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A Divide-and-conquer Approach for Sparse Recovery in High Dimensions

Aron Bevelander, Kim Batselier, Nitin Jonathan Myers

Delft Center for Systems and Control, Delft University of Technology, The Netherlands

ABSTRACT

Block compressed sensing (BCS) alleviates the high stor-
age and memory complexity with standard CS by dividing
the sparse recovery problem into sub-problems. This paper
presents a Welch bound-based guarantee on the reconstruc-
tion error with BCS, revealing that sparse recovery deteri-
orates with more partitions. To address this performance
loss, we propose a data-driven BCS technique that leverages
correlation across signal partitions. Our method surpasses
classical BCS in moderate SNR regimes, with a modest in-
crease in storage and computational complexities.

Index Terms— Block compressed sensing, computa-
tional complexity, memory limitation

1. INTRODUCTION

Compressed sensing (CS) recovers sparse high-dimensional
signals from their compressed representation. The dimension
of sparse signals in several applications is rapidly increas-
ing with advances in sensing [1-3]. Real-time CS of high-
dimensional signals requires intense memory and computa-
tional resources that may often be unavailable. Block com-
pressed sensing (BCS), a class of CS, adopts a divide-and-
conquer approach to reduce the storage and computational
complexities needed for sparse recovery [4]. In BCS, the re-
construction problem is partitioned into sub-problems, where
each sub-problem solves for a block within the sparse vector.

The sub-problems in BCS have a lower complexity than
the original problem and they can be solved in parallel. Stan-
dard BCS methods typically obtain an equal number of CS
measurements for each block, assuming a uniform distribu-
tion of sparse non-zero components across the blocks. In
[5-8], however, varying numbers of measurements were ac-
quired per block (also called as level) based on the sparsity in
each block or the extent of coupling with other blocks. In [9],
a permutation technique was proposed to “equally” distribute
the non-zero components over different blocks. An impor-
tant question in BCS is how partitioning the problem impacts
reconstruction. An empirical study conducted in [10] showed
that partitioning deteriorates reconstruction. To the best of our
knowledge, reconstruction bounds with BCS as a function of
the number of partitions or blocks have not been studied.

To address the performance loss with standard BCS, the

sub-problems can be solved sequentially by using information
from one reconstructed block as a prior for others, assuming
correlation across blocks. Prior work on dynamical CS has
exploited such correlation information in a different context
than BCS. For instance, the techniques in [11, 12] use tempo-
ral snapshots as blocks within a high-dimensional signal. Ad-
ditionally, [13] developed algorithms to leverage probabilistic
information on the signal’s support, which can be potentially
derived from correlated blocks in BCS. While sequentially
solving the sub-problems in BCS improves reconstruction, it
sacrifices the ability to solve sub-problems in parallel.

In this paper, we study the limits of BCS by deriving a
Welch bound-based recovery guarantee as a function of the
number of partitions. Then, we develop a data-driven ap-
proach to learn the correlation across blocks. The learned
correlation is then used for sparse recovery in our serial BCS
method. Finally, we show that our data-driven serial BCS
technique outperforms standard BCS at a moderate SNR.

2. BLOCK COMPRESSED SENSING

2.1. Preliminaries

In CS, a sparse signal x € R™ is projected on an m-
dimensional space using a CS matrix A € R™*" with
m < n. We define the compressed measurement of x as

y=Ax+v, )

where v € R™ is additive noise. CS algorithms estimate a
sparse vector that best explains the measurements in y, for a
known A. The computational complexity of CS algorithms in
[14-16] is O(mn) for o(1) sparse signals, as it is determined
by matrix-vector multiplications with A and AT

BCS uses a block-diagonal structure for A to alleviate the
high memory and high computation associated with a generic
CS matrix. We define /3 as the number of blocks or partitions
in BCS, and assume that the blocks are of equal size. To allow
discontiguous blocks in BCS, we define a permutation matrix
IT € R™*™. A general form of the CS matrix in BCS is then

Al 0 ... 0
A- |0 A II, )

0

0 0 Ag
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where A, € R%*% for b € {1,2,---3}. Setting IT to an
identity matrix I corresponds to standard BCS where the sig-
nal is partitioned into contiguous blocks. When the BCS ma-
trix in (2) is used in (1), we observe that any measurement
is a projection of a block within the sparse signal. We define
z = IIx. The b block of IIx, defined as z;, is a vector that
contains entries of ITx indexed from (b—1)n/5+ 1 to bn/p.
The dimension of each signal block is n/3, and m/f com-
pressed measurements are acquired per block using the CS
matrix in (2).

We define y, € R as the measurements of the b*™" block
and v;, as the associated noise. Then, y = (y1;¥q;--- ;¥3)
is a column stacked version of the block measurements and
v = (V1;Vg;- - ;Vg). When the BCS matrix in (2) is used in
(1), the block measurements can be written as

Y, = Apzp + v, Vo€ {1,2,---, 0} 3)

To estimate x, a straightforward approach is to first solve for
{zb}bﬁ:1 from (3). These problems can be solved in paral-
lel. Then, the reconstructed blocks can be stacked together to
obtain Z and x can be estimated as X = IT~'Z.

Due to the block structure in BCS matrices, it is suffi-
cient to store O(/3 - mn/[3?) entries of (2). This requirement
is 3 times lower compared to standard CS, which necessi-
tates storing O(mn) entries. Furthermore, the complexity of
matrix-vector multiplications in solving for one block in (3)
is O(mn/3?%), when compared to O(mn) for standard CS.
When the 3 blocks are independently recovered, BCS has a
computational complexity 1/3? lower than standard CS. If
blocks are estimated sequentially, BCS achieves a computa-
tional complexity 1/ lower than standard CS.

2.2. Mutual coherence-based performance limits of BCS

The mutual coherence of A € R™*™ is defined as [17]

(A) _ % |<ak7a€>| 4)

= 1m. TEETEETETEE]
(k.0):k#0 ||a||2]lac]2

where aj, is the k"' column of A. A small mutual coher-
ence allows for better sparse reconstruction with the orthogo-
nal matching pursuit (OMP), a greedy CS algorithm [17]. For
a CS matrix of size m X n, the smallest mutual coherence that
can be achieved is given by the Welch bound [18], i.e.,

n—m

n(A) > m

&)
The bound in (5) only depends on the size of the CS matrix.
We derive a lower bound on the mutual coherence of
the BCS matrix in (2). We first observe that permuting the
columns of A does not affect mutual coherence, so we set
IT to an identity matrix for our analysis. Next, we note that
columns of A from different blocks are orthogonal. For ex-
ample, the first column of A in (2) is orthogonal to columns

indexed from n/f + 1 to n. Thus, for a BCS matrix, the mu-
tual coherence in (4) is not determined by a pair of columns
chosen from two different blocks. Applying the definition in
(4) for the BCS matrix in (2) results in

(A) = max{p(A1), 1(Az), -, u(Ag)} (6)

As each of the 5 mutual coherences in (6) is lower bounded
by the Welch bound associated with an m /8 x n/8 matrix,

A)> [ BB [ nom 7
n(A) = (1) )

For 3 > 1, we observe that our lower bound in (7) for BCS is
larger than the Welch bound in (5). This is because BCS ma-
trices cannot achieve the Welch bound in (5) due to the block
diagonal constraint on the CS matrix. Our coherence limit in
(7) can be used to study the MSE bound with the OMP. For an
s-sparse signal, the mean squared error (MSE) with the OMP
can be bounded as ||x —x]||3 < 2(1+a)so?logm/((1— (s —
1)p)?), for a constant « [17]. By substituting our coherence
limit from (7) in this bound, we observe from Fig. 3a that the
MSE bound with the OMP increases with (3, indicating that
partitioning the CS problem leads to poor reconstruction.

3. DATA-DRIVEN SERIAL BCS

To alleviate the poor MSE issue with partitioning in BCS, we
exploit correlation across the blocks within the sparse signal
during reconstruction. We illustrate our approach to exploit
these correlations using a 2D clustered sparse signal shown
in Fig. 1. Our data-driven serial BCS method, however, is
discussed for the more general case of tensors that exhibit
clustered sparsity.

AAl A O O O A0 A O A O
AAl Al O] O] O b | |
A N A O A O A Of
x| * O A O <o %

A Partition 1 O Partition 2 A Partition 1 O Partition 2

[ Partition 3 ¢ Partition 4 [] Partition 3 ¥ Partition 4

(a) Contiguous partitions (b) Comb-like partitions

Fig. 1. Examples of partitioning strategies (8 = 4) for a 2D sparse
signal. The non-zero entries of the 2D sparse signal here are shaded.
We observe from this example that when clustered sparse signals
are partitioned with a comb-like pattern, reconstructing one block
provides useful side information on the support of other blocks.

A good partitioning strategy is key to the success of stan-
dard BCS and serial BCS. Contiguous partitioning (shown in
Fig. 1la), which groups contiguous indices into a block, is
ineffective for clustered sparse signals. This approach often
concentrates non-zero coefficients in a few blocks, leading to
poor reconstruction when an equal number of CS measure-
ments are acquired per block. Comb-like periodic partition-
ing (shown in Fig. 1b) is better suited for clustered sparse sig-
nals as it distributes non-zero coefficients more evenly across
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Fig. 2: Our proposed data-driven serial BCS method first reconstructs one of the signal blocks (partitions). Then, the reconstructed signal
together with the learned support correlation ® is used to find a prior on the support associated with the other blocks. This prior is used
together with the BCS measurements to reconstruct the next block, and the process is repeated until all the blocks are recovered.

blocks. We observe from Fig. 1b that a non-zero entry re-
constructed in a comb-like block (e.g., entry at A) provides
useful side-information on the support of its neighbours, un-
der the clustered sparsity assumption. This information can
be used as a prior to recover other blocks.

We discuss an offline algorithm to learn side-information
provided by a non-zero component on its neighbours’ sup-
port. Focusing on clustered sparse signals and comb-like
partitions, our algorithm uses a dataset of sparse signals
{xU )};]:1 to estimate the probability that a neighbour is
non-zero, given an entry is non-zero. This probability is cal-
culated by counting the instances of non-zero neighbours in
the dataset. For a 2D signal, a naive approach finds ~ 8n
such probabilities as there are 8 neighbours around each en-
try except for those at the edges. For a d*" order tensor, this
number increases to ~ (3¢ — 1)n. As storing all these values
consumes significant memory, we assume spatially invari-
ant probabilities and learn a support correlation kernel with
39 — 1 entries for a d*® order tensor. Our procedure to learn
this kernel ® from a dataset of sparse signals is summarized
in Algorithm 1.

Algorithm 1 Construction of the support correlation kernel

Input: Sparse signals {X(j)}j:l in R7Xm2XXna,
Define: Set S; has indices of non-zero entries in X’ ),
forj:1— Jdo
Initialize d'" order kernel k = 0 € R3*3x (dtimes)
for index (wi,ws, -+ ,wq) in S; do
Find immediate neighbours around this index:
Q= {(C1sCor -+ +Ca) ¢ s — Gl < 1¥i € [d]}.
Scan through all the entries of X’ ) at Q
I X9 (C1,Coy o Ca) # 0
Add 1 to KZ(Cl —w1,C2 —Wg,
Set k(0,0,---,0) = 0.
end for
e =g/ cardinality(S;)
end for
return © = ijl e,y

7Cd - Wd).

We discuss notation involved in our data-driven BCS
method to recover a sparse tensor X € R™1X"2XX"a from
its compressed version. Here, the dimension of the sig-
nal is n = nj - ny---ng. Assuming that the 2 mode is
partitioned by a factor of 3y, the total number of partitions

n2

is 3 = B1 - Ba---Bq. The tensor X, € RAH "5

comprises the entries of X at the indices in partition b. Fur-
ther, we define Xp ey, € R™1%72X X4 a3 a tensor that has
the entries of X at the indices in partition b and zeros at
all the other indices. We define P € R™1Xm2XX%a gych
that P(¢1, a2, -+ ,(q) is proportional to the probability that
X((1,Ca,- -+ ,Cq) is non-zero. After each stage of our algo-
rithm that solves for a block within X, P is updated using
the reconstructed block and the support correlation kernel ©.

Our data-driven BCS technique, summarized in Algo-
rithm 2, first solves for one of the [ blocks within the
sparse signal from its compressed representation. Without
loss of generality, our algorithm first reconstructs X'; from
¥y, = A1(X1) + vi, where A;(-) denotes a linear compres-
sion operator. To solve for this first block, we set P = s1/n,
where s is the average sparsity level estimated from the
dataset. We use the logit-weighted OMP (LW-OMP) algo-
rithm [13], that exploits the support prior P together with the
compressed measurements, to reconstruct the signal. The re-
constructed block X 1 18 extended with zeros to obtain X 1,exts
which is then convolved with ® to update the support prior.
The updated prior P is then used to determine the block for
which the most side-information on its support is available,
i.e., the block for which sum{vec(P;)} is maximum. This
block is recovered next and the procedure is repeated until
all the blocks within X are recovered. Our algorithm for the
matrix case (d = 2) is illustrated in Fig. 2.

Algorithm 2 Proposed data-driven serial BCS algorithm

Input: BCS measurements {yb}bﬁzl, CS operators {Ab}fj:l,
Learned support correlation kernel ©.
Define: Set v = [3], Support prior tensor P = s1/n (s is
the average sparsity level), X =0andb=1.
for j:1— gdo
X}, = LW-OMP(y,, Ay, Py, 02)  #Solve for block b
X=X+ Xpoxs
P=P+ |i’ bext ® O #Update prior using estimate
v+ v\ {b}

b = arg max[sum{vec(Py)}] #Next block to solve
kev
end for

return X’

Our data-driven serial BCS with LW-OMP exploits struc-
ture across partitions but incurs higher computational com-
plexity than standard BCS with OMP. This is because our
method serially solves for the /3 partitions, unlike standard
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Fig. 3: For s = 50, n = 10%, @ = 0.5, and o = 1072, we see from Fig. 3a that the OMP bound using (7) increases with 5. We use the
near-field dataset for Fig. 3b and Fig. 3c. For a subsampling ratio of 40%, Fig. 3b shows that the proposed method outperforms standard

BCS in the moderate SNR regime. For SNR = 30 dB, we see from Fig.

BCS which can be parallelized. Further, support prior update
in our method requires convolution, which adds a complex-
ity of O(3%n/pB) per partition. Considering /3 partitions, the
increase in complexity with our method over serial BCS is
O(34n), still modest relative to unpartitioned standard CS.

4. SIMULATION RESULTS

We consider sparse 4D spatial near-field channel estimation
with a 16 x 16 transmitter (TX) and a 8 x 8 receiver (RX).
The TX and the RX use half-wavelength spaced uniform pla-
nar arrays at 300 GHz. For a transceiver distance of 30 cm,
we generate several channel realizations according to [19],
by translating the RX and also rotating it at random. Each
channel realization is a tensor in C16X16%8X8 We use X €
C16%16x8x8 1o denote the 4D-discrete Fourier transform of
the channel, which exhibits clustered sparsity. The kernel ®
was learned with Algorithm 1 using these realizations.

The measurements in BCS were acquired by applying the
comb-like codes in [20] at both the TX and the RX. By ad-
justing the periodicity within the comb, the number of par-
titions 8 was configured. In our simulations, we consider
B € {1,16,64} to compare the performance of the proposed
approach against standard BCS. Note that 5 = 1 corresponds
to the unpartitioned problem, which is solved using the stan-
dard OMP algorithm. Our approach employs the LW-OMP
[13] within Algorithm 2, whereas standard BCS uses the clas-
sical OMP algorithm to solve for each partition.

To evaluate the performance of BCS algorithms, we use
the normalized mean squared error (NMSE) between the
sparse channel and its estimate, i.e., E[|| X — X||2]/E[|| X /2],
where the expectation is taken across all channel realizations.
The dimension of the sparse vector solved for § = 1 is
16 x 16 x 8 x 8 = 16384. With BCS, however, this di-
mension reduces to 16384/ per partition. From Fig. 3b,
we observe that BCS results in a poor NMSE than standard
CS (equivalent to BCS with § = 1). Moreover, the NMSE
deteriorates for increasing (3, aligning with our analysis in
Sec. 2.2, where a higher (3 led to an increased error bound.

3c that NMSE decreases with the subsampling ratio m /n for any .

Number of blocks 5 | Standard BCS | Proposed method
1 18.2 x10%ms N/Aforf =1
16 5910 ms 9827 ms
64 476 ms 1469 ms

Table 1: Computation time with standard BCS and the pro-
posed method. BCS with $ = 1 is same as classical CS.

We notice from Fig. 3b that the proposed data-driven se-
rial BCS outperforms standard BCS in the moderate SNR
regime. At low SNR, the performance of both the methods
is almost the same. This is because of the noise in the re-
construction, which impacts the support prior estimated, i.e.,
P, in Algorithm 2. As the support prior estimate is not reli-
able at low SNR, it does not improve the reconstruction with
LW-OMP. At high SNR, the measurements in each block pro-
vide reliable information to determine the support even with-
out any prior information. Next, we observe from Fig. 3c that
the proposed method outperforms standard BCS for different
subsampling ratios, i.e., m/n, at an SNR of 30 dB. This per-
formance improvement comes at the expense of an increased
computational complexity compared to standard BCS, owing
to the support prior calculation in our approach. The increase
in complexity, however, is small when compared to the com-
plexity of the unpartitioned CS problem for § = 1. The com-
putation times of all the methods for n = 16384 and a sub-
sampling ratio of ~ 40% is summarized in Table 1.

5. CONCLUSIONS

In this paper, we studied block compressed sensing (BCS) for
high-dimensional sparse recovery. We proved that the lower
bound on the mutual coherence of a BCS matrix is higher than
the Welch bound associated with a standard CS matrix of the
same dimensions. We also proposed a data-driven serial BCS
method, which uses reconstructed blocks to estimate priors
on the support of subsequent blocks. Using simulations for a
sparse near-field channel estimation problem, we showed that
our method outperforms standard BCS at moderate SNR.
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