section. 

C. Greifensee time-series

Fig. C1. Time-series of temperature at various depth for the northern high-frequency station (Eawag) with MAEs in parenthesis. Shaded areas represent the modelled 
temperature variability over ±2 vertical layers. 
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Figs. C1 and C2 provide a different perspective on the results by showing temperature time-series at various depth for both stations. The im
provements are overall substantial, with a MAE reduction of up to 5 ◦C at the thermocline level (9.2 m depth). Additionally, most of the observations 
collected in the thermocline are within the modelled temperature variability over the internal waves periods, which is highest at the thermocline 
depth as has to be expected. 

The northern station (Eawag) benefited, once again, the most from the calibration. Bottom temperatures saw no improvements, as they remain 
constant over the year while observations increase slightly. While this may hint at need for additional mixing or turbulence calibration, it is most likely 
a limitation of the method, discussed in the next section. 

Finally, the model performance in the surface waters is greatly improved, reaching a MAE around half a degree. This is especially important 
considering the strong temporal variability in those shallow depths.

Fig. C2. Time-series of temperature at various depth for the central station (Canton) with MAEs in parenthesis. Shaded areas represent the modelled temperature 
variability over ±2 vertical layers. 

D. Greifensee - discussion 

The significant decrease in wind drag, which hit its constrained lower bound, combined with the increase in bottom drag and horizontal viscosity/ 
diffusivity all seem to converge towards the same hypothesis: a need to decrease the energy content in the lake. This behaviour may be a reaction of the 
parameters to compensate for a problem in the forcing. Mainly an inaccurate and excessive wind intensity provided by the COSMO atmospheric model 
over Greifensee. While this variable is known to be hard to model and is subject to inaccuracies, indeed better modelling results were obtained with a 
reduction in wind speed of up to 30%. Additionally, this may be the result of a limitation in the procedure, as only temperature data was used for the 
calibration. Further analysis of the currents, which reached lower values, seemed to indicate that the wind drag has been reduced too much. ADCP 
data would be needed to properly assess such parameter and the overall dynamics of the system. 

The Dalton number, a multiplicative coefficient influencing the evaporative heat flux, has a strong influence on the mixed layer temperature. Its 
calibration accounted for most of the improvements observed at shallow depths. This is especially visible during the second part of the year. 

Finally, the low performance of the deep-water calibration is a consequence of the observational setup. The lower density of measurements near 
the bottom and below the thermocline resulted in a weak influence on the cost function in comparison with the numerous observations located in the 
mixed layer. While slightly less observations were available at the thermocline depth as well, their influence is high since the strong gradient in 
temperature can lead to large model-observation discrepancies, whose impact on the cost function is therefore stronger. The same stands horizontally: 
while still providing significant improvements at the central station (Canton) with monthly measurements, the high-frequency observations of the 
northern station, and hence its higher number of data points, lead to a calibration more focused on that geographical location within the lake. 

Although this highlights a certain sensitivity to the measurement setup, those results show that the calibration algorithm is successful in matching 
model to data and that it is up to the user to define the location of focus by providing an adapted setup. 
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E. Additional Lake Geneva model results

Fig. E1. Temperature profiles at 10 am at station GE3 (Fig. 1) with MAE in parenthesis. Shaded areas represent the modelled temperature variability over ±36 h.  

Fig. E2. Time-series of temperature at various depth for station SHL2 (Fig. 1) with MAE in parenthesis. Shaded areas represent the modelled temperature variability 
over ±2 vertical layers. 
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