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Introduction

With the increasing availability of sensor data measuring aircraft health, it is expected that aircraft main-
tenance strategies will evolve into strategies more focused on the condition of components, known as
condition-based maintenance. Current research is ongoing in how this information about the current and
predicted future state of aircraft health can be translated into prognostics, the prediction of the time of
failure. However, as with the adoption with any new technological development in the aviation industry,
a requirement is that it is cost e↵ective. Hence before investing in new developments a proper cost benefit
analysis (CBA) should be done. This research attempts to provide new insights in performing cost ben-
efit analyses considering various prognostics and health management (PHM) parameters. Furthermore
a CBA model is developed and validated using real world data. The main research that is set out to be
solved is as follows:

What is the impact of a condition-based maintenance strategy applied to preventive and
unscheduled maintenance on aircraft availability and total costs as a function of di↵erent
PHM performance levels?

This thesis is structured as follows: in chapter 1 a scientific paper is provided, in which a distilled
version of the literature study, methodology, results, and conclusion can be found. To provide more
context to the reader, appendices are added that elaborate further on these subjects. Appendices A and B
describes both a literature review, and project plan that preceded this research. Then in Appendix C the
component failure distributions used are validated using MRO data. After that, in Appendix D the policy
and planning algorithm used for the unscheduled maintenance module is described in more detail. And
finally in Appendix E an overview of the unscheduled maintenance model input parameters is provided.





Chapter 1

Paper



2

Assessing the Impact of Condition-Based
Maintenance as a Function of the Variation in

Prognostics Performance Levels
B. Vlamings

Supervisors: dr. ir. W.J.C. Verhagen, ir. F.C. Freeman
Section Air Transport & Operations, Department Control & Operations

Faculty of Aerospace Engineer, Delft University of Technology
Delft, The Netherlands

Abstract—As the profit margins of the airline industry are

relatively low, it is of utmost importance to keep costs low in

order for airlines to stay competitive. An important cost factor

is maintenance costs, as it can take up around 10-20 % of the

total direct operational costs. Currently, much development is

taking place in developing condition-based maintenance (CBM)

strategies. These strategies on the one hand leverage remaining

useful life (RUL) predictions of components to enable better

planning and lower repair costs while on the other hand less

preventive maintenance tasks are required due to the increase of

useful sensor data available. This paper develops insights in the

potential benefits that CBM can have as a function of different

prognostic performance levels. This is done by developing cost-

benefit models which accept a wide range of parameters being

able to simulate prognostic effectiveness on different aircraft

fleets. Results are obtained by using real MRO and operator

input data. The results show that CBM can be beneficial, given

that the model has a sufficient specificity and the component

supply chain scales accordingly.

I. INTRODUCTION

As the profit margins of the airline industry are relatively
low, it is of utmost importance to keep costs low in order
for airlines to stay competitive. When looking at the direct
operational costs, factors that play the biggest role are fuel
costs, crew costs, maintenance costs, and depreciation costs
[17]. Of these cost types, maintenance costs take up around
10 - 20 % of the total direct operational costs [24][9][22].
Aside from costs, aircraft availability is impacted as well
by airline maintenance. Of all the total delays in 2011,
Eurocontrol assessed that 12.7 % was due to technical
and aircraft equipment problems, which was the highest
non-reactionary delay category [8].

As aircraft became more and more complex, both the
complexity of the maintenance operations and maintenance
costs increased. As a result, maintenance strategies evolved
in order to maintain aircraft reliability. A first attempt
in maintaining and improving the reliability was the
establishment of time limitations of components. This is
still known as hard-time. However it was found that this
relatively simple strategy was only limited effective for most
components, at a relatively high cost [29]. As a result, the
Maintenance Steering Group (MSG) was formed with the

goal of improving maintenance effectiveness. Through several
iterations, the focus was gradually shifted from hard-time
to on-condition maintenance, during which reliability was
ensured by inspecting, servicing, testing and calibrating
the components [26]. This was deemed very successful as
maintenance costs decreased, while reliability increased [33].
On-condition maintenance strategies increased in popularity
and soon enough the MSG-2 program was released, with
the addition of a strategy called condition monitoring [29].
This strategy included non-safety critical components, and
looked specifically at exceedances of certain predefined
threshold values of operational characteristics. Since then
iterations have been performed, arriving at the current aircraft
maintenance methodology document in use: MSG-3. In 2018
this document was updated to include the current trends in
aircraft maintenance strategy: aircraft health monitoring [36].

Aircraft health monitoring is a more advanced strategy in
measuring the condition of the aircraft. While in the MSG-2
documents a condition monitoring strategy was implemented,
this was not considered preventive maintenance, as failure
was allowed to occur. It was mostly used as category for
components which neither had a hard time limit nor on-
condition maintenance, and was meant for components which
failure modes would not have an adverse effect on safety [14].

Aircraft health monitoring is possible due to the numerous
amount of sensors that can be found in the more recently
developed aircraft. For example the Airbus A350 boasts over
6000 sensors, that in total daily generate 300 GB of data
[25]. Together with the development of new data technologies
and a substantial increase in computational power, analysing
this data has become a possibility. Being able to analyze data
rapidly and thoroughly, the focus has been shifted towards
prognostics: the act of estimating the remaining useful life
(RUL) of a component, based on the current condition and
trends in sensor data [31]. When applying prognostics to
allow for an overall assessment of reliability with the purpose
of reducing maintenance costs and maximize availability, the
strategy is called prognostics and health management (PHM)
[37] for aircraft systems and Structural Health Monitoring
(SHM) for aircraft structures. By continually monitoring



and analysing data using modern data analytical methods,
faults can be detected earlier on, and the degradation trend
of the component can be assessed leading to a prediction of
the RUL. This estimation of RUL enables condition-based
maintenance (CBM), resulting in potentially better planned
maintenance, a reduction in unneeded inspections and increase
in aircraft availability [4]. Another maintenance aspect for
which a CBM approach can be beneficial is the currently
done preventive maintenance checks. Airbus estimates that
around 90 % of the current preventive maintenance tasks
do not alter the aircraft condition [36]. By applying a CBM
strategy, this percentage could be significantly decreased, as
health measuring sensors would be able to substitute some
maintenance checks tasks and therefore less ground time is
required.

Currently, lots of research is conducted in interpreting
sensor data and modeling RUL predictions [18] [27] [35].
Furthermore applications are already being developed. For
instance Skywise, a product developed by Airbus, attempts to
provide insights in the vast amount of data from data sources
such as on-board sensor data, work orders, component data,
and flight schedules [5]. Easyjet being one of the early
adaptors of Skywise, found that the occurrence of delays
due to technical errors has been decreased from 10 per
1000 flights, to just over three per 1000 flights [5]. KLM
E&M developed a tool called Prognos that takes more of a
bottom up approach. Instead of focusing on all data available,
Prognos is built up component by component by looking at
components that are critical according to KLM taking into
account repair costs, and the delays and cancellations they
cause [20].

However, still much is unknown in the potential value of
CBM applications. Especially useful figures for carriers, are
the decrease in maintenance costs and downtime resulting
from these CBM improvements. A common challenge among
the studies regarding the economic assessment of CBM is the
availability of proper, usable data. This is because of various
reasons, such as data complexity, and data availability due to
sensitivity of this data. For this reason, only a handful studies
use deterministic and historical maintenance data, and are able
to provide estimates of CBM costs and benefits [10] [19] [16].

While research has been performed on what the effects of
CBM can entail, a deeper analysis on the effect of PHM model
performance, especially regarding false alarms, is needed.
Furthermore the combination of a finely grained PHM
modeling system integrated into a robust planning application
for a fleet of aircraft has yet to be performed and may show
emerging effects as maintenance opportunities are limited.
Lastly, it is expected that CBM can have a big influence
on the supply chain of components, yet it is unknown how
the optimal supply chain conditions would change as CBM
would be introduced. The goal of this research is therefore
to holistically assess the CBM cost-benefits as a function
of PHM performance levels, while taking into account the
supply chain and limitation of maintenance opportunities,

which can be helpful in establishing requirements for PHM
models that in turn can determine the effectiveness of
the CBM application. This is done for both preventive
and unscheduled maintenance operations on fleet level using
real carrier and MRO maintenance and component failure data.

The structure of this paper is as follows. In Section II
a short review is presented of the recent literature involv-
ing cost-benefit analyses regarding CBM. In Section III the
methodology is provided on how the cost-benefit assessment
is modelled. This section also aims to present insights in the
data and simulation techniques that were used. Then in Section
IV, the findings of this assessment on several components for
a fleet of aircraft are provided. In Section V the results are
further described and consolidated. Finally conclusions and
recommendations for further studies are presented in Section
VI.

II. LITERATURE REVIEW

Due to the upcoming availability of PHM systems, CBM
is expected to be valuable regarding preventive as well as
unscheduled maintenance. However many different approaches
with respect to the assessment of value of CBM are taken.
To provide structure in the myriad of methods found in
literature, they are categorised in preventive and unscheduled
maintenance. These methods are then reviewed and assessed
in their corresponding subsection.

A. Preventive maintenance
Preventive maintenance mainly consists of maintenance

tasks based on discrete events with a generally fixed interval.
These are often based on flight hours (FH), calendar time,
and/or flight cycles and categorised according to several
groups as mentioned in the MSG-3 specifications [29].

Regarding preventive maintenance, CBM concepts have
yet to gain ground. This however, is to be expected as the
MSG-3 documents have not supported the use of PHM, or
any other performance based indicators leading to CBM for
a long time [1]. However recently adaptions to the MSG-3
methodology have been proposed allowing health monitoring
systems as an alternative to classic preventive maintenance
tasks [36].

Recently there have been some case studies and
maintenance scheduling modelling approaches assessing
the economic value it could bring. For instance similar
case studies done by Dong, T. Haftka, and H. Kim [6] and
Pattabhiraman et al. [23] focused on the impact of condition-
based maintenance in structural aircraft maintenance. It was
investigated whether structural health monitoring (SHM)
techniques were able to reduce costs by skipping certain
preventive maintenance actions. Pattabhiraman et al. [23]
found that especially during the first four to eight C-checks of
an aircraft, much costs could be saved, since inspections were
not necessary yet. Three different approaches incorporating
SHM were presented, all showing significant improvement
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in total costs over conventional preventive maintenance.
However cost data used were averages in literature, and the
cost modeling technique contained various assumptions, such
as a 20% to 100% increase of costs when maintenance is
unscheduled, and downtime costs were not taken into account.
It should be noted however that extra costs due to the weight
of sensors, were taken into account. These were considered
quite substantial over a lifetime of an aircraft. Still it was
found that CBM would lead to lifecycle cost savings ranging
between 12.8 and 17.9 M$ per aircraft.

Dong, T. Haftka, and H. Kim [6] delved a bit deeper into
the costs increase and savings associated with CBM. They
also included costs increase due to the necessity of replacing
the SHM systems during the lifetime of an aircraft. The big
cost savings found in this study related to the reduction in
time required for a C check. It was found that 12 days of C
check could be saved, as the time of actual inspection was
assumed to be much lower and surrounding structures were
not needed to be removed in order to facilitate inspection.
Another cost saving aspect came from the idea that SHM
techniques enabled more regular crack size inspections during
A checks, instead of C checks, and therefore a higher crack
size threshold was allowed. The effect on scheduling repair
actions according to these different inspection parameters
is unfortunately left out as it might trigger unscheduled
maintenance events, resulting in higher costs. Still the
eventual cost savings were found to be in the same order as
Pattabhiraman et al. [23].

Aside from these case studies, other studies took a
more global approach in estimating the effects of CBM on
preventive maintenance. An interesting approach was done
by Hölzel, Schilling, and Gollnick [16] in which maintenance
tasks and predicted unscheduled failure events were combined
in task packages depending on the RUL or maintenance
intervals. This task packaging might be especially beneficial
in that due to prognostic information, interval of tasks can
be escalated and some tasks can even be omitted. This is
done by grouping tasks based on their task codes in task
code groups (TCGs). Depending on the TCG, a task is either
eliminated, the interval is escalated, or nothing changes. The
limitation of this study is that only 2 global parameters,
namely interval escalation and task substitution influence this
impact, and hence no detail analysis of tasks is done. Though
given the great number of tasks, this might be considered a
reasonable assumption.

Taking only into account preventive maintenance, and as-
suming the most optimistic scenario, i.e. parameters of task
redundancy being 1 and interval escalation being 100 %,
a potential lifecycle maintenance costs saving of around 3
MC per aircraft. This is relatively low considering the total
maintenance cost modeled over a life cycle was estimated to
be 76 MC, and the great number of maintenance tasks affected
by these parameters. Comparing this number to the potential
savings in previously shown studies regarding crack formation,
show the complexity of analysing cost savings due to CBM.

For instance, the time that is freed up due to task elimination
and escalation, might be used to schedule extra flights. While
Dong, T. Haftka, and H. Kim [6] assumed a reduction of
loss of revenue depending on the days of maintenance saved,
Hölzel, Schilling, and Gollnick [16] did not clearly explain
what was done with the extra time gained. Applying the
maintenance scheduling approach of Hölzel, Schilling, and
Gollnick on a fleet of aircraft might reveal patterns in extra
time available. These patterns can then be used to adapt the
flight schedule, which in result can give a better estimation of
the decrease in opportunity costs.

B. Unscheduled maintenance

Another aspect in which prognostics can provide benefits
is the prevention of unscheduled maintenance. Unscheduled
maintenance is the result of failure of components during
flight or unexpected findings during regular maintenance.
In these cases of unexpected failure two modes of action
are available depending on the urgency: the repair can be
postponed in which the term deferred defect (DD) is used, or
the repair needs to take place before the aircraft is airworthy
again. This mostly depends on redundancy and whether
components are safety critical. Operators make use of a so
called minimum equipment list (MEL) to determine this
urgency. This MEL contains the airworthiness requirements
of different components and specifies the maximum term of
deferment. If it is not possible to defer the defect, hence the
fault has to be repaired before the next takeoff while the
aircraft is scheduled to fly, the term Aircaft on Ground (AOG)
is used. These situations can get very costly as often flights
are canceled and in case that the spare parts are not readily
available, expedited shipping is required. Knowing when
components are going to fail is therefore especially useful in
these cases. It should be noted that carriers currently have
specific buffer slots available, such that in the case of an AOG
or an upcoming AOG situation, the aircraft can be maintained
while another spare aircraft can continue operating. This of
course comes with a high opportunity cost as it is generally
deemed that the spare aircraft only operates when another
aircraft is being maintained. CBM might be able to decrease
these buffers required, and therefore decrease opportunity
costs.

In order to quantify the cost-benefits related to condition-
based maintenance with the use of a model, it is important
to understand the parameters associated with PHM systems
and their effects on CBM. A big factor in prognostics is
uncertainty as it plays a big role in estimating the RUL.
CBM can improve system performance, however uncertainty
regarding prognostics needs to be mitigated and false alarms
minimised before monitoring techniques can be implemented
and made use of [34].

Saxena et al. [28] also had a look at uncertainty in
prognostics and reviewed metrics used to assess algorithms,
with the goal of providing an overview of the different
metrics used in literature and suggesting new metrics that
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specifically cater to PHM requirements. Two of the metrics
that play an important role were False Positives (FP) and
False Negatives (FN). The missed alarms can be seen as a
false negative: the algorithm did not anticipate the failure,
while false positives indicate failure while there is none. A
better way to formulate this with the change of predicted
RUL as a function of time in mind, is by assessing FPs and
FNs based on an acceptability range as function of time
before anticipated failure.

Aside from existing metrics, the authors proposed several
other new metrics for prognostics. One of them is the
prognostic horizon. The definition of this is defined as ”the
difference between the current time and end of life using data
up to the current time index, provided the prediction meets
desired specifications”. This metric has gained in popularity
as it has been researched in [27] [10] [12] [15] [19]. At
first it would be expected that as the prognostic distance is
increased, the performance of the model would be increased
as well. However, according to literature there is an optimal
prognostic distance related to these components. Fritzsche
and Lasch [13] showed why this is the case, and mentioned
the decrease in forecast quality, increase in prognostics cost
and increase in wrong delivered spare parts associated with a
longer prognostic distance as crucial causes.

Already in 2002 a cost-benefit analysis was done regarding
mostly prevention of unscheduled maintenance regarding
engines of fighter aircraft [3]. The paper highlights both
the prognostic and diagnostic benefits that PHM can have
on unscheduled maintenance, such as reducing the Mean
Time to Diagnose (MTTD). Feldman, Jazouli, and Sandborn
[10] proved that not only PHM can improve inspections,
but prognostic models can also be a valuable tool with
respect to inventory management and that it can increase the
operational availability of an aircraft. Kählert, Giljohann, and
Klingauf [19] used empirical maintenance data in modelling
the replacement of Line Replaceable Units (LRUs) while
taking account stochastic parameters such as accuracy and
prediction horizon.

Also based on deterministic data was the approach of
Nicchiotti and Rüegg [21]. In this paper a data-driven approach
was taken in predicting failure events. A combination of
Central Management System data and logs of maintenance
activities from a fleet of aircraft was used. Machine learning
techniques used this data in predicting at least two flights
ahead whether a component would fail. Results were that
the precision was relatively high, hence false positives were
low. Also considering the low recall rate, this method would
prove to be beneficial only as an additional tool in helping
decisions, and not yet as a standalone product.

With respect to the air conditioning system, Sun, Wang,
and Ning [32] proposed a model that takes into account
multiple sensor signals generating a single health index. Using
this health index as input for a Bayesian failure prognostic
method yielded satisfactory results in predicting the time

of entering the degradation warning stage. In this case the
relative prediction errors were below 8 %. An interesting
conclusion from this study was that as closer the component
was to its end of life (EOL), the predicted failure time is
closer to the actual failure time, and hence the uncertainty is
less. The key question what follows from this is then how
this balance between an earlier more uncertain prediction of
failure and a late but more certain prediction time influences
the optimization of scheduling of maintenance tasks.

Feldman, Jazouli, and Sandborn [10] did a case study
taking into account these uncertainties in predicting the
precursor of failure of a multi-functional display. As part
of the PHM cost benefit analysis, the optimal prognostic
distance (PD) was determined. This prognostic distance
is defined as the time horizon before actual failure, the
prognostics system is able to indicate failure [27]. Unique
in this study is that this precursor expected time to failure
(TTF) is a distribution based on a sample of the distribution
of the actual time to failure and prognostic distance. When a
sample TTF is taken from the distribution of the precursor
expected TTF, and this TTF is higher than the actual TTF
of the instance it is assumed that unscheduled maintenance
is required leading to higher costs. This paper also provides
a cost-benefit analysis by comparing life-cycle and CBM
investment costs of the CBM scenario to a baseline scenario.
It was shown that the CBM scenario could either decrease
costs by 19-81%, or increase costs by 2-7% compared to
fixed interval replacements depending on the TTF distribution
used. However it should be noted that false alarms were not
taken into account.

There have been many papers looking into different
approaches of modeling prognostics and predicting the RUL.
However not a great amount of research has been done in
how these approaches can be integrated into a planning model
that can prevent unscheduled maintenance leading to potential
cost savings. Vianna and Yoneyama [35] however combines
the modeling of prognostics as well as modeling the effects
on planning. This is done by focusing on the identification of
degradation considering a multiple wear profile scenario and
integrating this with a line maintenance planning model. This
model was based on a combinatorial search algorithm.

The algorithm loops over all turnaround times within the
planning horizon and finds the repair and service schedule
that minimizes the operational costs. In doing this, constraints
on resources and the corresponding MEL category are
taken into account as well. Limitations are that only line
maintenance is considered in this study. The study also
claims parallelisation is allowed to perform the repair and
servicing of different components, however dependencies
between these activities such as available manpower and time
is not considered. When considering a fleet of aircraft, this
might prove to be especially difficult using a combinatorial
search algorithm, and other simulation approaches such as an
heuristic game approach [11], or a discrete event approach
[19] might be beneficial. It might be interesting to see the
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results of a complete maintenance scheduling approach as
done by Hölzel, Schilling, and Gollnick [16], while taking
into account the methodology used in this paper.

Hölzel, Schilling, and Gollnick [16] took a more global
approach and focused on the planning aspect of CBM by using
a MILP model. Regarding prognostics, one global parameter
was used to indicate the accuracy of the PHM application,
and this accuracy was assumed to hold for all 12 subsystems
for which a PHM application was considered possible. The
effects of this reduction in unscheduled maintenance was
found to be a relative low 1.5 % maintenance cost savings,
mostly attributed to a decrease in delay costs. Once again
false alarms were not defined.

With respect to DES, Kählert, Giljohann, and Klingauf [19]
used this simulation technique in assessing the cost-benefits of
a CBM approach by developing a cost-benefit analysis method
suitable for LRU replacements. Using deterministic MRO
component failure and maintenance data, failure events were
simulated according to historic data, and based on prognostic
horizon and PHM accuracy, the CBM effectiveness was
assessed. The advantage of the DES approach here, is that it
allowed to analyze the interdependencies between events, and
cause and effects could be established. It was expected that a
realistic PHM solution would be able to save approximately
20 % annual maintenance costs for the entire fleet. Yet it
should be noted that investment costs and false alarms were
not taken into account.

From this literature review it can be established that even
though research has been performed on what the effects of
CBM can entail, a deeper analysis is required in order for
operators and MROs to start investing in CBM opportunities.
An important factor here is PHM model performance. While
accuracy has been reviewed in several papers, still much
is unknown about the effects of false alarms, therefore it
is deemed an important factor in this research. Furthermore
the combination of a finely grained PHM modeling system
integrated into a robust planning application for a fleet of
aircraft has yet to be performed and may show emerging
effects as maintenance opportunities are limited. Lastly, from
literature it was seen that the supply chain effects play a major
role on the effectiveness of CBM [10], therefore it might be
of interest to assess how CBM affects the supply chain, and
whether variation in supply chain parameters might enhance
the effects of CBM. Considering these remarks, the goal of
this research is therefore to holistically assess the CBM cost-
benefits as a function of PHM performance levels which can
be helpful in establishing requirements for PHM models that in
turn can determine the effectiveness of the CBM application.

III. METHODOLOGY

A. Research Design

This paper attempts to estimate the potential CBM
value by providing holistic models regarding preventive
and unscheduled maintenance. These models are adaptive to

various fleet sizes with aircraft containing various components,
each having their own prognostic performance in terms of
PH, false positive ratio and false negative ratio. Planning
algorithms are then used to estimate how effective these
prognostic performance levels are and what they mean in
terms of costs and required aircraft ground time. It should be
noted that these models are executed independently, hence
a limitation is that the preventive maintenance scheduling
results do not affect the maintenance opportunities used in the
unscheduled maintenance module and vice versa. A global
overview of the complete cost-benefit assessment model can
be seen in Fig. 1.

The preventive maintenance model reviews the numerous
regularly executed maintenance tasks of an airline described
in the Approved Maintenance Programme (AMP). By using
a simulation model, both downtime and various costs such
as labour and opportunity costs can be compared in order
to assess the potential benefits of the application of CBM.
Besides this preventive maintenance module, an unscheduled
maintenance module is developed as well. This module
focuses on the various costs and downtime associated to
swapping replaceable parts as described in the aircraft MEL
list. Once again a simulation model is used, however this time
with the goal of simulating component failures and responses
of the prognostic systems, depending on its performance.
The model accepts numerous input parameters which enable
the assessment of CBM impact in various scenarios, such
as scenarios with differences in the number of available
maintenance opportunities, fleet sizes, and component spare
availability.

B. Preventive Maintenance Module

As the application of prognostics to the AMP of most
airlines is currently non-existent, scenarios with respect to
task execution are created that take into account assumptions
of potential future usages of prognostic systems. In these
scenarios, the full AMP task list is assessed, and depending
on their task group as defined in the MSG-3 specifications,
either the interval between tasks is escalated, or the task is
substituted with a prognostic system, meaning that it is no
longer deemed necessary to be executed manually. Limitations
of this approach are that both the interval escalation and task
substitution parameters are heavily based on assumptions,
although domain expert opinion, and are applied globally
per task group, meaning that individual task control is not
possible. The reason for this global application of prognostic
parameters is that the task list used in this research consists
of around 250 different tasks, and given the time limitation
of this study, finely grained prognostic parameter input on
task level was deemed out of scope.

The data used for this module is the AMP task list of
a modern wide body aircraft and historic task data of a
European carrier for their fleet. This task list provides all
AMP tasks with their corresponding interval in terms of
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Fig. 1. Global overview of the cost-benefit assessment model

calendar time, flight hours or cycles. Then with the historic
maintenance information available, costs per task in terms
of labour cost, and maintenance time can be retrieved.
Together with opportunity cost data from the carrier it is
possible to estimate the potential benefits that CBM can bring.

To be able to properly assess task escalation and task
substitution in terms of downtime and opportunity costs, it
is essential that tasks are grouped in certain blocks, as it is
currently done now. In here lies a classic optimization problem
for MROs, as grouping multiple tasks means less trips to
the hangar. However by grouping many tasks together, not
all tasks are immediately due, as tasks are executed that are
due in between the current and next maintenance check. This
means that as the number of maintenance checks decrease,
the average wasted interval time per task increases and thus
the efficiency decreases. Where both wasted interval time and
efficiency per task are defined with the following equations.

tw = (ti�1 + v)� ti (1)

⌘ =
(tw + v)

v
(2)

With tw being the wasted interval time, ti�1 the time when
the task was previously executed, ti the next execution time,
v the interval, and ⌘ the efficiency. As the task is executed,
the next task occurrence is defined based on the last execution
date, and not on the last due date, meaning that during the
lifetime of an aircraft inefficiencies accumulate, leading to
tasks needed to be executed more often. It is expected that
when intervals are escalated due to prognostics, the overall
efficiency increases as the efficiency loss per task occurrence
decreases due to the increased interval. Still it is necessary to
find an optimum in the creation of blocks so that the model
approaches reality. For this reason a Mixed Integer Linear
Programming (MILP) model is created that minimizes overall
task and opportunity costs.

This model uses historic task data such as task duration,
maximum time interval between task occurrences, labour
hours required and task group information to form
maintenance blocks containing task occurrences, while
taking into account the limitation in number and labour
hours available of maintenance opportunities such that all
required preventive maintenance tasks are executed. The
initial condition is the in-service date of the first aircraft.
By varying task interval escalation and task substitution
parameters for each task group, different optimal results in
terms of task occurrence assignments and resulting costs are
obtained. The first step is considering the baseline scenario
(e.g. no interval escalation and task substitution), such that
the model can be validated by comparing it to the airline’s
historic task data. After this, multiple scenarios with different
prognostic parameters can be run to estimate the potential
CBM benefits. The objective function of the MILP model
is displayed in Eq. 3 and takes into account the wasted life
costs, task labour costs, opportunity costs, and slot use costs.
The model is performed for a fixed time, tend, and supports a
fleet of aircraft and different tasks per aircraft hence different
aircraft types can be mixed.

obj : min
X

a2A

X

i2I

X

j2J

[
ci
vi

· na,i,j + ci · xk
a,i,j ]+

X

a2A

X

k2K

[copp fixed
a,k · wk

a +
copp var
a,k

mk
·
X

i2I(a)

X

j2J(i)

di · xk
a,i,j ]

(3)
The model uses the following parameters:

Decision variables:

xk
a,i,j 1 if occurrence j of task i of aircraft a is

executed at opportunity k, else 0
nk
a,i,j Task execution waste time of occurrence j of

task i of aircraft a
wk

a 1 if aircraft a uses opportunity k, else 0
mused

a,k labour hours used by aircraft a at opportunity k
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Coefficients:

vi maximum interval between occurrences of
task i

tk time of opportunity k
di labour hours required for task i
mk labour hours available at opportunity k
copp fixed
a,k fixed costs of use of opportunity k by

aircraft a
copp var
a,k variable cost per labour hour of use of

opportunity k by aircraft a
ci labour and material cost of execution of

task i
ba start of service time of aircraft a
tend simulation end time

Sets:

A set of all aircraft
I(a) set of all tasks of aircraft a
J(i) set of all occurrences of task i
K set of all opportunities

The model is then constrained using the following 11
constraints. Eqs. 4 to 7 constrain the first occurrence of each
task. Eq. 4 ensures that all first occurrences are executed. Eq.
5 enables each aircraft to have a different starting time of
operation, and ensures that the first task occurrence is later
than this date. Then in Eq. 6 it is ensured that the first task is
executed no later than the maximum interval after the start of
operation of the aircraft. Lastly, to obtain the first wasted life,
Eq. 7 equates this to the remaining interval.

X

k2K

xk
a,i,1 = 1 8i 2 I(a), 8a 2 A (4)

X

k2K

tk · xk
a,i,1 � ba 8i 2 I(a), 8a 2 A (5)

X

k2K

tk · xk
a,i,1  ba + vi 8i 2 I(a), 8a 2 A (6)

X

k2K

tk · xk
a,i,1 + na,i,1 = (ba + vi) 8i 2 I(a), 8a 2 A (7)

Continuity is ensured with the following similar equations.
Eq. 8 limits each occurrence to be executed at a maximum
of one time, then Eq. 9-11 define which opportunities are
available for this task occurrence depending on the previous
occurrence. Finally similar to the first occurrence, the wasted
life is obtained by Eq. 12.

X

k2K

xk
a,i,j  1 8j � 2, 8i 2 I(a), 8a 2 A (8)

X

k2K

[tk �M ] · xk
a,i,j �

X

k2K

tk · xk
a,i,(j�1) � 1�M

8j � 2, 8i 2 I(a), 8a 2 A

(9)

X

k2K

tk · xk
a,i,j �

X

k2K

tk · xk
a,i,(j�1)  vi

8j � 2, 8i 2 I(a), 8a 2 A

(10)

X

k2K

[tk �M ] · xk
a,i,j �

X

k2K

tk · xk
a,i,(j�1) + na,i,j � vi �M

8j � 2, 8i 2 I(a), 8a 2 A
(11)

X

k2K

M · xk
a,i,j +

X

k2K

tk · xk
a,i,(j�1) � tend � vi

8j � 2, 8i 2 I(a), 8a 2 A

(12)

Regarding opportunity usage, Eq. 13 helps in establishing
whether an aircraft uses a maintenance opportunity leading to
slot use costs. Eq. 14 then limits the labour executed at each
maintenance opportunity depending on the labour availability.

X

i2I(a)

X

j2J(i)

di · xk
a,i,j �M · wk

a  0 8k 2 K, 8a 2 A (13)

X

a2A

X

i2I(a)

X

j2J(i)

di · xk
a,i,j  mk 8k 2 K (14)

Since the model simulation time increases significantly
for each additional maintenance opportunity or aircraft,
the simulation complexity of the model is limited, as the
simulation time would get too large. For this reason it is
chosen to separate A-check and C-check tasks into different
simulations, as runs containing multiple C checks, which
have intervals of 2-3 years, would require a very long
simulation time. Furthermore, the savings in wasted life
costs for C-check tasks on task level are not expected to be
accurate, as these tasks generally must be grouped together
given that they are especially dependent on the completion of
one another. This results in wasted life cost savings only to
be beneficial when the entire C-check is moved, and this is
generally not possible in the simulation, as not all intervals
of the C-check tasks will be changed. Therefore the slot use
costs will not be considered for C-check tasks.

C. Unscheduled Maintenance Module
The other module in this research is attributed to

unscheduled maintenance. Similar to the preventive
maintenance module, a simulation is used to estimate
the effects of CBM. In this module however, the lifecycle of
several components in a fleet of aircraft is simulated. The
goal of this simulation is to obtain accurate and complete
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cost results of the different maintenance aspects of these
components. To do this, the simulation model consists of
several submodules that each take into account these different
aspects.

The first aspect that is key in the maintenance operations
is the simulation of failure. In literature, often an exponential
distribution is used in estimating the time to failure (TTF)
of components [10]. However in this case a vast database of
historic failure data of components in a pool shared between
carriers is available. Therefore, a parametric survival model is
constructed for which the parameters of the underlying distri-
bution are found by fitting this distribution using the historic
data available. The Weibull distribution has been chosen as
underlying distribution as it is capable of modelling a range of
different failure patterns from infant-mortality, constant failure
(exponential distribution) to wear-out. To obtain the Weibull
parameters for this, a Maximum Likelihood Estimation (MLE)
is done in the form of Eq. 15 [2]

L =
nY

i=1

f(xi|✓1, ✓2, ..., ✓k)
mY

j=1

[1� F (xi|✓1, ✓2, ..., ✓k)] (15)

In this equation, the first product group returns the like-
lihood of a given distribution parameter by multiplying the
probability density function for each historic failure event i in
all failure events n. Since newer aircraft are considered, many
components being investigated have not yet failed. Therefore
it is important to take this right-censored data into account
as well, otherwise the distribution would be heavily biased
towards early failure. This is done with the second product in
the equation, for which the likelihood is determined by looking
at the survival function for each component j in collection m
that has not yet failed. For a 2-parameter Weibull distribution,
the MLE equation is given by Eq. 16

L(⌘,�) =
nY

i=1

"
�

⌘

✓
ti
⌘

◆��1

exp

 
�
✓
ti
⌘

◆�
!#

mY

j=1

"
exp

 
�
✓
ti
⌘

◆�
!# (16)

Here, ⌘ represents the scale parameter and � represents the
shape parameter. The validation of the Weibull distribution
found using this Maximum Likelihood Estimation is found in
Appendix C.

The essence of the PHM approach of this module is
contained in the prognostics module. The goal of this module
is to estimate a remaining useful life (RUL) throughout the
entire component lifecycle when it is installed in an aircraft.
The accuracy of this RUL prediction varies depending on the
accuracy of the model, prognostic horizon (PH) and actual
RUL. Since the goal of this research is to find potential CBM
benefits based on different prognostic performances, a model
is developed that simulates RUL predictions as a function of

prognostic performance levels, PH, and actual RUL.

It is assumed that during a flight the PHM system monitors
various sensor data and uses statistical binary classification
models to assess whether a component is about to fail or not.
The binary classification model is used as this is one of the
methods that is currently employed in practice. To provide
a means of estimating the RUL, first a model is constructed
that simulates such a binary classification model based on
the prognostic performance parameters. This model is then
inferred after each flight. Taking into account the model results
of the last couple of flights, a expected RUL can be estimated.

Fig. 2. Failure expectation probability for various parameter values

The binary classification model simulation is done by using
a Bernoulli distribution with the probability parameter being
a sigmoid function, as described in Eq. 17, which takes into
account the actual RUL, and several prognostic parameters
with fp being the false positive rate, h the PH, s a parameter
indicating the steepness of the slope, and t the actual RUL.
Fig. 2 gives an indication of how the failure expectation
probability changes as different parameters are varied. The
steepness parameter s is used to simulate different kind of
failure modes with a very steep function being a unpredictable
failure mode, while a gradual functions indicates the models
ability to identify deterioration.

p(t) =
1� fp

1 + es·(t�h)
+ fp (17)

These classification outputs are then collected from the
moment of installation of the component until failure,
indicated by the example classification output points in Fig.
3. Then with sufficient points available, the failure expectation
rate is obtained by acquiring the moving average on this
detection output as indicated by the moving average points
in Fig. 3. Given that the prognostic algorithm is of sufficient
accuracy, it is expected that a trend is seen with the failure
expectation rate approaching 1 as the component approaches
the end of its actual RUL.

Aside from the false positive rate that takes into account
false alarms, the false negative rate is also included as
adjustable parameter in the PHM system. In this model it
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Fig. 3. Classification output and failure expectation rate as function of
remaining RUL

is assumed that in the case of a false negative, a missed
alarm event occurred, hence the prognostic system was either
not able to estimate the RUL, or overestimated the RUL,
such that this estimated RUL never reached the threshold
triggering a maintenance action. The false negative rate is
once again modeled using a Bernoulli distribution, with
the probability being the false negative rate. Using this
distribution it is decided whether PHM monitoring is enabled
for this component. If not, the estimation of the RUL does
not happen and the component is run until failure.

With the model being able to generate a failure expectation
rate curve for each individual component, the last remaining
step is translating this rate to an estimated RUL. This is done
by acquiring the maximum likely RUL from the detection
probability function given the moving averaged failure ex-
pectation rate. It should be noted that the number of points
used for the moving average plays a big role in estimating the
RUL and requires optimising. E.g. a small number decreases
the resolution and result in an erratic RUL function with only
a small estimated RUL values possible. More points contribute
to an increased resolution, but introduce lag into the system,
meaning that components might be only replaced after major
damage has been done. The RUL estimation of the failure
detection rate portrayed in Fig. 3 is displayed in Fig. 4.

Fig. 4. Estimated RUL and actual RUL as a function of remaining RUL

As can be seen from this figure, the estimated RUL tends to
follow the actual RUL curve. As with any CBM application,
there should be a moment during which the estimated RUL
meets desired specifications and action is taken by planning
a maintenance event to swap the component. Since the goal
of the prognostic model is to estimate the RUL accurately
at the PH, the threshold value is chosen to be the PH as

indicated by the orange line in Fig. 4. It should be noted that
with different prognostic parameters, wavering around this
threshold can occur. This can be addressed by taking action
only after a minimum number of estimated RULs exceeds the
threshold.

The next submodule, the maintenance planning submodule,
is vital in the application of this prognostics module to
multiple subsystems for a fleet of aircraft, as it considers the
state of all components that require to be swapped. Once a
component has failed, or a failure is expected, triggered by
the PHM system, the resulting MEL condition is estimated.
Depending on the number of failed and/or non-operating
components for a given subsystem, a repair is required within
a certain number of calendar days. These so-called MEL
categories, ranging from AOG, e.g. the aircraft is deemed
not airworthy, to the MEL D category, indicating 120 days.
Obviously it is of great importance for the carrier to have
the component swapped with a operational one, such that a
costly AOG situation does not occur.

Once again a MILP model is used to plan these swaps
for aircraft requiring component replacements, given
the maintenance opportunities available. The model uses a
priority system by looking at the MEL conditions, replacement
component ordering costs, and opportunity costs. It is also
able to reprioritise maintenance swaps by moving around the
planned replacement to a different opportunity. This is for
example preferred in the case with upcoming opportunities
occupied, while an unexpected crucial failure occurs, resulting
in a short MEL. In Appendix D this MILP model is further
elaborated in detail.

The last submodule is the repair submodule. Here it is
expected that due to the PHM systems, components are
removed before failure and major repair costs are avoided.
This is modeled by assuming two possible repairs; major and
minor repairs with their corresponding costs and repair times.
It is assumed that as the components reach the end of their
useful life, the chance of major repair increases. Therefore
the RUL range is discretised in a small number of RUL
ranges, each having a different probability parameter for the
Bernoulli distribution estimating whether a major or minor
repair action is necessary.

Before a component is replaced, the new replacing com-
ponent is requested from the pool. Depending on the time
until AOG, a component is ordered or AOG ordered (expedited
shipped), resulting in different order costs and shipping times.
Once the component is available, it is replaced, and the
removed component is sent to the pool, which in their turn
send it to the shop for repair. In the shop it is determined
whether major or minor repair is required, and therefore their
corresponding cost and repair duration. After the repair, the
component is sent back to the pool, where it can be ordered
for the next aircraft. Other costs that are taken into account
are the holding costs of the component pool as the storage
of components and overhead require additional costs. In the
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case that many failures happen at the same time and there
are no replacement component in the pool available, a lease
action is initiated that come with a corresponding lease cost.
An overview of this supply chain model used in this repair
submodule can be seen in Fig. 5.

Aircraft Storage Shop

Component
removal

Component
sent for repair

Component
repaired

Component
replaced

Fig. 5. Schematic overview of the location and actions being performed on
components during replacement and repair.

The simulation technique used for this unscheduled mainte-
nance model is a discrete-event simulation (DES). This is ad-
vantageous as in contrast to continuous simulation, no change
in system state occurs in-between events, enabling a relative
computing time-efficient method of simulation. Furthermore it
is able to model the impact of the result of one event on the
input of another event. This way causes and effects of specific
events can be evaluated and assessed regarding their impact
on costs and benefits [30]. A necessity in the execution of this
simulation is to take into account the numerous probability
distributions that model the inherent uncertainty of failure
events and the PHM systems of this model. The simulation can
not be executed in one go, as each run will present a different
outcome due to the probabilistic nature of the stochastic data.
A Monte Carlo simulation approach is used to provide an
answer to this, by sampling a different random value from the
probabilistic distributions for each run. After a large number
of runs, the results are aggregated resulting in an expected
result in terms of costs and downtime for the various input
parameters.

IV. RESULTS

With the separation of the maintenance operation in sched-
uled and unscheduled maintenance modules, results are ob-
tained for each module.

A. Preventive Maintenance Module
The data used as input for this model is all A-check task

data originating from the MRO. This allows the validation of
the baseline model, i.e. the model without interval escalation
and task substitution. In total, 244 different A-check tasks
are considered, each having a specific maximum interval,
and estimated labour hours required to finish it. The number
of maintenance opportunities was chosen as such to ensure
that all A-check tasks occurrences were able to be executed
without additional waste. For this reason, 13 A-check
opportunities were chosen for which their execution dates
match the dates in the validation data. As can be seen in Fig.
6, the model was able to assign all tasks, however less task
occurrences were needed as they were planned more towards

the previous occurrence’s due date. This resulted in an overall
less equalised planning, however 23% less labour hours were
required. It should be noted that dependencies between tasks
were not considered. More on this can be read in Section V.

Fig. 6. Comparison of block task assignment model output to validation data

With a validated model available, the effects of CBM can
be established by comparing various CBM scenarios with the
baseline scenario. These scenarios correspond to a moderately
optimistic scenario, scenario 1, and a more optimal scenario,
scenario 2. The interval escalation and task substitution rates
per task group are based on expert opinion of the MRO
which data was used in this model, and can be seen in Table
I. For the tasks groups that are heavily inspection based, task
substitution was chosen as CBM action. This corresponds to
future CBM systems being able to substitute these tasks with
inspection using sensor data. Especially Functional Check
(FNC) and Operational Check (CHK) tasks are heavily based
on the acquisition of quantitative data. For this reason, a
higher action rate is considered. For the tasks groups that are
more action oriented, the CBM application here would be
interval escalation. The idea here is that by PHM monitoring
components on which these actions are performed, a better
action due date can be established, leading to longer, more
optimal intervals compared to the current conservative
intervals used.

The length of this simulation has been chosen to be 1095
days such that 13 A-check opportunities per aircraft fit
considering each extra aircraft’s start of operation date is 60
days later than the previous one. First the CBM simulations
are run for one aircraft. This is done once using the baseline
input parameters, after which it is run for a total of 50 rounds
per scenario for the two CBM scenarios, to take into account
the stochastic effects of the task substitution parameter. The
results in terms of costs can be seen in Fig. 7, while the
changes in labour required per A-check is displayed in Fig.
8.
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TABLE I
TASK INPUT PARAMETERS FOR REALISTIC AND OPTIMISTIC CBM SCENARIO

Task group Number of tasks CBM Action Baseline [%] Scenario 1 [%] Scenario 2 [%]

General Visual Inspection (GVI) 54 Task substitution 0 25 50
Functional Check (FNC) 26 Task substitution 0 50 100
Detailed Inspection (DET) 32 Task substitution 0 25 50
Servicing (SVC) 8 Interval escalation 0 25 50
Lubrication (LUB) 22 Interval escalation 0 25 50
Restoration (RST) 17 Interval escalation 0 25 50
Discard (DIS) 26 Interval escalation 0 25 50
Operational Check (OPC) 54 Task substitution 0 50 100
Special Detailed Inspection (SDI) 5 Task substitution 0 25 50

Fig. 7. Cost savings distribution of applying CBM

Fig. 8. Labour hours used per A-check for one aircraft.

It can be seen that the overall costs are decreased by 21 %
for scenario 1, and 41 % for scenario 2. This is mainly due
to the decrease in labour and opportunity costs, which each
decreased by 24 % and 48 % for scenario 1 and 2 respectively.
These decrease in opportunity costs correspond with the extra
flight time available as less tasks are required to be executed.
Considering the fixed initialisation and finalisation times
required for an A-check, and the general duration of 24 hours
for an A-check, results show that between 5 and 11 hours of
A-check maintenance can be saved leading to an extra flight
being possible depending on the destination. This justifies the
opportunity costs as indeed planning an extra flight would be
a possibility. Furthermore it can be seen that the same number
of A-check opportunities are used, as the fixed slot costs
remaining constant, and the waste of life costs are decreased
by 13 % and 23 % for scenario 1 and 2 respectively. These
results show that the decrease of costs somewhat linearly
scale with the CBM application factor, mainly because the

slot use costs remain constant as all 13 opportunities are used
in all scenarios. As can be seen in Fig. 8, there is however
more room available per maintenance slot, and considering
multiple aircraft might expose additional benefits.

In Fig. 9 and Fig. 10 the cost reduction results of the
preventive maintenance model are displayed for multiple air-
craft considering CBM scenarios 1 and 2. In order to make
the Monte Carlo simulation possible with respect to time
constraints and take into account the limitation in computa-
tional power, for both the 2 aircraft and 3 aircraft cases, the
maximum simulation run time was set to two hours.

Fig. 9. Relative CBM cost savings in scenario 1 for a fleet containing 1, 2,
or 3 aircraft.

Fig. 10. Relative CBM cost savings in scenario 2 for a fleet containing 1, 2,
or 3 aircraft.

Similar to the A-check results, it was found that with a
CBM approach, labour and opportunity costs were decreased
by 25% and 50% for the C-check tasks, corresponding to the
results of both scenarios in the case where A-checks where
considered.
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B. Unscheduled Maintenance
For the unscheduled maintenance module, two subsystems

are considered: an electrical generator (EG), and a cooling
unit (CU). The EG might especially benefit from prognostics,
given that already in the case of 1 out of the 4 generators
not operating, a MEL B condition is triggered, indicating
a replacement deadline of 3 days. For the simulation, the
fleet including their start of operation days is mirrored to
the fleet of the carrier whose component failure data is used.
First the components are simulated individually. It is assumed
that there is one maintenance opportunity available during
which an aircraft can have its components replaced per week.
The scenario parameters used can be found in Appendix E.
To account for the stochastic nature of the simulation, each
simulation is ran for a total of 100 rounds. The results for a
variation in false positive and false negative rates considering
three different subsystem configurations can be seen in Fig.
11-13.

Fig. 11. Total cost changes considering the CU subsystem as a function of
variations in false positive and false negative rates

Fig. 12. Total cost changes considering the EG subsystem as a function of
variations in false positive and false negative rates

Fig. 13. Total cost changes considering the CU and EG subsystem as a
function of variations in false positive and false negative rates

It can be seen that when only the CU subsystem was
considered, no cost reduction was achieved regardless of

the prognostic model performance. This is due to the model
preferring minor repair cost over major repair cost and hence
more replacements are executed. This especially impacts the
CBM performance on the CU subsystem as in the baseline
scenario replacements are only executed when required by
a MEL deadline. This clearly shows the limitations of the
replacement scheduling model. These limitations are further
discussed in Section V.

To assess how the total cost changes are achieved, 5
scenarios are considered for which the cost distributions are
displayed. These scenarios represent the baseline, e.g. no
prognostics applied, and combinations of relatively low and
high false positive and false negative rates. This way the effects
of false positive and false negative rates can be established
while also the effects of a properly and a poorly performing
model can be compared. Rates of 0.8 and 0.2 are used for
respectively poor and favourable performance. These perfor-
mance scenarios are then applied for the 3 cases mentioned
before, e.g. considering the CU, EG, and the combination of
the two. A breakdown of the relative change in costs of all
these cases is shown in Fig. 14.

(a) Aircraft containing only the CU subsystem

(b) Aircraft containing only the EG subsystem

(c) Aircraft containing both the CU and EG subsystems

Fig. 14. Relative maintenance cost breakdown for different configurations
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The major differences in opportunity costs and repair costs
stem from the change in both the proportion of major and
minor repairs and total number of repairs. Fig. 15 shows
how for each scenario the total number of repairs varies, as
well as the consistency of major and minor repairs. It shows
clearly how the combination of a high false positive ratio
with a low false negative ratio can contribute to such a high
cost increase as seen in Fig. 14, even though the majority of
these repairs are minor repairs.

Fig. 15. Number of major and minor repairs for 5 scenarios

Lastly, the effects on the supply chain are investigated. This
is done by comparing the baseline case to a case with a
properly functional prognostics system, e.g. the case for which
both the false positive and false negative ratios a value of
0.2 was used. Then for both components the starting stock of
spare components is varied, and the lease and holding costs
are obtained. Only these costs are considered, since the other
costs remained constant. The result of this assessment can be
seen in Fig. 16. It shows that the optimal number of spare
parts change as the effectiveness in prognostics is varied.

(a) Baseline scenario without CBM

(b) CBM scenario with false positive and false negative ratios of 0.2

Fig. 16. Stacked costs as the number of spare components is varied.

V. DISCUSSION

Looking at the cost savings results of CBM applied to
preventive maintenance, it can be seen that in the most
optimal CBM scenario for one aircraft, a cost reduction of
40% is achieved. When taking into account multiple aircraft,
this would increase to a total cost reduction in the range of
46% to 52%, mostly due to slot use cost reductions which
were not seen in scenarios considering only one aircraft.
This is because the intervals between maintenance slots are
simply too large and moving tasks from one opportunity to
another opportunity earlier or later is not possible due to
maximum interval constraints or cost effectiveness constraints.

However in the case that multiple aircraft are considered,
more opportunities are available, and the average time between
opportunities available is less. With the added benefit of
aircraft in general requiring less maintenance opportunities
due to CBM, as can be seen from Fig. 8, moving tasks
between blocks and sharing maintenance opportunities
between aircraft is possible and hence fewer maintenance
slots are used. This leads to lower fixed slot use costs, and
as seen by comparing Fig. 9 and 10, the effect is more
pronounced as CBM is more effective. This is to be expected
as more time is available per maintenance opportunity. When
three aircraft are considered, this cost reduction decreases
as both more optimal opportunities become occupied, and
sharing opportunities among more than 2 aircraft might result
in the fixed slot use cost outweighing the benefits of using a
maintenance slot where only a fraction of the tasks can be
executed. Another note here is the limitation in computational
time that lead to the restriction in simulation run time. Given
that the model simulating a fleet of 3 aircraft is more complex,
it is expected that the difference between the optimal result
and the result obtained in this simulation would be greater
for a fleet of 3 aircraft compared to a fleet of 2 aircraft. Other
algorithms need to be explored to acquire a more accurate
estimation what the effects of CBM would be on a larger fleets.

As mentioned before, the main limitation is that the
interval escalation and task substitution estimates are rather
crude, as they are expert opinion assumed numbers, based
on only the task group. Further research might be able to
have a more detailed look into these tasks, such that these
parameters can be obtained on task level resulting in a more
accurate result. While doing so, also dependencies between
tasks and improved efficiencies can be identified as tasks
can be grouped together as required. Currently, dependencies
between tasks are not considered, and this might result
in the estimation of significantly lower waste costs as
tasks need to be executed more often due to other tasks
even though they are not due yet as seen in the validation data.

When looking at the effectiveness of the CBM model on
unscheduled maintenance in Fig. 11-13, it can be seen that the
effectiveness of the prognostic system is heavily dependent
on the false positive rate, while the false negative rate acts
as a multiplier. This is also visible in Fig. 15, which shows
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that with an increase of false positives more replacements
and therefore repairs are needed. It should be noted that even
with a very well performing prognostic system, the number
of total repairs would increase, albeit the percentage of major
repairs would decrease. For this reason, the opportunity cost
in this model will not decrease.

This highlights the main limitation of this CBM model on
unscheduled maintenance. Opportunity costs are defined as
loss of revenue due to not operating the aircraft. However
given that with a CBM approach, a failure is predicted ahead
of time, a decrease in opportunity costs would also include
cost savings by being able to choose more optimal component
replacement opportunities. E.g. opportunities already assigned
to the aircraft for other reasons, such that replacement of a
component can be combined or scheduled at times where the
aircraft is not required to be operational. However, due to the
complexity of the total maintenance schedule of an aircraft
and added complexity to the required planning algorithm,
it was chosen to have a constant opportunity costs for each
maintenance hour. This also affects the effectiveness of
changing the PH in this simulation model, as with an increase
in PH it would be expected that the planning efficiency
increases as an upcoming failure is known earlier. Now the
only effect of increasing the PH, is the additional time to
schedule the replacement.

An interesting result is that the application of CBM would
not always lead to cost reductions in this model. Comparing
the most optimal CBM scenario (e.g. false positive and false
negative rates of 0.2) between the three scenarios in Fig.
14, reveals that even though repair cost decrease, in some
cases other costs such as opportunity and holding costs
increase, resulting in an overall cost increase. The increase
in opportunity costs can be attributed to the maintenance
planning algorithm. In the case of prognostics not applied, it
is assumed that components are only replaced when a MEL
deadline is in place, e.g. two or more failures for the CU
subsystem and one or more failures for the EG subsystem.
However in the case of prognostics applied to the component,
the component will be replaced regardless of the MEL status
given that there is a higher probability of the component
requiring a minor repair versus a major repair when replaced
due to a prognostic alert. This highlights the importance of
modeling the opportunity costs correctly.

The other cost type that increased for the CU subsystem is
the holding cost. It is expected that when the percentage of
minor repairs increase due to CBM, the average repair time
decreases, and therefore the components spend less time in
the repair shop and more time as spare stock. For this reason
it is likely that a lower number of required spare stock is
needed, however with this number being too low, an increase
in lease costs is expected. To see how the optimum would
shift as CBM is applied, the two scenarios are compared in
Fig. 16. It is indeed seen that there are less spares required,
as the optimum is shifted from 3 spares available to 2 spares
available. Also the total cost reduction is increased, as in the

baseline scenario this would be 22 %, versus the 45% in the
CBM scenario.

Other limitations of this model are that the scheduling of
replacements is based on the availability of a certain number
of maintenance hours on a certain number of days per week.
Cancellations are then modelled when the MEL deadline due
to a component failure is before the next available opportunity.
In reality however, maintenance is often mixed with other
required tasks, therefore it is hard to assess how much actual
maintenance time is available per component, and how quick
this time is available after it is established that a component
requires replacement. Delay costs are modeled as extra costs
during troubleshooting of a failure before removal, as this
is often the case that delays occur during troubleshooting.
Yet this is of course a highly stochastic process, as different
failure modes may occur and the troubleshooting time can
significantly vary. Therefore a constant hourly delay factor is
used based on hourly delay cost found in literature [7].

VI. CONCLUSION & RECOMMENDATIONS

It can be concluded that CBM can be beneficial for both
the operator and MRO, as it would lead to overall lower
maintenance costs and opportunity costs resulting from ground
time. It was found that in the most optimistic scenarios a cost
reduction of 46% to 52% was found regarding preventive
maintenance, mostly based on a reduction of downtime and
labour costs, while for the unscheduled maintenance a cost
reduction of 20 % was found for the EG subsystem. Looking
at preventive maintenance however, it shows that the extra
benefits especially pay off in the most optimal scenario as
in that case extra time would be available for an additional
long-haul flight. Also, this scenario enables additional
scheduling benefits considering the reduction in maintenance
slots required. Still it should be noted that many assumptions
were taken as tasks were considered by task group instead
of individually, therefore more research is needed that goes
more into detail regarding preventive maintenance tasks. This
way more knowledge can be gained about how (potential
new) sensors and prognostic algorithms can alter these tasks
in terms of interval escalation or substitution, which on their
turn affect the benefits in terms of a decrease in downtime
and reduction in costs. Another aspect is the limitation of
computational time. As the simulation time was already
limited for fleets of aircraft, other optimisation algorithms
should be explored that are able to provide accurate results
without requiring early stopping.

When looking at unscheduled maintenance, it can be con-
cluded that the false positive rate is the main factor in
the effectiveness of prognostics. Given the investment costs
required for developing and maintaining these models, a
minimum precision, recall, and prognostic horizon can be
formulated such that the investment is beneficial. However
this improvement is mainly based on the reduction in repair
costs and optimisation of the supply chain, as the optimal
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number of spare components varies as prognostic systems
improve. Still much is unknown about the benefits that CBM
can have considering a more optimal planning of component
replacement is possible, as the failure of a component is known
ahead of time. While it is expected that due to the preference of
minor repairs over major repairs the number of replacements
increases as the prognostic performance increases, it is not
expected that the opportunity costs will increase accordingly,
as the CBM approach enables smarter scheduling given a
high enough prognostic horizon. As shown in the results, the
opportunity costs are a significant part of the total costs, hence
there might be more potential in reducing these costs and
especially downtime, as the prognostic horizon is increased.
More research is required to find out what this potential
improvement would entail.
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Appendix A

Research Methodologies

A.1 Executive Summary
With the increasing availability of sensor data measuring aircraft health, it is expected that maintenance
strategies will change into strategies more focused on the condition of components, known as condition-
based maintenance. Current research is ongoing in how this information about the state of aircraft health
can be translated into prognostics, the prediction of the time of failure. This project proposal however
focuses on the required performance levels of prognostic models for condition-based maintenance to
be beneficial. A model is created that is able to simulate maintenance costs, delay and cancellation
costs, loss of revenue costs and ground time as a function of prognostic model performance for certain
components. Prognostic performance is assessed by the impact of false positives (false alarms) and
false negatives (missed alarms), and is modeled over di↵erent prognostics horizons. Aside from the
focus on components, another model will focus on the adaption of current preventive maintenance tasks,
as it is expected that tasks can be substituted by prognostic models, or intervals can be extended due
to the increase in information about system health. Taking into account the limitation of maintenance
opportunities for a fleet of aircraft, a MILP model will optimize execution of these tasks and provides
an estimate of the beneficiality of condition-based maintenance applied to preventive maintenance tasks.
It is expected that the combination of both models will contribute to academia and industry as it further
clarifies how prognostic performance impacts the quantified e↵ects of a holistic approach to condition-
based maintenance.

A.2 Introduction
The airline industry is growing in size and in order for airlines to stay competitive, cost savings are of
great importance. When looking at the direct operational costs, according to [27], the factors that play
the biggest role are fuel costs, crew costs, maintenance costs, and depreciation costs. Of these cost types,
maintenance costs take up around 10 - 20 % of the total direct operational costs according to [47], [15],
and [44]. Aside from costs, aircraft availability is impacted as well by airline maintenance. Of all the
total delays in 2011, [14] assessed that 12.7 % was due to technical and aircraft equipment problems,
which was the highest non-reactionary delay category. Delays and cancellations not only cause inconve-
nience for passengers, but lead to extra costs. [15] indicates that the delay costs can vary from e 53 per
minute for short delays to e 249 per minute for longer delays depending on flight phase, location, and



type of aircraft. A cancellation that is not announced timely can lead to costs of around e15,000 for a
narrowbody aircraft and e78,000 for a long haul flight. It is therefore only logical that operators such as
KLM and maintenance & repair organizations (MROs) such as KLM E&M, are looking for possibilities
to minimise maintenance costs.

A current topic of research that might be able to deliver promising results with respect to this, is the exe-
cution of maintenance tasks based on the current and predicted future condition of aircraft components.
This is also known as condition-based maintenance (CBM), and is a result of the increasingly available
sensors of the newest generation of aircraft that are able to assesses the health of the aircraft. Two impor-
tant aspects of CBM are diagnostics and prognostics. Diagnostics is important when the fault is taking
place or has occurred already, and is according to [46], the act of knowing when a problem is taking
place, and identifying and isolating the fault. Since the upcoming availability of sensor data, diagnosis
of faults have been vastly improved as sensor data makes it easier to pinpoint the failure and potentially
identify the failure mode. Recently the focus has been shifting more towards prognostics. According
to the dictionary, prognostics is defined as ”something that foretells”. [24] however provides a better
definition with regard to maintenance: ”Estimation of the Remaining Useful Life of a component”. The
di↵erence here with respect to diagnosis, is that prognostic is anticipating rather than reactive, as during
the lifetime of a component or system, sensor data is used to predict the Remaining Useful Life (RUL).
This is done by assessing how the actual operational profile deviates from the nominal one. The systems
approach that takes into account prognostic data is called Prognostics and Health Management (PHM)
and according to [61] can help in avoiding maintenance cost and improve system safety and mission
availability.

There are several ways on how CBM can be integrated into current maintenance operations. With respect
to scheduled preventive maintenance tasks, [25] looked at the possibilities of escalating intervals between
tasks and even eliminating inspection tasks as it was suggested that sensor data could replace these tasks
or provide a better estimation of the required interval. Aside from preventive maintenance tasks adap-
tion, CBM can also reduce the occurrence and impact of unscheduled maintenance events. These benefits
flow from the ability of PHM systems to predict the RUL of a component and allows components to be
replaced based on their condition and not on a set time [66]. With the advantage of being able to mon-
itor degradation it is expected that unscheduled maintenance will occur less as the component can be
replaced before failure. Furthermore the availability of more accurate diagnostic information allows for
a reduction in unscheduled maintenance time and can potentially turn the unscheduled task into a sched-
uled maintenance task.

Previous studies have mainly focused on the development of prognostic models, and potential benefits
expressed in results of case studies for failure of single components. Yet the potential total benefits in
terms of various key performance indicators (KPIs) for an aircraft fleet taking into account the limitation
of maintenance opportunities and uncertainties in prognostics is rather unknown. The objective of this
project is therefore to develop an assessment model that is able to capture the impact of PHM and
CBM on the maintenance performance for a fleet of aircraft, taking into account the uncertainty of PHM
systems. In section A.3 the state-of-the-art regarding assessment models of CBM and PHM is described,
during which the gaps in literature are identified. Then in section A.4 the research questions, aim,
objectives and sub goals are defined that follow from these gaps. In section A.5 the research methodology
is described after which in section A.6 the experimental set-up is laid out. Then the expected results and
outcome is discussed in section A.7. In section A.8 the project planning is discussed and finally section
A.9 concludes this project plan.
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A. Research Methodologies

A.3 State-of-the-art/Literature Review
In order to critically analyze the current value assessments available in literature, several di↵erent aspects
of these models are evaluated. First it is important to assess how value is expressed and what KPIs are
deemed important. Aside from this a major aspect is completeness of the assessment, both in terms of
the types of maintenance taken into account, as well as the level of detail, and hence gives an idea about
the value of the research done. Another major aspect is the modeling of prognostics, as it is expected
that uncertainty can heavily influence the impact of CBM, and therefore accurate modeling of these un-
certainties is of key importance for a proper value assessment.

With respect to unscheduled maintenance, there have been many papers looking into di↵erent approaches
of modeling prognostics and predicting the RUL of components, so that replacement and repair of these
components can be scheduled in advance. [67] do this by focusing on the identification of degradation
considering a multiple wear profile scenario and integrating this with a line maintenance planning model.
This model was based on a combinatorial search algorithm. The algorithm loops over all turnaround
times within the planning horizon and finds the repair and service schedule that minimizes the opera-
tional costs. In doing this, constraints on resources and the corresponding MEL category are taken into
account as well. Limitations are that only line maintenance is considered in this study. It might be in-
teresting to see the results of a complete maintenance scheduling approach as done by [25], while taking
into account constraints posed in this paper. The study claims parallelisation is allowed to perform the
repair and servicing of di↵erent components, however dependencies between these activities such as
available manpower and time is not considered. When considering a fleet of aircraft, this might prove
to be especially di�cult using a combinatorial search algorithm, and other simulation approaches such
as an heuristic game approach used by [18], or a discrete event approach as presented by [30] might be
beneficial.

According to [57], the advantage of a discrete event approach (DES) is that it allows to analyze the in-
terdependencies between events, and hence cause and e↵ect can be established. DES is also a method
to discover unexpected bottlenecks, under- or over-utilization of resources, or failure to meet specified
requirements. In contrast to continuous simulation, no change in system state occurs in between events,
enabling a relative computing time-e�cient method of simulation, enabling the simulation over long pe-
riods of time. [30] used this simulation technique and came up with a framework in assessing benefits
with respect to unscheduled maintenance of PHM at Line Replaceable Unit (LRU) level. By simulating
all relevant maintenance processes and dependencies using deterministic empirical data such as oper-
ation, line and component maintenance, troubleshooting, planning and logistics data, a good overview
of benefits as result of PHM metrics was established. [54] researched uncertainty in prognostics and
reviewed such metrics used to assess algorithms, with the goal of providing an overview of the di↵erent
metrics used in literature and suggesting new metrics that specifically cater to PHM requirements. Two
of the metrics that play an important role were False Positives (FP) and False Negatives (FN). The missed
alarms can be seen as a false negative: the algorithm did not anticipate the failure, while false positives
indicate failure while there is none. Aside from existing metrics, the authors proposed several other new
metrics for prognostics. One of them is the prognostic horizon. The definition of this is defined as ”the
di↵erence between the current time and end of life using data up to the current time index, provided the
prediction meets desired specifications”. [30] not only looked at the prognostic horizon, but also the im-
pact of accuracy on the eventual cost savings regarding prevention of unscheduled maintenance. Yet in
their analysis these parameters are assumed independent in contrast to the previously mentioned studies.
Furthermore the impact of false positives, such as false alarms leading to No Fault Found (NFF) events,
and false negatives, in case the failure is not detected on time, on the cost reduction is not very clear.
Having a better analysis with respect to this might bring valuable conclusions in the desired sensitivity
and therefore requirements of the PHM systems.
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At first it would be expected that the higher the prognostic distance the better, yet it can be seen that
there is an optimal prognostic distance related to these components. [21] showed why this is the case,
and mentioned the decrease in forecast quality, increase in prognostics cost and increase in wrong de-
livered spare parts associated with a longer prognostic distance as crucial causes. [17] performed a case
study taking into account these uncertainties in predicting the precursor of failure of a multi-functional
display. As part of cost benefit analysis comparing unscheduled maintenance with a PHM approach, the
optimal prognostic horizon was determined. Unique in this study is that this precursor expected time
to failure (TTF) is a distribution based on a sample of the distribution of the actual time to failure and
prognostic distance. When a sample TTF is taken from the distribution of the precursor expected TTF,
and this TTF is higher than the actual TTF of the instance it is assumed that unscheduled maintenance is
required leading to higher costs.

In terms of preventive maintenance tasks, [11] and [45] focused on the impact of condition-based mainte-
nance in structural aircraft maintenance. It was investigated whether structural health monitoring (SHM)
techniques were able to reduce costs by skipping certain scheduled maintenance actions. [45] found that
especially during the first few maintenance stops, much costs could be saved since inspections were not
necessary yet. Three di↵erent approaches incorporating SHM were presented, all showing significant
improvement in total costs over conventional scheduled maintenance. However cost data used were av-
erages in literature, and the cost modeling technique contained various assumptions, such as a 20% to
100% increase of costs when maintenance is unscheduled, and loss of revenue costs were not taken into
account.

Aside from these case studies [25] took a more global approach in estimating the e↵ects of CBM on
preventive maintenance during which scheduled maintenance tasks and preventive tasks due to predicted
failure of components are scheduled for a lifecycle of an aircraft. Using a Mixed Integer Linear Pro-
gramming (MILP) model, maintenance costs and wasted life costs were minimized by grouping tasks
together depending on predicted failure date or due date of preventive task. Wasted life costs being costs
due to removal of components before their actual end of life and preventive maintenance tasks being
executed before their maximum interval. This task packaging might be especially beneficial in that due
to prognostic information, interval of tasks can be escalated and some tasks can even be omitted. This is
done by grouping tasks based on their task codes in task code groups (TCGs). Depending on the TCG,
a task is either eliminated, the interval is escalated, or nothing changes. The limitation of this study
is that only 2 global parameters influence this impact, and hence no detailed analysis of tasks is done.
Though given the great number of tasks, this might be considered a reasonable assumption. It should be
noted that the tasks involved are either short to medium interval tasks. Tasks with an interval of more
than 5 years and tasks belonging to D checks are still assumed to be block checks and planned separately.

Taking only into account scheduled maintenance, and assuming the most optimistic scenario, i.e. pa-
rameters of task redundancy being 1 and interval escalation being 100 %, a potential maintenance costs
saving of around 3 million EUR was found. This is relatively low considering the total maintenance cost
modeled over a life cycle was 76 million EUR, and the great number of maintenance tasks a↵ected by
these parameters. Comparing this number to the potential savings in previously shown studies regarding
crack formation, show the complexity of analysing cost savings due to CBM. For instance, the ground
time that is freed up due to task elimination and escalation, might be used to schedule extra flights. While
[11] assumed a reduction of loss of revenue depending on the days of maintenance saved, [25] did not
clearly explain what was done with the extra time gained. Using the maintenance scheduling approach
of [25], applied on a fleet of aircraft might reveal patterns in extra time available. These patterns can
then be used to adapt the flight schedule, which in result can give a better estimation of the decrease in
opportunity costs.

The holistic approach of [25] encompassing both deterministic scheduled maintenance and unscheduled
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data is an eyeopener in assessing the potential value of CBM. However a deep analysis of prognostic pa-
rameters is lacking as component RUL is assumed to be deterministic in the scheduling of maintenance
and sensitivity and precision of the PHM systems are not taken into account. Furthermore as the paper
suggested, the e↵ects on a fleet of aircraft have yet to be researched.

Gaps identified in this literature review are therefore the assessment of CBM on a bigger scope, taking
into account its e↵ect on both preventive maintenance and unscheduled maintenance for a fleet of aircraft.
Especially interesting in this case are the emergent e↵ects on aircraft availability and total maintenance
costs as as a function of varying PHM performance levels.

A.4 Research Question, Aim/Objectives and Sub-goals
Having performed a literature study, gaps in literature were found. In this section research questions and
objectives are presented that aim in answering these gaps.

A.4.1 Research Question(s)

The main research question that is set out to be solved is as follows:

What is the impact of condition-based maintenance on aircraft fleet availability and total
costs due to scheduled and unscheduled maintenance as a function of di↵erent PHM perfor-
mance levels?

In order to be able to answer these question, the following sub-questions were defined:

• What is the e↵ect on availability and costs when the planning of PHM based preventive mainte-
nance tasks is modeled on fleet level for di↵erent fleet sizes?

– Which tasks can be a↵ected by PHM systems?
– How does the execution of these tasks di↵er using a CBM strategy?
– What scheduling model is suitable for taking into account this di↵erence in execution of these

tasks?
– To what extent is the model able to simulate current preventive maintenance operations?
– Which types of costs are a↵ected by the use of a CBM strategy on preventive maintenance?
– How does the ground time required change as a result of the adoption of a CBM strategy?

• What is the e↵ect on availability and costs when unscheduled maintenance is a↵ected by PHM
models?

– What are the extra maintenance costs of an unscheduled maintenance event?
– Which components are suitable for adoption of a CBM approach?
– What are the penalties in terms of availability and downtime costs due to unexpected failure

of these components?
– How can the actual remaining use of life for these components be determined?
– How can the expected remaining use of life for these components be determined?

• What is the required PHM performance for CBM to be beneficial?

– What is the minimum required prognostic horizon?
– How do the false positives and false negatives rates influence each other?
– What is the acceptable false positive rate?
– What is the acceptable false negative rate?
– How does the models accuracy vary as the prognostic horizon varies?
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A.4.2 Research Objective

With these research questions in mind, the objective of this research can be established. The main re-
search objective of this thesis is to understand the financial and operational benefits that condition-based
maintenance can have by developing a model that is able to simulate maintenance actions over a fleet
of aircraft taking into account various performance levels of prognostics and health management sys-
tems. In order to achieve this goal, several sub goals are defined. Firstly a scheduled maintenance model
should be constructed that is able to simulate current preventive maintenance actions, and preventive
maintenance task actions according to prognostic data. Only then a proper comparison can be made.
Meanwhile another sub goal is the development of an unscheduled maintenance model that is able to
output costs and availability as a function of PHM performance predicting the failure of components.
With these models available, a sub goal is then to setup a case study by selecting preventive mainte-
nance tasks and components of interest. With data from KLM available, a sub goal is then defined to
validate the model. Having a valid model, the last sub goal is then to assess the prognostic benefits by
constructing di↵erent performance level scenarios used as input for the model.

A.5 Theoretical Content/Methodology
The objective of this research is focused on the total impact of condition-based maintenance. However
as the approach in modeling preventive maintenance tasks compared to component failure di↵ers, the
work can be split up in these two di↵erent parts having distinct methodologies.

With respect to preventive maintenance, the focus is on adaption of scheduled maintenance tasks. These
originate from the maintenance planning document (MPD) formed by the aircraft manufacturer in which
scheduled maintenance tasks are concretely outlined together with their intervals. Operators then use
the MPD as source in order to generate their own maintenance program called the Aircraft Maintenance
Program (AMP). It is expected that with the use of prognostic data, for certain tasks the interval can be
extended, task duration can be limited, or the task is not required anymore as a sensor can replace its
function. A framework to assess this has been setup by [25], looking at the di↵erent task categories and
varying task escalation and elimination levels. A MILP model will be used to optimize planning accord-
ing to these adapted task intervals, taking into account the limitation of maintenance opportunities, cost
of performing maintenance tasks too early, and benefits of grouping tasks.

On the other hand unscheduled maintenance requires a di↵erent approach. Here the focus is on replacing
failing components on time, so that the aircraft is not unexpectedly grounded and replacing components
can be anticipated for. The methodology as described by [17] is of especial interest, as it shows how
the estimated RUL of components can be estimated as a function of the prognostic horizon. Using this
method, while also taking into account the trade o↵ between false positive rate and false negative rate
as a function of aggressiveness, for di↵erent time horizons an estimation can be made of the RUL. Then
together with dependencies on other components and availability of a replacing component, the value of
the PHM system can be estimated.

A.6 Experimental Set-up
A computer simulation will be the experimental method of choice for this research. A simulation will be
run for a considerable part of the lifetime of a fleet of Boeing 787 aircraft in such a way that all preventive
maintenance tasks and selected components have an impact as would be expected from the historic data
available. Due to the broadness of assessing the total impact of condition-based maintenance and the
complexity of interactions with respect to planning between preventive maintenance and unscheduled
maintenance, it was decided to model these independently as separate modules in the simulation.
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The preventive maintenance module contains a MILP model taking into account AMP tasks. Depending
on the level of interval escalation, task elimination and change in task duration, for a certain fleet size
and number of maintenance opportunities benefits in terms of maintenance costs and ground time can be
assessed. By using real task data, ground time data and cost data from KLM, the model can be validated,
and a baseline can be constructed.

The unscheduled maintenance module will be taking into account the top 15 components selected on
failure occurances, current failure impact and prognostic applicability. Using a discrete event simulation
(DES) framework, the states of these components can be tracked. As a function of various input pa-
rameters indicating the performance of the model, a prediction is made when the component is expected
to fail. Taking into account these expected failures and dependencies between components and deferral
of maintenance actions as listed in the MEL rules and according to policy, replacements are scheduled.
Depending on the actual time before failure, costs and ground time are estimated. Using the models that
KLM is already using in predicting failure of certain components, the model can be validated.

The simulation will be created in Python 3.7, and for the preventive maintenance module a MILP model
using the software package CPLEX will be used. For the unscheduled maintenance module, the DES
framework SimPy will be used, enabling the modeling of dependencies between events and keeping track
of the various states the objects are in.

A.7 Results, Outcome and Relevance
The simulation will use data made available by KLM. For the preventive maintenance scheduling, task
data containing the required interval, task duration, and material and labour costs are considered. De-
pending on the prognostic parameters such as interval escalation, task elimination, and task duration
adaption, di↵erent schedules will be made, resulting in a di↵erent e↵ect of wasted life, maintenance and
labour costs, and ground time required, and hence a di↵erence in cost of loss of revenue. As the simula-
tion is setup to be general, di↵erent parameters that can be varied are the aircraft in fleet and occurrence
of maintenance opportunities. Validation is done by comparing the model outcome to the current practice
of preventive maintenance operations. By using dummy tasks of which boundary conditions are known,
the MILP model can be verified. Ultimately it is expected that the decrease in costs and availability
compared to the prognostic parameters will provide insight in the beneficiality of CBM.

Looking at unscheduled maintenance, data considered is the e↵ects of unscheduled maintenance in terms
of cost and ground time for di↵erent components. Using historic time to failure (TTF) data, a distribution
can be established that can be used as input. Together with the replacement policies and historic data
with respect to repair costs, direct maintenance costs, and delay and cancellation costs, the prognostic
model can be evaluated. This model will be having several input parameters such as aggressiveness in-
dicating tolerances towards false positives or false negatives, and the prognostic horizon. The expected
outcome is an indication of potential cost savings in terms of the various cost categories for di↵erent
prognostic performance levels. With this information available, minimum performance levels for PHM
systems and a first order maximum cost estimation for PHM systems can be established. To assure the
model’s validity, performance of the current KLM prognostic model is used as input, after which the
model’s output in terms of costs and ground time is compared with the data available from KLM.

A.8 Project Planning and Gantt Chart
With the previously set up objectives, taking into account logistics, task dependencies and estimates of
the time required for tasks, a project planning was created. This planning is illustrated in the form of
a Gantt chart that can be found in Appendix A. It shows how the problem is split into two separate
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models each requiring verification. Once verified, the models are combined and validated using KLM
data. Meetings with the supervisor will happen biweekly, however due to the unfortunate event of the
supervisor leaving for Australia, meetings will occur in the form of video calls.
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A.9 Conclusions
As the amount of sensor data available is only increasing with newer generations of aircraft, not making
use of this in the maintenance process would be a potentially missed chance in lowering maintenance
costs and increasing fleet availability. Much research has been conducted in the development of var-
ious theoretical models in predicting maintenance needs, however studies investigating the benefits as
a function of prognostic performance levels are scarce. Especially unknown is the e↵ect on fleet level
considering prognostic uncertainties in terms of false alarms and missed alarms for di↵erent prognostic
horizons.

This proposed research aims to provide insight of the complex e↵ects that di↵erent prognostic perfor-
mance levels have by quantifying the benefits of a CBM approach. By simulating both unscheduled
maintenance and preventive maintenance operations for a fleet of aircraft, with the use of a discrete event
simulation model and a MILP preventive maintenance planning model, di↵erent cost and availability
factors can be assessed. With this approximation of benefits as a function of di↵erent prognostic pa-
rameter performance levels, requirements on PHM systems can be posed with a greater accuracy. This
benefits both academia and the industry as it can provide more knowledge about the required perfor-
mances of PHM models, possibly leading to further research into methods being able to achieve these
performances.
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Appendix B

Literature Study

B.1 Introduction
The airline industry is growing in size and in order for airlines to stay competitive, cost savings are of
great importance. When looking at the direct operational costs, the factors that play the biggest role are
fuel costs, crew costs, maintenance costs, and depreciation costs[27]. Of these cost types, maintenance
costs take up around 10 - 20 % of the total direct operational costs[47][15][44]. Aside from costs, air-
craft availability is impacted as well by airline maintenance. Of all the total delays in 2011, Eurocontrol
assessed that 12.7 % was due to technical and aircraft equipment problems[14], which was the highest
non-reactionary delay category. Delays and cancellations not only cause inconvenience for passengers,
but lead to extra costs. Eurocontrol indicates that the delay costs can vary from e 53 per minute for short
delays to e 249 per minute for longer delays depending on flight phase, location, and type of aircraft
[15]. A cancellation that is not announced timely can lead to costs of around e15,000 for a narrowbody
aircraft and e78,000 for a long haul flight[15]. It is therefore only logical that operators such as KLM
and maintenance & repair organizations (MROs) such as KLM E&M, are looking for possibilities to
minimise maintenance costs.

Being able to predict when failure is bound to occur by assessing how the actual operational profile devi-
ates from the nominal one is called prognostics. The systems approach that takes into account prognostic
data is called Prognostics and Health Management (PHM) and can help in avoiding maintenance cost
and improve system safety and mission availability[61]. Using PHM, MROs and operators can concep-
tualize maintenance strategies that leverage the knowledge about the actual condition and prognostics of
specific components. These strategies therefore enable maintenance being done based on the condition
of systems and components and is therefore called condition-based maintenance (CBM). CBM will have
an impact on how scheduled maintenance will be done, as inspection tasks might not be required any-
more or the interval between tasks can be escalated [25]. CBM also allows components to be replaced
on condition and not on a set time.[66] Furthermore, it is expected that PHM can reduce the occurrence
and impact of unscheduled maintenance events. A prediction in the remaining useful life (RUL) of a
component and more accurate diagnostic information allows for a reduction in unscheduled maintenance
time and can potentially turn the task into a scheduled maintenance task [37].

Mostly due to the myriad of di↵erent aspects CBM can have an e↵ect on, it is currently di�cult to



assess the potential value that CBM can bring to the airline industry. Therefore this literature study is
carried out to find more about what this potential value entails. In section B.2 an overview is given on
di↵erent maintenance strategies and the state of the art of CBM is treated. Then in section B.3 better
insight is gained on the economic aspect of CBM, by looking at how CBM can bring value, and how
this is evaluated in literature. The gaps in literature and research questions that follow from these gaps
identified are then concluded in in section B.4.

B.2 Airline maintenance
Aircraft maintenance is an important aspect for the operator. On the one hand, it is bound by airworthi-
ness requirements set by the authorities, while on the other hand it is an activity that when done optimally
can strengthen the competitiveness of the airline. As such, there has been much development and air-
craft maintenance has come a long way. This chapter is split up in two parts. First, in section B.2.1
an overview is provided of the di↵erent maintenance strategies. Then in section B.2.2 CBM is further
explored, and state-of-the-art applications are discussed.

B.2.1 Maintenance strategies

This section aims to provide an overview of the di↵erent maintenance strategies used. In figure B.1, this
overview is shown hierarchically. Of these strategies shown, corrective maintenance is treated first, after
which the preventive and condition-based maintenance are treated.

Figure B.1: An overview of di↵erent maintenance strategies [40]

Corrective maintenance
The first aircraft maintenance strategies presented themselves around 1950 and were based on the fact
that components were relatively simple, therefore wear was the common mode of failure[1]. This re-
sulted in the most commonly used strategy being Corrective Maintenance (CM), meaning that mainte-
nance followed from failure. Maintenance, in this case, entails diagnosis of the problem, disassembly,
replacement, repair, and/or assembly [34]. Since this maintenance occurs due to failure and therefore
is not planned, it is considered unscheduled maintenance. Unscheduled maintenance is considered non-
desirable for the following reasons [63]:

• Since the maintenance is unscheduled and availability is of high priority to the operator, costs
regarding manpower and item availability are relatively high as the failure needs to be dealt with
straight away.
• The downtime that follows from the aircraft being unavailable, brings extra costs to the operator.
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• Secondary damages occur due to not detecting faults earlier on. This might cause extra unneces-
sary costs.

However, in various cases CM is still applied. For example, for some components which failure do not
endanger safety-critical systems, a corrective maintenance strategy is used. The decision on this stems
from failure analyses done in accordance with the MSG-3 methodology, which is further outlined in the
next section.

Preventive maintenance
Rapid development in the aviation industry resulted in aircraft becoming more complex and an increase
in competitiveness between operators. Larger jet aircraft such as the B707 and DC-8 were introduced,
and a more reliable maintenance strategy was needed. The first attempt in improving the reliability was
the establishment of time limitations of components. This is still known has hard-time, and is mostly
defined by the manufacturer. Hard-time is expressed in flight hours (FH), calendar time, and/or flight
cycles. However it was found that this relatively simple strategy was overall not very e↵ective unless the
component failure mode was dominant [56], furthermore for many items it was found that there is no
e↵ective application for a scheduled hard-time.

For this reason, a process-oriented approach was needed to structure preventive maintenance (PM) pro-
grams, hence the Maintenance Steering Group (MSG) was created. This group developed the MSG-1
program when the first wide-body aircraft such as the Boeing 747 was launched. In this program aside
from hard-time, on-condition maintenance was also considered for components or systems that have de-
tectable wear-out periods [49]. This on-condition maintenance meant that tasks were created to ensure
reliability by inspection, servicing, testing and calibrating of components.

This program was very successful as it ensured higher reliability and safety for lower costs [63]. In the
70s the group released the MSG-2 program containing various improvements on MSG-1 and made this
available for the newer aircraft launched at that time. One improvement was the development of an extra
maintenance strategy called condition monitoring. For components that were not safety critical and did
not have a hard-life or on-condition maintenance, replacement would occur when certain operational
characteristics crossed predefined threshold values [56]. The distinction here is that the component is
allowed to run to failure and thresholds are established to prevent future failure and secondary damage.
An overview of the MSG-1 and MSG-2 decision logics can be seen in figure B.2.

Figure B.2: MSG-1 and MSG-2 process decision logic [56]

In 1980 MSG-3 was released which improved upon a number of shortcomings of MSG-2. For instance,
MSG-2 did not di↵erentiate between maintenance done for economic or safety reasons. Furthermore,
the bottom-up approach of MSG-2 in combination with the increasing complexity of aircraft led to the
individual tracking of many di↵erent components. To account for this and to account for the ability to
track hidden failure modes, the focus of MSG-3 was system level and a top-down approach [56]. Hence
the consequences of failures and e↵ect on aircraft operations became the main point of focus [49].
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By looking at the e↵ect of failure, a task or combination of tasks are created based on their di�culty and
costs. Tasks are categorized in the following groups:

1. Lubrication/Servicing
2. Operational / Visual check
3. Functional check / inspection
4. Restoration
5. Discard

The result of the MSG-3 analysis, among other requirements, is then used in the process of generating
a maintenance planning document (MPD) by the aircraft manufacturer in which scheduled maintenance
tasks are concretely outlined together with their intervals. Operators then use the MPD as source in order
to generate their own maintenance program called the Aircraft Maintenance Program (AMP).

It is common practice that the tasks with similar intervals are grouped in blocks. Eventually, these task
blocks are executed during one letter checks that are alphabetically distinguished based on the intensity
and interval of the tasks. In the airline industry the following checks are most commonly used:

• A-Check: This check occurs roughly every eight to ten weeks and generally contains lighter tasks
such as general inspection, servicing of oil and replacement of filters [56].
• C-Check: A major check that happens about every two years. The structure of the aircraft is

inspected [22] and a more detailed inspection of functional and operational systems is done [56].
Often these checks take about 1-2 weeks to finish.
• D-Check: This is the most rigorous check and occurs every 6 - 12 years [56]. During this check

the paint is removed to inspect the structural elements of the aircraft thoroughly. Furthermore, the
aircraft is mostly disassembled to be able to inspect all structural elements properly. This check
takes about a month to complete [22].

With respect to task planning during these checks, KLM groups the smaller tasks based on their inter-
val in 25 di↵erent A blocks. The A01 block then contains tasks with the lowest interval, which are
required to perform every check, while tasks grouped in blocks with a higher number are performed with
a greater interval. Every A-check these blocks are planned together with other tasks, sometimes arising
from Service Bulletins (SBs) and Airworthiness Directives (ADs). SBs are bulletins from the Original
Equipment Manufacturer (OEM) that contain possible modifications that operators can adopt for their
aircraft. Often these changes enhance the aircraft and are worthwhile to execute, yet they are not manda-
tory [60]. Corrective actions that are mandatory are called ADs and generally flow from the regulatory
aviation authority. The aircraft is deemed not airworthy until these ADs have been applied [58]. A SB
can sometimes become a Mandatory SB, then a corresponding AD will be released by the regulatory
aviation authority.

Another task planning approach more favourable by short-haul and/or low-cost carriers is the equalised
system, where checks are shorter and work packages are more similar in size. This smaller size in work
packages enable the work to be carried out overnight, improving on aircraft availability [59].

Still PM proved not to be ideal as these frequencies are based on Mean Time Between Failures (MTBF),
which can vary greatly between components of the same type [64]. Depending on the type of component
and variability in exposure, the acceleration of ageing di↵ers and might result in an early failure causing
a potential costly unscheduled maintenance action. More often however, since maintenance frequencies
are taken rather conservative, components are replaced while they still have a good amount of service
life remaining [13].
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Various studies have since been presented in optimising this problem. The IEEE/PES Taskforce looked
into various maintenance strategies and found that a fixed interval maintenance approach is the most
frequently used. Still it was found that approaches that used mathematical models employing component
deterioration and condition data, could maximize reliability while minimizing costs [5]. Such models
and corresponding sensors could also help in decreasing the amount of scheduled maintenance inspec-
tion tasks required. This is especially beneficial as Airbus found that 90 % of the aircraft ground time
for scheduled maintenance does not change the condition of the aircraft [69]. Approaches like this are
generally considered condition-based maintenance.

Condition-based maintenance
Condition-based maintenance is typically categorized under PM as shown in figure B.1, since the ob-
jective is to prevent failure before it will occur. However due to the vastly di↵erent approach on the
scheduling of maintenance, it can be considered a category on his own. Already in the 1950s to 1970s
the US army started outlaying the foundations of condition-based maintenance strategies. By now this
has become a topic of much interest not only for the US army, but also for other large corporations in
the aerospace, automotive, military and manufacturing industries[48]. This is the case because CBM
gives insight in remaining useful life (RUL), performance of a system, and therefore can prevent mission
critical failures. Especially since the recent development in data technologies, more and more possibil-
ities have opened up in gathering knowledge and using this knowledge to perform maintenance in an
improved way, ensuring a higher availability while reducing costs.

Two aspects that enable CBM are diagnostics and prognostics. Diagnostics is important when the fault
is taking place or has occurred already. It can therefore be seen as reactive[48]. It is the act of know-
ing when a problem is taking place, and identifying and isolating the fault [46]. Since the upcoming
availability of sensor data, diagnosis of faults have been vastly improved as sensor data makes it easier
to pinpoint the failure and potentially identify the failure mode. Diagnostics regarding this sensor data
mainly boils down to pattern recognition[28]. This means that during failure, it can be seen that for cer-
tain parameters, sensor data show unexpected trends. Manual pattern recognition is costly and requires
highly skilled professionals, therefore it is desirable that diagnostics is done by automatic systems. This
is especially the case considering the hefty amount of sensors and daily data acquired on modern aircraft.
An Airbus A350 for example, has 50,000 sensors generating 2.5 Tb data daily [3]. Fortunately, the recent
developments in information technology enable analyzing this data in an automatic manner, and when
considering the benefits that better diagnostics can bring, it is no wonder much development is taking
place in this area.

Recently the focus has been shifting more towards prognostics. According to the dictionary, prognostics
is simply defined as ”something that foretells”. NASA however provides a better definition with regard
to maintenance: ”Estimation of the Remaining Useful Life of a component” [24]. The di↵erence here
with respect to diagnosis, is that prognostic is anticipating rather than reactive, as during the lifetime of
a component or system, sensor data is used to predict the RUL. The advantage here being that it can be
anticipated when failure is bound to happen. Hence replacing the component can be scheduled before
actual failure, preventing possible high unavailability and maintenance costs.

Diagnostics and prognostics are often di�cult to distinguish from each other. Faruk Eker et al. [16]
defined two phases of prognostics as can be seen in figure B.3. The first phase can also be considered
diagnostics as it assesses the current health conditions in terms of severity and degradation. Phase 2
is when predictions on degradation is done and the RUL is estimated. These are clear di↵erences with
diagnostics, as the focus with diagnostics is on failure mode and location detection and fault isolation.
A visualisation of prognostics can be seen in figure B.4. Here a damage assessment model estimates
the damage growth, based on previously acquired data points. With the failure threshold in mind, a
probability density function (PDF) of the RUL is estimated. Uncertainty plays a big role in estimating
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Figure B.3: An overview of similarities and di↵erences between diagnostics and prognostics [16]

the RUL, this is also concluded by Vandawaker, Jacques, and Freels [66] as they found that CBM can
improve system performance, however uncertainty regarding prognostics needs to be mitigated and false
alarms minimized before monitoring techniques can be implemented and made use of.

Figure B.4: Prediction of RUL on trend data using di↵erent models [an]

Saxena et al. [54] also had a look at uncertainty in prognostics and reviewed metrics used to assess algo-
rithms, with the goal of providing an overview of the di↵erent metrics used in literature and suggesting
new metrics that specifically cater to PHM requirements. Two of the metrics that play an important role
were False Positives (FP) and False Negatives (FN). The missed alarms can be seen as a false negative:
the algorithm did not anticipate the failure, while false positives indicate failure while there is none.
A better way to formulate this with the change of predicted RUL as a function of time in mind, is by
assessing FPs and FNs based on an acceptability range as function of time. This can be seen in figure
B.5.
Aside from existing metrics, the authors proposed several other new metrics for prognostics. One of them
is the prognostic horizon. The definition of this is defined as ”the di↵erence between the current time and
end of life using data up to the current time index, provided the prediction meets desired specifications”.
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Figure B.5: Definition of FPs and FNs based on time to failure [54]

The prognostic horizon of two di↵erent algorithms can be seen in figure B.6. This metric has gained in
popularity as it has been researched in [52] [17] [20] [31] [30]. The impact of this and other metrics with
respect to potential cost savings according to literature is treated in section B.3.3.

Figure B.6: Prognostic horizon of two algorithms [31]

Returning to the application of prognostic models at CBM level, the gist of CBM therefore is that,
as the name suggests, maintenance is done based on the condition of components. There are various
applications associated with this concept that can be found in literature. The next section attempts to
highlight these.

B.2.2 State-of-the-art in condition-based maintenance

The concept of CBM can be translated into a myriad of di↵erent applications. To provide structure, these
applications have been grouped into scheduled and unscheduled maintenance.

Scheduled maintenance
Regarding scheduled maintenance, CBM concepts have yet to gain ground. This however is to be ex-
pected as the MSG-3 documents have not supported the use of PHM, or any other performance based
indicators leading to CBM for a long time[2]. However recently adaptions to the MSG-3 methodology
have been proposed allowing health monitoring systems as an alternative to classic scheduled main-
tenance tasks[69]. Furthermore studies have shown how CBM can be beneficial regarding scheduled
maintenance. This section will provide an overview of what aspects of scheduled maintenance might be
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a↵ected regarding the literature available.

With regard to the structural airframe aspect of scheduled maintenance, Fitzwater et al. [19] looked at
the development of cracks at a specific critical location on the F-15 fighter. These cracks would nor-
mally be found during manual Nondestructive Inspection (NDI) tasks, however this study looked into
the possibilities of automating these tasks with the use of a piezo-electric sensor system. In this case the
conclusion was drawn that a systems approach regarding structural issues might be more advantageous,
as it was found unlikely that aircraft availability increased with one-o↵ conditional solutions. This sys-
tems approach is what Pattabhiraman et al. [45] looked into a bit more. They also observed the formation
of cracks, but then on all panels on an Airbus A320. With information acquired from on-board sensors
and actuators, Structural Health Monitoring (SHM) techniques can assess the state of panels. With this
information, two maintenance philosophies were developed to skip unnecessary inspection tasks such as
Nondestructive Inspection (NDI) and Detailed Visual Inspection (DVI) tasks. The unique aspect of this
is that the two maintenance philosophies can be considered hybrids between scheduled maintenance and
pure CBM. It was found that both the hybrid philosophies as well as pure CBM can lead to substantial
savings.

From these studies, it is shown that using prognostic information certain inspection tasks can be skipped.
Looking also at scheduled maintenance tasks, Hölzel, Schilling, and Gollnick [25] enlarged the scope by
looking at all tasks contained in the MPD of an Airbus A320. The categorization of tasks by task code
in the MPD, enabled making assumptions on what impact PHM could have. Once again one aspect of
the impact was task elimination. However, for other task types such as servicing and discarding, another
aspect was found to be escalating the interval between these tasks.

Maintenance scheduling models
In literature several papers have looked at di↵erent modeling approaches with respect to optimizing the
entire maintenance schedule according to prognostic data. For instance Li, Guo, and Zhou [38] looked at
how prognostic data can influence the planning of scheduled maintenance tasks for an air force fleet of
fighter aircraft. A mixed integer linear programming (MILP) model is used to optimize this fleet mainte-
nance schedule with constraints on maintenance costs, remaining flying hours depending on prognostics
and sortie requirements. Still this paper is highly theoretical as tasks are generic and therefore have ran-
dom maintenance durations.

Hölzel, Schilling, and Gollnick [25] also used a MILP model to optimize the maintenance schedule, but
used more deterministic data by taking the MPD into account. In this case the amount of task elimination
and interval escalation was regulated to find the impact on costs and availability.

Another approach for fighter jet fleet CBM scheduling has been done by Feng et al. [18]. In this model,
game theory is used to optimise the strategy of determining whether aircraft are bound for maintenance
or not. Using a RUL distribution for components, and heuristic rules over various rounds, total mainte-
nance costs are decreased while mission revenue is increased. Benefits of this approach is that hybrid
game algorithm scales relatively good with respect to problem size, while still being able to find a global
optimum relatively quickly.

Another approach is the use of a simple genetic algorithm (GA) in scheduling maintenance. This is done
by Saranga [53]. The decision tree on what model should be used depends on the current time and state
of the item investigated is shown in figure B.7.
As can be seen from the figure, GA is used when the end of life of the component is before the next
scheduled maintenance time. This end of life can be based on set hard or soft time, or a prediction of
mean residual life. GA is then used to determine whether to replace the component now or ground the
aircraft as soon as the condition of the item is deteriorated beyond critical conditions. The algorithm
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Figure B.7: Decision tree model on the various maintenance options [53]

works by assessing a fitness score, in this case a combination of various costs such as remaining life, risk
and down time costs. The GA optimisation process works by forming a new population based on the
survived options of the previous attempt. Here the fittest options are chosen and during crossover and
mutation, a new population is formed which are once again assessed for fitness. This cycle continues
until a stop condition is reached. Unfortunately Saranga [53] does not provide a detailed description how
crossover and mutation is modeled.

The use of genetic algorithms in optimising maintenance has also been studied by Marseguerra and Zio
[39]. In this study, the GA is coupled with MC simulations, to take into account stochastic variables such
as failure rates and imperfect repairs. The advantage of GA as concluded by this study that it helps in
guiding MC simulations with problems containing lots of di↵erent parameters. MC simulations based
purely on these parameters might be too computationally intensive, a GA algorithm helps by evaluating
the fitness of results and selecting and breeding on the best results. This eliminates the need of doing
MC simulations on all possible values, enabling a faster convergence to an optimum.

Unscheduled maintenance
Another aspect in which prognostics can provide benefits is the prevention of unscheduled maintenance.
Unscheduled maintenance is the result of failure of components during flight or unexpected findings
during regular maintenance. In these cases of unexpected failure two modes of action are available de-
pending on the urgency: the repair can be postponed in which the term deferred defect (DD) is used, or
the repair needs to take place before the aircraft is airworthy again. This mostly depends on redundancy
and whether components are safety critical. Operators make use of a so called minimum equipment list
(MEL) to find out about this urgency. This MEL contains the airworthiness requirements of di↵erent
components and specifies the maximum term of deferment. If it is not possible to defer the defect, hence
the fault has to be repaired before the next takeo↵ while the aircraft is scheduled to fly, the term Aircaft
on Ground (AOG) is used. These situations can get very costly as often flights are canceled and spare
parts which are not available need expedited shipping. Knowing when components are going to fail is
therefore especially useful in these cases hence research on the impact of prognostics models on preven-
tion of unscheduled maintenance is plenty.

Already in 2002 a cost benefit analysis was done regarding mostly prevention of unscheduled mainte-
nance regarding engines of fighter aircraft [6]. The paper highlights both the prognostic and diagnostic
benefits that PHM can have on unscheduled maintenance, such as reducing the Mean Time to Diagnose
(MTTD). Feldman et al. [17] proved that not only PHM can improve inspections, but prognostic models
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can also be a valuable tool with respect to inventory management and that it can increase the operational
availability of an aircraft. Kählert, Giljohann, and Klingauf [30] used empirical maintenance data in
modelling the replacement of Line Replaceable Units (LRUs) while taking account stochastic parame-
ters such as accuracy and prediction horizon.

Also based on deterministic data was the approach of Nicchiotti and Rüegg [42]. In this paper a data-
driven approach was taken in predicting failure events. A combination of Central Management System
data and logs of maintenance activities from a fleet of aircraft was used. Machine learning techniques
used this data in predicting at least two flights ahead whether a component would fail. Results were that
the precision was relatively high, hence false positives were low. Also considering the low recall rate,
this method would prove to be beneficial only as an additional tool in helping decisions, and not yet as a
standalone product.

Currently there are already products on the market that can help in preventing unscheduled maintenance.
For instance Skywise, a product developed by Airbus, attempts to provide insights in the vast amount of
data from data sources such as onboard sensor data, work orders, component data, and flight schedules
[8]. Easyjet being one of the early adaptors of Skywise, found that the occurrence of delays due to tech-
nical errors has been decreased from 10 per 1000 flights, to just over three per 1000 flights [8]. KLM
E&M developed a tool called Prognos that takes more of a bottom up approach. Instead of focusing
on all data available, Prognos is built up component by component by looking at components that are
critical according to KLM taking into account delays and cancellations they cause [41].

Line maintenance planning models
Often unscheduled maintenance is carried out alongside routine pre-flight inspections in between two
consecutive flight legs. These activities are known as line maintenance, and are usually performed at
the platform when the aircraft is in operational condition. Especially in these conditions it is vital that
unexpected events can be predicted and troubleshooting time is limited. Therefore the usage of prognos-
tics might prove to be very beneficial. Vianna and Yoneyama [67] showed that di↵erent wear profiles
could be identified using a multiple model (MM) approach. Consequently degradation was modeled and
a RUL was estimated that was used as input for line maintenance scheduling algorithm. Benefits were
found in a decrease in maintenance costs as well as an increase in availability.

Papakostas et al. [44] proposes a multi-criteria model that helps in obtaining an optimal line maintenance
schedule. The four criteria that are being used are cost, operational risk, flight delay, and RUL. PHM
enables the estimation of this RUL in terms of probability of failure. In figure B.8, two probability of
failure graphs distributions are shown, while 7 di↵erent maintenance opportunities are considered. In
this case the threshold for maximum probability of failure is set at 75 %, this cuts out alternatives 4 to 7.
In accordance with the other criteria, the best alternative is then selected.

Olivares et al. [43] also presents a line maintenance planning model but uses a large neighbourhood
search (LNS) algorithm. This works by first finding a feasible solution, then in the neighbourhood of this
solution, attempts are made in finding a better solution. By swapping and shifting tasks, while taking into
account the probability of failure, the total expected costs of repair is optimized. Probability of failure
data is modeled after PHM data, and for the costs, delay and AOG costs are assumed. The method is
considered quick, but as a result has a high probability of being stuck in a local minima.
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Figure B.8: Prediction of RUL on trend data using di↵erent models [44]

B.3 Economic assessment of condition-based maintenance
CBM due to the availability of PHM systems is expected to be valuable regarding scheduled as well as
unscheduled maintenance. However many di↵erent approaches with respect to the assessment of value
of CBM are taken. The purpose of this chapter is threefold, first an overview of the cost factors is given in
section B.3.1. With these cost factors in mind, section B.3.2 provides an overview of literature describing
di↵erent cost-benefit methodologies, and the key performance indicators (KPIs) they suggest. Lastly in
section B.3.3 a critical analysis on literature is provided that attempts to evaluate di↵erent aspects on the
quality of economic assessment that is done.

B.3.1 Cost factors

The main value that CBM can bring is the increase of operational e�ciencies leading to a reduction in
downtime and a reduction of maintenance costs [48]. First an overview of the classification of mainte-
nance costs is given. Then the relationship between costs and availability is portrayed.

Maintenance costs
Maintenance costs can be split into direct maintenance costs (DMC) and indirect maintenance costs
(IMC) [68]. An overview of these costs is given in figure B.9.

DMC consist mainly of labour costs and material costs and therefore generally scale with the amount of
maintenance that is performed. Within DMC, costs can be separated further in both on-aircraft mainte-
nance and o↵-aircraft maintenance costs [29]. On-aircraft maintenance is the maintenance that typically
happens at the hangar or platform, including inspection, troubleshooting, and component replacement.
Once a component is deemed defect it is sent to the shop for repair, hence the category shop-maintenance
costs. Although these costs seem external and hardly influenceable, the No Fault Found (NFF) rate is a
factor that PHM systems can influence [30]. This is the rate of when a component is removed following
a complaint or fault, while during a check no anomaly is found.

IMC are however less concretely related to maintenance actions. These costs are mostly overhead costs
and include aspects such as planning, administration, ground equipment, and inventory costs. These costs

41



Figure B.9: Overview of how maintenance costs are classified [29]

are generally shaped by the size of aircraft maintenance operations, but can not be directly attributed to
certain tasks. Measuring the influence of CBM might therefore pose di�culties. Still an indirect main-
tenance cost factor that received much interest regarding PHM is the domain of supply chain of spare
parts. This is because PHM increases the predictability of components failing and therefore inventory
management can be planned more optimally leading to less spare parts, and hence lower holding costs
[21].

Cost of remaining life
Another aspect that is becoming more measurable with the onset of prognostics, is the cost of remain-
ing life. These costs relate to how much time or cycles a component is replaced before the end of its
remaining life. This remaining life can be expressed in di↵erent ways depending on the component [53]:

• Hard life: When this age of the component has been reached, it has to be replaced
• Soft life: Only when modules containing the component is recovered, the component is replaced

when its soft life is reached.
• Degradation: There is no set age in cycles or time, only when a critical level has been measured

using PHM systems the component is replaced.

Unavailability costs
Aside from the maintenance cost, Dupuy, Wesely, and Jenkins [12] stated that costs related to unavail-
ability, are also vital in assessing the total costs related to maintenance. In literature this type of cost is
sometimes regarded as indirect maintenance costs, but since the impact of condition-based maintenance
might provide concrete benefit to these costs, unavailability costs are considered a separate category.

Unavailability costs can consists of a myriad of di↵erent costs having a di↵erent origin, such as passenger
compensation costs related to unscheduled maintenance or loss of revenue due to scheduled maintenance.
Looking at the literature there are di↵erent ways in how to provide more structure with respect to these
costs. Kumar et al. [36] argue that downtime costs are only to be taken into account when the aircraft
is expected to be in operation. However in these cases an optimisation of scheduled maintenance plan-
ning is not taken into account. Saranga [53] however stated that there will always be a loss of revenue
associated due to both scheduled and unscheduled maintenance. These costs could also be defined as op-
portunity costs [51], and play an important role when considering prognostics in scheduled maintenance,
as the escalation of task intervals or omitting of certain scheduled maintenance tasks might be beneficial
with respect to availability.
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Looking at unscheduled maintenance costs, a thorough review of delay costs has been done by Cook and
Tanner [10]. Costs were essentially split up into strategic costs and tactical costs. The strategic costs are
costs occurred during the planning stage before the day of operation of the flight. These include margins
in the turn around time, and can also be considered opportunity costs as defined before. Tactical costs
are all costs accumulated at the day of operation and consist of passenger, fuel, maintenance, fleet and
crew costs. An overview of passenger delay costs depending on delay time can be seen in figure B.10.

Figure B.10: Passenger costs as a function of delay time [10]

From this figure it can be seen that the per minute cost of delay increases as the delay takes longer. This
is because passenger compensations such as vouchers and hotel accommodation is more pronounced as
the delay time increases. When considering an airline at fleet level, a longer delay is also prone to cause
reactionary e↵ects, also known as ’knock-on’ e↵ects. When these happen earlier in the day, connecting
flights and the subsequent flight on the same aircraft are especially a↵ected giving rise to substantial
costs [9].

This shows the importance of PHM systems in diagnosing the problem on time. For example Dupuy,
Wesely, and Jenkins [12] showed that when maintenance information is already transferred while in
flight, the CBM approach can have more value. A case study on the air conditioning system of the
Airbus A340 [22] showed that CBM is able to prevent 20 to 80 % of the unscheduled maintenance
operations depending on the availability of sensors. Some significant delays of more than 170 minutes
could be prevented, leading to a substantial cost reduction.

B.3.2 Conducting a cost-benefit analysis

Already in 2002, Ashby and Byer [6] developed a cost-benefit methodology on aircraft engines using a
bottom-up approach. In order to assess reliability mostly Failure Modes & E↵ects Criticality Analsysis
(FMECA) source information is used. Together with data from historic line maintenance activities and
part pricing information a cost-benefit analysis can be constructed. An engine is modeled as a collection
of Line Replaceable Units (LRUs) and the basic engine, these determine whether engine parts can be
swapped in a relative short amount of time or whether the engine has to be sent to the shop for repair.
By using the FMECA data, failure modes that could be prevented with the use of PHM prognostics were
assigned a ’prognostic potential’, being a percentage of costs, sortie losses, mission aborts and inflight
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shutdowns that could be prevented. With these numbers, scheduled and unscheduled maintenance costs
are calculated based on the calculation of the Mean Time to Diagnose (MTTD) of these components. An
overview of the structure of this CBA methodology can be seen in figure B.11.

Figure B.11: An overview of the structure of the CBA methodology proposed by [6]

Using spreadsheets and data in terms of costs, manpower required, maintenance time required and main-
tenance and inspection frequencies, an overall cost benefit is established. Using a discount factor, the
CBA can then be assessed over multiple years. The methodology can be seen as very preliminary, since
PHM impact is mostly based on assumptions using a FMECA analysis and no simulations of PHM ef-
fects take place that are able to show emerging e↵ects not taken into account by looking at individual
components. This use of series of spreadsheets however do allow near zero computational times and
sensitivity can therefore be very easily assessed.

Leao et al. [37] focuses on the application of PHM on legacy aircraft. The paper gives a very clear
overview on benefits and costs that should be taken into account. Furthermore metrics are provided that
express the result of the CBA. Benefits taken into account are the following in di↵erent steps depending
on the implementation level.

1. Benefits of monitoring and advanced diagnostics

• Reduction of NFF rates. Expressed in costs of NFF removal per component
• Improved aircraft dispatch reliability. Expressed in delay and cancellation costs based on

improved diagnostics.
• Reduction of scheduled maintenance tasks costs. Expressed on task level by estimating

cost of the automated task that replaces the manual task.
• Improvements on engineering developments. Expressed rather subjectively on cost reduc-

tion of solving aircraft design issued faster due to PHM data.

2. Benefits of Prognostics and CBM

• Reduction on the number of interruptions. Expressed in delay and cancellation costs
based on replacing components before failure at event level.
• Reduction of scheduled maintenance tasks cost. Expressed in maintenance tasks costs that

can be eliminated.
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• Reduction of secondary damages. Expressed in costs of other components damaged due to
failure of one component.
• Reduction of maintenance induced failures. Expressed in costs of accidentally damaged

components during maintenance tasks that could be avoided due to PHM.

3. Benefits of a Complete Health Management Solution

• Reduction in insurance costs. Expressed in a discount on top of the annual insurance costs.
• Greater aircraft residual value. Expressed in a discount on top of the annual reduction of

aircraft residual value.

While most benefits are rather concrete in value and are therefore more straightforward to acquire, costs
can be more subjective in their estimation. Leao et al. divided these costs in four categories:

1. Development Costs. Non recurring costs including research & development, design/management,
validation & verification, certification, and IT infrastructure costs.

2. Aircraft Costs. These costs are based on the number of components that will be modified to be
able to be monitored. Costs included are acquisition costs of sensors and other costs regarding
installation and storage and processing of data directly related to the sensor.

3. Operation/Maintenance Expenses. Recurring costs based on the use of PHM systems. Expressed
in maintenance costs of sensors and IT infrastructure, transmission costs, and extra fuel costs as a
result of an increase in aircraft weight.

4. PHM Side-E↵ects. This is the cost of remaining life as described in section 3.1.1; useful remain-
ing life is wasted due the removal of components before failure.

Having looked at the benefits and costs, financial metrics are provided that can translate the output of the
CBA in clear terms for di↵erent stakeholders.

It was deemed that PHM development teams especially benefit from a cost-benefit analysis per sub-
system or LRU. For example attributing costs and benefits to certain LRUs or subsystems might be an
implantation technique that enables a better overview of which aspects benefit most from CBM. For op-
erators Leao et al. mentions that especially direct and indirect maintenance costs might be of interest.
Aside from this, there are other financial metrics recommended for aircraft OEM management. Yet these
might be of importance as well for operators in deciding whether CBM has potential to add value. Two
of these metrics are return on investment (ROI) and net present value (NPV).

Return on Investment
Return on investment (ROI) is defined as the di↵erence between return and investment divided by the
investment as defined in the central ratio in equation B.1. Feldman, Jazouli, and Sandborn [17] provided
a methodology in determining the ROI in PHM applications, and for this used the right ratio in the
equation.

ROI =
Return � Investment

Investment
=

Avoided Costs
Investment

� 1 (B.1)

Feldman, Jazouli, and Sandborn focus purely on unscheduled maintenance by considering two scenarios:
the regular unscheduled maintenance scenario during which the component is replaced at failure, and the
PHM scenario using a precursor to failure. For both these cases investment costs and lifecycle costs are
considered. The investment costs for the unscheduled maintenance scenario is defined as 0, since no
investment is required. This leads to equation B.2, with Cus and CPHM being the lifcycle costs for the
unscheduled maintenance and PHM scenario, and IPHM the investment costs for the latter one.

ROI =
Cus � (CPHM � IPHM)

IPHM
� 1 (B.2)
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The investment costs considered are associated with the realization of the PHM system, and contain costs
such as development, training, testing, and documentation costs. But also recurring costs such as instal-
lation, assembly, and support costs as in data management and IT infrastructure costs are considered
investment costs. Lifecycle costs in this methodology result from the use of the aircraft and therefore
consist of the repair and replace costs of LRUs. The di↵erence between the PHM scenario and unsched-
uled maintenance scenario is then the extra costs of downtime depending on when the failure takes place.

The advantage of this metric, is that it allows to describe the value of PHM in one number, making it
easy to compare it to other investment opportunities. However in the case where the investment costs are
largely unknown and therefore are based on a great number of assumptions, the ROI can vary greatly,
resulting in a less meaningful metric.

Net Present Value
In most cases lifecycle costs are considered, hence costs over a long period of time are taken into account.
To be able to capture the time value of money, the net present value (NPV) is used. As described in
Hölzel, Schilling, and Gollnick [25], equation B.3 is used where C0 is the initial investment, Ci is the
cash flow in the i-th period, and r is the discount factor that represents the rate of return that could be
achieved in other comparable investment opportunities.

NPV = �C0 +
X

i

Ci

(1 + r)i (B.3)

Using the NPV it can be immediately clear whether the case is worth investing. If the NPV is positive,
the project is worth considering as the net value gained is more than would possibly be gained by other
opportunities [47]. The NPV together with ROI, and other cost factors such as the earlier mentioned
DMC and IMC, enable di↵erent stakeholders to each have a perspective on the value of CBM. It is
therefore important of taking these di↵erent metrics into account when conducting a cost-benefit analysis.

B.3.3 Analysis of economic assessment in literature

This section attempts to provide a critical analysis of the literature regarding the value that CBM can
have. Studies are evaluated on certain aspects that can be found in the subsequent sections. First a crit-
ical assessment is done on the data used in the various studies. Then more information is provided in
how these studies use prognostics, and what value it has regarding CBM. After this, a critical assessment
is made on how studies evaluate the e↵ect of CBM on respectfully scheduled and unscheduled main-
tenance. Then CBA methods are assessed, after which it is analysed how these studies evaluate costs.
Finally the assumptions and limitations of current CBA assessments found in previous sections are high-
lighted.

Data used
A common challenge among the studies regarding the economic assessment of CBM is the availability

of proper, usable data. This is because of various reasons such as the complexity of the data and the
availability due to sensitivity of the MROs and operators. For this reason only a handful studies use
deterministic and historical maintenance data. It is therefore important to have a critical look on the data
used and the assumptions that were made.

Dupuy, Wesely, and Jenkins [12] for example used a Weibull distribution to model part failure depending
on the type of component. The assumption was that an aircraft consisted of components of three types:
high infant mortality, constant failure, and aging e↵ect failure patterns. These distributions were based
on data retrieved from the FAA’s Service Di�culty Reporting Site and analysis of failure patterns. Al-
though the study provided an answer to the usefulness of CBM regarding the number of part replacement
as function of di↵erent types of components, concrete value of CBM was hard to assess. Feldman, Ja-
zouli, and Sandborn [17] used Weibull distributions as well in determining the time to failure. However
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due to a better simulation techniques, a clear definition of value in terms of ROI, and a deep assessment
on prognostic parameters such as prognostic distance, a better assessment was made.

Due to the complexity of the impact of PHM and the various di↵erent kinds of data required to make an
assessment of the total value of CBM, often case studies are presented that make use of more concrete
data. For instance, Hongsheng et al. [26] focused on the air conditioning system, using reliability data
from literature. PHM parameters were assumed to be an input to enable a sensitivity analysis. Unfortu-
nately due to the many di↵erent parameters and great possibility in variation, e.g. PHM coverage ranging
from 10% to 100%, it is hard to pinpoint the actual value that CBM can bring in this study, as the results
were very spread out. This can also be observed in the study done by Gerdes, Scholz, and Galar [22],
as they concluded that 20 % to 80 % of the maintenance actions of air conditioning systems that cause
delay can be prevented depending on the availability of sensors. Data used in this study was however
much more concrete, as it was in-service data from Airbus linking exact cause of failure to the amount
of delay. Still a more profound evaluation could have been done by taking into account the prognostic
assessment of these failures.

When looking at studies that use concrete data, two specific studies stand out, both using data from
Lufthansa Technik AG. Kählert, Giljohann, and Klingauf [30] specifically looked at the prevention of
unscheduled maintenance. An overview of data used and interaction between the di↵erent data structures
can be seen in figure B.12.

Figure B.12: Data and its dependencies used for event modeling [30]

This wealth of information, even though the authors note the incompleteness and sometimes lack of data
quality, provided a more robust ground and holistic approach on assessing the value of CBM on avoid-
able unscheduled maintenance events.

Hölzel, Schilling, and Gollnick [25] however enlarged the scope, also taking into account scheduled
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maintenance. For example the availability of data regarding distribution of man-hours of maintenance
tasks and maintenance duration, enables the formulation of a proper maintenance planning model.

In conclusion, the availability of data plays a substantial role in assessing the value that CBM can bring.
However extensive data is often at least partially confidential, hence in many studies various assumptions
are made when looking at a greater scope. Often case studies use more deterministic data resulting in
tangible results, but extrapolating these benefits to the bigger picture is often impossible due to the many
di↵erent aspects PHM influences. Hence in order to do a complete assessment of the value of CBM it
is necessary to make proper, justifiable assumptions given the incompleteness of data, myriad of aspects
PHM can potentially influence, and restriction of time.

Prognostic assessment
An important influence on the value that CBM can bring is PHM, as these systems help enabling CBM.
In literature, various di↵erent assessments on the e↵ect of value that prognostics o↵er have been done.
This section aims to provide a critical overview of these assessments.

The kind of assessment done heavily depends on the data available. For example Gerdes, Scholz, and
Galar [22] used historic failure data related to air conditioning systems. The paper further looked at
current availability of sensors, and potential additional sensors that could prevent these failures. It was
concluded that with the current sensors 20% of the failures could be prevented while assuming avail-
ability of additional sensors, 80 % of failures could be prevented. Unfortunately a deeper look on how
these sensors could prevent failures with respect to prognostic information was not done, as it was as-
sumed that there was a reliable conditioning monitoring system being able to prevent all failures given
the availability of sensors. This of course is a big assumption, since for example missed detections, false
positives, and prognostic horizon are not taken into account.

With respect to the air conditioning system, another study [62] proposed a model that takes into account
multiple sensor signals generating a single health index. Using this health index as input for a Bayesian
failure prognostic method yielded satisfactory results in predicting the time of entering the degradation
warning stage. In this case the relative prediction errors were below 8 %. An interesting conclusion from
this study was that as closer the component was to its end of life (EOL), the predicted failure time is
closer to the actual failure time, and hence the uncertainty is less. The key question what follows from
this is then how this balance between an earlier more uncertain prediction of failure and a late but more
certain prediction time influences the optimization of scheduling of maintenance tasks.

Feldman, Jazouli, and Sandborn [17] did a case study taking into account these uncertainties in pre-
dicting the precursor of failure of a multi-functional display. As part of cost benefit analysis comparing
unscheduled maintenance with a PHM approach, the optimal prognostic distance (PD) was determined.
This prognostic distance is defined as the time horizon before actual failure, the prognostics system is
able to indicate failure Sandborn and Wilkinson [52]. Unique in this study is that this precursor expected
time to failure (TTF) is a distribution based on a sample of the distribution of the actual time to failure and
prognostic distance. When a sample TTF is taken from the distribution of the precursor expected TTF,
and this TTF is higher than the actual TTF of the instance it is assumed that unscheduled maintenance
is required leading to higher costs. The results of simulations taking into account distributions based on
electronic component reliability data from literature, implementation costs and operational profile can be
seen in figure B.13.

At first it would be expected that the higher the prognostic distance the better, yet it can be seen that there
is an optimal prognostic distance related to these components. Fritzsche and Lasch [21] showed why this
is the case, and mentioned the decrease in forecast quality, increase in prognostics cost and increase in
wrong delivered spare parts associated with a longer prognostic distance as crucial causes. A qualitative
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Figure B.13: Impact of prognostic distance on lifecycle costs of LRU socket [17]

overview agreeing with the result from Gerdes, Scholz, and Galar [22] can be seen in figure B.14.

Figure B.14: E↵ect of prognostic distance on maintenance costs [21]

Kählert, Giljohann, and Klingauf [30] not only looked at the prognostic horizon, but also the impact of
accuracy on the eventual cost savings regarding prevention of unscheduled maintenance. Yet in their
analysis these parameters are assumed independent in contrast to the previously mentioned studies. Fur-
thermore the impact of false positives, such as false alarms leading to NFF events, and false negatives,
in case the failure is not detected on time, on the cost reduction is not very clear. Having a better anal-
ysis with respect to this might bring valuable conclusions in the desired sensitivity of the PHM algorithm.

As mentioned before, the holistic approach of Hölzel, Schilling, and Gollnick [25] encompassing both
deterministic scheduled maintenance and unscheduled data is an eyeopener in assessing the potential
value of CBM. However a deep analysis of prognostic parameters is lacking as component RUL is
assumed to be deterministic in the scheduling of maintenance. Furthermore false positives and false
negatives are not taken into account with respect to unscheduled maintenance, and might actually be of
interest regarding the requirements of PHM systems and corresponding sensors.

E↵ect on scheduled maintenance
Scheduled maintenance has mostly be the domain of preventive maintenance, and current legislation

makes it di�cult in proving the benefits of CBM. Therefore in literature there has not been a lot of focus
on the impact of CBM on scheduled maintenance. Still there have been some case studies and mainte-
nance scheduling modelling approaches assessing the economic value it could bring.

For instance similar case studies done by Dong, T. Haftka, and H. Kim [11] and Pattabhiraman et al.
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[45] focused on the impact of condition-based maintenance in structural aircraft maintenance. It was in-
vestigated whether structural health monitoring (SHM) techniques were able to reduce costs by skipping
certain scheduled maintenance actions. Pattabhiraman et al. [45] found that especially during the first few
maintenance stops, much costs could be saved since inspections were not necessary yet. Three di↵erent
approaches incorporating SHM were presented, all showing significant improvement in total costs over
conventional scheduled maintenance. However cost data used were averages in literature, and the cost
modeling technique contained various assumptions, such as a 20% to 100% increase of costs when main-
tenance is unscheduled, and downtime costs were not taken into account. It should be noted however that
extra costs due to the weight of sensors, were taken into account. These were over a lifetime of an air-
craft quite substantial, but still it was found that CBM would lead to savings of at least 12 M$ per aircraft.

Dong, T. Haftka, and H. Kim [11] delve a bit deeper into the costs increase and savings associated with
CBM. They also included costs increase due to the necessity of replacing the SHM systems during the
lifetime of an aircraft. The big cost savings found in this study relate to the reduction in time required for
a C check. It was found that 12 days of C check could be saved, as the time of actual inspection was as-
sumed to be much lower and surrounding structures were not needed to be removed in order to facilitate
inspection. Another cost saving aspect came from the idea that SHM techniques enabled more regular
crack size inspections during A checks, instead of C checks, and therefore a higher crack size threshold
was allowed. The e↵ect on scheduling repair actions according to these di↵erent inspection parameters
is unfortunately left out as it might trigger unscheduled maintenance events, resulting in higher costs.
Still the eventual cost savings were found to be in the same order as Pattabhiraman et al. [45].

Aside from these case studies, Hongsheng et al. [26] and Hölzel, Schilling, and Gollnick [25] took a more
global approach in estimating the e↵ects of CBM on scheduled maintenance. In interesting approach
was done by Hölzel, Schilling, and Gollnick [25] in which maintenance tasks and predicted unscheduled
failure events were combined in task packages depending on the RUL or maintenance intervals as can be
seen in figure B.15.

Figure B.15: Maintenance scheduling and task packaging [25]

This task packaging might be especially beneficial in that due to prognostic information, interval of tasks
can be escalated and some tasks can even be omitted. This is done by grouping tasks based on their
task codes in task code groups (TCGs). Depending on the TCG, a task is either eliminated, the interval
is escalated, or nothing changes. The limitation of this study is that only 2 global parameters influence
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this impact, and hence no detail analysis of tasks is done. Though given the great number of tasks, this
might be considered a reasonable assumption. It should be noted that the tasks involved are either short
to medium interval tasks. D checks are still assumed to be block checks and planned separately.

Taking only into account scheduled maintenance, and assuming the most optimistic scenario, i.e. pa-
rameters of task redundancy being 1 and interval escalation being 100 %, a potential maintenance costs
saving of around 3 million EUR was found. This is relatively low considering the total maintenance cost
modeled over a life cycle was 76 million EUR, and the great number of maintenance tasks a↵ected by
these parameters. Comparing this number to the potential savings in previously shown studies regarding
crack formation, show the complexity of analysing cost savings due to CBM. For instance, the time that
is freed up due to task elimination and escalation, might be used to schedule extra flights. While Dong,
T. Haftka, and H. Kim [11] assumed a reduction of loss of revenue depending on the days of mainte-
nance saved, Hölzel, Schilling, and Gollnick [25] did not clearly explain what was done with the extra
time gained. Using the maintenance scheduling approach of Hölzel, Schilling, and Gollnick [25], ap-
plied on a fleet of aircraft might reveal patterns in extra time available. These patterns can then be used to
adapt the flight schedule, which in result can give a better estimation of the decrease in opportunity costs.

E↵ect on unscheduled maintenance
There have been many papers looking into di↵erent approaches of modeling prognostics and predicting
the RUL. However not a great amount of research has been done in how these approaches can be inte-
grated into prevention of unscheduled maintenance and what the potential cost savings are.

Vianna and Yoneyama [67] however combines the modeling of prognostics as well as modeling the
e↵ects on planning. This is done by focusing on the identification of degradation considering a multiple
wear profile scenario and integrating this with a line maintenance planning model. This model was based
on a combinatorial search algorithm, represented in figure B.16.

Figure B.16: Combinatorial search algorithm planning repair and servicing activities [67]

The algorithm loops over all turnaround times within the planning horizon and finds the repair and
service schedule that minimizes the operational costs. In doing this, constraints on resources and the
corresponding MEL category are taken into account as well. Limitations are that only line maintenance
is considered in this study. It might be interesting to see the results of a complete maintenance scheduling
approach as done in [25], while taking into account constraints posed in this paper. The study claims
parallelisation is allowed to perform the repair and servicing of di↵erent components, however dependen-
cies between these activities such as available manpower and time is not considered. When considering
a fleet of aircraft, this might prove to be especially di�cult using a combinatorial search algorithm, and
other simulation approaches such as an heuristic game approach [18], or a discrete event approach [30]
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might be beneficial.

The advantage of a discrete event approach, is that it allows to analyze the interdependencies between
events, and hence cause and e↵ect can be established. [30] used this simulation technique and came up
with a framework in assessing benefits with respect to unscheduled maintenance of PHM at LRU level.
Unfortunately however, due to intellectual property reasons, the actual simulation model is not disclosed.
Integrating this approach at LRU level and combining it with the holistic scheduled maintenance ap-
proach of Hölzel, Schilling, and Gollnick [25], might prove to give a better overview of CBM value.
Especially considering that the prevention of unscheduled maintenance events by Hölzel, Schilling, and
Gollnick [25] is mostly based on one PHM coverage parameter, while not considering prognostic param-
eters as done by Kählert et al.

Evaluation of methods
As mentioned in the previous section, simulation techniques have a big influence on how the cost-benefit
analysis is performed. Depending on e.g. the complexity of the system involved and data available, di↵er-
ent methods are chosen. An attempt was made to categorize the methods found in literature, an overview
of di↵erent methods with corresponding sources can be found in table B.1. Four di↵erent methods are
identified: scenario analysis, Monte Carlo simulation (MCS), discrete event simulation (DES), and a
combination of the latter two.

Scenario Analysis
The scenario analysis (SA) is a method during which several scenarios are evaluated based on di↵erent
input data. The kind of SA done by the sources presented in table B.1, generally makes use of a set of
deterministic equations, as simulation is not used in these cases. The advantage of this method is that it
is less computational heavy, Ashby and Byer [6] and Banks et al. [7] for example use spreadsheets that
evaluate the cost-benefit of PHM systems. Since no simulations are taking place, the outcome is known
within seconds making it a very suitable method to perform sensitivity analyses. The disadvantage here
is that when considering systems containing multiple events, often a discrete set of equations can not
accurately describe the complexity and the interactions within this system as SA works best for single
events [57]. Many stochastic elements play a role for which assumptions must be made. This is also
clear from Gerdes, Scholz, and Galar [22], as the event investigated was the reduction of unscheduled
maintenance events due to failures in the air conditioning system. This was done by looking at historic
failure data and setting up two scenarios: faults potentially prevented with data from sensors currently
available, and faults that could potentially be prevented regardless of the current availability of a sensor.
It was assumed that when a failure was preventable it was prevented and unavailability costs were de-
creased. This shows that although this method might provide a reasonable first impression of the order
of costs and benefits, it is less suitable for a detailed analysis as stochastic elements (e.g. FPs and FNs)
and e↵ects between events can not be modeled well using SA.

Monte Carlo simulation
Often stochastic data is used to model uncertainty. In these cases the model can not be readily solved
in one go, as each run will present a di↵erent outcome due to the probabilistic nature of the stochastic
data. the Monte Carlo simulation (MCS) model provides an answer to this, by sampling a di↵erent ran-
dom value from the probabilistic distributions for each run. After a large number of runs, the results are
aggregated, and useful information is gained on how uncertainty influences the model. MCS are most
useful when time does not play a role, as it is mostly used in assessing risk[32]. When a system with
multiple events a↵ecting each other is considered, DES or a combination of DES and MCS is often used.

For both Dong, T. Haftka, and H. Kim [11] and Pattabhiraman et al. [45] cracks on a great number of
panels on a fleet of aircraft are simulated. The initial crack size and damage growth is sampled during
each run. Once certain threshold values are crossed the aircraft is deemed ready for maintenance. Over
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Table B.1: Di↵erent CBA methods used in literature

Method Source
Scenario analysis Leao et al. [37]

Gerdes, Scholz, and Galar [22]
Ashby and Byer [6]
Banks et al. [7]

Monte Carlo simulation Dong, T. Haftka, and H. Kim [11]
Gilabert et al. [23]
Pattabhiraman et al. [45]

Discrete event simulation Vandawaker, Jacques, and Freels [66]
Rodrigues and Yoneyama [50]
Fritzsche and Lasch [21]

Discrete event simulation & Monte Carlo simulation Vandawaker et al. [65]
Feldman, Jazouli, and Sandborn [17]
Hölzel, Schilling, and Gollnick [25]
Kählert, Giljohann, and Klingauf [30]

the aircraft lifecycle the number of maintenance trips can then be determined taking into account the
uncertainty of cracks being formed.

Discrete event simulation
As mentioned previously, DES is especially useful as time is of importance and complex systems are
involved as it is able to model the impact of the result of one event on the input of another event. This
way causes and e↵ects of specific events can be evaluated and assessed regarding their impact on costs
and benefits. DES is also a method to discover unexpected bottlenecks, under- or over-utilization of re-
sources, or failure to meet specified requirements [57]. In contrast to continuous simulation, no change in
system state occurs in between events, enabling a relative computing time-e�cient method of simulation
[30]. DES can be especially useful in simulating lifecycle costs of an aircraft, as the aircraft’s health can
be described as a state, while maintenance activities can be modeled as discrete events. Since a lifecycle
of an aircraft will contain a great number of maintenance activities, DES enables the simulation to be
done in a relative time-e�cient manner.

Discrete-event simulation & Monte Carlo simulation
Often probabilistic elements are part of the CBA of CBM. To account for these while still taking the
lifecycle of an aircraft into account, DES and MCS are combined. Kählert, Giljohann, and Klingauf [30]
for example uses MCS to account for the stochastic input data, being distributions of empirical data such
as the processing time of LRU replacements. Hölzel, Schilling, and Gollnick [25] also used the combi-
nation of DES and MCS, for which the MCS is used to analyze the probabilistic behaviour of component
failure. Feldman, Jazouli, and Sandborn [17] uses a stochastic DES method, of which the stochastic
elements being the MCS on the performance of PHM and various costs involved in the calculation.

Evaluation of costs
Various di↵erent approaches in assessing costs of CBM have been taken in literature. Various studies

present methodologies to assess this value [37] [7] [6] [51]. Recently more and more studies have come
available that use deterministic data resulting in more concrete results. Most of these are case studies
zooming in at a certain element such as a LRU, while studies taking a global approach are much rarer,
but might provide more merit as a decision support for the industry. An overview of assessed papers with
respect to costs can be found in table B.2

A first observation from this overview is that cost assessment in literature mostly focuses on unsched-
uled maintenance, revealing the possible gap that enables a more complete picture of value CBM can
o↵er. Although Hongsheng et al. [26] and Hölzel, Schilling, and Gollnick [25] provide similar models
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in which PHM impact on scheduled maintenance is assessed, Hongsheng takes a case study approach,
while Hölzel proposes a maintenance planning simulation approach. This enables a better estimation of
the avoided costs with regard to interval escalation and omitting of maintenance tasks. Despite the ability
of the model to conduct the maintenance planning optimisation on fleet level, this is not done since other
modules did not support this. Scalability of the cost value assessment results from aircraft to network
level can however be of much interest to operators.

While the main objective of some of these papers is to conduct a proper cost benefit analysis, other papers
use a less detailed cost model in order to validate their model [67] [21] [53] [45] [11].

Vianna and Yoneyama [67] for example use mostly assumed values for costs in their case study. Still
the paper comes up with unique costs aspects rarely seen in other papers, such as additional operational
costs due to MEL conditions and degradation of components.

Fritzsche and Lasch [21] focuses on determining the optimal prognostic horizon and uses a relatively
simple cost model, using mostly rounded assumed cost data. Although not accurate, inventory and or-
dering costs are taken into account as well. It should furthermore be noted that assumptions made in this
study can be justified, since the objective is not to accurately predict potential cost savings, but assess
the relative cost savings between di↵erent prognostic distances.

A similar approach is taken by Saranga [53] as the cost data here is purely hypothetical in order to val-
idate their novel opportunistic maintenance model. Since the costs of the actual maintenance operation
is considered similar, these are not taken into account. To account for the di↵erence in scheduled and
unscheduled downtime, costs of compensation, good will and logistic delay are taken into account. The
cost for good will however are very di�cult to estimate [9], and therefore it is questionable how these
have been determined, even considering the hypothetical nature of the data. A main driver for the genetic
algorithm used is the balance between probability of a component failing during its lifetime and the cost
of replacing it before the actual end of life. This is nicely incorporated with the use of costs of risk and
cost of remaining life. Once again costs of risks might be di�cult to assess due to the unknown distri-
bution of the hazard function, yet when properly assessed might provide a good first order impression of
opportunistic maintenance.

Both Pattabhiraman et al. [45] and Dong, T. Haftka, and H. Kim [11] focus on the application of CBM to
prevent unnecessary structural airframe maintenance due to fatigue cracks. Interestingly both papers end
up with a similar total lifecycle reduction of around 12 million USD, while having a vastly di↵erent cost
assessment. Pattabhiraman et al. [45] uses maintenance costs data from empirical sources such as Kumar
[35]. However in assessing the extra costs due to unscheduled maintenance and cost reduction of the
actual maintenance tasks, parameters are assumed that simply scale costs. Furthermore loss in revenue
due to change in availability is also not taken into account. What brings most value to the calculated
costs, is the modeled reduction in required maintenance trips.

Dong, T. Haftka, and H. Kim [11] approaches the problem in the same way regarding the split into
modeling the required maintenance trips, and using this number to assess the total potential cost savings.
The di↵erence here is that more di↵erent costs are taken into account in a more detailed way, such as
inspection costs, cost of removing/installing structures, costs of replacing SHM equipment, and most
importantly according to the paper, net revenue saved. The downside is that cost values here are heavily
based on various assumptions, making it di�cult to validate total found cost savings.

The scope of Kählert et al. and their wealth of deterministic data enables an accurate modeling of costs.
This modeling is event based, meaning that every event is associated with a cost, and the total costs is
the accumulation of all event costs. These event costs are on their part an accumulation of process costs
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and operational irregularity expenses. Looking at the assumptions, a fixed delay costs per minute is as-
sumed. Cook - University of Westminster [9] however showed that the delay costs might significantly
increase per minute as the delay progresses. Also e↵ects such as cancellations or AOG are included in
this number. A modeling approach with more detail to these costs might for example bring benefits to
assess how di↵erent prognostic parameters influence di↵erent kinds of costs.

Figure B.17: Lifecycle cost-benefit model of Hölzel, Schilling, and Gollnick [25]

Hölzel, Schilling, and Gollnick [25] developed a Lifecycle Cost-Benefit Model (LC2B) module taking
into account all maintenance aspects during the lifecycle of an aircraft and outputs various KPIs. An
overview of this can be seen in B.17. Unfortunately the level of detail with regard to cost modeling is not
presented and unfortunately delay and cancellation costs are calculated once again according to values
from literature. An advantage however of the scope set by Hölzel et al. is the possibility to investigate
extra opportunities in generating revenue by scheduling more flights depending on the performance of
PHM.

Evaluation of assumptions & limitations
As mentioned in previous sections, various assumptions and limitations on the CBAs conducted in liter-
ature have been identified. This sections aims to provide an overview of these, by categorizing them and
elaborating more on their e↵ects.

Data used
According to a great number of papers [30] [20] [25] [26], this is the main barrier in providing a CBA
with concrete results. Therefore often a sensitivity analysis is performed for which the variable is the
percentage of systems PHM can be used for [25] [26], while other times generic failure distributions are
taken from literature [17]. Feldman, Jazouli, and Sandborn [17] for example examined both a Weibull
distribution and Exponential distribution of time to failure of a multi-functional display. For this reason
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a range of possible cost savings due to PHM equipment can be calculated, while with historic data avail-
able, this cost savings can be predicted more accurately. For example Gilabert et al. [23] calculates the
Weibull distribution parameters based on historic data, providing a better estimate for failure.

Fritzsche, Gupta, and Lasch [20] especially outlines this problem with respect to finding the optimal
prognostic distance. It was found that this parameter was heavily influenced by the data used, and only
when good quality data is available this parameter can be su�ciently evaluated.

Especially when considering a CBA on aircraft or fleet level, these limitations of data are important. On
this level, mostly sensitivity analyses take place that vary PHM coverage rates [25] [26]. This might give
an indication of possible benefits, however using historic and deterministic data for validation as done by
Kählert, Giljohann, and Klingauf [30] provides a much more accurate estimation of benefits. Using pre-
vious failure data, a much better estimation is performed on whether PHM can be e↵ective and what the
requirements of PHM applications should be. The limitation of Kählert, Giljohann, and Klingauf [30] is
that the focus is only on unscheduled maintenance related to one component. The gap in literature here
is that a CBA of both scheduled and unscheduled maintenance on aircraft or fleet level with deterministic
data has not been performed yet. Taking into account the top contenders with respect to e↵ect on costs
and unavailability, a model can be constructed that can be validated by the prognostics data o↵ered by
KLM’s PHM unscheduled maintenance prognosis tool called Prognos.

Prognostic parameters
Assumptions often done with respect to PHM is that diagnosis of the failure is perfect [11] [22] [25],
a prognostic horizon (PH) is not taken into account [25] [22] [26], or false positives (false alarms) [17]
[11] [22] [25], false negatives (missed alarms) [17] [22] [25] are not considered. Kählert, Giljohann,
and Klingauf [30] show how this can impact the final results, as it was concluded that a PH was a very
important measure on the e↵ect of PHM. While both FP and FN were taken into account, their e↵ects
where combined in an accuracy parameter. Still both FP and FN have di↵erent e↵ects, as the e↵ect of
a FP might result in a potential costly NFF, while a FN might result in extra unscheduled maintenance
potentially giving rise to an increase in unavailability costs. How these each influence the results of a
CBA, might bring value in determining FP & FN requirements for PHM systems. The same is true for
the PH, and as Fritzsche, Gupta, and Lasch [20] concluded these requirements are a must to know, as
they heavily impact the costs of PHM systems.

B.4 Conclusion
Having assessed the literature regarding condition-based maintenance and the economic assessment of
this, gaps are identified that can be filled with new research.

When looking at the scope of economic assessment done, a gap identified is that a model that takes
into account the e↵ect of PHM on both unscheduled and scheduled maintenance on fleet level has not
been developed yet. The e↵ect on unscheduled maintenance is considered the prevention of non-routine
maintenance events occurring because of unforeseen failures, while the e↵ect on scheduled maintenance
is largely contributed to the elimination of inspection tasks or escalation of task intervals.

Hölzel, Schilling, and Gollnick [25] come close in presenting a scheduling model that can be used for
a fleet of same aircraft types, however prevention of unscheduled maintenance can only be modeled on
aircraft level. Especially for an operator not outsourcing MRO activities such as KLM, the emergent
e↵ects on availability and costs can be very valuable. For instance availability has di↵erent e↵ects on
fleet level, i.e. planning of extra flights might be possible, while actual maintenance costs savings are
expected to decrease because of the limit of aircraft that can be maintained simultaneously.
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Having a good indication of what costs could be potentially saved with CBM is one thing, on the other
hand it is important to assess whether it is actually beneficial in that investment costs do not outweigh the
benefits. It is therefore important that prognostic parameters, highlighted in other studies such as prog-
nostic horizon, false positives and false negatives are adequately taken into account. These determine
sensor or system requirements and for this reason have a big influence on investment costs. Kählert,
Giljohann, and Klingauf [30] took these parameters properly into account, however the scope was lim-
ited to unscheduled maintenance. Expanding the scope in order to have a better idea of the total potential
cost savings depending on these parameters can be of great interest to an operator.

Taking these gaps into account, the following main research question is formulated:

What impact can condition-based maintenance have on fleet availability and maintenance costs?

To answer this question, the following subquestions are defined:

1. What is state-of-the-art in condition-based maintenance?
2. What metrics can be used to assess PHM performance?
3. How can scheduled and unscheduled maintenance tasks be a↵ected by PHM?
4. How can availability be assessed in terms of cost?
5. What maintenance costs are taken into account?
6. What is the e↵ect on availability and cost when the planning of PHM based scheduled maintenance

tasks is modeled on fleet level for di↵erent fleet sizes?
7. What is the e↵ect on fleet availability and costs when unscheduled maintenance is a↵ected by

PHM algorithms?
8. What metrics of PHM models are important and what level of performance is required in order for

condition-based maintenance to be beneficial?
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Appendix C

Component failure data validation

A condition for having proper prognostic model output data is that the input data should be as accurate
to reality as possible. For this reason it is important that the failure modeling of components in the
unscheduled maintenance module, is as accurate as possible. To ensure validity, it is therefore chosen
to fit a failure distribution to the historic removal data. Then this distribution can be used to simulate
component removals for a fleet of aircraft similar to the carrier of which the data is used. Comparing
the outcome of this simulation to reality, the modeling error can be obtained and thus the model can be
validated. This process is laid out in several sections of this chapter. First in section C.1 all data used
will be discussed in detail, and the cleaning actions required will be treated. Then in section C.2 the
right-censoring obstacle of this data will be treated. When the data is ready for fitting, in section C.3 the
failure distribution function will be chosen, and the methodology of obtaining the best fitting parameters
will be treated. With a distribution available the model validation methodology and results are treated in
section C.4.

C.1 Removal data
The removal data used is a database with over 35.000 records of component removals across 25 carriers
worldwide. An indication of the data structure with sample data can be found in Table C.1.

Table C.1: Sample component removal data

ID Code Reason Cost DUR TYP Last AC OPR New date Install date Removal date
2628 123456 Repair 20,000 25 789 AB-CDE DD 2017-04-10 2017-04-10 2019-07-08
5708 789123 Modify 35,000 35 789 FG-HIJ MM 2015-02-20 2017-02-11 2018-07-18

As can be seen in this table, a good selection of usable data is available. The ID represents the unique
id for every component. The the Code field is the unique code for each component type. For example,
there are several variations of the CU for each aircraft type. Each type has a di↵erent code, used in this
database. Then the Just and Reason fields indicate whether the removal of the component was justified
and what the reason for removal was. Cost and DUR indicate repair costs and duration. Information
about the previous installed aircraft is provided with the TYP, Last AC, and OPR columns indicating
the aircraft type, registration code and operator IATA code. Then the new, install, and removal dates
indicate when the component went in operation for the first time, when the component was installed on



the previous aircraft and when it was removed again.

Once this data was obtained it was of importance to filter it as only for specific components data was
required. To do this, the data was filtered using the Code column on the codes for the component being
investigated. A verification was done on the TYP column, to ensure only component from aircraft of the
correct type were considered. The next step was filtering the data once more, as the prognostic algorithm
used would only be evaluated on component failures, hence only removals due to component repair are
considered. This is done by filtering the Reason column on Repair.

Once the data was properly filtered, it was time to clean it. First the data was analysed and validated.
Simple validation tasks were done such as ensuring the removal date is later than the install date, and
that the install date is the same or later date than the new date. Also a histogram of repair cost and repair
duration was made. As expected a slight correlation was found between repair duration and repair cost.
However, it was found that still quite some data points seemed to contain invalid data, such as costs
defined as 0 (taking into account warranty), invalid dates or missing repair durations. Since cost data
was originated from a di↵erent source, the data points with invalid cost data were not deemed unusable,
however some data points were deemed unusable due to date issues, as they had removal dates which
were the same. At first it was thought that these data points would indicate rogue units, e.g. units that
simply were not repaired or failed straight away during the install. These data point however, turned
out to be erroneous data introduced most likely by human input error. Therefore these data points were
removed and the data points containing plausible values remained.

C.2 Censored data points
A next point of concern is the incompleteness of data. Since only data was available of removals, lots
of healthy components were not taken into account yet, as they were never removed. So in the case
a distribution was fit on the historic removal data, it was expected that when using this distribution in
the simulation, too much removals would occur compared to reality. As can be read in the validation
section C.4, this was indeed the case. Aside from this data being not available, the data also does not
consider replacements as it is obviously still healthy. This means that the data is right-censored. The
two challenges therefore are the estimation and generation of this missing data, and taking into account
censoring as the maximum likely distribution parameters are obtained.

Luckily, the TTF data comes with metadata indicating the last aircraft components were removed from.
With the public availability of start of service dates of aircraft, and the number of components per aircraft
known, a timeline using the available data can be constructed. A schematic indication of such timeline
can be seen in Fig. C.1.

Figure C.1: Timeline of component replacements on 4 component slots on one aircraft

60



C. Component failure data validation

The blue dots represent the points during which a component at a certain socket is replaced. The green
lines indicate the data that is available. The orange lines indicate right-censored data while the red line
indicates non-censored unknown data. It is important to note that together with the start of service date
of the aircraft, only the start and end points of the green data is available. Furthermore from the data
available it is unknown which component replacement corresponds to which component slot on the air-
craft. Therefore various assumptions and estimations are made in order to acquire these timelines.

Since for each replacement, a time of install and a time of removal is known, in many cases component
removals can be attributed to the same component slot as one removal date corresponds with the other
install date. Furthermore in various occasions the install date corresponds with the aircraft in-service
date, making it easy to complete the timeline for this component slot. Often data is missing as compo-
nents have install dates later than the in-service date of the aircraft and no component replacements can
be places before this installation. Such an occasion is indicated with the red line in Fig. C.1. In the case
that the install date is much later than the in-service date of the aircraft, an extra data point is generated
to take into account this extra replacement. Once this is done for all missing non-censored data, the
unknown data left is the right-censored data.

Generally, two kinds of right-censored data can be observed. First there are component slots for which
no data is available, and it assumed that the component was installed at the in-service date of the aircraft,
and the component is still operating. In the other cases, which happen for all remaining slots, it was
deemed that at the time that the data was gathered, the component installed last, was still operating. So
for all these components, right-censored data points were generated with the end time being the moment
the data was obtained, and a parameter indicating that the data is right-censored.

C.3 Failure distribution function
With the data taking censoring into account, it was time to select a failure distribution function that was
able to accurately model the data. From literature it was found that for a long time mainly exponential
distributions were used to model time to failure (TTF) distributions [33]. However, with the recent
increase in component complexity the Weibull distribution may prove to be more representative as a TTF
distribution function [55]. Having the data available, a visual inspection was done on the non-censored
TTF data. The histograms of the EG and CU TTF data are displayed in Figure C.2.

(a) CU subsystem (b) EG subsystem

Figure C.2: Histogram of historic TTF data for the EG and CU subsystem

Looking at the figures, it can be seen that an exponential distribution would seem to be a good fit, es-
pecially for the EG considering the high number of failures near the start. For the CU subsystem a

61



Weibull function seem to be a better fit considering the peak after the start. Since it is possible to re-
duce the Weibull distribution to an exponential distribution by adjusting the shape parameter to 1, a
two-parameter Weibull distribution was used for modeling this data.

Using the maximum likelihood estimation (MLE) method, the shape and scale parameters were obtained
for which the distribution fits the historic TTF best. Eq. C.1 shows the general equation that is used for
the MLE taking into account non-censored and right-censored data points [4].

L =
nY

i=1

f (ti|✓1, ✓2, ..., ✓k)
mY

j=1

[1 � F(t j|✓1, ✓2, ..., ✓k)] (C.1)

The first set of products take into account the non-censored data points, with f being the probability
density function (pdf), ti each replacement time data in all replacements n and ✓1,✓2,...,✓k being the
parameters to be estimated. Then, the next set of products take into account the right-censored data by
using the survival function. This function outputs the probability that the a component with time t j has
not been replaced yet, given the distribution parameters ✓1,✓2,...,✓k. In this case, these parameters would
be the shape and scale parameters of the Weibull distribution. For a Weibull distribution this equation
takes the form as seen in Eq. C.2.
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With ⌘ being the scale parameter, � the shape parameter, and ti the time to failure for each ttf failure
point i of all data points n. To enable easier manipulation of this function, first the logarithmic is taken
of the function to obtain the log-likelihood function. To obtain the parameters for which the maximum
likelihood is obtained, the partial derivative is then taken for both the shape and scale parameter and
equated to 0. To reduce overhead in programming this from scratch, the Python package Lifelines was
used. This package uses the adapted maximum likelihood estimation function as described in Eq. C.2 to
generate the Weibull parameters given the censored and uncensored data. A comparison of the generated
distribution functions with the historic data can be seen in Fig. C.3.

(a) CU subsystem (b) EG subsystem

Figure C.3: Weibull distributions and a histogram of historic TTF data for the EG and CU subsystem
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C. Component failure data validation

C.4 Model validation
In order to validate this model, a simulation was run considering the same boundary conditions as the
historic TTF data. This means that the start of simulation would correspond to the first in-service date
of the operator investigated, and the simulation end time being the moment at which the TTF data was
gathered. Then the simulation model would simulate the operators fleet by considering the di↵erent
in-service dates for its aircraft. At the in-service date of each aircraft or new component installation,
the distribution was sampled for a TTF value. After this time, the component was replaced. Once the
simulation ended, a comparison was made to the number of replacements that actually happened in this
time frame. This way the model accuracy could be assessed and the model could be validated. To account
for the stochastic nature of this data, this simulation is run for 1000 rounds, after which the number of
failures are averaged. The results are displayed in Table C.2

Table C.2: Normalised replacement validation results of distributions for the CU and the EG subsystems

CU replacements EG replacements
Historic data 1.00 1.00
Simulation with only uncensored data 1.61 2.56
Simulation taking into account right-censoring 0.90 1.06

It can be indeed seen that accounting for the right-censored data is highly necessary as the number of
replacements for both components not considering right-censored data is far from close to the validation
data. The algorithm used in creating this right-censored data seem to be e↵ective given the reduction in
error to about 6% to 10%. Especially considering the low total number of components replaced in this
time frame, and therefore low absolute error in number of components replaced, these distributions can
be considered validated, and usable for the CBM model.
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Appendix D

Unscheduled maintenance policy and
planning algorithm

After either a component failure has occurred, or the prognostic system has forecasted a future failure,
a decision should be made if and when this component will be replaced. Due to the consideration of a
fleet of aircraft possibly simulating various subsystems containing di↵erent MEL thresholds, this is not
necessarily a straightforward decision to be made. Furthermore, operators often have di↵erent policy
regarding replacing components. While some operators would attempt to replace a failed component as
soon as possible, other operators would rather replace components near the end of the MEL deadline in
order to potentially reduce costs. In section D.1 the maintenance policy for the unscheduled maintenance
model is defined, while in section D.2 this policy is encapsulated in a mathematical model that is used in
the simulation.

D.1 Policy algorithm
The policy used in the simulation is mainly based on keeping repair costs low and avoiding cancella-
tions as much as possible. In reality however, the policy often also considers combining the replacement
action with other due maintenance in order to reduce downtime and as a result also reduce opportunity
costs. When prognostics is available it is expected that this e↵ect can even be enlarged, as component
replacement decisions can be made much earlier. It should be noted however, that with earlier removals
generally more replacements are required in an aircraft’s lifecycle. With the availability of an aircraft’s
full maintenance schedule and accurate data on reductions in opportunity costs and downtime as a result
of combining maintenance, an optimisation algorithm could be developed that strives for lowest total
maintenance and opportunity costs. However due to either the data not available and complex nature of
this data, together with the time limitations of this study, it was chosen not to do this. Still this might
prove to be an interesting subject for further research, given reasonably accurate data.

The first priority of the algorithm used in this model is to prevent an AOG situation leading to un-
scheduled maintenance. An AOG situation is modeled as a situation for which either no maintenance
opportunity is available before the expiry of the current MEL condition or for which the MEL is expired
or simply too much components have failed leading to an immediate AOG situation. The next priority is



then to plan a maintenance opportunity for components as soon as optimally possible depending on their
MEL deadline. However in the case of a failed component without MEL deadline, a nonconsequential
failure, it would not be useful to replace this component as it is not required, and replacing the component
only causes downtime and cost. This is of course with the assumption that a non-operating component
would not negatively impact the operations, which can often be not the case. In the case of prognostics
this changes, as the benefit of replacing the failing component early might reduce the repair costs as it
is more likely that only a minor repair is required. Still, in the case of nonconsequential failures it is
decided that these components will be replaced together with the next occurring replacement resulting
from another consequential failure. This way no extra opportunity is required and the opportunity costs
can be limited. A overview of the actions for di↵erent situations are displayed in Table D.1, while an
overview of the events taking place is portrayed in Fig. D.1.

Table D.1: Replacement policy for di↵erent component situations

(Expected) Situation Actual Failure Expected Failure
AOG Unscheduled Maintenance Schedule opportunity
MEL deadline Schedule opportunity Schedule opportunity

Nonconsequential failure Defer and schedule together once another
higher priority replacement is required Schedule opportunity

Incur Troubleshooting

and Delay costs

Determine upcoming

MEL condition

Actual Failure

Prognostic Alert

(Expected Failure)

AOG

situation?

MEL

deadline?

Request unscheduled

maintenance

Incur cancellation costs

Stop operating

Request maintenance

opportunity

Opportunity

available before

AOG?

Continue operating Defer replacement

Book opportunity

Yes

Yes

Yes

No

No

No

Figure D.1: Flowchart of actions taken after component failure or prognostic alert
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D. Unscheduled maintenance policy and planning algorithm

D.2 Planning model
With this model in mind, a mixed integer linear programming (MILP) planning model was established
that optimises maintenance slot allocations since multiple components coming from various aircraft are
considered. The model takes into account the following aspects:

• (Expected) MEL expiry date: it is important to replace a component before MEL expiry as
a resulting AOG situation corresponds with high cancellation and opportunity costs. In case of a
prognostic alert, this would be the MEL deadline added to the estimated failure date, e.g. estimated
RUL.
• Capacity: Each maintenance opportunity has a limit in hours available. Depending on the com-

ponent, a certain number of hours are required for every replacement.
• Concurrency: It is expected that when multiple components are replaced simultaneously less

overall time is needed. Therefore a fixed number of hours per aircraft is added for every mainte-
nance occurrence the aircraft requires.
• Priority: Using the priority, an extra incentive can be placed in either replacing a component

earlier or later than other components. It can also be used to prevent the aircraft from choosing a
maintenance opportunity during which only a nonconsequentially failed component is replaced.
• Ordering costs: In order to swap the component, a working replacing component is needed which

should be ordered from the component pool. Di↵erent options in shipping times with correspond-
ing ordering costs exists. A specific AOG order option is available such that the component often
arrive within 24-48 hours. In order to keep these costs low, it is likely that opportunities are se-
lected for which the components can be ordered regularly.
• Reassignment: Despite not being an explicit aspect of the MILP model, it should still be noted

that the overall planning model is able to reassign aircraft utilising specific maintenance slots
as new failures emerge. E.g. in the case of a sudden failure resulting in the aircraft requiring
maintenance within 10 days, the aircraft can utilise any upcoming maintenance slots given that the
currently scheduled maintenance is not of a higher priority. A new opportunity is found for the
currently scheduled maintenance, and this cascades until all maintenance actions are assigned an
opportunity.

The MILP model used is represented by the following equations, starting with the objective equation
D.1. The constraints are displayed in Eq. D.2 - D.6
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Decision variables:

xk
a,s,c 1 if component c of subsystem s of aircraft a is replaced at opportunity k else 0

xunsch
a,s,c 1 if component c of subsystem s of aircraft a is replaced during unscheduled maintenance else 0

xde f er
a,s,c 1 if the replacement component c of subsystem s of aircraft a is deferred else 0

ya,k 1 if a component of a subsystem of aircraft a is replaced at opportunity k else 0
zaog

a,s,c 1 if the replacement of component c of subsystem s of aircraft a requires an AOG order else 0

Coe�cients:

pa,s,c priority of replacing component c of subsystem s of aircraft a
tk time of opportunity k
tnow time when the model is run
tmax Di↵erence between time of latest opportunity and current time
ds hours required for replacement of component of subsystem s
d f ixed

a additional fixed hours required for using a maintenance opportunity by aircraft a
ak hours available at opportunity k
copp

a hourly opportunity costs of aircraft a
ccncl

a fixed cancellation costs of aircraft a
caog

s Additional costs for AOG ordering a component of subsystem s
rk

a,s,c 1 when opportunity k is available for replacement of component c of subsystem s of aircraft a
considering MEL expiry due to (expected) failure of this component, else 0

sa,s,c 1 when component c of subsystem s of aircraft a can not be deferred else 0

Sets:

A set of all aircraft
S (a) set of all subsystems of aircraft a
C(s) set of all components requiring replacing of subsystem s
K set of all opportunities

The optimisation function attempts to minimise costs by assigning the aircraft to a fixed opportunity k
for which components can be replaced. In case the (expected) failure is unconsequential, hence there is
no MEL deadline, the coe�cient sk

a,s,c is set to 0, otherwise it is 1. This coe�cient leads to a switching
e↵ect in constraint D.2, and decides when in case there is no assignment to a fixed opportunity xk

a,s,c,
whether the replacement has to occur unscheduled (xunsch

a,s,c ) or can be deferred (xde f er
a,s,c ). This constraint

also takes into account the MEL expiry with the rk
a,s,c coe�cient such that no opportunity can be selected

after MEL expiry. Then in constraint D.3 for every replacement it is defined whether an AOG order is
required. Constraint D.4 then helps in defining whether an aircraft makes use of an opportunity. This
is then used in determining the fixed opportunity costs. As described in the policy, nonconsequentially
failing components should only be replaced together with another replacement with a higher priority.
Constraint D.5 ensures this is the case, as nonconsequential failures have priority 0, while other failures
have higher priorities depending on how short the MEL deadline is. Finally, constraint D.6 ensurs that
the capacity of each opportunity is not exceeded.
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Appendix E

Unscheduled maintenance model parameters

For the unscheduled maintenance model, several input parameters were used. Mostly they were modeled
after the MRO and operator data that was used in this research. Due to intellectual property reasons,
absolute cost values are not displayed. Where possible relative values are used. Table E.1 displays
global model parameters and replacement schedule modeling values that were used in all scenarios

Table E.1: Global replacement scheduling parameters

Total simulation run time 2555 days
Runs 100
Fixed additional maintenance hours 2 hours
Opportunities per week 1 per component
Hours per opportunity 8 hours

In table E.2 the unscheduled maintenance input values for both the CU and EG subsystem are displayed.

Table E.2: Unscheduled maintenance model parameter per subsystem

Parameter EG CU
Components installed per aircraft 4 components 4 components
MEL deadline 1 failure 3 days -
MEL deadline 2 failures AOG 10 days
MEL deadline 3 failures AOG AOG
MEL deadline 4 failures AOG AOG
Supply chain lead time 4 days 4 days
Supply chain lead time AOG order 1 day 1 day
Minor repair cost 26.6% of major costs 33.3% of major costs
Replacement duration 6 hours 2 hours
Repair time major repair 40 days 30 days
Repair time minor repair 14 days 14 days
Prognostic Horizon 20 days 30 days
Slope parameter s 0.25 0.1
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